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ASYMPTOTIC COMPACTNESS AND ABSORBING SETS

FOR 2D STOCHASTIC NAVIER-STOKES EQUATIONS

ON SOME UNBOUNDED DOMAINS

ZDZIS�LAW BRZEŹNIAK AND YUHONG LI

Abstract. We introduce a notion of an asymptotically compact (AC) random
dynamical system (RDS). We prove that for an AC RDS the Ω-limit set ΩB(ω)
of any bounded set B is nonempty, compact, strictly invariant and attracts

the set B. We establish that the 2D Navier Stokes Equations (NSEs) in a
domain satisfying the Poincaré inequality perturbed by an additive irregular
noise generate an AC RDS in the energy space H. As a consequence we deduce
existence of an invariant measure for such NSEs. Our study generalizes on the
one hand the earlier results by Flandoli-Crauel (1994) and Schmalfuss (1992)
obtained in the case of bounded domains and regular noise, and on the other
hand the results by Rosa (1998) for the deterministic NSEs.

1. Introduction

The study of the asymptotic behavior of dynamical systems is one of the most
important problems in mathematical physics. In the theory of deterministic infinite-
dimensional dynamical systems, the notion of an attractor occupies a central posi-
tion (see [41]). Generalization of this theory to the stochastic case is now a well-
developed branch in the theory of random dynamical systems. Brzeźniak, Capiński
and Flandoli [8] first developed such a notion for random PDEs. Later Crauel
and Flandoli [18] introduced the corresponding generalization of the attractor to
stochastic PDEs. The theory of random attractors then turned out to be very
useful for the study of the long-time behavior of infinite-dimensional dynamical
systems. In the above-mentioned paper [18] the authors proved the existence of
a global attractor for 2D stochastic Navier-Stokes equations in a bounded domain
with sufficiently regular noise. However, their method does not work for either
unbounded domains or for irregular noise. This is because it relies heavily on the
compactness of the Sobolev embeddings (known to be no longer compact for un-
bounded domains). The same difficulty was encountered in the deterministic case.
To overcome it Abergel [1] used weighted spaces, while Ghidaglia [27] and Rosa
[37] used energy equation. But as far as we are aware no work has been done in
the stochastic case. In this paper we will continue the line of research introduced
by Rosa [37] and Ladyzhenskaya [33].
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Analogously to [18], we are working in the framework of a general Random
Dynamical System (RDS) on a separable Banach space H. Motivated by [33] and
[37] we introduce a concept of an asymptotically compact (AC) RDS and prove that
in an AC RDS with every bounded set B ⊂ H we can associate a nonempty, closed
and absorbing random set ΩB . Invariance of that set with respect to our RDS
implies existence of invariant measures which in the case of stochastic NSE in 2D
unbounded domains has been until now an open question. The only papers in which
a similar problem was investigated (but for equations of Ginzburg-Landau type) are
[22] and [38]. However, the question of the uniqueness of invariant measures remains
an open question. We postpone the study of the existence of global attractors
for asymptotically compact RDS until a later publication. In order to show that
the RDS generated by the 2D stochastic Navier-Stokes equations in 2D domains
(possibly unbounded) satisfying the so-called Poincaré inequality is asymptotically
compact, we exploit the energy equality. Other examples of asymptotically compact
RDS will be studied elsewhere by the second-named author. Let us repeat that our
approach allows us to relax assumptions on the noise, so even if the domain is
bounded, our results are new as compared with [18] or [39].

As we have explained earlier, the main motivation for the research reported here
was to study the long-time behaviour of stochastic parabolic equations (in the case
of 2D Navier Stokes equations) in unbounded domains. We would like to point
out another advantage of our approach. Since our results no longer depend on the
compactness of the embedding V →֒ H (we use the notations introduced in section
4), we do not require our initial value problem to be well posed in the space V
and consequently, in the bounded domain case, comparing with [18] we allow our
driving noise to be space-wise much rougher (thought by some to be more physical).
For example, the RKHS associated to the noise can be equal to any subspace of
the Sobolev space Hα,2(D, R2) with any α > 0 if D is 2D torus and with α > 1/2
in a general case. However, we are unable to treat the case α = 0. The existence of
solutions (but not pathwise) in certain negative order Sobolev spaces is a subject
of a very interesting paper by Da Prato and Debusche [19], where however only the
case of D being a torus is studied (which is an essential assumption).

This paper is organized as follows. In section 2, we recall the mathematical
setting of the problem and introduce the concept of asymptotically compact RDS.
In section 3, we prove that for an asymptotically compact RDS ϕ, the Ω-limit set of
any bounded subset B is nonempty, compact, ϑ-forward invariant, and attracts B.
Furthermore, we prove the existence of an invariant measure for an asymptotically
compact Markov RDS. In section 4, using the classical Galerkin approximation
method and some compactness theorems, we prove the existence of the stochastic
flow (and hence of RDS) associated with 2D stochastic Navier-Stokes equations in
possibly unbounded Poincaré domains (i.e. satisfying the Poincaré inequality). In
section 6 we construct RDS corresponding to the stochastic NSEs we study in this
paper. This result seems to be new even in the bounded domain case. In section
7 we use the energy inequalities to prove the continuity of the corresponding RDS
in the weak topologies. This result is the main technical difference between our
approach and the earlier approaches, and it allows us to use the weak compactness
of the unit ball in the Hilbert space H as a substitute for the compactness of
the embedding V →֒ H. In section 8 we prove that the just-constructed RDS is
asymptotically compact. Finally, in section 9 we prove the existence of an invariant
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measure for the 2D stochastic Navier-Stokes equations perturbed by an additive
noise.

2. Notation and preliminaries

Here we will introduce only the basic notions needed in this paper. A compre-
hensive presentation of the theory of random dynamical systems can be found in
the recent monograph by Arnold [2].

A measurable dynamical system (DS) is a triple

T = (Ω,F , ϑ) ,

where (Ω,F) is a measurable space and ϑ : R×Ω ∋ (t, ω) �→ ϑtω ∈ Ω is a measurable
map such that for all t, s ∈ R, ϑt+s = ϑt ◦ ϑs. A metric DS is a quadruple

T = (Ω,F , P, ϑ) ,

where (Ω,F , P) is a probability space and T′ := (Ω,F , ϑ) is a measurable DS such
that for each t ∈ R, ϑt : Ω → Ω preserves P.

Suppose also that (X, d) is a Polish space (i.e. complete separable metric space)
and B is its Borel σ-field. Let R

+ = [0,∞).

Definition 2.1. Given a metric DS T and a Polish space X, a map ϕ : R
+×Ω×X ∋

(t, ω, x) �→ ϕ(t, ω)x ∈ X is called a measurable random dynamical system (RDS)
(on X over T) iff

(i) ϕ is (B(R+) ⊗ F ⊗ B,B)-measurable;
(ii) ϕ(t + s, ω) = ϕ(t, ϑsω) ◦ ϕ(s, ω) for all s, t ∈ R

+ and ϕ(0, ω) = id, for all
ω ∈ Ω. (Cocycle property)

An RDS ϕ is said to be continuous or differentiable iff for all (t, ω) ∈ R
×Ω,

ϕ(t, ·, ω) : X → X is continuous or differentiable, respectively. Similarly, an RDS ϕ
is said to be time continuous iff for all ω ∈ Ω and for all x ∈ X, ϕ(·, x, ω) : R

+ → X
is continuous.

Remark 2.2. (i) Arnold in [2] considers an RDS ϕ : T×Ω×X → X over a measurable
dynamical system (ϑt)t∈T (on a fixed probability space (Ω,F , P)) with T = R, Z, R+

or Z
+. In his case the set T is the same for both ϕ and ϑ. We only consider the

continuous time case, but the set T for ϕ is equal to R
+ while for ϑ it is equal to

R.
(ii) Because our interest lies in nonlocally compact metric spaces (in particular,

in infinite-dimensional Banach spaces), our definition of continuous RDS is different
from that in [2]; see Definition 1.1.2 therein.

For two nonempty sets A, B ⊂ X, we put

d(A, B) = sup
x∈A

d(x, B) and ρ(A, B) = max{d(A, B), d(B, A)}.

The latter is called the Hausdorff metric (see Castaing and Valadier [15]). In fact,
ρ restricted to the family C of all nonempty closed subsets of X is a metric; see [15].
From now on, let X be the σ-field on C generated by open sets with respect to the
Hausdorff metric ρ; e.g. [8], [15] or Crauel [16].

Definition 2.3. Let (Ω,F) be a measurable space and let (X, d) be a Polish space.
A set-valued map C : Ω → C is said to be measurable iff C is (F ,X )-measurable.
Such a map C is often called a closed random set.
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Definition 2.4. Let ϕ : R
+ × Ω × X ∋ (t, ω, x) �→ ϕ(t, ω)x ∈ X be a measurable

RDS on a Polish space (X, d) over a metric DS T. A closed random set B is called
ϕ-forward invariant iff for all ω ∈ Ω,

(2.1) ϕ(t, ω)B(ω) ⊆ B(ϑtω) for all t > 0.

A closed random set B is said to be strictly ϕ-forward invariant iff for all ω ∈ Ω,

(2.2) ϕ(t, ω)B(ω) = B(ϑtω) for all t > 0.

Remark 2.5. By substituting ϑ−tω for ω, we get the following equivalent version of
Definition 2.4.

A closed random set B is ϕ-forward invariant, resp. strictly ϕ-forward in-
variant, iff for all ω ∈ Ω,

ϕ(t, ϑ−tω)B(ϑ−tω) ⊆ B(ω) for all t > 0,

or respectively,

ϕ(t, ϑ−tω)B(ϑ−tω) = B(ω) for all t > 0.

Definition 2.6. For a given closed random set B, the Ω-limit set of B is defined
to be the set

(2.3) Ω(B, ω) = ΩB(ω) =
⋂

T≥0

⋃

t≥T

ϕ(t, ϑ−tω)B(ϑ−tω).

Remark 2.7. (i) A priori Ω(B, ω) can be an empty set.
(ii) We have the following equivalent version of Definition 2.6:

ΩB(ω) = {y : ∃tn → ∞, {xn} ⊂ B(ϑ−tn
ω), lim

n→∞
ϕ(tn, ϑ−tn

ω)xn = y}.

(iii) Since
⋃

t≥T ϕ(t, ϑ−tω)B(ϑ−tω) is closed, ΩB(ω) is closed as well.

Definition 2.8. A closed random set K(ω) is said to
(a) attract,
(b) absorb,
(c) ρ-attract

another closed random set B(ω) iff for all ω ∈ Ω, respectively,
(a) limt→∞ d(ϕ(t, ϑ−tω)B(ϑ−tω), K(ω)) = 0;
(b) there exists a time tB(ω) such that

(2.4) ϕ(t, ϑ−tω)B(ϑ−tω) ⊂ K(ω) for all t ≥ tB(ω).

(c)
lim

t→∞
ρ(ϕ(t, ϑ−tω)B(ϑ−tω), K(ω)) = 0.

The smallest tB(ω) ≥ 0 for which (2.4) holds is called the absorbtion time (of B(ω)
by K(ω)).

Remark 2.9. (i) Obviously, if a closed random set K absorbs a closed random set
B, then K ρ-attracts B, and if K ρ-attracts B, then K attracts B.

(ii) Note that ϕ(t, ϑ−tω)x can be looked at as the position of the trajectory at
time 0, which was in x at time −t.

(iii) By replacing ω by ϑ−sω and t by t− s, we get the following equivalent form
of part (b) of Definition 2.8. A closed random set K is said to absorb another
closed random set B iff for all ω ∈ Ω, there exists a random time τB such that for
t ≥ s + τB

ϕ(t − s, ϑ−tω)B(ϑ−tω) ⊂ K(ϑ−sω).
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The following definition is new in the framework of RDS. It is motivated by
works of Ladyzhenskaya [33], Ghidaglia [27] and Rosa [37].

Definition 2.10. We say that an RDS ϕ defined on a separable Banach space X is
asymptotically compact iff for all ω ∈ Ω, for any sequence (tn) such that tn → ∞
and any bounded X-valued sequence {xn}n, the set {ϕ(tn, ϑ−tn

ω)xn : n ∈ N} is
relatively compact in X.

Remark 2.11. (i) Crauel, Debussche and Flandoli in [17] have proposed a different
definition of asymptotic compactness for stochastic evolutional systems. However,
their definition appears to be different from ours, and it was not applied to the
SPDEs in unbounded domains. It seems to us that the approach from [17] is not
applicable to stochastic Navier Stokes equations in unbounded domains.

(ii) The reason we consider a Banach space in Definition 2.10, instead of a general
Polish space, is subject to the necessity of considering a proper subfamily of the
family of all subsets of X. Obviously, one cannot expect the set {ϕ(tn, ϑ−tn

ω)xn :
n ∈ N} to be relatively compact in X for any X-valued sequence {xn}n. One can
easily generalize the above definition to a Polish space in the following way. Suppose
that X is endowed with a family G of nonempty subsets of X. We say that the RDS
ϕ on X over ϑ is G-asymptotically compact iff for any B ∈ G, any sequence
(tn): tn → ∞ and B-valued sequence {xn}n, the set {ϕ(tn, ϑ−tn

ω)xn : n ∈ N} is
relatively compact in X.

3. Properties of the Ω-limit set

Throughout this section we will assume that T = (Ω,F , P, ϑ) is a metric DS, X
is a separable Banach space, and ϕ is a continuous, asymptotically compact RDS
on X (over T). We begin our discussion with the following fundamental property.

Proposition 3.1. If B ⊂ X is a bounded deterministic set, then for all ω ∈ Ω,
ΩB(ω) is a nonempty set.

Proof. Since B is bounded, by the asymptotic compactness of ϕ, we may assume
that for all ω ∈ Ω, there exists a B-valued sequence {xn}n and an R

+-valued
sequence (tn)n, and an element y ∈ X such that

lim
n→∞

ϕ(tn, ϑ−tn
ω)xtn

= y in X.

Therefore, by Remark 2.7(i), y ∈ ΩB(ω), which proves that ΩB(ω) �= ∅. �

Theorem 3.2. If B ⊂ X is a bounded deterministic set, then for all ω ∈ Ω, ΩB(ω)
attracts B.

Proof. Suppose that there is an ω ∈ Ω such that ΩB(ω) does not attract B. Hence
we can find a number δ > 0, a sequence (tn)n : tn → ∞ and a B-valued sequence
{bn}n, such that

(3.1) d(ϕ(tn, ϑ−tn
ω)bn, ΩB(ω)) ≥ δ for all n ∈ N.

Since ϕ is asymptotically compact, {ϕ(tn, ϑ−tn
ω)bn : n ∈ N} is relatively compact

in X. Therefore there exists a subsequence (n′) ⊂ (n) and y ∈ X, such that

(3.2) lim
n′→∞

ϕ(tn′ , ϑ−tn′
ω)bn′ = y.

By Remark 2.7(i), y ∈ ΩB(ω). On the other hand, (3.1) and (3.2) together imply
that d(y, ΩB(ω)) ≥ δ > 0. This contradiction completes the proof. �
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Theorem 3.3. If B ⊂ X is a bounded deterministic set, then for all ω ∈ Ω, ΩB(ω)
is strictly ϕ-forward invariant.

Proof. Let ω ∈ Ω. By Remark 2.7, if y ∈ ΩB(ω), we can find a sequence (tn):
tn → ∞ and a B-valued sequence {xn}n, such that y = limn→∞ ϕ(tn, ϑ−tn

ω)xn.
Let t > 0. By the cocycle property we have

ϕ(tn + t, ϑ−tn
ω) = ϕ(t, ϑtn

ϑ−tn
ω)ϕ(tn, ϑ−tn

ω) = ϕ(t, ω)ϕ(tn, ϑ−tn
ω).

Moreover, since by our assumption ϕ(t, ω) : X → X is continuous, we infer that

ϕ(t, ω)y = ϕ(t, ω) lim
n→∞

ϕ(tn, ϑ−tn
ω)xn = lim

n→∞
ϕ(t, ω)ϕ(tn, ϑ−tn

ω)xn

= lim
n→∞

ϕ(tn + t, ϑ−tn
ω)xn = lim

n→∞
ϕ(tn + t, ϑ−tn−tϑtω)xn

= lim
n→∞

ϕ(sn, ϑ−sn
ϑtω)xn,

where sn = t + tn. Since limn→∞ sn = ∞, we infer that limn→∞ ϕ(sn, ϑ−sn
ϑtω)xn

exists and belongs to ΩB(ϑtω). This proves that ϕ(t, ω)ΩB(ω) ⊂ ΩB(ϑtω).
Conversely, suppose y ∈ ΩB(ϑtω) for some t > 0. Hence, by Remark 2.7(i), we

can find a sequence (tn)n: tn → ∞ and a B-valued sequence {xn}, such that

y = lim
n→∞

ϕ(tn, ϑ−tn
ϑtω)xn.

Since tn − t → ∞, in view of the asymptotic compactness of the RDS ϕ, the set
{ϕ(tn − t, ϑ−(tn−t)ω)xn : n ∈ N} is relatively compact in X. Hence there exists a
subsequence (tn′)n′ ⊂ (tn)n and an element z ∈ X such that

ϕ(tn′ − t, ϑ−(tn′−t)ω)xn′ → z.

Therefore z ∈ ΩB(ω). On the other hand y = ϕ(t, ω)z. Indeed, by the continuity
of ϕ(t, ω) : X → X we have

y = lim
n′→∞

ϕ(tn′ , ϑ−tn′
ϑtω)xn′ = ϕ(t, ω) lim

n′→∞
ϕ(tn′ − t, ϑ−tn′+tω)xn′ = ϕ(t, ω)z.

In particular, y ∈ ϕ(t, ω)ΩB(ω), which proves that ΩB(ϑtω) ⊂ ϕ(t, ω)ΩB(ω). �

Theorem 3.4. If B ⊂ X is a bounded deterministic set, then for all ω ∈ Ω, ΩB(ω)
is compact.

Before embarking on proving the last theorem, let us briefly discuss the existence
of an invariant measure for the RDS ϕ. We have the following definition; see also
[2], Remark 1.1.8.

Definition 3.5. The skew product of a measurable DS T with an RDS ϕ on a
Polish space X over T is the map

(3.3) Θ : R
+ × Ω × X ∋ (t, ω, x) �→ (ϑ(t, ω), ϕ(t, ω)x) = Θt(ω, x) ∈ Ω × X.

One can show that if Θ is the skew product of T with ϕ, then a triple

T̂ := (Ω × X,F ⊗ B, Θ)

is a measurable DS. Conversely, if T is a measurable DS, ϑ : R
+ × Ω × X → X is

measurable, the function Θ defined by (3.3) and the triple T̂ is a measurable DS,
then ϕ is an RDS on X over T.
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Definition 3.6. Let ϕ be a given RDS over a metric DS T. A probability measure
µ on (Ω × X,F ⊗ B) is called an invariant measure for ϕ iff

(i) Θt preserves µ (i.e. Θt(µ) = µ) for each t ∈ R
+;

(ii) the first marginal of µ is P, i.e. πΩ(µ) = P, where πΩ : Ω×X ∋ (ω, x) �→ ω ∈
Ω.

Since by Corollary 4.4 in Crauel and Flandoli [18], if an RDS ϕ on a Polish
space X has an invariant compact random set K(ω), ω ∈ Ω, it also has an invariant
probability measure, we have the following.

Corollary 3.7. A continuous and asymptotically compact RDS ϕ on a separa-
ble Banach space has at least one invariant probability measure µ in the sense of
Definition 3.6.

Next we define a Feller invariant measure for a Markov RDS ϕ. If f : X → R is
a bounded and Borel measurable function, then we put

(3.4) (Ptf)(x) = E f(ϕ(t, x)), t ≥ 0, x ∈ X.

We easily see that Ptf is also a bounded and Borel measurable function. Moreover,
we have the following result.

Proposition 3.8. The family (Pt)t≥0 is Feller, i.e. Ptf ∈ Cb(X) if f ∈ Cb(X).
Moreover, if the RDS ϕ is time continuous, then for any f ∈ Cb(X), (Ptf)(x) →
f(x) as t ց 0.

Proof. For the first assertion we only need to consider the case t > 0 (where anyway
the proof is straightforward). Indeed, if xn → x in X, by the continuity of ϕ(t, ·, ω) :
X → X, (Ptf)(xn) → (Ptf)(x) by using the Lebesgue dominated convergence
theorem.

To prove the second one, we note that from the continuity of ϕ(·, x, ω) : [0,∞) →
X it follows that for each x ∈ X, (Ptf)(x) → f(x) as t → 0 if x ∈ X. �

An RDS ϕ is called Markov iff the family (Pt)t≥0 is a semigroup on Cb(X), i.e.
Pt+s = PtPs for all t, s ≥ 0.

Definition 3.9. A Borel probability measure µ on X is called an invariant measure
for a a semigroup (Pt)t≥0 of Feller operators on Cb(X) iff

P ∗
t µ = µ, t ≥ 0,

where (P ∗
t µ)(Γ) =

∫
H

Pt(x, Γ) µ(dx) for Γ ∈ B(H) and the Pt(x, ·) is the transition
probability, Pt(x, Γ) = Pt(1Γ)(x), x ∈ B.

A Feller invariant probability measure for a Markov RDS ϕ on H is, by definition,
an invariant probability measure for the semigroup (Pt)t≥0 defined by (3.4).

Crauel and Flandoli proved in [18] (see Corollary 4.6) that if a Markov RDS ϕ
on a Polish space H has an invariant compact random set K(ω), ω ∈ Ω, then there
exists a Feller invariant probability measure µ for ϕ. Thus we have the following
result.

Corollary 3.10. If a time-continuous and continuous Markov RDS ϕ is asymp-
totically compact, then for any bounded set B ⊂ H, there exists a Feller invariant
probability measure µ for ϕ.
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Remark 3.11. The uniqueness of an invariant Borel probability measure (and thus
its independence of the set B) remains an open question. The existence of a global
attractor is another open question. Both will be studied in subsequent publications.

Proof of Theorem 3.4. Suppose that {yn}n is an ΩB(ω)-valued sequence. In view of
Remark 2.7(i), for any n ∈ N, we can find sequences {tnk} and {xn

k}k ⊂ B such that
tnk → ∞ ϕ(tnk , ϑ−tn

k
ω)xn

k → yn. Next we construct a sequence {si}i in the following

way. We put s1 = t1k1
for k1 ∈ N such that d(ϕ(t1k1

, ϑ−t1k1
ω)x1

k1
, y1) < 2−1. If si is

constructed we put si+1 = ti+1
ki+1

, where ki+1 ∈ N is such that ti+1
ki+1

> si + 1 and

d(ϕ(ti+1
ki+1

, ϑ−ti+1
ki+1

ω)xi+1
ki+1

, yi+1) < 2−i−1. It is obvious that si → ∞. Put zi = xi
ki

,

i ∈ N. Since {zi : i ∈ N} ⊂ B, by the asymptotic compactness of the RDS ϕ,
the set {ϕ(si, ϑ−si

ω)zi} is relatively compact. Hence we can find a subsequence
si′ and an element z ∈ X, such that ϕ(si′ , ϑ−si′

ω)zi′ → z. On the other hand,

the definition of si implies that d(ϕ(si′ , ϑ−si′
ω)zi′ , y

i′) < 2−i′ . Therefore, yi′ → z.
Since by Remark 2.7(ii), ΩB(ω) is closed; we infer that z ∈ ΩB(ω). This concludes
the proof of compactness of ΩB(ω). �

4. Time dependent 2D stochastic Navier Stokes equations

Let us consider an incompressible viscous fluid of constant density (assumed to
be equal to 1 and of constant viscosity ν > 0) enclosed in a region D ⊂ R

2 and
driven by an external time-dependent force f : R

+ × D → R
2. We denote by

u(t, x) ∈ R
2 and p(t, x) ∈ R, respectively, the velocity and the pressure of the fluid

at the point x ∈ D at time t ≥ 0. We assume that the time evolution of the
velocity and pressure of the fluid is governed by the initial-boundary value problem
associated with Navier-Stokes equations:

(4.1)

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t − ν△u + (u · ∇)u + ∇p = f in D,
div u = 0 in D,
u = 0 on ∂D,
u(·, 0) = u0 in D.

We assume that D ⊂ R
2 is an arbitrary (bounded or unbounded) domain with

boundary ∂D satisfying the cone property.
We will use the standard mathematical framework of the NSEs; see e.g. [40].

The basic functional space is the Lebesgue space L
2(D) := L2(D, R2) with scalar

product (u, v) =
∑

j

∫
D

(uj(x)vj(x)) dx and norm | · | = (·, ·)1/2. We will also need

the Sobolev space H
k,p(D) = Hk,p(D, R2), k ∈ N, and p ∈ [1,∞) consisting of all

u ∈ Lp(D, R2) whose weak derivatives up to order k belong to Lp(D, R2) as well.
H

k,p(D) is a separable Banach space with norm

‖u‖k,p :=

⎛

⎝
∑

|α|≤k

∫

D

|Dαu(x)|p dx

⎞

⎠
1/p

.

Obviously H
k,2(D), k ∈ N, is a Hilbert space with naturally defined scalar product.

We will consider the weak solutions to problem (4.1), and for this we need a proper
space of test functions. We take

V = V(D) := {φ ∈ C∞
0 (D, R2) : div φ = 0 in D}.
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The closure of V in L
2(D), resp. in H

1,2(D), will be denoted by H, resp. V. The
scalar products norms in those two spaces are those inherited from L

2(D), resp.
H

1,2(D).
We call D a Poincaré domain iff there exists λ1 > 0 such that

(4.2)

∫

D

φ2 dx ≤ 1

λ1

∫

D

| ∇φ |2 dx, φ ∈ C∞
0 (D, R2).

The inequality (4.2) is called the Poincaré inequality, and it can be shown that
if D is bounded is some direction, i.e. there exists a vector b ∈ R

2 such that
supx∈D |(x, b)| < ∞, then D is a Poincaré domain.

If D is a Poincaré domain, then the original norm on V is equivalent to the norm
‖ · ‖ induced by the scalar product

(4.3) ((u, v)) =

∫

D

2∑

j=1

∇uj · ∇vj dx = (∇u,∇v), u, v ∈ V.

We define next a bilinear form a : V × V → R by

(4.4) a(u, v) := (∇u,∇v), u, v ∈ V.

Since obviously the form a coincides with the ((·, ·)) scalar product in V, it is V-
continuous, i.e. it satisfies |a(u, u)| ≤ C‖u‖2 for some C > 0 and all u ∈ V. Hence,
by the Riesz Lemma, there exists a unique linear operator A : V → V′, where V′

is the dual of V, such that a(u, v) = 〈Au, v〉, for u, v ∈ V. Moreover, the form
a is obviously V-coercive, i.e. it satisfies a(u, u) ≥ α‖u‖2 for some α > 0 and all
u ∈ V. Therefore, by means of the Lax-Milgram theorem (see e.g. Temam [41,
Theorem II.2.1]) the operator A : V → V′ is an isomorphism. Since V is densely
and continuously embedded into H and H can be identified with its dual H′, we
have the following embeddings:

(4.5) V ⊂ H ∼= H′ ⊂ V′.

Let us then recall that we say that the spaces V, H and V′ form a Gelfand triple.
Next we define an unbounded linear operator A in H as follows:

(4.6)

{
D(A) := {u ∈ V : Au ∈ H},
Au := Au, u ∈ D(A).

It is now well established that under some additional assumptions related to
the regularity of the domain D, the space D(A) can be characterized in terms of
Sobolev spaces. For example (see [30], where only the 3-dimensional case is studied
but the result is also valid in the 3-dimensional case), if D ⊂ R

2 is a uniform C2-
class Poincaré domain, then with P : L

2(D) → H being the orthogonal projection,
we have

(4.7)

{
D(A) := V ∩ H

1,2(D),
Au := −P∆u, u ∈ D(A).

It is also a classical result (see e.g. Cattabriga [14] or Temam [41], p. 56) that A is a
nonnegative self-adjoint operator in H. Moreover (see p. 57 in [41]), V = D(A1/2).
Let us recall a result of Fujiwara–Morimoto [26] that the projection P extends to a
bounded linear projection in the space L

q(D), 1 < q < ∞.

Remark 4.1. (i) Let us denote by H
1,2
0 (D) the closure of C∞

0 (D, R2) in H
1,2(D). It

can be shown that V is equal to the closure of V in H
1,2
0 (D).
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5596 ZDZIS�LAW BRZEŹNIAK AND YUHONG LI

(ii) The characterization of the spaces H and V given in [40] also holds true when
D is a Poincaré domain. Namely, if �n denotes the external normal vector field to
∂D, then

H⊥ = {u ∈ L
2(D) : u = grad p, for some p ∈ L

2
loc(D)},

H = {u ∈ L
2(D) : div u = 0, u · �n|∂D = 0},

V = {u ∈ H
1,2
0 (D) : div u = 0}.

(iii) If D is a bounded domain, then the operator A is invertible and its inverse
A−1 is bounded, self-adjoint and compact in H. Hence the spectrum of A consists
of an infinite sequence 0 < λ1 ≤ λ2 ≤ . . . ≤ λm → ∞ of eigenvalues listed with
their multiplicity, and there exists an orthogonal basis {wm}m≥1 of H consisting of
eigenvectors of A : Awm = λmwm, m ∈ N.

(iv) If D is a Poincaré domain, then the operator A is invertible, its inverse A−1

is bounded and

(4.8) |Au|2 ≥ λ1(Au, u) ≥ λ2
1|u|2 for all u ∈ D(A).

In particular, the original norm on V is equivalent to the norm ‖ · ‖ induced by the
scalar product

((u, v)) =

∫

D

2∑

j=1

∇uj · ∇vj dx = (∇u,∇u).

Moreover, the graph norm on D(A) is equivalent to the |A · |-norm and (see p. 57
in [41])

(4.9) 〈Au, u〉 = ((u, u)) = ‖u‖2 = |∇u|2, u ∈ D(A).

(v) If D is not a Poincaré domain, then ‖ · ‖ is only a seminorm on V. The same
comment applies to the seminorm |A · | on D(A).

Next, we define the following fundamental trilinear form:

b(u, v, w) =

∫

D

u∇vw dx =

2∑

i,j=1

∫

D

ui(x)Div
j(x)wj(x) dx,

whenever u, v, w ∈ L
1
loc(D) are such that the integral on the right-hand side (RHS)

exists. If u, v are such that the linear map b(u, v, ·) is continuous on V, the cor-
responding element of V′ will be denoted by B(u, v). We will also denote, with a
slight abuse abuse of notation, B(u) = B(u, u). Note that if u, v ∈ H are such that
(u∇)v =

∑
j ujDjv ∈ L

2(D), then B(u, v) = P (u∇v).

The following are some fundamental properties of the form b; see e.g. [40],
Lemma 1.3, p. 163, and Temam [41]. There exists a constant C > 0 such that

(4.10)
b(u, v, v) = 0 foru ∈ V, v ∈ H

1,2
0 (D),

b(u, v, w) = −b(u, w, v) foru ∈ V, v, w ∈ H
1,2
0 (D).

(4.11)

|b(u, v, w)| ≤ C

⎧
⎪⎪⎨

⎪⎪⎩

|u|1/2|∇u|1/2|∇v|1/2|Av|1/2|w|, u ∈ V, v ∈ D(A), w ∈ H,
|u|1/2|Au|1/2|∇v||w|, u ∈ D(A), v ∈ V, w ∈ H,

|u||∇v||w|1/2|Aw|1/2, u ∈ H, v ∈ V, w ∈ D(A),
|u|1/2|∇u|1/2|∇v||w|1/2|∇w|1/2, u, v, w ∈ V.
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Also we have, from Temam [40], Lemma III.3.3, the following inequality:

|v|L4(D) ≤ 21/4|v|1/2
L2(D)|∇v|1/2

L2(D), v ∈ H
1,2
0 (D).(4.12)

By means of the Hölder inequality we can deduce the following inequality:

(4.13) |b(u, v, w)| ≤ |u|L4(D)|∇v|L2(D)|w|L4(D), u, v, w ∈ H
1,2
0 (D).

Hence b is a bounded trilinear map from L
4(D) × V × L

4(D) to R. Moreover, we
have the following result which is fundamental for our purposes.

Lemma 4.2. The trilinear map b : V × V × V → R has a unique extension to a
bounded trilinear map from L

4(D) × (L4(D) ∩ H) × V to R.

It follows from Lemma 4.2 that B maps L
4(D) ∩ H (and so V) into V′ and

(4.14) |B(u)|V′ ≤ C1|u|2L4(D) ≤ 21/2C1|u||∇u| ≤ C2|u|2V , u ∈ V.

Using the above notation it is now customary to consider the following functional
analytic version of problem (4.1):

(4.15)

{
du
dt + νAu + B(u) = f(t), t ≥ 0,
u(0) = u0.

Our aim is to study the following Navier-Stokes equations in D, i.e. the above
problem with the external force f(t) being random:

(4.16)

{
du + {νAu + B(u)} dt = f dt + dW (t), t ≥ 0,
u(0) = x,

where we assume that x ∈ H, f ∈ V′ and W (t), t ∈ R, is a two-sided cylindrical
Wiener process in H (with its Reproducing Kernel Hilbert Space (RKHS) to be
specified later; see Remark 6.1) defined on some filtered probability space A =
(Ω,F , (Ft)t∈R, P).

Remark 4.3. (i) Let us recall the celebrated Gagliardo-Nirenberg inequalities; see
e.g. [25]. Assume that q, r ∈ [1,∞], and j, m ∈ Z satisfy 0 ≤ j < m. Then for any
u ∈ Cm

0 (Rn),

(4.17) ||Dju||Lp(Rn) ≤ C||Dmu||aLr(Rn)||u||1−a
Lq(Rn),

where 1
p = j

n +a( 1
r − m

n )+(1−a) 1
q for all a ∈ [ j

m , 1] and C is a constant depending

only on n, m, j, q, r, a with the following exception. If m − j − n
r is a nonnegative

integer, then the equality (4.17) holds only for a ∈ [ j
m , 1).

In particular, if n = 2, j = 0, m = 1 and r = q = 2 ≤ p < ∞, then (4.17) implies
the following generalization of (4.12):

|v|Lp(Rn) ≤ C|v|1−
2
p

L2(Rn)|∇v|
2
p

L2(Rn), v ∈ H1,2
0 (Rn).

(ii) If z ∈ L4([0, T ]; L4(D)), then B(z) ∈ L2(0, T ; V′). Indeed, by (4.14) we have∫ T

0
|B(z(t))|2V′ dt ≤ C2

1

∫ T

0
|z(t)|4

L4 dt < ∞.

A precise definition of a solution to problem (4.16) will be given in section 6.
Roughly speaking a solution to problem (4.16) is a process u(t), t ≥ 0, which can
be represented in the form u(t) = v(t) + zα(t), where zα(t), t ∈ R, is a stationary
Ornstein-Uhlenbeck process with drift −A − αI, i.e. a stationary solution of

(4.18) dz + (A + α)z dt = dW (t), t ∈ R,
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and v(t), t ≥ 0, is a solution to the following problem (with v0 = x − z(0)):

dv

dt
= −νAv − B(v) − B(v, z) − B(z, v) − B(z) + αz + f,(4.19)

v(0) = v0.(4.20)

In the remainder of this section we will study problem (4.19)–(4.20) for fixed
deterministic function z ∈ L4

loc([0,∞); L4(D)) ∩ L2
loc([0,∞); V′) and v0 ∈ H. Moti-

vated by Brzeźniak, Capiński and Flandoli [8] (see also Temam [40]), we have the
following.

Definition 4.4. Suppose that z ∈ L4
loc([0,∞); L4(D))∩L4

loc([0,∞); V), f ∈ V′ and
v0 ∈ H. A function v ∈ C([0,∞); H) ∩ L2

loc([0,∞); V′) ∩ L4
loc([0,∞); L4(D)) is a

solution to problem (4.19)–(4.20) iff v(0) = v0 and (4.19) holds in the weak sense,
i.e. for any φ ∈ V

d

dt
(v(t), φ) = −ν(v(t), Aφ)− b(v(t) + z(t), φ, v(t) + z(t))(4.21)

+(αz(t) + f, φ).

Theorem 4.5. Assume that α ≥ 0, z ∈ L4
loc([0,∞); L4(D)) ∩ L2

loc([0,∞); V′),
v0 ∈ H and f ∈ V′.

(i) Then there exists a unique solution v of problem (4.19)–(4.20).
(ii) If in addition, v0 ∈ V, f ∈ H and z ∈ C(R; V ) ∩ L2

loc(R; D(A)), then
v ∈ C([0,∞); V) ∩ L2

loc([0,∞); D(A)).

Part (i) of Theorem 4.5 will be proved in section 5, while for the proof of part
(ii) we refer to Brzeźniak and Li [9]. The following result strengthens Lemma 5.2
in [9].

Theorem 4.6. Assume that, for some T > 0 fixed, xn → x in H,

zn → z in L4([0, T ]; L4(D)) ∩ L2(0, T ; V′), fn → f in L2(0, T ; V′).

Let us denote by v(t, z)x the solution of problem (4.19)–(4.20) and by v(t, zn)xn is
solution of problem (4.19)–(4.20) with z, f, x being replaced by zn, fn, xn. Then

v(·, zn) xn → v(·, z) x in C([0, T ]; H) ∩ L2(0, T ; V).

In particular, v(T, zn) xn → v(T, z) x in H.

Remark 4.7. Because the solution v to problem (4.19)–(4.20) is not constructed by
means of the Banach Fixed Point Theorem, the continuity result in Theorem 4.6
does not follow from Theorem 4.5 by employing the principle of smooth dependence
of fixed points on parameters. See however our papers [4] and [9] for using this idea
in different topologies.

5. Proof of Theorems 4.5 and 4.6

5.1. Proof of Theorem 4.5. There are many possible and different proofs. For
example, one can follow the method from [8] and prove first the local existence
with more regular initial and external data. Then, one should prove the existence
of a global solution for the same regularized initial and external data. Finally, one
should establish certain a priori inequalities in appropriate weaker norms, and using
these, demonstrate the existence a limit of these more regular solutions when the
regularization is removed. Another approach, following [23] and [21], is to prove the
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existence and the uniqueness of a local maximal solution in a space L4(0, T ; L4(O))
and then show that this solution is in fact more global and more regular. Neither
of these approaches rely on the compactness argument but only on the Banach
Fixed Point Theorem, and they work equally well in both bounded and unbounded
domains. We have however chosen another, in fact more complicated, approach,
because it yields estimates that are essential in proving the weak continuity of the
RDS, an essential tool in our investigation; see section 7.

Let us fix T > 0. It is enough to restrict our problem to the interval [0, T ]. As
already mentioned, we will only prove the first part of the theorem.

Part I. Existence of solutions. First let us observe that F ∈ L2(0, T ; V′) from
Lemma 4.2 and because z ∈ L4

loc([0,∞); L4(D)) ∩ L2
loc([0,∞); V′), where F (t) =

B(z(t)) + αz(t) + f , t ≥ 0. Second, since V is a separable Hilbert space, V is dense
in V and V is dense in H, we can find a sequence {wj}j∈N in V which is free and
total in V and which is an orthonormal basis of H.

Let us denote Hm = span{w1, w2, · · · , wm} with the norm inherited from H and
Vm = span{w1, w2, · · · , wm} with the norm inherited from V. Denote also by Pm

the orthogonal projection from H onto Hm. Consider the following approximate
equation for problem (4.19)–(4.20) on the finite-dimensional space Hm:

(5.1)

⎧
⎨

⎩

dvm

dt
= Pm

[
−νAvm − B(vm) − B(vm, z) − B(z, vm)) + F

]
,

vm(0) = Pmv(0).

Let jm : Hm →֒ H be the natural embedding, Am := PmAJm, Bm = PmB(jm, jm)
and for t ∈ [0, T ], Dm(t) = PmB(jm, z(t)), Em(t) = PmB(z(t), jm), Fm(t) =
PmF (t).

One easily shows that Am, resp. Bm, is a continuous linear, resp. bilinear, map
in Hm. Moreover, for t ∈ [0, T ], Dm(t) and Em(t) are bounded linear maps in Hm,
and with some universal (hence independent of m) positive constant C,

|Dm(t)|L(Hm,Hm) ≤ C|z(t)|L4 , |Em(t)|L(Hm,Hm) ≤ C|z(t)|L4 , t ∈ [0, T ].

Denoting Gm(t, x) = −νAmx−Bm(x)+Dm(t)(x)+Em(t)(x)+Fm(t), x ∈ Hm,
t ∈ [0, T ] and x0 = Pmv(0), we see that problem (5.1) takes the following form:

(5.2)

⎧
⎨

⎩

dx

dt
= G(t, x(t)), t ≥ 0,

x(0) = x0.

The preceding observations imply that the maps G(t, ·) are locally Lipschitz
in the following sense. For each R > 0, there exists a positive function C =
CR ∈ L1(0, T ), such that for any t ∈ [0, T ] and |x|, |y| ≤ R, |G(t, x) − G(t, y)| ≤
CR(t)|x − y|. Therefore, by the local existence and uniqueness theorem for or-
dinary differential equations on Banach spaces (see Cartan [13]), there exists a
number Tm ∈ (0, T ] and a function x : [0, Tm) → Hm which is a unique local
maximal solution of the above problem. In particular, lim suptրTm

|vm(t)| = ∞ if
Tm < T . Hence, in order to prove that Tm = T it is sufficient to establish that
lim suptրTm

|vm(t)| < ∞. This is a direct consequence of the a priori estimates we
are going to establish in what follows. For this we need to recall Lemma III.1.2
from [40].
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Lemma 5.1. Suppose that V ⊂ H ∼= V′ ⊂ V′ is a Gelfand triple of Hilbert spaces. If
a function u belongs to L2(0, T ; V) and its weak derivative belongs to L2(0, T ; V′),
then u is a.e. equal to a continuous function from [0, T ] to H, the real-valued
function |u|2 is absolutely continuous and, in the weak sense on (0, T ), one has
(with 〈·, ·〉 being the duality between V′ and V)

(5.3)
d

dt
|u(t)|2 = 2〈 d

dt
u(t), u(t)〉.

Let us observe that by (4.9)

(−νAmvm, vm) = −ν(PmAvm, vm) = −ν(Avm, vm) = −ν‖vm‖2

and by (4.10)

(Bmvm, vm) = (PmB(vm), vm) = (B(vm), vm) = 0, (Em(t)vm, vm) = 0.

Therefore, applying the above Lemma 5.1 with the triple Vm, Hm, V′
m and invoking

equation (5.2), we have on [0, Tm)

1

2

d

dt
|vm(t)|2 = −ν‖vm(t)‖ − b(vm(t), vm(t), z(t)) + 〈F (t), vm(t)〉.

Then combining (4.11) with (4.14), and next using (4.12), (4.13) and the Young
inequality, we infer that

(5.4)
d

dt
|vm(t)|2 + ν‖vm(t)‖2 ≤ C

ν
|z(t)|4

L4(D)|vm(t)|2 +
2

ν
|F (t)|2V′ , t ∈ [0, Tm).

Next applying the Gronwall Lemma and denoting ΨT (z) = e
∫ T
0

C
ν |z(τ)|4

L4(D)
dτ

< ∞,

CF = 2
ν

∫ T

0
|F (s)|2V′ds < ∞, we find that

|vm(t)|2 ≤ |vm(0)|2e
∫ t
0

C
ν |z(τ)|4

L4(D)
dτ

+

∫ t

0

2

ν
|F (s)|2V′e

−
∫ s
t

C
ν |z(τ)|4

L4(D)
dτ

ds

≤ ΨT (z)|vm(0)|2 + CF ≤ ΨT (z)|v(0)|2 + CF < ∞, t ∈ [0, Tm).

Therefore,

(5.5) sup
t∈[0,Tm)

|vm(t)|2 ≤ ΨT (z)|v(0)|2 + CF ,

which, on the one hand implies that Tm = T , and on the other hand implies that

(5.6) the sequence {vm} is bounded in L∞(0, T ; H).

In order to get another a priori estimate we integrate equation (5.4) from 0 to T
and by using (5.5) we obtain

|vm(T )|2 + ν

∫ T

0

‖vm(t)‖2 dt

≤ C

ν

∫ T

0

|z(t)|4
L4(D)|vm(t)|2 dt +

2

ν

∫ T

0

|F (t)|2V′ dt + |vm(0)|2

≤ C

ν
(ΨT (z)|v(0)|2 + CF )

∫ T

0

|z(t)|4
L4(D) dt +

2

ν

∫ T

0

|F (t)|2V′ dt + |v(0)|2.
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The last inequality implies that

(5.7) the sequence {vm} is bounded in L2(0, T ; V).

Let us point out that claims (5.6) and (5.7) are sufficient to infer that the sequence
{vm} has a convergent subsequence. However, in order to show that the limit
function v is a solution to our problem, we need to show that vm converges to v in
the strong and not simply the weak topology. This can be done, as in the case of the
classical NSEs, in many different ways. Here we feel that the fractional derivative
method (see [40], ch. III.2) is best suited for the unbounded domain case. We begin
with an observation that (5.1) together with (4.13) imply that

(5.8) the sequence {v′m} is bounded in L2(0, T ; V′).

For example we shall prove now that supm∈N

∫ T

0
|Dm(t)vm(t)m(t)|2V′ dt < ∞. From

(4.13), (4.12) and assumptions on z, we have

(5.9)

∫ T

0

|Dm(t)vm(t)|2V′ dt ≤
∫ T

0

|vm(t)|L4 |z(t)|L4 dt

≤ |vm|L∞(0,T ;H)(

∫ T

0

|∇vm(t)|2 dt)1/2(

∫ T

0

|z(t)|4
L4 dt)1/2.

Hence, in view of (5.6) and (5.7), supm∈N

∫ T

0
|Dm(t)vm(t)|2V′ dt < ∞.

Let us denote by Hγ,2(R; V, H) (see e.g. [40] or [34]) a Hilbert space consisting
of all v ∈ L2(R; V) such that, with v̂ being the Fourier transform of v,

∫

R

|(iτ)γ v̂(τ )|2H dτ < ∞.

If we put ṽm = 1(0,T )vm, then from (5.7) and (5.8) we infer (see [34]) that for
γ ≤ 1/2,

(5.10) the sequence {ṽm(·)} is bounded in Hγ,2(R; V, H).

Because of (5.6) and (5.7), without loss of generality we may assume that there
exists v ∈ L2(0, T ; V) ∩ L∞(0, T ; H) such that

(5.11)

{
vm → v, weakly in L2(0, T ; V),
vm → v, weakly-star in L∞(0, T ; H).

Since for any R > 0, the set DR = B(0, R) ∩ D is bounded, the embedding
H

1,2(DR) →֒ L
2(DR) is compact, and since by (5.10)

(5.12) ṽm(·)|DR
is bounded in Hγ,2(0, T ; H1,2(DR), L2(DR)).

Since, by the compactness theorem from [40] (see Theorem III.2.2) the imbedding
Hγ,2(0, T ; H1(DR), L2(DR)) →֒ L2(0, T ; L2(DR)) is compact, we may deduce from
(5.12) that for each R > 0 we can find a subsequence of {vm} (which for the sake
of simplicity of notation will be denoted as the whole sequence), such that

vm|DR
→ v|DR

, strongly in L2(0, T ; L2(DR)).
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By considering R = 1, 2, · · · and applying the standard diagonal procedure, we can
find a subsequence {vm} (which again will be denoted as the whole sequence), such
that

(5.13) vm → v strongly in L2(0, T ; L2
loc(D)).

It remains to show that v ∈ C([0, T ]; H) and that v is a solution to problem (4.19)–
(4.20). To prove the latter we take a continuously differentiable function ψ : [0, T ] →
R such that ψ(T ) = 0. Let φ ∈ Hn for some n ∈ N. Then, by taking the H-scalar
product of (5.2) with function ψ(·)φ and then integrating by parts, we get

(5.14)

−
∫ T

0

(vm(t), ψ′(t)φ) dt = −ν

∫ T

0

(Amvm(t), ψ(t)φ) dt

+

∫ T

0

(Bm(vm(t)), ψ(t)φ) dt +

∫ T

0

(Dm(t)vm(t), ψ(t)φ) dt

+

∫ T

0

(Em(t)vm(t), ψ(t)φ) dt +

∫ T

0

〈Fm(t), ψ(t)φ〉 dt + (vm(0), ψ(0)φ).

Our aim now is to pass to the limit in (5.14) when m → ∞. From the choice of
φ we can find R ∈ N such that supp φ ⊂ B(0, R) ∩ D = DR. By (5.13), we have

(5.15) vm|DR
→ v|DR

strongly in L2(0, T ; L2(DR)).

Since ψ(·)φ ∈ L2(0, T ; L2(DR)) and

(vm(t) − v(t), ψ′(t)(t)φ) = (vm(t) − v(t), ψ′(t)φ)L2(DR),

in view of (5.15) by means of the Cauchy-Schwartz inequality, we infer that

∫ T

0

(vm(t) − v(t), ψ′(t)φ) dt → 0.

Therefore, the left-hand side of (5.14) converges to −
∫ T

0
(v(t), ψ′(t)φ) dt.

Next let us take m ≥ n so that Hn ⊂ Hm and Pmφ = φ. In order to deal with
the first term on the RHS of (5.14), we observe that

∫ T

0

(Amvm(t), ψ(t)φ) dt =

∫ T

0

(PmAvm(t), ψ(t)φ) dt

=

∫ T

0

(Avm(t), ψ(t)Pmφ) dt =

∫ T

0

(Avm(t), ψ(t)φ) dt =

∫ T

0

((vm(t), ψ(t)φ)) dt.

Since ψ(·)φ ∈ L2(0, T ; V), it follows from (5.11) that, as m → ∞,

∫ T

0

(Amvm(t), ψ(t)φ) dt −
∫ T

0

((v(t), ψ(t)φ)) dt =

∫ T

0

((vm(t) − v(t), ψ(t)φ)) dt → 0.

With regard to the third term on the RHS (5.14), since

∫ T

0

(Dm(t)vm(t), ψ(t)φ) dt =

∫ T

0

(PmB(vm(t), z(t)), ψ(t)φ) dt

=

∫ T

0

b(vm(t), z(t), ψ(t)Pmφ) dt =

∫ T

0

b(vm(t), z(t), ψ(t)φ) dt,
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by estimates similar to those in (5.9), we have

|
∫ T

0

(Dm(t)vm(t), ψ(t)φ) dt−
∫ T

0

b(v(t), z(t), ψ(t)φ) dt|

= |
∫ T

0

b(vm(t) − v(t), z(t), ψ(t)φ) dt|
∫ T

0

|vm(t) − v(t)|L4 |z(t)|L4 |∇ψ(t)φ|L2 dt

≤ C|vm − v|1/2
L∞(0,T ;H)||vm(t) − v(t)|1/2

L2(0,T ;V) → 0.

Analogously, we have
∫ T

0
(Em(t)vm(t), ψ(t)φ) dt−

∫ T

0
b(z(t), v(t), ψ(t)φ) dt → 0.

As to the fifth term, we have
∫ T

0
〈Fm(t), ψ(t)φ〉 dt =

∫ T

0
〈F (t), ψ(t)φ〉 dt.

In order to be able to deal with the second, i.e. the nonlinear, term on the RHS
of (5.14), we need the following version of Lemma 3.2 from ch. III of [40], the proof
of which is omitted.

Lemma 5.2. Suppose that D1 is a bounded subset of D, and u : [0, T ] × D → R
2

is a C1-class function such that supp u(t, ·) ⊂ D1 for t ∈ [0, T ], and

sup
i,j

sup
(t,x)∈[0,T ]×D1

|Diu
j(t, x)| = C < ∞.

Suppose also that vm → v weakly in L2(0, T ; V) and strongly in L2(0, T ; L2(D1)).
Then,

∫ T

0

b(vm(t), vm(t), u(t)) dt →
∫ T

0

b(v(t), v(t), u(t)) dt.

In the following sections we will need the following extension of the previous
lemma.

Corollary 5.3. If {vm}m is bounded in L∞(0, T ; H), v ∈ L∞(0, T ; H), and vm →
v weakly in L2(0, T ; V) and strongly in L2(0, T ; L2

loc(D)). Then for any w ∈
L4(0, T ; L4(D)),

∫ T

0

b(vm(t), vm(t), w(t)) dt →
∫ T

0

b(v(t), v(t), w(t)) dt.

Proof. From our assumptions, there exists a constant C > 0, such that

sup
0≤t≤T

|vm(t)| + sup
0≤t≤T

|v(t)| 12 (

∫ T

0

‖vm(t)‖2 dt)
3
4 + (

∫ T

0

‖v(t)‖2 dt)
3
4 ≤ C.

Let us choose ε > 0. Since w ∈ L4(0, T ; L4(D)), by standard regularization methods
we can find a function u satisfying the assumptions of the previous lemma and such

that (
∫ T

0
|w(s) − u(s)|4

L4ds)
1
4 < ε

3C2 . Hence, by this lemma, we can find Mε ∈ N

such that for m ≥ Mε, |
∫ T

0
b(vm(t), vm(t), u(t)) dt −

∫ T

0
b(v(t), v(t), u(t)) dt| < ε

3 .
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Hence, because of inequalities (4.13) and (4.12) we have, for m > Mε,

|
∫ T

0

b(vm(t), vm(t), w(t)) dt −
∫ T

0

b(v(t), v(t), w(t)) dt|

= |
∫ T

0

b(vm(t), vm(t), w(t) − u(t)) dt +

∫ T

0

b(vm(t), vm(t), u(t)) dt

−
∫ T

0

b(v(t), v(t), w(t) − u(t)) dt −
∫ T

0

b(v(t), v(t), u(t)) dt|

≤ |
∫ T

0

b(vm(t), vm(t), w(t) − u(t)) dt| + |
∫ T

0

b(v(t), v(t), w(t) − u(t)) dt|

+ |
∫ T

0

b(vm(t), vm(t), u(t)) dt −
∫ T

0

b(v(t), v(t), u(t)) dt|

≤ ε

3
+

∫ T

0

|vm(t)| 12 ‖vm(t)‖ 3
2 |w(t) − u(t)|L4 dt

+

∫ T

0

|v(t)| 12 ‖v(t)‖ 3
2 |w(t) − u(t)|L4 dt

≤ ε

3
+ sup

0≤t≤T
|vm(t)| 12 (

∫ T

0

‖vm(t)‖ 3
2

4
3 dt)

3
4 (

∫ T

0

|w(t) − u(t)|4
L4 dt)

1
4

+ sup
0≤t≤T

|v(t)| 12 (

∫ T

0

‖v(t)‖ 3
2

4
3 dt)

3
4 (

∫ T

0

|w(t) − u(t)|4
L4 dt)

1
4 < ε,

which concludes the proof. �

By applying Lemma 5.2 to the second term on the RHS of (5.14) with u(t, x) =
ψ(t)φ(x), t ∈ [0, T ], x ∈ D, and noting that (Bm(vm), ψφ) = (PmB(vm, vm), ψφ) =
(B(vm, vm), ψPmφ) = (B(vm, vm), ψφ) = b(vm, vm, ψφ), we have the following con-
vergence:

∫ T

0

(Bm(vm(t)), ψ(t)φ) dt =

∫ T

0

b(vm(t), vm(t), ψ(t)φ) dt

→
∫ T

0

b(v(t), v(t), ψ(t)φ) dt.

Hence, by taking the m → ∞ limit in (5.14), we arrive at

(5.16)

−
∫ T

0

(v(t), ψ′(t)φ) dt = −ν

∫ T

0

((v(t), ψ(t)φ)) dt

+

∫ T

0

b(v(t), v(t), ψ(t)φ) dt +

∫ T

0

b(v(t), z(t), ψ(t)φ) dt

+

∫ T

0

b(z(t), v(t), ψ(t)φ) dt +

∫ T

0

〈F (t), ψ(t)φ〉 dt + (v0, φ)ψ(0).

Since (5.16) has been proved for any φ ∈ ⋃∞
n=1 Hn and the set

⋃∞
n=1 Hn is a dense

subspace of V, by using a standard continuity argument we can show that (5.16)
holds for any φ ∈ V and any ψ ∈ C1

0 ([0, T )). In particular, it is satisfied for all
ψ ∈ C1

0 (0, T ). Hence, v solves problem (4.21) and hence it satisfies equation (4.19).
Now we will show that v ∈ C([0, T ], H). Since v solves (4.19), v ∈ L2(0, T ; V)

and A : V → V′ is a bounded linear operator, Av ∈ L2(0, T ; V′). Because
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z ∈ L4
loc([0,∞); L4(D)) ∩ L2

loc([0,∞); V′), it follows from Lemma 4.2 that not only
B(z)+αz+f ∈ L2(0, T ; V′) but also B(v), B(v, z), B(z, v) all belong to L2(0, T ; V′)
as well. Hence v′ ∈ L2(0, T ; V′). Thus, it follows from a trace theorem (see e.g.
Theorem 1.3.1 in [34] or Lemma III.1.2 in [40]) that v ∈ C([0, T ]; H).

Next, we will show that our solution v satisfies (4.20), i.e. v(0) = v0. Recall that
v ∈ L2(0, T ; V)∩C([0, T ]; H), v′ ∈ L2(0, T ; V′) and v satisfies (4.19). Let us choose
arbitrary φ ∈ V and ψ ∈ C1

0 ([0, T )) such that ψ(0) = 1. By multiplying equation
(4.19) by ψ(t)φ and then by integrating by parts, we obtain

(5.17)

−
∫ T

0

(v(t), φ)ψ′(t) dt = −ν

∫ T

0

((v(t), φ))ψ(t) dt

+

∫ T

0

b(v(t), v(t), φ)ψ(t) dt +

∫ T

0

b(v(t), z(t), φ)ψ(t) dt

+

∫ T

0

b(z(t), v(t), φ)ψ(t) dt +

∫ T

0

〈f̃(t), φ〉ψ(t) dt + (v(0), φ)ψ(0).

By comparing equality (5.16) to (5.17) we infer that (v0 − v(0), φ)ψ(0) = 0. Since
ψ(0) = 1 we infer that (v0 − v(0), φ) = 0, for any φ ∈ V. Hence, the density of V
in H implies that v(0) = v0.

Since we proved that the solution v belongs to L2(0, T ; V)∩C([0, T ]; H) we infer
by employing inequality (4.12) that v belongs as well to L4(0, T ; L4(D)).

Part II. Uniqueness of solutions. We argue as in the proof of the uniqueness
due to Lions-Prodi [35]; see also Theorem III.3.2 in [40]. Let us assume that v1 and
v2 are two solutions of (4.19)–(4.20), and we put w = v1 − v2. Then, by definition
both v1 and v2 (and hence w as well) belong to L2(0, T ; V)∩C([0, T ], H), and by the
argument above their (weak-) time derivatives belong to L2(0, T ; V′). Moreover, w
solves the following:

⎧
⎨

⎩

dw

dt
+ νAw = B(w, z) − B(z, w) − B(w, v1) − B(v1, w),

w(0) = 0.

The regularity of w allows us to apply Lemma III.1.2 in [40], and hence we get

d

dt
|w(t)|2 + 2ν‖w(t)‖2 = 2b(w(t), z(t), w(t)) + 2b(w(t), u(t), w(t)).

By using inequalities (4.12) and (4.12), and then the standard Young inequality,
we get

d

dt
|w(t)|2 + 2ν‖w(t)‖2 ≤ 25/4|w(t)|1/2‖w(t)‖3/2(|v1(t)|L4 + |z(t)|L4)

≤ 3ν

4
‖w(t)‖2 +

26

ν3
|w(t)|2(|v1(t)|4L4 + |z(t)|4

L4).

Therefore,

d

dt
|w(t)|2 ≤ 64

ν3
|w(t)|2(|v1(t)|4L4 + |z(t)|4

L4) a.e. on (0, T ).

Since
∫ T

0
(|v1(t)|L4 + |z(t)|L4)4 dt < ∞ and w(0) = 0, by applying the Gronwall

Lemma, we infer that |w(t)|2 = 0 for all t ∈ [0, T ]. This means that u(t) = v(t) for
all t ∈ [0, T ], which proves the uniqueness. �
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As a byproduct of the above proof we have the following result.

Proposition 5.4. Assume that a < b ∈ R, {xk} is a bounded sequence in H and
{fk} is a bounded sequence in L2(a, b; V′). Let vk be a solution of equation (4.21)
on [a, b] with f being replaced by fk and with the initial condition vk(a) = xk.
If 0 < γ ≤ 1

2 , then the sequence {vk} is bounded in L2(a, b; V) ∩ L∞(a, b; H) ∩
Hγ,2(a, b; V, H) and the sequence {v′k} is bounded in L2(a, b; V′).

5.2. Proof of Theorem 4.6. In order to simplify the proof, we introduce the
following notation:

vn(t) = v(t, zn), v(t) = v(t, z), yn(t) = v(t, zn) − v(t, z), t ∈ [0, T ],

ẑn = zn − z, f̂n = fn − f.

It is easy to see that yn solves the following initial value problem:

(5.18)

{
dyn(t)

dt = −νAyn(t) − B(vn(t) + zn(t)) − B(v(t) + z(t)) + αẑ(t) + f̂(t),
yn(0) = xn − x.

Since yn ∈ L2(0, T ; V and yn ∈ L2(0, T ; V′), it follows from Lemma 5.1 that the
function |yn|2 is absolutely continuous and in the weak sense on (0, T ), 1

2
d
dt |yn(t)|2 =

〈 d
dtyn(t), yn(t)〉. Moreover, by (4.9) we have 〈Ayn(t), yn(t)〉 = |∇yn(t)|2 a.e. on

(0, T ). Therefore, because of (4.11) from the first equation in (5.18) we get

1

2

d

dt
|yn(t)|2 + ν|∇yn(t)|2 = b(yn(t), vn(t), yn(t)) + b(yn(t), zn(t), yn(t))

+ b(v(t), ẑn(t), yn(t)) + b(ẑn(t), vn(t), yn(t))

+ b(ẑn(t), zn(t), yn(t)) + b(z(t), ẑn(t), yn(t))

+ α(ẑn(t), yn(t)) + (f̂n(t), yn(t)), t ≥ 0.

By using the Young inequality, in view of inequalities (4.12) and (4.13), we infer
that

b(yn(t), vn(t), yn(t)) ≤ |yn(t)|2L4 |∇vn(t)| ≤ |yn(t)||∇yn(t)||∇vn(t)|

≤ ν

16
|∇yn(t)|2 +

4

ν
|∇vn(t)|2|yn(t)|2,

b(yn(t), zn(t), yn(t)) ≤ |yn(t)|L4 |∇yn(t)||zn(t)|L4 ≤ |yn(t)|1/2|∇yn(t)|3/2|zn(t)|L4

≤ ν

16
|∇yn(t)|2 +

3 · 122

ν3
|zn(t)|4L4 |yn(t)|2,

b(v(t), ẑn(t), yn(t)) ≤ |v(t)|L4 |∇yn(t)||ẑn(t)|L4

≤ |v(t)|1/2|∇v(t)|1/2|∇yn(t)||ẑn(t)|L4

≤ ν

16
|∇yn(t)|2 +

4

ν
|v(t)||∇v(t)||ẑn(t)|2

L4 ,

b(ẑn(t), vn(t), yn(t)) ≤ |ẑn(t)|L4 |∇yn(t)||vn(t)|1/2|∇vn(t)|1/2

≤ ν

16
|∇yn(t)|2 +

4

ν
|vn(t)||∇vn(t)||ẑn(t)|2

L4 ,

b(ẑn(t), zn(t), yn(t)) ≤ |ẑn(t)|L4 |zn(t)|L4 |∇yn(t)|

≤ ν

16
|∇yn(t)|2 +

4

ν
|zn(t)|2

L4 |ẑn(t)|2
L4 ,
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b(z(t), ẑn(t), yn(t)) ≤ |ẑn(t)|L4 |z(t)|L4 |∇yn(t)|

≤ ν

16
|∇yn(t)|2 +

4

ν
|z(t)|2

L4 |ẑn(t)|2
L4 ,

α(ẑn(t), yn(t)) ≤ α|yn(t)|V|ẑn(t)|V′

≤ ν

16
|∇yn(t)|2 +

ν

16
|yn(t)|2 +

4α2

ν
|ẑn(t)|2V′ ,

(f̂n(t), yn(t)) ≤ |yn(t)|V|f̂n(t)|V′

≤ ν

16
|∇yn(t)|2 +

ν

16
|∇yn(t)|2 +

4

ν
|f̂n(t)|2V′ .

Hence we have, weakly on (0, T ),

d

dt
|yn(t)|2 + ν|∇yn(t)|2 ≤ 8

ν
|∇vn(t)|2|yn(t)|2 +

6 · 122

ν3
|zn(t)|4L4 |yn(t)|2

+
8

ν
|v(t)||∇v(t)||ẑn(t)|2

L4 +
8

ν
|vn(t)||∇vn(t)||ẑn(t)|2

L4

+
8

ν
|z(t)|2

L4 |ẑn(t)|2
L4 +

8

ν
|zn(t)|2

L4 |ẑn(t)|2
L4

+
8α2

ν
|ẑn(t)|2V′ +

8

ν
|f̂n(t)|2V′ .

By integrating the above inequality from 0 to t, t ∈ [0, T ], we get that

(5.19)

|yn(t)|2 + ν

∫ t

0

|∇yn(s)|2 ds ≤ |yn(0)|2

+

∫ t

0

αn(s)|yn(s)|2 ds +
8

ν

∫ t

0

βn(s) ds, t ∈ [0, T ],

where

αn(s) =
8

ν
|∇vn(s)|2 +

ν

8

6 · 122

ν3
|zn(s)|4L4 , s ∈ [0, T ],

βn(s) = |v(s)||∇v(s)||ẑn(s)|2
L4 + |vn(s)||∇vn(s)||ẑn(s)|2

L4 + |z(s)|2
L4 |ẑn(s)|2

L4

+ |zn(s)|2
L4 |ẑn(s)|2

L4 + α2|ẑn(s)|2V′ + |f̂n(s)|2V′ , s ∈ [0, T ].

Then by the Gronwall inequality,

|yn(t)|2 ≤
(
|yn(0)|2 +

8

ν

∫ t

0

βn(s) ds
)
e
∫ t
0

αn(s) ds.

On the other hand let us next observe that
∫ T

0

βn(s) ds =

∫ T

0

[
|v(s)||∇v(s)||ẑn(s)|2

L4 + |vn(s)||∇vn(s)||ẑn(s)|2
L4

+ |ẑn(s)|2
L4 |z(s)|2

L4 +|zn(s)|2
L4 |ẑn(s)|2

L4 + α2|ẑn(s)|2V′ + |f̂n(s)|2V′

]
ds

≤
[
|v|L∞(0,T ;H)|v|L2(0,T ;V) + |vn|L∞(0,T ;H)|vn|L2(0,T ;V)

+|zn|2L4(0,T ;L4) + |zn|2L4(0,T ;L4)

]
|ẑn|2L4(0,T ;L4)

+ α2|ẑn|2L2(0,T ;V′) + |f̂n|2L2(0,T ;V′).
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Therefore,
∫ T

0
βn(s) ds → 0, as n → ∞. Since also |yn(0)| → 0, as n → ∞ and

for some constant C < ∞ and all n ∈ N,
∫ T

0

αn(s) ds =

∫ T

0

( 8

ν
|∇vn(s)|2 +

ν

8
+

6 · 122

ν3
|zn(s)|4L4

)
ds

≤ 8

ν
|vn(s)|2L2(0,T ;V) +

6 · 122

ν3
|zn(s)|4L4(0,T ;L4) + T

ν

8
≤ C,

we infer that yn(t) → 0 in H as n → ∞, uniformly in t ∈ [0, T ]. In other words,

v(·, zn)xn → v(·, z)x in C([0, T ]; H).

From inequality (5.19) we also have

ν

∫ T

0

|∇yn(s)|2 ds ≤ |yn(0)|2 +

∫ T

0

αn(s)|yn(s)|2 ds +
8

ν

∫ T

0

βn(s) ds

≤ |yn(0)|2 +

∫ T

0

αn(s) ds sup
s∈[0,T ]

|yn(s)|2 +
8

ν

∫ T

0

βn(s) ds.

Hence,
∫ T

0
|∇yn(s)|2 ds → 0 as n → ∞ and therefore,

v(·, zn)xn → v(·, z)x in L2(0, T ; V),

which concludes the proof. �

The existence and uniqueness result proved earlier works naturally when the
initial time is no longer 0, but any s ∈ R. For the sake of completeness, we state
the corresponding result.

Theorem 5.5. Under the above assumptions, if α ≥ 0, z ∈ L
4
loc([s,∞); L2(D)) ∩

L2
loc([s,∞); V′), x ∈ H and f ∈ V′, there exists a unique solution v(·, s; z, x) of equa-

tion (4.19), such that it belongs to L2
loc([s,∞); V)∩C([s,∞); H) and v(s, s; z, x) = x.

6. RDS generated by the 2D stochastic Navier Stokes equations

After all the hard work in the previous section is completed, we are able to define
an RDS ϕ corresponding to problem (4.16) in H. But first we need to take a “good”
model for our probability space.

6.1. Wiener process. The following is our standing assumption.

Assumption A.1. K ⊂ H ∩ L
4 is a Hilbert space such that for some δ ∈ (0, 1/2),

(6.1) A−δ : K → H ∩ L
4 is γ-radonifying.

Remark 6.1. (a) Condition (6.1) means that A−δ : K → H is Hilbert Schmidt and
A−δ : K → H∩L

4 is γ-radonifying. Let us recall (see e.g. [7]) that for real separable
Hilbert and resp. Banach spaces K and X, a bounded linear operator L : K → X
is called γ-radonifying iff L(γK) is σ-additive. Here γK is the canonical cylindrical
finitely additive set-valued function (also called a Gaussian distribution) on K. If
L : K → X is γ-radonifying, then L(γK) has a unique extension to a σ-additive
Borel probability measure νL on X. It can be shown that νL is a centered Gaussian
measure on X whose Reproducing Kernel Hilbert Space (RKHS)1 (also called the
Cameron Martin space) is K. In particular, in spirit of the celebrated L Gross’s

1RKHS of a centered Gaussian measure µ on a separable Banach space X (see [20], p. 40) is a
(unique) Hilbert space (G, | · |G) such that G →֒ X continuously and for each ϕ ∈ X∗ the random
variable ϕ on probability space (X, µ) is normal with mean 0 and variance |ϕ|G2.
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paper [28], the triple (K, X, νL) is an Abstract Wiener Space (AWS). By R(K, X)
we denote the Banach space of γ-radonifying operators from K to X with norm

(6.2) ‖L‖R(K,X) :=

{∫

X

|x|2dνL(x)

} 1
2

, L ∈ R(K, X).

It is now well established (see e.g. Neidhardt [36]) that R(K, X) with norm (6.2) is
a separable Banach space and that the set Lfin(H, X) of bounded linear operators
L : H → X with finite-dimensional range is a dense subspace of R(K, X). It is
also well known (see e.g. Baxendale [3]) that R(K, X) is an operator ideal, i.e. if
L2 ∈ R(K, X) and L1 ∈ L(G, K) and L3 ∈ L(X, Y) (where G, resp. Y, is a separable
Hilbert, resp. Banach, space), then L3L2L1 ∈ R(G, Y) and ‖L3L2L1‖R(G,Y) ≤
C|L3|L(X,Y)‖L2‖R(K,X)|L1|L(G,K) for some constant C independent of L1, L2 and
L3.

(b) Note that because A−s is a bounded operator in H∩L
4 for s > 0, if condition

(6.1) is satisfied for some δ1, then it is also satisfied for any δ2 ≥ δ1.
(c) It may be worth mentioning Theorem 2.3 from [12]. Let p ∈ (1,∞) be fixed.

Let (Oi,Fi, νi), i = 1, 2, be σ-finite measure spaces. A bounded linear operator
K : L2(O1) → Lp(O2) is γ-radonifying iff there exists a measurable function κ :

O1 ×O2 → R such that
∫
O2

[∫
O1

|κ(x1, x2)|2 dν1(x1)
]p/2

dν2(x2) < ∞, and for all

ν-almost all x2 ∈ O2, (K(f))(x2) =
∫
O1

κ(x1, x2)f(x1)dν1(x1), f ∈ L2(O1). It

follows that if O is a bounded domain, then A−s : H → L
p(D) is γ-radonifying iff

∫
D

[∑
j λ−2s

j |ej(x)|2
]p/2

dx < ∞, where ej is an ONB of H and Aej = λjej , j ∈ N.

Hence, if D is a 2-dimensional torus, then A−s is γ-radonifying iff s > 1
2 . In other

words, with K = D(As), the embedding K →֒ H ∩ L
4 is γ-radonifying iff s > 1/2.

Therefore, Assumption A.1 is satisfied for any δ > 0. Indeed, condition (6.1) holds
iff the operator A−(s+δ) : H → H ∩ L

4 is γ-radonifying. However, for domains of
more complicated geometrical structure the situation is more refined; see e.g. [42].

(d) We require in Assumption A.1 that δ < 1/2 because we want (see subsection
6.3) the corresponding Ornstein-Uhlenbeck process to take values in H ∩ L

4.

Let us denote X = H ∩ L
4 and let E be the completion of A−δ(X) with respect

to the image norm |x|E = |A−δx|X, x ∈ X. It is well known that E is a separable
Banach space. For ξ ∈ (0, 1/2) we set

Cξ
1/2(R, E) := {ω ∈ C(R, E) : ω(0) = 0, sup

t,s∈R

|ω(t) − ω(s)|E
|t − s|ξ(1 + |t| + |s|)1/2

< ∞}.

It is easy to prove that Cξ
1/2(R, E) endowed with a norm

‖ω‖Cξ
1/2(R,E) = sup

t,s∈R

|ω(t) − ω(s)|E
|t − s|ξ(1 + |t| + |s|)1/2

is a nonseparable Banach space. However, the closure of {ω ∈ C∞
0 (R, E) : ω(0) = 0}

in Cξ
1/2(R, E), denoted by Ω(ξ, E), is a separable Banach space.

For ξ = 0 we have a similar definition. Let us denote by C1/2(R, X) the space
of all continuous functions ω : R → X of linear growth condition, i.e. for some
C = C(ω) > 0,

(6.3) |ω(t)| ≤ C(1 + |t|1/2), t ∈ R.
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The space C1/2(R, E) endowed with a norm

‖ω‖C1/2(R,E) = sup
t∈R

|ω(t)|E
1 + |t|1/2

is a separable Banach space.
We denote by F the Borel σ-algebra on Ω(ξ, E). One can show by methods from

[5] (but see also [29] for a similar problem in the one-dimensional case) that for
ξ ∈ (0, 1/2), there exists a Borel probability measure P on Ω(ξ, E) such that the
canonical process wt, t ∈ R, defined by

(6.4) wt(ω) := ω(t), ω ∈ Ω(ξ, E),

is a two-sided Wiener process such that the Cameron-Martin (or Reproducing Ker-
nel Hilbert) space of the Gaussian measure L(w1) on E is equal to K. For t ∈ R, let
Ft := σ{ws : s ≤ t}. Since for each t ∈ R the map z ◦ it : E∗ → L2(Ω(ξ, E),Ft, P),
where it : Ω(ξ, E) ∋ γ �→ γ(t) ∈ E, satisfies E|z ◦ it|2 = t|z|2K, there exists a unique
extension of z ◦ it to a bounded linear map Wt : K → L2(Ω(ξ, E),Ft, P). Moreover,
the family (Wt)t∈R is an H-cylindrical Wiener process on a filtered probability space
(Ω(ξ, E), (Ft)t∈R, P) in the sense of e.g. [11].

On the space C1/2(R, X) we consider a flow ϑ = (ϑt)t∈R
defined by

ϑtω(·) = ω(· + t) − ω(t), ω ∈ Ω, t ∈ R.

This flow keeps the spaces Cξ
1/2(R, E) and Ω(ξ, E) invariant, and we will often

denote by ϑt the restriction of ϑt to one of these spaces.
It is obvious that for each t ∈ R, ϑt preserves P. In order to define an Ornstein-

Uhlenbeck process we need some analytic preliminaries. These are presented in the
next subsection.

6.2. Analytic preliminaries.

Proposition 6.2. Assume that A is a generator of an analytic semigroup {e−tA}t≥0

on a separable Banach space X, such that for some C > 0 and γ > 0

(6.5) ||A1+δe−tA||L(X,X) ≤ Ct−1−δe−γt, t ≥ 0.

For ξ ∈ (δ, 1
2 ) and ω̃ ∈ Cξ

1/2(R, X) we define

(6.6) ẑ(t) = ẑ(ω̃)(t) =

∫ t

−∞

A1+δe−(t−r)A(ω̃(t) − ω̃(r)) dr, t ∈ R.

If t ∈ R, then ẑ(t) is a well-defined element of X and the mapping

Cξ
1/2(R, X) ∋ ω̃ �→ ẑ(t) ∈ X

is continuous. Moreover, the map ẑ : Cξ
1/2(R, X) → C1/2(R, X) is well defined,

linear and bounded. In particular, there exists a constant C2 < ∞ such that for any

ω̃ ∈ Cξ
1/2(R, X)

(6.7) |ẑ(ω̃)(t)| ≤ C2(1 + |t|1/2)‖ω̃‖, t ∈ R.

Remark 6.3. Since Ω(ξ, X) is a closed subspace of Cξ
1/2(R, X), Proposition 6.2 is

also valid with the latter space replaced by the former.
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Proof. Part I. Let ω̃ ∈ Cξ
1/2(R, X) and t ∈ R. In order to prove that ẑ(t) is a

well-defined element of X, we need to show that
∫ t

−∞

|A1+δe−(t−r)A(ω̃(t) − ω̃(r))| dr < ∞.

By the change of variables (with s = t− r), from the definition of ẑ(ω̃)(t) we see
that

∫ t

−∞

|A1+δe−(t−r)A(ω̃(t) − ω̃(r))| dr =

∫ ∞

0

|A1+δe−sA(ω̃(t) − ω̃(t − s))| ds,

ẑ(ω̃)(t) =

∫ ∞

0

A1+δe−sA(ω̃(t) − ω̃(t − s)) ds.(6.8)

From (6.5) we have
∫ ∞

0

|A1+δe−sA(ω̃(t) − ω̃(t − s))| ds ≤ C

∫ ∞

0

e−γs

s1+δ
|ω̃(t) − ω̃(t − s)| ds.(6.9)

Since ω̃ ∈ Cξ
1/2(R, X),

(6.10)

|ω̃(t) − ω̃(t − s)| ≤ |s|ξ(1 + |t| + |t − s|)1/2 sup
t,s∈R

|ω̃(t) − ω̃(t − s)|
|s|ξ(1 + |t| + |t − s|)1/2

= ‖ω̃‖Cξ
1/2(R,X)|s|ξ(1 + |t| + |t − s|)1/2

≤ ‖ω̃‖Cξ
1/2(R,X)|s|ξ(1 + |2t|1/2 + |s|1/2), s, t ∈ R.

Then, with C1 =
∫ ∞

0
e−γs

s1+δ−ξ (1 + s1/2) ds and C2 =
√

2
∫ ∞

0
e−γs

s1+δ−ξ ds, we have
∫ ∞

0

e−γs

s1+δ
|ω̃(t) − ω̃(t − s)| ds ≤ ‖ω̃‖Cξ

1/2(R,X)

∫ ∞

0

e−γs

s1+δ
sξ(1 + |2t|1/2 + s1/2) ds

≤ ‖ω̃‖Cξ
1/2(R,X)

(
C1 + C2|t|1/2

)
< ∞.(6.11)

Hence, by (6.9) and (6.11), and δ < ξ, i.e. 1+δ−ξ < 1, we infer that ẑ(t) is a well-
defined element of X. Moreover, we proved inequality (6.7) with C = max{C1, C2}.

Part II. Continuity with respect to t. For any t, t0 ∈ R we have

(6.12)

|ẑ(t) − ẑ(t0)| ≤
∫ ∞

0

|A1+δe−sA(ω̃(t) − ω̃(t − s) − ω̃(t0) + ω̃(t0 − s))| ds

≤ C

∫ ∞

0

e−γs

s1+δ
|ω̃(t) − ω̃(t − s) − ω̃(t0) + ω̃(t0 − s)| ds

=: I(t, t0).

It is enough to show that for fixed t0 ∈ R and a sequence (tn)n∈N such that
tn → t0,

(6.13) I(tn, t0) → 0, as n → ∞, for k = 1, 2.

Since ω̃ is a continuous X-valued function, the integrand converges to 0 for all
s ∈ (0,∞). Therefore, in view of the Lebesgue Dominated Convergence Theorem
in order to show (6.13), it is enough to find an integrable function g : [0,∞) → R

+

such that for all s > 0 and all n ∈ N, e−γs

s1+δ |ω̃(t)− ω̃(t−s)− ω̃(t0)+ ω̃(t0−s)| ≤ g(s).
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Since tn → t0, there exists K > 0 such that 1 + 2|tn| ≤ K for all n ∈ N. Therefore,
in view of (6.10), for all n ∈ N,

|ω̃(tn) − ω̃(tn − s)| ds ≤ ‖ω̃‖Cξ
1/2(R,X)|s|ξ(K1/2 + s1/2)

e−γs

|s|1+δ
.

If we define g(s) = C‖ω̃‖Cξ
1/2(R,X)s

ξ(K1/2 + s1/2) e−γs

|s|1+δ , s > 0, we only need to

show integrability of the function g. This will follow provided we can show that
∫ 1

0

e−γs

s1+δ−ξ
(1 + s1/2) ds < ∞ and

∫ ∞

1

e−γs

s1+δ−ξ
(1 + s1/2) ds < ∞.

The first of these two inequalities is true because δ < ξ, and the second is true
because γ > 0. This concludes the proof of the second part.

Part III. The map ẑ. From Parts I and II of the proof we infer that for any

ω̃ ∈ Cξ
1/2(R, X) the function ẑ(ω̃) belongs to C1/2(R, X). Hence, the map ẑ :

Cξ
1/2(R, X) → C1/2(R, X) is well defined. Obviously, it is a linear map. From the

observation at the end of Part I, inequality (6.7) is satisfied, and hence ẑ is also a
bounded map. This concludes proof of the whole proposition. �

We have the following direct consequence of the previous result.

Corollary 6.4. Under the assumptions of Proposition 6.2, for any t ∈ R and any
−∞ < a < b < ∞, the maps

Cξ
1/2(R, X) ∋ ω̃ �→ ẑ(ω̃)(t) ∈ X,(6.14)

Cξ
1/2(R, X) ∋ ω̃ �→ ẑ(ω̃) ∈ L4(a, b; X)(6.15)

are continuous.

Remark 6.5. It is clear that in the second part of Corollary 6.4, the exponent 4 can
be replaced by any q ∈ [1,∞].

As in the case of Proposition 6.2, Corollary 6.4 is valid with the space Cξ
1/2(R, X)

replaced by Ω(ξ, X).

Theorem 6.6. Under the assumptions of Proposition 6.2, for any ω ∈ Cξ
1/2(R, X),

ẑ(ϑsω)(t) = ẑ(ω)(t + s), t, s ∈ R.

In particular, for any ω ∈ Ω and all t, s ∈ R, ẑ(ϑsω)(0) = ẑ(ω)(s).

Proof. Since (ϑsw)(r) = ω(r + s) − ω(s), r ∈ R, we have

ẑ(ϑsω)(t) =

∫ t

−∞

A1+δe−(t−r)A [ϑsω(t) − ϑsω(r)] dr

= A1+δ

∫ t

−∞

e−(t−r)A [ω(t + s) − ω(r + s)] dr

= A1+δ

∫ t+s

−∞

e−(t+s−r′)A [ω(t + s) − ω(r′)] dr′ = ẑ(ω)(t + s).

�
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Remark 6.7. For ζ ∈ C1/2(R, X) we put

(τsζ) = ζ(t + s), t, s ∈ R.

Thus, τs is a map from C1/2(R, X) into itself. Moreover, it is a linear and bounded
map, and the family (τs)s∈R is a strongly continuous group of bounded linear op-
erators on C1/2(R, X).

Using the notation introduced above, Theorem 6.6 can be rewritten in the fol-
lowing way.

Corollary 6.8. For s ∈ R one has

τs ◦ ẑ = ẑ ◦ ϑs.

In other words, for all s ∈ R and ω ∈ Cξ
1/2(R, X), τs(ẑ(ω)) = ẑ(ϑs(ω)).

6.3. Ornstein-Uhlenbeck process. In this and the following subsections we are
concerned with the linear evolutional Stokes equations. Hence in particular, H is
the Hilbert space introduced in section 4 and A is the linear operator defined therein
(called the Stokes operator). The spaces X and E have been defined in subsection
6.1.

Note that in this framework, for any ν > 0 and α ≥ 0, (νA + αI)δ : E → X is
a bounded linear map and so is the induced map Ω(ξ, E) ∋ ω �→ (νA + αI)δω ∈
Ω(ξ, X).

For δ as in Assumption A.1, α ≥ 0, ν > 0, ξ ∈ (δ, 1/2) and ω ∈ Cξ
1/2(R, E)

(so that (νA + αI)−δω ∈ Cξ
1/2(R, X)), we define zα(ω) := ẑ((νA + αI)−δω) ∈

C1/2(R, X), i.e. for any t ≥ 0,

zα(ω)(t) :=

∫ t

−∞

(νA + αI)1+δe−(t−r)(νA+αI)

[
(νA + αI)−δω(t) − (νA + αI)−δω(r)

]
dr(6.16)

=

∫ t

−∞

(νA + αI)1+δe−(t−r)(νA+αI)((νA + αI)−δθrω)(t − r) dr.

It can be shown, by invoking integration by parts, that if ω ∈ C∞
0 (R, E) is such

that ω(0) = 0, then zα satisfies the following equation:

(6.17)
dzα(t)

dt
+ (νA + αI)zα = ω̇(t), t ∈ R.

Therefore, from the definition of the space Ω(ξ, E), we have

Corollary 6.9. If α, β ≥ 0, then the difference zα − zβ is a solution to

(6.18)
d(zα − zβ)(t)

dt
+ νA(zα − zβ)(t) = (−αzα + βzβ)(t), t ∈ R.

Analogously to our definition (6.4) of the Wiener process w(t), t ∈ R, we can view
the formula (6.16) as a definition of a process zα(t), t ∈ R, on the probability space
(Ω(ξ, E),F , P). Equation (6.17) suggests that this process is an Ornstein-Uhlenbeck
process. In fact we have the following result.

Proposition 6.10. The process zα(t), t ∈ R, is a stationary Ornstein-Uhlenbeck
process. It is a solution of the equation

dzα(t) + (νA + αI)zα dt = dw(t), t ∈ R,
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i.e. for all t ∈ R, a.s.

(6.19) zα(t) =

∫ t

−∞

e−(t−s)(νA+αI) dw(s),

where the integral is the Itô integral on the M-type 2 Banach space X in the sense
of [6].

In particular, for some C = C(X),

E|zα(t)|2X = E|
∫ t

−∞

e(νA+αI)(s−t) dw(s)|2X ≤ C

∫ t

−∞

‖e(νA+α)(s−t)‖2
R(K,X) ds

= C

∫ ∞

0

e−2αs‖e−νsA‖2
R(K,X) ds.(6.20)

Moreover, E|zα(t)|2X tends to 0 as α → ∞.

Proof. Stationarity of the process zα follows from the following version of Theorem
6.6:

zα(ϑsω)(t) = zα(ω)(t + s), ω ∈ Cξ
1/2(R, X), t, s ∈ R.

The equality (6.19) follows by finite-dimensional approximation, and inequality
(6.20) follows from [6]. Finally, the last statement follows from (6.20) by applying
the Lebesgue Dominated Convergence Theorem. �

Remark 6.11. Because e−sA = Aδ e−sAA−δ, it follows by Neidhardt [36] that

‖e−sA‖R(K,X) ≤ |Aδ e−sA|L(X,X)‖A−δ‖R(K,X).

Therefore, since |Aδ e−sA|L(X,X) ≤ Cs−δe−γs, for some C, γ > 0 and all s > 0, we

infer that if Assumption A.1 is satisfied, then for δ < 1
2 the integral on the RHS of

(6.20) is finite.
Note also that, since zα(t) is a Gaussian random vector, for each p ≥ 2, there

exists a constant Cp > 0, such that E|zα(t)|pX ≤ Cp

(
E|zα(t)|2X

)p/2
.

Remark 6.12. Our definition of the O-U process was motivated by [24]. A similar
idea can also be found in an unpublished work [32].

Since by Proposition 6.10, zα(t), t ∈ R, is a stationary and ergodic X-valued
process, by the Strong Law of Large Numbers (see Da Prato and Zabczyk [21] for
a similar argument),

(6.21) lim
k→∞

1

k

∫ 0

−k

|zα(s)|2X ds = E|zα(0)|2X, a.s.

Denote by Ωα(ξ, E) the set of those ω ∈ Ω(ξ, E) for which the equality (6.21)
holds true. As mentioned above, Ωα(ξ, E) is of full measure. Moreover, it follows
from Corollary 6.8 that this set is invariant with respect to the flow ϑ, i.e. for all
α ≥ 0 and all t ∈ R, ϑt(Ωα(ξ, E)) ⊂ Ωα(ξ, E). Therefore, the same is true for a set

Ω̂(ξ, E) =
∞⋂

n=0

Ωn(ξ, E).

It follows that as a model for a metric DS we can take either a quadruple (Ω(ξ, E),F ,

P, ϑ) or a quadruple
(
Ω̂(ξ, E), F̂ , P̂, ϑ̂

)
, where F̂ , P̂ and ϑ̂ are respectively the

natural restrictions of F , P and ϑ to Ω̂(ξ, E). We will see why there is need of
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the latter in section 8 in the proof of Proposition 8.1. Summing up, we have the
following.

Proposition 6.13. The quadruples (Ω(ξ, E),F , P, ϑ) and
(
Ω̂(ξ, E), F̂ , P̂, ϑ̂

)
are

both metric DSs. For each ω ∈ Ω̂(ξ, E) the limit in (6.21) exists and
∫

Ω̂(ξ,E)

|zn(ω)(0)|2 dP̂(ω) → 0, as n → ∞.

6.4. RDS. Let us recall that we suppose that Assumption A.1 is satisfied and
that δ has the property stated there. We also take a fixed viscosity ν > 0 and
some parameter α ≥ 0 which we will vary in the following sections. We also fix
ξ ∈ (δ, 1/2) and put Ω := Ω(ξ, E).

Definition 6.14. We define a map ϕ = ϕα : R+ × Ω × H → H by

(6.22) (t, ω, x) �→ v(t, z(ω))(x − z(ω)(0)) + z(ω)(t),

where for simplicity of notation we put z = zα.

Because z(ω) ∈ C1/2(R, X), z(ω)(0) is a well-defined element of H and hence ϕ
is well defined. Furthermore, we have the main result of this section.

Theorem 6.15. (ϕ, ϑ) is an RDS.

Proof. All properties with the exception of the cocycle one of an RDS follow from
Theorem 4.6. Hence we only need to show that for any x ∈ H,

(6.23) ϕ(t + s, ω)x = ϕ(t, ϑsω)ϕ(s, ω)x, t, s ∈ R+.

From the definition of ϕ and noting that by Theorem 6.6 z(ω)(s) = z(ϑsω)(0),
s ∈ R, we have for t, s ∈ R+,

ϕ(t + s, ω)x = v(t + s, z(ω)(t + s))(x − z(ω)(0)) + z(ω)(t + s),

ϕ(t, ϑsω)ϕ(s, ω)x = v(t, z(ϑsω)(t))
(
v(s, z(ω)(t))(x − z(ω)(0)) + z(ω)(s)

− z(ϑsω)(0)
)

+ z(ϑsω)(t)

= v(t, z(ϑsω)(t))
(
v(s, z(ω)(s))(x− z(ω)(0))

)
+ z(ϑsω)(t).

Therefore, in view of Theorem 6.6, in order to prove (6.23), we only need to prove,
for any t, s ∈ R+,

(6.24)
v(t + s, z(ω)(t + s))(x − z(ω)(0))

= v(t, z(ϑsω)(t))
(
v(s, z(ω)(s))(x − z(ω)(0))

)
.

Let us fix s ∈ R+ and define two functions v1 and v2 by

v1(t) = v(t + s, z(ω)(t + s))(x − z(ω)(0)), t ∈ R+,

v2(t) = v(t, z(ϑsω)(t))
(
v(s, z(ω)(s))(x− z(ω)(0))

)
, t ∈ R+.

Because v(0, z(ϑsω)(0))(x − z(ϑsω)(0)) = x − z(ϑsω)(0), we infer that

v1(0) = v(s, z(ω)(s))(x− z(ω)(0))

= v(0, z(ϑsω)(0))
(
v(s, z(ω)(s))(x− z(ω)(0))

)
= v2(0).

Since R+ ∋ t �→ v(t, z(ω)) is a solution to problem (4.19)–(4.20) and

v′1(t) =
dv(·, z(ω))

dt
(t + s),
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we have

v′1(t) = −νAv(t + s, z(ω)(t + s)) − B(v(t + s, z(ω)(t + s)) + z(ω)(t + s))

+ αz(ω)(t + s) + f

= −νAv1(t; z(ω)) − B(v1(t; z(ω)) + z(ω)(t + s)) + αz(ω)(t + s) + f.

On the other hand we have

dv(t, z(ϑsω)(t))

dt
= −νAv(t, z(ϑsω)(t)) − B(v(t, z(ϑsω)(t)) + z(ϑsω)(t)) + αz(ϑsω)(t) + f.

Thus v1 solves the problem
⎧
⎪⎨

⎪⎩

dv1(t)

dt
= −νAv1(t) − B(v1(t) + z(ω)(t + s)) + αz(ω)(t + s) + f,

v1(0) = v(z(ω))(s)(x − z(ω)(0)),

and v2 solves the problem
⎧
⎪⎨

⎪⎩

dv2(t)

dt
= −νAv2(t) − B(v2(t) + z(ϑsω)(t)) + αz(ϑsω)(t) + f,

v2(0) = v(z(ω))(s)(x − z(ω)(0)).

By Theorem 6.6, z(ϑsω)(t) = z(ω)(t + s) for t ≥ 0. Hence both v1 and v2 are
solutions to problem (4.19)–(4.20) with the same initial data

v(s, z(ω)(s))(x − z(ω)(0))

at initial time 0. Therefore, by the uniqueness of solutions to problem (4.19)–(4.20),
we infer that v1(t) = v2(t), t ∈ R+.

Finally, since s is arbitrary in R+, we have proved (6.24), which concludes our
result. �

Since in the definition of ϕ we have used a fixed α ≥ 0, we should rather have
denoted it by ϕα. On the other hand, as α does not enter problem (4.16), and hence
it is an auxiliary parameter, we should clarify the issue of whether ϕα depends on
α. We have proved earlier in Corollary 6.9 that this is the case for a linear problem
(i.e. for the O-U process). Below we give an affirmative answer to the full stochastic
NSEs.

Proposition 6.16. If α, β ≥ 0, then ϕα = ϕβ.

Proof. Let us fix x ∈ H. We need to show that

vα(t) + zα(t) = vβ(t) + zβ(t), t ≥ 0,

where zα is defined by (6.16) and vα is a solution to problem (4.19)–(4.20) with
initial data

(
x−zα(0)

)
. From (4.19)–(4.20) we infer that vα(0)−vβ(0) = −zα(0)+

zβ(0) and

d(vα(t) − vβ(t))

dt
= −νA(vα(t) − vβ(t)) + (αzα(t) − βzβ(t))

+ [B(vα(t) + zα(t)) − B(vβ(t) + zβ(t))], t ≥ 0.
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Adding the above equation to (6.18), we get

d(uα(t) − uβ(t))

dt
= −νA(uα(t) − vβ(t)) + [B(uα(t)) − B(vβ(t))], t ≥ 0,

where uα(t) = vα(t) + zα(t), vβ(t) = vβ(t) + zβ(t), t ≥ 0 and uα(0) − uβ(0) = 0.
Next applying Lemma 5.1 to the function uα − uβ and using inequality (4.13),

we get, weakly on (0,∞),

1

2

d

dt
|uα(t) − uβ(t)|2 + ν||uα(t) − uβ(t)||2

≤ |uα(t)|L4 |uα(t) − uβ(t)|1/2
L2 ||uα(t) − uβ(t)||3/2

≤ ν

2
||uα(t) − uβ(t)||2 +

2

ν3
|uα(t)|4

L4 |uα(t) − uβ(t)|2, t ≥ 0.

Hence,

d

dt
|uα(t) − uβ(t)|2 ≤ 4

ν3
|uα(t)|4

L4 |uα(t) − uβ(t)|2, t ≥ 0.

Since + 4
ν3

∫ t

0
|uα(τ )|4

L4dτ < ∞ and |uα(0) − uβ(0)|2 = 0, by applying the Gron-

wall Lemma we infer that |uα(t) − uβ(t)|2 = 0, for all t ≥ 0. This implies that
vα(t) + zα(t) = vβ(t) + zβ(t), t ≥ 0, which concludes the proof. �

Now we are ready to present the definition and some fundamental properties of
the solution to problem (4.16) with initial data u0 ∈ H at the initial time s ∈ R.

Definition 6.17. Suppose that Assumption A.1 is satisfied. If us ∈ H, s ∈ R, f ∈
V′ and Wt, t ∈ R is a two-sided Wiener process introduced after (6.4) such that the
Cameron-Martin (or Reproducing Kernel Hilbert) Space of the Gaussian measure
L(w1) is equal to K. A process u(t), t ≥ 0, with trajectories in C([s,∞); H) ∩
L2

loc([s,∞); V) ∩ L4
loc([s,∞); L4(D)) is a solution to problem (4.16) iff u(s) = us

and for any φ ∈ V, t > s,

(u(t), φ) = (u(s), φ) − ν

∫ t

s

(u(r), Aφ) dr −
∫ t

s

b(u(r), u(r), φ) dr(6.25)

+

∫ t

s

(f, φ) dr +

∫ t

s

〈φ, dWr〉.

The following result follows easily by applying Lemma 4.2 and Remark 4.3(ii).

Proposition 6.18. In the framework of Definition 6.17, suppose that u(t) =
zα(t) + vα(t), t ≥ s, where vα is the unique solution to problem (4.19)–(4.20)
with initial data u0 − zα(s) at time s. If the process u(t), t ≥ s, has trajec-
tories in C([s,∞); H) ∩ L2

loc([s,∞); V) ∩ L4
loc([s,∞); L4(D)), then it is a solu-

tion to problem (4.16). Vice-versa, if a process u(t), t ≥ s, with trajectories in
C([s,∞); H)∩ L2

loc([s,∞); V) ∩ L4
loc([s,∞); L4(D)) is a solution to problem (4.16),

then for any α ≥ 0, a process vα(t), t ≥ s, defined by zα(t) = u(t)− vα(t), t ≥ s, is
a solution to (4.19) on [s,∞).

Our previous results yield the existence and the uniqueness of solutions to prob-
lem (4.16) as well as its continuous dependence on the data (in particular on the
initial value u0 and the force f). Moreover, if we define, for x ∈ H, ω ∈ Ω, and
t ≥ s,

(6.26) u(t, s; ω, u0) := ϕ(t − s; ϑsω)u0 = v(t, s; ω, u0 − z(s)) + z(t),
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then for each s ∈ R and each u0 ∈ H, the process u(t), t ≥ s, is a solution to
problem (4.16).

7. The weak continuity of the RDS

generated by stochastic NSEs

In this section, v(·, v0) for v0 ∈ H denotes the unique solution to the initial
value problem (4.19)–(4.20), with a deterministic function z ∈ L4

loc(R
+, L4(D)) ∩

L2
loc(R

+, V′).

Lemma 7.1. If T > 0, then the map

(7.1) H ∋ x �→ v(·, x) ∈ L2([0, T ]; V)

is continuous in the weak topologies.

Lemma 7.2. If T > 0, then the maps

(7.2) H ∋ x �→ v(t, x) ∈ H, t ∈ [0, T ]

are continuous in the weak topologies. More precisely, if xn → x weakly in H, then
for any φ ∈ H, (v(·, xn), φ) → (v(·, x), φ) uniformly on [0, T ], as n → ∞.

Proof of Lemma 7.1. Suppose that {xn}n is an H-valued sequence that is weakly
convergent to x ∈ H. Let vn = v(·, xn) and v = v(·, x). Since the sequence {xn}n

is bounded in H, by Proposition 5.4 we infer that for γ ∈ (0, 1
2 ],

(7.3)
the sequence {vn}n is bounded in L∞(0, T ; H) ∩ L2(0, T ; V) ∩Hγ,2(0, T ; V, H).

Hence without loss of generality we may assume that there exists a ṽ ∈ L2(0, T ; V)∩
L∞(0, T ; H), such that, as n → ∞,

(7.4) vn → ṽ weak-star in L∞(0, T ; H) and weakly in L2(0, T ; V).

Moreover, with Dr = D ∩ {x ∈ R
2 : |x| < r}, we have that for any r > 0,

the sequence {vn|(0,T )×Dr
}n is bounded in Hγ,2(0, T ; H1(Dr), L

2(Dr)).

As before, by the compactness theorem ([40], Theorem III.2.2) and by using the
diagonal procedure, without loss of generality we may assume that for any r > 0,

(7.5) vn|(0,T )×Dr
→ ṽ|(0,T )×Dr

strongly in L2(0, T ; L2(Dr)).

It is then standard to prove that ṽ is a solution of (4.19) with ṽ(0) = x and hence by
the uniqueness of the solutions infer that ṽ = v. Next, because the weak topology
on a bounded subset of a separable Hilbert space is metrizable, we deduce that the
whole sequence {vn}n converges to v weakly in L2(0, T ; V). �

Proof of Lemma 7.2. Suppose that {xn}n is an H-valued sequence, weakly conver-
gent to some x ∈ H. Let vn = v(·, xn) and v = v(·, x). By the proof of the previous
lemma, (7.5) holds true. Take φ ∈ V . Then, by (7.5), for almost every t ∈ [0, T ],
(vn(t), φ) → (v(t), φ). Moreover, since by (7.3) the sequence {vn}n is bounded in
L∞(0, T ; H), {(vn(·), φ)}n is uniformly bounded on [0, T ].

On the other hand, in view of Proposition 5.4, ‖v′n‖L2(0,T ;V′) ≤ C for some C > 0
and all n ∈ N. Therefore by the Cauchy-Schwartz inequality, for all 0 ≤ t ≤ t+a ≤
T and n ∈ N, we have

|(vn(t + a) − vn(t), φ)| ≤ |(
∫ t+a

t

v′n(s) ds, φ)| ≤ C‖φ‖√a.
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This shows that the sequence {(vn(·), φ)}n is uniformly continuous on [0, T ]. Hence,
by the Arzela-Ascoli Theorem, there exists a subsequence {vn′}, such that (vn′(·), φ)
→ (v(·), φ) uniformly on [0, T ]. Next using the standard contradiction argument,
we infer that

(vn(·), φ) → (v(·), φ) uniformly on [0, T ].

Since V is dense in H, and supn∈N,t∈[0,T ] |vn(t)| < ∞, then for any φ ∈ H,

(vn(t), φ) → (v(t), φ) weakly in H uniformly in t ∈ [0, T ],

which finishes the proof of Lemma 7.2. �

8. Asymptotic compactness of the RDS

generated by stochastic NSEs

In this section we assume that the domain D is a Poincaré domain, i.e. such that
the Poincaré inequality (4.2) holds true on D. Hence, in particular, the following
inequalities are satisfied:

(8.1)
‖u‖2 ≥ λ1|u|2, for all u ∈ V,

|Au|2 ≥ λ1‖u‖2, for all u ∈ D(A).

Here we consider the RDS ϕ over the metric DS
(
Ω̂(ξ, E), F̂, P̂, ϑ̂

)
; see Proposi-

tion 6.13. The main result in this section is the following result.

Proposition 8.1. The RDS ϕ is asymptotically compact provided for any bounded
set B ⊂ H there exists a closed and bounded random set K(ω) absorbing B.

Remark 8.2. It was pointed out to us by David Elworthy that our results can be
related to a paper by S. G. Jones [31]. We will investigate this possible relationship
in a future publication.

Let us recall that the RDS ϕ is independent of the auxiliary parameter α ∈ N.
For reasons that will become clear in the course of the proof, we choose α such

that E|zα(0)|2
L4 ≤ ν2λ1

6C2 , where zα(t), t ∈ R, is the Ornstein-Uhlenbeck process from
subsection 6.3, C > 0 is a certain universal constant, λ1 is the constant from (8.1)
and ν > 0 is the viscosity. Such a choice is possible because of Proposition 6.13.
For simplicity of notation we will denote the space Ω̂(ξ, E) simply by Ω and the
process zα(t), t ∈ R, by z(t), t ∈ R.

Proof. Suppose that B ⊂ H a bounded set, (tn)∞n=1 is an increasing sequence of
positive numbers such that tn → ∞ and (xn)n is a B-valued sequence. By our
assumptions we can find a closed bounded random set K(ω) in H that absorbs B.
We fix ω ∈ Ω.

Step I. Reduction. Since K(ω) absorbs B, for n ∈ N sufficiently large,
ϕ(tn, ϑ−tn

ω)B ⊂ K(ω). Since K(ω) is closed and bounded, and hence weakly
compact, without loss of generality we may assume that ϕ(tn, ϑ−tn

ω)B ⊂ K(ω) for
all n ∈ N and, for some y0 ∈ K(ω),

(8.2) ϕ(tn, ϑ−tn
ω)xn → y0 weakly in H.

Since z(0) ∈ H, then

(8.3) ϕ(tn, ϑ−tn
ω)xn − z(0) → y0 − z(0) weakly in H.
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In particular,

(8.4) |y0 − z(0)| ≤ lim inf
n→∞

|ϕ(tn, ϑ−tn
ω)xn − z(0)|.

We claim that it is enough to prove that for some subsequence {n′} ⊂ N

(8.5) |y0 − z(0)| ≥ lim sup
n′→∞

|ϕ(tn′ , ϑ−tn′
ω)xn′ − z(0)|.

Indeed, since H is a Hilbert space, (8.4) in conjunction with (8.5) imply that

ϕ(tn′ , ϑ−tn′
ω)xn′ − z(0) → y0 − z(0) strongly in H

which easily implies that

ϕ(tn′ , ϑ−tn′
ω)xn′ → y0 strongly in H.

Summing up, in order to show that {ϕ(tn, ϑ−tn
ω)xn}n is relatively compact in H

we need to prove that (8.5) holds true.
Step II. Construction of a negative trajectory, i.e. a sequence (yn)0n=−∞ such

that yn ∈ K(θnω), n ∈ Z
−, and yk = ϕ(k − n, θnω)yn, n < k ≤ 0.

Since K(ϑ−1ω) absorbs B, there exists a constant N1(ω) ∈ N, such that

{ϕ(−1 + tn, ϑ1−tn
ϑ−1ω)xn : n ≥ N1(ω)} ⊂ K(ϑ−1ω).

Hence we can find a subsequence {n′} ⊂ N and y−1 ∈ K(ϑ−1ω) such that

(8.6) ϕ(−1 + tn′ , ϑ−tn′
ω)xn′ → y1 weakly in H.

Let us observe that the cocycle property, with t = 1, s = tn′−1, and ω being replaced
by ϑ−tn′

ω, reads as follows: ϕ(tn′ , ϑ−tn′
ω) = ϕ(1, ϑ−1ω)ϕ(−1+tn′ , ϑ−tn′

ω). Hence,
by Lemma 7.2, from (8.2) and (8.6) we infer that ϕ(1, ϑ−1ω)y1 = y0. By induction,
for each k = 1, 2, . . ., we can construct a subsequence {n(k)} ⊂ {n(k−1)} and y−k ∈
K(ϑ−kω), such that ϕ(1, ϑ−kω)y−k = y−k+1 and

(8.7) ϕ(−k + tn(k) , ϑ−t
n(k)

ω)xn(k) → y−k weakly in H, as n(k) → ∞.

As above, the cocycle property with t = k, s = tn(k) and ω being replaced by
ϑ−t

n(k)
ω yields

(8.8) ϕ(tn(k) , ϑ−t
n(k)

ω) = ϕ(k, ϑ−kω)ϕ(tn(k) − k, ϑ−t
n(k)

ω), k ∈ N.

Hence, from (8.7) and by applying Lemma 7.1, we get

(8.9)

y0 = w- lim
n(k)→∞

ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k)

= w- lim
n(k)→∞

ϕ(k, ϑ−kω)ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k)

= ϕ(k, ϑ−kω)(w- lim
n(k)→∞

ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k)) = ϕ(k, ϑ−kω)y−k,

where w- lim denotes the limit in the weak topology on H. The same proof yields
a more general property:

ϕ(j, ϑ−kω)y−k = y−k+j if 0 ≤ j ≤ k.

Before we continue our proof, let us point out that (8.9) means precisely that
y0 = u(0,−k; ω, y−k), where u is defined by (6.26).
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Step III. Some inequalities.

Lemma 8.3. Suppose that v is a solution to problem (4.19) on the time interval
[a,∞) with z ∈ L4

loc(R
+, L4(D)) ∩ L2

loc(R
+, V′) and α ≥ 0. Denote g(t) = αz(t) −

B(z(t), z(t)), t ∈ [a,∞). Then, for any t ≥ τ ≥ a,

|v(t)|2 ≤ |v(τ )|2e−νλ1(t−τ)+ 3C2

ν

∫ t
τ
|z(s)|2

L4
ds

3

ν

∫ t

τ

{|g(s)|2V′ + |f |2}e−νλ1(t−s)+ 3C2

ν

∫ t
s
(|z(ζ)|2

L4
)dζds,

(8.10)

|v(t)|2 = |v(τ )|2e−νλ1(t−τ) + 2

∫ t

τ

e−νλ1(t−s)(〈B(v(s), z(s)), v(t)〉

+ 〈g(s), v(s)〉 + 〈f, v(s)〉 − [v(s)]2) ds.

(8.11)

Proof. By Lemma 5.1, we have

(8.12)

1

2

d

dt
|v(t)|2 =〈−νAv(t) − B(v(t)) − B(z(t), v(t)) + g(t) + f, v(t)〉

= − ν〈Av(t), v(t)〉+ 〈B(v(t)), v(t)〉+ 〈B(z(t), v(t)), v(t)〉
+ 〈B(v(t), z(t)), v(t)〉+ 〈g(t), v(t)〉 + 〈f, v(t)〉

= − ν‖v(t)‖2 + b(v(t), z(t), v(t)) + 〈g(t), v(t)〉 + 〈f, v(t)〉.
From (4.13), by using the Young inequality, we have

|b(v(t), z(t)), v(t))| ≤ C|v(t)|L2 |∇v(t)|L2 |z(t)|L4

≤ ν

6
‖v(t)‖2 +

3C2

2ν
|v(t)|2|z(t)|2

L4 ,

|〈g(t), v(t)〉 + 〈f, v(t)〉| ≤ |g(t)|V′‖v(t)‖ + |fV′ |‖v(t)‖

≤ ν

3
‖v(t)‖2 +

3

2ν
|g(t)|2V′ +

3

2ν
|f |2V′ .

Hence from (8.12) and (8.1), we get

(8.13)

d

dt
|v(t)|2 ≤ −ν‖v(t)‖2 +

3C2

ν
|z(t)|2

L4 |v(t)|2 +
3

ν
|g(t)|2V′ +

3

ν
|f |2V′

≤ (−νλ1 +
3C2

ν
|z(t)|2

L4)|v(t)|2 +
3

ν
|g(t)|2V′ +

3

ν
|f |2V′ .

Next, using the Gronwall Lemma, we arrive at (8.10).
As in [37], for any u, v ∈ V, we define a new scalar product [·, ·] : V × V → R

by formula [u, v] = ν((u, v)) − ν λ1

2 (u, v). Clearly, [·, ·] is bilinear and symmetric.
Moreover from (4.2), it is easy to prove that [·, ·] defines an inner product in V with
norm [·] = [·, ·]1/2, which is equivalent to the norm ‖ · ‖. By adding and subtracting
ν λ1

2 |v(t)|2 from (8.12) we find that

(8.14)

d

dt
|v(t)|2 + νλ1|v(t)|2 + 2[v(t)]2

= 2b(v(t), z(t)), v(t)) + 2〈g(t), v(t)〉+ 2〈f, v(t)〉.
Hence (8.11) follows by the variation of constants formula. �

Step IV. Proof of (8.5). From now on, until explicitly stated, we fix k ∈ N, and
we will consider problem (4.16) on the time interval [−k, 0]. From (6.26) and (8.8),
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with t = 0 and s = −k, we have

|ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)|2

= |ϕ(k, ϑ−kω)ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(0)|2

= |v(0, ω;−k, ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k))|2.
(8.15)

Let v be the solution to (4.19) on [−k,∞) with z = zα(·, ω) and the initial
condition at time −k: v(−k) = ϕ(tn(k) − k, ϑ−t

n(k)
ω)xn(k) − z(−k)). In other

words,

v(s) = v
(
s,−k; ω, ϕ(tn(k) − k, ϑ−t

n(k)
ω)xn(k) − z(−k)

)
, s ≥ −k.

From (8.15) and (8.11) with t = 0 and τ = −k we infer that

|ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)|2 = e−νλ1k|ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)|2

+ 2

∫ 0

−k

eνλ1s (b(v(s), z(s), v(s)) + 〈g(s), v(s)〉+ 〈f, v(s)〉 − [v(s)]2
)

ds.(8.16)

It is enough to find a nonnegative function h ∈ L1(−∞, 0) such that

(8.17) lim sup
n(k)→∞

|ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)|2 ≤
∫ −k

−∞

h(s) ds + |y0 − z(0)|2.

For, if we define the diagonal process (mj)
∞
j=1 by mj = j(j), j ∈ N, then for each

k ∈ N, the sequence (mj)
∞
j=k is a subsequence of the sequence (n(k)) and hence by

(8.17), lim supj |ϕ(tmj
, ϑ−tmj

ω)xmj
− z(0)|2 ≤

∫ −k

−∞
h(s) ds + |y0 − z(0)|2. Taking

the k → ∞ limit in the last inequality we infer that

lim sup
j

|ϕ(tmj
, ϑ−tmj

ω)xmj
− z(0)|2 ≤ |y0 − z(0)|2,

which proves claim (8.5).
Step V. Proof of (8.17). We begin with estimating the first term on the RHS

of (8.16). If −tn(k) < −k, then by (6.26) and (8.10) we infer that

|ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)|2e−νλ1k

= |v(−k,−tn(k) ; ϑ−kω, xn(k) − z(−tn(k)))|2e−νλ1k

≤ e−νλ1k
{
|xn(k) − z(−tn(k))|2e

−νλ1(tn(k)−k)+ 3C2

ν

∫
−k
−t

n(k)
|z(s)|2

L4
ds

3

ν

∫ −k

−t
n(k)

[
|g(s)|2V′ + |f |2V′

]
e−νλ1(−k−s)+ 3C2

ν

∫
−k
s

(|z(ζ)|2
L4

)dζds
}

(8.18)

≤ 2In(k) + 2IIn(k) +
3

ν
IIIn(k) +

3

ν
|f |2V′ IVn(k) ,
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where

In(k) = |xn(k) |2e
−νλ1t

n(k)+
3C2

ν

∫
−k
−t

n(k)
|z(s)|2

L4
ds

,

IIn(k) = |z(−tn(k))|2e
−νλ1t

n(k)+
3C2

ν

∫
−k
−t

n(k)
|z(s)|2

L4
ds

,

IIIn(k) =

∫ −k

−t
n(k)

|g(s)|2V′eνλ1s+ 3C2

ν

∫
−k
s

|z(ζ)|2
L4

dζ ds,

IVn(k) =

∫ −k

−tn′

eνλ1s+ 3C2

ν

∫
−k
s

|z(ζ)|2
L4

dζ ds.

First we will find a nonnegative function h ∈ L1(−∞, 0) such that

(8.19)

lim sup
n(k)→∞

|ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)|2e−νλ1k

≤
∫ −k

−∞

h(s) ds, k ∈ N.

This will be accomplished as soon as we show the following four results.
We need to prove the following four lemmata.

Lemma 8.4. lim sup
n(k)→∞

Ik = 0.

Lemma 8.5. lim sup
n(k)→∞

IIn(k) = 0.

Lemma 8.6.
∫ 0

−∞
|g(s)|2V′eνλ1s+ 3C2

ν

∫ 0
s
|z(σ)|2

L4
dσ ds < ∞.

Lemma 8.7.
∫ 0

−∞
eνλ1s+ 3C2

ν

∫ 0
s
|z(σ)|2

L4
dσ ds < ∞.

Proof of Lemma 8.4. Let us recall that α ∈ N, z(t) = zα(t), t ∈ R, being the
Ornstein-Uhlenbeck process from subsection 6.3, and one has E|z(0)|2X = E|zα(0)|2X
< ν2λ1

6C2 . Let us recall that the space Ω̂(ξ, E) was constructed in such a way that

lim
n(k)→∞

1

−k − (−tn(k))

∫ −k

−t
n(k)

|zα(s)|2Xds = E|z(0)|2X < ∞.

Therefore, since the embedding X →֒ L
4(O) is a contraction, we have for n(k)

sufficiently large,

(8.20)
3C2

ν

∫ −k

−t
n(k)

|z(s)|2
L4 ds <

νλ1

2
(tn(k) − k).

Since the set B is bounded in H, there exists ρ1 > 0 such that for all n(k), |xn(k) | ≤
ρ1. Hence,

(8.21)

lim sup
n(k)→∞

|xn(k) |2e
−νλ1t

n(k)+
3C2

ν

∫
−k
−t

n(k)
|z(s)|2

L4
ds

≤ lim sup
n(k)→∞

ρ2
1e

−
νλ1
2 (t

n(k)−k) = 0.

�
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Proof of Lemma 8.7. Denote p(s) = νλ1s + 3C2

ν

∫ 0

s
|z(s)|2

L4 . We need to show that∫ 0

−∞
ep(s) ds < ∞. As in the proof of Lemma 8.4 we have, for s ≤ s0, p(s) < νλ1

2 s.
Hence the result. �

Proof of Lemma 8.5. Because of (6.7), we can find ρ2 ≥ 0 and s0 < 0, such that,

(8.22)
|z(s)|
|s| ,

|z(s)|V′

|s| and
|z(s)|

L4

|s| ≤ ρ2, for s ≤ s0.

Hence by (8.20) we infer that

(8.23)

lim sup
n(k)→∞

|z(−tn(k))|2e
∫
−k
−t

n(k)
(−νλ1+

3C2

ν |z(s)|2
L4

) ds

≤ lim sup
n(k)→∞

|z(−tn(k))|2
|tn(k) |2 lim sup

n(k)→∞

|tn(k) |2e−
νλ1(t

n(k)−k)

2 ≤ 0.

This finishes the proof of Lemma 8.5. �

Proof of Lemma 8.6. This proof follows the lines of the proof of Lemma 8.7 by tak-
ing into account the inequality (8.22). Indeed, since |g(s)|2V′ = |αz(s)+2B(z(s))|2V′

≤ 2α2|z(s)|2V′ + 2C|z(s)|4
L4 , we only need to show that the integrals

∫ 0

−∞

|z(s)|4
L4eνλ1s+ 3C2

ν

∫ 0
s
|z(σ)|2

L4
dσ ds and

∫ 0

−∞

|z(s)|2V′ eνλ1s+ 3C2

ν

∫ 0
s
|z(σ)|2

L4
dσ ds

are finite. �

Therefore, the proof of (8.19) is concluded, and it only remains to finish the
proof of (8.17), which we are going to do right now. Let us denote ỹk = yk − z(−k)
and

vn(k)

(s) = v(s,−k; ω, ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)), s ∈ (−k, 0),

vk(s) = v(s,−k; ω, y−k − z(−k)), s ∈ (−k, 0).

From (8.7) and Lemma 7.1 we infer that

(8.24) vn(k)

(·) → vk weakly in L2(−k, 0; V).

Since eνλ1·g(·), eνλ1·f ∈ L2(−k, 0; V′), we get

(8.25) lim
n(k)→∞

∫ 0

−k

eνλ1s〈g(s), vn(k)

(s)〉 ds =

∫ 0

−k

eνλ1s〈g(s), vk(s)〉 ds

and

(8.26) lim
n(k)→∞

∫ 0

−k

eνλ1s〈f, vn(k)

(s)〉 ds =

∫ 0

−k

eνλ1s〈f, vk(s)〉 ds.

On the other hand, using the same methods as those in the proof of Theorem 4.5,

there exists a subsequence of {vn(k)}, which, for the sake of simplicity of notation,
is denoted as the old one and which satisfies

(8.27) vn(k) → vk strongly in L2(−k, 0; L2
loc(D)).
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Next, since z(t) is an L
4-valued process, so is eνλ1tz(t). Thus by Corollary 5.3,

(8.24) and (8.27), we infer that

(8.28)

lim
n(k)→∞

∫ 0

−k

eνλ1sb(vn(k)

(s), z(s), vn(k)

(s)) ds

=

∫ 0

−k

eνλ1sb(vk(s), z(s), vk(s)) ds.

Moreover, since the norms [·] and ‖ · ‖ are equivalent on V, and since for any

s ∈ (−k, 0], e−νkλ1 ≤ eνλ1s ≤ 1, (
∫ 0

−k
eνλ1s[·]2 ds)1/2 is a norm in L2(−k, 0; V)

equivalent to the standard one. Hence, from (8.24) we obtain,
∫ 0

−k

eνλ1s[vk(s)]2 ds ≤ lim inf
n(k)→∞

∫ 0

−k

eνλ1s[vn(k)

(s)]2 ds.

In other words,

(8.29) lim sup
n(k)→∞

{
−

∫ 0

−k

[vn(k)

(s)]2 ds
}
≤ −

∫ 0

−k

eνλ1s[vk(s)]2 ds.

From (8.16), (8.19), (8.28) and (8.29) we infer that

(8.30)

lim sup
n(k)→∞

|ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)|2

≤
∫ −k

−∞

h(s) ds + 2

∫ 0

−k

eνλ1s
{
〈B(vk(s), z(s)), vk(s)〉

+ 〈g(s), vk(s)〉 + 〈f, vk(s)〉 − [vk(s)]2
}

ds.

On the other hand, from (8.9) and (8.11), we have

|y0 − z(0)|2 = |ϕ(k, ϑ−kω)yk − z(0)|2 = |v(0,−k; ω, yk − z(−k))|2

= |yk − z(−k)|2e−νλ1k + 2

∫ 0

−k

eνλ1s
{
〈g(s), vk(s)〉(8.31)

+ 〈B(vk(s), z(s)), vk(s)〉 + 〈f, vk(s)〉 − [vk(s)]2
}

ds.

Hence, by combining (8.30) with (8.31), we get

lim sup
n(k)→∞

|ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)|2

≤
∫ −k

−∞

h(s) ds + |y0 − z(0)|2 − |yk − z(−k)|2e−νλ1k

≤
∫ −k

−∞

h(s) ds + |y0 − z(0)|2,

which proves (8.17), and hence the proof of Proposition 8.1 is finished. �

Now we are ready to state and prove the main result of this section.

Theorem 8.8. Suppose that a domain D ⊂ R
2 is such that the Poincaré inequality

(4.2) holds on it. Consider the metric DS T =
(
Ω̂(ξ, E), F̂ , P̂, ϑ̂

)
(see Proposition

6.13), and consider the RDS ϕ over T generated by the 2D stochastic Navier-Stokes
equations (4.16) with additive noise such that Assumption A.1 is satisfied. Then
the RDS ϕ is asymptotically compact.
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Proof. Let B ⊂ H be a bounded set. In view of Proposition 8.1, it is sufficient to
prove that there exists a closed bounded random set K(ω) ⊂ H which absorbs B.
In fact, we will show below that an even stronger property holds. Namely, that
there exists a closed bounded random set K(ω) ⊂ H which absorbs every bounded
deterministic set B ⊂ H.

Let ω ∈ Ω be fixed. For given s ≤ 0 and x ∈ H, let v be the solution of
(4.19) on [s,∞) with the initial condition v(s) = x − z(s). Applying (8.10) with
t = 0, τ = s ≤ 0, we get

(8.32)

|v(0)|2 ≤ 2|x|2eνλ1s+ 3C2

ν

∫ 0
s
|z(r)|2

L4
dr + 2|z(s)|2eνλ1s+ 3C2

ν

∫ 0
s
|z(r)|2

L4
dr

+
3

ν

∫ 0

s

{|g(t)|2V′ + |f |2}eνλ1t+ 3C2

ν

∫ 0
t
|z(r)|2

L4
dr dt.

Set

r1(ω)2 = 2 + sup
s≤0

{
2|z(s)|2eνλ1s+ 3C2

ν

∫ 0
s
|z(r)|2

L4
dr

}

+
3

ν

∫ 0

−∞

{|g(t)|2V′ + |f |2}eνλ1t+ 3C2

ν

∫ 0
t
|z(r)|2

L4
dr dt.

Similarly to (8.23) we can prove that

lim sup
t0→−∞

|z(t0)|2eνλ1t0+
3C2

ν

∫ 0
t0

|z(r)|2
L4

dr
= 0.

Hence, by the continuity of the map s �→ z(s) ∈ H,

sup
s≤0

|z(s)|2eνλ1s+ 3C2

ν

∫
0
s
|z(r)|2

L4
dr < ∞

and hence in conjunction with Lemmata 8.6 and 8.7, we infer that

(8.33) r2
1(ω) < ∞, for all ω ∈ Ω.

On the other hand, given ρ > 0, by (8.21) we can find tρ(ω) ≤ 0 such that, for

all s ≤ tρ(ω), ρ2eνλ1s+ 3C2

ν

∫ 0
s
|z(r)|2

L4
dr ≤ 1. Therefore, from (8.32), if |x| ≤ ρ and

s ≤ tρ(ω), |v(0, ω; s, x − z(s))|2 ≤ r2
1(ω). Thus, we infer that

|u(0, s; ω, x)| ≤ |v(0, s; ω, x − z(s))| + |z(0)| ≤ r2(ω), for all ω ∈ Ω,

where r2(ω) = r1(ω) + |z(0, ω)|. From (8.33) and our assumptions, we infer that
for all ω ∈ Ω, r2(ω) < ∞. Defining K(ω) := {u ∈ H : |u| ≤ r2(ω)} concludes the
proof. �

Remark 8.9. Here, we would like to point out that although we have proved the
Asymptotic Compactness of the Random Dynamic System generated by the 2D
stochastic NSes, we still cannot obtain the existence of the attractor for this RDS.
The reason is that although from the proofs of Proposition 8.1 and Theorem 8.8
we can construct a bounded closed random set K(ω) in H (even in V ; see [9]),
which attracts all bounded deterministic sets, due to lack of the Sobolev compact
embedding, we cannot directly obtain the compactness of K(ω) neither in V nor
H. In this case, when K(ω) is bounded, we obtain only the dissipativity of our
RDS. The dissipativity plus the asymptotic compactness properties are not enough
to deduce the compactness of K(ω). Hence, we will need further properties of our
RDS and leave the existence of abstractors for the RDS as an open question.
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9. Invariant measures

In this very short section we only state a result which is a direct consequence of
Corollary 4.4 in [18] and of our Theorems 3.4 and 8.8.

Let u(t, x) be the unique solution of problem (4.16). Let us recall that such a
unique solution exists for each x ∈ H. We define the transition operator Pt by a
standard formula. For g ∈ Cb(H), we put

Ptg(x) = E [g(u(t, x))] , x ∈ H.(9.1)

In view of Proposition 3.8 Pt, t ≥ 0, is a family of Feller operators, i.e. Pt :
Cb(H) → Cb(H) and, for any g ∈ Cb(H) and x ∈ H, Ptg(x) → g(x) as t ց 0.
Moreover, as in [18] one can prove that ϕ is a Markov RDS, i.e. Pt+s = PtPs for
all t, s ≥ 0. Hence from Corollary 3.7 we now have the following result.

Corollary 9.1. There exists an invariant measure for the Stochastic NSEs (4.16).

Remark 9.2. It is an interesting question whether the method of [38] can be ex-
tended so that not only the estimates in the mean but also pathwise can be proved.
A positive answer to this question would prove that the Random Dynamical System
generated by stochastic Ginzburg-Landau equations is asymptotically compact and
hence could be an indication of the existence of a global attractor.
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5628 ZDZIS�LAW BRZEŹNIAK AND YUHONG LI
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Henri Poincaré 4, no. 2, 343–368 (2003). MR1985776 (2004g:58043)

Department of Mathematics, The University of Hull, Hull, HU6 7RX, United King-

dom

Current address: Department of Mathematics, University of York, Heslington, York, YO10
5DD, United Kingdom

E-mail address: zb500@york.ac.uk

Department of Mathematics, The University of Hull, Hull, HU6 7RX, United King-

dom

Current address: School of Hydropower and Information Engineering, Huazhong University of
Science and Technology, Wuhan 430074, People’s Republic of China

E-mail address: chuchuemma@163.com

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1133627
http://www.ams.org/mathscinet-getitem?mr=1133627
http://www.ams.org/mathscinet-getitem?mr=0350177
http://www.ams.org/mathscinet-getitem?mr=0350177
http://www.ams.org/mathscinet-getitem?mr=0108964
http://www.ams.org/mathscinet-getitem?mr=0108964
http://www.ams.org/mathscinet-getitem?mr=1491614
http://www.ams.org/mathscinet-getitem?mr=1491614
http://www.ams.org/mathscinet-getitem?mr=1889231
http://www.ams.org/mathscinet-getitem?mr=1889231
http://www.ams.org/mathscinet-getitem?mr=0603444
http://www.ams.org/mathscinet-getitem?mr=0603444
http://www.ams.org/mathscinet-getitem?mr=1441312
http://www.ams.org/mathscinet-getitem?mr=1441312
http://www.ams.org/mathscinet-getitem?mr=1985776
http://www.ams.org/mathscinet-getitem?mr=1985776

	1. Introduction
	2. Notation and preliminaries
	3. Properties of the -limit set
	4. Time dependent 2D stochastic Navier Stokes equations
	5. Proof of Theorems 4.5 and 4.6
	5.1. Proof of Theorem 4.5
	Part I. Existence of solutions
	Part II. Uniqueness of solutions
	5.2. Proof of Theorem 4.6

	6. RDS generated by the 2D stochastic Navier Stokes equations
	6.1. Wiener process
	6.2. Analytic preliminaries
	6.3. Ornstein-Uhlenbeck process
	6.4. RDS

	7. The weak continuity of the RDS generated by stochastic NSEs
	8. Asymptotic compactness of the RDS generated by stochastic NSEs
	9. Invariant measures
	Acknowledgements
	References

