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ASYMPTOTIC COMPLETENESS FOR CLASSES
OF TWO, THREE, AND FOUR PARTICLE
SCHRODINGER OPERATORS!

BY
GEORGE A. HAGEDORN2

ABSTRACT. Formulas for the resolvent (z — H)™! are derived, where H = Hy +
2,<; \j¥Vy is an N particle Schrodinger operator with the center of mass motion
removed. For a large class of two-body potentials and generic couplings {A;}, these
formulas are used to prove asymptotic completeness in the N < 4 body problem
when the space dimension is m > 3. The allowed potentials belong to a space of
dilation analytic multiplication operators which fall off more rapidly than r =2 at
co. In particular, Yukawa potentials, generalized Yukawa potentials, and potentials
of the form (1 + 7)~2~¢ are allowed.

L. Introduction. The scattering theory of two particle nonrelativistic quantum
mechanics is reasonably well understood for short range potentials. The wave
operators are asymptotically complete, and the singular continuous spectrum is
empty (see Agmon [1], Enss [42], and Reed and Simon [24]). Much less is known
about general N particle scattering.

For N = 3 and space dimension m > 3, Faddeev [6] first proved completeness of
the wave operators for a large class of potentials and almost all coupling constants.
These results have been simplified and extended by Ginibre and Moulin [7],
Thomas {36], and Howland [11]. All of these authors require the potentials to fall
off faster than »~27° at infinity and obtain Kuroda completeness for almost all
couplings. Mourre [19] has extended these results to allow potentials which fall
faster than » !¢, as long as the potentials are repulsive for large r.

For general N, Balslev and Combes [3] have proved the absence of singular
continuous spectrum for dilation analytic potentials. Asymptotic completeness for
potentials falling off faster than » ~27* has been proved for small couplings by Iorio
and O’Carrol [13], and for repulsive potentials falling off faster than r~3/2-¢ by
Lavine [18]. (These are single channel results only.) Hepp [10] and Sigal {26] have
reduced general N-body asymptotic completeness to the verification of properties
of certain operators. They conjecture that these hold for generic potentials in
certain classes.

Simultaneous to our announcement [9] of results, Sigal [28] announced a proof of
asymptotic completeness for generic elements of a space of dilation analytic
potentials and almost all couplings. More recently, van Winter [43] announced a
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2 G. A. HAGEDORN

proof of completeness for some analytic Hilbert-Schmidt potentials. Also, Enss [42]
has obtained some many body results by beautiful, time dependent methods.
Our main results are the following:

THEOREM I.1. Let m > 3 and N < 4. Let

N
H=- igl @2m)~'a, + % A;V; on LA(RM™)

be the Schridinger operator for N particles moving in m dimensions. Let H = H, +
=i\ V; denote the Schridinger operator on L*(R™~D") for the same system with
the center of mass motion removed. Assume each V; may be factored as V; = U; W),
so that

(1) each U; and W is dilation analytic in some strip,

@) (1 + x,-Jz.)’U,j(x,.j) and (1 + x,-jz-)7 W, belong to LP(R™) + L®(R™) for some
p>mandy >3,

(iii) bound state energies of three body subsystems are nonpositive when N = 4,

Then for generic couplings {);}, asymptotic completeness holds.

THEOREM 1.2. The set of generic couplings for Theorem 1.1 is large in the sense that
its complement is a closed set of Lebesgue measure zero.

Remarks. (1) Hypothesis (ii) of Theorem 1.1 implies that Uy(—A; + 1)~'/2 and
W, (-4, + 1)7'/2 are compact on LX(R™). Thus, H = H, + Z\;V, is understood
in the sense of quadratic forms.

(2) Balslev [2] and Simon [32] have given sufficient conditions for Hypothesis (iii)
to hold. See Theorem I1.10. Yukawa potentials, generalized Yukawa potentials, and
potentials of the form (1 + r)~27° obey these conditions. Therefore, for these
potentials, Theorems I.1 and 1.2 establish asymptotic completeness for generic
couplings.

(3) For the generic couplings, H has finitely many thresholds. Sigal [27] has also
obtained this result.

(4) The generic couplings are precisely those for which no cluster Hamiltonian
has a threshold resonance or threshold bound state.

(5) Theorem I.1 will be proved under the assumption that all the masses are
finite. If one of the masses is infinite, the result still holds, but several lemmas from
§V must be modified. Various p functions must be changed, and in many instances,
Case 2 of Lemma I1.3 must be used in place of Case 1.

Our proof of Theorems I.1 and 1.2 is organized as follows: In §II, we collect
various technical results from the literature. Little is new here, except that weighted
spaces L} are replaced by more general L{ spaces. In §III, N-body Kuroda
completeness is reduced to the study of the resolvent (z — H)~!. Formulas for the
N-body resolvent are derived in §IV. Equation (IV.4) is a generalization of
Faddeev’s three body formula [6] to the N-body case. It is much simpler than the
Yakubovskii formula [41], but we have not been able to prove that it has all the
desirable properties of the Yakubovskii equation. A second, more complicated

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ASYMPTOTIC COMPLETENESS 3

formula (equation (IV.5)), is derived from equation (IV.4). This formula is equiv-
alent to a formula of Narodetskii and Yakubovskii [20]. Equation (IV.5) is
modified for N < 4, in order to study scattering. In §V, these equations are used to
prove properties of (z — H)™! for N < 4 under certain hypotheses. The validity of
these hypotheses is studied in §VL

Given the absence of singular continuous spectrum (Theorem II.8) and the
existence of wave operators (Theorem I11.12), Theorems 1.1 and 1.2 follow im-
mediately from Theorem IIL.1, Propositions V.1, 2, and 3, and Proposition VI.3.

RemARK. The principal reason we do not have results for N > 5 is that we have
been unable to prove the absence of spurious zeros in equation (IV.10).

ACKNOWLEDGEMENTS. I am very grateful to Professor Barry Simon for introduc-
ing me to many body Schrodinger operators and for his advice throughout this
work. In addition, I would like to thank the ETH and IHES for their hospitality
during the Spring and Summer of 1977, and Dr. I. M. Sigal for pointing out an
error in a rough draft.

Preliminary definitions. The Schrodinger operator for a system of N particles
moving in m dimensions is A = — ZX_,2m)~'A, + 2, _; ¥, on LXRM™). The mass
of the ith particle is m,, A; is the Laplacian in the ith variable, and the potential
energy between particles i and j is the multiplication operator Vi(r, — 1;). We
remove the trivial center of mass motion (see [23]) from H, to obtain H = H, +
Z,gjVyon I = L2RV-D™),

A cluster decomposition D = {C,}%_, is a partition of the set {1,2,..., N} into
k disjoint clusters C;. The Hamiltonian H, is defined as Hy + V,, where V), is the
sum of all ¥; with i and j in the same cluster. The Hilbert space JC may be

decomposed as I, ® I(, ® - - - @I, ® H (D), so that
Hy=hQ®Il® - ®1+10hQ -  ®l+---

+1®--- QL ®1+10---QB1QK,,.
The Hamiltonian A; corresponds to the energy of the particles in cluster C; alone.
K, is the kinetic energy of the centers of mass of the clusters in D,

For each cluster Hamiltonian 4, we choose eigenfunctions 5 of A, so that {nj("}
is an orthonormal basis for the subspace of X, generated by the eigenfunctions of
h,.

A channel « is a cluster decomposition D(a), together with an eigenfunction
79 € {9} for each h. We define E, = 3%_|E,, where hn® = Ex®, and let P,:
JC — I denote the orthogonal projection onto all vectors of the form 7" ® n@
®: - ®1® ® ¢, where ¢ € I((D(a)) is arbitrary. Let T, = 1@ 1® - - - @1 ®
Kp@ + Eq sothat Hy P, = T, P,.

The channel wave operators are defined as

QF = strong- limit e“He~"TP_

t—>* o0

if the limits exist. The wave operators are asymptotically complete if
H =@ RanQ} ® K s = D Ran Q; & I g
a a

where J(,.qq is the span of the eigenfunctions for H.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4 G. A. HAGEDORN

Each Q7 is an isometry, so the projection onto Ran F is Q79 *. Since the
channel wave operators have orthogonal ranges, the projection onto €, Ran Q is
Z, 059

The ranges of the wave operators are contained in J(, ., the absolutely continu-
ous subspace for H. Thus, @ Ran Q7 C I(, . A weaker form of completeness is
the condition P, = 3, Q- Q;*. This is called Kuroda completeness. Kuroda com-
pleteness implies asymptotic completeness if H has no singular continuous
spectrum.

I1. Technical devices. In this section we collect several results which are required
for the other sections.

A. Jacobi coordinates (see Reed and Simon [23]).

We will use two types of coordinate systems for R~ D™ Both of these systems
have the property that H, is of the form — =¥ (2u,)"'A,, where g, > 0 and A, is
the Laplacian in the ith coordinate. The particle positions r; and their differences
r; — r; are not simple in these coordinates.

To obtain Jacobi coordinates {§;}, we begin by labelling the particles by the
numbers 1,2,...,N. Then, for 1 < j < N — 1, we let gj denote the vector from
the center of mass particles 1,2, ...,/ to particle j + 1. Explicitly, §; = r,,; —
(Zic; m)~'Z,<; mr, where r, denotes the position of particle /.

The second type of coordinate system is used to put Kj,, the free Hamiltonian for
the centers of mass of the clusters of D, into the form —Z*Z1(2,) 'A%, For each
cluster C;, we choose Jacobi coordinates &}, &5, . .., &,_, for the n(i) particles
labelled by the elements of C;. Then we choose Jacobi coordinates {,, &5, . . ., §i_;
for the centers of mass of the clusters. The resulting coordinates

1 1 2
gly--'s n (1)— 1> £],°‘°’ :(k)—la {1"”»5]‘_1

are called clustered Jacobi coordinates for the cluster decomposition D.

B. Quadratic form technigues.

Quadratic forms are used to define the Hamiltonian H and to make sense out of
various expressions involving resolvents, potentials, and square roots of the poten-
tials.

The free Hamiltonian H, is a positive selfadjoint operator on JC. We let 3C,,
denote the operator domain of H}/? with inner product (¢, ¢>,, =
(b, > + (HY¢, H}/¥). Since ¥, , C K, each ¢ € I defines a bounded
linear functional on 3, by ¢ — (¢, ¥). Thus, I may be viewed as a subspace of
the dual space 3C_, of ¥, .

For each pair i, j, LXR®~"™) decomposes into L}(R™) ® LXRW~™) where
the first factor denotes functions of x;. Under this decomposition, V; = v; ® 1.
We assume v, = u;w; such that uy(—4, + 1)~'/2 and w,(—A; + 1)7'/? are com-
pact on LYR™).

We denote u; ® 1 by U; and w; ® 1 by W,,. The assumptions on u; and w;
imply that U;: 3 - ¥_, and W;: 3, —» I are bounded. Moreover [22], for
each ¢ > 0, there exists a > 0, such that
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ASYMPTOTIC COMPLETENESS 5

<4 VD | =KUY, Wydd| < elld]31 + al¥)?
forally € K,,.

Given this bound, the KLMN Theorem [22] implies that there is a unique
selfadjoint operator H with D(H) C IC, ,, such that

b HY) = <¢, (76 + ) V.,~)¢>

fory € 3(, ,. For each cluster decomposition D, the Hamiltonian H/, is defined by
the same method.

If z & o(Hp), then (z — Hp)™' is bounded from JC_, into I, ,. Hence, prod-
ucts of the form W,(z — Hp)™'U,, are bounded on .

C. Estimates related to Kato smoothness.

Although Kato smoothness [15] does not play a central role in our asymptotic
completeness proof, some estimates from the theory of smooth perturbations will
be used.

At least seven equivalent definitions of Kato smoothness are available (see [15],
[24]). For our purposes, the following one is the most convenient.

DEerINITION. A closed operator F is called Kato smooth with respect to a

selfadjoint operator A4, if
IFle=@m)~"  sup  [KF*, [(z = 4)7' = (2 —4) '] F*¢)| < .
z&R, $E D(F*)
lell=1

LemMA IL1. Let ¢,: R— I and ¢,: R — IC belong to L*R, IC), where I is a
Hilber:t space; if

&) = @n)7'/? l.i.m.f $ (e ™ dt forj=1,2,
R

then

[ <ou(0), 000> dt = [ <Bi(Q), S0 dX.
R R

ProOF. The usual Plancherel theorem shows that Fourier transform “: L*[R) —
L*(R) is unitary. Consequently, "®1: L2R) ® ¥ — LR) ® I is unitary. The"
lemma follows from this by the natural identification of L?*R) ® IC with
L*®R, 30). O

REMARK. In the following lemma we prove an inequality. Equality can be proved
[15], [24], but we will only use the inequality.

LemMma I1.2. Suppose F is Kato smooth with respect to A. Then

- — 2
1A =="" sup |Imz||[(z - 4)"'Fro|
z &R, $E D(F*)
ol =1

and

o .
IFG > @)™t sup [ |[Feig| at.
leli=1 7-oo
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6 G. A. HAGEDORN

PROOF.

Q7)) KF*¢, [(z — 4)' = (2 - 4)" | F*o)|
= (2n) 7|2 — 2| KF*¢, (2 —4)"'(z — 4)"'F*¢D|
= 77 im 2| ||(z — 4) "' F*o|".
The first statement of the lemma follows by taking the supremum over z & R and
¢ € D(F*) with |i¢|| = 1.
The operator
(2vri)_l[(2' —A)_1 - (z - A)_'] =7 '(Imz)(z - A7z —A)_l

is positive when Im z > 0. Let K(z) be its positive square root. Since F is
A-smooth, ||K(z)F*¢|? < ||F|[4||¢|*> for all ¢ € D(F*). Therefore, Ran K(z) C
D(F) and || FK(2)|| < ||F|| 4

If 6(A) = [(A + ie — A)~' — (A — ie — A)" "¢, then explicit computation shows
&(¢) = ie"Mle~ g Thus, by Lemma IL1,

@)~ f_°°°°||Fe-"A¢||2e-2¢I'I dt
= (zﬂ)-zf_fonp[o\ +ie—A) = (A —ie — 4)"' g ar
< f_°:°||FK(A + i) | K + ie)o| dA
<IA [ 1K+ e an
= @) | FA f°° (S —ie—A) "~ A+ ie — 4)7']¢> dA
o L I e M) T dHE(K) )
= [1£1% flol*

The lemma follows by taking ¢ to zero. []

DEerINITION. For 1 < p < o and 8§ €R, L(R™) is the Banach space of func-
tions f: R™ — C, such that (1 + x%%?{(x) € LR™). The L]-norm of f is the
LP-norm of (1 + x3)¥*(x).

REMARKS. (1) Lemma I1.3 extends results of Iorio and O’Carrol [13].

(2) If the operators F, and F, are equal in Lemma II.3, then we conclude that
F? = F} is Hp-smooth.

LemMma I1.3. Let D be a cluster decomposition with at least two clusters. Let 6 > 1,
m > 3, p, >m, and p, > m. Suppose {{,, ..., 81} and {§, ..., & _,} are two
(possibly identical) choices for the intercluster clustered Jacobi coordinates corre-
sponding to the cluster decomposition D. Suppose F, € L{'\(R™) and F, € L{*R™).
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ASYMPTOTIC COMPLETENESS 7

Let F, and F, denote multiplication by F\({,) and Fy§,), respectively. Since {§;}
and {§;} are bases for the same space, £, = Ta,,.

Case 1. If a, # 0, then F¥(z — Hp)"'F, is uniformly bounded and analytic for
z € CNo(Hp), with norm continuous boundary values as z approaches o(Hp) from
above and below.

Case 2. If a; = 0, then the same conclusions hold, except that the boundary values
are only strongly continuous.

PrOOF. ForIm z > 0,
(z - IID)_1 = _if°° e tHogitz gy
0
e b = ¢~ @ ¢~ on LX(R™) @ LYRYW~P™), where the first factor denotes
functions of §,. 4 is a negative multiple of the Laplacian, and e~4 has an
explicitly known integral kernel [22]. From the form of the integral kernel, an
interpolation argument shows that e %4 is bounded from L"(R™) to L*(R™) when
1<r<2and r~!+ s~ ! = 1. Moreover, the norm of e " is dominated by
(cr)~mC™'=2h,

Case 1. Since e ~#8

is unitary and commutes with F},
|Fre~ o, =| Fe*Fy.

To compute ||Ffe™ “F,¢||, fix {5 §3, . . ., & _,» and compute the L2 norm in the
¢, variable first.

Holder’s inequality shows that F; and F, belong to LIiR™) form — e <qg <m
+e With §,, ..., § ., fixed, F,(Ta;$)(Sy, - - -5 §—y) belongs to L'(R™, dS)),
where r~! = ¢! + ;. e~ maps this into L*(R™, d§,), where s =1 — ¢~ '. Multi-
plication by F,({,) then maps this back to L(R™, d¢,). The result is

= _, 2
fI(Fle ‘AF2¢)(§1’ s §k—l)| ds,

< ()Y F P FR a7 f 650 - - -5 S0
By integrating over §,, . . ., {, _;, we obtain

|Fte™ " Fys] < (cnct)™™ | Fy|| [ Fal il

Since this is valid for ge(m — &, m + &), || F¥e "4F,|| is an L function of .
ForImz > 0,

Fi(z - Hp)'Fy= i * Fre—HoF gitt gy,
0

Thus,

|Ft(z = Hp) 'Ry < f0°°||1=7e-"“F2|| dt < C.
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8 G. A. HAGEDORN

Also,
"Fl[(z - HD)_l - (w- HD)_I]FZII
< j(;qure—nAlenem — &™) dt

when Im z > 0 and Im w > 0. The norm Hélder continuity now follows by the
bound: [e”* — ™| < Min (2, #|]z — w|).

Case 2. It follows from Case 1 that F{(z — Hp)~'F, and F}(z — Hp,) 'F, are
uniformly bounded. Thus, F¥ and F¥ are H,-smooth.

Since a; = 0,

e—itHD = e—ilA ® e—itB ® e—itC

on LYR™, dt,) ® L}R™, d¢,) ® LXRW-I™), 4 and B are negative multiples of
the Laplacian; C is selfadjoint.

Forg,y € andImz > 0,

¢, F(z — Hp) "' Fpd)

—ij(;w<¢, F:lte—itHDFz‘P>eiu dt

—ifw<e'w¢, Fe~ie~iCE g\ et gy
0

_if0°°<1;?eiw¢’ Fre~ie=iCySeit gy,

Hence,

Ko, Fi(z - Hp) ™' Fy| < (fo

o0 i 2 1/2 o0 _ 2
= ([T NEmermol ar) " ( [T Fre @)

<|EZ|ml Ex N m Il 11l-
Here we have used the Schwarz and Holder inequalities and Lemma I1.1.
To prove the strong continuity, the same type of computation shows:

<, Ft[(z — Hp) ™' — (w — Hp) ™' | F|

. 1/2 . o 1/2
< (j(;w"F?e"HD(t’"z dt) (j(;w"ne—ulip‘ll"zlem _ euwlz dt)

1/2 1/2
“|rrersol’ ar) ([ Frem o)

1/2

o ) ) ) 172
<ol [N re oyl — e ar)
Hence,
|Ft[(z = Hp)™" = (w — Hp) '] Fay
_ 1/2
<Nl ([ "I Fre e = e ar)

By the dominated convergence theorem, the integral tends to zero as z approaches
w,
The proof for Im z < 0 is similar. []
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ASYMPTOTIC COMPLETENESS 9

LemMma 1L.4. Suppose F, and F, satisfy the hypotheses of Lemma 11.3. Then
FHl(A+i0— Hpy)™' = (A= i0 — Hp) ']F,
= FH[(+ 0 — Hp)™' = (A - i0 — Hy)"'|E®(a, B)F,

for any A € (a, b). EP(a, b) denotes the spectral projection for H,, corresponding to
the interval (a, b).

PRrOOF. If F| and F, are bounded, the result is trivial because

[A+i0— Hp)™ ' — (A= i0— Hp,)™'](1 - EP(a, b)) = 0.

More general functions F, and F, are limits of bounded functions. By taking such
limits, the lemma follows from the bounds of Lemma I1.3. [J

D. Fourier restriction theorems (Agmon (1}, Kuroda [17)).

DerINtTION. For k > 0, define #(k): S(R™) — LX(S™!, dw) by (m(k){w) =
k'/2m=Df(k(), where w belongs to the unit sphere $™~), fis the Fourier transform
of f, and dw is the invariant surface measure on S™~! C R™.

LeMMA ILS. Suppose 1 K p <2, m > 3,and 1/2 <8 <m/2. If 8(p) = 26(1 —
P~ "), then n(k) extends to a bounded mapping of Lg,(R™) into L*(S™™", dw). The
norm of this mapping is bounded by

Min{ ¢ k=DC™'=1/2) ¢ flom=1)p""~1/2) + @-1/29e-27]),

where ¢, and c, depend only on p. Moreover, if p > 1, then k — n(k) is norm Hélder
continuous.

PrROOF. When p = 2, these results may be found in [7] or [8].

When p = 1, norm continuity in k does not hold, but the other results are trivial
because f is continuous and ||f||°° < |l flly-

The results now follow by interpolation (see Stein [35]) between L' and L?. Note
that Holder continuity of order # on L} and boundedness on L' imply Holder
continuity of order 20(1 — p~ Y on L, for 1 <p <2. [

PROPOSITION 1L.6. Suppose m; > 3,8 > 1, 1 <p < 2, and 8(p) = 286(1 — p~ V).
(k) extends to a bounded mapping of Ly, (R™) ® L¥R™) into L}(S™*™~!, duw).
The mapping k > (k) is strongly continuous and uniformly bounded in norm when k
is restricted to a bounded subset of (0, o).

PROOF (GINIBRE AND MOULIN [7]). Choose f € & (R™*™), and let p, and p,
denote the Fourier conjugate variables to x; € R™ and x, € R™. Decompose p,
into radial and angular variables | p,| and w,.

If k, = (k* — |p,»)!/> and m = m,; + m,, then

IS osiswy = k=0 [ ko) do

= [ 3G~ DA .
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10 G. A. HAGEDORN

Change variables to | p,|, w,, and p,, and compute the |p,| integral:
- . 2
IOz = k[ dpgk{™ D [ |, p))| deo,
|pal <k sml

=k . @2"1_l"'”l(kl)f("Pz)"zL’(s"'n—l)’

|pal <

where the last norm is computed for fixed p,, f denotes partial Fourier transform in
the second variable, and ,(k,) denotes the Fourier restriction map in the first
variable.

By Lemma ILS5, k;!|7,(k)l*> is uniformly bounded for k, € (0, k) from
Ly, R™) into L(S™ !, dw,), so

I7 M=y < f  doade GG ) zg
ipal <k
< kC(k)f ‘402"1?(',}’2)";
|pal <k @

= kC(k) f dx, |If(, xz)"if(p)

= kC(k)llﬂlszm@L’-

This implies the uniform boundedness for k restricted to a bounded subset of
(0, 0). The strong continuity of #(k) follows from the norm continuity of =,(k,).
O

E. Dilation analyticity (Balslev and Combes [3], see also van Winter [38], [39]).

The unitary group of dilations on L%(R") is given by (U(8)f)Xx) = e™/A)(e’*). A
simple computation shows Hy(8) = U(@)H,U(— ) = e~ %H, for all § € R. Hy(9)
clearly extends to an analytic family H(@) for all8 € C.

Following Simon’s treatment [30] of dilation analyticity for quadratic forms, we
make the following definitions.

DEFINITION. Suppose a > 0. A compact operator v: I, , — J(_, belongs to the
class 9, if and only if the family of operators v(8) = U(@)vU(— @) has an analytic
continuation to {#: |Im@| < a} as operators from IC,, into I_,. If v(8):
3C,, = H_, is norm continuous in {#: |Im #| < «} and analytic in {4: |[Im 6| <
a}, then v belongs to the class .

If v € 9, for some a > 0, then v is called dilation analytic.

If H=Hy+Z,_;V;, where V; = v; ® 1 and each v; € F,, then H(0) = Hy(®)
+ 2, V;(8) may be defined by quadratic form methods. If D is a cluster
decomposition, then H,(8) and the cluster Hamiltonians, 4,(8) may be defined.

Let D be a cluster decomposition, with cluster Hamiltonians A, (1 < i < k). If
the potentials are dilation analytic, then we define Z,(0) = {E, + E,
+ - -+ +E,: E; is an eigenvalue of A(8)} and 2(8) = {0} U (U xpy52 Zp(€)) is
the set of thresholds of H(@).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ASYMPTOTIC COMPLETENESS 11

THEOREM I1.7 (BALSLEV AND CoMBES [3], SIMON [30]). Suppose the two body
potentials V; = v; ® 1 have v; € %, and are selfadjoint. The essential spectrum of
H(0) is o, (H(#)) = {z + e ¥r: z € 2(8), r €0, )}. If p = inf =(0), then the
discrete spectrum of H(8) is contained in R U {p + z: —2Imf < argz <0} if
Imé >0, and RU {p+ 2z: 0<argz< —2Im@} if Im@ <O0. The discrete
spectrum of H(8) can accumulate only at points of 3(8). The nonthreshold eigenvalues
of H are the real nonthreshold eigenvalues of H(8), and Z(8) N R = =(0) whenever

Im 8] < = /2.

THEOREM I1.8 (BALSLEV AND COMBES [3]). Suppose H = Hy, + X, _;V,;, where the
two body potentials are dilation analytic. Then H has empty singular continuous

spectrum.

The following theorem proves exponential fall-off of bound states corresponding
to nonthreshold eigenvalues. Without dilation analyticity, O’Connor [21] has
proven this fact for bound states corresponding to discrete eigenvalues.

THeoreM I1.9 (ComBEs AND THoMAs [4]). Suppose H = H, + Z,_;V; is
selfadjoint, with dilation analytic potentials. If Hy = Ey and E & 2(0), then y(x) lies
in the domain of multiplication by e° for some a > 0. Moreover, e**W)(x) belongs to

the operator domain of Hy/? for some a > 0.

ProoF. Combes and Thomas [4] prove all but the last statement. Simon [34]
proves e*™ly(x) € D(H}’?). [

TreoreM I1.10 (BALsLEV [2], SiMoN [31], [32]). Suppose H = Hy + Z,_;V; is
selfadjoint. If N = 2 and V € %, for some a > 0, or if N 3> 3 and each Vi=10,®
1, with v; € ¥, ,, then H has no positive eigenvalues.

LemMA I1.11. Suppose M(z, ) is an analytic operator valued function in the region
{((z,0) € C: |Imb| <a,z €C\ 0. (H(8))}, with norm continuous boundary values
as z approaches o (H(8)). Suppose U(p)M(z, 0)U(—¢) = M(z, 0 + ¢) for ¢ ER,
and assume (M(z, 8)) is compact. If E € R, then 1 € o( M(E + i0, 0)), if and only
if 1 € o(M(E, 8)) for all § with 0 < Im 8 < Min(a, 7/2).

PrOOF. Since (M(z, #))* is compact, 1 € o(M(z,8)) if and only if 1€
o((M(z, 9))") for all n > 2. Thus, it suffices to prove 1 € o((M(E + i0, 0))") if and
only if 1 € a(M(E, 8))*) for all n > 2.

If 1 € o((M(E, 9))") whenever 0 < Im § < Min(a, 7/2), then 1 € o((M(E +
i0, 0))*) by continuity.

Next, suppose 1 € o((M(E + i0, 0))*) but 1 & o((M(E, ¢))") for some n > 2
and ¢ with Im ¢ small and positive. Since M(E + i0, 8) = U(@)M(E +
i0,)U(—8@)ford € R, 1 € o((M(E + i0, §))") forall§ € R,

Since 1 & o((M(E, ¢))"), the set of § € R such that 1 € o((M(E + i0, 8))")
must be a closed set of measure zero by a theorem of Kuroda [16] (see also Simon
[29, p. 127]).

This contradiction proves the lemma. []
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12 G. A. HAGEDORN

F. Existence of wave operators.

The existence of channel wave operators has been proved by Schechter [25] and
Simon [33] for the types of potentials which concern us. Simon’s proof is an
extension of a simple method due to Cook [5}.

THeoreM 11.12 (SiMON [33}). Suppose the two body potentials V; belong to
LE(R™) + LP(R™) for somep > m/2 and & > 2. Then the channel wave operators
QF = strong- lim e"He~#T-p,
>+ o0

exist.

III. Many-body Kuroda completeness as a stationary problem. This section is
devoted to proving Theorem III.1, which reduces the many-body Kuroda com-
pleteness problem to the question of finding an appropriate formula for the
resolvent (z — H)™'. The idea of this theorem is not new. Implicitly, it appears in
the works of Faddeev [6], Hepp [10], Ginibre and Moulin [7], Thomas [36], and
Sigal [26]; explicitly, it may be found in Howland [11].

DEFINITION. Suppose H is a many-body Hamiltonian. The multiparticle limiting
absorption principle holds for H, if

L(D)
(z - H)—l = %(l - HD)_.IPD Igl FI,DZI,D(Z)’

where
(a) there exists 8, such that ¢ € Ly (R™~D™) implies Z, ,(z)¢ is an LARW~Dm).
valued meromorphic function in C\ o ,(H), with continuous extensions to o . (H)
from above and below, in the complement of a closed set & of measure zero; and
(b) for each / and D, F,;, maps L’ R™~Y™) into LZ(R™) ® L*RW~2™), for
some p > 1 and p € (1, 2], where the first factor denotes functions of a Jacobi
coordinate for the motion of the centers of mass of the clusters of D.

THEOREM III.1. Suppose the multiparticle limiting absorption principle holds for H
on L*R™-Y™) where m > 3. If the channel wave operators exist, then they are
complete in the sense that P, =3 QXQT*.

As a first step toward the proof of this theorem, we prove several lemmas related
to the orthogonality of channels. Next, using the limiting absorption principle, we
obtain a formula for (2 *¢)", when ¢ € L3 (R™~""). This and Stone’s formula for
spectral projections are then used to prove Theorem III.1,

DEerFINITION. Let H, and H, be selfadjoint operators on JC. For each ¢ > 0 and
each Borel set A C R, the operators 2*(¢e, H,, H,, A) are defined by

<¢’ QI(E, H2’ Hp A)4/> = %L(()\ + je — Hz)_l¢, (A + je — Hl)_l‘p> dA.

Lemma 1112 (HowranDp [11)). Letr H, and H, be selfadjoint on IC.
Q% (e, H,, H,, A) are well-defined contractions on I for all Borel sets A C R and all
¢ > 0. If H, has purely absolutely continuous spectrum and spectral projections E,(-),
then E\(A)Y = 0 implies lim, o, % (e, H,, H,, A)y = 0.
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ASYMPTOTIC COMPLETENESS 13

PROOF. Let §,(¢) = (e/7)/(£* + €2).
The Schwarz inequality shows that the absolute value of the integrand appearing
in the definition of Q¥ (¢, H,, H,, A) is bounded by

(s/fr)ll(}\ + jg — Hz)_'¢" ||()\ + jg — H,)—ltlz"

= (/)| + ie — HY'9|)*((e/ M)A = e — H)Y[)
= (o, 8,(\ — H)o»)'*(<w, 8,(\ — Hwd)' 2.

So, by the Schwarz inequality and Fubini’s theorem,

K¢, @ (e, Hy, Hy, AW

< ([ o 80 - > a)( f w80~ my0> )

1/2

= (0 * xoMace, B0 )( £6. + xIWaKw. EQW). L)

Since fg8,(A) dt = 1 and ||x,||,, < 1, we have 0 < §, * x, < 1. So, the right-hand
side of (IIL.1) is bounded by |¢|%||¢||>. The operators Q¥ (e, Hy, H,, A) are,
therefore, well-defined contractions.

The measure d{y, E,(-)y)> is absolutely continuous with respect to Lebesgue
measure. As a consequence ([37, pp. 28-31]), lim, o, * x, = X, a.e. with respect to
d{y, E\(-){¥). Moreover, 0 < §, * x, < 1, so the dominated convergence theorem
shows:

lim [ (8 * x )N B> = [ xa W<ty EN) =|| Ex(A]".
e]0 /R R
Since
0< [(8, * x)Nds, BN <o
(II1.1) shows
lim;)up |27 (e, Hy, Hy, AW < || EN(A)Y
Therefore, E,(4)y = 0 implies lim, (@ (e, H,, H,, A)y = 0. [
LemMA I11.3. Ler H, and H, be selfadjoint on 3C. For all € > 0,
Q%(e, Hy, H, R}y = Zefxoo e 2lgitHig—itHy, gy
0

ProoF. Consider only £~ ; the proof for Q% is similar. Fix ¢, ¢ € I and define
o) = (¢/m)'/*\ + ie — H,)"'¢ and Y(A) = (¢/7)'/*A + ie — H,)™'y. Then, by
explicit computation,

&(2) = (26)"%ixo,00)()e e~ Hrgp
and

$() = (20)ix e .
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14 G. A. HAGEDORN

These formulas and Lemma II.1 show

(6, @ (e, Hy, Hy, R)Y) = fR @A), ) dA
= fn @), §(1)y dt

= 2£j;w<¢’ e—weitﬂ,e—itﬂ,‘l» dt

-]

= {¢, 2£f e~ Mol —itHy, dr, O
0

Lemma I11.4 (HowLAND [11]). Let H, and H, be commuting selfadjoint operators
on JC. Assume H,| has purely absolutely continuous spectrum and that H = H, — H,
has kernel {0}. Then, for Borel sets A C R,

wealfaﬁm Q%(e, Hy, H, A) = 0.

PROOF.
Q%(e, Hy, Hy, A) = Q% (e, Hy, H,, R)E|(A) — Q% (e, H,, H;, R\ A)E (A)
+Q% (e, Hy, H,, A)E,(R\ A),
where H, has spectral projections E,(-).
The last two terms in this expression converge strongly to zero as ¢ >0 by

Lemma II1.2. Thus, it suffices to show weak-lim, o 2% (e, H,, H,, R) = 0.
By Lemma II1.3,

-]

<¢, 9:(81 Hz’ H], R)l‘/> = 25[1 e:h’<¢, e"”’e"“”ld;) dt
0

= 2ef:we12zl<¢, e—i‘H\IJ> dt
(i
= +2ielo, (H F 2ie) " 'yD.

As ¢ tends to zero, this quantity converges to —<{¢, Poy), where P, is the
orthogonal projection onto the kernel of H. Hence, the hypotheses imply it
converges to zero. []

LemMA IIL5. Let H, and H, be commuting selfadjoint operators on I, such that
H, — H, has kernel {0} and H, has purely absolutely continuous spectrum. Let F,
and F, be operators on I such that Ff and F} are Kato smooth with respect to H,
and H,, respectively. Suppose ¢.: D, —» I and ¢.: D, — I are continuous
Junctions, where D, = {z=x* iy EC:a<x <b,0< y <c}. Then

b - .
lim e f A+ ie — H) ' Fp (A * ie),

Axie— H) 'Fy.(\ = ie)) d\ = 0.
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ASYMPTOTIC COMPLETENESS 15

PROOF. Assume, without loss of generality, that F; + 0, F, %< 0,¢, # 0,¢y. # 0,
a < b, ¢ > 0. For convenience, consider only the + signs, with ¢ = ¢, Y =,
and D =D,.

Let & > 0 be given, and choose M such that ||¢(2)|| < M and ||Y(2)|| < M for all
z € D. Since F, and F, have dense domains, there exist simple functions f:
[a, b] — D(F)) and g: [a, b] > D(F)), such that || A(x)|| < M, || g(x)|| < M, ||¢(x)
— g(x)|| <8, and ||y(x) — f(x)|| <8, for all x € [a, b].

By the continuity of ¢ and i, and the compactness of D, there exists y > 0, such
that 0 < ¢ < y implies ||p(A + ie) — ¢(A)|| < & and ||Y(A + ie) — Y(N)}| < & for all
A €a, b).

Thus, ||[¢A + ie) — gA)|| < 28 and ||P(A + ie) — fA)|| < 28 for all A € [a, b),
whenever 0 < & < v.

Define:

Ae) = ¢ f U+ i — Hy) ' Fyg(N), (A + ie — H)'FLfO)> dA

b
Be)= e <O+ ie = H) ' Fog(V),
( +ie — H) 'F[¥\ + ie) = fA)]> dA
Ce) = ef <A+ ie = H) ' F[o(A + ie) - )],

\ + ie — H) '"Fy(A + ie))> dA.

By Lemma I11.4, there exists v, < vy, so thate < y, implies |4(¢)| < 8.
By Holder’s inequality and Lemma I1.2, ¢ < y implies

1B(e)| < e f I + ie — H)'Fog))

X||A + ie — H)'Fi[$(A + ie) - fV]| @A

1/2
< (efb"()\ + ie — Hz)_'Fzg(}\)"2 dA)

5 172
(e[ + ie = ) E L0+ i) - ][ )

b—a N 1/2
< (221 e e

v

X (b —a "Fl";;‘(SI:p QA + ie) _f(x)")z)l/z

4
b —
w

a
<2 M|\ F | o | Foll o8-
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16 G. A. HAGEDORN
Similarly, when e < v,

172

|C(e)] < (e /. o+ ie = By ELoO + i) - O] d’\)

/2
x (e f I+ ie = ) Fwx + ) dA)l

—a 2\ /2
< (5520l sup et + o) — £ )

T

X (b - a ||F1||H,( Sl;p WA + ie)")z)l/z

b —

a
7 M| F\|a, || Fol| ;3.

<2

Therefore, € < y, implies
|4(e) + B(e) + C(e)| < |A(e)| +|B(e)] +|C(e)|

b—a
—% M|\l | Fol )

<(1+4

Thus, lim, 44(e) + B(e) + C(e) = 0, which is the desired result. []

REMARKS. (1) Let « and B be channels. T, and T} are multiplication operators in
momentum representation, so they commute. Moreover, if D(a) # D(B) or E, #
Eg, then T, — T has kernel {0}. To see this, notice that T, and T, are multiplica-
tion by different polynomials in momentum representation (because D(a) = D( )
or E, # Eg). Therefore, T, — T, multiplies by a nonzero polynomial
(1> - - - » Pov—1ym)- Functions in the kernel of T, — T, must have support in { p:
Q(p) = 0). This set is a nontrivial algebraic variety, and consequently has measure
zero. Thus, T, — Tj has kernel {0}.

(2) Suppose a is a channel with cluster decomposition D. Then H,P, = T, P, =
P,.T, and P,(z — Hp) ' = P(z — T))"'. Also, if P,F* is Kato smooth with
respect to Hj,, then P, F* is Kato smooth with respect to T,.

(3) If D is a cluster decomposition, then P, = X, _,P,. Consequently, (z —
Hp) P, =% p@y=p(Z — T,)"'P,. So, when the multiparticle limiting absorption

principle holds for H,
L(D)
(z - H)_1 = %(z - HD)_|PD 121 FipZ p(2)
L(D(a))

= 2 (z - Ta)_lPa IZl FI,D(a)ZI,D(a)(z)'

(4) In Propositions III.6 and III.7, we restrict some Fourier transforms to
ellipsoids rather than spheres. This is because certain reduced masses are not equal.
However, a linear change of coordinates shows that the results of §11.D apply to
ellipsoids as well as spheres.
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ASYMPTOTIC COMPLETENESS 17

The ellipsoids which we use are the surfaces in momentum space corresponding
to a given energy for a channel Hamiltonian 7,. In some clustered Jacobi
coordinates, T, = Z/2/(—2M))~'A, + E,, where M, is a reduced mass. We choose
the “unit ellipsoid”

k-1
r'= {‘I € RE=Hm; 2 (2M1)_||41|2 = 1}
i=1

as the analogue of the unit sphere. The mapping 7,(k): L ® L>— L*(T) is
defined as the analogue of 7(k): Lf ® L? —» L*(§™" ') from Proposition IL6.

(5) For convenience we identify the range of P, with JC, = J((D(a)), defined in
the introduction. The identification is given by the mapping ¢ ® y, — ¢, where
¢ ® ¢, denotes an arbitrary element of P,IC.

ProrosiTION II1.6. Suppose the multiparticle limiting absorption principle holds for
H, and let o be a channel. Let ($,, ..., 5 _1, &1, ..., &) be clustered Jacobi
coordinates corresponding to the decomposition D(a), and let (q,, . . ., g;_,) be the
Fourier conjugate variables to (§y, ..., $,_)). Let k(q) = CtZ12M) g3,
where M; is the reduced mass corresponding to the coordinate ;. Suppose the wave
operators Q; exist, and that $ € L;(R™~D™),

If k* + E, does not belong to the exceptional set & for H, then (2%)*¢)" may be
restricted to the ellipsoid

T(k) = {q € R*" D™ k,(q) = k},
and

L(D(a))
Wa(k)(ﬂat)*d) = ﬂa(k)Pa 12] I;},D(a)ZI,D(a)(kz + Ea * 10)¢'

PrROOF. Choose an interval [a, b] containing k?> + E,, but which does not
intersect the exceptional set & . Choose §, € 3, = J(D(a)) so that y, is C*® with
support in U , ¢ (45T (A)-

Consider only Q,; the proof for € is similar.

The existence of £, implies that _ equals its Abelian limit (see [29]). So, if
¥ =y, ®y,, then

- = 1 ® —2etitH, —itTe
anp—l:&l Zefo e~ “e'eT Y dt,
Thus, by Lemma I1.1,

($ Q79> = lim2e [ “ (et~ Mg, e~ "My dt
el0 0
- umif” A+ ie— H) "¢, (A + ie — T,)"'y> dA.
€0 TJ_on ’ “
Lemma IIL.2 and the choice of i, now show

@ 979 = lim if,,b«" +ie— H) g, (A + ie — T.)"'y> d\.
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18 G. A. HAGEDORN

By Remark (3) after Lemma IIL.S,
_ . L)
(z-H) = % (z —Tp) Py lZI Fip8)Zp(8 (%)

Hence, .
- . € . -1
<¢, Qa \IJ> = 12111})1 ; ‘/; < % 21 (A + ie — Tﬁ) PBE,D(ﬂ)ZI,D(ﬁ)(Z)d)’
A+ ie — Ta)"¢> dX.

By Lemma IIL5 and Remark (1) after it, all terms with D(a) + D(B) or E, # Ej
vanish as ¢ - 0. All other terms with a # 8 vanish because PgP, =0 and P,y =
Y. Therefore, L(D(a))

_ . €& b , - ,
(¢, R ¥> = lim ]; <(>\ +ie — T,)7'P, Igl Fy payZy, oA + ie)d,
A+ ie — Ta)“¢> dA.

For convenience put F; = F; py, L = L(D(a)), and ¢,(2) = Z,; p(,)(2)9, 5O
{¢, B 4>

L b
=3 lim =~ f A+ ie — T,) P Fg,(\ + ie), (A + ie — T,)"'¢> dA.
I=1 €0 T Jg

The identification of P,JC with 3(, allows the inner product in this integral to be
computed as an inner product on J(,. Moreover, as elements of I(,, ¢, and
P F,¢,(A + ie) have Fourier transforms which may be restricted to ellipsoids by
Proposition I1.6. So, using ellipsoidal coordinates on R*~D™ to compute the I(,
inner product, we have

L ©
@9y =3 tm [°f
I 0

=1 &l0 J,

e/m
(kK*+ E, - }\)2 + &2

x<7ru(k)PaI:I¢l(>‘ + iﬁ), 7raz(k)‘l’l>Lz(I‘)dk d}"
where 7_(k): 3C, — LX) restricts Fourier transforms to I'(k), and then does the
scaling to yield a function on I' = T'(1).

The inner product in the last integrand depends continuously on k and has
support in [a, b] in the k variable. Thus, Fubini’s theorem and the dominated
convergence theorem may be applied to yield:

Lo b e/m
, QY = lim
@ 8 Igl fa 80 Ja (k24 E - A + &
X, (k)P Fi(A + ie), m (k)1 2y AN dk.
The limit may now be computed explicitly (Ikebe [12], Simon [29]):

b
(o, QYD = f (Wa(k)PaEI F¢,(k* + E, + i0), wa(k)4/,> dk.
a LX(T)
Since v, is an arbitrary element of a dense subspace of E*([a, b])I(,, the
proposition follows. [J
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ASYMPTOTIC COMPLETENESS 19

ProrosiITION II1.7. Suppose the multiparticle limiting absorption principle holds for
H. Suppose Q exist. Let [a, b] be any compact interval disjoint from the exceptional

set &. Let E[a, b] be the spectral projection for H on the interval [a, b]. Then,
¢ € Ly R™=D™) implies

E[a, b]9|" = Qz*e)(9)[’ dg.
|E[a, 6]8]" = 3 j:z<k,(q)+E,,<b|( +*9)(9)| dg
ProOF. Apply Stone’s formula and the first resolvent formula:

&L a. b]off = tim = fa”<(x +ie— H) '¢, (At ie — H)™'¢) d\.

For simplicity take only the + sign (this yields the result for 7). Then use the
multiparticle limiting absorption principle formula:

. L(D(«)) L(D(B)) €
IE[a blo|" = 23 121 S lim ~
o S

j=1 el]0 T
14 . -1 .
X [UA+ ie = T,) ' PoFy pabroeld + ie),

(A + ie — TB)_lPﬂF},D(ﬁ )‘P],D(ﬂ )(A + l€)> dA,
where ¢; p)(2) = Z; p(o)(2)9.
By Lemma II1.5 and Remark (1) after it, all terms with D(a) #= D(B) or E, # Eg
vanish as e — 0. All other terms with a # g vanish because P, P; = 0. Therefore
2

|£[a, 510l = S tim [ £

L
cl0 T 121 (A + ie — T‘a)_lI:'aI;‘I,D(¢1)4’I,D(¢!)(A + le)
a E

Proposition I1.2 and the dominated convergence theorem show that the limit may
be taken through the integral:

|E[a b1 =S [ @r)'S S
« a !l
[<¢ID(a)(>‘ + ’0) ( D(a)(>‘ i0 — T)
—{B1p(A + i0), ( D(a)(}‘ +i0 - T)

Lemma I1.4 shows that this may be rewritten as
2
IE[a 6]¢]
= lim —
g fa im

im M+w—n'mwﬂP2Emmm@+@

The quantity inside the norm in the integrand belongs to Ran P,, so it may be

lifted to JC, by the identification of J(, with P,JC. Ellipsoidal coordinates may
then be used to evaluate the norm on I(, :

P,F, ()90 + i0))

JD(a)) %, p(ay(A + ’0)>]

dA.
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b-E)'? e/w

Ela, b <1> = hm
11 I el J@a-E)" (K2 + E, —\)’ + ¢

dk dA.
LXT)

(k) P, 2 F, py®p@A + 18)

The limit may be evaluated explicitly (Ikebe [12], Simon [29]). Proposition II1.6 and
a change of variables yield the desired result:

m (V)P 2 F,D(a)¢1D(a)(v + E + 10) dv

|Efa 6" =S f

LY(T)

(25 *¢)(9)|* dg. O

« j;<k.(q)2+ E,<b

ProoF oF THEOREM III.1. The wave operators are partial isometries, so it suffices
to prove

1Pactl” = S22l

forp € LZR™ D).

The complement of the exceptional set & is open, so it is the countable union of
compact intervals 4,, with rational end points, such that any two distinct intervals
intersect in at most one point. Since & has measure zero,

IPactl = SN EA I,

where E(A,) is the spectral projection for H corresponding to the interval 4,,.
Therefore, by Proposition II1.7 and Fubini’s theorem,

T 1(92*0) (2)[" dq

n=1 a fk,(q)2+£,e,4,,

+ n2 + 2
S 1@z = Szl

IV. Resolvent formulas. Having proved Theorem IIL1, the problem of asymptotic
completeness is reduced to the study of resolvent formulas which satisfy certain
conditions. Derivation of such formulas for the two, three, and four particle cases is
the goal of this section.

To begin with, the desired two-body formula is given in equation (IV.1). Next, a
generalization of equation (IV.1) is obtained for the N-particle case. This is
equation (IV.4), which involves 3 N(N — 1) X 3 N(N — 1) matrices. It coincides
with the Faddeev equation [6] when N = 3, but does not have the form required by
the multiparticle limiting absorption principle. Thus, various modifications are
necessary.
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A second N-body formula, equation (IV.5), is obtained from equation (IV.4), by
increasing the size of the matrices so that the individual matrix entries become
simpler. This formula is closely related, but not identical to a formula of Naro-
detskii and Yakubovskii [20]. However, as was the case with the first N-body
formula, equation (IV.5) is not in a suitable form for scattering.

Consequently, for N =3 and N =4, a third formula, which does have the
correct form, is derived from equation (IV.5). Ginibre and Moulin [7] have used
this three-body equation, and their ideas have been generalized to give the
four-body formula.

For N > 5 analogous equations, having the proper form, may be written down.
However, it is not at all clear that the bounds required by the multiparticle limiting
absorption principle can be proved. This is due to the fact that we have not been
able to prove the absence of spurious zeros in the four-body case.

Throughout this section we assume that V; = U; W, such that Uy(—4; +
1)"'/2 and W(—A; + 1)~'/? are compact as operators on L([R™), where A, is the
Laplacian in the x; variable. These assumptions imply the relative form bounded-
ness of the potentials with respect to Hy, with relative bound zero. So, when Re z is
sufficiently large negative, the perturbation series

(z—H) '=(@-Hy) "+ (z - Ho)-lg V(z — Hy)™!

+(z - Ho)“g V.(z — Ho)"‘% Ve(z —Hy) ™'+ ...

is norm convergent.
When N = 2, this is particularly simple. Using geometric series, the perturbation
expansion may be resummed in the form:

(z—H)'=(z—Hy)™'
+(z— H) 'U[1 = W(z — H)™'U|"'W(z - H)™". (IV.1)

This is the desired equation when N = 2.

For N 5 3, the graphical symbolism of Weinberg [40] (see also Simon [29)]) is
used to identify each term of the perturbation series with a graph. For example,
when N = 4, the term

(z - Ho)_qu(z - Ho)_les(Z - Ho)_qu(z - Ho)_1 V24(Z - Ho)_1

is assigned the graph
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Using this symbolism, the sum of all nontrivial graphs is
(z—H)'=(z-H)™"

!

Several definitions are now required:
DErFINITION. To each nontrivial graph

(z - Ho)_lVa.(Z - Ho)_lVa2 R G Ho)_lVa,,(z - Ho)_l,
there is associated a truncated graph
Wa.(z - Ho)_]Va‘2 SN C A Ho)_lVa,,(z - Ho)_l-

A truncated graph is connected (respectively disconnected) if its associated graph is
connected (disconnected).
DEFINITION. An expression of the form

Wo(z = H) 'V (z = H)™" - (z = H) 'V, _(z - H)™'U,
is a barely connected part if
W (2= H) 'V (z —H) '+ (2= H) 'V, _(z = H) 'V, (z = Hp)™'
is connected, but
W, (2= H) 'V (z = Hp) '+ (z = H) 'V, (2~ Hy)™'

1s disconnected.

DErINITION. @,(2) = (z — Hy)~'U,.

M, p(2) is the sum of all barely connected parts whose initial factor is W, and
whose final factor is Up.

C,(2) is the sum of all disconnected truncated graphs whose initial factor is W,.

LetG = W,(z — H) 'V, (z — H)™'- - - ¥, (z — Hy) ™' be a truncated graph.
Either G is disconnected or G is the product of a barely connected part W, (z —
H) W, (z=H)™ "' - (z~- Ho)“U% and a truncated graph G’ = W, (z —
Hy 'V, (z-— Hy)™'-- -V, (z— Hy)™ . By iterating this procedure G may be
uniquely decomposed as a product of k > 0 barely connected parts times a
disconnected truncated graph.

In order to compute the sum of all graphs, first sum all graphs containing
precisely k barely connected parts, and then sum over k. The sum of all nontrivial
graphs with no barely connected parts is the sum of all nontrivial disconnected
graphs: = @ C,. The sum of all graphs containing one barely connected part is
2,88, M, 5Cps. Similarly, the sum of all graphs containing k barely connected
parts is

> €, %«x.ﬁl% nﬁzmﬁpﬁ: e %ﬁk_..ﬂk Gﬁk‘
aByBa .oy Br
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Therefore, using matrix multiplication, (z — H)™' = (z — H) ' = @(1 + M +
M2 +...)C.

When Re:z is sufficiently large negative, the geometric series 1 + 9N (z) +
M(z)* + ... converges in norm to (1 — M (z))~ ' and

(z = H) "= (z = Hp)™' + @(2)(1 — IM(2))~'(2).

To obtain explicit formulas for 9N (z) and C(z) in terms of the resolvents
(z — Hp)~, it is useful to introduce strings and make several definitions.

DEFINITION. Suppose 2 € k € N — 1. A string is an ordered collection of cluster
decompositions S = (Dy, Dy_,, - - - , D;), such that

(i) D, has / clusters, and

(ii) D,, | is a refinement of D,, i.e., D, is formed from D, by splitting one cluster
into two.

DEFINITION. A string S = (Dy, Dy_,, ..., D,)is called long if k = 2. If k > 3,
then S is a short string.

DEeFINITION. Suppose S = (Dy, Dy_,, ..., D;) is a string. Since D,,_, has ex-
actly one cluster containing two elements, it may be identified with a pair a. Define
Ug = U, and

Cs(z) = W,(z — H,,N_l)*‘(V,,N_z - Vo, Nz — Hp, )7

-1
o (VDk - VDk—l)(z - HDk) : (IVZ)
DEFINITION. Let S = (Dy, Dy_y,...,D,) and S’ = (D, Dy_,, ..., D/) be
strings.
0 if S is short,
Mg (z) =10 if S is long and Dy _ refines D,,

CsUg if S is long and D},_, does not refine D,.

REMARK. Ms,s' has been defined so that its nonzero entries are sums of barely
connected parts. The partition Dy, _, refines D, if and only if C~’s Us. is not a sum of
barely connected parts.

Each disconnected truncated graph

G=W,(z— H) 'V, (z— Hy)™" ...V, (z— Hp)™"

has an associated string determined by the following procedure. For j =
1,2,...,n, there is a unique cluster decomposition D(j), with a maximal number
of clusters, such that all the pairs a,, . . ., a; refine D()). Since G is disconnected,
the sequence D(1), D(2), . . . , D(k) has the following properties:

(i) D(1) has N — 1 clusters,

(ii)) D(n) has k > 2 clusters,

(iii) either D(i) = D(i + 1) or D(i) has one cluster more than D(i + 1), and

(iv) D(i) refines D(j) whenever i < j.
As a consequence, removal of the repetitions in the sequence D(1), DQ2), .. ., D(n)
yields a sequence Dy_,, Dy_,, ..., D,. The string associated with G is S =
(Dy> Dy_ys o+« » D).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



24 G. A. HAGEDORN

At large negative Re z, each resolvent (z — Hp)~! equals its perturbation series.
Substituting the series for each resolvent factor in C~s(z), (:’s(z) becomes the sum of
all truncated graphs whose string is S. Thus C,(z) may be written as the sum of all
Cy(2), such that S = (Dy, Dy_y, - - -, D,), and D, _, is the decomposition de-
termined by the pair a.

Similarly, 9, z(z) is the sum of terms M s.54(2), where S’ is any string with Dy _,
identified with B8, and the sum is over all S, with D,, _, identified with a.

With 9 and € written in closed form, we have

(z— H) "= (z = H) "+ @)1 — OM(2))"'C(2). (1V.4)

By the quadratic form methods of §IIB, @(z), 9N(z), and C(z) are analytic for
z € C\ g (H), and IM(z) is compact. Therefore, the uniqueness of analytic
continuation shows that equation (IV.4) is valid for z € C\ o(H), except for an at
most countable set, where the right-hand side may have removable singularities.

ExaMPLES. (1) When N = 3, equation (IV.4) is a modified form of the Faddeev
equation [6]. This equation with U, = |V,|'/2 and W, = |V,|'/? sgn(V,) may also
be found in Ginibre and Moulin [7]. Explicitly

@(z) =[(z — H) 'U, (z— Hy)™'Uy; (z = Hy) 'Up],

0 Wiz - le)_lUn Wiz - le)-luzs
M(z) =| Wi(z - HIS)_‘l U 0 Wiz — Hyp) " 'Uy |
| Wa(z — st)_lUlz Wiz - st)_lUls 0
| Wiz — le)_l
C(z) = Wis(z — H13)_1 :
| Waulz - Hz3)_l

(2) When N = 4, the matrices have six rows or columns, and the entries are more
complicated. The following is a representative sample of the entries:

@,,(2) = (z — Hy)~'Uy,,
My 12(2) = 0,
Mz 13(z) = Wipz = Hyp) "' (Vig + Vai)(z = Hip) "' Uy
+ Wiz — Hyp) 'Vagz = Hipaa) ' Uy,
Myzsa(z) = Wip(z = Hyp) "' (Vs + Vi)(z = Hyp) ™' Usg
+ Wiz — Hyp) ' (Vig + Vaud(z — Hpp) "' Use,
Ciz) = Wiz — Hyp) ™' + Wiz — Hp,) '(Vis + Vig)(z = Hppy) ™'
+ Wiz — Hp) '(Vig + Vaal(z — Hppg) ™'
+ Wiz — Hp)™'Val(z — Hyppe) ™
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For N > 4, several of the matrix entries appearing in equation (IV.4) contain
many terms. In order to avoid certain combinatorial difficulties it is necessary to
obtain matrices with less complicted entries. This can be done at the expense of
using larger matrices.

Fix N > 3 and let / denote the number of strings which occur in the N body
case. A(z) is the 1 X [ matrix with A(z) = (z — Hy)™'Us. MgsAz) is the I X I
matrix whose entries are given by equation (IV.3). C(z) is the / X 1 matrix whose
entries are given by equation (IV.2).

Our second formula for the N-body resolvent is

(z—H) '=@@—-Hy) "+ A2)(1 - M(2))"'E(2). (IV.5)

The validity of this formula may be established by computlng Q)M (2))*C(2),
with the entries of C.’)IL(z) expressed in terms of the operators Ms s42). The result of
this computation is A(z)(M(z))"C(z) Equation (IV.S) then follows from equation
(IV.4) by using geometric series.

An alternative proof may be given. Notice first that each barely connected part
is the product of a disconnected truncated graph and a final factor Ug. Therefore,
each barely connected part has an associated string determined by its initial
truncated graph.

Next, recall that each graph G may be uniquely decomposed as
A,B\B, ... B,G’, where B, B,, ..., B, are barely connected parts and G’ is
disconnected. Let S}, S,, ..., S, be the strings associated to B}, B,, ..., B,,
and G’, respectively. Then G determines the sequence S|, S,, . . ., S;,; uniquely.

To sum all graphs, first sum all graphs with a given sequence of strings, and then
sum over all sequences. Since M, s,5(2) is the sum of all barely connected parts with
strmg S and final factor r Uy, the sum of all graphs with sequence S, S, . . ., S,y
is: A s, Ms szMs, S Msk Sis ICSkH Thus, the sum of all graphs with sequence of
length k+1is A(z)(M(z))"C(z) Equation (IV.5) follows by using geometric series
and the uniqueness of analytic continuation.

Remark. Equation (IV.4) involves a 3 N(N — 1) X 1 N(N — 1) matrix in the N
particle case. Equation (IV.5) contains a much larger matrix. For the N particle
case, itis [y X Iy, where ly = 3and [y =3 N(N — 1)(ly_, + ).

N=3 I, =3,
N=4 Iy = 24,

N =5: = 250,
N=6: 1y = 3765.

Next, we give the final resolvent formula for the three body case. The same
formula may be found in Ginibre and Moulin [7]; similar equations may be found
in Thomas [36] and Howland [11].

For the moment, the operators p,,, p,3, and p,; will not be specified. They will be
chosen in §V so that certain bounds can be established. Algebraically, equation
(IV.6) holds for any choice of these p functions.
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Denoting (z — Hy)™' and (z — H,)™! by G, and G,, respectively, the final

three-body equation is:
(z—-H) '=(z—-H) '+ 4(z)(1 — M(2))"'C(2), (Iv.6)

where the matrices A(z), M(z) and C(z) are given in Figure 1.

We view A(z), M(z), and C(z) as 1 X 3, 3 X 3, and 3 X 1 matrices of 1 X 2,
2 X 2, and 2 X 1 blocks, respectively. In accordance with this viewpoint, we label
the entries 4, ;, M, ; g ;, and C, ;, where a and B run over the pairs, while i and j run
from 1 to 2.

Equation (IV.6) holds because

7"

A(2)(M(2)°C(2) = @(2)(IM(2))“C(z) Iv.7)

for £k > 0, and because geometric series may be used at large negative Re z when
the p_ are suitably chosen.

To prove equation (IV.7), consider a typical nonzero term in the expression for
@9M* C. It has the form

@MGJR"!:,% et %ak’ak+leak+l
= GoUp Wo G Up Wo G Uy, - - Wo G, Uy Wo Go, (IV.8)

where a; # a;, .

Let 0., =(1 - P,) and Q,, = P, = (P,p,)p, 'P,), and replace each G, factor
by G,0,, + G,0,, in equation (IV.8). The right side of equation (IV.8) becomes a
sum of 2¢*! terms of the form:

GoUy W, Gy Qs UW .G, 0 U, ... W, G

ap e Xai oy ayag L ak+IQak+|>ik¢l

=4 M, C (IV.9)

a,,i,Ma.,i.;az,izMﬂz.iz;a3,i3 R " FH. TR g SN R
Summing over all indices and using the identity G,V,G, = (G, — G;), equation
(IV.7) is obtained.

Equations (IV.4) and (IV.5) are not suitable for scattering because M (z),
C(2), A?(z), and C~‘(z) are all singular as z approaches the essential spectrum of H.
The advantage of equation (IV.6) is that M(z) and C(z) are reasonably well
behaved as z approaches the essential spectrum, and the singularities all appear
explicitly in the factor A(z2).

Equation (IV.6) was obtained from equation (IV.4) by the following procedure:
First, the inverse term in equation (IV.4) was expanded using geometric series.
Second, the factors (1 — P,) and P, = P,p_p. 'P, were inserted after each G,.
Third, each term was decomposed as a product in a way which depended on the
sequence of projections (1 — P,) or P,. Then, the result was resummed to give
equation (IV.6).

The four body case is similar. Equations (IV.4) and (IV.5) are not suitable, so
equation (IV.10) will be derived from equation (IV.5). Again geometric series will
be used, and factors (1 — Py ), Pp, (1 — Pp), Pp will be inserted, along with p’s
and p ~’s. Next, we “symmetrize” certain terms, which does not change the sum of
all terms. Resumming by geometric series, we obtain equation (IV.10).
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REMARKS. (1) In the three body case, no symmetrization step was necessary
because all strings contained only one nontrivial cluster decomposition. In the four
body case, some terms require symmetrization. This involves the replacement of
certain terms by a combinatorial factor times a sum of those terms.

(2) The symmetrization step allows us to prove asymptotic completeness when
the subsystems have embedded (nonpositive) eigenvalues. The equations used by
Sigal [26] are not symmetrized, and embedded eigenvalues are not treated by
Sigal’s asymptotic completeness proof.

(3) Equation (IV.10) is derived from equation (IV.5) by replacing the entries of
the 24 X 24 matrix of equation (IV.5) by 3 X 3 blocks. As a result, equation (IV.10)
has an unpleasantly large 72 X 72 matrix. An equation equivalent to equation
(IV.10) can be derived from equation (IV.4). This formula has a 42 X 42 matrix,
but the entries are complicated. So, we prefer to use equation (IV.10).

The final resolvent formula for the four body case is

(z=H) '=(z-Hy) '+ 4(2)(1 — M(2))"'C(2), (1v.10)

where A, M, and C are the 1 X 72, 72 X 72, and 72 X 1 matrices indicated in the
Appendix. A representative sample of the entries is given, and the number
associated with each entry refers to the proposition of §V in which that entry is
studied. A, M, and C should be viewed as 1 X 24, 24 X 24, and 24 X 1 matrices of
1 X3, 3X3, and 3 X 1 blocks, respectively. The entries are denoted by Ag,,
My ;.5 ;» and Cg;, where S and S’ denote strings, and i and j run from 1 to 3.

As in the three body case, equation (IV.10) involves some operators p;, p; ., and
P;,.» Which will be specified in §V. Also, equation (IV.10) holds because

A(2)(M(2))C(z) = A(z)(M(2))*C(2) (Iv.11)

for k > 0. Equation (IV.11) implies equation (IV.10) in the same way equation
(IV.7) implied (IV.6). However, the proof of equation (IV.11) is more complicated
than that of equation (IV.7).

To prove equation (IV.11), consider first the case k = 0, and define @, | = (1 —
Pp), @p,2=Pp, @p3=1,0p,1=0Qpr=(10-Pp), and Q5 ;= P,. If §=
(D,, D,) is a short string, then

AsCs = GOVD,GB3
= GoVp,Gp,Op,1 + GoVp,Gp,0p,2

= Ag,Csy + A5,Cs, + 0

3
= 2 A5:Cs;e (Iv.12)

i=1

For long strings S = (D,, D;, D,), the situation is not so simple because A, has
been symmetrized. For each decomposition D, with two clusters, let A, = {S’ =
(Dy D3, D): D; = D,}, and let /(D) denote the number of elements of A, . Then
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S A4,6,= 3 GoV5,Gp,(Vo, — Vp,)Gp,

S€Ap, Dy refines D,

2
= 2 2 GoVD,GD,QD,,i(VD2 - VD,) GD,QD,,:

Dy refines D, i=1

+ 2 GoVp;Gp;0p;3(Vp, — Vpy) Gp,0p,3

Dj refines D,

2
2 2 AS,i Cs,i

SE€EAp, i=1
1
+ vy G V IG ’ 2 V - V ’ G
D, refines D, (I(Dz) Dj re%es D, 07 Ds DJQD"E‘( D2 D’) DZQD”:’)
3
= 2 2 As,Cs,. (Iv.13)
SE€EAp, i=1

Equation (IV.11), for k = 0, is now obtained from (IV.12) and (IV.13) by the
following computation:

AC=3F 4;C;= 3T 4,6+ X 4G
S S short Dy SEAD;

= 2 é 45,Cs,+ 2 X é A5, Cs,;

Sshort i=1 D, SE€Ap, i=1

3
=2 2 45,Cs; = AC.
s

i=]

When &k > 0, the ideas are the same, but more sums are involved. For each
sequence DV, D, ..., D{, let A; = A, ;. Then, by explicit computation,

. 2 AsMs sMsys .. Mgs Cs,
S1EA) SEA; S, EA,

=2 2 ... 3

S|EA| SzeAz S,‘EA‘, il-l iz-l

3 3

3
. 2 AshilMsl'il;sril te Msk’ik;sk+lik+lcsk+lvik+l (IVI4)

evr=1

for any choice of S;,,. This is the generalization of equation (IV.13). Equation
(IV.12) does not need to be generalized because Mg = 0 whenever S is short.
Now equation (IV.11) follows from (IV.14).
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- - . . .
AME =3 3 ... 3 I A M5 .. Mg Cs
AR Sk Sker
=2 2 ... 3 3 dM Mg C
M S, $1.8, 8¢, S, S,
S;long S, long Si long Sy vooeR oSk et Sk
DY D Diy SIEA 5:€A;
S%A SE AS,Ms,,sz e Ms"’sk-ﬂcslw-l
& k Ok+1
3

= 2 2 2 . 2 AslrilMshil;sZ’iz
D{l) . Dz(") S,EA. . SkEAk Sk+| Byooodgan

o Mg,

i3Sk 4 k41 Sk ikt

= AM*C.

This establishes equation (IV.11).

In the three body case, equations (IV.8) and (IV.9) show that individual terms in
the expression for AM*C correspond to products of blocks of 4, M, and C. This is
not true in the four body case, although something closely related is true. Products
of certain blocks of 4, M, and € (determined by the sequence DSV, ..., D{¥) are
equal to products of corresponding blocks of 4, M, and C. This is the content of
equation (IV.14). Equation (IV.11) is then obtained by summing over the blocks.

Having established equation (IV.11), the validity of equation (IV.10) is proved.
In §V, (M(2))? is shown to be compact, and the bounds required by the multipar-
ticle limiting absorption principle are proved. However, 4(z) must first be put into
the correct form. This is done by using the following identities:

1 GoV;G; = G; — Gy,
(2) Gy(V,;Gy(Vi + Vi) + VaGa(Vy + V) + V3 G (Vy; + Vik))Gijk
= Gy — (G;P; + Gy Py + GuP,) — Go(1 — P, — Py — P,)
= Go(VyGy(1 = Py) + VaGu(1 = Pye) + Vi Gu(1 = By)),
) G(V;GViu + ViuGuV;) G
= Gyu — (G;P; + GyPy) — Go(1 — P; — Py)
- Go( V,-jGij(l - Pij) + VG (1 — Pk,)). (IV.15)

Notice that the symmetrization is necessary to put 4 in a form in which these
identities may be used to give a formula of the type required in §III. The other
reason for the symmetrization is to make M(z) well behaved as z approaches
O (H).

We give in the Appendix a representative sample of the blocks of the matrices
A(z), C(z), and M(z2).
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V. Estimates. Theorem IIl.1 and the formulas of §IV reduce the problem of
Kuroda completeness to the proof of certain operator bounds. These bounds are
established in this section under the following hypotheses:

() H = Hy+ Z,_;V,; on L>R¥~D™), where m > 3 and N < 4. Each two body
potential ¥; is a selfadjomt multiplication operator U;W,;, where U; and W;
belong to L{(R™) + L(R™) for somep >mand é > 1.

@) Uy: - I_, and W;: I, — K are dilation analytic.

(3) No cluster Hamiltonian has a bound state or resonance at any of its
thresholds.

(4) When N =4, we assume the three body cluster Hamiltonians have no
positive eigenvalues.

(5) Each cluster Hamiltonian has exactly one bound state.

REMARKS. (1) Hypothesis (2) asserts dilation analyticity only. The boundedness
of U;: 3 — H_, and W;: 3, — ¥ follow from Hypothesis (1) and methods of
§$I1.B.

(2) Bounds established for the cluster Hamiltonians are required to prove bounds
for the full Hamiltonian. So, we need two body information to treat the three body
case, and two and three body information to treat the four body case.

(3) The threshold set Z(4) for a cluster Hamiltonian 4 is defined as in §ILE. We
prove (z — h)"' = (z — hy) "' + A)1 — M(2))"'C(z), where M(z) has norm
continuous boundary values M(E =+ i0) as z approaches E € R from above or
below. Hypothesis (3) states that 1 & o(M(E =+ i0)) whenever E € 3(h).

(4) By continuity, Hypothesis (3) implies 1 & o(M(E * i0)) for E in the neigh-
borhood of Z(h). We prove E & Z(h) and 1 € o(M(E = i0)) imply E is not an
eigenvalue of h. Thus, h has no eigenvalues near its thresholds. Hypotheses (1) and
(2) imply that eigenvalues may accumulate only at thresholds (see Balslev and
Combes [3]). So & has finitely many eigenvalues. Therefore, Hypotheses (1)-(3)
imply H has finitely many channels.

(5) In §VI, we prove that Hypotheses (1) and (2) imply Hypothesis (3) for a
dense open set of couplings.

(6) Hypothesis (5) has been introduced merely for convenience. We denote
cluster eigenfunctions y,, ¥;,3, €tc., and let their corresponding eigenvalues be E,,
E )3, etc., respectively. Define ;34 = Y1 ® Y34, Y1324 = ¥13 ® ¥4, and Y143 =
V14 ® Yp3. Similarly, let Ey 34 = Eyy + E3g Eyyp0= Ejy + Eypand Eygpy = Eyy +
Ej;.

(7) Theorem I1.10 gives sufficient conditions for Hypothesis (4) to hold. Yukawa
potentials, generalized Yukawa potentials and potentials of the form (1 + r)~2~
are allowed.

Since there are finitely many potentials, Hypothesis (1) implies the existence of a
p>mand § >y > 1, such that all U; and W; belong to L; JR™) + LP®R™). Fix
such a y and p.

DEFINITION. Let £ be the coordinate from the center of mass of particles i and j
to particle k. Let { denote the coordinate from the center of mass of particles i, j,
and k to particle /. Let n be the coordinate from the center of mass of particles i
and j to the center of mass of particles k and /.
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1 E k i k
n
xz] g- xif xkl
j ! i !

Define
pye®) = (1 + €977,
p($) = (1+ £,
pi(m) = (1 + 2?7772

In the three body problem, we let p; = p,, for convenience. In the four body
problem we choose functions p; arbitrarily as p;; = py3, P13 = P132 P23 = P231»
P34 = P41 Pra = P143 a0d pyy = pyy 3.

These are the p functions introduced in §IV. The choice is certainly not unique,
and we have not made the same choice as other authors. However, our p functions
have the advantage of being dilation analytic.

The results of this section are summarized by the first three propositions. These
depend on the technical lemmas which make up most of this section.

PROPOSITION V.1. Assume Hypothesis (1). If N = 2, then the limiting absorption
principle holds for H. If Hypothesis (2) also holds, then the exceptional set & is
contained in (— o, 0}, and & consists of all eigenvalues of H and possibly the point 0.

Proor. Equation (IV.1) states

(z=H) "=(z~ H) "+ (z — H) 'U(1 — W(z — H) 'U) 'W(z — H)™".
Let p(x) = (1 + x»)~"/2. Define F, = p, F, = U, Z\(z) = p~', and Z,(z) = (1 —
W(z — Hy)~"'U)"'W(z — Hy)~'. Then

2
(z = H)' = 3 (z = H)'FZ().

Hoélder’s inequality shows that F, and F, map L%(R™) into LI}R™) + L,f(R"'),
whereg~!'=p~ 1+ 1/2.

Repeating the proof of Lemma I1.3, we see that W(z — Hp)~'U is uniformly
bounded and analytic for z € C\ [0, o0), with norm continuous boundary values
as z approaches [0, o) from above or below. Similarly, W(z — H,) ™' has these
properties as a mapping of L(R™) into L*(R™).

If U and W belong to L>(R™), then We "ol has an L? integral kernel for ¢ = 0.
Thus, We™"oU is compact for 1 +# 0. When U and W belong to LZ(R™) +
L;°(R™), we may approximate them by L? functions, and conclude the compactness
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of We™"HoJ for t # 0, by taking limits. Taking Fourier transforms as in Lemma
I1.3, we see that W(z — H,)~'U is compact, and |W(z — Hp)~'U|| > 0 as |Im |
—s>oorRez— — .

By the analytic Fredholm theorem and a theorem of Kuroda [16] (see Simon
[29]), (1 — W(z — Hy)~'U)™! exists for all z in the closed cut plane, except for
some set &. & N (C\[0, o)) is discrete; & N [0, ©) is closed and has Lebesgue
measure 0.

If we & N(C\[0, ), then ¢ = W(w — Hy)"'U¢ for some ¢ € IC. Since
w & o(H,), (w— Hy) 'U is bounded, and ¢ = (w — Hp) 'U¢ belongs to I(C.
However, ¢ = W(w — Hy) 'U¢ = Wy, and ¢ = (w — Hy)~'Vy. Applying (w —
Hg) to both sides of this equation, we obtain Hy = wy. Therefore, & C R and
& N (— o0, 0) consists of eigenvalues of H.

If w=+ i0 € & N [0, o), and Hypothesis (2) holds, then Lemma I1.11 shows that
1 € o(W(@Xw — Hy(0))"'U(9)) for some § with +Im @ >0. If w0, then
8 & o(Hy(0)), and we can construct ¢ (as above), so that H(8)y = wy. Theorem
I1.7 shows that w is an eigenvalue of H. Since w > 0, this contradicts Theorem
11.10. Therefore, & C (— 0, 0] consists of eigenvalues of H and possibly the point
0. O

PROPOSITION V.2 (GINIBRE AND MoOULIN [7], THOMAS [36], HowLAND [11]).
Assume Hypotheses (1)-(3); if N = 3, then the multiparticle limiting absorption
principle holds for H. The exceptional set & is at most countable, and consists of
eigenvalues of H and possibly some thresholds of H.

Proor. For convenience, we also assume Hypothesis (5).
As in the proof of Proposition V.1, we begin by writing

(z - 1'1)—1 = %(l - HD)_IPDEI FI,DZI,D(Z)'

This expression is obtained from equation (IV.6). The F, ,’s are Uj’s, p;’s, and P
p;’s. The Z, j(z)’s are made up of components of (1 — M(z))~ 1C(2).

C(2): LIR*™) — @ {,L*R*™) is analytic and uniformly bounded for z € C\
o, (H), with norm continuous boundary values as z approaches o, (H) from
above or below. This is proved by Lemmas V.4 and V.8 below.

M(z): B, L’R*™) > @ $_,LYR*") has all the properties mentioned above for
C(z). In addition, (M(z))? is compact and ||(M(z))*|| - 0 as Re z > — 0. These
facts are proved by Lemma V.13.

Let & be the set of z, such that (1 — M(2))~! does not exist. If z € & N (C\
6. (H)), then the compactness of (M(z))* shows that M(z)¢ = ¢ for some ¢ €

£-13C;

¢a,i = 2 Mu,i;ﬂ,j(z)d)ﬂ,j‘
BJ
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Define n, = ¢,; + W,(z — H,)"'P,p,$,,- Then by the relation of M(z) and
M(z2),

e = % Mop(2)mg = ﬁé W,(z = H) 'Ugng

= 3 Wz~ H) 'Ugng + ﬁz Wz = Hy)™'Vo(z = H,) ' Ugny

fra
= B§ Wa(z - Ho)_lUp"lp + W,(z = Hy)"'U,n,
= % W, (z = Hy) ™' Ugng. (V.1)

Since z & o (H), (z — Hg)™'Ug is bounded. Hence, ¢ = (z — Ho) 'S 3Ugm,
belongs to JC. Moreover, equation (V.1) shows n, = W_y, soy = (z — Hp) " (V,
+ V5 + Vy)y. Therefore, HY = z.

Ifz+i0 € & N o (H), and z is not a threshold, then Lemma I1.11 shows that
z € & implies 1 € o(M(z, 9)), for some § with =Im 8 > 0. Since z & o (H(9)),
equation (V.1) shows H(8)y = zy for some ¢ € IC. Theorem IL.7 shows that z is
an eigenvalue of H.

Since M(z) depends continuously on z, & is a closed set. Since eigenvalues of H
may accumulate only at thresholds, & is at most countable, and has Lebesgue
measure zero. []

PROPOSITION V.3. Assume Hypotheses (1)—(4). If N = 4, then the multiparticle
limiting absorption principle holds for H.

ProoOF. Using equation (IV.10) and the identities (IV.15), we may write (z —
H)~!in the required form.

C(2): LX®R™) - @ ]2, LA(R*™) is analytic and uniformly bounded for z € C\
0. (H), with norm continuous boundary values as z approaches o, (H) from
above or below. This is proved by Corollary V.5, Lemma V.8, and Propositions
V.15, V.16, V.25, and V.26.

M(z): @2,L*(R*™) - @ 2,L*(R*") is analytic and uniformly bounded for
z € C\ 0. (H), with norm continuous boundary values as z approaches o (H)
from above or below. (M(z))? is compact, and ||(M(z))*|| — 0 as Re z — — oo. The
compactness of M? follows from the fact that only the lower left corner entries in
any of the 3 X 3 blocks for M may fail to be compact. Also, these are the only ones
which do not approach zero as Re z —» — oo.

These facts about M(z) are proved by Lemma V.4 and Propositions V.15-V.20,
V.25-V.32,

The exceptional set & is defined as the set of all real z such that 1 € o(M(2)).
The analytic Fredholm theorem and a theorem of Kuroda [16] (see also Simon [29])
show that & is a closed set of measure zero.

The only facts remaining to be proved are the boundedness, analyticity, and
continuity up to o, (H) of certain factors which occur in A(z). These facts are
proved by Lemma V.8. []
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LEMMA V.4, Assume Hypotheses (1)-(3), and (5). Let i, j, k, and | be distinct
indices. Choose coordinates £, §, and m as in the definitions of p;; s, pyx, and p;; ;. Then,
Joralla, B,8 €ER,

(@) pyxP;Uy is bounded from L 4(R™, dx;) ® Li(R*™, déd¥) to LYR™, dx,) ®
LA™, dgdY).

(®) pji' Py Uy, is bounded from L2 y(R*™, dx;d%) ® LZR™, d&¥) to LAR?™, dx;df)
® LIR™, )

(©) oy, P iU is bounded from L% B(Rz"’, dx;dx,) @ L§(R"‘, dn) to
LR, dxydx,) © LiR™, d).

Proor. First, we prove three inequalities involving coordinates:
21+ 5)(1+x5) - (1-¢7)
=1+ 2x}x} + x5 — 2m(m; + m) " 'x; - x,
+ (2= miOm, + m) ™)
> 1+ 2x2xg + (x4 — my(m; + mj)_')c,.j)2 >0,

where we have used 2 — m’(m, + m)™%) > 1 > m.z(m. + mj)_z. Therefore,

1+ &) <21+ x)(1 + x (V.2)
The same computation (but with different masses) shows
(1 + ) <2(1+x2)(1 +£2). (V.3)

Once again, the same computation (with different masses again) shows: (1 + 3?)
< 2(1 + £%)(1 + x2). Combining this with inequality (V.2), we obtain

(1+ 7% <4(1 + x2)(1 + x2)(1 + x2).

Since Hypotheses (1)-(3) are satisfied, Theorem I1.9 shows that y;(x;), (x> $)
and y;;,(x;, x,) fall off exponentially. It is therefore sufficient to consider only the
case a = 8 = 0. Also, it suffices to consider only § = 0, because Py, Py P; Uy com-
mutes with multiplication by functions of £ and ¢, p,,k yx U commutes with
multiplication by functions of §, and p;,} P, , U, commutes with multiplication by
functions of 1.

py—,kleU Ukpy k
5/2 2 - 5/2
=[P,(1+ )1 - A,.,.)‘/ ][(1 - 8,)72U, (1 + x3)™7]
x[(1+ x,.i)_s/z(l + 53" 050
The first factor is bounded because (1 + x,.f.)"/ 3y, belongs to the quadratic form
domain of —A; (Theorem I1.9). The third factor is bounded because of inequality
V.2).

The second factor is bounded if its absolute square, (1 + x2)*2U,(1 —
A)7'U(1 + x})*?, is bounded. To bound the absolute square, we write it as a
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Laplace transform:
[+ o
[T P (x)e at,
0

where F(x,) = (1 + x3)°/ Uy (xa)-

Suppose ¢ € L ([R>™). To compute || F(x,)e “F(x,)¢|l, we use coordinates x,, £,
¢, and first compute the L2-norm in the x; variable with £ and { fixed. The operator
e has an explicitly known integral kernel [22] and x; = c1x; + 65§, with ¢) # 0,
since all masses are finite: F(x;) € L*R™, dx;) + L*(R™, dx,), for some p > m.
So, for each fixed § and §, F(cyx; + c;8)¢(x;, & §) belongs to L'(R™, dx;) +
L*R™, dx;), where r ' = p~' + 1/2. If £ > 0, e"* maps this into LR™, dx;) N
L*R™, dx;) (where we have used the fact that r < 2). Multiplication by
F(c,x; + c,£) maps this into L%(R™, dx;). By keeping track of the norms at each
stage, we obtain:

[le™ (F(x)e ™ F(x,)o)(x; & O d;

< Cef(0) [ 19y, & O

where C is a constant depending only on F and §( f(1)'/? dt is finite.
Integrating over £ and {, we see that

I'FCrie) e“PF(xi)e™"s|| < CH(A()' 14,
which belongs toL'((0, o), df). The Laplace transform now yields part (a) of the
lemma.
Parts (b) and (c) are proved by using the same methods, with inequalities (V.3)
and (V.4) in place of (V.2). [

COROLLARY V.5. Let i, j, k, and | be distinct indices. Let § € R.

(a) pji» P> and p; Y are bounded from L}, (R*™) to Li(R*™).

(b) Assume Hypotheses (1)-(3), and (5), and let n equal j, k, or 1.
For any a and B, the following operators are bounded:

W, P;: L* 5(R™, dx;) ® L2(R*", dtd¢) — LYR™) ® LI(R>™, dtdt),
Wi Py: L2 5(R*™, dx;d§) ® LYR™, &8 ) - L2(R*™, dx,d§) ® LYR™, d§),

in” ijk*

wPyisa: L2 g(R¥™, dx;dx, ) ® LZ(R™, dn) — LYR*™, dx,dx,) ® LXR™, dn).

PROOF. Part (a) follows immediately from the definitions of the p’s and L2-
spaces.

If n 5 j, then Lemma V.4 yields the boundedness of W,,P; = W, P,p;'p;, on
the weighted spaces, because p,, is bounded. If n = j, we use the fact that the
operator domain of W, contains the operator domain of HO’/ 2 (see $I1.B). Theorem
I1.9 shows that e“/ly,; belongs to the domain of H{/?, so WP, is bounded on the
given weighted spaces.

The same methods apply to the remaining operators of part (b). [J
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DEFINITION. Suppose A(z): L2R") — LE(R") is an operator valued function,
which has the following properties:

(i) A(2) is analytic for z € C\ g (H).

(ii) A(z) is uniformly bounded for Re z < C.

(iii) ||4(2)]| > 0 as Re — — .

(iv) A(z) has norm continuous extensions A(x * i0) to o (H) from above and
below (A(x, + i0) = A(x, — i0) if x, = inf o (H)). Then A(z) is called well
behaved from LXR") to Li(R"). If a = B = 0, then we say A(z) is well behaved.

LEMMA V.6. Assume Hypotheses (1)-(3), and (5). Let i, j, k and 1 be distinct
indices. Let D, and D, be cluster decompositions. The following are well behaved:

K(2) = Wy(z = H)"'Uy, Ky(2) = Wz — Hy)™'U,

Ky(z) = WyPp(z = H)™ ' Uy, Ki(z) = WyPp(z = Hy) ™' Uy,

Ky(z) = Wij(z - HO)_IPDzl]ik’ Ky(z) = Wij(z - Hkl)_lpbzl/ik’

Ky(z) = Wiqu,(z - HO)_IPDZIJik’ and Ky(z) = W.jPD,(Z - Hkl)_lPDzljik'

ProoOF. Lemma I1.3 yields the result for X, and K,. If P, commutes with W,
then Lemma I1.3 yields the resuit for K, and K, also. If i and j belong to the same
cluster of D), then Corollary V.5 shows that WPy, (1 + x,.Jz.) is bounded. However,
Lemma I1.3 applies to (1 + x7)"'(z — Hy)™'U, and (1 + x))~'(z — H,))”'Uj. So,
it suffices to consider K, and K, when i/ and j belong to different clusters of D,, but
W, and P, do not commute. In that case, Lemma V.4 shows that the adjoint of
I'V,.J.Pl,lp‘l is bounded into some tensor product of weighted spaces. Thus,
W;Ppp~" is bounded. Lemma I3 shows that pPp, (z — Ho)™'Uy and pPp(z —
H,)"'U, are well behaved. So, K, and K, are well behaved. Of course, the correct
choice of p must be made.

The same methods control K, K¢, K3, and K. [

LeMMA V.7. Assume Hypotheses (1)—(3). Suppose N > 3, and a is any pair. Then
K(z) = W,(1 — P, )Xz — H,)"'U, is well behaved.

PrOOF. We may decompose JC as a direct integral of Hilbert spaces for the two
body problem determined by the pair a. K(z) is fibered under this decomposition,
and it suffices to control the operators on the individual fibers. So, we need only
show W, (1 — P )(z — h,)"'U, is well behaved on L%(R™):

Wa(l - Pa)(z - ha)_an = Wa(l - Pa)(z - hO)_IUa
+ Wa(l - Pa)(z - hO)_IUu(l - Wa(z - hO)—an)_IVIIa(z - hO)—an’

In view of Lemma V.6, it suffices to show that the factor of (1 — P,) cancels the
singularities of (1 — W, (z — hy)"'U,)~ .

Let M(z) = W,(z — hy)~'U,. The proof of Proposition V.l shows that (1 —
M(2))~! is singular when z is a real negative eigenvalue of h,, and possibly when
z = 0. Hypothesis (3) implies that it is not singular at z = 0.
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The poles of (1 — M(z))~" are first order poles. To prove this, let z, be an
eigenvalue of 4, and consider the Laurent series

§ (z - zo)kLk’

k=—n

(1 - M)~

where L_, # 0. Since L_, # 0, there is a vector ¢ in the domain of U,, such that
L_,¢#0.[(1 - M(2) '— 1} = (1 — M(2))"'M(z)¢ must have a pole of order
n, so ¢ = M(z))p = C(zo)(U,9) is a nonzero element of Ran C(z) with L_,§ # 0.
Similarly, using

[ - Mz)7" = 1] = M(z2)(1 - M(2)) ™",
we see that every nonzero n € Ran L, has A(zy) n # 0. Therefore,

(z = h) '(Upd) = (z — hg) " (Up9) + A(2)(1 = M(2))™'C(z)(Uo)

has a pole of order n. Since A, is selfadjoint, n = 1.

If Q= L_, is the residue at z,, then Q is a projection onto solutions of
M(z5)p = ¢ (see Kato [14]). If P is the orthogonal projection onto all eigenvectors
of h, with eigenvalue z,, then PA(zy) = A(z,)Q. (This is proved in the proof of
Proposition V.1.) Therefore, for z near z,

(1 = P)A(z)(1 — M(2))™
= (1= P)A(z0)(1 = M(2))™" — (z — z)(1 = P)
X (z = ho) "' A(20)(1 — M(2))”"

- AG)1-0) $ (- 29T—(1-P)
X (z - ho)“A(zo)kil(z — zg)**'L,

= 4G - ©) 3 - 29T~ (1= P)
X (z - ho)“A(zo)kil(z - z0)**'L,.

Thus, (1 — P)A(z)(1 — M(z))~! has a removable singularity at 2. Since (1 — P,)
= (1 = P, X1 — P), the factor (1 — P,) cancels the singularities of (1 — M(z))~!
and the lemma is proved. []

LEMMA V.8. Assume Hypotheses (1)—(3), and (5). Let a, B, and 8 be pairs such that
a and & have at least one index in common. Then K,(z) = W (1 — Pe)z — Hﬁ)"UJs
is well behaved, and Ky(z) = W,(1 — Pg)(z — Hf,)“l is well behaved from
L.?(R(N_ l)rn) to L2(R(N— l)M)'
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ProoF. Consider only K ; proof for K, is similar.

If B has no index in common with a, or if 8 has no index in common with §,
then Lemma V.6 applies. Thus, we may assume B has indices in common with «
and &:

W, (1= P)z — Hg) ™'
= W,(1 — Ps)(z — Hy)~'Us + W,(1 = Pg)(z — Hg) "' Vy(z = Hy) "'

W, (1 — Pe)(z — Hy) 'Us + W,(z — Hg) (1 = Py)Ve(z — Hy) ™' Uy
Wa(l - Pp)(z - Ho)—lUs

+ (W (z — Hp) (1 = Po)Ug)(Wp(z — Ho)"'Us)

+ (W, (z — H) ' U )(Ws(1 — Pp)(z — Hp) ' Uy )(Wpa(z — Hy)™'Uj).
Apply Lemmas V.6 and V.7. [J

LeMMA V.9. Assume Hypotheses (1)—(3), and (5). Let a, B3, 8, and o be pairs with
a %* B and B # o. If a and B have no index in common, assume 8 = & or that 8§ and
0 have an index in common. Let D be any cluster decomposition, such that the indices
of a belong to the same cluster and the indices of 8 belong to the same cluster. The
Jollowing are well behaved:

K\(z) = W,(z — Ho) 'Vp(z — Hy)'U,,
Ky(z) = W,(1 — P,)(z — H,)""Vs(z — H)"'U,,

Ky(z) = Wa(l - Pa)(z - Ha)_lVB(l - Ps)(z - H.s)_an,
K(z)=w,(1-P)(z - Ha)_lVBPD(Z - Ho)_on,
Ky(z) = W,(1 — P)(z — H,) 'VP,(1 — Py)(z — H;)'U,.

ProOF (SEE IORIO AND O’CARROL [13]). Lemma I1.3 shows that K, is well
behaved if it has norm continuous boundary values. If a and 8 have an index in
common and S and ¢ have an index in common, then Lemma I1.3 shows X is well
behaved.

If « and B, or  and o have no index in common, then, by taking adjoints if
necessary, we may assume 8 and o have no index in common. Then, for Im z > 0,
Imw > 0,

[Ke(Ky(2) — Ky(w))y|
foofoo<¢’ Wae_i’H°VBe_bHOUo‘P>(ei(t+s)z - ei(H's)w)dS‘ dt’
0 0

< fwfwl@” Wae_uHoe—L:(H.,—Hg)UoVBe—ﬁHQP>| Iei(t+s)z _ ei(t+s)wlds. dt
[ ]

_ foof°°|<Uge,-,yg(U:ei(g+s)(H0—H€)W:)¢, Wﬂe—b‘H&P>l
1] 0

X Iei(r+:)z - ei(t+s)wldg dr.
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Change variables by replacing s with r = ¢ + .

<&, (Ki(2) — Kx(W)¥)|
< © poo U* itHf U* ir(Ho—-Hf)W* W, e—i(r—t)H‘f e — ei™|dt dr
j(; j(; |< B€ ( € a)¢ B ‘P>I| |

< [T [T uren (e O W)
0 0
X " Wﬂe—i(r—t)H(,"‘p" Ieirz _ eirwldt dr
of > iHp ir(Hy— HE) 24 )1/2
< fo ( fo |Uge ™ (Uze w2l at
X (j(;w" pVBe---i(r——t)l‘lf‘p"2 dt)l/zleirz — eirwl dr

< [T Cluze W o] [l e - e ar

We have used the Schwarz inequality, Holder inequality, and Kato smoothness of
U} and W, with respect to Hf (see Lemma I1.2).

Since a # B and B has no index in common with ¢, a and ¢ have an index in
common. Therefore, as in the proof of Lemma IL3, ||UreHo—HDW*g| is
dominated by an L' function of r which depends only on ||¢||. So, as in the proof
of Lemma IL.3, [<¢,(K,(z) — K,(W)){)| tends to zero uniformly in ¢ and ¢ as z
approaches w.

Ky(z) = W,(1 = P)(z — Hy) 'Vs(z — H)™'U,
+ Wa(l - Pa)(z - Ha)—anKl(z)'

The first term is controlled by the methods used for K(z). The result for X,(z) and
Lemma V.7 control the second term.

If B has indices in common with a and o, then Lemma V.8 shows that Kj(z) is
well behaved. If 8 and ¢ have an index in common, but a and 8 do not, then there
are two cases:

Case 1. B = §:

K3(z) Wa(l - Pa)(z - Ho)—le(Z - Hp)_l(l - Pp)Uo
+ (W, (1= Pz - H,)™'U,)
X (W (z — Hy)™'Vy(z — Hg)"'(1 — P,)U,)

Wo(l = P)[(z = Hg) ™' = (z = H)™'](1 - Pp)U,

+ (W, (1 - P)z ~ H)'U,)
X (W[(z = Hp)™' = (z — H)™']|(1 - P,)U,).
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Since B # 0 and a has no index in common with 8, a and ¢ have an index in
common. Lemmas V.6 and V.8 therefore apply to the terms which appear in the
last expression.

Case 2. 8 # §3:

Ky(z) = W,(1 - P)(z — H,) 'Va(z — H)™'(1 — P)U,
+ (W, (1 — P)z — H) 'Vy(z — H) 'U;)(Wy(z — Hy)~'(1 - P)U,).

The methods used to control K,(z) apply to the first term. The first factor of the
second term has the same form as K;(z). Lemma V.8 applies to the final factor,
since 8 and o are assumed to have an index in common.

If B has no indices in common with o, then there are again two cases.

Case 3. B = §: Since B and ¢ have no common index and a # B8, a and ¢ must
have a common index. Apply the methods of Case 1.

Case 4. B 7 6: Since B and ¢ have no index in common and 8 # 8, 8 and o have
a common index. Apply the methods of Case 2.

To show K,(z) and Ky(z) are well behaved, first notice that (1 + x2 +
xP*WePp(1 + x2 + x2)*/* is bounded (by Corollary V.5). Moreover, ¢ must
have an index in common with a or 8. Using this information, K,(z) and K,(z)
may be rewritten as products of factors which may be controlled by the methods of
Lemmas V.6 and V.8, when U is bounded. A density argument then shows that
the result holds for general Us. [

REMARK. Let £ be the coordinate from the center of mass of particles i and j to
particle k. With the inner product on R*” determined by the masses, ¢ and x; are
orthogonal. However, £ is not orthogonal to any other x,.

LeMMA V.10. Assume Hypotheses (1)—(3), and (5). Let i, j, and k be distinct indices,
and choose pairs a ¥ (i, j) and B # (i, j), so that a and B have at least one common
index. The following are well behaved.:

-1
Kl(z) = Wa(z - Hij) PyP.'j,k
and
Ky(z) = W,(z — H,)"'P,U,.

ProoF. Notice first that (z — H,.j)“P,.j equals P; times a multiplication operator
in the momentum representation. This fact, together with the above remark, show
that X ,(z) may be controlled by the methods of Lemma II.3 or Lemma V.6. These
methods apply to K,(z) if 8 has no index in common with (i, j).

If B8 has an index in common with (i, /), then we may assume B = (i, k). K,(z)
may then be written as K,(z) = Kl(z)p,.;k'P,-j U,. Since K,(z) is well behaved,
Lemma V.4 shows that K,(z) is well behaved. [
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LEMMA V.11. Assume Hypotheses (1)—(3), and (5). Let i, j, and k be distinct indices.
Let a = (i, )), (i, k), or (j, k). Choose 1 such that « U {I} = {i, j, k}. The following
are well behaved:

Ki(z) = P.'ZkleVik(z - Ha)_lpapa,l’
Ky(z) = pj PV (1 — Py )(z — Ha)_lPapa,l’
K3(z) = py_kle Va(z — HO)_IPapa,l’
Ky(z) = pi;klPijVik(l - Pijk)(z - HO)_lPapa,l’

Proor. If a # (i, k), then
Kl(z) = (py_,kle Ulk)( I/Vik(z - Ha)_lPapa,l)’

Apply Lemmas V.4 and V.10.
If « = (i, k), then (z — H,) " 'P, equals P, times a multiplication operator in the

momentum representation. This operator (z — K, — E,)”' commutes with W, as
does p, ;. Therefore,

Ky(2) = (0P U (1 + x2*)((1 + x2) 7%z = Ko = E) 'pus) (WP

Lemma V.4 bounds the first factor. The proof of Lemma II1.3 controls the second.
Corollary V.5 bounds the final factor.

Ky(z) = K\(z) - pijtkIPijVikPijk(z - Ha)—lPapa,l
= K\(z) - (pi;klPijljik)( VVikPijkpa_,ll)(pa,l(z - Ha)—lPupa,l)'

Lemma V.4 bounds the first factor; Corollary V.5 bounds the second; and the
proof of Lemma II.3 controls the third factor.
Proofs for K(z) and K(z) are similar. [J

LEMMA V.12. Assume Hypotheses (1)—-(3), and (5). Let a, B, 8, and o be pairs, with
a* B and B # 0. Let k be any index not contained in the pair 8. Let D be any
cluster decomposition, such that the indices of a belong to the same cluster and the
indices of B belong to the same cluster. The following are well behaved:

K\(z) = W,(1 — P)(z — H,) 'V(z = Hy) ™' Pspyye
Ky(z) = W,(1 - P,)(z — H,) 'Vs(z — H))"' U,
Ky(z) = W,(1 = P,)(z — H,) " 'Vs(1 = Pp)(z — Hy)™ ' Pspsso
K(z) = W,(1 - P)(z — H) 'V,(1 - P,)(z - Hy)"' B U,
Ky(z) = W,(1 - Pz — H,) V(1 = Pp)(z — Ho) ™' Pypyy

ProoF. We consider only K, (z). The others may be treated in a similar fashion.
There are three cases.
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Case 1.8 = §:
Ki(z) = w,(1 - Pa)(z - Ho)_le(Z - HB)‘IPppp,k
+ (W (1 = P)z ~ H) U)Wz — H)™'Vp(z — Hp) ™' Pepgy)
W (1= P)[(z — Hp) ™" — (z = Hp) ™" | Py

+ (Wa(l - Pa)(z - Ha)—an)(Wa[(z - Hﬂ)_l - (Z - HO)_I]Pﬁpﬁ,k)’
Apply Lemmas I1.3, V.8, V.10, and the remark preceding Lemma V.10.
Case 2. B # &§; a and B have a common index.
Ki(2) = (Wo(1 = P)(z = H) ' Up)(Wp(z — Hy) ™' Popys).
Apply Lemmas V.8 and V.10.
Case 3. B # §; a and § have no common index.
Ky(z) = Wa(l - Pa)(z - Ho)_le(z - Hs)_lPsPs,k
+(W,(1 = P )z — H) 'U)NW,(z — Hy) ' Vg(z — Hy)"'Pypy,).

Proceeding as in Case 1, all the results may be proved, except for norm continuity
of the boundary values. However, a density argument shows that it suffices to
prove norm continuity under the additional assumption that ¥V is bounded.

In that case,

K(2) = (Wo(1 = P)(z — H)'(1 + )7
X (V(1 + x2)*Ps(z = Hy) 'py).

Since a and B8 have no common index and B8 5 8, a and & have a common index.
So, Lemma V.6 applies to the first factor. Lemma V.10 and Theorem II.9 show that
the second factor is well behaved. [J

LEMMA V.13. Assume Hypotheses (1)-(3). If N = 3, then M(z) is well behaved and
(M(2))? is compact.

PROOF. M(2) is well behaved by Lemmas V.4, V.8, V.11, and V.12. W;(1 — P;)(z
- H,-j)"U,.k is a norm convergent sum of connected graphs, when Re z is large
negative. Standard methods (e.g. Ginibre and Moulin [7]) show that each term is
compact. Similarly,

-1 _
Wij(l - Pij)(z - Hij) Val(z — Hik) lPikpik,i
and
- -1
Pij.klP i Via(Z2 = Hy)™ Pypy;

are compact for large negative Re z. Since these operator valued functions are well
behaved, compactness holds for all z.

The entries of (M(z))* are sums of terms, each of which contains one of these
compact factors. Thus (M(z))? is compact. []
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LeMMA V.14, Assume Hypotheses (1)-(3), and (5). Let i, j, and k be distinct indices,
and let a and B be distinct pairs. The following are well behaved:

K\(z) = Py?klPijVik(z - Ho)_lU,s,

Ky(z) = pi;klPijVik(l - Pijk)(z - Ho)_lUp,

K3(z) = pi;klPijVik(l - P)(z - Ha)_lUﬂ9

Ky(2) = pj Py ViPo(z — H)'Up,

Ky(z) = Pi;kng'Vik(l - Pijk)(l - Pz - Ha)_lUﬂ’
Ks(z) = P.-;klpy Vik(l - Pijk)Pa(z - Hu)_lUp-

Proor. If 8 and (i, k) have an index in common, K;(z) is well behaved by
Lemmas V.4 and V.6. If 8 and (i, k) have no common index, then Lemmas I1.3
and V.4 yield the results, except for the norm continuity of the boundary values.
Given this, we need only prove the norm continuity when V. is bounded. In that
case,

- 2 —-v/2 -
K(2) = (pjPy V(1 + x2))((1 + x2) 7%z - HY)™'Uj)-
Since B and (i, j) must have a common index, Lemma I1.3 controls the boundary

values of the second factor. Lemma V.4 bounds the first.
Proofs for the other operators are similar. [J

PROPOSITION V.15. Assume Hypotheses (1)-(3), and (5). Let i, j, k, and | be distinct
indices. Let n = i, j, or k. Then

K(z) = VVij(l - Pij)(z - Hij)_l(Vik + ij)(l - Pg'k)(z - Hijk)_lUnI
is well behaved and compact. Moreover
Kz(z) = VVij(l - Pij)(z - Hij)-l(Vik + V}k)(l - Pijk)(z - Hijk)_l
is compact and well behaved from LIR>™) to L3 R*™), when 8 > 1.
ProoF. Consider only X(z); proof for K,(z) is similar.
Using equation (IV.6), we have K,(z) = 1(z) + II(z) + III(z), where
z) = W;(1 = Py)(z = Hy)™ (Vi + V)1 = Py)(z = Hp) ™' Uy,
I(z) = W;(1 = Py)(z = Hy)"' (Vi + Vi)(1 = Py)A(2)C(2) U,
(z) = W;(1 = Py)z = Hy)™' (Vi + V3)(1 = Pyl)A(2)(1 - M(2)™'
X M(z)C(z)U,,.

Lemma V.9 shows I(z) is well behaved.

A(2)C(2) is a sum of terms, each of which contains only one resolvent. We
substitute this sum in II(z). II(z) then becomes a sum of terms which are well
behaved by Lemmas V.9 and V.12.

W, (1 — P}z — Hyp) 'V + V)1 — Py)A(z) is well behaved by Lemmas V.9
and V.12. M(z) is well behaved by Lemmas V.4, V.8, V.11, and V.12. M(z2)C(z) U,
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is well behaved by Lemmas V.9, V.12, and V.14. So, III(z) is well behaved if the
factor (1 — Py) in the operator

W,(1 = P}z = Hy)"'(Vy + V)(1 = Py)A(2)
cancels the singularities of (1 — M(z))™ .

To prove this, we mimic part of the proof of Lemma V.7. I( is a direct integral
of spaces for the three body problem determined by (i, j, k). A(z), M(z), and C(z)
are fibered under this decomposition, and we consider their restrictions (which we
also denote by A(z), M(z), and C(2)) to the individual fibers.

Let z, be a point at which (1 — M(z))™' is singular on some fixed fiber.
Hypothesis (3) and Lemma II.11 show that (1 — M(z, 8))~! is singular at z, for
some 0§ with z, & o, (H(9)) and |Im 8| arbitrarily close to 0. (1 — M(z, 8))~! may
be written as a Laurent series 2. _,(z — zo)*L, for z near z,. Mimicking the proof
of Lemma V.7, we see that L_,C(zy 8) 0 and that no ¢ € Ran L_, has
M(zy, 8)¢ = 0. By using G, = G, + G, V,G,, we see that A(z,, 0)y = 0 implies
M(z,, 8)y = 0. Putting these facts together, A(zy, #)L_,C(z 8) # 0. Equation
(IV.6) shows that (z — H(#)) ' has a pole of order n at z,. Selfadjointness of H
and standard dilation analyticity arguments show n = 1. The rest of the argument
of Lemma V.7 now goes through, since equation (V.1) shows (1 — P)A(zy) =
A(zg)(1 — Q), where Q projects onto the eigenvalue 1 eigenvectors of M(z,). Thus
(1 = Py) cancels the singularities of (1 — M(z))™!, and III(z) is well behaved.
Therefore, K;(z) is well behaved.

It suffices to prove compactness at large negative Re z. Write K,(z) as:

Wiz = Hy) " '\(Vie + V3 )z - Hy) ™' Uy
- W;Py(z - Hij)_l(Vik + Vu)z - Hijk)_lUnI
= Wylz = Hy) "' (Ve + V) z = Hy) "' PyUy
- -1
+W,;Py(z = Hy) ' (V + Vilz — Hy)™ Py Uy.
Expand the resolvent factors as sums of graphs. Replace each WP, by
(WP, (1 + =) (1 + =)™
and each P, U, by
(1+ x2+ 53+ x3) (1 + %2+ x2 + x2) P, Uy).

Then apply Corollary V.5 and any of the usual compactness proofs to each term.

O

PROPOSITION V.16. Assume Hypotheses (1)—(3), and (5). Let i, j, k, and | be distinct
indices, and let n = i, j, or k.

_ -1
K\(z) = pij,kIPij(I/ik + ij)(l - Py’k)(z - Hijk) Uu
is compact and well behaved.
_ -1
Ky(z) = pij,kIPij(Vik + V(1 - Pijk)(z - Hijk)
is compact and well behaved from LZR>™) to LX(R*>™) whenever § > 1.
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Proor. Consider only K(z); the proof for K,(z) is similar.
Using equation (IV.6), we have K,(z) = I(z) + (z) + 11I(z), where

(2) = puPy (Vi + Vi) (1 = Py)(z = Ho) ™' U,
I(z) = pi;kIPij(Vik + V;'k)(l - Pijk)A(z)C(z) Uans
M(z) = o3Py (Vi + Vi1 = Pr)A(2)(1 = M(2)) ™' M(2)C(2) Uy

Lemma V.14 shows that I(z) and II(2) are well behaved. M(z) is well behaved by
Lemmas V.4, V.8, V.12, and V.14. M(2)C(z)U,, is well behaved by Lemmas V.9,
V.12, and V.14, Lemmas V.11 and V.14 control p,-;k'P,.j( Vie + Vi) — Py)A(2).

As in Proposition V.15, (1 — Py ) removes the singularities of (1 — M(z))~. So,
K ,(2) is well behaved.

It suffices to prove compactness for large negative Re z. Furthermore, a density
argument shows that we may assume all U’s and W’s lie in & (R™).

Under this assumption,

PP (Vi + Vi )Py (z — Hijk)_lUnl
= (pi;klPij(Vik + ij))(Pijk(z - ijk)_lpy'k)(py;ng’jk Unl)’

Lemma V.4 bounds the initial and final factors. The middle factor equals P, (z —
Ky — Eyu)”'py. where Ky, is the kinetic energy associated with the coordinate
from the center of mass of particles J, j, and k to particle /. P, is (compact) ® 1.
(z — Ky — Ey)” 'p,.jk is 1 ® (compact). So, the middle term is compact.

Hence, it suffices to prove p; /P, (V, + VuXz — Hy)™'U,, is compact when the
U’s and W’s belong to S(R™). Lemma V.4 shows that it suffices to prove that
(1 + x)™(Wy + WyXz — Hy) 'U, is compact. We expand (z — Hy,)™ ' as a
sum of graphs. The only graphs for which compactness could fail are those which
do not connect i and j. It therefore suffices to prove the compactness of (1 +
xl_']z' T (Walz = Hik)_l + I'V,'k(z - ij)_l)Unl-

Expand (1 + x,.jz. “W,(z — H,)"'U, as a sum of graphs. Use coordinates Xy
Xu> and x,,, with conjugate momenta p;, p,, and p,, respectively. Following Reed
and Simon [24, p. 128}, write out the integral kernel for each graph in momentum
representation. If z is real and large negative, then the replacement of each factor
(z— Hy)™' by (z — p} — p} — p2)~" will increase the absolute value of the
integral kernel at every point. The new integral kernel is square integrable, so the
original one is, also. Consequently, each graph is Hilbert-Schmidt.

The proof for (1 + x2)™*W,(z — Hy)~'U,, is similar. []

PROPOSITION V.17. Assume Hypotheses (1)—(3), and (5). Let i, j, k, and | be distinct
indices; let n = i, j, or k; let p be any index not equal to n or l; and let a be the pair
not containing n or l. The following are well behaved and compact:

Kl(z) = W.j(l - Pij)(z - Htjj)_l(Vik + ij)(l - Pijk)(z - H:jk)_l
X an(z - Hnl)_lpnlpnl,p
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and
Ky(z) = pVij(l - Pij)(z - Hg‘)_l(Vik + V}k)(l - Pl_’ik)(z - Hijk)_l
X Vo(z = Hy) ' PyU.,.

ProoF. Consider only K|(z); the proof for K,(z) is essentially identical.
For large negative Re z, W, P, (z — H”,)_lp",p is bounded, so compactness
follows from Proposition V.15. Similarly, it is clear that | K,(z)| tends to zero as

Re z —» — 0. It is therefore sufficient to prove analyticity and the norm continuity
of the boundary values.

K\(2) = I(2) + II(z) + 1II(z), where
I(z) = W;(1 = Py)(z — Hy) (Vi + Vi )(1 — Py )(z — Ho) ™'
XVu(z — Hy) "' Pypy,,,
(z) = W,(1 = P))(z = Hy) "' (Vi + V(1 — P)A(2)C(2)
X Vo2 = Hy) ™' Prippiys
i(z) = W,(1 = P))(z — Hy) "' (Vi + Vi )(1 = Py)A(2)
X (1= M(2))"'M(2)C(2)V,(z = Hy) ™ Pupus,-

Lemma V.12 controls I(z) after the factor (z — Hp)~'V,(z — H,;)~! is replaced
by[(z — Hp)™' — (z — H)™ '}
Since

A(2)C(2) = (z = Hy) "'+ (z = Hy) ™'+ (z = Hy)™' = 3(z — Hy)™'
=[(z = H) "'V + (2 = H)) "Wy + (2 = Hy) "'V |(z = H) ™',
1(z) = B_(%’(ik)’ w;(1 — P;)(z - Hij)_l(Vik + Vi)
k)
x (1- Pijk)(z = Hﬂ)—lVﬁ[(z - Hnl)-l -(z- Ho)_l]Pannl,p
= % W,(1 = P)(z = Hy) (Vi + Vy)(1 = Pz — Hg) ™'V

X (Z - Hnl)_anlpnlp

- % W,(1 — P)(z — Hy) ™' (Vi + V3 )(1 — Py)

X[(z = Hg) ™" = (2 = Ho) ™" | P

Using the remark before Lemma V.10, Lemma II.3, and Theorem I1.9, we see that
(1 + x2)°’Wy(z — H,)"'P,p,,, is well behaved for each B = (i, ) (i, k), or (J, k).
So, to control the first sum, it is sufficient to control

W;(1 = P;)(z = Hy) \(Vie + V3 )(1 = Py )z — Hg) 'Up(1 + x2) 7%,
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This equals
Wij(l - Pij)(z - IIij)_l(Vik + ij)(l - Pyk)(l - Pp)
X (z - Hp)_lUp(l + xr?l)_s + W;(1 - Py)(z - Hij)-l(Vik + Vi)
X (1 = Py )Ps(z ~ Hg) ' Up(1 + x2)~°.

Lemma V.9 controls the first of these terms. The second is well behaved by
Corollary V.5 and Lemmas V.4 and V.12.

The second sum in the last expression for II(z) is controlled by Lemmas V.9 and
V.12,

Next consider IT1(z).

W,(1 — P}z — Hy) ™' (Ve + Vi )(1 = PR)A(2)(1 — M(2))™

has been studied in the proof of Proposition V.15. So, it suffices to control
M(Z)C(Z) an(z - Hnl)_anlpnl,p‘
Two types of terms appear here:

Ws(1 — Py)(z - Hs)_lVo(z - Ha)_anl(z - Hnl)_anlpnI,p’
and
p&TqIPGVo(z - Ho)_anl(z - Hnl)—anIpnl,p

where § and o have a common index. The first type appears in II(z), and has been
studied. The second equals

psquPGVo(l - PO)(Z - Ho)—anI(z - Hnl)_anIpnI.P
+ p'{qlPG VoPo(z - Ha)_anl(z - HM)_IP",p”lp.
The first of these is well behaved by Lemmas V.4 and V.12. The second may be
rewritten as:

(parg P, (1 + =) ) (Wo(1 + )T 2Py(z = H,) ' U1 + x)™7)

X ((1 + X3)-’/2P,.z(z - Hnl)—lpnl,p)‘
Lemma V.4 applies to the first factor. Lemma V.4 and the proof of Lemma IL.3
control the others. [

PROPOSITION V.18. Assume Hypotheses (1)-(3), and (5). Let i, j, k, and 1 be
distinet; let n = i, j, or k; let p be any index not equal to n or [; let a be the pair not
containing n or p. The following are well behaved and compact.

Ki(z) = p;';klPij(Vik + V)1 = Py )z — Hg’k)_ananl(z - Hnl)—lpnl,p’
Ky(z2) = pju Py (Vi + V3 )(1 — Pijk)(z - H.jk)—ananl(z - H) U,

Proor. The technique for extending the proof for Proposition V.16 to these
operators is the same as the technique used to obtain the proof of Proposition V.17
from that of Proposition V.15. In some instances, Lemma V.14 must be used in
place of Lemmas V.9 and V.12. ]
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PROPOSITION V.19. Assume Hypotheses (1)-(3), and (5). Let i, j, k, and | be
distinct, and let n = j or k. The following are compact and well behaved:

Ki(z) = pyk ik Vi Pu(z — il)_lpil,n’
Ky(z) = pyk ik VaPy(z — il)_lUk
Ky(z) = Py, kle wVaPy(z — Hu)_lpﬂ,m
K(2) = pyiPy s VaPu(z — Hy)™!

PROOF. Consider only K,(z); proofs for the others are similar.

Ky(z) = (Pyk aUn(1 + x5 + xﬁ:)a)

X ((1 +x; + x + xjk) WyPy(z — Hu)-lpﬂ,n)-
Lemma V.4 bounds the first factor. P,(z — H,)~! = Py(z — K,; — E,;)”", where

Ll
K, is a multiplication operator in the momentum representation. The methods of

Lemma I1.3 may be used to prove that the second factor is well behaved. For large
negative Re z, (1 + x} + x} + x3) "W (z — H,)~! is compact because (1 + x2
+ x} + x})”“W, falls off in all directions in configuration space. This implies
compactness. []

PROPOSITION V.20. Assume Hypotheses (1)—(3), and (5). Let i, j, k, and | be
distinct; let n=j or l; and let p = j or k. The following are well behaved and
compact:

K\(z) = Pi,k e Va(z — il)_l(Vip + le)(z .b) PypPipps
Kz(z) = Pi,k ijk Va(z — il)_l V’k(z rl,,k) leP,l,,k»
Ky(2) = 0Py V(2 = Hi) "' (Vi + Vi) = Hyn) ™' Piabitns
Ky(2) = 07 PyuaVa(z = Hu) " 'WVi(z = Hy )™ Paibucir
PrOOF. Consider only K,(z); proofs for the others are similar.
K\(z) = P.ﬂlek Va(z - .zp) P0ip
=P Py V(1 — Py)(z — Hp)™' Pypip

- pyk yk I(z xl) bptb

The methods used to prove Proposmon V.19 may easily be modified to control the
first and last terms. The middle term may be written as:

- -v/2
- (pijkIPyk 1)( w,(1 — Py)(z — Hy)~ l(1 + x} v/ )((1 + X, )Y/ .ppnp)
Lemma V.4 bounds the first factor. Theorem I1.9 bounds the third. The proof of
Lemma V.7 controls the middie factor.
Given the above results, it suffices to prove compactness when ¥, and V|, are
bounded. In that case,

K\(z) = (P.,klek Va(z — il)_l(Vip + Vp))((z - I{ib)_lPibpib)‘
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For large negative Re z, the first factor is bounded. In the second,
-1 -1
(Z_Ili(u) Piq,:(z_Kw"Eiqp) Pi{p'

P, is (compact) ® 1; (z — K,, — E,;)"'py, is 1 @ (compact). This implies com-
pactness. []

In order to prove certain results involving (z — Hj;,;,)” !, a formula analogous to
equation (IV.6) must be obtained. To motivate the formula we will use, we first
give a simpler formula:

(z — Hyu)™' = (z = H) ™' + &(2)(1 - M(2))”"C(2), (v.5)

where

@(z) =[(Z - HO)_lljij (z - HO)-lUkl]’

0 w,(z - H;)"'U,
M(z) = . e = )l
| WkI(Z — Hy) Uij 0
[ W,(z — )™
C(2) = Y v b
i Wkl(z - Hkl)

For large negative Re z, the inverse term may be expanded by geometric series.
Then, using the diagram symbolism, the formula is easily checked. Using the
uniqueness of analytic continuation, the formula is valid wherever both sides
contain only bounded operators.

If the relative motion of the centers of mass of particles i and j and of particles k
and / is removed, then the barely connected terms W(z — H;)™'U,, and W, (z —
Hk,)"U,.j are compact. So, the analytic Fredholm theorem shows that the inverse
term of equation (V.5) exists for z & o, (H;,,) except at those z’s for which the
system of equations

¢y = Wy(z — Hy) 'Uydy and ¢y = Wy(z = Hy) ™' Uye,

has a nontrivial solution. Mimicking equation (V.1), we see that this occurs only

when z is an eigenvalue of Hj;,,. Thus, equation (V.5) is valid for z € C\ o(H}; ).
As z approaches o (H; ), various terms in equation (V.5) are singular, unless

P; = P, = 0. So, we require another formula. Because V}, and P; commute, there

is no analogue of the p functions in this case. However, a formula very much like

equation (IV.6) is valid. Let G, = (z — Hy)™ Y, G, =(z— H,.j)_', etc. Then,

Gyu = Gy + Gy — Gy + A(z)(1 — M(2))™' C(2), (V.6)

if

where A(z), M(z), and C(z) are given in Figure 2.
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To establish the validity of equation (V.6), we expand the inverse term of
equation (V.5) and insert projections P, (1 — P;), Py, and (1 — P,) before the
resolvent factors. We then sum the resulting series to obtain equation (V.6). This is
completely analogous to the derivation of equation (IV.6) from equation (IV.4).
The absence of spurious zeros for equation (V.6) is proved by mimicking the proof
of Proposition V.2. Below, we will prove M(z) is well behaved, and (M(z)) is
compact (when the motion of the center of mass of particles i and j relative to the
center of mass of particles k and / is removed). A(z) and C(z) are analytic for
z € C\ 0.(H,;;), so equation (V.6) is valid for z & o(H,;;,)-

In the two and three body cases (with finite masses), M(z) was well behaved. We
have not been able to prove this for equation (V.6) (or for the three body case with
an infinite mass, in which case an equation like (V.6) is used in place of equation
(IV.6)). However, (M(z))? is well behaved. The next few lemmas prove this.

LeMMA V.21. Assume Hypotheses (1)—(3), and (5). Let i, j, k, and | be distinct.
K(2) = Wy(1 — Py(z — Hy)"'Uy is analytic for z € C\ 0 (H;); tends to zero
as Re z - — oo; and has strongly continuous boundary values on o.(H;,,) from
above and below. If the motion of the center of mass of particles i and j relative to the
center of mass of particles k and | has been removed, then K(z) is compact for
2 € C\ oo (H1)-

ProoF. Except for compactness, Lemma I1.3 yields these results for the operator
valued function W(1 — P,)(z — Hp)"'Uy:

K(z) = pVij(l - Pij)(z - Ho)_lUkl
+ (Wij(l - Pij)(z - Hij)_ll]lj)(mj(z - HO)_lUkl)'

Lemmas I1.3 and V.7 apply to the various factors here.
To prove compactness, we expand the resolvent in K(z) as a sum of graphs. The
standard compactness proofs apply to each term at large negative Re z. []
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LEMMA V.22. Assume Hypotheses (1)-(3), and (5). Let i, j, k, and | be distinct.
K(z) = P;W,P,(z — Hy)"'U; is well behaved. Moreover, if the relative motion of
the centers of mass of cluster {i,j} and {k, l} is removed, then K(z) is compact.

ProoF. K(z) = (WkIPkI)(PkIPg'(l + xgz' (1 + xi;". "Nz - Ky — Ekl)—l(]ij)°
Corollary V.5 bounds the first factor. The second is compact on L*(R?*"). Lemma
I1.3 controls the third. [J

LeMMA V.23, Assume Hypotheses (1)~(3), and (5). If the relative motion of the
centers of mass of the clusters {i,j} and {k,1} is removed, then M(z) in equation
(V.6) is analytic in C\ o (H; ), with strongly continuous boundary values on the
cut. (M(2))? is compact and well behaved.

PrOOF. All results, except for compactness and norm continuity of (M(z))* up to
the cut, are consequences of Lemmas V.12, V.21, and V.22.

(M(z))? has four types of nonzero terms.

Type 1. Wy (1 — P}z — H)™WV,(z — H,)"'U,.

Lemmas V.9 and V.12 imply the continuity. Compactness follows from Lemma
V.21, since Uy(z — H,,)~ 'U,.j is bounded for large negative Re z.

Type 2. P;W,(z — Hy)™'U;.

This equals

PiWyPy(z — Hkl)_lljij + PWyu(l — Py)z - Hkl)-ll]ij'

So, Lemmas V.21 and V.22 show that it suffices to prove the continuity when W,
is bounded. In that case,

PiWi(z = Hy) Uy = (WP, (1 + x2)*) (1 + x2)™°(z - Hy)'U,).
The first factor is bounded. The second is well behaved by Lemma I1.3.
Type 3. Wy(1 — PV (z - Hkl)—lVij(z — Hp)P;Uy.
G; — Gy = G(V;; — V)G, so the operator in question equals
Wij(l - P.'j)(z - Hij)_lel(z - Hy)_le'Ukl
- VV.'j(l - Pij)(z - Hij)_lel(z - Hkl)_lPijUkI
+ Wij(l - Pij)(z - ij)_qu(z - Hkl)‘lel(z - Hy)_leUkr

The first term here is zero, since the P, commutes with (z — H,)™'V,(z — Hy) ™.
By Lemmas V.21 and V.22, it suffices to prove the continuity for the remaining
terms when V), and U, are bounded. The second term is controlled by Lemmas
V.9 and V.12 after factorization as

- (Wij(l - P)(z - Hij)_le,(z - Hk,)_l(l + xZ _a)((l + x,.jz.)aP,.jUk,).
The third term equals
(W (1 = P)(z — H)) 'V(z — Hy)™'(1 + x2)7%)
X ((1 + x2)°P,U ) (Wilz — Hy)"'U).
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Lemmas V.9 and V.12 control the first factor. The second factor is bounded. The
third is controlled by Lemma I1.3.

Type 4. P;Wi(z — Hy)~'Vy(z — Hp)~'P;U,,.

This equals

PyW (1 — Py)(z - Hkl)_lVij(Z - Hij)_lPijUkl
+ (Py'WklPkl(z - Hkl)_IU.j)(PleyPy(z - Hy)~lUk1)-

Compactness follows from Lemmas V.21 and V.22. Lemmas V.12 and V.22 imply
the norm continuity of the first and second terms, respectively. [
REMARK. C(z) in equation (V.6) is well behaved from L(R>™) to L*R*™). Also,

G, = G;P; + Gy(1 — P;) + GoV,;G;(1 — Py)
and
le = lePkl + GO(l - Pkl) + GO‘/kIGkI(1 - Pkl)'
These facts, together with Lemma V.23 and Theorem III.1 imply asymptotic

completeness for Hj;;,, when Hypotheses (1)-(3) hold. Much easier proofs of this
fact exist, but this result is a simple by-product of our methods.

LEMMA V.24. Suppose A(z) is a strongly continuous bounded function with values in
the bounded operators on JC. Suppose B(z) is a norm continuous function with values
in the compact operators on IC. Then A(z)B(z) is norm continuous and compact.

ProOF. The compactness of 4(z) B(z) is a well-known fact.

Suppose ¢ > 0 is given. Fix z, and let N = sup||4(w)||. Choose a finite rank
operator C, such that ||B(z) — C|| < ¢/6N. The restriction of A(w) to the range of
C is norm continuous. Therefore, there exists § > 0, so that |z — w| < & implies
[(4(z) — A(W))C|| <e/3N.

If |z — w| < §, then by the triangle inequality,

|4(2)B(z) — A(w)B(w)|
<||(4(z) = A(W))(B(z) = C)|| +]|(4(z) — A(W))C]
+||A(w)(B(z) — B(w))|
<2Ne/6N + ¢/3+ Ne/3N=¢. [J

PROPOSITION V.25. Assume Hypotheses (1)—(3), and (5). Let i, j, k, and | be distinct

indices.
-1 -
Ki(z) = Wij(l - Pij)(z - H.j) Vkl(l - Pij,kl)(z - Hij,kl) l(Jik
is compact and well behaved.
Ky(z) = Wij(l - Pij)(z - sz)_lel(l - Pij,kl)(z - Hij,kl)_l
is compact and well behaved from LXR*™) to L*R3™), for any & > 1.

ProoF. Consider only K;(z); the proof for K,(z) is similar.
Compactness for large negative Re z is easily proved by expanding the resolvents
as sums of graphs. It therefore suffices to prove K,(z) is well behaved.
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Using equation (V.6), we write K,(z) as a sum of four terms.
I(z) = Wy(1 = P)(z = Hy)" 'Vl = Py)z = Hy) ™ Uy
1(z) = Wij(l - Pij)(z - I{ij)_lel(l - ij,kl)(z - Hkl)_lljik’
I(z) = - Wij(l - P,.j)(z - Hy)_lel(l - Pij,kl)(z - HO)_lljik’
IV(z) = Wy(1 = Py)(z = Hy) "' Viy(1 = Pyu)A(2)(1 = M(2))™' C(2) Uy

Lemmas V.9 and V.12 control I(z), II(z), and 11I(z). Lemmas II.3 and V.21 show
that W (1 — P}z — H,.J.)"Vk,(l — P;,)A(2) is well behaved, except that the
boundary values are only strongly continuous. Lemma V.23 shows that M(z) has
similar properties.

By mimicking part of the proof of Proposition V.15, we see that the factor of
(1 — P;,,) in IV(z) removes the singularities of (1 — M(2))~ 1. Thus,

Wij(l - Pij)(z - Hg’)_lel(l = Pij,kl)A(z)(l - 1”(2))—l

is well behaved, except that the boundary values are strongly continuous. Lemma
V.24 now shows that it suffices to prove C(z) U, is well behaved and compact.

The first and third entries of C(z)U,, are compact for large negative Re z,
because they may be written as sums of connected graphs. The second and fourth
entries are compact by the compactness argument used in the proof of Proposition
V.16.

Lemmas V.9 and V.12 show that the first and third entries of C(z)U, are well
behaved. The second entry equals

PW,(1 — P,)(z — Hy) 'Uyp + P,W, P (z — Hy) ™' Uy
Lemma V.6 controls the first term. The second may be written as
(Py(l + x.',2~ a)(WkIPkl)((l + x;)—a(z - Hkl)_lUik)-

Apply Lemma I1.3, Theorem I1.9, and Corollary V.5. This shows that the second
entry of C(z)U,, is well behaved. The fourth entry is handled in the same way. [

PROPOSITION V.26. Assume Hypotheses (1)—(3), and (5). Let i, j, k, and 1 be
distinct.

-1
Ki(z) = PijWkI(l = Pij,kl)(z - Hij,kl) Ui
is compact and well behaved.
Ky(z) = P.','sz(l - Pij,kl)(z - Hij,kl)_l
is compact and well behaved from LZR*™) to LX(R®™), for any & > 1.

ProoF. Consider only K,(z); proof for Ky(z) is similar.
P; and W,(1 — P,,) commute. Py(z — H;,)~' = Pz — E; — Hy)™', where
H{, = H,, — H{. Moreover, (1 — P;,)P; = (1 — P)P;. Therefore,

K(z) = (PijWkl(l - Pkl)(z - Eij - Héz)_lpy,k)(PngleUik)
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Lemma V.4 bounds the second factor. P; is (compact) ® 1;
Wi (1 — Pkl)(z - E; - HI;I)_lpij,k =1® X(2).

X(2) is compact for large negative Re z. The proof of this is the same as the
compactness of the three body operator W(1 — P}z — H,)"'U, on L*R>™).
X(z) is well behaved by the proof of Lemma V.8 and the remark before Lemma
V.10. Thus, K,(z) is compact and well behaved. [

PROPOSITION V.27. Assume Hypotheses (1)-(3), and (5). Let i, j, k, and | be
distinct, and let n = j or l. The following are well behaved and compact:
Ki(z) = Wij(l - Pij)(z - Hy)_lel(l - Pij,kl)(z - Hij,kl)_l
X Vy(z — Hik)_lPikUﬂ
and
Ky(z) = Wij(l - P.'j)(z - H.j)_lez(l - Pij,kl)(z - Hij,kl)_l
X Vielz = Hy) ™ Py

ProOOF. Consider only K,(z); the proof for K,(z) is similar.

For large negative Rez, W, (z — Hy) 'Py U, is bounded, so compactness
follows from Proposition V.25. Hence, it suffices to prove K(2) is well behaved.

Using equation (V.6), we write K,(z) as a sum of four terms:

I(z) = - Wij(l - Pij)(z - Hij)_leI(l - Pij,kl)(z - Ho)_l
X Vi(z - Hik)_]Pik(jjl’
I(z) = W,(1 = P))(z ~ H,) V(1 = P}z = Hy)™'
X Vi(z = Hik)_lPikljjl’
I(z) = Wij(l - Pij)(z - Hij)—lel(l - Pij,kl)(z - Hkl)_l
X Valz — Hik)_lpikUjb
IV(z) = VVij(l - Pij)(z - Hij)_lel(l - ij,kl)A(z)(l - M(z))_l
X C(2)Vy(z — Hik)_lPikUﬂ'
I(z) = Wy(1 — P)(z — Hp)"'"Viu(1 — Pyu)l(z — Hy)™' — (2 — Hy) " '1P U
This is well behaved by Lemma V.12.
(z) = ~1(z) + W;(1 — P;)(z — H,) ' Viy(1 = Pyu)(z — Hy)™'
XVy[(z = Hy)™' = (z = H) 7' | P, U,
=-1I(z) + (Wij(l = Py)(z - Hij)_lel(l - Pij,kl)(l - Py)z - Hij)_lU.j)
X (Wy[(z —Hy) ' - (2~ Ho)_l]PikUjl)-
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Apply Lemmas V.9, V.10, and II.3:
K(z) = —1(z) + W,(1 = P}z = Hy)” Vi1 = Pyy)z — Hp)™*
X Vkl[(z - H) ' = (z- Ho)_l]PikUﬂ
-1(z) + (Wy(l - Pij)(z - Hij)_lel(l - Pij,kl)(z - Hkl)—l

X Uy(1 + xii)_a)((l + x3) Wiy Py (z — Hik)_ll]jl)
- VVij(l - Pij)(z - H")—IVkl(l - Pij,kl)
x[(z - Hkl)_ —(z = Hy)~ ] x Ui
Lemmas V.9 and V.12 control the last term. Lemma V.10 and the fall off of ¥,
control the second factor of the middle term. If Uy, is bounded, then Lemmas V 4,
V.9, and V.12 control the first factor. When U, is unbounded, a density argument

shows that it suffices to prove uniform boundedness of the first factor. To do this,
we rewrite this first factor as

Wij(l - P,.j)(z - Hij)_lel(l - Pij,kI)(Z - Hu)_l
X PuUy(1 + x3) " + W;(1 - P)(z - Hy’)_l
X V(1 = Py )z = Hy)™ (1 - P U, (1 + x5) %

Lemmas V.8 and V.21 show the second term is uniformly bounded. Corollary V.5
and Lemmas V.4 and V.12 control the first term.
To control IV(z), we proceed as in the proof of Proposition V.25. This shows that
we need only prove C(2)Vy(z — Hy)~ P,k ; is compact and well behaved. Since
W,(z — H,) 'P, U 4 is bounded for large negatlve Re z, compactness follows from
arguments in the proof of Proposition V.25. To prove C(2)V,(z — H,)~ P,k
well behaved, notice that the first and third entries are of the same form as III(z)

above. The second entry may be rewritten as
PijWkl[(z - Hik)_l -(z - HO)—I]PikU
+PijWkI(z - Hkl)_lel(z Hy)™ P.k
_Py'Wkl[(z - Hkl)_l - (- Ho)_ ]PikUjl-

Replace each (z — H,,)” ' in these expressions by (z — H,)"'P, + (z — H,)~\(1

— P,)). The only terms which are not controlled by various lemmas are those

containing the factor P,,.. To control them, notice that W,,P,, and P, U,, are

bounded. Then use Lemma V.4 and the fall off of ¥; and ¥, to obtain factors

which are controlled by Lemma II.3. This controls the second entry of C(2)Vy(z —
H,)™'P, U,. The same method applies to the fourth entry. [J

PrROPOSITION V.28. Assume Hypotheses (1)-(3), and (5). Let i, j, k, and 1l be
distinct, and let n = i or j. The following are well behaved and compact:

-1
Ki(z) = P.'jWkl(l - Pij,kl)(z - Hij,kl) Vik(z :k) sz
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and

-1
Ky(z) = PijWkl(l - Pij,kl)(z - Hij,kl) Val(z - xk) PPt n

ProoF. Consider only K,(z); the proof for K,(z) is similar.

For large negative Rez, W,(z — H,)"'P, U, is bounded, so compactness
follows from Proposition V.26. It is therefore sufficient to show K,(z) is well
behaved.

P; commutes with W}, and Py(1 — P;,,)) = P(1 — P,)). So,

K\(z) = PijWkI(l = Py)(z - Hkl)_lV'k(z - Hik)_lPikUjl
-1
+PW, (1 — Py)(z - Hy)™' = Pyu)z = Hyyy)
Va(z — Hy)™ 'P, wUj
Lemma V.12 controls the first term. Proposition V.27 controls the second. [J

PROPOSITION V.29. Assume Hypotheses (1)—-(3), and (5). Let i, j, k, and | be
distinct; let n = i, j, or k; let p be any index not equal to n or l; let q be the index not
equal n, I, or p. The following are well behaved and compact:

Ki(2) = piPy(Vae + Vi )z = Hy) 7' (1 = Py)
X[Vulz = Hy) 'V, + V,,) + Vp(z — H,) 'V, + V)]
X (z - nlp) PoioPrip
and
Ky(z) = pyk ( jk)(z - Hijk)_l(l - Pijk)
Vulz — Hnl)_leq(Z nl,pq) nlpqPnipg

ProoF. Consider only K,(z); proof for K,(z) is similar.
For large negative Re z,

Wz — Hnl)_l( Vnp + Vpl)(z - anp) Ianb
and

W,(z — H,)" (V + Vu)(z - anp) PP
are uniformly bounded, so compactness and limg, , ,_ || K;(z)|| = O follow from
Proposition V.16.

Let X(2) = p /P (V. + Vy)(z — ijk)_l(l = Py
Ki(z) = X(2)(V,y + V,))(z — n(u) PopPrp
—X(2)Vu(z — Hy)™ an,Pn:p - X(2)¥, l(z pl)_an@Pngp-

The second and third terms can each be broken into two terms which are
controlled by Proposition V.18 or Lemma V.8 and Proposition V.16.
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Since {i, j, k} = {n, p, q}, the first term equals:
pij_,klP!'j(Vik + V)1 = Py )(z - an)_l(an + Vu)(z - Hnlp)_l
X Py + Py—kng( Vie + V)1 = ijk)(z - Hijk)_l
X (Vag + Voolz = Hp) "\ (Voy + V)2 = Hop) ™' Py,
This may be rewritten as a sum of four terms:
() = o Py(Vie + V;)(1 = Py)(z = Hyyp) ™' Py,
I(z) = —Pg'_,kle(Vik + V;’k)(l - Pijk)(z - an)_angoPnzp:
1I(z) = pjPy(Vie + Vi )(1 — Pijk)
X (2 = Hy) ' (Vg + Vo )(z = Hyp) "' Popprp,
IV(z) = —p; Py(Vie + Vi )(1 — Py)
X (z = Hy) '(Vug + V, )z = Hy) ' Pty

I(z) = P.,_kle( Vie + ij)(z - Hnb)_anlppnlb
—pi;klPij( Vi + Vi) Pz — Hn{p)_anIppnlp'

The first term in this expression equals
- a -a -1
[Py Us(1 + )" ][ (1 + =) "Wz = Koy = Enp) ™' Puony |

_ a —a -1
+ [ ptP U1 + =2 ][(1 + x2) Wz ~ Koy = Epp) ™ Py |-
Lemma V.4 bounds the first factors. The methods of Lemma II.3 control the
second factors. The second term in the last expression for 1(z) equals

- (py—kIPy U.k)( VVikPijk)(})ijkPn(vanul)(pnlp(z - H,)" anqu)

— - -1
- (Py,klPij ljjk)( ijpyk)(Pg'kPnszn(ol)(Pnlp(z - Hn!p) P,.q,)-
Lemma V.4 bounds the first factors. Corollary V.5 bounds the second factors. The

proof of Lemma V.4 bounds the third factors. Lemma IL.3 controls the final
factors.

M(z) = p Py(Vi + Vi )(1 — Py )z — Hijk)_anq(z'_ Hnlp)_lpn(upnlp
- -1 -1
+pij,klPij(Vik + ij)(l - Pijk)(z - H.-jk) qu(z - Hmp) an,P,.q,-
Since (z — H,,)"'P,, = (z — K,, — E;) 'P,,, Lemma V4 and Lemma IL3
show (1 + x% + x2 + x2)*W, (z = H,,)"'P,,p,, is well behaved. Following the
proof of Proposition V.16,
- -1 ~a
oy (Vi + Vi )(1 = Py )z — Hy )7 U, (1 + X2 + x4 + x2)

is well behaved. This controls the first term in the last expression for III(z). The
same proof controls the second term.

Since {n, p, g} = {i,J, k},
I(z) + IV(z) = _Py?kIP.-j( Vi + ij)(l - P.'jk)(z - H,jk)_anqunqp-
The proof of Proposition V.16 shows this is well behaved. [J
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PROPOSITION V.30. Assume Hypotheses (1)-(3), and (5). Let i, j, k, and | be
distinct. The following are compact and well behaved:

K\(z) = P;;;sz(l - Pij,kl)(z - IIxj,kl)_l

X [ Vi(z = Hik)_lel + Vy(z - sz)_lV.'k](Z - Hikﬂ)_lpy',klpy,kh
Ky(z) = PijWkl(l - Pij,kl)(z - Hij,kl)_l

X[ Vielz = Hi) "' (Ve + V) + Vilz = Hy) "' (Vi + V)|

X (z - Hijk)-lpijkpy'k’
Ky(z) = PijWkl(l - Pij,kl)(z - Hij,kl)_l

X[Vil(z — Hy)) (Vi + Vi) + Vilz — Hy) ™'V, + Vlk)]

X (z = Hy) ' Puou.

Proor. Compactness and the limiting behavior as Re z —» — oo follow from
Proposition V.26 and simple bounds.
Let

X(z) PijWkl(z - Hij,kl)_l(l - Pij,kl)
Wkl(z - Hij,kl)—lpij(l - Py);
K\(z) = X)) (Vi + Vy)(z - Hik,il)_lPik,ilpik,il

- -1
= X(2)Vy(z — Hy) 'P e iPikgt — X (2) le(z - II;I) Py P -

Trivial extensions of Proposition V.28 control the last two terms. The first term
equals:

[PyWalz — H) ™' (1 = Pu) Up(1 + x3)°]
x[(1+ x) " Walz = Hyep) ™ Pusibues
+[PiWiulz = Hya)™'(1 = P Uy(1 + x3)°]
X[(1+ x2) "Wz = Hyy) ™ Pucyuc -

Due to the fall off of ¥, the proof of Proposition V.26 can easily be extended to
show the first factors are well behaved. The methods of Lemmas I1.3 and V.4 show
the second factors are well behaved.

-1
Ky(z) = X(2) (Vi + Vi )(z — Hy) ™ Pioip
- -1
- X(2)Vy(z — Hy) lPijkpijk - X(z)ij(z - H,k) Pijkpijk'
The last two terms can each be written as sums of two terms, which are well

behaved by Proposition V.28 or Proposition V.26 and Lemma V.8. The first term

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



60 G. A. HAGEDORN

equals:
PWy, (1 — Py )z — Hij)_l(Vik + Vi )z - Hijk)_lP:jkpijk
+ PiW,,(1 = P )z — m;,u)—lel(z - Hij)—l(Vik + V,k)
x (z - Hg‘k)—lPiikpijk'
We write this as a sum of four terms:
I(Z) = PijWkI(l - Pl_‘i,kl)(z - Hijk)_ng'kpijk’
I(z) = =~ PyWu(1 = Pz = Hy) ™ Pyabyes
(z) = Py Wyl = Pz = Hy) ™' Velz = Hy) ™ Pyt
IV(z) = _PijWkI(l - Pij,kl)(z - Hij,kl)—leI(Z - Hyj)_lekPg'k-
I(z) = (P;W,,(1 — P;,)P, g-kpiﬁcl)(Pyk(z - H.jk)_lpyk)o
Apply Lemmas V.4 and I1.3 to control this.
III(z) = (PijWkl(l - Pij,kl)(z - H:j,kl)_lUkl)( WuPykP.ﬁl)
X (Pijk(z - Hijk)—lpijk)'

The proof of Proposition V.26 easily generalizes to control the first factor; Lemma
V.4 bounds the second factor; and Lemma I1.3 controls the third.

-1
II(z) + IV(z) = _PijWkl(l - Pij,kl)(z - Hij,kz) POy
The proof of Proposition V.26 generalizes to control this term:
Ky(2) = X(2) (Vi + Va)(z = Hy) ™' Pypin
- X(2)Vu(z - I{il)_lPiklpilk — X(2)Vul(z - I{ik)—lPx’Ikpilk’

The second and third terms are of a form studied in the proof for K,(z). The first
term equals

[PyWi(l = Pyu)(z — Hyp)T'Up(1 + x5)°]
X[(1+ x2) Wiz ~ Hy) ™' Puouc]
+[PyWi(l = Pz = Hy) "' U(1 + x0)°]
X [(1+ x2) Wiz = Hu) ™" Pupuc].

The first factors are of the same form as terms which have been controlled in the
proof for K,(z). The second factors are controlled by methods of Lemmas V.4 and
I1.3. O
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PROPOSITION V.31. Assume Hypotheses (1)—(3), and (5). Let i, j, k and | be distinct.
The following are well behaved and compact:

Ki(z2) = Wy(1 = P,)(z = Hy)"'(Viu + V3 )(1 = Pz = Hy)™'
X[ Vi(z = H)7'(Vy + V) + Vi(z = Hy)T'(Vy + V)]
x(z - Hijl)_leIPyb
Ky(2) = Wij(l - Py)(z - Hij)_l(Vik + ij)(l - Pijk)(z - Hijk)—l
X Viu(z — Hkl)—quj(z - Hy,kl)_le,kzPy,kb
Ky(2) = Wij(l - Pij)(z - Hij)—lel(l - Pg‘,kl)(z - Hy,u)_l
X[ Vielz = Ha) (Vi + V) + Vlz = H,) ' (Vi + V) ]
x(z - Iiijk)_lpijkpijk’
Ky(z) = Wg‘(l - Pij)(z - Hij)_qu(l - Pij,kl)(z - IIij,kl)-l
X[Vik(z - Hik)-leI + le(z - Hjl)—lVik](z - Hik,,'l)—le,kle,kr

ProoF. Consider only K;(z); the proofs for the others are similar.
Since

Wy(z — Hil)_l(ij + Vij)(z - H.ﬂ)_lezP.jl
and
1 -1
W,(z - H,) (Vy+ V;)(z — Hy/) Pyi0y

are bounded for large negative Re z, compactness of K;(z) at large negative Re z
follows from Proposition V.15.
Let

X(z) = Wij(l - Pij)(z - Hij)_l(Vik + ij)(l - Pijk)(z - Hijk)—l'
Then,
K\(2) = X(2)(Vy + V)2 — H.j/)_leIPyI
- X(2)Vy(z - Hil)_ng'lel - X(Z)V}l(z - Hﬂ)_leﬂPyl-

The second and third terms can each be broken into two terms which are well
behaved by Proposition V.17 or Lemma V.8 and Proposition V.15. The first term
equals

w,(1- P,)(z - Hij)—l(Vik + V(1 - Py)(z - H.j)—l( Va+ V)
X (z ~ Hiji)—lelel
+W,(1 - P)(z - Hy)—l(Vik + V)1 = Py )(z — Hijk)_l(Vik + V}k)
X (z - Ilij)_l(ViI + V) (z - Hw)—‘Pylel-
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This may be written as a sum of four terms:

I(z) = W;(1 - P)(z - Hy)(Vy + Vi )(1 = Py )(z — Hijl)_lPijlpijl’
1(z) = = W,(1 = PNz = Hy) ™' (Vie + Vi )(1 = Py)(z ~ Hy) ™ Pypy,
I(z) = W,(1 — )z = Hy)™'(Va + V)1 = Py )z — Hy,)™'

X (Ve + Vy)z — Hijl)_le‘lpijl’
IV(z) = — Wy(1 = Py)(z — Hy)"'(Vie + V(1 = Pu)(z — Hy) ™'
X (Vi + Vi)(z — ) Pypy-

I(z) = (VV.'j(l - Pij)(z - Hij) k)( ik ylpql l)(pyl(z ijl)—]pijl)
+(Wy(1 - Py(z — ,,) Ui (Wy Pyoy )(pyl(z yl)—lpijl)
-(W(1 - Pz — Hij) U (W, ykuzPyl )(pyl(z yz)_lpyl)
—(Wy(l - PXz — Hy)~ lU,k)( WP, ik Pup; )(pyl(z ijl)_lpy'l)'

Apply Lemmas V.4, V.8, and I1.3.

III(z) and II(z) + IV(z) are well behaved for the same reasons that III(z) and
II(z) + IV(z) in Proposition V.29 are well behaved. The only difference is that
Proposition V.15 must be used in place of Proposition V.16. [J

PROPOSITION V.32. Assume Hypotheses (1)—(3), and (5). Let i, j, k, and | be
distinct.
Ky(z) = W;(1 — P;)(z — Hij)_l(Vik + V)1 — Py )z — I{:_'ik)_l
Va(z = I{il)—lek(z - Hiljk)—lPil,ikpiI,ik
is well behaved and compact.
If Hypothesis (4) also holds, then the following are well behaved and compact:
Kz(z) = W'(l - P")(Z - Hij)_l(Vik + ij)(l - Pijk)(z - H.'jk)_]
[ Va(z = Hy) "'\(Vy + Vi) + Vigz — Hy) ™' (Ve + Vxl)]
X (z = Hy)™ ' Pupi-
Ky(z) = W.-j(l - Pij)(z - Hij) Vkl(l - Pij,kl)(z - I-I:j,kl)_l
X[Vil(z - H'I)_I(Vik + Vlk) + Vik(z - Hik)~ (V + Vl)]
X (z = Hy) ™' Pupi-

Proor. Consider only K;(z); proofs for the others are similar. The extra assump-
tion is required for K,(z) and K;(z) because they contain P, rather than P ;.
Hypotheses (1)—(3), and (5) imply E;; < 0; Hypotheses (3) and (4) require

Compactness for K;(z) follows from Proposition V.15 for large negative Re z,
since Wy(z — H,)" 'V (z — H, ',k) 1 kPir i is bounded for large negative Re z:
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Ki(z) = Wy(1 — Py)(z = Hy)"'(Vie + Vi)(1 = Py)(z — Hy) ™'
X Vy(z - Hil,ik)_lP it jicPil jk
~W;(1 - Py)(z - }Iij)—l(Vik + Vi) = Py)(z - IIijk)—l
XVy(z - IIII)_lPil,ikpil,ik'
By Proposition V.17, the second term is well behaved. The first term equals
Wy(1 = P}z = Hy) '(Ve + Va1 = Py)(z — Hy)™
X Vy(z - Hiljk)_lP il ik Pil je
+ Wyl = Py)z = Hy)) " (Va + V)1 = Py)(z = Hy) ™
X (V; + Va)(z — ij)_lVa(z - Hil,ik)_lPiIJkpiljk
= Wg'(l - Px_'i)(z - Hij)—l(Vik + ij)(l - Piik)(z - Hile)—lPiI,ikpiIJk
- Wij(l - Pij)(z - H.j)—l(Vik + V}k)(l - Pijk)(z - ij)_lekPil,fk
+ Wij(l - P}z - Hij)_l(Vik + ij)(l - Pijk)(z - Hyk)—l
x (V; + Val(z — Hil,ik)_lPilepil,ik
- Wy(l - Pij)(z - Hij)_l(Vik + ij)(l - Pijk)(z - Hg'k)_l

-1
x (V,; + Vad(z = Hz) ™ Pyjubise-
This may be written as a sum of seven terms!

I(z) = Wij(l - Pij)(z - Hy)—lV.'k(z - Hil,,'k)_lPil,,‘kPil,,'k’
1(z) = Wij(l - Pij)(z - I{ij)_ly}k(z - I{il,ik)—lPilepil,ik:
i(z) = - Wij(l - P:j)(z - Hg‘)_](Vik + ij)Pijk(z - Hil,ik)_lPil,ikpiI,ik’
IV(z) = = W;(1 = P,)(z = Hy)"'(Vie + V(1 = Pz = H) ™ Pagebugeo
V() = Wy(1 = By)(z = Hy) " (Ve + V)1 = Py)(z = Hy) ™'
X (Vi + Vi )z — Hil,jk)_lpil,ikpﬂjk’
Vi(z) = - Wij(l - Pij)(z - Hij)_l(Vik + ij)(l - Pijk)(z - Hijk)_lPﬂ,;kPiI,iks
VII(z) = W;(1 - P;)(z — Hij)_l(Vik + V)1 = Py)(z — 'Iljk)PiIJkpil,ik'
I(z) = (Wy(1 = PyXz — H) '"U X W Pyjutiin) Cuulz — Hy )~ 'ouin)-
Apply Lemmas V.4, V.8, and I1.3:
I(z) = Wy(l - Pij)(z - Ho)_lek(Z - Hil,jk)_lPiI,ikPu,;k
+(W,(1 - P)(z ~ Hy)'Y,)

X (Wij(z - HO)_lek(z - Hil,ik)_lPil,ikPu,ik)-
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Lemma V.7 shows the first factor of the second term is well behaved.

-1 -1
(Z - Hil,ik) Py = (Z - Eil,jk - Kil,jk) Py
and (z — E;; — K, ',.,‘)‘l commutes with V. Moreover,

(z - Ho)—l(z - Eil,jk - Kﬂ,/k)_l
_ - . . -1
=[(Z — Hy) - (z - Eyu — Kil,ik) I](Ho( ) 4+ H — Eil,ik) .

The second factor of the second term in the expression for II(z) can now be written
as:

(Wij[(z - Ho)_l - (Z - Eil,jk - Ku,ik)_l]Pﬂ,,-k)
X ((Ho(x”) + Hfw) — Eu,;k)_lUjk)(ijPﬂ,jk)-

The methods of Lemma I1.3 control the first factor; Corollary V.5 bounds the last
factor; Theorem I1.10 and Hypothesis (3) imply E, ; is negative, so the middle
factor is bounded (for K, and K, we need Hypothesis (4) at this point). The first
term in the expression for II(z) is treated by the same method.

III(z) may be controlled by using Lemma V.4, the methods of Lemma I1.3, and
Corollary V.5.

_l p—

IV(z) = Wij(l - Pij)(z — Hy) (Vy + ij)Pijk(z - H,k) lPil,jkpil,ik
- Wy(l - Pij)(z - Hij)_lVik(z - ij)_lPil,kaiI,;k
- W;(1 - P)(z - Hy)_lek(z - ij)_lPu,,'kPu,jk-

The first term may be controlled by the method used for III(z), above. Lemma
V.12 controls the remaining terms.

If Proposition V.16 is replaced by Proposition V.15, then the argument for III(z)
in Proposition V.29 shows that V(z) is well behaved.

VI(z) is well behaved by the proof of Proposition V.15.

VII(z) is well behaved by Lemma V.12. [

VL Generic couplings. Hypotheses (1), (2), and (4) of §V hold for a large class of
potentials (by Theorem 11.10). However, Hypothesis (3) fails for some elements of
any reasonable vector space of potentials. In this section, we show that Hypotheses
(1) and (2) imply Hypothesis (3) for all couplings in the complement of a closed set
of measure zero.

For the two body problem, Hypothesis (3) trivially holds, because there are no
nontrivial cluster decompositions.

When N = 3, there are three nontrivial cluster decompositions, with cluster
Hamiltonians k; = h§ + A; V. Hypothesis (3) states that 0 is not an eigenvalue or
resonance energy for h;. This means 1 is not an eigenvalue of A; W;(0 — hy)~ 1U,.j.

When A; =0, A, W;(0 — hp)™ ‘Uij is the zero operator. Moreover, A; W;(0 —
ho)"U,.j is a compact operator valued analytic function of A;. So, the analytic
Fredholm theorem shows that Hypothesis (3) fails only when A; belongs to some
discrete subset A; C R.
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Since {(A;2> A13> Ay3) € R%: some A; € A;} is closed and has codimension 1, the
set of couplings where Hypothesis (3) can fail is closed and has Lebesgue measure
zero in R>,

For N = 4, the situation is more complicated because Hypothesis (3) imposes the
above conditions on the two body subsystems, as well as conditions on the three
body subsystems. For each cluster Hamiltonian

By = B§90 + NV + NV + NV,
we construct M(A;, Ay, Ay, 2), as in equation (IV.6). Hypothesis (3) requires that 1
not be a eigenvalue of M(A;, Ay, Ay, z), whenever z is a threshold for hy.
M, Ay> Ak, 2) is analytic in the A variables, except when some A, belongs to A,
At this point, M is discontinuous, and the argument used above for N = 3 is not
valid.

For the nonzero thresholds (which must be negative), we can modify the
argument so that it is valid in the four body case:

LEMMA VL.1. Suppose N = 4 and Hypotheses (1) and (2) hold. Let T, C R® be the
set of couplings {N;}, such that Hypothesis (3) fails for H({N;}) = Hy + 2, \;V; at
a negative energy threshold. Then the closure of T'| has Lebesgue measure zero.

PrOOF. Since the two body subsystems have no negative thresholds, the conclu-
sion of the lemma is a statement about the three body subsystems only.

If by, is a three body cluster Hamiltonian, then a negative energy threshold E for
h;, depends only on one coupling constant, which we may assume is A;. Fix
Ay € A;. The operator M(A;, Ay, A, E(\)) * i0) associated to Ay, has a compact
square and is analytic for (A, A;) € §, where

2 = {(Ai Ni) € R: N & Ay, Ny & A}

£ is a union of open squares, and on each square A there are two possibilities:

D) 1 & o(MA, Ay, Ais EQA) = i0)) for some (A, Ax) € A

(i) 1 € o(M(Ay, Ay, A, EQ) £ 00)) for all (A, A,) € A
When the first possibility occurs, the analytic Fredholm theorem shows that
1 € a(M(\;, Ay, Ay, EQA) £ i0)) only for those (A, Ay) € A, which belong to a
measure zero union of analytic varieties. The union of the boundary of A and these
varieties is closed in R2.

Since A, has finitely many thresholds (see Simon [29]), we see that the intersec-
tion of I', with any compact set is contained in a finite union of closed sets of
measure zero, if possibility (i) above, never occurs. Thus, it suffices to prove that
there is no square A such that M(A;, A, Ay, E(A;)) % i0) has eigenvalue 1 for all
(> M) € A.

M()\,.j, 0,0, E(}\,.j) + i0) = 0. So, if such a square A exists, we may assume (by
changing squares if necessary) that A is adjacent to a square A,, on which
possibility (i) occurs. Moreover, without loss, we may assume that it is possible to
move from A, to A by increasing A,

Fix Ay so that (A, Ay) € A, for some A, and let N\, 2) = M, Ay, Ay, 2),
where A, is chosen so that (A, A;) € A,. As we increase A, N(),, z) is analytic
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until A, approaches w € A,. At this point, P, (A,) has a discontinuity. However,
by representing P,()\,) as a contour integral, we see that it has an analytic
continuation P;(A;) from the region A, € (w — ¢,, w) into the region A, € (v —
e, w + &), wheree, > 0,¢, > 0.

For 0 < Ay — w <&, Pu(Ay) — Pi(\y) is the projection onto the new eigen-
functions of £, (A;) ® 1, which appear as A, passes through w. Let S(A,) be the
infimum of the corresponding new thresholds for A,

Replacing P, (A;) by P;(7;) in Lemmas V.4, V.8, and V.11-V.13, we see that
N(Ay, z) has an analytic continuation into the region A, € (w — &, @ — ¢,), as
long as z & [B(Ay), ). Since E(A;) <0 and B(w) =0, NQy, EQy) * i0) is
analytic for w ~ ¢; < \; < @ + &;, for some ¢ > 0.

When o < Ay < w + &, Ay, Ay) € A. So, there exists a vector

&1 ()
&;2(\)
Die, 1 (M)
D 2(Nie) ’
D1 (Ai)
B 2(Aie)

such that $(A;) = M, Ay, A, EQA) = i0)p(A,), whenever A, belongs to some
open subset of (w, w + ;). Define

o) =

r -

&;.1(Ax)

&2(Au)

[ i1 Ai) + A Wi (P ()
Yw) =] — PN ) G (e PP 2(Nie) ] .
Py (N )b 2(Aie)
B (Aix)

D 2(Aix)

Then y(;) = Ny, EQ) = i), (A,) for all A, in the same open subset of
(w, w + &).

The analytic Fredholm theorem now shows that 1 € e(NA,, EQ\;) * i0)) for
w — & < A < w. Since this is true for all choices of A, such that (A, A;) € A,
for some A, we conclude that M(A;, Ay, Ay, E(A;) * i0) has a constant eigenvalue
1 for all (A, A;) € A,. This contradicts the choice of A, and the lemma is proved.
O

REMARK. The above argument fails for the zero energy threshold, because the
new thresholds appear at zero when A, passes w. To avoid this problem, we move
A, around w in the complex plane. The next lemma shows that we may do so
without having the cuts of Ocss(hyi) cross the negative real axis.
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LEMMA VL1.2. Assume Hypotheses (1) and (2) for the two body Hamiltonian
H@Q\) = Hy + AV. There is an open complex neighborhood X of the real axis, such
that A € X and Im X = 0 imply that H(A\) has no eigenvalues in the real interval
(— 00, 0]. Moreover, A\ € X and Im A % 0 imply H(\) has no zero energy resonances.

PROOF. The analytic Fredholm theorem shows that 1 € s(AW(0 — H,)~'U) only
when A belongs to a discrete subset A of the complex plane. There exists an open
neighborhood X of the real axis, such that A 1 X C R. Since H(A) has a zero
energy resonance or eigenvalue if and only if A € A, we need only show that
Im A # 0 implies H(A) has no eigenvalues in (— oo, 0).

Suppose HQA)p = E¢, where Im A # 0 and E < 0.

<¢’ H0¢> + A<¢, V¢> = E<¢’ ¢> < 0.

Since (¢, Hyp) > 0, A{$, V$) must be negative. Since (¢, ¥'$) € R, Im A must be
zero. This contradicts Im A #= 0. O

PROPOSITION V1.3. Assume Hypotheses (1) and (2) for the N < 4 body Hamiltonian
H({\;}) = Ho + zq}"ijVij'

Let T denote the set of all couplings {N;} such that Hypothesis (3) fails for H({A;}).
Then T is closed and has Lebesgue measure zero.

Proor. T is closed because eigenvalues and thresholds depend continuously on
the couplings.

When N =2 or 3, the discussion at the beginning of this section proves the
proposition. When N = 4, Lemma IV.l shows that we need only study the
threshold at zero energy. '

The method of proof used for Lemma VI.1 may be applied to the zero energy
threshold, with the following change. We cannot analytically continue N(A,, 0 =
i0) through the point w € A,,. However, Lemmas V.4, V.8, and V.11-V.13, and
V1.2 show that we may continue N(A,, 0 % i0) from the region w — &, < Ay < w
(Ax € R) into the region

R={N=w+re”:0<r<e0<argh <2r}.

These lemmas also show that M(A;, Ay, Ay, 0 + i0) and M(}\,.j, Ak >\jk, 0 — i0) have
analytic continuations from the region w < A;, < w + § into regions which inter-
sect R in open subsets of the complex plane.

Using the fact that the analytically continued M operators have constant
eigenvalue 1, we conclude that the analytically continued N operators have
constant eigenvalue 1. (This is done as in Lemma VL1, by explicitly constructing
the eigenfunction of N from the eigenfunction of M, for A, in the open set to
which both operators have been continued.)

This argument shows that M(A;, Ay, A, 0 = i0) has constant eigenvalue 1 on the
square A,, as in the proof of Lemma VI.1. This contradicts the choice of A, and
proves the proposition. []
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REMARK. The coupling constants A; and A, are treated very differently in the
proof of Lemma VI.1. So, our results say nothing abpout the case in which various
coupling constants must be equal.

Appendix. Representative sample of the blocks of the matrices A(z), C(z), and
M(z) discussed in §IV,

The Matrix A(z)

A (2) - [ G U,. GV.G P .p. . 0 ]
ij o ij o ij ij ij ij
A (2) elcu. 6v.c.rp.p LG v .6 (V. #V..) + V. 6. (V..+V,.)
ij,ijk o Y15 %0¥ij%i3P15%15,x 3% Vi5%;5 Vin*Vjx 18k Vi5*Y5x
* V505 (Vi Vi) 1655kPikPijk
1
A =| 6 U, GV, G P U V.G, V.. +V G V.
1]-(1J.k’~)(z) o UlJ ov1361] ij k& ’Z’Go[ ij i1j ke ke k& 1]1
* Gij,keFij, kePij ke

The Matrix C(z)

W;iGij (1-Pi3)

-1

Cij(z) = 035 Pij
| o
Wi3615 (1-Py3) (ViptVipd 6y 5k (1-Py500)
-1
- P, (V. +V. )G, (1-P.
Cij,15%(®) #5071 ViV G P

-1

L ik Tijk

WG . (1-P. )V G 1-p
13555 P55 Ve b5 ke Py i)
P.W G 1-P

LT TRTARI TR T

-1 P
Pij,ke7ij, ke

€5, i3,k ®)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12612 (1-Py ) V52V 2) G5 (1P 50U

1237714

N ,
P12,3P12 V137V 2306y 1P 53500

-1
1237123014

Wy 2612 (1P ) (Vy3#V53)G) 3 (1P 500Uy,

V.15
0i} PV, V)G, (1-P. U
12,3512(V13° V239623 (1-Py 53003,
V.16
-1
f123" 123554
v.a

ASYMPTOTIC COMPLETENESS

12, 123; 14, 124

K10 P ) (Vy3#Vpg)Grpy

a- 173)\14 14 14 14,2

V.17

x

S .
012,312 V330605 (10 55)

V146147140 14,2

V.18

S
f123P103V 114 1901

V.19

12, 123; 34, 134

W) 2815 (1-Py V34V 506y 5 (1-Py )

V34634834034 1

x

1 R
P12,3P12(V13*V23)G1 25 (1P 55)

v34C34P34 34,1

V.18
B PV GD
7123123734734 34P34,1

V.19

69

91561, P) (V) 59V,0G) 55 (1P )

+V,,G

(V14074 (V15*V24) V24624 (V15*V14))

G124P124P124

x

S PNV,
3012,3P12 0V 57Va3) 02301 Py o0)

x

V1401 (V¥ d V360 (V) *V1 )]

L
Cr24P124P124

V.29

-1, .
23123Vl M Vo) G g g g

1
FM12612(1-Pp) (Vy3+V3306153(1-Py55)

x

(V34634 (Vy3#V14) V14614 (V137V34))

6134P134P134

V. 32

x

1 -1
5°12,3712(V137Y2306)23(1-Pyp5)

(v

x

34034 V3V V14614 V1 57V34))

6134%134P134

V.29

plp (V) 3*V )6

1237123V34%34 1476134P134P 134
V.20

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

x

x




70 G. A. HAGEDORN

12, 123; 14, 134

W 0y (1P ) (Vg 3oV gdGy o (1P o Uy WGy, (1P 5) (V) 5#V53)G 55 (1-P55)
V14614514145
V.15 V.17
-1 i -1 . )
P12,3P12 (V1372306155 (1-Py 30U P1a,3512Vi3*V23) 63 (2P pg) X
V14614714P14 5
V.16 V.18
e w dp v oGP
123712314 1237123145147 14°14,3
V.4 V.19

12, (12, 34); 13, (13, 24)

a6 (1Py)VayGyp 59 1Py 50Ups MGy (1-Pyp)VayCyp 54 (1P 50)
V13613713824
V.25 V.27
P1oM3at2,34(0Py5 342015 P)M34612 34 (1-Pya 39V 3613P13l
|
i
} V.26 V.28
\
1
'D'l P U} p'l P VoGP U
112,342,540 12,3412, 3481303 13
|
|
V.4 V.19

1. . . W
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