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ASYMPTOTIC COMPLETENESS FOR CLASSES
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BY

GEORGE A. HAGEDORN2

Abstract. Formulas for the resolvent (z — H)~x are derived, where H = H0 +
2»</ \¡y¡j is an Af particle Schrödinger operator with the center of mass motion
removed. For a large class of two-body potentials and generic couplings {\}, these
formulas are used to prove asymptotic completeness in the N < 4 body problem
when the space dimension is m > 3. The allowed potentials belong to a space of
dilation analytic multiplication operators which fall off more rapidly than r~2~' at
oo. In particular, Yukawa potentials, generalized Yukawa potentials, and potentials
of the form (1 + r)~2~' are allowed.

I. Introduction. The scattering theory of two particle nonrelativistic quantum
mechanics is reasonably well understood for short range potentials. The wave
operators are asymptotically complete, and the singular continuous spectrum is
empty (see Agmon [1], Enss [42], and Reed and Simon [24]). Much less is known
about general N particle scattering.

For N = 3 and space dimension m > 3, Faddeev [6] first proved completeness of
the wave operators for a large class of potentials and almost all coupling constants.
These results have been simplified and extended by Ginibre and Moulin [7],
Thomas [36], and Howland [11]. All of these authors require the potentials to fall
off faster than r~2~e at infinity and obtain Kuroda completeness for almost all
couplings. Mourre [19] has extended these results to allow potentials which fall
faster than r~l~e, as long as the potentials are repulsive for large r.

For general N, Balslev and Combes [3] have proved the absence of singular
continuous spectrum for dilation analytic potentials. Asymptotic completeness for
potentials falling off faster than r~2~e has been proved for small couplings by lorio
and O'Carrol [13], and for repulsive potentials falling off faster than r~5/2~e by
Lavine [18]. (These are single channel results only.) Hepp [10] and Sigal [26] have
reduced general iV-body asymptotic completeness to the verification of properties
of certain operators. They conjecture that these hold for generic potentials in
certain classes.

Simultaneous to our announcement [9] of results, Sigal [28] announced a proof of
asymptotic completeness for generic elements of a space of dilation analytic
potentials and almost all couplings. More recently, van Winter [43] announced a
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2 G. A. HAGEDORN

proof of completeness for some analytic Hilbert-Schmidt potentials. Also, Enss [42]
has obtained some many body results by beautiful, time dependent methods.

Our main results are the following:

Theorem 1.1. Let m > 3 and N < 4. Let

H - - 2 (2m,)-'A, + 2 \jVtí   on L2(R"">)
1=1 i<J

be the Schrödinger operator for N particles moving in m dimensions. Let H = H0 +
'Zj^XyVy denote the Schrödinger operator on L2(R(A,_1)m) for the same system with
the center of mass motion removed. Assume each Vy may be factored as V¡- = U„ Wy
so that

(i) each Uy and Wy is dilation analytic in some strip,
(ii) (1 + xïyUy(Xy) and (1 + xy)y Wy belong to Lp(Rm) + L°°(Rm) for some

p > m and y >\,
(iii) bound state energies of three body subsystems are nonpositive when N = 4.
Then for generic couplings {\}, asymptotic completeness holds.

Theorem 1.2. The set of generic couplings for Theorem 1.1 is large in the sense that
its complement is a closed set of Lebesgue measure zero.

Remarks. (1) Hypothesis (ii) of Theorem 1.1 implies that UU—A« + 1)~1/2 and
Wy(-Ay + 1)~1/2 are compact on L2(Rm). Thus, H = H0 + ZXyVy is understood
in the sense of quadratic forms.

(2) Balslev [2] and Simon [32] have given sufficient conditions for Hypothesis (iii)
to hold. See Theorem 11.10. Yukawa potentials, generalized Yukawa potentials, and
potentials of the form (1 + r)~2~e obey these conditions. Therefore, for these
potentials, Theorems 1.1 and 1.2 establish asymptotic completeness for generic
couplings.

(3) For the generic couplings, H has finitely many thresholds. Sigal [27] has also
obtained this result.

(4) The generic couplings are precisely those for which no cluster Hamiltonian
has a threshold resonance or threshold bound state.

(5) Theorem 1.1 will be proved under the assumption that all the masses are
finite. If one of the masses is infinite, the result still holds, but several lemmas from
§V must be modified. Various p functions must be changed, and in many instances,
Case 2 of Lemma II .3 must be used in place of Case 1.

Our proof of Theorems 1.1 and 1.2 is organized as follows: In §11, we collect
various technical results from the literature. Little is new here, except that weighted
spaces L2 are replaced by more general L£ spaces. In §111, A/-body Kuroda
completeness is reduced to the study of the resolvent (z — H)~\ Formulas for the
A/-body resolvent are derived in §IV. Equation (IV.4) is a generalization of
Faddeev's three body formula [6] to the Af-body case. It is much simpler than the
Yakubovskii formula [41], but we have not been able to prove that it has all the
desirable properties of the Yakubovskii equation. A second, more complicated
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ASYMPTOTIC COMPLETENESS 3

formula (equation (IV.5)), is derived from equation (IV.4). This formula is equiv-
alent to a formula of Narodetskii and Yakubovskii [20]. Equation (IV.5) is
modified for N < 4, in order to study scattering. In §V, these equations are used to
prove properties of (z — H)~ ' for N < 4 under certain hypotheses. The validity of
these hypotheses is studied in §VI.

Given the absence of singular continuous spectrum (Theorem 11.8) and the
existence of wave operators (Theorem 11.12), Theorems 1.1 and 1.2 follow im-
mediately from Theorem III.l, Propositions V.l, 2, and 3, and Proposition VI.3.

Remark. The principal reason we do not have results for N > 5 is that we have
been unable to prove the absence of spurious zeros in equation (IV. 10).

Acknowledgements. I am very grateful to Professor Barry Simon for introduc-
ing me to many body Schrödinger operators and for his advice throughout this
work. In addition, I would like to thank the ETH and IHES for their hospitality
during the Spring and Summer of 1977, and Dr. I. M. Sigal for pointing out an
error in a rough draft.

Preliminary definitions. The Schrödinger operator for a system of N particles
moving in m dimensions is H = - 2f=1(2m,)-1A,. + 2(</Vy on L2(RNm). The mass
of the f'th particle is m¡, A, is the Laplacian in the z'th variable, and the potential
energy between particles i and j is the multiplication operator ViJ{ri — rX We
remove the trivial center of mass motion (see [23]) from H, to obtain H = H0 +
l^VyOnX = L2(R("-1)m).

A cluster decomposition D = {C,}*_, is a partition of the set {1, 2, . . ., N) into
k disjoint clusters C¡. The Hamiltonian HD is defined as H0 + VD, where VD is the
sum of all Vy with i and j in the same cluster. The Hubert space % may be
decomposed as % ® X, ® • • • ®%k ® %(D), so that

HD - Aj ® I ® • • • ® 1 + 1 ® h2 <8> • •• ® 1 + • • •
+1 ® • • • ®hk ® 1 + 1 ® • • • ®1 ® KD.

The Hamiltonian h¡ corresponds to the energy of the particles in cluster C, alone.
KD is the kinetic energy of the centers of mass of the clusters in D.

For each cluster Hamiltonian h¡, we choose eigenfunctions i# of h¡, so that {t/^}
is an orthonormal basis for the subspace of %¡ generated by the eigenfunctions of
h,

A channel a is a cluster decomposition D(a), together with an eigenfunction
ijw e {tj/0} for each h¡. We define Ea = 2■_,£,., where Ä,.7)(0 = E^, and let Pa:
% -*% denote the orthogonal projection onto all vectors of the form t/(1) <8> tj(2)
(g> • • • ®riw ® <i>, where <i> e %(D(a)) is arbitrary. Let Ta = 1 ® 1 ® • • • ®\ ®
KDW + Ea, so that HDWPa = TaPa.

The channel wave operators are defined as

ß* = strong- limit  ei,He~UT"Pa
t-»±ao

if the limits exist. The wave operators are asymptotically complete if

% = 0 Ran ßa+ ®%haaA-® Ran il; 9 % ^^
a a

where Ot^una is the span of the eigenfunctions for H,
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4 G. A. HAGEDORN

Each ß* is an isometry, so the projection onto Ran ß* is ß^ß* *. Since the
channel wave operators have orthogonal ranges, the projection onto 0a Ran ß* is
2   ß±ß±*.

The ranges of the wave operators are contained in 9Cax-, the absolutely continu-
ous subspace for H. Thus, © Ran ß* C 3Cac. A weaker form of completeness is
the condition Pax = Sa ßjfß**. This is called Kuroda completeness. Kuroda com-
pleteness implies asymptotic completeness if H has no singular continuous
spectrum.

II. Technical devices. In this section we collect several results which are required
for the other sections.

A. Jacobi coordinates (see Reed and Simon [23]).
We will use two types of coordinate systems for R(N-')m. Both of these systems

have the property that H0 is of the form — Sf=r11(2ju,)_IA/, where ju,, > 0 and A, is
the Laplacian in the z'th coordinate. The particle positions r¡ and their differences
r¡ — rj are not simple in these coordinates.

To obtain Jacobi coordinates {£,}, we begin by labelling the particles by the
numbers 1,2, . . . , N. Then, for 1 < j < N — 1, we let f, denote the vector from
the center of mass particles 1, 2, ... ,j to particle j + 1. Explicitly, ^r = rJ+l —
(2,<y »%)-I2ï<y miri> where r, denotes the position of particle /.

The second type of coordinate system is used to put KD, the free Hamiltonian for
the centers of mass of the clusters of D, into the form — 2*~11(2/i,)~1A<w. For each
cluster C„ we choose Jacobi coordinates |¡, £¿ • • •. Qm-i f°r tne "(0 particles
labelled by the elements of C¡. Then we choose Jacobi coordinates f,, f2> ■ • • > f*-i
for the centers of mass of the clusters. The resulting coordinates

£i»• • • »£„(i)-i>  si»• • • >*£<*)-1>  »i»•••»**-!

are called clustered Jacobi coordinates for the cluster decomposition D.
B. Quadratic form techniques.
Quadratic forms are used to define the Hamiltonian H and to make sense out of

various expressions involving resolvents, potentials, and square roots of the poten-
tials.

The free Hamiltonian H0 is a positive self adjoint operator on %. We let %+1
denote the operator domain of H¿/2 with inner product <<f>, ̂>+i =
<<f>, ipy + (H¿/2<¡>,H¿/2\py. Since %+i Q %, each <j> G % defines a bounded
linear functional on %+1 by \p -» <¡<í>. '/')• Thus, % may be viewed as a subspace of
the dual space %_, of %+1.

For each pair i, j, L2(R(Ar"1)m) decomposes into L2(Rm) ® L2(R(N-2)m), where
the first factor denotes functions of Xy. Under this decomposition, Vy = v¡j ® 1.
We assume vu = UyWy such that uu( — Ay + 1)"I/2 and Wy(—ày + 1)_1/2 are com-
pact on L2(Rm).

We denote Uy <£> 1 by Uy and Wy ® 1 by Wy. The assumptions on Uy and Wy
imply that Uy-. % -» 3C_, and H^: 3C+1 -, SC are bounded. Moreover [22], for
each £ > 0, there exists a > 0, such that
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ASYMPTOTIC COMPLETENESS 5

|<*. *Í*>|-|<W' »#*>| < e||^||2+i + «IM|2
for all ^E 3C+1.

Given this bound, the KLMN Theorem [22] implies that there is a unique
self adjoint operator H with D(H) Q %+,, such that

for >// G 0C+1. For each cluster decomposition Z), the Hamiltonian Z/D is defined by
the same method.

If z E o(HD), then (z - HD)~X is bounded from DC_, into 3C+1. Hence, prod-
ucts of the form WtJ(z - HD)~ lUk¡ are bounded on %.

C. Estimates related to Kato smoothness.
Although Kato smoothness [15] does not play a central role in our asymptotic

completeness proof, some estimates from the theory of smooth perturbations will
be used.

At least seven equivalent definitions of Kato smoothness are available (see [15],
[24]). For our purposes, the following one is the most convenient.

Definition. A closed operator F is called Kato smooth with respect to a
selfadjoint operator A, if

\\F\fA = (2*yx        sup \(F*<S>,l(z-A)-'-(z--A)-x]F*<f)\<n.
zíR,4>6i)(f)

11*11 = 1
Lemma II. 1. Let <f>,: R -» % and <f>2: R -» % belong to L2(R, %), where % is a

Hilbert space; if

*j(\) = (2tt)-1/2 l.i.m.  f <¡>j(t)e-"x dt   forj - 1, 2,
•'R

then

( <*,(/), **(')> dt = f <¿,(A), ¿2(\)> dX.

Proof. The usual Plancherel theorem shows that Fourier transform *: L2(R) —»
L2(R) is unitary. Consequently, *®1: L2(R) ® % -» L2(R) <8> % is unitary. The
lemma follows from this by the natural identification of L2(R) ® % with
L2(R, %).   D

Remark. In the following lemma we prove an inequality. Equality can be proved
[15], [24], but we will only use the inequality.

Lemma II.2. Suppose F is Kato smooth with respect to A. Then

||F||2=^-' sup llmzllKz-^)-1/**!2
11*11-1

and

\\FfA >(2*ri   sup    r \\Fe-i,A<t>\\2 dt.
Il*ll-i y-°°

<*, m> =
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6 g. a. hagedorn

Proof.

(2*)-'!</>, [(z -A)'1- (z- -Ay^F*^

= (2w)-l\Z -x| |<F*<f>, (z" -^)_1(z - ^O"1***)!

= 7i--'|Imz| ||(z -y4)_1F*<)||2.

The first statement of the lemma follows by taking the supremum over z E R and
</>£ D(F*) with ||4>|| = 1.

The operator

(2ot)"1[(z-^)-1 -(z -Ay1] = ■u-'ilm z)(z - Ay'iz -A)'1

is positive when Im z > 0. Let K(z) be its positive square root. Since F is
^-smooth, ||ÀT(z)F*<i>||2 < ||F|fi||*||2 for all <¡> E D(F*). Therefore, Ran K(z) ç
D(F) and \\FK(z)\\ < \\F\\A.

If <£(X) = [(X + ie — A)   ' — (X — i'e — A)~x]<t>, then explicit computation shows
fa) - ie-«We-a4^. Thus, by Lemma II.l,

"°° • -    ..2
Mr-.     _ it A    .       *■

"2¿X

<

<

(2^)-1f     ||Fe-'M<¡>|| V2el" <Ä
•'-00

= (2„)-2 f°° ||F[(X + ie - Ay1 - (X - /e - ¿)->f
-'-oo

f °° ||/X(X + /e)||2 ||AT(X + /e)<i.||2 dX
* — eo

|F||2 piiAríx + fe^n2^
•'-oo

= (2™)"'ll^   f°° <*,[(X - ie - A)'1 - (X + te - ¿)~>> ¿*
•'— 00

77   •'-oo •'-oo   (A— ]U)    + e

The lemma follows by taking e to zero.    □
Definition. For 1 < /> < oo and S E R, L/(Rm) is the Banach space of func-

tions /: Rm ̂ C, such that (1 + x2)s/2f(x) E Lp(Rm). The ¿/-norm of / is the
L'-norm of (1 + x2)s/2f(x).

Remarks. (1) Lemma II.3 extends results of lorio and O'Carrol [13].
(2) If the operators Fx and F2 are equal in Lemma II.3, then we conclude that

Ff = FJ is //^-smooth.

Lemma 11.3. Let D be a cluster decomposition with at least two clusters. Let 8 > 1,
m > 3, px > m, and p2 > m. Suppose {f„ . . . , Çk_r} and {£,, . . . , £*_]} are two
(possibly identical) choices for the intercluster clustered Jacobi coordinates corre-
sponding to the cluster decomposition D. Suppose Fx E L/'(Rm) and F2 £ L/2(Rm).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ASYMPTOTIC COMPLETENESS 7

Let F[ and F2 denote multiplication by F,^) and F2(£\ respectively. Since {£,}
and {£,} are bases for the same space, £, = 2a,ff.

Case 1. // «, =7= 0, íAew Ff(z — HD)~XF2 is uniformly bounded and analytic for
z E C\a(HD), with norm continuous boundary values as z approaches o(HD) from
above and below.

Case 2. If a, = 0, then the same conclusions hold, except that the boundary values
are only strongly continuous.

Proof. For Im z > 0,

(z - HD)~X = -i f °° e-i,HDeUz dt.

e-i'HD _ e-HA  (g, e-„B   on   ¿2^ <g ¿2^(^-2)^^   where   ̂   first  fact()r  denotes
functions of £,. A is a negative multiple of the Laplacian, and e~"A has an
explicitly known integral kernel [22]. From the form of the integral kernel, an
interpolation argument shows that e~"A is bounded from Lr(Rm) to Ls(Rm) when
1 < r < 2 and r~x + s~x = 1. Moreover, the norm of e~"A is dominated by
(ci)_m(r"1_2").

Case 1. Since e~"Ä is unitary and commutes with Ff,

II F*e~UH<>F II = IIFfe~',AF-,IIH^ie r2||     111 2||-

To compute \\F[*e~"AF2<j>\\, fix f2, f3, . . ., Çk_v and compute the L2- norm in the
f, variable first.

Holder's inequality shows that F, and F2 belong to Lq(Rm) for m — e < q < m
+ e. With f2, . . . , fc_, fixed, F2(Sa,.?,.)<Kf„ • • • , &_,) belongs to L'iTT, «£,),
where r"1 = q~x + ¿. e_"/1 maps this into Z/(Rm, ¿Ç,), where j =\— q~x. Multi-
plication by F,(f,) then maps this back to L2(Rm, </f,). The result is

/KF.e-'^F^a,,...,^,,)!2^,

< (cty2m">\\Fxfq\\F2fq «r2-/«/^? „..., ^_,)|2 *,.

By integrating over f2, . . . , Çk_l, we obtain

||Ffe-^F2<í,|| < (a1<*)-"/f|/,I|Jjy¿Wa.

Since this is valid for qe(m — e, m + e), ||Ffc~/MF2|| is an Lx function of t.
For Im z > 0,

Ff(z - HDyxF2-i(XF*e-"H°F2eitz dt.

Thus,

||F*(z - HDyxF2\\ < fX\\F*e-i,AF2\\ dt < C.
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8 G. A. HAGEDORN

Also,

|F,[(z - HDyl - (w - HDyx]F2\\

< r°0||Ffe-''MF2|||e''" - ei,w\ dt
•'0

when Im z > 0 and Im w > 0. The norm Holder continuity now follows by the
bound: \ei,z - eitw\ < Min (2, t\z - w\).

Case 2. It follows from Case 1 that Ff(z - HD)~lFl and F\(z - HD)~XF2 are
uniformly bounded. Thus, Ff and F£ are //^-smooth.

Since a, = 0,
e-""D = e-i'A  (g, e~itB (g, e-uc

on L2(Rm, <#,) ® L2(Rm, dQ ® L2(R("-3)m). ¿ and 5 are negative multiples of
the Laplacian; C is selfadjoint.

For <¡>,\p G% and Im z > 0,

<<f>, Fï(z - HDyxF2ip> = -if °°<fc F*e-i,H->F^ye"z dt

= - i [°°<y V Ff 4?-'t*e-"cF2if'><?to di
•'o

= - / f°°(F2*eUB+, F*e-"Ae'i,cxP)eiu dt.

Henee,

KfcM'-^r-h**! < (/^iiFje'^f^^/^iiFre-'^f^)1'

Here we have used the Schwarz and Holder inequalities and Lemma II. 1.
To prove the strong continuity, the same type of computation shows:

!<<*>, F*[(z - HDyx -(w- HD)-l]F2*>\

x/2< <■»-• -     2.   ....        Ji     \'/2

1/2

< [¡"\FteUH"4'it)     [S~\\Fte-UHDñ

\\«M(f~\\^-i,H^\\V*-ei,W\2*)<IIF2
1/2

Hence,

\\Ff[(z - HDyx - (w - HDyl]F2^\\

<ll^ll^(/o°0||jFTe""WN/||2|e"Z " e^dt)

By the dominated convergence theorem, the integral tends to zero as z approaches
w.

The proof for Im z < 0 is similar.    □
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ASYMPTOTIC COMPLETENESS 9

Lemma II.4. Suppose F, and F2 satisfy the hypotheses of Lemma II.3. Then

F*[(X + /o - HDyx - (X - /o - fl^r^Fj

= F*[(X + iO - 7/,,)-1 - (X - iO - /^r'JF^z, 6)F2

for any X E (a, b). ED(a, b) denotes the spectral projection for HD corresponding to
the interval (a, b).

Proof. If F, and F2 are bounded, the result is trivial because
[(X + iO - HDyx - (X - iO - HDyx](\ - ED(a, b)) = 0.

More general functions F, and F2 are limits of bounded functions. By taking such
limits, the lemma follows from the bounds of Lemma H.3.   □

D. Fourier restriction theorems (Agmon [1], Kuroda [17]).
Definition. For k > 0, define «•(*): S(Rm)-> L2(Sm~x, du) by (ir(k)f\u) =

kx/2Cm~X)f(ku), where u belongs to the unit sphere Sm~x,f is the Fourier transform
of/, and du is the invariant surface measure on S""-1 Ç Rm.

Lemma ILS. Suppose 1 < p < 2, m > 3, and 1/2 < 5 < m/2. If S(p) = 20(1 -
p~l), then ir(k) extends to a bounded mapping of L^ÇR"1) into L2(Sm~x, du). The
norm of this mapping is bounded by

Min{clk(-m-x^p',-l/2\ c2k^m-x^p~l-x^+ («-i/2)(2-2/,-')]j)

where c, and c2 depend only on p. Moreover, if p > 1, then k h* ir(k) is norm Holder
continuous.

Proof. When/? = 2, these results may be found in [7] or [8].
When/? = 1, norm continuity in k does not hold, but the other results are trivial

because/is continuous and H/H«, < c||/||,.
The results now follow by interpolation (see Stein [35]) between Lx and L2. Note

that Holder continuity of order 0 on L2 and boundedness on L1 imply Holder
continuity of order 29(1 — p~x) on L^p) for 1 <p < 2.    □

Proposition II.6. Suppose mx > 3, S > 1, 1 <p < 2, and d(p) = 25(1 - p~x).
ir(k) extends to a bounded mapping of L£p)(Rm<) ® L2(Rm2) into L2(Sm,+m2~x, du).
The mapping k i-> -n(k) is strongly continuous and uniformly bounded in norm when k
is restricted to a bounded subset of (0, oo).

Proof (Ginibre and Moulin [7]). Choose / E S(Rm'+m2), and let /?, and p2
denote the Fourier conjugate variables to x, £ R1"1 and x2 E R""2. Decompose />,
into radial and angular variables \px\ and ux.

If kx = (k2 - b2|2)1/2 and m = m, + m2, then

li*(*)/||i>(S->) = fc(m-I)/MJ/i(*«)|2«fe>

-/   8(k - \p\)\f(p)\2 dp.
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10 G. A. HAGEDORN

Change variables to \pX w,, and/>2, and compute the |/>,| integral:

K*>/||2W) = k f        dp2k\m^ f      \f(kxuvp2)\2 du,
J\p2\<lc JSm¡-l

=  k 4>2^r1K(fcl)/(->/'2)||z.2(S'»,-.)>
J\Pi\<k

where the last norm is computed for fixed p2,f denotes partial Fourier transform in
the second variable, and mx(kx) denotes the Fourier restriction map in the first
variable.

By Lemma II.5, &f'H^A:,)!!2 is uniformly bounded for ¿, E (0, ¿) from
L^p)(Rm') into L2(Sm'~x, duX so

||*(*>/||Í*<5-) < kf        ̂ ^r'lKi^OfllA-.^II^R-')
J\P2\<k

<kC(k)f      4>2\\K;P2)¡)jm

= kC(k)fdx2\\f(;X2)\\lf(p)

= kC{k)\\jfUlf)9L*.

This implies the uniform boundedness for k restricted to a bounded subset of
(0, oo). The strong continuity of ir(k) follows from the norm continuity of TT\(kX
D

E. Dilation analyticity (Balslev and Combes [3], see also van Winter [38], [39]).
The unitary group of dilations on L2(R") is given by (U(9)f)(x) = ene/2\¡'(e9x). A

simple computation shows H0(9) = U(9)H0U(- 9) = e~29H0 for all 9 £ R. H0(9)
clearly extends to an analytic family H0(9) for all 9 E C.

Following Simon's treatment [30] of dilation analyticity for quadratic forms, we
make the following definitions.

Definition. Suppose a > 0. A compact operator v: %+l —* %_, belongs to the
class <3'a, if and only if the family of operators v(9) = U(9)vU( — 9) has an analytic
continuation to {9: \lm9\ < a] as operators from %+l into 0C_,. If v(9):
%+i -* 3C_, is norm continuous in {9: |Im 9\ < a} and analytic in {9: |Im 9\ <
a], then v belongs to the class Wa.

If v £ 3Fa for some a > 0, then v is called dilation analytic.
If H = H0 + 'Zt^Vy, where Vy = V¡J ® 1 and each vg E Wa, then H(9) = H0(9)

+ 2i<:jVs(0) may be defined by quadratic form methods. If D is a cluster
decomposition, then HD(9) and the cluster Hamiltonians, h¡(9) may be defined.

Let D be a cluster decomposition, with cluster Hamiltonians A, (1 < / < k). If
the potentials are dilation analytic, then we define 2O(0) = {Ex + E2
+ • • • + Ek: F,. is an eigenvalue of h¡(9)} and 1,(9) = {0} u (U #(fl)>2 2fl(f )) is
the set of thresholds of H(9).
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Theorem II.7 (Balslev and Combes [3], Simon [30]). Suppose the two body
potentials Vy = ©„ <8> 1 have Vy E ^a and are selfadjoint. The essential spectrum of
H(9) is oess(H(9)) = {z + e~29r: z E 2(9), r E [0, oo)}. // ¡i = inf 2(0), then the
discrete spectrum of H(9) is contained in R u {ft + z: — 21m 9 < arg z < 0} if
Im 9 > 0, and R u {¡i + z: 0 < arg z < - 21m 9} if Im 9 < 0. The discrete
spectrum of H(9) can accumulate only at points of 1,(9). The nonthreshold eigenvalues
of H are the real nonthreshold eigenvalues of H(9), and 1(9) n R = 2(0) whenever
\lm9\ <it/2.

Theorem II.8 (Balslev and Combes [3]). Suppose H = H0 + "E^Vy, where the
two body potentials are dilation analytic. Then H has empty singular continuous
spectrum.

The following theorem proves exponential fall-off of bound states corresponding
to nonthreshold eigenvalues. Without dilation analyticity, O'Connor [21] has
proven this fact for bound states corresponding to discrete eigenvalues.

Theorem II.9 (Combes and Thomas [4]). Suppose H = H0 + 2/</*# is
selfadjoint, with dilation analytic potentials. If H\p = E\¡/ and E £ 2(0), then \p(x) lies
in the domain of multiplication by e"^ for some a > 0. Moreover, e"^\p(x) belongs to
the operator domain of H^2 for some a > 0.

Proof. Combes and Thomas [4] prove all but the last statement. Simon [34]
proves ea|x|<K*) E D(H¿/2).    □

Theorem 11.10 (Balslev [2], Simon [31], [32]). Suppose H = H0 + 2t<JVy is
selfadjoint. If N = 2 and V £ ^a for some a > 0, or if N > 3 and each Vy = Vy <B>
1, with Vy E ^„/2, then H has no positive eigenvalues.

Lemma 11.11. Suppose M(z, 9) is an analytic operator valued function in the region
{(z, 9) E C2: |Im 9\ < a, z £ C \ aess(H(0))}, with norm continuous boundary values
as z approaches aess(H(9)). Suppose U(<t>)M(z, 9)U(-$) = M(z, 9 + (/>) for <¡> £ R,
and assume (M(z, 9))2 is compact. If E ER, then 1 £ a(M(E + iO, 0)), if and only
if 1 E a(M(E, 9)) for all 9 with 0 < Im 9 < Min(a, -rr/2).

Proof. Since (M(z, 9))2 is compact, 1 E a(M(z, 9)) if and only if 1 E
a((M(z, 9))") for all n > 2. Thus, it suffices to prove 1 E a((M(E + iO, 0))") if and
only if 1 E a((M(E, 9))") for all « > 2.

If 1 E a((M(E, 9))n) whenever 0 < Im 9 < Min(a, v/2), then 1 £ a((M(E +
iO, 0))") by continuity.

Next, suppose 1 E a((M(E + iO, 0))") but 1 E a((M(E, <j>))n) for some n > 2
and <t> with Im 4> small and positive. Since M(E + iO, 9) = U(9)M(E +
iO, 0)U(-9) for 9 E R, 1 E a((M(E + iO, 9))n) for all 9 E R.

Since 1 E o((M(E, $))"), the set of 9 E R such that 1 £ a((M(E + iO, 9))")
must be a closed set of measure zero by a theorem of Kuroda [16] (see also Simon
[29, p. 127]).

This contradiction proves the lemma.    □
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F. Existence of wave operators.
The existence of channel wave operators has been proved by Schechter [25] and

Simon [33] for the types of potentials which concern us. Simon's proof is an
extension of a simple method due to Cook [5].

Theorem 11.12 (Simon [33]). Suppose the two body potentials Vy belong to
L§(Rm) + Ls°°(Rm)/or somep > m/2 and S > 2. Then the channel wave operators

ß* = strong-  lim    e"He~ilT"Pa
t—»±00

exist.

III. Many-body Kuroda completeness as a stationary problem. This section is
devoted to proving Theorem III. 1, which reduces the many-body Kuroda com-
pleteness problem to the question of finding an appropriate formula for the
resolvent (z - H)~x. The idea of this theorem is not new. Implicitly, it appears in
the works of Faddeev [6], Hepp [10], Ginibre and Moulin [7], Thomas [36], and
Sigal [26]; explicitly, it may be found in Howland [11].

Definition. Suppose H is a many-body Hamiltonian. The multiparticle limiting
absorption principle holds for H, if

L(D)
(z - H)~x = £(z - HDyxPD 2    FUDZlD(z),

D /-l

where
(a) there exists 50 such that </> £ L¡o(R(N-X)m) implies Z/Z)(z>/> is an L2(R("~1)m)-

valued meromorphic function in C \ aess(H), with continuous extensions to o-ess(//)
from above and below, in the complement of a closed set S of measure zero; and

(b) for each / and D, F1D maps L2(R(Ar-1)m) into Lp(Rm) <8> L2(R(Ar-2)m), for
some fi > 1 and p £ (1, 2], where the first factor denotes functions of a Jacobi
coordinate for the motion of the centers of mass of the clusters of D.

Theorem III. 1. Suppose the multiparticle limiting absorption principle holds for H
on L2(R(Ar_ 1)m), where m > 3. If the channel wave operators exist, then they are
complete in the sense that Pac = 2aß*ß**.

As a first step toward the proof of this theorem, we prove several lemmas related
to the orthogonality of channels. Next, using the limiting absorption principle, we
obtain a formula for (ß **<?>)*, when <b E L|o(R(JV_1)m). This and Stone's formula for
spectral projections are then used to prove Theorem ULI.

Definition. Let Hl and H2 be selfadjoint operators on %. For each e > 0 and
each Borel set A <Z R, the operators ß±(e, H2, Hv A) are defined by

<fc ß*(e, H2, Hv A)4>) =- f{(X± ie - H2yx<¡>, (X ± ie - #,)"'*> dX.
* JA '

Lemma III.2 (Howland [11]). Let Hi and H2 be selfadjoint on %.
ß"""(e, H2, Hi, A) are well-defined contractions on % for all Borel sets A Ç R and all
e > 0. If Hl has purely absolutely continuous spectrum and spectral projections F,(-),
then E¡(A)\p = 0 implies limeJX) ß+(e, H2, Hv A)\¡/ = 0.
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Proof. Let 8e(t) = (e/ir)/(t2 + e2).
The Schwarz inequality shows that the absolute value of the integrand appearing

in the definition of Sl*(e, H2, Hx,A)is bounded by

(e/w)\\(\ ± ie - H2yx4 \\(X ± ie - H,yx4

= ((«/w)|(X ± ie - //2)-'<i>ir)1/2((e/^||(X ± ie - Hxyx^ff2
= «</>, 5e(X - H2)<t>»1/2(^, 8e(X - H^y)l/2.

So, by the Schwarz inequality and Fubini's theorem,

\($,^(e,H2,Hx,A)^\2

< ( J\<i>, 8e(X - H2)<¡>} ¿*)( j\*> 8e(X - tf,)*> ¿x)

= (/R(fi. * XA)(fi)d<4>, F2(X)<,>j(jR(5£ * XA)(X)d<*, £,(*)*>)• (IH.1)

Since /R5e(X) ¿/f = 1 and ||x< II«, < L we have 0 < 8e * Xa < 1- So, the right-hand
side of (III.l) is bounded by IHpHV'll2- The operators ü*(e, H2, Hx, A) are,
therefore, well-defined contractions.

The measure d(\p, F^-)^) is absolutely continuous with respect to Lebesgue
measure. As a consequence ([37, pp. 28-31]), limEi0Se * Xa = Xa ae- witri respect to
d($, Ex(-)\py. Moreover, 0 < 8e * Xa ^ '» so me dominated convergence theorem
shows:

lim  f(8e * Xi)(X)rf<^, £,(*)*> = f X«(*)«*<*. £i(W> =||^,(^)V'||2-
e|0   ^R ^R

Since

(III.l) shows
•'r

lim sup ||ß*(e, tf2, tf„ ^||2 < ||F,(^)^||2.
e|0

Therefore, Ex(A)xp = 0 implies lim^ß^e, H2, Hv A)$ = 0.    □

Lemma III.3. Let Hx and H2 be selfadjoint on %. For all e > 0,

ß*(e, H2, Hv Rty = 2e f       e^V"2«?-""^ ¿ft.
•'o

Proof. Consider only ß~ ; the proof for ß+ is similar. Fix <b,\pE.% and define
<>(X) = (e/7r)1/2(X + ie - H2yl<¡> and i(X) = (e/w)1/2(X + ie - #,rty. Then, by
explicit computation,

fa) = (2e)x/2ix(0,x)(t)e-e-"»^

and

fa) = (2e)1/2/X(0,«,)(0^^"^-
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14 G. A. HAGEDORN

These formulas and Lemma II. 1 show

<*, ß"(e, H2, Hx, R)^> = f O(X), *(X)> dX•'R

=  [<fa),fa)>dt
= 2e f °°<<i>, e-^'e""*-""^) dt

= <<j>, 2e f °°e-*"e""*~ —y dt}. Q•'0

Lemma III.4 (Howland [11]). Let Hl and H2 be commuting selfadjoint operators
on %. Assume Hx has purely absolutely continuous spectrum and that H = Hx — H2
has kernel (0). Then, for Borel sets A C R,

weak-lim ß + (e, H2, HX,A) = 0.
ej.0

Proof.

ß + (e, H2, Hx, A) = ß+(e, H2, Hx, R)EX(A) - ß+(e, H2, Hx, R \ A)EX(A)

+ ^(e,H2,Hx,A)Ex(R\A),

where Hx has spectral projections F,(-).
The last two terms in this expression converge strongly to zero as e —» 0 by

Lemma III.2. Thus, it suffices to show weak-lim^,, Q~"(e, H2, Hx, R) = 0.
By Lemma III.3,

<</>, Q*(e, H2, Hx, R)^> = 2e f * °V2e'<<¡>, e""*-»»^ dt

= 2e[ + °°e^2"(<t>,e-i'"xpydt

= ±2i£«>, (H + 2ie)   V>-

As e tends to zero, this quantity converges to — <<>, P0^>, where P0 is the
orthogonal projection onto the kernel of H. Hence, the hypotheses imply it
converges to zero.   □

Lemma III.5. Let Hx and H2 be commuting selfadjoint operators on %, such that
Hx — H2 has kernel {0} and Hx has purely absolutely continuous spectrum. Let Fx
and F2 be operators on % such that F\* and Ff are Kato smooth with respect to Hx
and H2, respectively. Suppose <f>±: D±-*% and \(/±: D±—>% are continuous
functions, where D± = {z = x ± iy Œ C: a < x < b, 0 < y < c}. Then

lime f <(X ± ie - H2)~XF2^>±(X ± ie),
£|0      Ja

(X ± ie - HxyxFx¡p±(X ± ie)} dX = 0.
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Proof. Assume, without loss of generality, that F, =£ 0, F2 =£ 0, <¡> ± =£ 0,\¡/± =£0,
a < b, c > 0. For convenience, consider only the + signs, with <j> = <¡>+, \p = *P+>
and D = D + .

Let 5 > 0 be given, and choose M such that ||<KZ)II < ^ ana ll>Kz)ll < Af for all
z El D. Since F, and F2 have dense domains, there exist simple functions /:
[a, b]^<$(Fx) and g: [a, b]^<%(F2), such that \\f(x)\\ < M, \\g(x)\\ < M, ||<f>(*)
- g(x)|| < 8, and ||»K*) - f(x)\\ < 8, for all x E [a, 6].

By the continuity of </> and $, and the compactness of D, there exists y > 0, such
that 0 < e < y implies ||<J<X + fe) - <¿>(X)|| < 5 and ||i//(X + "0 ~ «K*)ll < * for all
X E [a, 6].

Thus, ||0(X + /e) - g(X)|| < 25 and U(X + ie) - f(X)\\ < 28 for all X E [a, b],
whenever 0 < e < y.

Define:

A(e) = ef\(X + ie - H2yxF2g(X),(X + ie - HxyxFxf(X)} dX
*a

B(e) = e \\(X + ie - H2)~xF2g(X),
'a

(X + ie - HxylFx[t(X + ie) - /(X)]> dX

C(e) = e f\(X + ie - H2yxF2[<l>(X + ie) - g(X)],
J a

(X + ie - HxylFMX + ie)} dX.

By Lemma III.4, there exists yx < y, so that e <yx implies |^4(e)| < 8.
By Holder's inequality and Lemma II.2, e < y implies

\B(e)\<eñ(X+ie-H2yxF2g(X)\\
J a

X||(X + ie - HxyxFx[*(X + ie)-f(X)]\\ dX

(rb 2        \X/2ejJ(X+ie-H2yxF2g(X)\\  dXJ

X (ef)\(X + ie - HxyxFx[^(X + ie) - f(X)]( d\)

<(^ll^||k(sup||g(X)||)2)1/2

X (^^ll^illîr.isupll^X + ie) -/(X)!!)2)'7'

1/2

<2^T-M\\Fi\\hÁ\F2\\h1S-
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16 G. A. HAGEDORN

Similarly, when e <y,

\C(e)\ < (ef*\\(\ + ie - H2)~lF2[4>(X + ie) - g(X)]( dxj

X (ef)\(X + ie - HxyxFx^(X + ie)( d\j   '

< (-^ll^lkf^PlI^ + ,£) - ^Wll)2)1

x(^n^ii4sfii^ + ''£)ii)2)1/2

<2^^M||F1||/,i||F2||W25.

Therefore, e <yx implies

\A(e) + B(e) + C(e)\ < \A(e)\ + \B(e)\ +\C(e)\

<(l +4^3/11^11^11^11^)5.

Thus, limel0A(e) + B(e) + C(e) = 0, which is the desired result.    □
Remarks. (1) Let a and ß be channels. Ta and Tß are multiplication operators in

momentum representation, so they commute. Moreover, if D(a) ¥= D(ß) or Ea ^
Eß, then Ta — Tß has kernel {0}. To see this, notice that Ta and Tß are multiplica-
tion by different polynomials in momentum representation (because D(a) ¥= D(ß)
or Ea ¥= Eß). Therefore, Ta — Tß multiplies by a nonzero polynomial
Q(px, . . . ,P(N-X)m). Functions in the kernel of Ta — Tß must have support in {/?:
Q(p) = 0}. This set is a nontrivial algebraic variety, and consequently has measure
zero. Thus, Ta — Tß has kernel {0}.

(2) Suppose a is a channel with cluster decomposition D. Then HDPa = TaPa =
PaTa and Pa(z - HD)~X = Pa(z - Tayx. Also, if PaF* is Kato smooth with
respect to HD, then PaF* is Kato smooth with respect to Ta.

(3) If D is a cluster decomposition, then PD = 2£,(a)_0Fa. Consequently, (z —
HD)~XPD = Sfl^.ßiz — Fa)_1Fa. So, when the multiparticle limiting absorption
principle holds for H,

(z - H)~x = ^(z- HDyXPD  S   FltDZUD(z)
D 1=1

i.(D(a))

= S (Z  -   Ta)      Pa      2       FlM«)Zl,D(.a)(z)-
a /_1

(4) In Propositions III.6 and III.7, we restrict some Fourier transforms to
ellipsoids rather than spheres. This is because certain reduced masses are not equal.
However, a linear change of coordinates shows that the results of §II.D apply to
ellipsoids as well as spheres.
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The ellipsoids which we use are the surfaces in momentum space corresponding
to a given energy for a channel Hamiltonian Ta. In some clustered Jacobi
coordinates, Ta = 2/~/( — 2M¡)~lk{ + Ea, where M, is a reduced mass. We choose
the "unit ellipsoid"

r- Le**-»": *2(2A/,)-I|9l|2-lj

as the analogue of the unit sphere. The mapping ira(k): Lf ® L2 -» L2(T) is
defined as the analogue of ir(k): Lf ® L2 -* L2(Sm~ ') from Proposition II.6.

(5) For convenience we identify the range of Pa with %a = %(D(a)), defined in
the introduction. The identification is given by the mapping </> ® \¡/a -» <¡>, where
</> ® y¡ia denotes an arbitrary element of Pa%.

Proposition III.6. Suppose the multiparticle limiting absorption principle holds for
H, and let a be a channel. Let (f„ . . ., Sk-i> £/> • • • > £*(*)-1) be clustered Jacobi
coordinates corresponding to the decomposition D(a), and let (qx, . . ., qk_x) be the
Fourier conjugate variables to (fj,..., £k-X Let ka(q) = (2*~11(2Ai/)~l|^.|2)1/2,
where Mj is the reduced mass corresponding to the coordinate Ç,. Suppose the wave
operators ß* exist, and that <i> £ L2o(R(A,_ 1)m).

If k2 + Ea does not belong to the exceptional set S for H, then ((ß* )*<j>)~ may be
restricted to the ellipsoid

T(k)= {« ER«*-»": *„(*)«*},
and

L(Z>(«))

*„(*)(Öi)> = «aWPa      2       F.Ma^oUk2 +  F„ +  ¿0>.
/-I

Proof. Choose an interval [a, b] containing k2 + Ea, but which does not
intersect the exceptional set S. Choose \px E %a = %(D(a)) so that \px is C °° with
support in UA(E[a>6]r(X).

Consider only ß ~ ; the proof for ß * is similar.
The existence of ß~ implies that ß~ equals its Abelian limit (see [29]). So, if

\p - xpx ® ¡pa, then

ßl> = lim 2e fCCe-2"e"He-i'T'Sp dt.
eiO J0

Thus, by Lemma II. 1,

<</>, fl"^> = lim2e f*(e-"e-UHí, e^e"''7^) dt

= lim - f °° <(X + ie - H)-x$, (X + ie - Ta)~ V> dX.
e¿0   IT J-oo

Lemma III.2 and the choice of \px now show

<<f>, Q"*> = lim - f\(X + ie - Hyx<¡>, (X + ie - Ta)~xrp} dX.
e|0    IT Ja

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



18 G. A. HAGEDORN

By Remark (3) after Lemma III.5,
L(D(ß))

(z-H)-l = ^(z-Tßy1Pß    S     FIMß)ZIMß)(z).
ß H /=i

Hence,
<<¡>, ß;^> = lim -   f " ( 2 S (* + ie - TpylPpFltD(P)ZWP)(z)<t>,

«AO    IT   Ja     \   ß     I

(X + ie - FJ-V) dX.

By Lemma III.5 and Remark (1) after it, all terms with D(a) ^ D( ß) or Ea # Eß
vanish as e -» 0. All other terms with a =£ ß vanish because PßPa = 0 and Pa\}/ =
^.Therefore, L(D(a))

<«, O"*) = hm ^  f ( (X + ie - Fj-'Fa    S    F,Ma)Z,Ma)(X + ie)<f,,

(X+/e- ra)-VMX.

For convenience put F, = F, D(a), L = L(£>(a)), and </>,(z) = Z/Z)(a)(z)<i>, so

= 2 lim -   f V + ie - TJ-'P^M* + ¿«O. (* + * - FJ-V> dX.
The identification of Pa% with %a allows the inner product in this integral to be
computed as an inner product on %a. Moreover, as elements of %a, i//, and
PaF¡4>,(X + ie) have Fourier transforms which may be restricted to ellipsoids by
Proposition II.6. So, using ellipsoidal coordinates on R(fc-1)m to compute the %a
inner product, we have

/£,   «iO K   h    (tf +Ea- X)2 + e2

x<»« W«^f*i(^ + «X *«(*)lrï>z*ry* dX,
where ^(fc): 3Ca -» L2(r) restricts Fourier transforms to T(k), and then does the
scaling to yield a function on T = T(l).

The inner product in the last integrand depends continuously on k and has
support in [a, b] in the k variable. Thus, Fubini's theorem and the dominated
convergence theorem may be applied to yield:

<<*>, «„-*> -if* i™ f"-z-^—2—
ff, ->a    «iO 4   (k2 + Ea - X)2 + e2

x<^a(fc)PaF/<i»/(X + fe), ̂ (fc^W) dX dk.
The limit may now be computed explicitly (Ikebe [12], Simon [29]):

<*, G;*> = f7*a(*)Pa2 ^(A:2 + Fa + iO), wa(*)*i )        <*•
•'a   \ / / ^(p)

Since i//, is an arbitrary element of a dense subspace of Ea([a, b])%a, the
proposition follows.    □
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Proposition III.7. Suppose the multiparticle limiting absorption principle holds for
H. Suppose Q,; exist. Let [a, b] be any compact interval disjoint from the exceptional
set &. Let E[a, b] be the spectral projection for H on the interval [a, b]. Then,
<t> £ Ls2o(R(Ar-1)m) implies

||£[fl,6>f«2  / \(^*4>)'(q)\2 dq.
«    Ja<ka(q) + E„<b

dX.

Proof. Apply Stone's formula and the first resolvent formula:
•b

ej.0

For simplicity take only the + sign (this yields the result for ß~). Then use the
multiparticle limiting absorption principle formula:

\E\a, b]<¡>\\2 = lim -   f *<(X ± ie - H)~x^>, (X ± ie - H)'x<¡>}
1      L J    " elO     7T   J„

£(£>(«))   £(£>(/}))

\\E[a, b]4>\\2 = 2     2 2       um -

X \\(X + ie - TJ-'P^^^X + ie),
Ja

(X + ie - TßylPßFjMß)fi>jMß)(X + ie)} dX,

where </>/>i)(a)(z) = Z/7)(a)(z)<f>.
By Lemma III.5 and Remark (1) after it, all terms with D(a) ¥* D(ß) or Ea J= Eß

vanish as e -> 0. All other terms with a ¥^ ß vanish because PaPß = 0. Therefore,

\\E[a,b]<¡,\\2 = ^  lim   ["-
"     L J    " a      e|0    Ja     TT

L _ 2
2 (X + ie - TayxPaFID(a)<t>,D(a)(X + ie)    dX.

Proposition II.2 and the dominated convergence theorem show that the limit may
be taken through the integral:

\\E[a,b]4 = ̂  fVo-'s s
a    Ja I      j

[<*/.fl(«)(^ + ¿o), (íjük«)(^ -í0 - T«rlpaFj,DWh,DUx + '0)>

-<<>/.0(a)(X + ¡0), (F*0(a)(X + it) - TayxPaFjMa))<l>jMa)(X + i0)>] dX.
Lemma II.4 shows that this may be rewritten as

"-S
a    Ja

lim —
«40    IT

(X + ie - Ta)   xEa[a, b]Pa^ F/>0(a)<>/j0(a)(X + ie) dX.

The quantity inside the norm in the integrand belongs to Ran Pa, so it may be
lifted to %a by the identification of %a with Pa%. Ellipsoidal coordinates may
then be used to evaluate the norm on %„ :
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ií[-.»w-?jr «-r(*-£.)>/2 e/w

(-í.)"2    (A:2 + Ea - Xy + e

x dkdX.
L2(D

The limit may be evaluated explicitly (Ikebe [12], Simon [29]). Proposition III.6 and
a change of variables yield the desired result:

\E[a, b}$f = 2    f 1k("R2 ^Dia^iaX"2 + Ea + iO)
a     Ja   \\ I

dv
lHt)

-2/ a<ka(qf+Ea<b
\{K*mq)\ dq.  D

Proof of Theorem III.l. The wave operators are partial isometries, so it suffices
to prove

ll^f = 2 ||oí**||2

for<i>EL2o(R<"-,>'").
The complement of the exceptional set S is open, so it is the countable union of

compact intervals An, with rational end points, such that any two distinct intervals
intersect in at most one point. Since & has measure zero,

\\P«M\2 = 2\\E(An)<t>\\2>n

where E(An) is the spectral projection for H corresponding to the interval An.
Therefore, by Proposition III.7 and Fubini's theorem,

V,M= I 2 /   2       \(n^y(q)\2dq
„=1      a     ->k„(q)2 + E„^An

= S||(a0±*«?»)f -Slior+ll2-  D

IV. Resolvent formulas. Having proved Theorem III.l, the problem of asymptotic
completeness is reduced to the study of resolvent formulas which satisfy certain
conditions. Derivation of such formulas for the two, three, and four particle cases is
the goal of this section.

To begin with, the desired two-body formula is given in equation (IV. 1). Next, a
generalization of equation (IV. 1) is obtained for the TV-particle case. This is
equation (IV.4), which involves \N(N - 1) X \N(N — 1) matrices. It coincides
with the Faddeev equation [6] when N = 3, but does not have the form required by
the multiparticle limiting absorption principle. Thus, various modifications are
necessary.
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A second TV-body formula, equation (IV.5), is obtained from equation (IV.4), by
increasing the size of the matrices so that the individual matrix entries become
simpler. This formula is closely related, but not identical to a formula of Naro-
detskii and Yakubovskii [20]. However, as was the case with the first TV-body
formula, equation (IV.5) is not in a suitable form for scattering.

Consequently, for TV = 3 and TV = 4, a third formula, which does have the
correct form, is derived from equation (IV.5). Ginibre and Moulin [7] have used
this three-body equation, and their ideas have been generalized to give the
four-body formula.

For TV > 5 analogous equations, having the proper form, may be written down.
However, it is not at all clear that the bounds required by the multiparticle limiting
absorption principle can be proved. This is due to the fact that we have not been
able to prove the absence of spurious zeros in the four-body case.

Throughout this section we assume that Vy = UyWp such that Uy(-Ay +
1)~1/2 and Wy( — Ay + l)~x/2 are compact as operators on L2(Rm), where ¿L is the
Laplacian in the Xy variable. These assumptions imply the relative form bounded-
ness of the potentials with respect to HQ, with relative bound zero. So, when Re z is
sufficiently large negative, the perturbation series

(z - H)'1 = (z - H0yx + (z- //0)"'2 Va(z - H0yx
a

+ (*- "oT'2 K(z - tfoK'S vfi(z - H0yx + ...« ß

is norm convergent.
When TV = 2, this is particularly simple. Using geometric series, the perturbation

expansion may be resummed in the form:

(z - H)'1 = (z - H0yx

+ (z~ H0yxu[\ - w(z - H0yxu]~lw(z - H0yx.   (iv.i)

This is the desired equation when TV = 2.
For TV > 3, the graphical symbolism of Weinberg [40] (see also Simon [29]) is

used to identify each term of the perturbation series with a graph. For example,
when TV = 4, the term

(z - H0ylvx2(z - H0yxv23(z - H0yxvX2(z - H0yx v24(z - H0yx

is assigned the graph
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Using this symbolism, the sum of all nontrivial graphs is

(z-H)-x-(z - H0yx

Several definitions are now required:
Definition. To each nontrivial graph

(z - H0yxva¡(z - H0yxvai • • • (z - //0)-'^(z - i/0)-',

there is associated a truncated graph

wa¡(z - H0yxvai• • • (z - H0yxv^(z - H0yx.

A truncated graph is connected (respectively disconnected) if its associated graph is
connected (disconnected).

Definition. An expression of the form
wai(z - H0yxva2(z - H0yx • • • (z - hj-'v^Jz - H0yxu^

is a barely connected part if
wai(z - H0yxva2(z - H0yx • • • (z - H0yxv^jz - HQyxv^(z - H0yx

is connected, but

wai(z - H0yxva2(z - H0yx ■ ■ ■ (z - hj-W^Jz - H0yx

is disconnected.
Definition. &a(z) = (z - H0)~xUa.
91L0/3(z) is the sum of all barely connected parts whose initial factor is Wa and

whose final factor is Uß.
Qa(z) is the sum of all disconnected truncated graphs whose initial factor is Wa.
Let G = Wa¡(z - H0yxVa2(z - Hoyx ■ • • V^z - Hoyx be a truncated graph.

Either G is disconnected or G is the product of a barely connected part Wa (z —
HoVlVa2(z - Hoyx ■ ■ ■ (z - #0)-'£/„. and a truncated graph G' = W^(z -
7¥0)_IKa + i(z — H0)~x • • • V (z — H0)~x. By iterating this procedure G may be
uniquely decomposed as a product of k > 0 barely connected parts times a
disconnected truncated graph.

In order to compute the sum of all graphs, first sum all graphs containing
precisely k barely connected parts, and then sum over k. The sum of all non trivial
graphs with no barely connected parts is the sum of all nontrivial disconnected
graphs: 2a£Ea6a. The sum of all graphs containing one barely connected part is
Eatß&a^ia<ßQß. Similarly, the sum of all graphs containing A: barely connected
parts is

2        &a 91L„ « %» a %* b ■ ■ ■ 9K-A    b £&•¿-1 « a,P\ Pl.Pl P2.P3 Pk-\,Pk      Pk
a.Pl.fo • • • . Pk
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Therefore, using matrix multiplication, (z — H) ' — (z — H0) ' = &(l + 911 +
"DU2 + . . . )G.

When Re z is sufficiently large negative, the geometric series 1 + 91L(z) +
911 (z)2 + . . . converges in norm to (1 - 9H(z))_1 and

(z - h)-x = (z - H0yx + &(z)(\ - G^(z)yxe(z).

To obtain explicit formulas for tyil(z) and Q(z) in terms of the resolvents
(z — HD)~X, it is useful to introduce strings and make several definitions.

Definition. Suppose 2 < k < TV — 1. A string is an ordered collection of cluster
decompositions S = (DN, DN_ x, . . . , Dk), such that

(i) D¡ has / clusters, and
(ii) Dl+X is a refinement of Z)„ i.e., D/+x is formed from D, by splitting one cluster

into two.
Definition. A string S = (DN, DN_X, . . . , Dk) is called long if k = 2. If A: > 3,

then 5 is a j/ior/ string.
Definition. Suppose 5 = (DN, DN_X,. . . , Dk) is a string. Since DN_X has ex-

actly one cluster containing two elements, it may be identified with a pair a. Define
Us = Ua and

Cs(z) = Wa(z - HDnJ-\vDk_2 - VDn_)(z - H^J-1

■■■(vok- 0(* - ^r1- (iv-2)
Definition. Let S = (D^, 0^.,, . . . , Dk) and S' = (D'N, D'N_X, . . . , D¡) be

strings.

0 if 5 is short,
Mss,(z) =0 if 5 is long and D'N_X refines D2,

CsUs,     if S is long and D'N_ x does not refine D2.

Remark. Mss, has been defined so that its nonzero entries are sums of barely
connected parts. The partition D'N_, refines D2 if and only if CSUS- is not a sum of
barely connected parts.

Each disconnected truncated graph

G = Wa¡(z - H0yxVa2(z - Hoyx ... Kjz - H0yx

has an associated string determined by the following procedure. For j =
1, 2, . . . , n, there is a unique cluster decomposition D(j), with a maximal number
of clusters, such that all the pairs a,, . . . , a¡ refine D(j). Since G is disconnected,
the sequence D(\), D(2), . . . , D(k) has the following properties:

(i) D(\) has TV - 1 clusters,
(ii) D(n) has k > 2 clusters,
(iii) either D(i) = D(i + 1) or D(i) has one cluster more than D(i + 1), and
(iv) D(i) refines D(j) whenever / < j.

As a consequence, removal of the repetitions in the sequence D(\), D(2), . . ., D(n)
yields a sequence DN_X, DN_2, . . ., Dk. The string associated with G is S =
(DN,DN_x,...,Dk).
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At large negative Re z, each resolvent (z — HD)~X equals its perturbation series.
Substituting the series for each resolvent factor in Cs(z), Cs(z) becomes the sum of
all truncated graphs whose string is S. Thus Qa(z) may be written as the sum of all
Cs(z), such that S = (DN, DN_X, . . . , Dk), and DN_X is the decomposition de-
termined by the pair a.

Similarly, 91taj/3(z) is the sum of terms Mss,(z), where 5" is any string with D'N_X
identified with ß, and the sum is over all S, with DN_X identified with a.

With 9H and Q written in closed form, we have

(z -//)-' = (z - H0yx + &(z)(i - vt(z)yxe(z). (IV.4)
By the quadratic form methods of §IIB, &(z), ?ftL(z), and Q(z) are analytic for
z E C \ aess(H), and ^(z) is compact. Therefore, the uniqueness of analytic
continuation shows that equation (IV.4) is valid for z £ C \ o(H), except for an at
most countable set, where the right-hand side may have removable singularities.

Examples. (1) When TV = 3, equation (IV.4) is a modified form of the Faddeev
equation [6]. This equation with Ua = |Kj1/2 and Wa = |Fa|1/2 sgn(Fa) may also
be found in Ginibre and Moulin [7]. Explicitly

&(Z)=[(2

9lt(z) =

S(z) =

H0yxuX2

o
wl3(z - H13y

wAz - H23y

wX2(z - HX2y

Wu(z - Hl3)-

w2i{z - H23y

(z-H0yxuX3 (z-H0yxu23],

u 12

WX2(z-HX2)   XUX3

0
ux2   w^z-H^y'Uy,

wX2(z-Hx2yxu:

wX3(z- HX3yxu2

o

23

(2) When TV = 4, the matrices have six rows or columns, and the entries are more
complicated. The following is a representative sample of the entries:

&X2(z) = (z- H0yxux2,

9H12il2(z) = 0,

%2,.3(') = Wl2(z - Hx2yx(vX4 + V24)(z Hx24ylu 13

+ wx2(z - Hx2yxv34(z - Hx2Mylu 13'

9W*) = wX2(z - Hx2y\vX3 + v23)(z - HmyluM

+ wX2(z - HX2yx(vX4 + v24)(z - H^y'u^,

ex2(z) = wX2(z - Hx2yx + wX2(z - HX2yx(vX3 + v23)(z - Hx23yx

+ wx2(z - Hx2yx(vX4 + v24)(z - Hx24yx

+ wx2(z - Hl2)~Wy¿z - Hx2Myx.
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For TV > 4, several of the matrix entries appearing in equation (IV.4) contain
many terms. In order to avoid certain combinatorial difficulties it is necessary to
obtain matrices with less complicted entries. This can be done at the expense of
using larger matrices.

Fix TV > 3 and let / denote the number of strings which occur in the TV body
case. A(z) is the 1 X / matrix with As(z) = (z — H0)~XUS. Mss.(z) is the / X /
matrix whose entries are given by equation (IV.3). C(z) is the / X 1 matrix whose
entries are given by equation (IV.2).

Our second formula for the TV-body resolvent is

(z - H)~x = (z - //„)-' + i(z)(l - M(z)yxC(z). (IV.5)

The validity of this formula may be established by computing &(z)(cD\t(z))k Q(z),
with the entries of 91L(z) expressed in terms of the operators Mss,(z). The result of
this computation is Ä(z)(M(z))kC(z). Equation (IV.5) then follows from equation
(IV.4) by using geometric series.

An alternative proof may be given. Notice first that each barely connected part
is the product of a disconnected truncated graph and a final factor Uß. Therefore,
each barely connected part has an associated string determined by its initial
truncated graph.

Next, recall that each graph G may be uniquely decomposed as
AaBxB2 . . . BkG', where Bx, B2, . . . , Bk are barely connected parts and G' is
disconnected. Let Sx, S2, . . . , Sk+X be the strings associated to Bx, B2, . . . , Bk,
and G', respectively. Then G determines the sequence S„ S2, . . ., Sk + X uniquely.

To sum all graphs, first sum all graphs with a given sequence of strings, and then
sum over all sequences. Since Mss.(z) is the sum of all barely connected parts with
string S and final factor Us,, the sum of all graphs with sequence Sx, S2, . . . , Sk+X
is: AS¡MS¡S2MS s . . . Ms s Cs . Thus, the sum of all graphs with sequence of
length k + 1 is ;4(z)(Af(z))*C(z). Equation (IV.5) follows by using geometric series
and the uniqueness of analytic continuation.

Remark. Equation (IV.4) involves a jTV(TV - 1) X ¿N(N - 1) matrix in the TV
particle case. Equation (IV.5) contains a much larger matrix. For the TV particle
case, it is lN X lN, where l3 = 3 and lN =\N(N — \)(lN_x + 1).

TV = 3: lN = 3,
TV = 4: lN = 24,
TV = 5: lN = 250,
N = 6: lN = 3765.

Next, we give the final resolvent formula for the three body case. The same
formula may be found in Ginibre and Moulin [7]; similar equations may be found
in Thomas [36] and Howland [11].

For the moment, the operators pX2, p13, and p23 will not be specified. They will be
chosen in §V so that certain bounds can be established. Algebraically, equation
(IV.6) holds for any choice of these p functions.
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Denoting (z — H0) x and (z - Ha) x by G0 and Ga, respectively, the final
three-body equation is:

(z - H)-x = (z - Hoyx + A(z)(\ - M(z)yxC(z), (IV.6)

where the matrices A(z), M(z) and C(z) are given in Figure 1.
We view A(z), M(z), and C(z) as 1 X 3, 3 X 3, and 3 X 1 matrices of 1 X 2,

2x2, and 2x1 blocks, respectively. In accordance with this viewpoint, we label
the entries Aai, Mai.ßJ, and C0,, where a and ß run over the pairs, while i andy run
from 1 to 2.

Equation (IV.6) holds because

A (z)(M(z))kC(z) = éE(z)(9H(z))*(2(z) (IV.7)

for k > 0, and because geometric series may be used at large negative Re z when
the pa are suitably chosen.

To prove equation (IV.7), consider a typical nonzero term in the expression for
&<yike. It has the form

« A,a2 • • • <^+A+,
= G0UaWaGaUaWaGaUa) . . . W^U^W^G^,     (IV.8)

where a,- =£ ai+x.
Let ea>1 = (1 - Pa) and Qa2 = Pa = (PaPa)(p-lPa), and replace each Ga factor

by GaQa,i + GaQa2 in equation (IV.8). The right side of equation (IV.8) becomes a
sum of 2k+' terms of the form:

= ^a , Ma , .„ , Ma , .„ , ... M^,. .„_   ,    C^   ,   . (IV.9)

Summing over all indices and using the identity G0VaGa = (Ga — G0), equation
(IV.7) is obtained.

Equations (IV.4) and (IV.5) are not suitable for scattering because ^(z),
Q(z), M(z), and C(z) are all singular as z approaches the essential spectrum of H.
The advantage of equation (IV.6) is that M(z) and C(z) are reasonably well
behaved as z approaches the essential spectrum, and the singularities all appear
explicitly in the factor A (z).

Equation (IV.6) was obtained from equation (IV.4) by the following procedure:
First, the inverse term in equation (IV.4) was expanded using geometric series.
Second, the factors (1 - Pa) and Pa = PaPaPälPa were inserted after each Ga.
Third, each term was decomposed as a product in a way which depended on the
sequence of projections (1 - Pa) or Pa. Then, the result was resummed to give
equation (IV.6).

The four body case is similar. Equations (IV.4) and (IV.5) are not suitable, so
equation (IV. 10) will be derived from equation (IV.5). Again geometric series will
be used, and factors (1 — PD), PD, (1 — PD), PD will be inserted, along with p's
and p_1's. Next, we "symmetrize" certain terms, which does not change the sum of
all terms. Resumming by geometric series, we obtain equation (IV. 10).
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Remarks. (1) In the three body case, no symmetrization step was necessary
because all strings contained only one nontrivial cluster decomposition. In the four
body case, some terms require symmetrization. This involves the replacement of
certain terms by a combinatorial factor times a sum of those terms.

(2) The symmetrization step allows us to prove asymptotic completeness when
the subsystems have embedded (nonpositive) eigenvalues. The equations used by
Sigal [26] are not symmetrized, and embedded eigenvalues are not treated by
Sigal's asymptotic completeness proof.

(3) Equation (IV. 10) is derived from equation (IV.5) by replacing the entries of
the 24 X 24 matrix of equation (IV.5) by 3 X 3 blocks. As a result, equation (IV. 10)
has an unpleasantly large 72 X 72 matrix. An equation equivalent to equation
(IV. 10) can be derived from equation (IV.4). This formula has a 42 X 42 matrix,
but the entries are complicated. So, we prefer to use equation (IV. 10).

The final resolvent formula for the four body case is

(z - H J-1 = (z - Hoyx + A(z)(\ - M(z))'xC(z), (IV.10)

where A, M, and C are the 1 X 72, 72 X 72, and 72 X 1 matrices indicated in the
Appendix. A representative sample of the entries is given, and the number
associated with each entry refers to the proposition of §V in which that entry is
studied. A, M, and C should be viewed as 1 X 24, 24 X 24, and 24 X 1 matrices of
1x3, 3x3, and 3x1 blocks, respectively. The entries are denoted by ASi,
MSi.s,j, and CSi, where S and S' denote strings, and i axiáj run from 1 to 3.

As in the three body case, equation (IV. 10) involves some operators py, piJk, and
Pykl, which will be specified in §V. Also, equation (IV. 10) holds because

A(z)(M(z))kC(z) = Ä(z)(M(z))kC(z) (IV.ll)

for k > 0. Equation (IV.ll) implies equation (IV.10) in the same way equation
(IV.7) implied (IV.6). However, the proof of equation (IV.ll) is more complicated
than that of equation (IV.7).

To prove equation (IV. 11), consider first the case k = 0, and define QD x = (1 -
Pd), Qd„2 = PDi> Qd»3 = 1. Öz>2,. = Qd2,2 = (1 - PD)> and QDi3 = P¿ If S -
(D4, D3) is a short string, then

^sCs = G0VDGD^

=   G0VDGD,Qd„1  +   G0VDGD,Qdv2

= ^s,iGs,\ "*" AS2CS2 + 0

= 2  AS4Csr (IV.12)i=i

For long strings 5 = (D4, D3, D2), the situation is not so simple because As3 has
been symmetrized. For each decomposition D2 with two clusters, let AD2 = {S' =
(D4, D3, D2): D2 = D2), and let ¡(D^ denote the number of elements of AD . Then
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2     ÂSCS =        2 goVdgd3ÍVd2 - Vd)gd2
S G AD2 Z)3 refines D2

=        2 ^   goVdgd3Qv3ÁVd2-Vd)GD2QD2
£)3 refines D2   i = 1

+       2        G0VD.GD.QDi¿VDi - VdÙGd2Qd2.3
Z>3 refines D2

2
=   Zi    2i ASicsi"V25SA„,   i=l

+       2        (tt^t        2        Go^G^Ô,,,^^- VD¿GDtQDJ\D3 refines 2>2   \ l(L>2)    D^ refines ß2 2       * J

3
=   22 ^5,Q,- (iv. 13)

Equation (IV.ll), for A: = 0, is now obtained from (IV. 12) and (IV. 13) by the
following computation:

AC — 2j AsCs —    ¿j    ASCS + ¿j     ¿j    ASCS
S S short D2    SSAfl2

= 22 ASjCSJ + 222 **,c»
S short   /'=1 D2    SeAß2   /—1

3
= 1   1 ASiCSi = AC.

S     í=l

When A: > 0, the ideas are the same, but more sums are involved. For each
sequence Z>2(1), Z>2(2), . . . , D^, let A, = ADjW. Then, by explicit computation,

2        2     •••      2    ¿sMs,,s2Ms2,s3 ■ ■ ■ MSk¡Sk+CSk+¡
S,eA,   S2eA2 SteA»

=  2     2   •••   2    2   2   •••
S,eA,   S2EA2 SieA»   i', = l   »2-l

3
2    ^s , Ms i s i ••• ¿4 , s   ¡   Cs    , (IV. 14)

'*+ I - 1

for any choice of Sk+X. This is the generalization of equation (IV. 13). Equation
(IV. 12) does not need to be generalized because Mss, = 0 whenever S is short.
Now equation (IV. 11) follows from (IV. 14).
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ÄMkc = 2 2 ... 2 2 ÄsMSitSi... MSk,SkJSk+¡
¿!        i2 6t      i/k+1

= 2    2   •••   2    2 Á~sMs¡,S2...MSksk+cSk+i
S, long   S2 long Sk long   Sk+X

= 2  2  •••  2    2     2    •••
Di'l   Dpi £>¿*>   S'eAi    52eA2

c^*    «£   As,Ms„s2 ■ ■ ■ Msk,sk+,csk + 1

3

=      2 2        2     2   ¿s^Ms^-.s^
D?K . . D}k)   S,6A|...SteAt   St + 1   », ... it+,

= /1M*C.

This establishes equation (IV. 11).
In the three body case, equations (IV.8) and (IV.9) show that individual terms in

the expression for AMkC correspond to products of blocks of A, M, and C. This is
not true in the four body case, although something closely related is true. Products
of certain blocks of Ä, M, and C (determined by the sequence D^, . . . , D^k)) are
equal to products of corresponding blocks of A, M, and C. This is the content of
equation (IV. 14). Equation (IV. 11) is then obtained by summing over the blocks.

Having established equation (IV.ll), the validity of equation (IV.10) is proved.
In §V, (M(z))2 is shown to be compact, and the bounds required by the multipar-
ticle limiting absorption principle are proved. However, A(z) must first be put into
the correct form. This is done by using the following identities:

(1)    G0VyG0 = Gy - G»

(2)    G0(VyGy(Vik + VJk) + VikGik(Vy + Vjk) + VjkGjk{Vy + Vik))Gijk

= Gm - (GyPy + GikPik + GJkPJk) - G0(l -Py- Pik - PJk)

-G0(VyGy(l   -   Py)   +    1^(1    -   P¡k)   +    VjkGjk{\   -   PJk)),

(3)    G0(VyGyVkl+ VklGklVy)GiMl

= Gyja - (GyPy + GklPkl) - G0(l - Py- Pk!)

-   GQ(VyGy(\    -    Py)    +     V^^l    ~    F„)). (IV.15)

Notice that the symmetrization is necessary to put A in a form in which these
identities may be used to give a formula of the type required in §111. The other
reason for the symmetrization is to make M(z) well behaved as z approaches
°esS(").

We give in the Appendix a representative sample of the blocks of the matrices
A(z), C(z), and M(z).
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V. Estimates. Theorem III.l and the formulas of §IV reduce the problem of
Kuroda completeness to the proof of certain operator bounds. These bounds are
established in this section under the following hypotheses:

(1) H = H0 + "Zi^Vy on L2(R(Ar-1)m), where m > 3 and TV < 4. Each two body
potential Vy is a selfadjoint multiplication operator UyWy, where Uy and Wy
belong to LP(Rm) + Lf(Rm) for some/? > m and 8 > 1.

(2) Uy. % -h» %_x and W„: %+x -»• % are dilation analytic.
(3) No cluster Hamiltonian has a bound state or resonance at any of its

thresholds.
(4) When TV = 4, we assume the three body cluster Hamiltonians have no

positive eigenvalues.
(5) Each cluster Hamiltonian has exactly one bound state.
Remarks. (1) Hypothesis (2) asserts dilation analyticity only. The boundedness

of Uy-: % -h> %_x and Wy-. %+x -> % follow from Hypothesis (1) and methods of
§II.B.

(2) Bounds established for the cluster Hamiltonians are required to prove bounds
for the full Hamiltonian. So, we need two body information to treat the three body
case, and two and three body information to treat the four body case.

(3) The threshold set 1(h) for a cluster Hamiltonian h is defined as in §H.E. We
prove (z - h)~x = (z - h0)~x + A(z)(\ - M(z))~xC(z), where M(z) has norm
continuous boundary values M(E ± iO) as z approaches F £ R from above or
below. Hypothesis (3) states that 1 E a(M(E ± iO)) whenever F E 1(h).

(4) By continuity, Hypothesis (3) implies 1 £ a(M(E ± iO)) for F in the neigh-
borhood of 1(h). We prove E E 1(h) and 1 E o(M(E ± iO)) imply F is not an
eigenvalue of h. Thus, h has no eigenvalues near its thresholds. Hypotheses (1) and
(2) imply that eigenvalues may accumulate only at thresholds (see Balslev and
Combes [3]). So h has finitely many eigenvalues. Therefore, Hypotheses (l)-(3)
imply H has finitely many channels.

(5) In §VI, we prove that Hypotheses (1) and (2) imply Hypothesis (3) for a
dense open set of couplings.

(6) Hypothesis (5) has been introduced merely for convenience. We denote
cluster eigenfunctions ¡pX2, \¡/X23, etc., and let their corresponding eigenvalues be EX2,
Ex23, etc., respectively. Define t//1234 = $l2 <2> t//34, ^,324 = ^13 ® t|/24, and i//14?23 =
i i* ® fe- Similarly, let F1234 = F12 + E34, F1324 = F13 + F24, and F1423 = F14 +
£23-

(7) Theorem 11.10 gives sufficient conditions for Hypothesis (4) to hold. Yukawa
potentials, generalized Yukawa potentials and potentials of the form (1 + r)~2~e
are allowed.

Since there are finitely many potentials, Hypothesis (1) implies the existence of a
p > m and 8 > y > 1, such that all Uy and Wy belong to Lsp(Rm) + L£°(Rm). Fix
such a y and/).

Definition. Let £ be the coordinate from the center of mass of particles /' andj'
to particle k. Let f denote the coordinate from the center of mass of particles i, j,
and k to particle /. Let ij be the coordinate from the center of mass of particles i
and j to the center of mass of particles k and /.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



32 G. A. HAGEDORN

Define

*ft(t) = (1 + ery/2,
A»») - o + *2rT/2>

ftotfol) = (1 + ï)2)-Y/2

In the three body problem, we let pp = p(> ̂ for convenience. In the four body
problem we choose functions py arbitrarily as p12 = p123, p13 = p132, p23 = p23,,
P34 = P34.1' Pl4 = Pl4,3> and P24 = P24.3-

These are the p functions introduced in §IV. The choice is certainly not unique,
and we have not made the same choice as other authors. However, our p functions
have the advantage of being dilation analytic.

The results of this section are summarized by the first three propositions. These
depend on the technical lemmas which make up most of this section.

Proposition V.l. Assume Hypothesis (1). If TV = 2, then the limiting absorption
principle holds for H. If Hypothesis (2) also holds, then the exceptional set S is
contained in (— 00, 0], and & consists of all eigenvalues of H andpossibly the point 0.

Proof. Equation (IV. 1) states

(z - H)~x = (z - H0yx+(z - H0yxu(\ - w(z - H0yxu)~lw(z - H0yx.

Let p(x) = (1 + x2yy/2. Define F, = p, F2 = U, Zx(z) = p"1, and Z2(z) = (1 -
W(z - HoyxUyxW(z - Hoyx. Then

(z-Hyx= 2 (z - Hj-'F^z).
1 = 1

Holder's inequality shows that Fx and F2 map L2(Rm) into L«(Rm) + L2(Rm),
where q~' = p~x + 1 /2.

Repeating the proof of Lemma II.3, we see that W(z — H0)~XU is uniformly
bounded and analytic for z E C \ [0, 00), with norm continuous boundary values
as z approaches [0, 00) from above or below. Similarly, W(z — H0)~x has these
properties as a mapping of L2(R"1) into L2(Rm).

If U and W belong to L2(Rm), then We'"H,>U has an L2 integral kernel for t ^ 0.
Thus, We~"H"U is compact for t ¥= 0. When U and W belong to Lp(Rm) +
Ly°0(Rm), we may approximate them by L2 functions, and conclude the compactness
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of We~"H°U for / J= 0, by taking limits. Taking Fourier transforms as in Lemma
II.3, we see that W(z - H0)~XU is compact, and || W(z - H0yxU\\ -» 0 as |Im z|
—> oo or Re z -» — oo.

By the analytic Fredholm theorem and a theorem of Kuroda [16] (see Simon
[29]), (1 — W(z — HoyxU)~x exists for all z in the closed cut plane, except for
some set S. S n (C \ [0, oo)) is discrete; S n [0, oo) is closed and has Lebesgue
measure 0.

If w £ S n (C\[0, oo)), then £ = W(w - //0)~'t/</> for some <f> E %. Since
w £ o(H0), (w — H0yxU is bounded, and \p = (w — H0)~xU<t> belongs to %.
However, <J> = W(w — H0)~XU<¡> = W\¡/, and \p = (w — H0)~XV^. Applying (w —
H0) to both sides of this equation, we obtain H\p = w$. Therefore, S Ç R and
S n (— oo, 0) consists of eigenvalues of H.

If w ± /O E S n [0, oo), and Hypothesis (2) holds, then Lemma II. 11 shows that
1 E o(W(9)(w - H0(9)yxU(9)) for some 9 with ±Im0 > 0. If w ¥= 0, then
8 E a(H0(9)), and we can construct \¡/ (as above), so that H(9)i¡/ = wip. Theorem
II.7 shows that w is an eigenvalue of H. Since w > 0, this contradicts Theorem
11.10. Therefore, S C (— oo, 0] consists of eigenvalues of H and possibly the point
0.   D

Proposition V.2 (Ginibre and Moulin [7], Thomas [36], Howland [11]).
Assume Hypotheses (l)-(3); if N = 3, then the multiparticle limiting absorption
principle holds for H. The exceptional set S is at most countable, and consists of
eigenvalues of H and possibly some thresholds of H.

Proof. For convenience, we also assume Hypothesis (5).
As in the proof of Proposition V.l, we begin by writing

(z - H)'x - 2(* - HDyxPD^F,DZl<D(z).
D I

This expression is obtained from equation (IV.6). The F/Z)'s are UJs, py's, and Py
Py's. The Z/Z)(z)'s are made up of components of (1 — M(z))~xC(z).

C(z): L2(R2m) -+ © f_,L2(R2m) is analytic and uniformly bounded for z E C \
aess(H), with norm continuous boundary values as z approaches aess(H) from
above or below. This is proved by Lemmas V.4 and V.8 below.

M(z): ©f_,L2(R2m) -> © f=1L2(R2m) has all the properties mentioned above for
C(z). In addition, (M(z))2 is compact and ||(Ai(z))2|| -h> 0 as Re z -* - oo. These
facts are proved by Lemma V.l3.

Let S be the set of z, such that (1 — M(z))~x does not exist. If z E S n (C\
aess(H)), then the compactness of (M(z))2 shows that M(z)<j> = (¡> for some <#> £
®6      cir.

«ÍV = 2 Ma,r,ßj(z)<t>ßJ-
ßj
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Define ija = $a, + Wa(z - Ha)   xPapa<f>a 2. Then by the relation of M(z) and
WL(z),

Va = 2 9n«¿0)ife = 2 w„(* - HaylußVß
ß ß*a

= 2 wa(z-H0yxußVß+ 2 ^-^"'^(z-tfj-'t^

= 2   »;(* - H0yxußvß + Wa(z - HoyxUar,a
ß*a

= 2 wa(z- H0yxußVß. (v.i)

Since z E aess(H), (z — H0)~xUß is bounded. Hence, <// = (z — H^^ßUßTjß
belongs to %. Moreover, equation (V.l) shows f\a = Wa\p, so \¡/ = (z — H0)~X(VX2
+ F13 + V23)$. Therefore, Hxj, = z$.

If z ± /O E S n oess(H), and z is not a threshold, then Lemma 11.11 shows that
z E S implies 1 E <j(Tv/(z, 9)), for some 0 with ±Im 9 > 0. Since z E oess(H(9)),
equation (V.l) shows H(9)\p = zip for some \p E. %. Theorem II.7 shows that z is
an eigenvalue of H.

Since M(z) depends continuously on z, S is a closed set. Since eigenvalues of H
may accumulate only at thresholds, S is at most countable, and has Lebesgue
measure zero.    □

Proposition V.3. Assume Hypotheses (l)-(4). If TV = 4, then the multiparticle
limiting absorption principle holds for H.

Proof. Using equation (IV.10) and the identities (IV. 15), we may write (z —
H y ' in the required form.

C(z): L2(R3m) -^ © J2 i L2(R3m) is analytic and uniformly bounded for z E C \
aess(H), with norm continuous boundary values as z approaches aess(H) from
above or below. This is proved by Corollary V.5, Lemma V.8, and Propositions
V.l5, V.l6, V.25, andV.26.

M(z): ®]lxL2(R3m)^®]ixL2(R3m) is analytic and uniformly bounded for
z E C \ aess(H), with norm continuous boundary values as z approaches a^H)
from above or below. (M(z))2 is compact, and ||(A/(z))2|| -» 0 as Re z —» — oo. The
compactness of M2 follows from the fact that only the lower left corner entries in
any of the 3x3 blocks for M may fail to be compact. Also, these are the only ones
which do not approach zero as Re z —» — oo.

These facts about M(z) are proved by Lemma V.4 and Propositions V.15-V.20,
V.25-V.32.

The exceptional set S is defined as the set of all real z such that 1 E a(M(z)).
The analytic Fredholm theorem and a theorem of Kuroda [16] (see also Simon [29])
show that S is a closed set of measure zero.

The only facts remaining to be proved are the boundedness, analyticity, and
continuity up to aess(H) of certain factors which occur in A(z). These facts are
proved by Lemma V.8.    □
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Lemma V.4. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be distinct
indices. Choose coordinates |, f, and t\ as in the definitions of pijk, piJk, and p¡Jk¡. Then,
for all a,ß,8e R,

(a) Py-¿PyUik is bounded from L2_ß(ß.m, dxy) 9 L2(R2m, dW) to L2(Rm, dx#) 9
L2(R2m, dtd£).

(b) PykPijkUkl is bounded from L2_ß(R2m, dx„dQ 9 L2(Rm, dS) to L2(R2m, dxyd®
9 L2(Rm, dS).

(c) Pu-,k\Py,k,Uik is bounded from L2_ß(R2m, dxydxkl) 9 L2(Rm, rfn) to
L2(R2m, dxydxkt) 9 L2(R™, dq).

Proof. First, we prove three inequalities involving coordinates:

2(1 + *2)(i + 4) - (i - e)
= 1 + 2x2jX2k + xfk - 2mJ(mi + mj)~xXy ■ xik

+ (2 - m2(mt + mj)-2)x2

> 1 + 2x2xfk + (xik - m,(m,. + m^'xyf > 0,

where we have used (2 — mj(mi + my2) > 1 > m2(m¡ + m^)~2. Therefore,

(1 + |2) < 2(1 + x2)(l + x2). (V.2)

The same computation (but with different masses) shows

(l + ?2)<2(l + 4)0+£2). (V.3)
Once again, the same computation (with different masses again) shows: (1 + t/2)

< 2(1 + £2)(1 + x\X Combining this with inequality (V.2), we obtain

(1 + r,2) < 4(1 + x2)(l + x2)(l + x2,).

Since Hypotheses (l)-(3) are satisfied, Theorem II.9 shows that ip0(xy), >i>iJk(xy, £),
and $y¿i(xy, xkl) fall off exponentially. It is therefore sufficient to consider only the
case a = ß = 0. Also, it suffices to consider only 5 = 0, because Py~kPyUik com-
mutes with multiplication by functions of £ and f, PykPijkUkl commutes with
multiplication by functions of f, and p¡7¿l*«#Uik commutes with multiplication by
functions of tj.

Pv~¿PijVik = P0UikPy¡kx

= [Py(l   +   *2)S/2(1    -   Ay)i/2][(l   -   Ayr/2Uik(l   +   4)5/2]

x[(i + 4)-fi/2(i + x2)-s/2p-].

The first factor is bounded because (1 + xffi^y belongs to the quadratic form
domain of —Ay (Theorem II.9). The third factor is bounded because of inequality
(V.2).

The second factor is bounded if its absolute square, (1 + x2k)s/2Uik(l —
&y)~xUik(l + 4)i/2> is bounded. To bound the absolute square, we write it as a
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Laplace transform:

[XT(x^)e^F(xik)e-'dt,

where F(xik) - (1 + x2k)s'2Uik(xik).
Suppose <¡> E L2(R3m). To compute \\F(xik)e'A«F(xik)<l>\\, we use coordinates xy, ¿,

f, and first compute the L2-norm in the x0 variable with | and f fixed. The operator
e'A" has an explicitly known integral kernel [22] and Xy = cxXy + c2£, with cx ^ 0,
since all masses are finite: F(xik) E Lp(Rm, dxik) + L°°(Rm, dxik), for some/? > w.
So, for each fixed £ and ?, Fie,*,.,. + c^{Xy, & f ) belongs to Lr(Rm, <¿c,y) +
L2(Rm, dxy), where r"1 = p~x + 1/2. If / > 0, e,A« maps this into L2(Rm, dx0) n
¿°°(Rm, ¿¿c,;) (where we have used the fact that r < 2). Multiplication by
F(cxXy + c2£) maps this into L2(Rm, dxy). By keeping track of the norms at each
stage, we obtain:

f\e-'(F(xik)e'^F(xik)<t>)(xy, I J )f dx„

<CFf(t)j\<p(xy,in\2dXy,

where CF is a constant depending only on F and lo(f(t))x/2 dt is finite.
Integrating over £ and f, we see that

I FÜJe'^F(x,.,)e-^|| < C-CK0)l/aW.
which belongs toLx((0, oo), dt). The Laplace transform now yields part (a) of the
lemma.

Parts (b) and (c) are proved by using the same methods, with inequalities (V.3)
and (V.4) in place of (V.2).   □

Corollary V.5. Let i,j, k, and I be distinct indices. Let 8 E R.
(a) PyJ, Pyk\ and pfj, are bounded from L2+y(R3m) to L2(R3m).
(b) Assume Hypotheses (l)-(3), and (5), and let n equal j, k, or I.

For any a and ß, the following operators are bounded:

WinPy. L2_ß(Rm, dxy) 9 L2(R2m, dm ) -» L2a(Rm) 9 L2(R2m, d£dÇ ),

WinPijk: L2_ß{R2m, dxydt) 9 L2(Rm, d$ ) -» L2a{R2m, dxydt) 9 L2(Rm, a? ),

WinPiJM: L2_ß(R2m, dxydxkl) 9 L2(Rm, dq) -> L2(R2m, dxydxkl) 9 L2(RT, dq).

Proof. Part (a) follows immediately from the definitions of the p's and Lj-
spaces.

If n <fcj, then Lemma V.4 yields the boundedness of WinPy = WinPyPy~xpy„ on
the weighted spaces, because piJn is bounded. If n =j, we use the fact that the
operator domain of Wy contains the operator domain of H^2 (see §II.B). Theorem
II.9 shows that ealx»tyy belongs to the domain of H0X/2, so WyPy is bounded on the
given weighted spaces.

The same methods apply to the remaining operators of part (b).    □
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Definition. Suppose A(z): L2(R") -> Lß(R") is an operator valued function,
which has the following properties:

(i) A(z) is analytic for z E C \ o^H).
(ii) A(z) is uniformly bounded for Re z < C.
(iii) \\A(z)\\ -> 0 as Re -h> - oo.
(iv) A(z) has norm continuous extensions A(x ± iO) to aess(H) from above and

below (A(x0 + z'O) = A(x0 — iO) if x0 = inf a^H)). Then yl(z) is called well
behaved from L2(R") to Lß(R"). If a = ß = 0, then we say A(z) is well behaved.

Lemma V.6. Assume Hypotheses (l)-(3), and (5). Let i, j, k and I be distinct
indices. Let Dx and D2 be cluster decompositions. The following are well behaved:

Kx(z) = Wy(z - HoyxUik,   K2(z) - W0(z - Hklyluik,

K3(z) = WyPD¡(z - HoyxUik,   K4(z) = WyPDi(z - Hklyxuik,

K5(z) = Wy(z - HoylPDUik,   K6(z) = Wy(z - HklyxpDuik,

Kn(z) = WyPD](z - HoylPDUik,andK&(z) = WyPDi(z - Hk,yxPDUik.

Proof. Lemma II.3 yields the result for Kx and K2. If PD commutes with Wy,
then Lemma II.3 yields the result for K3 and K4, also. If i and/' belong to the same
cluster of Dx, then Corollary V.5 shows that WyPD(\ + x2J) is bounded. However,
Lemma II.3 applies to (1 + x^yx(z - H0)~xUik and (1 + x2y\z - Hk,ylUik. So,
it suffices to consider K3 and K4 when /' and j belong to different clusters of Dx, but
Wy and PD do not commute. In that case, Lemma V.4 shows that the adjoint of
WyPDp~x is bounded into some tensor product of weighted spaces. Thus,
WyPD¡p~x is bounded. Lemma II.3 shows that pPDi(z — H0)~xUik and pPD¡(z —
Hk,yxUjk are well behaved. So, K3 and K4 are well behaved. Of course, the correct
choice of p must be made.

The same methods control K5, K6, K7, and Ks.    □

Lemma V.7. Assume Hypotheses (l)-(3). Suppose TV > 3, and a is any pair. Then
K(z) = Wa(\ - Pa)(z - HayxUa is well behaved.

Proof. We may decompose % as a direct integral of Hubert spaces for the two
body problem determined by the pair a. K(z) is fibered under this decomposition,
and it suffices to control the operators on the individual fibers. So, we need only
show Wa(\ - Pa)(z - hayxUa is well behaved on L2(Rm):

W„(l - Pa)(* - K)~XVa = Wa(\ - Pa)(z - h0yxua

+ wa(\ - pj(z - h0ylua(i - wa(z - h0yxua)-*wa(z - h0yxua.

In view of Lemma V.6, it suffices to show that the factor of (1 — Pa) cancels the
singularities of (1 - Wa(z - h0yxUayx.

Let M(z) = Wa(z - h0)~xUa. The proof of Proposition V.l shows that (1 -
M(z))~x is singular when z is a real negative eigenvalue of ha, and possibly when
z = 0. Hypothesis (3) implies that it is not singular at z = 0.
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The poles of (1 — M(z)) ' are first order poles. To prove this, let z0 be an
eigenvalue of ha, and consider the Laurent series

(\-M(z))~x=    2   (z-z0)kLk,
k-n

where L_„ ¥= 0. Since L_„ ^ 0, there is a vector <¡> in the domain of Ua, such that
L_n<¡>¥=0. [(1 - M(z))~x - l]<i> = (1 - M(z)yxM(z)$ must have a pole of order
n, so \p = M(zQyp = C(z0)( t/a<i>) is a nonzero element of Ran C(z) with L-,,^ # 0.
Similarly, using

[(1 - M(z)yl - 1] = M(z)(l - M(z))~x,

we see that every nonzero i) E Ran Ln has A(z0) 17 ̂  0. Therefore,

(z - hayl(Ua<¡>) = (z - Ao)-^^) + ^l(z)(l - M^r'cizX £/<*>)

has a pole of order n. Since ha is selfadjoint, n = 1.
If Q = L_, is the residue at z0, then g is a projection onto solutions of

M(z0y¡> = (¡> (see Kato [14]). If P is the orthogonal projection onto all eigenvectors
of ha with eigenvalue z0, then PA(z0) = A(z0)Q. (This is proved in the proof of
Proposition V.l.) Therefore, for z near z0,

(l-FM(z)O-M(z))-1
= (1 - F)^(z0)(l - M(z)yx - (z - z0)(l - P)

X(z-hoyxA(z0)(l- M(z))~l

= A(z0)(l-Q)   f   (z-z0)kLk-(l-P)
k=-\

oo
X {z - hoyxA(z0)   2   (z - z0)k+1Lk

k=-\

= ^i(z0)(i - e) 2 (* - ¿o)% - (i - **)
* = 0

X(z-Ao)-^(zo)   f   (z - Zo^'L,.
fe=-i

Thus, (1 — F)^4(z)(l — M(z))~x has a removable singularity at z0. Since (1 — Pa)
= (1 - ^a)(l - p)> the factor (1 - pa) cancels the singularities of (1 - M(z))~x
and the lemma is proved.   □

Lemma V.8. Assume Hypotheses (l)-(3), and (5). Let a, ß, and 8 be pairs such that
a and 8 have at least one index in common. Then Kx(z) = Wa(\ — Fj)(z — Hß)~xUs
is well behaved, and K2(z) = Wa(\ - Pß)(z — Hß)~x is well behaved from
L2(R("-,)m) to L2(R(A,-')m).
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Proof. Consider only Kx ; proof for K2 is similar.
If ß has no index in common with a, or if jS has no index in common with 8,

then Lemma V.6 applies. Thus, we may assume ß has indices in common with a
and 8:

Wa(l- P0){z-H„ylUt

= Wa{\ - Pß)(z - HoyxUs + Wa{\ - Pß)(z - Hßylvß(z - H0yxus

= Wa{\ - Pß)(z - HoyxUs + Wa(z - Hßy\l - Pß)Vß(z - H0yxus

= wa(i-pß)(z-H0yxus

+ (wa(z - H0yx(\ - Pß)uß)(Wß(z - H0ylus)

+ (Wa(z - HoyxUß)(wß(l - Pß)(z - HßylUß)(Wß(z - H0ylus).

Apply Lemmas V.6 and V.7.   □

Lemma V.9. Assume Hypotheses (l)-(3), and (5). Let a, ß, 8, and a be pairs with
a ^ ß and ß ¥= o. If a and ß have no index in common, assume ß = 8 or that 8 and
a have an index in common. Let D be any cluster decomposition, such that the indices
of a belong to the same cluster and the indices of ß belong to the same cluster. The
following are well behaved:

Kx(z) = Wa(z - H0yxvß(z - H0yxua,

K2(z) = Wa(\ - Pa)(z - HayxVß(z - H0yxu„,

K3(z) = Wa(\ - Pa)(z - HaylVß(l - Ps)(z - Hsyxu„,

K4(z) = Wa(\ - Pa)(z - HaylVßPD(z - H0yluo,

K5(z) = Wa(\ - Pa)(z - HaylVßPD(l - Ps)(z - Hsyxu0.

Proof (see Iorio and O'Carrol [13]). Lemma II.3 shows that Kx is well
behaved if it has norm continuous boundary values. If a and ß have an index in
common and ß and a have an index in common, then Lemma II.3 shows Kx is well
behaved.

If a and ß, or ß and a have no index in common, then, by taking adjoints if
necessary, we may assume ß and a have no index in common. Then, for Im z > 0,
Im w > 0,

|<</>(*,(z) - Kx(w))^}\

= 1 f°° f00^. Wae-"H°Vee-isH°Uax¡,}(e«'+s)z - ei(t+s)w)ds dt
Ko   •'o

< j"" f°°|<<f>, Wae-"H^-is<-H"-H^UaVpe-isH^}\ |e'<'+i>* - ei(-'+s)w\ds dt

= í00f|<(/;e/,í,í((/>i('+,>(','"'íí)»:H, w^-^^l

X |<,<•«+*)* _ e^+^\dsdt.
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Change variables by replacing j with r = t + s.

|<*. (Kx(z) - Kx(w))4,}|

< C (X\(U*eUHS(u;eir(H°-H^WZ)<¡>, W$e-i(r-,)Hfy}\\eirz - eirw\dt dr

Jo   Jo   "
X || »^e-'<'-,)Ji^|| \eirz - eirw\dtdr

< /"(/"lüje"^^^"»-^)^)*!2*)1 2

X Í J°°|| ^e-'^-'^l2 </r)     |e'rz - eirw\ dr

< r00C||t/*e'>("°-^)Wa<i>|| ll^ll \eirz - eirw\ dr.

We have used the Schwarz inequality, Holder inequality, and Kato smoothness of
Uß and Wß with respect to H§ (see Lemma II.2).

Since a ¥= ß and ß has no index in common with a, a and a have an index in
common. Therefore, as in the proof of Lemma II.3, \\U^e'r<-H',~H^W*^>\\ is
dominated by an L1 function of r which depends only on ||<f>||. So, as in the proof
of Lemma II.3, \(<f>,(Kx(z) — Kx(w))\¡/}\ tends to zero uniformly in (¡> and i^ as:
approaches w.

K2(z) = Wa(l - Pa)(z - HoyxVß(z - H0yxuo

+ Wa(\-Pa)(z- HayxUaKx(z).

The first term is controlled by the methods used for Kx(z). The result for Kx(z) and
Lemma V.7 control the second term.

If ß has indices in common with a and a, then Lemma V.8 shows that K3(z) is
well behaved. If ß and a have an index in common, but a and ß do not, then there
are two cases:

Case 1. ß = 8:

K3{z) = Wa(\ - Pa)(z - HoylVß(z - Hßy\\ - Pß)Ua

+ (w«0- pa)(z-Hayxua)

x(wa(z - H0yxvß(z - Hßyl(\ - Pß)Ua)

= wa{\ - pj[(z - Hßyx - (z - H0yx](i - Pß)Ua

+ (wa(i- pa)(z-Hayxua)

x(wa[(z- Hßyx -(z- H0yx](i - pß)u„).
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Since ß ¥= a and a has no index in common with ß, a and a have an index in
common. Lemmas V.6 and V.8 therefore apply to the terms which appear in the
last expression.

Case 2. 8 ¥= ß:

KÁz) = Wa(\ - Pa)(z - Ha)~xVß(z - H0y\\ - Ps)Ua

+ (wa(i - Pa)(z - Hayxvß(z - H0yxus)(ws(z - Hsyx(i - ps)ua).

The methods used to control K2(z) apply to the first term. The first factor of the
second term has the same form as K2(z). Lemma V.8 applies to the final factor,
since 5 and a are assumed to have an index in common.

If ß has no indices in common with a, then there are again two cases.
Case 3. ß = 8: Since ß and a have no common index and a ¥= ß, a and a must

have a common index. Apply the methods of Case 1.
Case 4. ß ¥= 8: Since ß and a have no index in common and ß ¥= 8, 8 and a have

a common index. Apply the methods of Case 2.
To show K4(z) and K5(z) are well behaved, first notice that (1 + 4 +

xß)s/2WßPD(\ + 4 + xß)s/2 is bounded (by Corollary V.5). Moreover, a must
have an index in common with a or ß. Using this information, K4(z) and K5(z)
may be rewritten as products of factors which may be controlled by the methods of
Lemmas V.6 and V.8, when Uß is bounded. A density argument then shows that
the result holds for general Uß.    □

Remark. Let | be the coordinate from the center of mass of particles i and / to
particle k. With the inner product on R3m determined by the masses, £ and Xy are
orthogonal. However, £ is not orthogonal to any other xa.

Lemma V.10. Assume Hypotheses (l)-(3), and (5). Let i,j, and k be distinct indices,
and choose pairs a =£ (i,j) and ß ¥= (i,j), so that a and ß have at least one common
index. The following are well behaved:

KX(Z)=     Wa(z-HyylPyPiÁk

and

K2(Z)    -     W„(Z    -    Hyy'PyUß.

Proof. Notice first that (z — HyyxPy equals Py times a multiplication operator
in the momentum representation. This fact, together with the above remark, show
that Kx(z) may be controlled by the methods of Lemma II.3 or Lemma V.6. These
methods apply to K2(z) if ß has no index in common with (i,j).

If ß has an index in common with (/,/'), then we may assume ß = (/', A:). K2(z)
may then be written as K2(z) = Kx(z)pykPyUik. Since Kx(z) is well behaved,
Lemma V.4 shows that K2(z) is well behaved.    □
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Lemma V.U. Assume Hypotheses (l)-(3), and (5). Let i,j, andk be distinct indices.
Let a = (i,j), (i, k), or (j, k). Choose I such that a u {/} = {i,j, k). The following
are well behaved:

KX(Z)  =  Py-klPyVik(z -   HayXPaPaJ,

K2(Z) = Py,kXPyVik{\ -  PiJk)(z - HayXPaPaJ,

K3(Z) - Py,klPyVik(z - HoyXPaPaJ,

Uz) = Py.kPyVik{\ - PiJk)(z - HoyXPaPaJ.

Proof. If a ¥= (i, k), then

Kx{z) = (py,klPyUik)(Wik(z - HayXPaPatl).

Apply Lemmas V.4 and V.10.
If a = (i, k), then (z — Ha)~xPa equals Pa times a multiplication operator in the

momentum representation. This operator (z — Ka — Ea)~x commutes with Wik, as
does pal. Therefore,

*i« = tówO + ^.2)Y/2)((i + 4)~y/\z -Ka- EaylPaJ)(wikpa).

Lemma V.4 bounds the first factor. The proof of Lemma II.3 controls the second.
Corollary V.5 bounds the final factor.

K2(z) = Kx(z) - Py-kxPyVikPyk(z - HayxPaPaJ

= Kx(z) - {py¿PyUik)(WikPykp-x){paJ(z - HayxPapaJ).

Lemma V.4 bounds the first factor; Corollary V.5 bounds the second; and the
proof of Lemma II.3 controls the third factor.

Proofs for K3(z) and AT4(z) are similar.    □

Lemma V.12. Assume Hypotheses (l)-(3), and (5). Let a, ß, 8, and o be pairs, with
a ¥= ß and ß ¥= a. Let k be any index not contained in the pair 8. Let D be any
cluster decomposition, such that the indices of a belong to the same cluster and the
indices of ß belong to the same cluster. The following are well behaved:

Kx(z) = Wa(\ - Pa)(z - Ha)~xVß(z - HsylpsPsj<,

K2(z) = Wa(\ - Pa)(z - HayxVß(z - Hsylpsua,

K3(z) = Wa(i - Pa)(z - Ha)~xVß(l - PD)(z - H^-'PsP^,

K4(z) = Wa(\ - Pa)(z - Ha)~xVß(l - PD)(z - Hsyxpsua,

K5(z) = Wa(l - Pa)(z - HayxVß(l - PD)(z - H0yxpsPs¡k.

Proof. We consider only Kx(z). The others may be treated in a similar fashion.
There are three cases.
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Case 1. ß = 8:

Kx(z) = Wa(\ - Pa)(z - HoyxV0(z - HßyxPßPß,k

+ Ko - pa)(z - Hayxua)(wa(z - H0yxvß(z - H$ylpfiPfj>k)

= wa(\ - pa)[(z - Hßyl - (z - H0yx]pßPß<k

+ (w«0 - rtt)(* - naylua)(wa[(z - Hßyl - (z - H0yx]PßPß,k).

Apply Lemmas II.3, V.8, V.10, and the remark preceding Lemma V.10.
Case 2. ß ¥= 8; a and ß have a common index.

*.(;) = (wa(i - PJ(z - Hayxuß)(wß(z - HsyxpsPs¿).

Apply Lemmas V.8 and V.10.
Case 3. ß ¥= 8; a and ß have no common index.

Kx(z) = Wa(\ - Pa)(z - HoyxVß(z - HsyxpsPs¿

+ {wa{\ - pa)(z - Hayxua)(wa(z - H0yxvß(z - HsyxpsPs¿).

Proceeding as in Case 1, all the results may be proved, except for norm continuity
of the boundary values. However, a density argument shows that it suffices to
prove norm continuity under the additional assumption that Vß is bounded.

In that case,

km = (wa(i - pa)(z - Hay\i + 4P/2)

x(*>0 + x2)y/2ps(z - HsyxPsj).

Since a and ß have no common index and ß ¥^8, a and 8 have a common index.
So, Lemma V.6 applies to the first factor. Lemma V. 10 and Theorem II.9 show that
the second factor is well behaved.   □

Lemma V.13. Assume Hypotheses (l)-(3). If N = 3, then M(z) is well behaved and
(M(z))2 is compact.

Proof. M(z) is well behaved by Lemmas V.4, V.8, V.l 1, and V.12. Wy(\ - Py)(z
— HyyxUik is a norm convergent sum of connected graphs, when Re z is large
negative. Standard methods (e.g. Ginibre and Moulin [7]) show that each term is
compact. Similarly,

Wy{\    -    Py)(z    -    Hy)-lV¡k(z    ~    H^P^J

and

Py,kPyVik(z - HikY*P¡kPikj

are compact for large negative Re z. Since these operator valued functions are well
behaved, compactness holds for all z.

The entries of (M(z))2 are sums of terms, each of which contains one of these
compact factors. Thus (M(z))2 is compact.    □
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Lemma V.14. Assume Hypotheses (l)-(3), and (5). Let i,j, and k be distinct indices,
and let a and ß be distinct pairs. The following are well behaved:

Kx(z)=PrxPyVik(z-HoyxUß,

K2{Z) = Py-k%Vik(\  - PiJk)(z -  HoyXUß,

K3(z) = Py,k%Vik(\ - Pa)(z - HaylUß,

Uz) = Py,k%vikpa(z - Hayxuß,

K5(z) = Py-,k%Vik{\ - PiJk)(\ - Pa)(z - HayXUp,

K6(Z)   =  Py-kXPyVik(l   -   Pyk)Pa(z   ~   Hj^Uß.

Proof. If ß and (/, k) have an index in common, Kx(z) is well behaved by
Lemmas V.4 and V.6. If ß and (/', A:) have no common index, then Lemmas II.3
and V.4 yield the results, except for the norm continuity of the boundary values.
Given this, we need only prove the norm continuity when Vik is bounded. In that
case,

Kx(z) = (py,xkPyVik{\ + 4)Y/2)((1 + x2y'\z - HoyxUß).

Since ß and (i,j) must have a common index, Lemma II.3 controls the boundary
values of the second factor. Lemma V.4 bounds the first.

Proofs for the other operators are similar.    □

Proposition V.15. Assume Hypotheses (l)-(3), and (5). Let i,j, k, and I be distinct
indices. Let n = i,j, or k. Then

KX(Z)    =     Wy(\    -    Py)(z    -    Hy)-\Vik    +     VJk)(\    ~    Pyk)(z    ~    H^ ) ""'  U'„,

is well behaved and compact. Moreover

K2(Z)    =     Wy{\    -    Py)(z    -    Hy)-\Vik    +     VJk){\    ~    Pyk)(z    -    H^

is compact and well behaved from Lä2(R3m) to L2(R3m), when 8 > 1.

Proof. Consider only Kx(z); proof for K2(z) is similar.
Using equation (IV.6), we have Kx(z) = \(z) + II(z) + III(z), where

I(Z)    =     Wy{\    -    Py)(z    -     Hy)-\V¡k    +     Vjk){\    ~    Pyk)(z    ~    H^U«,

II(Z)    =     Wy{\    -    Py)(z    -    Hy)-\Vik    +     VJk){\    ~    P y,) A (z) C (z) U„,

III(z) = Wy{\ - Py)(z - Hy)-\Vik + VJk)(l - P¡jk)A(z)(\ - M"(z))"'

XM(z)C(z)Unl.

Lemma V.9 shows I(z) is well behaved.
A(z)C(z) is a sum of terms, each of which contains only one resolvent. We

substitute this sum in II(z). II(z) then becomes a sum of terms which are well
behaved by Lemmas V.9 and V.12.

Wy(\ - Py)(z - Hy)-\Vik + VJk)(\ - Pyk)A(z) is well behaved by Lemmas V.9
and V.12. M(z) is well behaved by Lemmas V.4, V.8, V.ll, and V.12. M(z)C(z)Un,
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is well behaved by Lemmas V.9, V.12, and V.14. So, III(z) is well behaved if the
factor (1 — Pyk) in the operator

Wy(\     -     Py)(z     -     Hy)-\Vik    +      K„ ) ( 1     ~     Pyk)A(z)
cancels the singularities of (1 — M(z))~x.

To prove this, we mimic part of the proof of Lemma V.7. % is a direct integral
of spaces for the three body problem determined by (i,j, k). A(z), M(z), and C(z)
are fibered under this decomposition, and we consider their restrictions (which we
also denote by A(z), M(z), and C(z)) to the individual fibers.

Let z0 be a point at which (1 — M(z))~x is singular on some fixed fiber.
Hypothesis (3) and Lemma 11.11 show that (1 — M(z, 9))~x is singular at z0 for
some 9 with z0 E aess(H(9)) and |Im 9\ arbitrarily close to 0. (1 — M(z, 9))~x may
be written as a Laurent series 2£_ _„(z - z0)kLk for z near z0. Mimicking the proof
of Lemma V.7, we see that L_nC(z0, 9) =■£ 0 and that no </> £ Ran L_n has
M(z0, 9yp = 0. By using Ga = G0 + GaVaG0, we see that A(z0, 9)\p = 0 implies
Tl/(z0, 0)i//= 0. Putting these facts together, A(z0, 9)L_nC(z0, 9) =£■ 0. Equation
(IV.6) shows that (z — H(9))~x has a pole of order n at z0. Selfadjointness of H
and standard dilation analyticity arguments show n = 1. The rest of the argument
of Lemma V.7 now goes through, since equation (V.l) shows (1 — P)A(z0) =
^4(z0)(l — Q), where Q projects onto the eigenvalue 1 eigenvectors of M(z0). Thus
(1 — Pyk) cancels the singularities of (1 — M(z))~x, and III(z) is well behaved.
Therefore, Kx(z) is well behaved.

It suffices to prove compactness at large negative Re z. Write Kx(z) as:

Wy(z - Hy)~\Vik + VJk)(z -  H^Y'U«

- WyPy(z     -     Hy)-l(V¡k    +      VJk)(z    ~     H^U«

- Wy(z     -     H9Y\Vm    +      VJk)(z    -     HykyXPykUnl

+   WyPy(z    -    Hy)-\Vik    +     F,J(z    -    Hy^'Py,^.
Expand the resolvent factors as sums of graphs. Replace each WyPy by

(^fí/(i + 4))(i + 4)-1
and each F^t/,,, by

(i + 4 + 4 + ^)~1((1 + 4 + 4 + 4)pukum)-
Then apply Corollary V.5 and any of the usual compactness proofs to each term.
D

Proposition V.16. Assume Hypotheses (l)-(3), and (5). Let i,j, k, and I be distinct
indices, and let n = i,j, or k.

*,(*) = Py,klPy{Vik +   VJk)(\  - PiJk)(z - HiJky'Unl

is compact and well behaved.

K2(Z) = Py-klPy(Vik +   VJk)(\ - Pyk)(z - HiJkyl

is compact and well behaved from Lg(R3m) to L2(R3m) whenever 8 > 1.
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Proof. Consider only Kx(z); the proof for K2(z) is similar.
Using equation (IV.6), we have Kx(z) = I(z) + II(z) + IH(z), where

I(Z)   =  Py,kXPy{Vik   +    Vjk)(l   -   Pyk)(z   -   HoyXUn¡,

II(z) = py:xPy(Vik + VJk){\ - PiJk)A(z)C(z)Un!,

III(z) = Py:xPy{Vik + Vjk)(\ - PiJk)A(z)(\ - M(z))~"'M(z)C(z)Un¡.

Lemma V.14 shows that I(z) and II(z) are well behaved. M(z) is well behaved by
Lemmas V.4, V.8, V.12, and V.14. M(z)C(z)Unl is well behaved by Lemmas V.9,
V.12, and V.14. Lemmas V.ll and V.14 control py¡kxPy(Vik + Vjk\\ - PiJk)A(z).

As in Proposition V.l5, (1 - PiJk) removes the singularities of (1 — M(z))~x. So,
Kx(z) is well behaved.

It suffices to prove compactness for large negative Re z. Furthermore, a density
argument shows that we may assume all i/'s and W's he in S (Rm).

Under this assumption,

Py.kPy{Vik + VJk)PiJk(z - HijkylUnl

= {Py-kPyiVik + Vjk))(Pijk{z - Hijkylpyk)(py-kxPijkUnl).

Lemma V.4 bounds the initial and final factors. The middle factor equals Pijk(z —
KiJk — Eykyxpijk, where Kyk is the kinetic energy associated with the coordinate
from the center of mass of particles i,j, and k to particle /. Pijk is (compact) 9 1.
(z — Kyk — Eyk)~xpyk is 1 9 (compact). So, the middle term is compact.

Hence, it suffices to prove Py~kPy(Vik + VJk)(z — Hijk)~xUnI is compact when the
C/'s and W's belong to SfR"1). Lemma V.4 shows that it suffices to prove that
(1 + x2ya(Wik + WJk)(z - HiJkyxUnI is compact. We expand (z - Hijkyx as a
sum of graphs. The only graphs for which compactness could fail are those which
do not connect i and j. It therefore suffices to prove the compactness of (1 +
xy)-a(wik(z - Hikyx + wJk(z - HJkyx)Unl.

Expand (1 + x,2) aWik(z — Hik) XU„¡ as a sum of graphs. Use coordinates xtJ,
xik, and xn„ with conjugate momenta py, pik, and pnl, respectively. Following Reed
and Simon [24, p. 128], write out the integral kernel for each graph in momentum
representation. If z is real and large negative, then the replacement of each factor
(z - H0)~x by (z - py — p2k — 4/)1 will increase the absolute value of the
integral kernel at every point. The new integral kernel is square integrable, so the
original one is, also. Consequently, each graph is Hilbert-Schmidt.

The proof for (1 + x}f)'aWjk(z - HjkyxUnl is similar.    □

Proposition V.17. Assume Hypotheses (l)-(3), and (5). Let i,j, k, and I be distinct
indices; let n = i,j, or k; let p be any index not equal to n or I; and let a be the pair
not containing n or I. The following are well behaved and compact:

KX(Z)    =     Wy{\    -    Py)(z    -    Hy)-\V¡k    +     Vjk){\    ~    Pyk)(z    ~    Hy^

*vnl(z- HnlyxpnlPnlJ>
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and

K2(Z)    =     Wy{\    -    Py)(z    -    Hy)-\Vik    +     VjJ ( 1    ~    Pyk)(z    -    J^)"'

Proof. Consider only Kx(z); the proof for K2(z) is essentially identical.
For large negative Re z, WnlPn¡(z — Hn¡)~xpn¡J¡ is bounded, so compactness

follows from Proposition V.15. Similarly, it is clear that ||Ä,(z)|| tends to zero as
Re z -» — oo. It is therefore sufficient to prove analyticity and the norm continuity
of the boundary values.

Kx(z) = I(z) + II(z) + HI(z), where

I(Z)   =     Wy{\    -    Py)(z   -    Hy)-\Vik   +     VJk){\    -    Pyk)(z   ~    //„) " '

XVnl(z- H^y'P^p^,

II(Z)     =       Wy(\     -     Py)(z     -    Hy)-\V¡k    +      F,J(l     ~     Pyk)A (z ) C (z )

*k,(z- Hn,rlpnlpn„>

III(Z)    =     Wy(l    -    Py)(z    -    Hy)-\V¡k    +     VJk){\    ~    Pyk)A(z)

X (1 - M(z)yxM(z)C(z)Vnl(z - HniyxPnlpn¡J¡.

Lemma V.12 controls I(z) after the factor (z - HoyxV„¡(z - H^y1 is replaced
by[(z-Hnlyx-(z-Hoyx].

Since

A(z)C(z) = (z - Hy)-1 + (z- Hikyx + (z- HJkyx - 3(z - H0)~x

= [(z - Hy)~lVy + (z - HikylVik + (z - HjkylVJk](z - H0yx,

II(z) =       2        Wy{\ - Py)(z - Hy)-\Vik + VJk)

X (1 - PiJk)(z - HßyXVß[(z - HJ-1 - (z - HJ-^P^

=    2    Wy{\    -    Py)(z    -    Hyy'iV«    +     Vjk){\    ~    Pyk)(z    ~    Hß)~   'Vß
ß

x (z - H„,yxpnlpnlJ,

-   2    Wy{\    -    Py)(z    -    Hy)-\Vik    +     Vjk){\    ~    Py,)
ß

x[(z - Hßyl - (z - H0yl]pnlPnlJ,.

Using the remark before Lemma V.10, Lemma II.3, and Theorem II.9, we see that
(1 + xlfWß(z - HJ-'P^p^ is well behaved for each ß = (i,j) (i, k), or (j, *)•
So, to control the first sum, it is sufficient to control

1^.(1 - Py)(z - Hy)-l(Vik + VJk){\ - Pijk)(z - HßyxUß{\ + 4)-Ä.
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This equals

Wy{\    -    Py)(z    -    Hy)-\V¡k   +    VJk){\    ~    Pyk){\    ~    Pß)

X (z - HßylUß(l + 4)-* + Wy{\ - Py)(z - Hy)-\vík + VJk)

x (i - Puk)Pß(z - Hß)~lUß(\ + 4)_í.

Lemma V.9 controls the first of these terms. The second is well behaved by
Corollary V.5 and Lemmas V.4 and V.12.

The second sum in the last expression for II(z) is controlled by Lemmas V.9 and
V.12.

Next consider III(z).

Wy{\   -   Py)(z   -   Hy)-\Vik  +   Vjk){\   -   Pyk)A(z)(\   ~  M(z))~X

has been studied in the proof of Proposition V.l5. So, it suffices to control
M(z)C(z)Vnl(z - HniyxPnlpnlj>.

Two types of terms appear here:

Ws(\ - Ps)(z - HsyxVa(z - hx'v^z - Hnlyxp„lPn¡J„

and

ps-;q%K(z - Hayxvnl(z - HnlyxpnlpnlJ,

where 8 and a have a common index. The first type appears in II(z), and has been
studied. The second equals

Ps.qXPaVa{\ - Pa)(z - Hayxvnl(z - HnlyxpnlPnlJ>

+ psJpsv0p0(z - HayxvM(z - HnlyxpnlPnlJ,.

The first of these is well behaved by Lemmas V.4 and V.12. The second may be
rewritten as:

(pfjpsua(i + 4)r/2)K(i + *iVy/2PAz - Haylu¿\ + 4)Y/2)

x ((i + xiy^p^z - HnlyxPnlJ,).

Lemma V.4 applies to the first factor. Lemma V.4 and the proof of Lemma II.3
control the others.    □

Proposition V.18. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be
distinct; let n = i,j, or k; let p be any index not equal to n or I; let a be the pair not
containing nor p. The following are well behaved and compact:

KM = Py.kPy{Vik + VJk)(l - PiJk)(z - Hyk)~X Vn¡Pnl(z - Hj-'p^,

K2(z) = Py-^Py{Vik + Vjk){\ - Pijk)(z - HykyXVnlPnt(z - Hn¡yxUa.

Proof. The technique for extending the proof for Proposition V.l6 to these
operators is the same as the technique used to obtain the proof of Proposition V.17
from that of Proposition V.15. In some instances, Lemma V.14 must be used in
place of Lemmas V.9 and V.12.   □
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Proposition V.19. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be
distinct, and let n = j or k. The following are compact and well behaved:

Kx{z) = p^PmVaPa{z - Huyxpil<n,

Uz) = tâP&vMz - HuyxuJk,

Uz) = py.k\Py,ki^iiPu(z - nilyxpil¡n,

Uz) = Py,k\Py.klvilpi¡(z - HuyxuJk.

Proof. Consider only Kx(z); proofs for the others are similar.

Uz) = {PfrPmua(i + 4 + 4 + 4)")
x ((i + xy + xik + xJkyawupu(z - Hityxpiln).

Lemma V.4 bounds the first factor. Pu(z — Hayx = Pu(z — Ku — Eu)~x, where
Ku is a multiplication operator in the momentum representation. The methods of
Lemma II.3 may be used to prove that the second factor is well behaved. For large
negative Re z, (1 + Xy + xfk + x2kyaWu(z — H¡¡yx is compact because (1 + Xy
+ 4 + xjk)~aWu falls off in all directions in configuration space. This implies
compactness.   □

Proposition V.20. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be
distinct; let n = j or I; and let p = j or k. The following are well behaved and
compact:

Kx(z) = PykxPiJkVn(z - Huy\V¥ + Vlp)(z - HilpyxpilpPilp,

Uz) = pykPykvu(z - HuyxvJk(z - HilJkyxpilJkpilJk,

Uz) = py,k\Py,klvik(z - Hiky\vin + vkn)(z - Hiknyxpiknpikn,

Uz) = Py~,k\Py,ki17ik(z - Hik)~  Vjl(z - Hikjl)     PikjlPikjl-

Proof. Consider only Kx(z); proofs for the others are similar.

Uz) = PykPUkVAz - HilpyXPilppilp

-PykPykVuO- - Pi,)(z - Ht¡yxPilppi¡p

-pykPykVi,PÁz - HuyXPiIppilp.

The methods used to prove Proposition V.19 may easily be modified to control the
first and last terms. The middle term may be written as:

- (pä^X^yO - pu)iz - Hity\\ + 4P/2)(0 + 4)y/2pilPpilP)-
Lemma V.4 bounds the first factor. Theorem II.9 bounds the third. The proof of
Lemma V.7 controls the middle factor.

Given the above results, it suffices to prove compactness when Vip and V, are
bounded. In that case,

*.(') = {PykPykVa{z ~ Hg)'^ + ^))((z ~ »*)"!^W>*)-
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For large negative Re z, the first factor is bounded. In the second,

(z - Hilpyxpilp = (z - Kilp - EilpyxpiIp.

Pilp is (compact) 9 1; (z — Kilp — Eilpyxpilp is 1 9 (compact). This implies com-
pactness.   □

In order to prove certain results involving (z — HiJkiyx, a formula analogous to
equation (IV.6) must be obtained. To motivate the formula we will use, we first
give a simpler formula:

where

(z - HijMyx = (z- H0yx + 6E(z)(i - 9n(z))-'e(z), (V.5)

&(z)=[(z-H0yxUy    (z-H0yxukl],

0 Wy(z-Hy)-XUt

wkl(z-HklyxUy

Wy{z -Hy)-X

wkl(z - Hklyx

91t(z) =

e(z) =

kl

For large negative Re z, the inverse term may be expanded by geometric series.
Then, using the diagram symbolism, the formula is easily checked. Using the
uniqueness of analytic continuation, the formula is valid wherever both sides
contain only bounded operators.

If the relative motion of the centers of mass of particles i and / and of particles k
and / is removed, then the barely connected terms Wy(z — Hy)~xUkl and Wkl(z —
Hk,)~xUy are compact. So, the analytic Fredholm theorem shows that the inverse
term of equation (V.5) exists for z E oess(HiJk,) except at those z's for which the
system of equations

<¡>y = Wy(z - Hy)-XUkl<t>kl   and   <pkl = Wkl(z - Hk^xU^y

has a nontrivial solution. Mimicking equation (V.l), we see that this occurs only
when z is an eigenvalue of HiJkl. Thus, equation (V.5) is valid for z £ C \ a(HijkX

As z approaches <Jess(//y w), various terms in equation (V.5) are singular, unless
Py = Pkl = 0. So, we require another formula. Because Vkl and Py commute, there
is no analogue of the p functions in this case. However, a formula very much like
equation (IV.6) is valid. Let G0 = (z - HQ)~X, Gy = (z - Hoyx, etc. Then,

Gij,ki = Gij + Gk G0 + A(z)(\ - M(z)yxC(z), (V.6)

where A(z), M(z), and C(z) are given in Figure 2.
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0
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Figure 2

To establish the vahdity of equation (V.6), we expand the inverse term of
equation (V.5) and insert projections Py, (1 — Py), Pkl and (1 - Pkl) before the
resolvent factors. We then sum the resulting series to obtain equation (V.6). This is
completely analogous to the derivation of equation (IV.6) from equation (IV.4).
The absence of spurious zeros for equation (V.6) is proved by mimicking the proof
of Proposition V.2. Below, we will prove M(z) is well behaved, and (M(z))2 is
compact (when the motion of the center of mass of particles / and j relative to the
center of mass of particles k and / is removed). A(z) and C(z) are analytic for
zEC\ <>csÁHy,ki), so equation (V.6) is valid for z E a(HiJkX

In the two and three body cases (with finite masses), M(z) was well behaved. We
have not been able to prove this for equation (V.6) (or for the three body case with
an infinite mass, in which case an equation like (V.6) is used in place of equation
(IV.6)). However, (M(z))2 is well behaved. The next few lemmas prove this.

Lemma V.21. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be distinct.
K(z) = Wy(\ - Py)(z - Hy)-1^ is analytic for z E C \ o^(Hykl); tends to zero
as Re z —» — oo ; and has strongly continuous boundary values on o^Hy^) from
above and below. If the motion of the center of mass of particles i andj relative to the
center of mass of particles k and I has been removed, then K(z) is compact for
zGC\ aJ.Hyja).

Proof. Except for compactness, Lemma II.3 yields these results for the operator
valued function Wu(\ - Py)(z - HoyxUk¡:

K(z)= Wy(l-Py)(z-HoyxUkl

+   (Wy(l    -    Py)(z   -   Hy)-XUy)(Wy(z   ~    H^U»).

Lemmas II.3 and V.7 apply to the various factors here.
To prove compactness, we expand the resolvent in K(z) as a sum of graphs. The

standard compactness proofs apply to each term at large negative Re z.    □
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Lemma V.22. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be distinct.
K(z) = PyWklPkl(z — HkiyxUy is well behaved. Moreover, if the relative motion of
the centers of mass of cluster {i,j} and {k, 1} is removed, then K(z) is compact.

Proof. K(z) = (WklPkl)(PklPy(\ + x2T)((l + x$)~a(z - Kkl - Ekl)~xUy).
Corollary V.5 bounds the first factor. The second is compact on L2(R2m). Lemma
II.3 controls the third.    □

Lemma V.23. Assume Hypotheses (l)-(3), and (5). If the relative motion of the
centers of mass of the clusters {i,j} and {k, 1} is removed, then M(z) in equation
(V.6) is analytic in C \ oess(Hyk¡), with strongly continuous boundary values on the
cut. (M(z))2 is compact and well behaved.

Proof. All results, except for compactness and norm continuity of (M(z))2 up to
the cut, are consequences of Lemmas V.12, V.21, and V.22.

(M(z))2 has four types of nonzero terms.
Type 1. Wy(\ - Py)(z - HtJ)-xVkl(z - Hkl)~xUy.
Lemmas V.9 and V.12 imply the continuity. Compactness follows from Lemma

V.21, since Ukl(z — Hkl)~xUy is bounded for large negative Re z.
Type2.PyWkl(z-Hk/yxUy.
This equals

PyWklPkl(z - HkiyxUy + PyWkl(\ - Pkl)(z - HkiyxUy.

So, Lemmas V.21 and V.22 show that it suffices to prove the continuity when Wk,
is bounded. In that case,

PyWkl(z - HklyxUy = {wklPy{\ + 4)a)((i + xff\z - HklyxUy).
The first factor is bounded. The second is well behaved by Lemma II.3.

Type 3. Wy(\ - Py)Vkl(z - HkiyxVy(z - Hy)PyUkl.  '
Gy — Gkl = Gk,(Vy - Vk,)Gy, so the operator in question equals

Wy(\    -    Py)(z    -    Hy)-XVk/(z    -    HyyXPyUkl

- W„(l - Py)(z - Hy)-XVkl(z - HMyxPyUkl

+   Wy(\    -    Py)(z    -    Hy)-XVkt(z    -    HkiyXVk,(z    -    Hy)-XPyUkl.

The first term here is zero, since the Py commutes with (z — Hy)~xVkI(z — Hy)~x.
By Lemmas V.21 and V.22, it suffices to prove the continuity for the remaining
terms when Vk¡ and Ukt are bounded. The second term is controlled by Lemmas
V.9 and V.12 after factorization as

-    (Wy(\    -    Py)(z    -    Hy)-XVkl(z    ~    H„ ) " ' ( 1    +    ̂ ^((l    +    Xy^PyU,,).

The third term equals

{Wy{\   -   Py)(z   -   Hy)-XVkl(z  -   Hkiy\l   +   4P)

X    ((1     +    X2)aPyUkl)(Wk,(z    -    Hy)-XUk¡).
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Lemmas V.9 and V.12 control the first factor. The second factor is bounded. The
third is controlled by Lemma II.3.

Type 4. PyWk,(z - Hkl)~xVy(z - HoyxPyUkl.
This equals

PyWkl(\ - Pkl)(z - HkiyxVy(z - HyyXPyUkl

+    {PyWklPkl(z    -    HkiyXUy)(PklWyPy(z    ~    Hy)- "'U'„ ).

Compactness follows from Lemmas V.21 and V.22. Lemmas V.12 and V.22 imply
the norm continuity of the first and second terms, respectively.   □

Remark. C(z) in equation (V.6) is well behaved from L¡(R2m) to L2(R2m). Also,

G,    =     GyPy    +     G0(l     -    Py)    +    GQVyGy{\    -    Py)

and

G« = Gk,Pkl + G0(l - Pki) + GoYklGklV - Pkl)-
These facts, together with Lemma V.23 and Theorem III.l imply asymptotic

completeness for H¡jk¡, when Hypotheses (l)-(3) hold. Much easier proofs of this
fact exist, but this result is a simple by-product of our methods.

Lemma V.24. Suppose A(z) is a strongly continuous bounded function with values in
the bounded operators on %. Suppose B(z) is a norm continuous function with values
in the compact operators on %. Then A(z)B(z) is norm continuous and compact.

Proof. The compactness of A(z)B(z) is a well-known fact.
Suppose e > 0 is given. Fix z, and let TV = supH^w)!!. Choose a finite rank

operator C, such that \\B(z) — C\\ < e/6TV. The restriction of A(w) to the range of
C is norm continuous. Therefore, there exists 8 > 0, so that |z — w\ < 8 implies
1104(z) - A(w))C\\ < e/3N.

If |z — vv| < 8, then by the triangle inequality,

\\A(z)B(z) - A(w)B(w)\\

< \\(A(z) - A(w))(B(z) - C)\\+\\(A(z) - A(w))C\\

+ \\A(w)(B(z) - B(w))\\
< 2TVe/6TV + e/3 + TVe/3TV = e.    □

Proposition V.25. Assume Hypotheses (l)-(3), and (5). Let i,j, k, and I be distinct
indices.

KX(Z)    =     Wy{\    -    Py)(z    -    Hy)-XVk¡(l    -    Py^Z    ~    Hy^)'^ £/«

is compact and well behaved.

UZ)    =      Wy(\     -     Py)(z     -     Hy)-XVk/(\     ~     Py^Z     ~    Hy ,„)""'

is compact and well behaved from Ls2(R3m) to L2(R3m),for any 8 > 1.

Proof. Consider only Kx(z); the proof for K2(z) is similar.
Compactness for large negative Re z is easily proved by expanding the resolvents

as sums of graphs. It therefore suffices to prove Kx(z) is well behaved.
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Using equation (V.6), we write Kx(z) as a sum of four terms.

I(Z)     =      Wy{\     -     Py)(z     -     Hy)-XVk¡(l     ~     P y ¿,){z    ~     H^V*,

II(Z)     =      Wy{\     -     Py)(z     -     Hy)-XVk¡(l     ~     P y ̂ (z    ~     H^U^

III(Z)     =      »    Wy(\     -     Py)(z     -     Hy)-XVk/(l     ~     P y ̂ (z     ~     H^V*,

IV(z) = Wy(\ - Pu)(z - Hy)-xVkl(l - PiM,)A(z)(l - M(z))-lC(Z) U&.

Lemmas V.9 and V.12 control I(z), H(z), and IH(z). Lemmas II.3 and V.21 show
that Wy(\ - Py)(z - Hy)~xVkI(\ - Pyk¡)A(z) is well behaved, except that the
boundary values are only strongly continuous. Lemma V.23 shows that M(z) has
similar properties.

By mimicking part of the proof of Proposition V.l5, we see that the factor of
(1 — Pyjki) in IV(z) removes the singularities of (1 — M(z))~x. Thus,

Wy(\     -     Py)(z     -     Hy)-XVk,(l     ~     i^ (z)( 1     "     M'(z))""'

is well behaved, except that the boundary values are strongly continuous. Lemma
V.24 now shows that it suffices to prove C(z) Uik is well behaved and compact.

The first and third entries of C(z) Uik are compact for large negative Re z,
because they may be written as sums of connected graphs. The second and fourth
entries are compact by the compactness argument used in the proof of Proposition
V.16.

Lemmas V.9 and V.12 show that the first and third entries of C(z)Uik are well
behaved. The second entry equals

PyWkl(\ - pkl)(z - Hklyxuik + PyWklpkl(z - Hklyxuik.

Lemma V.6 controls the first term. The second may be written as

(Py(\ + x2)a)(WklPk,)({\ + x*)-"(z - Hklyxuik).

Apply Lemma II.3, Theorem II.9, and Corollary V.5. This shows that the second
entry of C(z) Uik is well behaved. The fourth entry is handled in the same way.   □

Proposition V.26. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be
distinct.

KX(Z)    =    PyWkl(\    -    Py,k,)(z    -    HiM/yXUik

is compact and well behaved.

K2(Z)    =    PyWk¡(\    -    PÍMI)(Z    -    Hyik,yX

is compact and well behaved from L¡(R3m) to L2(R3m),for any 8 > 1.

Proof. Consider only Kx(z); proof for K2(z) is similar.
Py and Wkl(\ - Pm) commute. Py(z - HiMI)~x = Py(z - E„ - H'k^x, where

Hi, = Hkl - H^. Moreover, (1 - PiJ¡kl)Py = (1 - Pkl)Py. Therefore,

K(z) = (PyWkl(\ - Pkl)(z -Ey- Hi,yxpyk)(prkxPyUik).
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Lemma V.4 bounds the second factor. Py is (compact) 9 1 ;

Wkl{\ - Pk!)(z -Ey- Hi,yxpiÁk = 1 9 X(z).

X(z) is compact for large negative Re z. The proof of this is the same as the
compactness of the three body operator Wy(\ - Py)(z - HyyxUik on L2(R2m).
X(z) is well behaved by the proof of Lemma V.8 and the remark before Lemma
V.10. Thus, Kx(z) is compact and well behaved.   □

Proposition V.27. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be
distinct, and let n = j or I. The following are well behaved and compact:

KX(Z)    =     Wy(l    -    Py)(z    -    Hy)-XVk,(l    ~    Py^Z    -    Hy^

xvik(z-HikyxpikUj,

and

K2(Z)    =     Wy{\    -    Py)(z    -     Hy)-XVk,(l    ~    Py^Z    ~    Hy^

*vik(z- HikyxpikPiKn.

Proof. Consider only Kx(z); the proof for K2(z) is similar.
For large negative Re z,   Wik(z — HikyxPikUß is bounded,  so compactness

follows from Proposition V.25. Hence, it suffices to prove Kx(z) is well behaved.
Using equation (V.6), we write Kx(z) as a sum of four terms:

I(Z)    =      -    Wy(\     -     Py)(z    -     Hy)-XVkl(l     ~     Py¿,)(Z     ~    H^

xvik(z-Hikyxpikuß,

U(Z)    =     Wy{\    -    Py)(z    -    Hy)-XVk¡(\    "    Py^Z    ~    H'„)""'

xvik(z-Hikyxpikuß,

III(Z)    =     Wy{\    -    Py)(z    -    Hy)-XVk/(\    -    Py^Z    ~    #„)"'

xvik(z- Hikyxpikuß,

IV(z) = Wy{\ - Py)(z - HoyxVkl(l - Pm)A{z){\ - M(z)yx

XC(z)Vik(z-HikyxPikUß.

1(Z)   =     Wy(\    -    Py)(Z   -    Hy)-XVk/(l    -   Py^Z   -    H^    ~(Z~    H^P^Uj,.

This is well behaved by Lemma V.12.

II(Z)    =     -I(Z)    +     Wy(l    -    Py)(z    -    Hy)-XVk,(l    ~    Py^Z    -    Hy)^

x Vy[(z - Hikyx - (z - H0yx]pikuß

=     -I(Z)    +    (Wy(l    -    Py)(Z    -    HyyXVk,(l    -    F,, „ )( 1     -    Py)(z    ~    H',)""'  U'y)

x (Wy[(z - Hikyx - (z - H0yx]pikuß).
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Apply Lemmas V.9, V.10, and II.3:

IH(Z)     =      -I(Z)     +      Wy(\     -     Py)(z     -     Hy)-XVkl(l     ~     P y ¿,)(z     ~     H,,)^

X VkI[{z - Hikyx - (z - H0yx]pikuß

=     -I(Z)    +    (Wy(l-    Py)(z    -    Hy)-XVkl(\    ~    Py^Z    -    H,,)' '

x ukl{\ + 4)"°)((i + x2k)awklpik(z - Hikyxuß)

-Wyil-Pytz-Hyy'Vuil-PyJ,)
x[(z - Hklyx - (z - H0yx]pikuß.

Lemmas V.9 and V.12 control the last term. Lemma V.10 and the fall off of tyik
control the second factor of the middle term. If Ukl is bounded, then Lemmas V.4,
V.9, and V.12 control the first factor. When Ukl is unbounded, a density argument
shows that it suffices to prove uniform boundedness of the first factor. To do this,
we rewrite this first factor as

Wy{\    -    Py)(z    -    Hy)-iVk,(\    -    Py^Z    -    J^)''

XPklUkt(l     +     4)-     +      Wy{\     -     Py)(z     -     Hyy1

x vkl{\ - pißkl)(z - Hkly\\ - pkl)ukl{\ + xiy.

Lemmas V.8 and V.21 show the second term is uniformly bounded. Corollary V.5
and Lemmas V.4 and V.12 control the first term.

To control IV(z), we proceed as in the proof of Proposition V.25. This shows that
we need only prove C(z)Vik(z — Hik)~xPikUß is compact and well behaved. Since
Wik(z — Hik)~xPik U; is bounded for large negative Re z, compactness follows from
arguments in the proof of Proposition V.25. To prove C(z)Vik(z — Hik)~xPikUß is
well behaved, notice that the first and third entries are of the same form as III(z),
above. The second entry may be rewritten as

PyWkl[(z - Hikyx - (z - H0yx]pikuß

+ PyWkl(z - Hklylvkl(z - Hikylpikuß

-PyWkl[(z - Hklyl - (z - H0yx]pikuß.

Replace each (z — Hklyl in these expressions by (z — Hkl)~xPkl + (z — Hkl)~x(l
— Pkl). The only terms which are not controlled by various lemmas are those
containing the factor Pkl. To control them, notice that WklPkl and Pk/Ukl are
bounded. Then use Lemma V.4 and the fall off of ♦i and ^¡k to obtain factors
which are controlled by Lemma 11.3. This controls the second entry of C(z) Vik(z —
Hik)~xPikUß. The same method applies to the fourth entry.    □

Proposition V.28. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be
distinct, and let n = i or j. The following are well behaved and compact:

Kx(z) - PyWkl{\ - PiJM){z - HiMlylvik(z - Hikylpikuß
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and

Uz) = PyWkl{\ - piMI)(z - HiM!ylvik(z - HikyxpikPikn.

Proof. Consider only Kx(z); the proof for K2(z) is similar.
For large negative Re z, Wik(z — Hik)~xPikUß is bounded, so compactness

follows from Proposition V.26. It is therefore sufficient to show Kx(z) is well
behaved.

Py commutes with Wk„ and Py(\ - PiJkl) = F^(l - Pkl). So,

Kx(z) = PyWkl(l - Pkl)(z - Hklyxvik(z - HikyxpikuM

+ PyWkl(\ - pkl)(z - HuyxVy{\ - piM!)(z - Hy^y1

xvik(z-Hikyxpikuß.

Lemma V.12 controls the first term. Proposition V.27 controls the second.    □

Proposition V.29. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be
distinct; let n = i,j, or k; letp be any index not equal to n or I; let q be the index not
equal n, I, or p. The following are well behaved and compact:

Uz) = Py.k{Pij(Vik + VJk)(z - HiJky\\ - PiJk)

x [ vnl(z - Hnlyx(vv + vlp) + vlp(z - H^y'iv^ + VJ]

x{z- Hnlpylpnlpp„lp

and

Uz) = Py.¿Py(Vik + VJk){z - Hyky\l - PiJk)

x v„,(z - Hnlyxvpq{z - HnlJ,qy'Pnlfqpnlj)q.

Proof. Consider only Kx(z); proof for K2(z) is similar.
For large negative Re z,

Wnl(z - Hj-'iV^ + Vpl)(z - HnlpylPnlppnlp

and

wlp(z - H^y'iv^ + vnl)(z - HnlpylpnlpPnlp

are uniformly bounded, so compactness and limRez__QO||Ar,(z)|| = 0 follow from
Proposition V.l6.

Let*(z) = Py-kxPy(Vik + VJk)(z - Hyky\\ - Pijk).

Kx(z) = X(z)(Vnl + Vpl)(z - HnlpyXPnlp9nlp

-X(z)Vnl(z - HniyxPnlppnlp - X(z)Vpl(z - HplylpnlpPnlp.

The second and third terms can each be broken into two terms which are
controlled by Proposition V.l8 or Lemma V.8 and Proposition V.16.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5 s G. A. HAGEDORN

Since {/',/, A:} = {n,p, q}, the first term equals:

Py,kPy(Vik + VJk)(l - PiJk)(z - HmT\VM + Vpl)(z - H^)''

XPnlpPnlp + Py-k}Py(Vik + VJk){\ - PiJk)(z - HiJkyl

X (Vnq + Vj(z - Hj-\Vnl + Vpl)(z - HnlpylPn¡ppn¡p.

This may be rewritten as a sum of four terms:

I(*) = Py.kPy{y¡k + VJk)(\ - PiJk)(z - HnlpyXPnlpPnlp,

II(Z)   =    -py-kXPy{Vik   +    VJk)(\   -   Pyk)(z   -   Hj-'P^p^,

III(Z)   =   Py7¿Py{V¡k   +    Vjk)(l-Pyk)

X (- - Hy^XVn, + Vpq)(z - HnlpyXPnlpPnlp,

IV(Z)=    -py,kPy(Vik+    VJk)(\-Pyk)

X (z - H„)-\Vm + Vpq)(z - Hj-'p^p^.

1(Z)  =   Py-JPyiV*   +    Vjk)(z   -   H^ylP^Pñt>
-py.kPy{Vik + Vjk)Pijk(z - HnlpyxPnlpPnlp.

The first term in this expression equals

[py-*PVUik{\ + 4)"][(1 + Xy)-aWik{z - KMp - En¡pylPn¡pPn¡p]

+ [py.klPyUjk(l + 4)a][(l + x*)-aWJk(z - K+ - Enlp)"*Pnlppnlp].

Lemma V.4 bounds the first factors. The methods of Lemma II.3 control the
second factors. The second term in the last expression for I(z) equals

-   (Py.k%Uik)(WikPyk)(PykPnlpPnlpx)(pnlp{z - Hnlpylpnlp)

-    {P,j.k%jUjk){WjkPyk){PykPnlpp-,pX){pnlp{z    -     H^y'p^).

Lemma V.4 bounds the first factors. Corollary V.5 bounds the second factors. The
proof of Lemma V.4 bounds the third factors. Lemma II.3 controls the final
factors.

III(Z)   =   PyJPy(V¡k   +    VJk)(\   -   Pyk)(z   -   HykylVjz   -   HnlpylPnlpPnlp

+ Py.kPy{Vik + VJk)(\ - PiJk)(z - HiJkylVpq(z - H^yXPnlpPnlp.

Since (z - HnlpylPnlp = (z - Knlp - EnlpyxPnlp, Lemma V.4 and Lemma II.3
show (1 + 4 + 4 + x^yw^z - HnlpyxPnlppnlp is well behaved. Following the
proof of Proposition V.16,

Py,kPy{Vik + VJk){\ - PiJk)(z - Hyj-'UJ) + 4 + 4 + *£)"'
is well behaved. This controls the first term in the last expression for III(z). The
same proof controls the second term.

Since {n,p, q) = {i,j, k),

II(z) + IV(z) = -PyXPy{Vik + VJk){\ - PiJk)(z - HiJkyx PnlpPnlp.

The proof of Proposition V.16 shows this is well behaved.   □
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Proposition V.30. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be
distinct. The following are compact and well behaved:

UZ)   =   PyWk,{\   -   PyM)(z   -   Hy<kiyl

x[vik(z - HikYXVji + Vj,{z - HßylVik](z - HikJiyXPiJJclpytkl,

UZ)   =   PyWk¡{\    -    Py,kl)(z   -    Hy^y1

x[vik(z - Hiky\vjk + Vy) + vJk(z - Hjky\vik + Vy)]

X(Z   -   Hyk)        PykPyk,

Uz) = PyWkl{\ - piMI)(z - HVJdy

x[vu(z - Huy\vm + Vlk) + Vik(z - Hikyx(Vu + Vlk)]

X (z - Hak)    Pukpilk.

Proof. Compactness and the limiting behavior as   Re z -* — oo   follow from
Proposition V.26 and simple bounds.

Let

X(z) = PyWk,(z - HVJay\\ - Pm)

= Wkl(z - Hy^y'PyV - Pkl);

Kx(z) = X(z)(Vik + Vß)(z - HikJiylPikJlPikJl

-X(z)Vik(z - HikyxPikJlPikJl - X(z)Vß(z - HßylPikJlpikJ,

Trivial extensions of Proposition V.28 control the last two terms. The first term
equals:

[PyWkl(z - HiJMy\\ - Pißkl)Uik(l + x2)"]

x[(i + xi)-awik(z - HikJlylpikJlPikJI]

+ [PyWk/(z   -   Hy,k,y\\   -   PyM)Uß{\   +   X2)"]

x[(i + 4)~"wß(z - Hikj,ylPikj,PikJl\

Due to the fall off of ¥«, the proof of Proposition V.26 can easily be extended to
show the first factors are well behaved. The methods of Lemmas II.3 and V.4 show
the second factors are well behaved.

K2(Z)    =     X(z)(Vik    +      VJk)(z    -     HykylPykPyk

-X(z)Vik(z    -    HikyXPykPyk    -    X(z)Vjk(z    -    HJkylPykPyk.

The last two terms can each be written as sums of two terms, which are well
behaved by Proposition V.28 or Proposition V.26 and Lemma V.8. The first term
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equals:

Pi,WU{y    -    PÍJM){Z    -    Hy)-\Vik    +     VJk)(z    -    HykylPykPyk

+     PyWk,{\     -     Pytk,){z    -     HykiyXVkl(z    -     Hy)-\Vik    +      Vj,)

X    {Z    -    HykylPykPyk.

We write this as a sum of four terms:

I(Z)   =    PyWk¡{\    -    Py¡kl)(z    -    HykylPykPyk,

II(Z)     -      -PyWk,(l     -     Py¡kl)(z    -     HyyXPykPyk,

III(Z)     =     PyWkl(\     -     PyM){z    -     H¡MiylVk¡(z    -     HykyXPykPyk,

IV(Z)    =     -PyWk,{\    -    Py>kl)(z    -    Hy¡kiylVkl(z    -    Hy)-lPykPyk.

1(Z) = (PyWkt(l - Py,kl)PykPykX)U>yk{z ~ HykyXpiJk).

Apply Lemmas V.4 and II.3 to control this.

III(Z)    =    {PyWkl(\    -    PÍM¡)(Z    -    Hy^y'U^WuPy^)

X    (Pijk{z    -    Hykylpyk).

The proof of Proposition V.26 easily generalizes to control the first factor; Lemma
V.4 bounds the second factor; and Lemma II.3 controls the third.

II(Z)    +    IV(Z)    =     -PyWkl(l    -    Py¡k,)(z    -    Hy,kl)-'PykPyk.

The proof of Proposition V.26 generalizes to control this term:

Uz) = X(z)(Vu + Vik)(z - HilkylPilkpilk

-X(z)Vil(z - HHyxPiklpilk - X(z)Vik(z - HikyxpilkPm.

The second and third terms are of a form studied in the proof for K2(z). The first
term equals

[PyWkl(\ - PiMl)(z - Hy^y'u^i + x2)"]

x[{\ + x2yawu(z - Hilkyxpilkpilk]

+ [PyWkl{\ - Py.kl)(z - HiJkiyXUik{\ + 4)"]

x[(i + 4)"ara(z - HilkyxpilkPilk].

The first factors are of the same form as terms which have been controlled in the
proof for Kx(z). The second factors are controlled by methods of Lemmas V.4 and
II.3.    □
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Proposition V.31. Assume Hypotheses (l)-(3), and (5). Let i,j, k and I be distinct.
The following are well behaved and compact:

KX(Z)    =     Wy{\    -    Py)(z    -    Hy)~\Vik    +     VJk){\    -    Pyk)(z    -    H^

X [ V„{z - Hayx{Vß + Vy) + Vß(z - Hßy\vu + Vy)]

x(z- Hißyxpißpiß,

K2(Z)    =     Wy(\    -    Py)(z    -    Hyy\Vik    +     VJk){\    -    Pyk)(z    ~    H^

X   VU(Z   -   HkiyXVy(z   -   HyMyX PyMPy<kl,

Uz) = wv{\ - Py)(z - Hyylvkl(i - piMI)(z - HiMlyl

x[ vik(z - Hikyx(vJk + Vy) + vJk(z - Hjky\vik + Vy)]

X    (Z    -    HykylPykPyk,

K4(Z)    =     Wy{\    -    Py)(z    -    Hy)~lVkl(l    -    Py^Z    -    Hy^

x[vik(z - HikyxVß + Vß(z - HßylVik]{z - H^Py^py«.

Proof. Consider only Kx(z); the proofs for the others are similar.
Since

wn(z - HHy\vß + Vy)(z - Hißylpißpiß

and

WJ,{Z    -    Hfiy\VU    +     Vy)(z    -    Hy.y'Py.Py,
are bounded for large negative Re z, compactness of Kx(z) at large negative Re z
follows from Proposition V.l5.

Let

X(Z)    =     Wy{\    -    Py)(z    -    Hy)-\V¡k    +     Vjk){\    ~    Py^Z    ~    Hy^.

Then,

KX(Z)   =   X(Z)(VU   +     Vß)(z    -    Hy^'Py^y,

-X(z)Va(z - H9yiPvßtli - X(z)Vß(z - Hj.y'Py^y,.
The second and third terms can each be broken into two terms which are well
behaved by Proposition V.l7 or Lemma V.8 and Proposition V.l5. The first term
equals

Wy{\    -    Py)(z    -    Hy)-\Vik    +     VJk)(l    ~    Pyk)(z    ~    H'„) "' '{V'„    +     Vj,)

X (Z - Hy^'Py.Py,

+    Wy{\     -     Py)(z     -     Hy)-\V¡k     +      VjJ ( 1     "     Pyk)(z    ~     HyJ " ' ( f*     +      Vj,)

X    (Z    -    Hyy\VU    +     VJ,)(Z    -    Hy^Py^.
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This may be written as a sum of four terms:

I(Z)    =     Wy(\    -    Py)(z    -    Hy)(Vik    +     ̂ )(l    ~    Pyk)(z    ~    Hy^Pyfly,,

II(Z)    =     -   Wy{\    -    Py)(z    -    Hy)-\V¡k    +     VjJ ( 1    -    Pyk)(z    -    Hy^Py^y,,

HI(Z)    =     Wy{\    -    Py)(z    -    Hy)~l(Vik    +     VJk){\    -    Pyk)(z    ~    Hy^ '

x(Vik+ Vjk)(z- HißylPißPy„

IV(Z)    =     -   Wy(\    -    Py)(z    -    Hy)-l(Vik    +     VJk){\    -    Pyk)(z    ~    Hy,)^

X(Vik+     Vjk){z    -    Hyy'PyVy,.

\(Z)   =    (Wy(\    - Py)(Z    - Hyy'U^W^Py-,1)^^    ~    Hy,)^,)
+ (Wy(l -    Py)(Z -    Hyy'Uj^Wj^Py,1)^    -    Hy,)^)
~(Wy(\ -    Py)(Z -    Hyy'U^W^Py^ßy,^^    -    Hy,)~ 'ßy,)
~(Wy(\ -    Py)(Z -    HVylUjkXWJkPykPy¡Pyli)(pvl(Z    ~    Hy^ßyX

Apply Lemmas V.4, V.8, and H.3.
HI(z) and II(z) + IV(z) are well behaved for the same reasons that III(z) and

II(z) + IV(z) in Proposition V.29 are well behaved. The only difference is that
Proposition V.l5 must be used in place of Proposition V.16.   □

Proposition V.32. Assume Hypotheses (l)-(3), and (5). Let i, j, k, and I be
distinct.

UZ)    =     Wy{\    -    Py)(z    -    Hyy\V¡k    +     VjJ ( 1    ~    Pyk)(z    ~    Hy,)^

x vu(z - Huyxvjk(z - HilJkylpilJkpiljk

is well behaved and compact.
If Hypothesis (4) also holds, then the following are well behaved and compact:

UZ)    =     Wy{\    -    Py)(z    -    Hy)'\Vik    +     VJk){\    ~    Pyk)(z    ~    H^

x[vu(z - HHy\vik + vlk) + vkl(z - Hk,y\vik + va)]

x (z - Hilkyxpilkpilk.

UZ)    =     Wy{\    -    Py)(z    -    Hy)-lVkl(l    ~    Py^Z    ~    H^) ' '

x[vtl(z - Hay\vik + vlk) + vik(z - Hiky\vlk + v„)]

x (z - HilkyxpUkpilk.

Proof. Consider only Kx(z); proofs for the others are similar. The extra assump-
tion is required for K2(z) and K3(z) because they contain Pilk rather than PilJk.
Hypotheses (l)-(3), and (5) imply EilJk < 0;  Hypotheses (3) and (4) require
EUk < 0.

Compactness for Kx(z) follows from Proposition V.l5 for large negative Re z,
since Wit(z - HuyxVJk(z - HilJkyxPilJkpilJk is bounded for large negative Re z:
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KM    =     Wy{\    -    Py)(z    -    Hy)-\V¡k    +     VJk){\    ~    Pyk)(z    ~    Hy,)^

XV¡,(Z   —    Hyjk) PjlJkPiljk

- Wy(\    -    Py)(z    -    Hy)-\V¡k    +     VjJ ( 1     -    Pyk)(z    -    Hy,)^

xvu(z- HuyxpilJkPilJk.

By Proposition V.l7, the second term is well behaved. The first term equals

Wy{\   -   Py)(z   -   Hy)-\V¡k   +   VJk)(\   -   Pyk)(z   -   Hj.)'1

x v„(z - HilJkyxpilJkpilJk

+     Wy(\    -    Py){z    -    Hy)-\V¡k   +     VJk)(l    ~    Pyk)(z   ~    Hy,)^

X (Vy + Vik)(z - HjJ-'Vaiz - HilJkylPilJkpilJk

=     Wy{\    -    Py)(z   -    Hy)-\V¡k   +     VJk)(l    ~    Pyk)(z    ~    H^)_ ' P^J^

- Wy{\ - Py)(z - H0y\vik + vJk){\ - piJk)(z - HJkyxpUJkPilJk

+     Wy{\    -    Py)(z    -    Hy)-\V¡k    +     Vjk)(l    ~    Pyk)(z    ~    Hy,)^

X {Vy + Vik)(z - HUJkyxPilJkpilJk

- Wy{\    -    Py)(z    -    Hy)-\Vik    +     VJk){\    -    Pyk)(z    ~    Hy^

X (Vy + Vik)(z - HJkyXPUJkpUJk.

This may be written as a sum of seven terms!

I(Z) = Wy{\     - Py)(z    - Hy)-XVik{z    ~     H^ ' P^^,

H(Z) = Wy{\     - Py)(z    - Hy)-XVJk(z    ~     H^J^P^^,

III(Z) = -Wy(\ -    Py)(z -    Hy)-\V¡k    +     Vj^P^Z    ~    //,,,* ) _ ' P^J,,

IV(Z) = -    Wy(\ -     Py)(z -     Hy)-\V¡k     +      Vjk)(\     -    Pyk)(z    ~     H^P^^

V(Z) = Wy(\     - Py)(z    - Hy)-X(Vik    +      Vjk){\     -     Pyk)(z     -    HykyX

X(V„+ Vik)(z - HilJkyxpilJkPilJk,

VI(Z)     =      -    Wy(\     -     Py)(z    -     Hy)-X(Vik    +      VJk){\     -     Pyk)(z    ~     H^ ) "'' P^J»

VII(Z)    =     Wy(\    -    Py)(z    -    Hy)-X(Vik    +     VJk){\    -    Pyk)(z    ~    HjJPy^j,.

I(Z)    =    (Wy(\    -    Py)(Z    -    Hy)-XUik)(WikP¡¡JkP¿k)(pilJk(Z    ~    Ä^" W

Apply Lemmas V.4, V.8, and II.3:

n(z) = Wy(\ - Py)(z - H0yxvJk(z - HilJkyxpilJkPilJk

+    (Wy(l-Py)(z-Hy)-XUy)

x (Wy(z - H0yxvJk(z - HilJkyxpilJkPilJk).
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Lemma V.7 shows the first factor of the second term is well behaved.

(z — HilJk)    PUJk = (z — E¡¡jk — KUJk)    Pajk

and (z - EilJk - KilJk)~x commutes with Vjk. Moreover,

(z - H0)    (z - EilJk - KilJk)

= [(z - H0yx - (z - EttJk - Ki¡Jkyx](H¿^ + ff0<*> - EilJkyx.

The second factor of the second term in the expression for II(z) can now be written
as:

(Wy[{z - H0yx - (z - EUJk - KilJkyx]PilJk)

X ((//„<*"> + flí*> - EilJkyXUjk)(WjkPilJk).

The methods of Lemma II.3 control the first factor; Corollary V.5 bounds the last
factor; Theorem 11.10 and Hypothesis (3) imply EilJk is negative, so the middle
factor is bounded (for K2 and K3 we need Hypothesis (4) at this point). The first
term in the expression for II(z) is treated by the same method.

III(z) may be controlled by using Lemma V.4, the methods of Lemma II.3, and
Corollary V.5.

IV(Z)    =     Wy{\    -    Py)(z    -    Hy)-\Vik    +     Vjk) Pyk(z    ~    Hj, ) ~ ' Py^ß^

-     Wy{\    -    Py)(z    -    HyyXVik(z    ~    Hj, ) " ' F^ft^

-     Wy{\    -    Py)(z    -    HyyXVJk(z    -    Hj^Pyj^.

The first term may be controlled by the method used for III(z), above. Lemma
V.12 controls the remaining terms.

If Proposition V.16 is replaced by Proposition V.l5, then the argument for HI(z)
in Proposition V.29 shows that V(z) is well behaved.

VI(z) is well behaved by the proof of Proposition V.15.
VII(z) is well behaved by Lemma V.12.    □

VI. Generic couplings. Hypotheses (1), (2), and (4) of §V hold for a large class of
potentials (by Theorem 11.10). However, Hypothesis (3) fails for some elements of
any reasonable vector space of potentials. In this section, we show that Hypotheses
(1) and (2) imply Hypothesis (3) for all couplings in the complement of a closed set
of measure zero.

For the two body problem, Hypothesis (3) trivially holds, because there are no
nontrivial cluster decompositions.

When TV = 3, there are three nontrivial cluster decompositions, with cluster
Hamiltonians hy = /iov0 + Ay Vy. Hypothesis (3) states that 0 is not an eigenvalue or
resonance energy for hy. This means 1 is not an eigenvalue of XyWy(0 — h0)~xUy.

When Xy = 0, XyWy(0 - hoyxUy is the zero operator. Moreover, XyWy(0 -
hoyxUy is a compact operator valued analytic function of Xy. So, the analytic
Fredholm theorem shows that Hypothesis (3) fails only when A,^ belongs to some
discrete subset Ay C R.
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Since {(A,2, X13, À23) E R3: some A,-, E Ay} is closed and has codimension 1, the
set of couplings where Hypothesis (3) can fail is closed and has Lebesgue measure
zero in R3.

For TV = 4, the situation is more complicated because Hypothesis (3) imposes the
above conditions on the two body subsystems, as well as conditions on the three
body subsystems. For each cluster Hamiltonian

hyk    =    AS"-*)   +   \jVy+   \kVik    +   XJkVjk,
we construct M(Xy, X¡k, Xjk, z), as in equation (IV.6). Hypothesis (3) requires that 1
not be a eigenvalue of M(Xy, X¡k, XJk, z), whenever z is a threshold for hiJk.
M(XiJ, Xik, XJk, z) is analytic in the X variables, except when some X„, belongs to A„,.
At this point, M is discontinuous, and the argument used above for TV = 3 is not
valid.

For the nonzero thresholds (which must be negative), we can modify the
argument so that it is valid in the four body case:

Lemma VI. 1. Suppose TV = 4 and Hypotheses (1) and (2) hold. Let Tx Ç R6 be the
set of couplings {Xy}, such that Hypothesis (3) fails for H((Xy}) = H0 + "Z^XyVy at
a negative energy threshold. Then the closure of Tx has Lebesgue measure zero.

Proof. Since the two body subsystems have no negative thresholds, the conclu-
sion of the lemma is a statement about the three body subsystems only.

If hiJk is a three body cluster Hamiltonian, then a negative energy threshold F for
hyk depends only on one coupling constant, which we may assume is A,-,-. Fix
Xy E Ay. The operator M(Xy, Xik, XJk, E(Xy) ± iO) associated to hijk, has a compact
square and is analytic for (X¡k, XJk) E ñ, where

« = UV, Xjk) £ R2: Xik E Aik, XJk E A,*}.
ñ is a union of open squares, and on each square A there are two possibilities:
(i) 1 E a(M(\j, \k, XJk, E(\j) ± iO)) for some (Â,,, Xjk) E A.
(ii) 1 E o(M(\j, \k, XJk, E(Xy) ± iO)) for all (\k, XJk) E A.

When the first possibility occurs,  the analytic Fredholm theorem shows that
1 E a(M(\j, \k, XJk, E(Xy) ± iO)) only for those (X¡k, XJk) E A, which belong to a
measure zero union of analytic varieties. The union of the boundary of A and these
varieties is closed in R2.

Since hyk has finitely many thresholds (see Simon [29]), we see that the intersec-
tion of T, with any compact set is contained in a finite union of closed sets of
measure zero, if possibility (ii) above, never occurs. Thus, it suffices to prove that
there is no square A such that M(Xy, \k, Xjk, E(\f) ± iO) has eigenvalue 1 for all

M(Xy, 0, 0, E(Xy) ± /0) = 0. So, if such a square A exists, we may assume (by
changing squares if necessary) that A is adjacent to a square A,, on which
possibility (i) occurs. Moreover, without loss, we may assume that it is possible to
move from A, to A by increasing X¡k.

Fix XJk so that (Xjk, XJk) E A! for some A,*, and let TV^, z) = M(Xy, X¡k, Xjk, z),
where X¡k is chosen so that (Xik, XJk) E A,. As we increase À,.fc, TV^, z) is analytic
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until X¡k approaches u E Aik. At this point, P^Q^) has a discontinuity. However,
by representing P¡k(X¡k) as a contour integral, we see that it has an analytic
continuation P/k(X¡k) from the region X¡k E (u - ex, u) into the region \k E (u —
ex, u + e2), where e, > 0, e2 > 0.

For 0 < X¡k — u < e2, Pik(Xik) — P¡k(X¡k) is the projection onto the new eigen-
functions of hik(X¡k) 9 1, which appear as Xik passes through u. Let ß(Xik) be the
infimum of the corresponding new thresholds for hijk.

Replacing Pik(X¡k) by P{k(X¡k) in Lemmas V.4, V.8, and V.11-V.13, we see that
N(Xik, z) has an analytic continuation into the region Xik E (u — e„ « — e^, as
long as z E W(\k), oo). Since F(\,) < 0 and ß(u) = 0, N(Xik, E(X¡j) ± iO) is
analytic for u - ex < X¡k < u + e3, for some e3 > 0.

When u <\k < u + e3, (X¡k, XJk) E A. So, there exists a vector

<t>y.i(K)
<t>y,i(\k)

tyk, \(\k)

<t>jk,2(\k)

*(**) =

such that (¡>(Xik) = M(Xy, Xik, Xjk, E(Xjj) ± i0)4>(Xjk), whenever X¡k belongs to some
open subset of (u, u + e3). Define

<rV,l(À,Yc)

P^k^kÁK)
<t>jk,l(\k)

fykjhk)

Then ^(A,^) = TV^, E(Xy) ± ¡0)^0^) for all \k in the same open subset of
(u, u + e3).

The analytic Fredholm theorem now shows that 1 E a(N(X¡k, E(Xy) ± iO)) for
u - e, < X¡k < u. Since this is true for all choices of XJk, such that (A,*, Xjk) E A,
for some X¡k, we conclude that M(Xy, X¡k, Xjk, E(Xy) ± iO) has a constant eigenvalue
1 for all (\k, Xjk) E A,. This contradicts the choice of A,, and the lemma is proved.
D

Remark. The above argument fails for the zero energy threshold, because the
new thresholds appear at zero when X¡k passes u. To avoid this problem, we move
X¡k around u in the complex plane. The next lemma shows that we may do so
without having the cuts of aess(hyk) cross the negative real axis.
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Lemma VI.2. Assume Hypotheses (1) and (2) for the two body Hamiltonian
H(X) = H0 + XV. There is an open complex neighborhood X of the real axis, such
that X E X and Im X ¥= 0 imply that H(X) has no eigenvalues in the real interval
(— oo, 0]. Moreover, X G X and Im X ^ 0 imply H(X) has no zero energy resonances.

Proof. The analytic Fredholm theorem shows that 1 £ a(XW(0 — H0yxU) only
when X belongs to a discrete subset A of the complex plane. There exists an open
neighborhood X of the real axis, such that A n X Q R. Since H(X) has a zero
energy resonance or eigenvalue if and only if X E A, we need only show that
Im X 7e 0 implies H(X) has no eigenvalues in (— oo, 0).

Suppose H(X)<¡> = E<¡>, where ImX^O and E < 0.

<<b, H0$} + X(<t>, V<¡>} = F<<¿>, <i>> < 0.

Since <4>, H0<j>} > 0, A<<i>, V<j>} must be negative. Since (<i>, V<f>} € R, Im X must be
zero. This contradicts Im À ^ 0.    □

Proposition VI.3. Assume Hypotheses (1) and (2) for the TV < 4 body Hamiltonian

H({Xy}) - Ha+ 2W

Let T denote the set of all couplings {Xy} such that Hypothesis (3) fails for H({Xy}).
Then T is closed and has Lebesgue measure zero.

Proof. T is closed because eigenvalues and thresholds depend continuously on
the couplings.

When TV = 2 or 3, the discussion at the beginning of this section proves the
proposition. When TV = 4, Lemma IV. 1 shows that we need only study the
threshold at zero energy.

The method of proof used for Lemma VI. 1 may be applied to the zero energy
threshold, with the following change. We cannot analytically continue N(\k, 0 ±
z'O) through the point u E Aik. However, Lemmas V.4, V.8, and V.11-V.13, and
VI.2 show that we may continue TV(\^, 0 ± ¿0) from the region u — ex < X¡k < u
(Xjk E R) into the region

P = {\* = w + «*= 0 < r < e, 0 < arg 0 < 2ir).

These lemmas also show that M(Xy, \k, Xjk, 0 + /O) and M(Xy, X¡k, XJk, 0 — z'0) have
analytic continuations from the region u < X¡k < u + 8 into regions which inter-
sect R in open subsets of the complex plane.

Using the fact that the analytically continued M operators have constant
eigenvalue 1, we conclude that the analytically continued TV operators have
constant eigenvalue 1. (This is done as in Lemma VI. 1, by explicitly constructing
the eigenfunction of TV from the eigenfunction of M, for X¡k in the open set to
which both operators have been continued.)

This argument shows that M(Xy, Xik, Xjk, 0 ± z'0) has constant eigenvalue 1 on the
square A,, as in the proof of Lemma VI.1. This contradicts the choice of A! and
proves the proposition.   □
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Remark. The coupling constants Xy and X¡k are treated very differently in the
proof of Lemma VI. 1. So, our results say nothing about the case in which various
coupling constants must be equal.

Appendix. Representative sample of the blocks of the matrices A(z), C(z), and
M(z) discussed in §IV.

The Matrix Afz)

A..U) G  U. .  G V  G .P. .p. .
o  lj   0 1] l] l] lj

A., ...(z)ij ,ijk G  U..  G V..G..P..P.. ,     tC [V. .G. . (V..+V.. ) ♦ V. .G., (V. .+V.. )o ij  o ij ij ij ij ,k    3 o 13 13  ik jk    lk ík  ij  jk

vjkcjk(ViJ+Vik)|CiJkPiJk',ijk

Aij,(ij,k*)(z) = G  U. .  G V. .G. .P. .U G [V. .C. V, , ♦ V, G  V. , ]
O  lj   O lj lj ij kl        2 O  lj lj k2    kl kl lj

X  Gij,klPij,klpij,kl

The  Matrix  Cfz)

C..(z)

WijGij(1-pij'

p:1 p.u   ij

cij,ijk(z'

WijGij(1-Pij>(Vik-Vik)Gijk(l-Pijk)

P.!1,P. ,(V..*V..)G.      (1-P... )ij ,k  ij     ik    jk     ljk 13k

pijk Pijk

C (z)ij,(ij,kl)k

W     G      (1-P     )V     G (1-P )
ij   ij ij     kl ij ,kl ij ,kl

P     W     G fl-P )ij   kl  ij,kl ij,kl

pij,klPij,kt
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12,  123;  14,  124

lwi2G12(l-P12KV13+V23)G123(l-P123)

W12G12(l-P12)(V13*V23)G123n-P123,U14      W12G12a-P12HV13*V23)G123      x ^^(V^V^^G.,,, (V^V^) ]

(1-P123'V14G14P14p14,2

V.15 V.17

7p12;3P12fV13+V23)G123(1-1'l23)

p12;3P12(V13H'23'G123(1-P123)U14 ^12 ;3P12 ̂ 13^23^123 »-P123>

V.16 V.18

P123P123U14 P1Z3P123V14C]4P14P14,2 p123l'l23V14G14(V12iV24)G124F124P124

V.4 V.19 V.20

12,  123;  34,  134

i|V12G12(l-P12)(V13+V23)G123U-P123)

W12G12(1-P12)(V13+V23)G123(1-P123)U34     W12G12(1-P1ZKV13+V23)G123(1-P123)    «        [V34G34(V13+V:4)*V14G14(V13+V34) ]

V34G34P34P34,1

V.15 V.17 V. 32

?pÍ2,3P12(V13^V23)G123(1-P123'    "

pl1,3P12ÍV13n'23'G123(1-,WU34 p12 ,3P12(V13+V23>G123f1-P123>    * lV34G34^13+V14>+V14G14CV13+V34^

V.18

;4r34p34,l PU3P123V34G34CV13+V14)G134P134P134

V.19 V.20
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12,   123;  14,   154

W12G12(l-P12)(V13tV23)G123(l-P123)U14      W12G12(1-P12)(V13+V23)G123(1-P123)

V.15

p12,3P12tV13+V23)G123fl-P123^U14

V.16

V.4

V14C14P14P14,3

V.17

TW12G12(1-P12)(V13*V23)G123(1-P123)     *

[V14G14(V13+V34^V34G34ÍV13+V14»     *

k2,3P12fV13*V23^123<1-P123>    *

[V14G14(V13+V34>+V34G34(V13+V14"

V.29

12,   (12,  34);  13,   (15,  24)

W12G12(1-P12)VJ4G12)34(1-P12)34)U13 W12G12d-P12)V34G12i34(l-P12j34)

V.25

P12W34G12,54(1"P12,54)U13

V.26

-1
II,12,34 12,34 13

P12W34G12,34(1-P12,34ÍV15G13P13U24

P12,34P12,34V13G15P13U24

V.4

lwi2G12(l-P12)V34G12j34(l-P12j34)

[V13G13V24+V24G24V13]  "

G13,24P13,24P13,24

V.51

?P12W34G12,34(1-P12,34^     *

[V13G15V24+V24G24V15J       *

G13,24P13,24P13' 24

V.30

P12,34P12,34V13G13V24G13,24P13,24P13,24

V.20
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12, 123; 14, (14,23)

W12G12(1-P]:)CV13+V23)G]23(1-P123)U14  W12G12(1-P12)(V13+V23)G123(1-P123) *  W^fl-P^) O^'V^G^U-P^)

pl2,3P12(V13+V23)G123(1-P123)U14      p12,3P12 CV13+V23^G123C1 ^IZJ^ *      ^2, 3P12 ̂ 13^23^123(1 "P123^

V14G14V23G14,23P14,23P14,23

.18 V.29

P123P123U14 P123P123V14G14P14U23 P123P123V14G14V23G14,23P14,23p14.23

V.4 V.19 V.20

12, 123; 34, (12,34)

W12G12(1-P12)(V13+V23)G123(1-P123)U34  W12G12(1-P12)(V13+V23)G123(1-P123) *  W^fl-P^) (V^^fl-P^

V34G34V12G12,34P12,34P12,34

P¡2,3P12(V13+V23>G123(1-P123)U34 ^12.3P12^13^23^123f1-P1233    " "Ü.A2<V¥Ö)(!12S tl-P123>

V34G34P34U12 V34G34V12G12,34P12,34p12,34

V.16 V.18 V.29

P123P123U34 pn3P123V34G34P34U12 P¡23P123V34G34V12G12,34P12,34P12,34

V.4 V.19 V.20
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12,   (12,  54);  13,  123

W12G12(l-P12)V34G12i34(l-P12>J4)U13 W12G12d-P12)V34G12>34(l-P12>34)

V.25

V.26

P12,34P12,34U13

V.27

P12W34G12,34'V13G13P13P1

V.28

^W12G12(1-P12)V34G12>34(1-P12>34)

V.19

rP12W34G12,34(1-P12,34'     "
[V13G13(V12*V23^V23G25(V12+V15"

P1~2,34P12,54V13G13P13P13,2 pl2,34P12,54V13G13(V12*V23)G123P123p123

12,   (12,  54);  15,  154

W12G12(l-P12)V34G12j34(l-P12)34)U13 W12G12(l-P12)V34G12j34(l-P12j34)

lwi2G12(l-P12)V34G12j34(l-P12>34)

P12,54P12,34U13

2-P12W34G12,34(1-P12,34'

V.28 V.30

P12,34P12,34V13G13P13P13,4 P12,34P12,34V13l'13lV14*V34)l'l34''l34P134

V.20
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12,   125;  14

W12G12(1-P12)(V13+V23)G123(1-P123)U14      W12G12(l-P12)(V13.V23)G123(l-P123)V14G14P14Pl

V.17

pÍ2,3P12tV15+V23ÍG123t1-P123'lJ14 pl2,3P12<V15*V23>G123(1-fWV14G14P14p14

V.16 V.18

PÍ23P123U14 pl23P123V14G14P14p14

V.4 V.19

12.  125;  54

W12GI2(1-P12)(V13*V23)G123(1-P123)U34  W12G12(1-P12)(V13+V23)G123(1-P123)V34G34P34P34

V.15 V.17

PÍ2,5P12tV13+V23)G123(1-P123'U34 PU ,3P12»13^23^123"-P123^V34G34P34P34

V.16 V.18

P123P123U34 p123l>123V34l'54P34P34

V.4
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12,   (12,  54);   13

K12G12(l-P12)V34G12i34(l-P12j34)U13 W12G12(l-P12)V34G12;34(l-P¡2i34)V13G13P13P13

V.25 V.27

V.26 V.28

P12,34P12,34U13

V.4 V.19
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