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It is well known that the convergence rate of the expectation-maximization
(EM) algorithm can be faster than those of convention �rst-order iterative
algorithms when the overlap in the given mixture is small. But this ar-
gument has not been mathematically proved yet. This article studies this
problem asymptotically in the setting of gaussian mixtures under the the-
oretical framework of Xu and Jordan (1996). It has been proved that the
asymptotic convergence rate of the EM algorithm for gaussian mixtures
locally around the true solution 2¤ is o.e0:5¡".2¤//, where " > 0 is an arbi-
trarily small number , o.x/ means that it is a higher -order in�nitesimal as
x ! 0, and e.2¤/ is a measure of the average overlap of gaussians in the
mixture. In other words, the large sample local convergence rate for the
EM algorithm tends to be asymptotically superlinear when e.2¤/ tends
to zero.

1 Introduction

The expectation-maximization (EM) algorithm is a general methodology
for maximum likelihood (ML) or maximum a posteriori (MAP) estimation
(Dempster, Laird, & Rubin, 1977). A substantial literature has been devoted
to the study of the convergence of EM and related methods (e.g., Wu, 1983;
Redner & Walker, 1984; Meng, 1994; Liu & Rubin, 1994; Lange, 1995a; Meng
& van Dyk, 1997; Delyon, Lavielle, & Moulines, 1999). The starting point
for many of these studies is the fact that EM is generally a �rst-order or
linearly convergent algorithm, as can readily be seen by considering EM
as a mapping 2.kC1/ D M.2.k//, with �xed point 2¤ D M.2¤/. Results on
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the rate of convergence of EM are obtained by calculating the information
matrices for the missing data and the observed data (Dempster et al., 1977;
Meng, 1994).

The theoretical convergence results obtained to date are of satisfying gen-
erality but of limited value in understanding why EM may converge slowly
or rapidly in a particular problem. The existing methods to enhance the
convergence rate of EM are generally based on the conventional superlin-
ear optimization theory (e.g., Lange, 1995b; Jamshidian & Jennrich, 1997;
Meng & van Dyk, 1998), and are usually rather more complex than EM.
However, they are prey to other disadvantages, including an awkwardness
at handling constraints on parameters. More fundamentally, it is not clear
what the underlying factors are that slow EM’s convergence.

It is also worth noting that EM has been successfully applied to large-
scale problems such as hidden Markov models (Rabiner, 1989), probabilistic
decision trees (Jordan & Jacobs, 1994), and mixtures of experts architectures
(Jordan & Xu, 1995), where its empirical convergence rate can be signi�-
cantly faster than those of conventional �rst-order iterative algorithms (i.e.,
gradient ascent). These empirical studies show that EM can be slow if the
overlap in the given mixture is large but rapid if the overlap in the given
mixture is small.

A recent analysis by Xu and Jordan (1996) provides some insight into the
convergence rate of EM in the setting of gaussian mixtures. For the conve-
nience of mathematical analyses, they studied a variant of the original EM
algorithm for gaussian mixtures and showed that the condition number as-
sociated with this variant EM algorithm is guaranteed to be smaller than
the condition number associated with gradient ascent, providing a general
guarantee of the dominance of this variant EM algorithm over the gradient
algorithm. Moreover, in cases in which the mixture components are well
separated, they showed that the condition number for this EM algorithm
approximately converges to one, corresponding to a local superlinear con-
vergence rate. Thus, in this restrictive case, this type of EM algorithm has the
favorable property of showing quasi-Newton behavior as it nears the ML
or MAP solution. Xu (1997) further showed that the original EM algorithm
has the same convergence properties as this variant EM algorithm.

We have further found by experiments that the convergence rate of the
EM algorithm for gaussian mixtures is dominated by a measure of the aver-
age overlap of gaussians in the mixture. Actually, when the average overlap
measure becomes small, the EM algorithm converges quickly when it nears
the true solution. As the measure of the average overlap tends to zero, the
EM algorithm tends to demonstrate a quasi-Newton behavior.

In this article, based on the mathematical connection between the variant
EM algorithm and gradient algorithms and on one of its intermediate result
on the convergence rate by Xu and Jordan (1996), as well as on the same con-
vergence result of the original EM algorithm (Xu, 1997), we present a further
theoretical analysis of the asymptotic convergence rate of the EM algorithm
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locally around the true solution 2¤ with respect to e.2¤/, a measure of the
average overlap of the gaussians in the mixture. We prove a theorem that
shows the asymptotic convergence rate is a higher-order in�nitesimal than
e0:5¡".2¤/ when e.2¤/ tends to zero under certain conditions, where " > 0
is an arbitrarily small number. Thus, we see that the large sample local con-
vergence rate for the EM algorithm tends to be asymptotically superlinear
when e.2¤/ tends to zero.

Section 2 presents the EM algorithm and the Hessian matrix for the gaus-
sian mixture model. In section 3, we intuitively introduce our theorem on
the asymptotic convergence rate of EM. Section 4 describes several lemmas
needed for the proof; the proof is contained in section 5. Section 6 presents
our conclusions.

2 The EM Algorithm and the Hessian Matrix of the Log-Likelihood

We consider the following gaussian mixture model:

P.x |2/ D
KX

jD1

®jP.x |mj; 6j/; ®j ¸ 0;

KX

jD1

®j D 1; (2.1)

where

P.x |mj; 6j/ D
1

.2¼/
d
2 |6j |

1
2

e¡ 1
2 .x¡mj/

T6
¡1
j .x¡mj/ (2.2)

and where K is the number of the mixture components, x denotes a sample
vector, and d is the dimensionality of x. The parameter vector 2 consists of
the mixing proportions ®j , the mean vectors mj, and the covariance matrices

6j D .¾
.j/
pq /d£d, which are assumed positive de�nite.

Given K and given independently and identically distributed (i.i.d.) sam-
ples fx.t/gN

1 , we estimate 2 by maximizing the log-likelihood:

l.2/ D log
NY

tD1

P.x.t/ |2/ D
NX

tD1

log P.x.t/ |2/: (2.3)

This log-likelihood can be optimized iteratively via the EM algorithm as
follows:

®
.kC1/
j D

1
N

NX

tD1

h.k/
j .t/ (2.4)

m.kC1/
j D

1
PN

tD1 h.k/
j .t/

NX

tD1

h.k/
j .t/x.t/ (2.5)
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6.kC1/
j D

1
PN

tD1 h.k/
j .t/

NX

tD1

h.k/
j .t/.x.t/ ¡ m.kC1/

j /.x ¡ m.kC1/
j /T; (2.6)

where the posterior probabilities h.k/
j .t/ are given by

h.k/
j .t/ D

®
.k/
j P.x.t/ |m.k/

j ; 6
.k/
j /

PK
iD1 ®

.k/
i P.x.t/ |m.k/

i ; 6
.k/
i /

: (2.7)

This iterative procedure converges to a local maximum of the log-likeli-
hood (Dempster, et al., 1977). We suppose that O2 is a local solution to the
likelihood equation 2.3, and the EM algorithm converges to it. We now
analyze the local convergence rate around this solution.

For the convenience of mathematical analyses, Xu and Jordan (1996)
studied a variant of the EM algorithm by letting equation 2.6 be replaced by

6
.kC1/
j D

1
PN

tD1 h.k/
j .t/

NX

tD1

h.k/
j .t/.x.t/ ¡ m.k/

j /.x ¡ m.k/
j /T; (2.8)

that is, the update of 6.kC1/
j is based on the last update m.k/

j instead of m.kC1/
j

in equation 2.6. For clarity, we denote this variant of EM by VEM in this
article. They showed that at each iteration, the following relationship holds
between the gradient of the log-likelihood and the VEM update step:

A.kC1/ ¡ A.k/ D PA.k/

@l
@A

|ADA.k/ (2.9)

mj
.kC1/ ¡ mj

.k/ D Pmj
.k/

@ l
@mj

|mj Dmj
.k/ (2.10)

vec
h
6

.kC1/
j

i
¡ vec

h
6

.k/
j

i
D P6j

.k/

@ l
@vec[6j]

|
6jD6j

.k/ ; (2.11)

where

PA.k/ D
1
N

±
diag

h
®

.k/
1 ; : : : ; ®

.k/
K

i
¡ A.k/A.k/T

²
(2.12)

Pmj .k/ D
1

PN
tD1 h.k/

j .t/
6.k/

j (2.13)

P6j .k/ D
2

PN
tD1 h.k/

j .t/

±
6

.k/
j 6

.k/
j

²
; (2.14)

and where A denotes the vector of mixing proportions [®1; : : : ; ®K]T, j in-
dexes the mixture components .j D 1; : : : ; K/, k denotes the iteration num-
ber, vec[B] denotes the vector obtained by stacking the column vectors of
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the matrix B, vec[B]T D .vec[B]/T , and  denotes the Kronecker product.
Moreover, given the constraints

PK
jD1 ®

.k/
j D 1 and ®

.k/
j ¸ 0; PA.k/ is a posi-

tive de�nite matrix and the matrices Pmj .k/ and P6j .k/ are positive de�nite
with probability one for N suf�ciently large. Assembling these matrices into
a single matrix P.2/ D diag[PA; Pm1 ; : : : ; PmK ; P61 ; : : : ; P6K ]; we have the
following equation for the VEM update step given by equation 3.7 in Xu
and Jordan (1996):

2.kC1/ D 2.k/ C P
±

2.k/
² @l

@2
|2D2.k/ ; (2.15)

where 2 is the collection of mixture parameters:

2 D [AT; mT
1 ; : : : ; mT

K; vec[61]T; : : : ; vec[6K]T]T:

In order to represent 2 to a set of independent variables for derivation,
we introduce the following subspace,

R1 D

8
<

:2:
KX

jD1

®j D 0; ¾
.j/
pq D ¾

.j/
qp ; for all j; p; q

9
=

; ;

which is obtained from

R2 D

8
<

:2:
KX

jD1

®j D 1; ¾
.j/
pq D ¾

.j/
qp ; for all j; p; q

9
=

;

by the constant shift 20. For the gaussian mixture, the constraint that all 6j
are positive de�nite should also be added to R2 and thus R1. It can be easily
veri�ed that this constraint makes R1 be an open convex set of it. Since we
will consider only the local differential properties of log-likelihood function
at an interior point of the open convex set, we can set a new coordinate
system for the parameter vector 2 via a set of the unit basis vectors E D
[e1; : : : ; em], where m is the dimension of R1.

In fact, for each 20 D 2 ¡ 20 2 R1, let its coordinates under the bases
e1; : : : ; em be denoted by 2c; we have

2 ¡ 20 D E2c; or 2 D E2c C 20: (2.16)

Multiplying its both sides by ET, it follows from ETE D I that

ET2 D ETE2c C ET20; or 2c D ET2 ¡ ET20: (2.17)

Putting it into equation 2.16, we have

20 D 2 ¡ 20 D ETE.2 ¡ 20/ D EET20 for 20 2 R1: (2.18)
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Thus for a matrix A, let kAk D maxk20kD1;202R 1 kA20k be its norm con-
strained on R1. From equation 2.18, we certainly have the equality that
kAk D kAEETk. We use the Euclidean norm for vectors in this article and
have that

kETk D max
k2kD1;22R 1

kET2k D max
k2kD1;22R 1

.2TEET2/
1
2

D max
k2kD1;22R 1

.2T2/
1
2 D max

k2kD1;22R 1

k2k D 1:

Following the last inequality on p. 137 of Xu and Jordan (1996), we have
the local convergence rate around O2 is bounded by

r D lim
k!1

k2.kC1/ ¡ O2k
k2.k/ ¡ O2k

· kET.I C P. O2/H. O2//k D kET.I C P. O2/H. O2//EETk

· kET.I C P. O2/H. O2//EkkETk: (2.19)

By the fact kETk D 1, we have

r · kI C ETP. O2/H. O2/Ek: (2.20)

For the original EM algorithm, Xu (1997) further showed that the con-
vergence rate by the original EM algorithm and the VEM algorithm is the
same. Therefore, equation 2.20 also holds for the original EM algorithm. As
a result, the following analyses and results apply to both the EM and VEM
algorithm.

Suppose that the samples fx.t/gN
1 are randomly selected from the gaussian

mixture with the parameter 2¤. When the gaussian mixture model satis�es
certain regularity conditions, the EM iterations arriveat a consistent solution
on maximizing log-likelihood equation 2.3 (Veaux, 1986; Redner & Walker,
1984). In this article, we assume that the EM algorithm asymptotically con-
verges to this true parameter correctly (i.e., when N is large, for the sample
data fx.t/gN

1 , the EM algorithm converges to O2 with limN!1 O2 D 2¤), and
we analyze the local convergence rate around this consistent solution in
the limit form. It follows from equation 2.20 that an upper bound of the
asymptotic convergence rate is given by

r · lim
N!1

kI C ETP. O2/H. O2/Ek

D kI C ET lim
N!1

P. O2/H. O2/Ek

D kI C ET lim
N!1

P.2¤/H.2¤/Ek: (2.21)
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In order to estimate this bound, the rest of this article pursues an analysis
of the convergence behavior of P.2¤/H.2¤/ as N increases to in�nity.

First, we give the Hessian of the log-likelihood equation 2.3 in the block
forms. The detailed derivation is omitted (for an example of such a deriva-
tion, see Xu and Jordan, 1996, and for the general methods for matrix deriva-
tives, see Gerald, 1980):

HA;AT
@2l

@A@AT D ¡
NX

tD1

H¡1
A .t/.H¡1

A .t//TI

HA;mT
j

@2l

@A@mT
j

D
NX

tD1

R¡1
Aj

.t/.x.t/ ¡ mj/
T6¡1

j I

HA;6T
j

@2l
@A@6T

j

D ¡1
2

NX

tD1

R¡1
Aj

.t/ vec[6¡1
j ¡ Uj.t/]TI

Hmi;mT
j

@2l

@mi@mT
j

D ¡6¡1
i

NX

tD1

±ijhi.t/ C
NX

tD1

°ij.t/6¡1
i .x.t/ ¡ mi/

£.x.t/ ¡ mj/
T6¡1

j I

Hmi;6
T
j

@2l
@mi@vec[6j]T D ¡1

2

NX

tD1

°ij.t/vec[6¡1
j ¡ Uj.t/]T

.6¡1
i .x.t/ ¡ mi// ¡

NX

tD1

±ijhi.t/.6¡1
i .x.t/ ¡ mi// vec[6¡1

i ]TI

H6i;6
T
j

@2l
@vec[6i]@vec[6j]T D

@

@vec[6i]


@l
@vec[6j]T

D ¡1
4

NX

tD1

°ij.t/vec[6¡1
j ¡ Uj.t/]T vec[6¡1

i ¡ Ui.t/]

¡1
2

NX

tD1

±ijhi.t/.¡6¡1
i 6¡1

i C 6¡1
i Ui.t/ C Ui.t/ 6¡1

i /;

where 2 D fA; mj; 6j; j D 1; : : : ; Kg, ±ij is the Kronecker function, and

H¡1
A .t/ D [h1.t/=®1; : : : ; hK.t/=®K]T;

°ij.t/ D .±ij ¡ hi.t//hj.t/;

R¡1
Aj

.t/ D [°1 j.t/=®1; : : : ; °Kj.t/=®K]T;

Ui.t/ D Ui.x.t// D 6¡1
i .x.t/ ¡ mi/.x.t/ ¡ mi/

T6¡1
i :
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When the K gaussian distributions in the mixture are separated enough,
that is, the posterior probabilities hj.t/ are approximately zero or one at
2¤, by the above expression of the Hessian matrix, it is easy to verify that
limN!1 P.2¤/H.2¤/ will become to the following block diagonal matrix:

F D
³

¡IK C A¤[1; 1; : : : ; 1] 0
0 ¡IK£.dCd2/

´
; (2.22)

where A¤ D [®¤
1 ; : : : ; ®¤

K]T and In is the nth order identity matrix.
Furthermore, we rearrange the E formed from the unit basis vectors that

span R1
1 into the following two parts:

E D
³

E1 0
0 E2

´
; (2.23)

with its �rst part E1 D [e1
1; : : : ; e1

K¡1] and e1
1; : : : ; e1

K¡1 are unit basis vectors
of R1

1 D fx 2 RK:
PK

jD1 xi D 0g.
From equations 2.22 and 2.23, we have

ET.I C F/E D
³

ET
1 A¤[1; 1; : : : ; 1]E1 0

0 0

´
D 0; (2.24)

since [1; : : : ; 1]E1 D 0.
Substituting this result into the upper bound in equation 2.21, we have:

r · kI C ET lim
N!1

P.2¤/H.2¤/Ek D kET.I C F/Ek D 0:

Thus, the EM algorithm for gaussian mixtures has a superlinear conver-
gence rate. A special case of this result was �rst given in Xu and Jordan
(1996).

Actually gaussian distributions in the mixture cannot be strictly sepa-
rated. In the rest of this article, we will show that limN!1 P.2¤/H.2¤/ ap-
proximately converges to F as the overlap of any two gaussian distributions
in the mixture tends to zero.

3 The Main Theorem

We begin by introducing a set of quantities on the overlap of component
gaussian distributions as follows:

eij.2
¤/ D lim

N!1

1
N

NX

tD1

|°ij.t/ | D
Z

|°ij.x/ |P.x |2¤/ dx; for i; j D 1; : : : ; K;
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where °ij.x/ D .±ij ¡ hi.x//hj.x/ and

hl.x/ D
®¤

l P.x|m¤
l ; 6¤

l /
PK

kD1 ®¤
k P.x|m¤

k ; 6¤
k /

for l D 1; : : : ; K:

Since |°ij.x/ | · 1, eij.2
¤/ · 1.

If i 6D j, eij.2
¤/ D

R
hi.x/hj.x/P.x |2¤/ dx, which can be considered as a

measure of the average overlap between the distributions of gaussian i and
j. In fact, if P.x |m¤

i ; 6¤
i / and P.x |m¤

j ; 6¤
j / overlap in a higher degree at a point

x, then hi.x/hj.x/ certainly takes a higher value; otherwise, it takes a lower
value. When they are well separated at x, hi.x/hj.x/ becomes zero. Thus,
the product hi.x/hj.x/ represents a degree of overlap between P.x|m¤

i ; 6¤
i /

and P.x |m¤
j ; 6¤

j / at x in the mixture environment, and the above eij.2
¤/ is an

average overlap between the distributions of gaussian i and j in the mixture.
Since two gaussian distributions always have some overlap area, we

always have eij.2
¤/ > 0. Moreover, by the fact

PN
jD1 hi.x/ D 1, we also have

eii.2
¤/ D

Z
|°ii.x/ |P.x |2¤/ dx D

Z
hi.x/.1 ¡ hi.x//P.x |2¤/ dx

D
X

j 6Di

Z
hi.x/hj.x/P.x|2¤/ dx D

X

j 6Di

eij.2
¤/ > 0:

Clearly, eii.2
¤/ represents the overlap of the ith gaussian distribution with

all the other gaussian distributions in the mixture.
We consider the worst case and de�ne

e.2¤/ D max
ij

eij.2
¤/ · 1: (3.1)

By experiments, we can �nd that as the gaussian distributions in the mix-
ture become more separated, the EM algorithm can asymptotically converge
to the true parameter 2¤ with a better convergence rate. Here, we mathe-
matically study the asymptotic convergence properties of the EM algorithm
with respect to the average overlap measure e.2¤/.

First , we introduce an alternative quantity ´.2¤/ that describes the over-
all overlap of a gaussian mixture from its geometric structure.

For illustration, we de�ne the characteristic contour of component gaus-
sian density Pi.x|m¤

i ; 6¤
i / by

.x ¡ m¤
i /T6¤¡1

i .x ¡ m¤
i / D 1: (3.2)

Since 6¤
i is a positive de�nite matrix, there certainly exists an orthonormal
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matrix Ui such that

6¤
i D UT

i

0

BBB@

¸i1 0 ¢ ¢ ¢ 0
0 ¸i2 ¢ ¢ ¢ 0
:::

:::
: : :

:::

0 0 ¢ ¢ ¢ ¸id

1

CCCA Ui; (3.3)

where ¸i1; : : : ; ¸id are the eigenvalues of 6¤
i . By taking the transformation

y D Ui.x ¡ m¤
i /, we have from equation 3.2 that

nX

jD1

¸¡1
ij y2

i D 1;

which is a hyperellipsoid at the origin in the transformed space. It follows
from the inverse transformation x D m¤

i C UT
i y that the characteristic con-

tour is a hyperellipsoid at m¤
i in the original space. In fact, the axes of this

characteristic hyperellipsoid describe the attenuating rates of the compo-
nent density in the coordinate basis directions in the transformed space (or
the d principal directions in the original space from m¤

i ), respectively, since
they are the square roots of the eigenvalues, which are actually the vari-
ances of the ith component distribution in these directions, respectively. In
other words, the density will attenuate rapidly as a point goes away from
the center along a basis direction if the corresponding axis is small; other-
wise, it will attenuate slowly. For simplicity, we use the minimum-radius
hypersphere, which includes the characteristic contour,

.x ¡ m¤
i /T.x ¡ m¤

i / D ¸i
max;

instead of the characteristic contour, and then the radius of this hypersphere
is .¸i

max/
1
2 . In the same way, we can have the characteristic contour and the

mini-radius hypersphere for the jth component distribution. Since the over-
lap between these two densities is approximatelyproportional to the overlap
between the two characteristic contours or minimum-radius hyperspheres,
we can de�ne ´ij.2

¤/ as the overlap between the densities of components i
and j as follows:

´ij.2
¤/ D

.¸i
max/

1
2 .¸

j
max/

1
2

km¤
i ¡ m¤

j k
:

Therefore, for a gaussian mixture of true parameter 2¤, we de�ne

´.2¤/ D max
i 6D j

´ij.2
¤/ (3.4)
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as an overall overlap degree of gaussians in the mixture from point of view
of the worst case. Obviously, ´.2¤/ ! 0 is equivalent to e.2¤/ ! 0.

Second , we consider some assumptions that regularize the manner of
e.2¤/ tending to zero.

We �rst assume that 2¤ satis�es

Condition 1: ®¤
i ¸ ®; for i D 1; : : : ; K;

where ® is a positive number. When some mixing proportion ®¤
i tends to

zero, the corresponding gaussian will withdraw from the mixture, which
degenerates to a mixture with a lower number of the mixing components.
This assumption excludes this degeneracy.

Our second assumption is that the eigenvalues of all the covariance ma-
trices satisfy

Condition 2: ¯¸.2¤/ · ¸ik · ¸.2¤/; for i D 1; : : : ; K; k D 1; : : : ; d;

where ¯ is a positive number and ¸.2¤/ is de�ned to be the maximum
eigenvalue of the covariance matrices 6¤

1 ; : : : ; 6¤
K, that is,

¸.2¤/ D max
i;k

¸ik;

which is always upper bounded by a positive number B. That is, all the
eigenvalues uniformly attenuate or reduce to zero when they tend to zero.
It follows from condition 2 that condition numbers of all the covariance
matrices are uniformly upper bounded, that is,

1 · ·.6¤
i / · B0; for i D 1; : : : ; K;

where ·.6¤
i / is the condition number of 6¤

i and B0 is a positive number.
The third assumption is that the mean vectors of the component densities

in the mixture satisfy

Condition 3: ºDmax.2¤/ · Dmin.2¤/ · km¤
i ¡ m¤

j k

· Dmax.2¤/; for i 6D j;

where Dmax.2¤/ D maxi 6D j km¤
i ¡ m¤

j k; Dmin.2¤/ D mini 6D j km¤
i ¡ m¤

j k, and
º is a positive number. That is, all the distances between two mean vectors
are the same-order in�nitely large quantities when they tend to in�nity.
Moreover, when the overlap of densities in the mixture reduces to zero,
any of two means m¤

i ; m¤
j cannot be arbitrarily close; there should be a pos-

itive value T such that km¤
i ¡ m¤

j k ¸ T when i 6D j. Also, it is natural to
assume that the mean vectors take different directions when they diverge
to in�nity.

With the above preparations, we are ready to introduce our main theo-
rem.
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Theorem 1. Given i.i.d. samples fx.t/gN
1 from a mixture of K gaussian distribu-

tions of the parameters 2¤ that satis�es conditions 1–3, when e.2¤/ is considered
as an in�nitesimal, as it tends to zero, we have:

lim
N!1

P.2¤/H.2¤/ D F C o.e0:5¡".2¤//; (3.5)

where F is given by equation 2.22 and " is an arbitrarily small positive number.

According to this theorem, as the overlap of distributions in the mix-
ture becomes small or, more precisely, e.2¤/ ! 0, the asymptotic value of
P.2¤/H.2¤/ becomes F plus a matrix in which each element is a higher-
order in�nitesimal of e0:5¡".2¤/. It further follows from equation 2.24 that
ET.I C F/E D 0. Thus, we have

I C ET lim
N!1

P.2¤/H.2¤/E D ET.I C lim
N!1

P.2¤/H.2¤//E

D o.e0:5¡".2¤//:

That is, each element of I C ET limN!1 P.2¤/H.2¤/E is a higher-order in-
�nitesimal of e0:5¡".2¤/. Because the norm of a real matrix A D .aij/m£m is
always not larger than

p
m maxi

Pm
jD1 |aij |, the norm kI C ETP.2¤/H.2¤/Ek

is certainly a higher-order in�nitesimal of e0:5¡".2¤/. Therefore, it follows
from equation 2.21 that the asymptotic convergence rate of the EM algo-
rithm locally around 2¤ is a higher-order in�nitesimal of e0:5¡".2¤/. That
is, when e.2¤/ is small and N is large enough, the convergence rate of the
EM algorithm approaches approximately zero. In other words, the EM al-
gorithm in this case has a quasi-Newton-type convergence behavior, with
its asymptotic convergence rate dominated by the in�nitesimal e0:5¡".2¤/.

From this theorem, we can also �nd that P.2¤/ tends to the inverse of
H.2¤/ as e.2¤/ tends to zero. Thus, when the overlap of gaussian distribu-
tions in the mixture becomes a small value, the EM algorithm approximates
to the Newton algorithm. Actually, P.2¤/ makes the EM algorithm for the
gaussian mixture be different from the conventional �rst-order iterative al-
gorithm such as gradient ascent. This may be the basic underlying factor
that speeds up the convergence of the EM algorithm when the overlap of
gaussians in the mixture is low.

4 Lemmas

In this section, we describe several lemmas that will be used for proving
the main theorem. The norm for a vector or matrix is always assumed to be
Euclidean norm in the following.

We now de�ne three kinds of special polynomial functions that we often
meet in the further analyses:
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De�nition 1. g.x; 2¤/ is called a regular function if it satis�es:

(i) If 2¤ is �xed, g.x; 2¤/ is a polynomial function of the component variables
x1; : : : ; xd of x.

(ii) If x is �xed, g.x; 2¤/ is a polynomial function of the elements of m¤
1; : : : ; m¤

K,
6¤

1 ; : : : ; 6¤
K, 6¤¡1

1 , : : :, 6¤¡1

K , as well as A¤, A¤¡1
D [®¤¡1

1 ; : : : ; ®¤¡1

K ]T .

De�nition 2. g.x; 2¤/ is called a balanced function if it satis�es i and
(iii) If x is �xed, g.x; 2¤/ is a polynomial function of the elements of A¤, A¤¡1

,
m¤

1; : : : ; m¤
K, 6¤

1 ; : : : ; 6¤
K, ¸.2¤/6¤¡1

1 , : : :, ¸.2¤/6¤¡1

K .

De�nition 3. For a regular function g.x; 2¤/, if there is a positive integer q such
that ¸q.2¤/g.x; 2¤/ is converted into a balanced function, then g.x; 2¤/ is called
a regular and convertible function.

Lemma 1. Suppose that g.x; 2¤/ is a balanced function and 2¤ satis�es condi-
tions 1–3. As e.2¤/ tends to zero, we have

Z
|g.x; 2¤/°ij.x/|P.x|2¤/ dx < ¹mp.2¤/

p
e.2¤/; (4.1)

where m.2¤/ D maxikm¤
i k, ¹ is a positive number and p is a positive integer.

Proof . We begin to get an upper bound for E.kXkk/, where k is any positive
integer. By the de�nition of P.x |2¤/, we have

E.kXkk/ D
KX

jD1

®¤
j E.kXkk |m¤

j ; 6¤
j /; (4.2)

where

E.kXkk |m¤
j ; 6¤

j / D
Z

kxkkP.x|m¤
j ; 6¤

j / dx

·
kX

iD0

³
k
i

´
km¤

j kk¡i
Z

kx ¡ m¤
j kiP.x|m¤

j ; 6¤
j / dx;

where
¡k

i

¢
is the combination number. By making the transformation y D

3
¡ 1

2
j Uj.x ¡ m¤

j /, we get

E.kX ¡ m¤
j ki |m¤

j ; 6¤
j / · ¸

d
2 .2¤/E.kYki |0; Id/; (4.3)

where Uj is de�ned in equation 3.3 and 3
¡ 1

2
j D diag[¸

¡ 1
2

j1 ; : : : ; ¸
1
2
jd].



2894 Jinwen Ma, Lei Xu, & Michael I. Jordan

As E.kYki |0; Id/ is certainly �nite and ¸.2¤/ is upper bounded, E.kX ¡
m¤

j ki |m¤
j ; 6¤

j / is upper bounded. Since ®¤
j < 1 and m.2¤/ is lower bounded

by T
2 under the constraint km¤

i ¡ m¤
j k ¸ T, it follows from equation 4.2 that

there exist a positive number ¹ and a positive integer q such that

E.kXkk |2¤/ D
Z

kxkkP.x |2¤/ dx · ¹mq.2¤/: (4.4)

We further get an upper bound for E.g2.X; 2¤//. In the process of e.2¤/

tending to zero under the assumptions, the elements of A¤ and A¤¡1
are

bounded. Since k6¤
j k D ¸

j
max · ¸.2¤/ · B, the elements of each 6¤

j
are bounded. Moreover, since ¸j1; : : : ; j̧d are the eigenvalues of 6¤

j and

¸¡1
j1 ; : : : ; ¸¡1

jd are the eigenvalues of 6¤¡1

j , we have

k¸.2¤/6¤¡1

j k · ¸.2¤/
1

¯¸.2¤/
D

1
¯

:

That is, the elements of ¸.2¤/6¤¡1

j are also bounded. We consider that
g.x; 2¤/ is a polynomial function of x1; : : : ; xd and that the coef�cient of
each term in g.x; 2¤/ is a polynomial function of the elements of A¤, A¤¡1

,
m¤

1; : : : ; m¤
K,6¤

1 ; : : : ; 6¤
K,¸.2¤/6¤¡1

1 , : : :,¸.2¤/6¤¡1

K withconstant coef�cients.
Because the elements of these matrices and vectors except m¤

1; : : : ; m¤
K are

bounded, the absolute value of the coef�cient is certainly upper bounded
by a positive-order power function of m.2¤/. Therefore, |g.x; 2¤/ | is upper
bounded by a positive polynomial function of kxk with its coef�cients be-
ing some polynomial functions of m.2¤/ of positive constant coef�cients.
As g2.x; 2¤/ is certainly a balanced function, it is also upper bounded by
a positive polynomial function of kxk. According to equation 4.4 and the
property that m.2¤/ is lower bounded by T

2 , there certainly exist a positive
number ¹ and a positive integer p such that

E.g2.X; 2¤// · ¹2m2p.2¤/:

Finally, it follows from the Cauchy-Schwarz inequality and the fact
|°ij.x/| · 1 that

Z
|g.x; 2¤/°ij.x/|P.x |2¤/ dx D E.|g.X; 2¤/| |°ij.X/|/

· E
1
2 .g2.X; 2//E

1
2 . |°ij.X/|/

· ¹mp.2¤/
q

eij.2¤/

· ¹mp.2¤/
p

e.2¤/:
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Since ´.2¤/ is not an invertible function, that is, there may be many 2¤s
for a value of ´.2¤/, we further de�ne

f .´/ D sup
´.2¤/D´

e.2¤/: (4.5)

Because e.2¤/ is always not larger than 1 by the de�nition, f .´/ is well
de�ned. By this de�nition, we certainly have

eij.2
¤/ · e.2¤/ · f .´.2¤//: (4.6)

Lemma 2. Suppose that 2¤ satis�es conditions 1–3. As ´.2¤/ tends to zero, we
have:

(i) ´.2¤/, ´ij.2
¤/ and ¸i

max
km¤

i ¡m¤
j
k are the equivalent in�nitesimals.

(ii) For i 6D j, we have

km¤
i k · T0km¤

i ¡ m¤
j k; (4.7)

where T0 is a positive number.

(iii) For any two nonnegative numbers p and q with p C q > 0, we have

km¤
i ¡ m¤

j kp.¸i
max/¡q · O.´¡p_q.2¤//; (4.8)

km¤
i ¡ m¤

j kp.¸i
max/¡q ¸ O.´¡p^q.2¤//; (4.9)

where p _ q D maxfp; qg; p ^ q D minfp; qg.

See the appendix for the proof.

Lemma 3. When 2¤ satis�es conditions 1–3 and ´.2¤/ ! 0 as an in�nitesimal,
we have

f ".´.2¤// D o.´p.2¤//; (4.10)

where " > 0, p is any positive number and o.x/ means that it is a higher-order
in�nitesimal as x ! 0.

See the appendix for the proof.

Lemma 4. Suppose that g.x; 2¤/ is a regular and convertible function and that
2¤ satis�es conditions 1–3. As e.2¤/ ! 0 is considered as an in�nitesimal, we have

lim
N!1

1
N

NX

tD1

°ij.t/g.x.t/; 2¤/ D
Z

g.x; 2¤/°ij.x/P.x|2¤/ dx

D o.e0:5¡".2¤// (4.11)

where " is an arbitrarily small, positive number.
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Proof . Because g.x; 2¤/ is a regular and convertible function, there is a pos-
itive integer p such that ¸p.2¤/g.x; 2¤/ is a balanced function. By lemmas 1
and 2, we have


Z

g.x; 2¤/°ij.x/P.x|2¤/ dx


·
Z

|g.x; 2¤/°ij.x/ |P.x |2¤/ dx

D ¸¡q.2¤/

Z
|¸q.2¤/g.x; 2¤/°ij.x/ |P.x |2¤/ dx

· ¹¸¡q.2¤/mp.2¤/e0:5.2¤/ D ¹¸¡q.2¤/km¤
i kpe0:5.2¤/

· ¹0.¸i
max/¡qkm¤

i ¡ m¤
j kpe0:5.2¤/ · º´¡n.2¤/e0:5.2¤/;

where we let m.2¤/ D km¤
i k, ¹0; º are positive numbers and n D p _ q.

By lemma 3, we further have

lim
e.2¤/!0

R
|g.x; 2¤/°ij.x/|P.x |2¤/ dx

e0:5¡".2¤/

D lim
´.2¤/!0

R
|g.x; 2¤/°ij.x/ |P.x|2¤/ dx

e0:5¡".2¤/

· º lim
´.2¤/!0

e".2¤/

´n.2¤/
· º lim

´.2¤/!0

f ".´.2¤/

´n.2¤/
D 0:

Therefore, we have
Z

g.x; 2¤/°ij.x/P.x|2¤/ dx D o.e0:5¡".2¤//: (4.12)

Corollary 1. Suppose that 2¤ satis�es conditions 1–3 and that e.2¤/ ! 0 is
considered as an in�nitesimal. If g.x; 2¤/ D

Pn
lD1 gl.x; 2¤/ and each gl.x; 2¤/ is

a regular and convertible function, we have

lim
N!1

1
N

NX

tD1

°ij.t/g.x.t/; 2¤/ D
Z

g.x; 2¤/°ij.x/P.x |2¤/ dx

D o.e0:5¡".2¤//; (4.13)

where " is an arbitrarily small, positive number.

Proof . By the fact
Z

|g.x; 2¤/°ij.x/|P.x |2¤/ dx ·
nX

lD1

Z
|gl.x; 2¤/°ij.x/ |P.x |2¤/ dx;

the corollary is obviously proved.
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5 Proof of Theorem 1

We are now ready to prove the main theorem.

Proof of Theorem 1. We are interested in the matrix P.2¤/H.2¤/, which
determines the local convergence rate of EM.

The explicit expressions of P.2¤/ and H.2¤/ allow us to obtain formulas
for the blocks of P.2¤/H.2¤/. To clarify our notation, we begin by writing
out these blocks as follows:

P.2¤/H.2¤/

D diag[PA; Pm1 ; : : : ; PmK ; P61 ; : : : ; P6K ]

£

0

BBBBBBBBBBBB@

HA;AT HA;mT
1

¢ ¢ ¢ HA;mT
K

HA;6T
1

¢ ¢ ¢ HA;6T
K

Hm1 ;AT Hm1 ;mT
1

¢ ¢ ¢ Hm1;mT
K

Hm1 ;6T
1

¢ ¢ ¢ Hm1 ;6T
K

:::
:::

: : :
:::

:::
: : :

:::

HmK ;AT HmK ;mT
1

¢ ¢ ¢ HmK;mT
K

HmK;6T
1

¢ ¢ ¢ HmK;6T
K

H61;AT H61;mT
1

¢ ¢ ¢ H61 ;mT
K

H61;6T
1

¢ ¢ ¢ H61 ;6T
K

:::
:::

: : :
:::

:::
: : :

:::

H6K;AT H6K;mT
1

¢ ¢ ¢ H6K;mT
K

H6K;6T
1

¢ ¢ ¢ H6K;6T
K

1

CCCCCCCCCCCCA

D

0

BBBBBBBBBBBB@

PAHA;AT PAHA;mT
1

¢ ¢ ¢ PAHA;mT
K

PAHA;6T
1

¢ ¢ ¢ PAHA;6T
K

Pm1 Hm1;AT Pm1 Hm1 ;mT
1

¢ ¢ ¢ Pm1 Hm1 ;mT
K

Pm1 Hm1 ;6T
1

¢ ¢ ¢ Pm1 Hm1;6T
K

:::
:::

: : :
:::

:::
: : :

:::

PmK HmK;AT PmK HmK;mT
1

¢ ¢ ¢ PmK HmK;mT
K

PmK HmK;6T
1

¢ ¢ ¢ PmK HmK;6T
K

P61H61;AT P61H61 ;mT
1

¢ ¢ ¢ P61H61 ;mT
K

P61 H61 ;6T
1

¢ ¢ ¢ P61H61;6T
K

:::
:::

: : :
:::

:::
: : :

:::

P6K H6K;AT P6K H6K;mT
1

¢ ¢ ¢ P6K H6K;mT
K

P6K H6K;6T
1

¢ ¢ ¢ P6K H6K;6T
K

1

CCCCCCCCCCCCA

:

Based on the expressions of the Hessian blocks, we have:

PAHA;AT D
1
N

.diag[®¤
1 ; : : : ; ®¤

K] ¡ A¤.A¤/T/ £
³

¡
NX

tD1

H¡1
A .t/.H¡1

A .t//T

!

D ¡.diag[®¤
1; : : : ; ®¤

K] ¡ A¤.A¤/T/

³
1
N

NX

tD1

H¡1
A .t/.H¡1

A .t//T

!
:
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By taking the limit as N ! 1, we obtain:

lim
N!1

PAHA;AT D ¡.diag[®¤
1 ; : : : ; ®¤

K] ¡ A¤.A¤/T/ lim
N!1

1
N

£
NX

tD1

H¡1
A .t/.H¡1

A .t//T:

We further let

I.2¤/ D lim
N!1

1
N

NX

tD1

H¡1
A .t/H¡1

A .t/T (5.1)

and compute this matrix by the elements.
When i 6D j, we have

I.2¤/.i; j/ D
1

®¤
i ®¤

j
lim

N!1

1
N

NX

tD1

hi.t/hj.t/ D
1

®¤
i ®¤

j
eij.2

¤/

·
1
®2 e.2¤/ D o.e0:5¡".2¤//:

When i D j, we further have

I.2¤/.i; i/ D
1

.®¤
i /2 lim

N!1

1
N

NX

tD1

hi.t/[1 ¡ .1 ¡ hi.t//]

D
1

.®¤
i /2

Z
hi.x/P.x |2¤/ dx ¡ 1

.®¤
i /2

Z
|°ii.x/ |P.x |2¤/ dx

¸ ®¤¡1

i ¡ 1
®2 e.2¤/ D ®¤¡1

i C o.e0:5¡".2¤//:

Then we have

I.2¤/ D diag[®¤¡1

1 ; : : : ; ®¤¡1

K ] C o.e0:5¡".2¤//: (5.2)

Therefore, we get

lim
N!1

PAHA;AT

D ¡.diag[®¤
1 ; : : : ; ®¤

K] ¡ A¤.A¤/T/I.2¤/

D ¡.diag[®¤
1 ; : : : ; ®¤

K]¡A¤.A¤/T/.diag[®¤¡1

1 ; : : : ; ®¤¡1

K ]C o.e0:5¡".2¤//

D ¡IK C A¤[1; 1; : : : ; 1] C o.e0:5¡".2¤//:
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For j D 1; : : : ; K, we have

PAHA;mT
j

D
1
N

.diag[®¤
1 ; : : : ; ®¤

K]¡A¤.A¤/T/

NX

tD1

R¡1
Aj

.t/.x.t/ ¡m¤
j /T6¤¡1

j

D.diag[®¤
1 ; : : : ; ®¤

K]¡A¤.A¤/T/
1
N

NX

tD1

R¡1
Aj

.t/.x.t/ ¡m¤
j /T6¤¡1

j :

Since R¡1
Aj

.t/ D [°1 j.t/=®¤
1 ; : : : ; °Kj=®¤

K]T, we let g.x; 2¤/ be any element of

A¤¡1
.x ¡m¤

j /T6¤¡1

j . Obviously, this kind of g.x; 2¤/ is a regular and convert-
ible function with q D 1. By lemma 4, we have:

lim
N!1

1
N

NX

tD1

R¡1
Aj

.t/.x.t/ ¡ m¤
j /T6¤¡1

j D o.e0:5¡".2¤//: (5.3)

Because theelements of the matrix .diag[®¤
1 ; : : : ; ®¤

K]¡A¤.A¤/T/arebounded,
we further have

lim
N!1

PAHA;mT
j

D o.e0:5¡".2¤//: (5.4)

Because the Hessian matrix has the following property,

Hmj;AT D HT
A;mT

j
; (5.5)

we have:

Pmj Hmj;AT D
N

PN
tD1 hj.t/

³
1
N

NX

tD1

R¡1
Aj

.t/.x.t/ ¡ m¤
j /T

!T

for j D 1; : : : ; K. By lemma 4 and letting g.x; 2¤/ be any element of the
matrix .x ¡ m¤

j /.A¤¡1/T we obtain

lim
N!1

Pmj Hmj;AT D o.e0:5¡".2¤//:

Similarly, we can prove:

lim
N!1

PAHA;6T
j

D o.e0:5¡".2¤//;

lim
N!1

P6j H6j;AT D o.e0:5¡".2¤//: (5.6)
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Next, we consider Pmi Hmi;mT
j

and have

Pmi Hmi;mT
j

D ¡±ijId C
1

PN
tD1 hi.t/

NX

tD1

°ij.t/.x.t/ ¡ m¤
i /.x.t/ ¡ m¤

j /T6¤¡1

j :

By lemma 4 and letting g.x; 2¤/ be any element of the matrix .x ¡ m¤
i /.x ¡

m¤
j /T6¤¡1

j , we get:

lim
N!1

Pmi Hmi;mT
j

D ¡±ijId

C
1

®¤
i

lim
N!1

1
N

NX

tD1

°ij.t/.x.t/ ¡ m¤
i /.x.t/ ¡ m¤

j /T6¤¡1

j

D ¡±ijId C o.e0:5¡".2¤//:

We further consider Pmi Hmi;6
T
j

and have

Pmi Hmi;6
T
j

D ¡1
2

1
PN

tD1 hi.t/

NX

tD1

°ij.t/vec[6¤¡1

j ¡ Uj.t/]T .x.t/ ¡ m¤
i /

¡ 1
PN

tD1 hi.t/

NX

tD1

±ijhi.t/.x.t/ ¡ m¤
i / vec[6¤¡1

i ]T :

By corollary 1 and letting g.x; 2¤/ be any element of the matrix vec[6¤¡1

j ¡
Uj.x/]T .x ¡ m¤

i /, we have

lim
N!1

1
N

NX

tD1

°ij.t/vec[6¤¡1

j ¡Uj.t/]T .x.t/ ¡m¤
i / D o.e0:5¡".2¤//: (5.7)

As for the second part of the expression with j D i, we have

lim
N!1

1
PN

tD1 hi.t/

NX

tD1

hi.t/.x.t/ ¡ m¤
i / vec[6¤¡1

i ]T D 0;

because

lim
N!1

1
PN

tD1 hi.t/

NX

tD1

hi.t/.x.t/ ¡ m¤
i / D 0 (5.8)

is satis�ed under the law of large number. Combining the two results, we
obtain

lim
N!1

Pmi Hmi;6
T
j

D o.e0:5¡".2¤//: (5.9)
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On the other hand, we have

P6i H6i;mT
j

D
2

PN
tD1 hi.t/

6¤
i 6¤

i HT
mj;6

T
i

D ¡6¤
i 6¤

i

(
1

PN
tD1 hi.t/

NX

tD1

°ij.t/vec[6¤¡1

i ¡Ui.t/]

f6¤¡1

j .x.t/ ¡ m¤
j /gT

)

¡ 26¤
i 6¤

i

(
1

PN
tD1 hi.t/

NX

tD1

±ijhi.t/f6¤¡1

i .x.t/ ¡ m¤
i /gT

vec[6¤¡1

i ]

)
;

and by the same argument used for Pmi Hmi;6
T
j
, we have

lim
N!1

P6i H6i;mT
i

D o.e0:5¡".2¤//: (5.10)

Now we turn to the remaining case, P6i H6i;6
T
j
, and have:

P6i H6i;6
T
j

D ¡1
2

6¤
i 6¤

i

(
1

PN
tD1 hi.t/

NX

tD1

°ij.t/vec[6¤¡1

j ¡ Uj.t/]

vec[6¤¡1

i ¡ Ui.t/]

)

¡ ±ij.6
¤
i 6¤

i /f¡6¤¡1

i 6¤¡1

i C 6¤¡1

i


(

1
PN

tD1 hi.t/

NX

tD1

hi.t/Ui.t/

)

C

(
1

PN
tD1 hi.t/

NX

tD1

hi.t/Ui.t/g 6¤¡1

i

)
:

By corollary 1 and the law of large number, we have

lim
N!1

P6i H6i;6
T
j

D o.e0:5¡".2¤// ¡ ±ij.6
¤
i 6¤

i /.6¤¡1

i 6¤¡1

i /

D ¡±ijId2 C o.e0:5¡".2¤//:
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Summing up all the results, we obtain:

lim
N!1

P.2¤/H.2¤/ D
³

¡IK C A¤[1; 1; : : : ; 1] 0
0 ¡IK£.dCd2/

´

C o.e0:5¡".2¤//

D F C o.e0:5¡".2¤//;

and the proof is completed.

6 Conclusions

We have presented an analysis of the asymptotic convergence rate of the EM
algorithm for gaussian mixtures. Our analysis shows that when the overlap
of any two gaussian distributions is small enough, the large sample local
convergence behavior of the EM algorithm is similar to a quasi-Newton
algorithm. Moreover, the large sample convergence rate is dominated by an
average overlap measure in the gaussian mixture as they both tend to zero.

Appendix

Proof of Lemma 2. We begin to prove (i). Let ´.2¤/ D ´i0 j0 .2¤/. According
to conditions 2 and 3, there exist three pairs of positive numbers a1; a2; b1; b2;

and c1; c2, such that

a1.¸i0
max/

1
2 .¸

j0
max/

1
2 · .¸i

max/
1
2 .¸

j
max/

1
2 · a2.¸i0

max/
1
2 .¸

j0
max/

1
2 ; (A.1)

b1.¸i
max/

1
2 .¸

j
max/

1
2 · ¸i

max · b2.¸i
max/

1
2 .¸

j
max/

1
2 ; (A.2)

c1km¤
i0 ¡ m¤

j0 k · km¤
i ¡ m¤

j k · c2km¤
i0 ¡ m¤

j0 k: (A.3)

Comparing equations A.1 and A.2 with equation A.3, there exist two other
pairs of positive numbers, a0

1; a0
2, and b0

1; b0
2, such that

a0
1´.2¤/ · ´ij.2

¤/ · a0
2´.2¤/;

b0
1´ij.2

¤/ ·
¸i

max

km¤
i ¡ m¤

j k · b0
2´ij.2

¤/:

Therefore, ´.2¤/; ´ij.2
¤/ and ¸i

max
km¤

i ¡m¤
j
k are the equivalent in�nitesimals.

We then consider (ii). If km¤
i ¡ m¤

j k is upper bounded as ´.2¤/ ! 0,
equation 4.7 obviously holds. If km¤

i ¡m¤
j k increases to in�nity as ´.2¤/ ! 0,

by the inequality km¤
i k · km¤

i ¡ m¤
j k C km¤

j k, equation 4.7 certainly holds if
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km¤
i k or km¤

j k is upper bounded. Otherwise, if km¤
i k and km¤

j k both increase
to in�nity, sincem¤

i and m¤
j take different directions, the order of the in�nitely

large quantity km¤
i k is certainly lower than or equal to that of km¤

i ¡ m¤
j k,

which also leads to equation 4.7. Therefore, (ii) holds under theassumptions.
Finally, we turn to (iii). For the �rst inequality, equation 4.8, we consider

three cases, as follows.
In the simple case p D q > 0, according to (i), we have

km¤
i ¡ m¤

j kp.¸i
max/¡q D km¤

i ¡ m¤
j kp.¸i

max/¡p

D

³
¸i

max

km¤
i ¡ m¤

j k

!¡p

D O.´¡p.2¤// D O.´¡p_q.2¤//:

If p > q, since ¸i
max is upper bounded and according to (i), we have

km¤
i ¡ m¤

j kp.¸max/¡q · O.´¡p.2¤// D O.´¡p_q.2¤//:

If p < q, as km¤
i ¡ m¤

j k ¸ T, we can have

km¤
i ¡ m¤

j kp.¸i
max/¡q · O.´¡q.2¤// D O.´¡p_q.2¤//:

Summing up the results on the three cases, we obtain:

km¤
i ¡ m¤

j kp.¸i
max/¡q · O.´¡p_q.2¤//:

In a similar way as above, we can prove the second inequality, equa-
tion 4.9.

Proof of Lemma 3. We �rst prove that

f .´/ D o.´p/;

as ´ ! 0, where p is an arbitrarily positive number p.
We consider the mixture of K gaussian densities of the parameter 2¤

under the relation ´.2¤/ D ´. When i 6D j, for a small enough ´, there is
certainly a point m¤

ij on the line between m¤
i and m¤

j such that

®¤
i Pi.m¤

ij |m
¤
i ; 6¤

i / D ®¤
j Pj.m¤

ij |m
¤
j ; 6¤

j /:

We further de�ne

Ei D fx: ®¤
i Pi.x |m¤

i ; 6¤
i / ¸ ®¤

j Pj.x|m¤
j ; 6¤

j /gI

Ej D fx: ®¤
j Pj.x |m¤

j ; 6¤
j / > ®¤

i Pi.x|m¤
i ; 6¤

i /g:
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As ´.2¤/ tends to zero, ¸i
max

km¤
i ¡m¤

j k and ¸i
max

km¤
i ¡m¤

j k are the same-order in�nites-

imals. Moreover, ·.6¤
i / and ·.6¤

j / are both upper bounded. Thus, there
certainly exist some neighborhoods of m¤

i (or m¤
j ) in Ei (or Ej). For clar-

ity, we let N ri.m
¤
i / and N rj .m

¤
j / be the largest neighborhood in Ei and Ej,

respectively, where ri and rj are their radiuses. Obviously ri and rj are
both proportional to km¤

i ¡ m¤
j k when km¤

i ¡ m¤
j k either tends to in�nity

or is upper bounded. So there exist a pair of positive numbers b1 and b2
such that

ri ¸ bikm¤
i ¡ m¤

j k; and rj ¸ bjkm¤
i ¡ m¤

j k:

We further de�ne

Di D N c
ri

.m¤
i / D fx: kx ¡ m¤

i k ¸ rigI

Dj D N c
rj
.m¤

j / D fx: kx ¡ m¤
j k ¸ rjg;

and thus

Ei ½ Dj; Ej ½ Di:

Moreover, from the de�nitions of eij.2
¤/ and hk.x/, we have

eij.2
¤/ D

Z
hi.x/hj.x/P.x |2¤/ dx

D
Z

Ei

hi.x/hj.x/P.x|2¤/ dx C
Z

Ej

hi.x/hj.x/P.x |2¤/ dx

·
Z

D j

hi.x/hj.x/P.x |2¤/ dx C
Z

D i

hi.x/hj.x/P.x|2¤/ dx

D ®¤
j

Z

D j

Pj.x |m¤
j ; 6¤

j / dx C ®¤
i

Z

D i

Pi.x|m¤
i ; 6¤

j / dx:

We now consider
R

D i
Pi.x |m¤

i ; 6¤
i / dx. Since ri ¸ bikm¤

i ¡ m¤
j k,

Z

D i

Pi.x|m¤
i ; 6¤

i / dx ·
Z

kx¡m¤
i k¸bikm¤

i ¡m¤
j
k

Pi.x|m¤
i ; 6¤

i / dx:

When ´.2¤/ is suf�ciently small, by the transformation y D Ui.x¡m¤
i /=km¤

i ¡
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m¤
j k, we have

Z

D i

Pi.x |m¤
i ; 6¤

i / dx ·
Z

kyk¸bi

º
km¤

i ¡ m¤
j k

.¸i
max/

d
2

e
¡ 1

2

km¤
i ¡m¤

j
k2

.¸i
max /d

kyk2

dy; (A.4)

where º is a positive number.
By lemma 2, we have

km¤
i ¡ m¤

j k.¸i
max/¡ d

2 · O.´¡c1 .2¤//;

km¤
i ¡ m¤

j k2.¸i
max/¡d ¸ O.´¡c2 .2¤//;

where c1 D 1 _ d
2 ; c2 D 2 ^ d.

According to these results, we have from equation A.4 that

Z

D i

Pi.x |m¤
i ; 6¤

i / dx · ¹

Z

Bi

1
´c1

e¡½ 1
´
c2

kyk2

dy; (A.5)

where Bi D fy: kyk ¸ big, ¹ and ½ are positive numbers.
Furthermore, we let

Fi.´/ D
Z

Bi

P.y |´/ dy; P.y |´/ D
1

´c1
e¡½ 1

´
c2

kyk2

;

and consider the limit of Fi.´/
´p as ´ tends to zero.

For each y 2 Bi, we have

lim
´!0

P.y|´/

´p D lim
³ D 1

´
!1

³ .c1 Cp/

e³ c2 ½kyk2 D 0

uniformly in Bi, which leads to

lim
´!0

Fi.´/

´p D
Z

Bi

lim
´!0

P.y |´/

´p dy D 0;

and thus Fi.´/ D o.´p/: It further follows from equation A.5 that

sup
´.2¤/D´

Z

D i

Pi.x|m¤
i ; 6¤

i / dx D o.´p/: (A.6)

Similarly, we can also prove

sup
´.2¤/D´

Z

D j

Pj.x|m¤
j ; 6¤

j / dx D o.´p/:
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As a result, we have

fij.´/ D sup
´.2¤/D´

eij.2
¤/

· sup
´.2¤/D´

³
®¤

j

Z

D j

Pj.x|m¤
j ; 6¤

j / dx C ®¤
i

Z

D i

Pi.x |m¤
i ; 6¤

i / dx

!

· sup
´.2¤/D´

Z

D j

Pj.x |m¤
j ; 6¤

j / dx C sup
´.2¤/D´

Z

D i

Pi.x |m¤
i ; 6¤

i / dx/

D o.´p/:

In the case i D j, we also have

fii.´/ D sup
´.2¤/D´

Z
|°ii.x/ |P.x |2¤/ dx

D sup
´.2¤/D´

Z
hi.x/.1 ¡ hi.x//P.x |2¤/ dx

·
X

j 6Di

sup
´.2¤/D´

Z
hi.x/hj.x/P.x|2¤/ dx D

X

j 6Di

eij.¸/

D o.´p/:

Summing up the results, we have

f .´/ · max
i;j

fij.´/ D o.´p/:

Moreover, because

lim
´!0

f ".´/

´p D lim
´!0

.
f .´/

´
p
"

/" D 0;

we �nally have f ".´/ D o.´p/ and thus f ".´.2¤// D o.´p.2¤//.
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