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Abstract
Topological phases protected by symmetry can occur in gapped and—surprisingly—in
critical systems. We consider non-interacting fermions in one dimension with spinless time-
reversal symmetry. It is known that the phases are classified by a topological invariant ω and
a central charge c. We investigate the correlations of string operators, giving insight into the
interplay between topology and criticality. In the gapped phases, these non-local string order
parameters allow us to extract ω. Remarkably, ratios of correlation lengths are universal. In
the critical phases, the scaling dimensions of these operators serve as an order parameter,
encoding ω and c. We derive exact asymptotics of these correlation functions using Toeplitz
determinant theory. We include physical discussion, e.g., relating lattice operators to the con-
formal field theory. Moreover, we discuss the dual spin chains. Using the aforementioned
universality, the topological invariant of the spin chain can be obtained from correlations of
local observables.

Keywords Topological insulators · Symmetry-protected topological phases · Universality ·
Toeplitz determinants · Conformal field theory

1 Introduction

Topological phases are fascinating examples of quantum matter. In one spatial dimension,
they can be stabilised if the Hamiltonian has a symmetry group. Gapped topological phases
have been classified for both non-interacting fermionic systems (dubbed topological insu-
lators or superconductors) [1–6] as well as general fermionic and bosonic systems (dubbed
symmetry protected topological (SPT) phases) [7–12]. However, it has recently been realised

B N. G. Jones
n.g.jones@bristol.ac.uk

R. Verresen
rubenverresen@gmail.com

1 School of Mathematics, University of Bristol, Bristol BS8 1TW, UK

2 The Heilbronn Institute for Mathematical Research, Bristol, UK

3 Department of Physics T42, Technical University of Munich, 85748 Garching, Germany

4 Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-019-02257-9&domain=pdf
http://orcid.org/0000-0002-0154-5358
http://orcid.org/0000-0002-0385-7363


Asymptotic Correlations in Gapped and Critical Topological Phases… 1165

Fig. 1 The Hamiltonians we consider can be expanded in a basis Hα (defined below Eq. (2)). The physics
is encoded in the meromorphic function f (z). The given definitions of c and ω classify the phases of HBDI,
where Z [g] denotes the (multi)set of zeros of g (with multiplicity) and Np the order of the pole at the origin.
Physically, c encodes the low-energy behaviour in the bulk, and ω the topological properties

that critical matter can also form distinct topological phases—even without gapped degrees
of freedom in the bulk [13]. As in the gapped case, the topology manifests itself physically:
for example, through exponentially localised zero-energy modes at the physical edges. As
long as a symmetry is preserved, a topological invariant can prevent two critical systems from
being smoothly connected. Relatedly, there is a lot of recent interest in topological critical
phases which do have additional gapped degrees of freedom [14–27].

In a previous work, we extended the well-known classification of the gapped topological
phases of quadratic fermionic Hamiltonians with spinless time-reversal symmetry [28] (‘BDI
class’ of Altland and Zirnbauer’s tenfold way [4]) to gapless topological phases [13]. These
are labelled by a topological invariant ω (∈ Z) and the central charge c (∈ 1

2Z≥0) of the
conformal field theory (CFT) that describes the continuum limit if the model is critical. If
the system is gapped, we say that c = 0 and ω reduces to the well-known winding number of
the BDI class [28]. What allowed for a complete analysis was the fact that each Hamiltonian
in this class can be efficiently encoded into a holomorphic function f (z) on the punctured
complex plane C \ {0}. Remarkably, c and ω can then be obtained by counting zeros of f (z)
(see Fig. 1). This rephrasing allowed us to argue that two critical models in this class can
be smoothly connected if and only if they have the same topological invariants and central
charges.

What remained an open question is the extent to which the topological nature of these
gapped and gapless phases is reflected in their correlation functions. Relatedly, it is natural
to ask how the correlations are encoded in f (z)—especially since c and ω are easily derived
from its zeros. Moreover, our earlier work left an uneasy tension: distinct critical phases
could be distinguished by the topological invariant ω, yet it was not clear to what extent this
lattice quantity is related to the CFT in the continuum. Hence, bridging this gap in terms
of a lattice-continuum correspondence is desirable. More generally, since these models are
exactly solvable we can hope to obtain a lot of information, and perhaps uncover unex-
pected features. This is relevant also to the spin chains that are Jordan-Wigner dual to these
fermionic chains: whilst the non-interacting classification is less natural there, the correlation
functions we obtain contain useful physical information that can be related to an interacting
classification.

The aim of this work is twofold: on the one hand, we focus on answering the aforemen-
tioned questions conceptually, linking universal properties of correlations to the function
f (z) and shedding light on the interplay of criticality and topology. On the other hand, since
our models allow for a rigorous analysis, we give derivations of exact asymptotic expres-
sions for important correlators. The method we use, Toeplitz determinant theory, has a long
association with statistical mechanics (for a review, see [29]), and our analysis generalises
the pioneering work of [30–32] to a wider class of physical models.
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1166 N. G. Jones, R. Verresen

Fig. 2 Universal asymptotics of the ground-state correlation functions considered in this work. If c = 0 (i.e.
the system is gapped), thenOα has exponentially decaying correlations with correlation length ξα . The ratios
ξα/ξβ are a universal function of ω, with the global scale set by 1/ξ := minζ∈Z [ f ]|log|ζ ||; see the discussion
before Eq. (9). (There is long-range order, i.e. aα �= 0, if and only if α = ω; see Theorem 1b.) If c > 0
and the zeros on the unit circle have multiplicity one (i.e. the bulk is described by a CFT with central charge
c), then the correlation functions obey a power law with universal scaling dimension Δα ; see Theorem 4.
The dependence of Δα on both c and ω means that these parameters may be determined by measurements
of scaling dimensions; see the discussion below Theorem 4. Note that there are exceptional cases that behave
differently, as discussed in the text

Since topological phases cannot be distinguished locally, in this work we study the corre-
lations of so-called string-like objects Oα (labelled by α ∈ Z), meaning that 〈Oα(1)Oα(N )〉
involves an extensive (∼ N ) number of operators. Using Wick’s theorem, these correlations
reduce to N × N determinants. We calculate their asymptotic behaviour using the theory
of Toeplitz determinants [29], phrasing the answers in terms of the zeros of f (z). Figure 2
summarises some of the main results. In the gapped case (c = 0), it is well-known that SPT
phases can be distinguished by string order parameters [33–37], and we indeed prove thatOα

has long-range order if and only if α = ω. More surprising is that the ratios of the correlation
lengths of these operators are universal, i.e. they depend on ω only. Moreover, the largest
correlation length has a universal relationship to the zero of f (z) which is nearest to the unit
circle. In the critical case (c �= 0), all correlations are algebraically decaying and we obtain
the corresponding scaling dimensions ofOα . It turns out that measuring these gives access to
both c and ω. Moreover, we propose a continuum-lattice correspondence for these operators.
We expect that this correspondence will prove useful in exploring the effect of interactions
on the phase diagram.

Additionally, we discuss these correlators in the spin chain picture that is obtained after a
Jordan-Wigner transformation. For odd α,Oα becomes a local spin operator, and long-range
order in 〈Oα(1)Oα(N )〉 signals spontaneous symmetry breaking. However, for even α these
correlators are string order parameters for spin chain SPTs. Whilst there is no natural notion
of ‘non-interacting spin chains’, our analysis may be helpful for determining the (interacting)
classification of topologically non-trivial critical spin chains.

Since the physical consequences of our results can be understood without going into the
mathematical details, we structure the paper as follows. First, in Sect. 2, we outline the
model and state our main results. In Sect. 2.5 we discuss the dual spin chain; then in Sect.
2.6 we discuss connections to previous works. In Sect. 3 we give further details of how our
results fit into the broader physical context. In particular, we discuss general approaches to
string order parameters and the consequences of universality in the gapped phases, give a
CFT analysis of long-distance correlations and also show how our results allow us to deduce
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critical exponents. Only after this do we give the mathematical preliminaries in Sects. 4 and
5. The proofs of our results then follow in Sects. 6 and 7 for the gapped and critical cases
respectively. Finally, in Sect. 8, we explain how our results may be extended in different
directions.

2 Statement of Main Results

2.1 TheModel

Consider a periodic chain where each site has a single spinless fermionic degree of freedom1

{c†n, cn; n = 1 . . . L}. For convenience define the Majorana modes on each site:

γn = c†n + cn, γ̃n = i
(
c†n − cn

)
, (1)

where {γn, γm} = 2δnm and {γn, γ̃m} = 0. Our class of interest—time-reversal symmetric,
translation-invariant free fermions with finite-range couplings—has Hamiltonian [13,38–40]

HBDI = i

2

αr∑

α=−αl

∑

n∈sites
tαγ̃nγn+α, tα ∈ R. (2)

This can be understood as an expansion in the basis Hα = i/2
∑

n∈sites γ̃nγn+α . The coupling
between sites has maximum range αl/r to the left and right. This model has an antiunitary
symmetry, T , that acts as complex conjugation in the occupation number basis associated
to the fermions cn and satisfies T 2 = 1. The Majorana operators γn (γ̃n) are called real
(imaginary) since TγnT = γn and T γ̃nT = −γ̃n . This class of models is also invariant

under parity symmetry P = eiπ
∑

j c
†
j c j . We study the thermodynamic limit L → ∞, with

αl/r finite but not fixed—i.e. we will consider models with differing maximum range. The
results given in this section are all for such finite-range chains, but we discuss the extension
to long-range chains in Sect. 8.1. This model was first analysed in its spin chain form in
reference [41].

The coupling constants tα establish a one-to-one correspondence between HBDI and the
complex functions

f (z) =
∑

α

tαz
α. (3)

This is a holomorphic function away from a possible pole at the origin. By the fundamental
theorem of algebra, f (z) is specified by the degree of this pole and a multiset of zeros (up
to an overall multiplicative constant). The basic relevance of f (z) is that | f (eik)| gives the
one-particle energy of a mode with momentum k. The phase arg( f (eik)) is the angle required
in the Boguliobov rotation that defines these quasiparticle modes [13,42]. Remarkably, many
other physical questions can be answered through simple properties of this function. Note
that we will consistently abuse notation f (k) := f (z = eik) whenever we restrict z to the
unit circle.

1 Further details supporting this section are given in Appendix A.1.
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1168 N. G. Jones, R. Verresen

2.2 Phase Diagram

Our results characterise the correlations in the different phases of HBDI, hence we give them
context by describing the phase diagram. First, phases of matter are defined as equivalence
classes of ground states under smooth changes of the Hamiltonian, where two states are
equivalent if they can be connected without a phase transition (i.e. a sharp change in physical
behaviour2). In particular, we define two critical models to be in the same phase if physical
quantities such as scaling dimensions vary smoothly. Smooth changes to the Hamiltonian
(i.e. smooth changes to tα , including increasing the finite range by tuning some tα off zero)
are equivalent to smooth motions of the zeros of f (z), as we discuss in Appendix A.2.

HBDI has two invariants that label both gapped and gapless phases (see also Fig. 1):

c = 1

2
(# zeros of f (z) on the unit circle) (4)

ω = Nz − Np, (5)

where Nz is the number of zeros of f (z) inside the unit disk and Np is the degree of the pole
at the origin. If c = 0, the model is gapped. For gapless models, c is the central charge of the
low energy CFT when the zeros on the circle are non-degenerate3. Note that ω is an invariant
since it cannot change under smooth motion of the zeros without changing c. It is moreover
topological: it cannot be probed locally, but distinguishes phases and manifests itself through
protected edge modes [13]. That the pair (c, ω) specifies the phases of HBDI was shown in
reference [13]. If in addition to the symmetries P and T that stabilise the aforementioned
phases, one also enforces translation symmetry, then there are additional invariant signs,
denoted Σ , that are discussed in Appendix A.2.

Note that the equivalence between HBDI and f (z) allows us to easily find a Hamiltonian
within each phase: Hω is a representative of the gapped phase with winding number ω and
Hω + H2c+ω is a representative of the gapless phase (c, ω).

2.3 String Operators

The above is already established in the literature. The results of the current work show that
given f (z), one can ‘read off’ detailed information about two-point ground-state correlation
functions of the operators Oα(n):

Oα(n) =

⎧
⎪⎪⎨

⎪⎪⎩

ix
(∏n−1

m=1 iγ̃mγm

)
γnγn+1 . . . γn+α−1 α > 0

(−i)x
(∏n−1

m=1 iγ̃mγm

)
(−iγ̃n) . . . (−iγ̃n+|α|−1) α < 0

∏n−1
m=1 iγ̃mγm α = 0

(6)

where x = |α|/2 for α even and x = (|α| − 1)/2 for α odd (the phase factors make Oα

hermitian). These operators are a cluster of |α| Majorana operators to the right of site n
multiplied by an operator giving the parity of the number of fermions to the left of n. Such
operators appear naturally as we discuss in Sect. 3.1, see also [43]. There are two typical
behaviours for these correlators. Let angle brackets denote ground-state expectation value,

2 Transitions between gapped phases requires the closing of the gap. For two gapless phases a transition
occurs when there is a change in the low-energy description, for example an increase in the central charge of
the CFT.
3 This is argued in Appendix A.2, see also Sect. 3.4. If there are degeneracies then we have dynamical critical
exponent greater then one—we will discuss this further below.
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then in the gapped case we expect:

〈Oα(1)Oα(N + 1)〉 ∼ Aα + BαN
−δαe−N/ξα . (7)

The constants Aα and δα as well as the correlation length ξα do not depend on N . If Aα �= 0
we have long-range order. Bα is Θ(1) and may include an oscillation with N . Note that,
by translation invariance, we could equally well have considered the correlation function
〈Oα(r)Oα(N + r)〉 for any r ∈ Z—we fix r = 1 throughout for notational convenience.
Note that 〈Oα(1)Oβ(N + 1)〉 = 0 if α �= β as a simple consequence of the Majorana
two-point functions given in Sect. 4.

We will see below that the ground state expectation value limN→∞〈Oα(1)Oα(N + 1)〉
in the gapped phase with winding number ω is non-zero only when α = ω, and is hence an
order parameter for that phase—this can be seen as an extension of the results of [43].

Because these correlators contain a string of fermionic operators of length of order N ,
these are called string order parameters with value Aα . Note that in the case thatOα is local,
(as happens in the spin picture given in Sect. 2.5), it is usual to call the one point function
〈Oα(n)〉 the order parameter. This is because in that case the ground state will spontaneous
collapse such that

√
Aα = 〈Oα(n)〉. In this work we prefer to use a single convention and

always refer to the two point function as ‘the’ order parameter.
At critical points with a low-energy CFT description we expect:

〈Oα(1)Oα(N + 1)〉 ∼ CαN
−2Δα (8)

where Δα is the smallest scaling dimension of a CFT operator that appears in the expansion
of the continuum limit of Oα . The prefactor Cα may include spatial oscillations, and further
details are given in Sect. 3.4. Surprisingly, the setOα also act as order parameters for critical
phases in a sense that we explain following Theorem 4.

2.4 Main Results

To fix notation, let us write:

f (z) = ρ

zNp

Nz∏

j=1

(
z − z j

) 2c∏

j=1

(
z − eik j

) NZ∏

j=1

(
z − Z j

)
. (9)

Np is the order of the pole at the origin, which is also the range of the longest non-zero
coupling to the left. The number4 of zeros inside, on and outside the circle are denoted Nz ,
2c, NZ respectively, and ρ is a real number. Since the tα are real, all zeros are either real or
come in complex conjugate pairs.

We first state results for the gapped case. Firstly we have that the correlators
〈Oα(1)Oα(N + 1)〉 form a complete set of order parameters for the gapped phases of HBDI.

Theorem 1a In the phase (ω, c = 0,Σ) we have

lim
N→∞ |〈Oα(1)Oα(N + 1)〉| = const × δωα. (10)

The non-zero constant is given in Theorem 1b. The value of the sign Σ may be inferred by
the presence or absence of a (−1)N oscillation in this correlator.

4 We consider a multiset of zeros {ζ j } and allow ζ j with different index to coincide. This makes the counting
unambiguous.
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1170 N. G. Jones, R. Verresen

Theorem 1b In the phase (ω, c = 0,Σ), the non-universal value of the order parameter is
given by

lim
N→∞ |〈Oω(1)Oω(N + 1)〉| =

⎛

⎜
⎝

∏Nz
i1,i2=1(1 − zi1 zi2)

∏NZ
j1, j2=1

(
1 − 1

Z j1 Z j2

)

∏Nz
i=1

∏NZ
j=1

(
1 − zi

Z j

)2

⎞

⎟
⎠

1/4

. (11)

Thus from the decomposition (9) we can read off ω = Nz − Np and calculate the order
parameter through the detailed values of the zeros. We discuss the mathematical form of the
order parameter in Appendix E.

The next results show that the length scale in gapped phases is set by ξ = 1/|log|ζ�||where
ζ� is any zero that maximises the right hand side of that equation (see Fig. 2 for illustration).
The set of ζ that are optimal in this way we call closest to the unit circle; we will always
mean this logarithmic scale5 when we talk about distance from the unit circle. The following
results will be stated for ‘generic cases’—we argue that these cases are typical in Appendix
A.2.

Now, in the phaseωwe then have that ξα , as defined in (7), is equal to
ξ

|ω−α| (for α �= ω)—
this is a consequence of:

Theorem 2 If the system is in the phase (ω, c = 0,Σ) then, in generic systems, we have the
large N asymptotics

〈Oα(1)Oα(N + 1)〉 = det(M(N ))

(
lim

M→∞|〈Oω(1)Oω(M)〉|
)
e−N |ω−α|/ξ eiπNm(1 + o(1)

);
(12)

m ∈ Z is a known constant and M(N ) is a known |ω − α| × |ω − α| matrix. The elements
of this matrix have magnitudes that depend algebraically on N—in particular, det M(N ) =
Θ(N−δ) for some δ > 0. Generic systems are those where the nearest zero(s) to the unit
circle is either a single real zero, or are a complex conjugate pair of zeros.

The analysis we give extends to exceptional cases—more than two closest zeros will almost
always give the same ξα , but if one has multiplicity, ξα may be controlled by the next-
closest zero. The ξα are always upper bounded by ξ , and in fact this bound is saturated in all
exceptional cases except when there are mutually inverse closest zeros. See the discussion
in Sect. 6.2 for full details.

The form of det M(N ) derived in Sect. 6.2.3 allows for some further general statements.
Firstly, if there is one real zero nearest to the circle, then det M(N ) is real and does not
oscillate with N . The algebraic factor depends non-trivially on |ω − α|, as demonstrated in
Table 1 for the case that |ζ�| < 1. If |ζ�| > 1 then the second and fourth columns of Table 1
should be interchanged (and the definitions of λ and κ change in the obvious way based on
the formulae in Propositions 1 and 3).

If there are two complex zeros nearest to the unit circle then det M(N ) is real but can
contain O(1) oscillatory terms such as sin(N arg(ζ�)) (these oscillations may, however, not
appear in the leading order term of det M(N )). Moreover, if |ζ�| < 1 then det M(N ) =
Θ(N−K |ω−α|), where K = 1/2 for ω −α > 0 and K = 3/2 for ω −α < 0. The assignment
of K is reversed when |ζ�| > 1.

We complete our analysis of gapped models with a result for the asymptotic approach to
the value of the order parameter. In particular, we prove that ξω = ξ/2, following from:

5 That is, 1/|log |ζi ||. This gives the natural length scale set by each zero, since the set of these lengths is
invariant under spatial inversion f (z) → f (1/z).
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Table 1 The value of det(M(N ))

in the case that there is one zero
closest to the unit circle, and that
zero is inside the circle; the
constants κ and λ are
independent of N and defined in
Propositions 1 and 3

ω − α det M(N ) ω − α det M(N )

1 κN−1/2 −1 −λN−3/2

2 − κ2

2 N−3 −2 − 3λ2
2 N−5

3 − 3κ3
4 N−15/2 −3 45λ3

4 N−21/2

4 135κ4
16 N−14 −4 14175λ4

16 N−18

Theorem 3 In generic systems that are in the phase (ω, c = 0,Σ), we have for large N that

〈Oω(1)Oω(N + 1)〉 =
(
eiπNm lim

M→∞|〈Oω(1)Oω(M)〉|
)(

1 + BN
e−2N/ξ

N 2

)
(1 + o(1)) .

(13)

The factor BN is given implicitly in the proof and satisfies |BN | = O(1), m ∈ Z is a known
constant. Generic systems are defined as in Theorem 2.

The results of the discussion in Sect. 6.2 allow extension to non-generic systems. Given
non-zero correlation lengths of Oα for α �= ω, the formula 1/ξω = 1/ξω−1 + 1/ξω+1 holds.
This agrees with Theorem 3 in the generic case where ξω+1 = ξω−1.

We now discuss results for the gapless phases. In critical chains the phases in the BDI
class described in the bulk by a CFT and connected to a stack of translation invariant chains
with arbitrary unit cell are classified by the semigroup Z≥0 × Z: they are labelled by the
central charge c ∈ 1

2Z≥0 and topological invariant ω ∈ Z. The proof, using the f (z) picture,
is given in [13]. Our present interest is confined to translation-invariant Hamiltonians that lie
in one of these phases, and our next result gives the scaling dimension of the infinite class of
operators Oα . A graphical representation of this theorem is given in Fig. 2.

Theorem 4 Consider a critical chain in the phase (ω, c > 0,Σ) where the 2c zeros on the
unit circle are non-degenerate. Let α̃ = α − (ω + c). Then the operator Oα has scaling
dimension

Δα(c, ω) = c

(
1

4
+ x2 − (x − [x])2

) ∣∣∣
x=α̃/2c

(14)

[x] denotes the nearest integer to x.

Note that Δα explicitly depends on the topological invariant ω. Equation (14) is independent
of the choice in rounding half-integers, although for later notational convenience we define it
to round upwards in that case. In Sect. 7 we prove Theorem 4 on the way to the more detailed
Theorem 10. That theorem gives the full leading order term in the asymptotic expansion of
〈Oα(1)Oα(N + 1)〉 at criticality, including nontrivial oscillatory factors that are helpful in
identifying lattice operators with fields in the CFT description. We give a discussion of this
CFT description in Sect. 3.4. A similar result holds when we have degenerate zeros on the
unit circle, as long as every degeneracy is odd. We do not give results for the case that we
have any zero of even degeneracy.

In the gapped case, Theorem1amakes a simple link betweenmeasuring 〈Oα(1)Oα(N+1)〉
and learning ω—one simply looks for the value of α with long-range order. It is not immedi-
ately obvious how to generalise this to critical models. Theorem 4 shows that, as in the gapped
phases, the behaviour of correlation functions allows us to see marked differences between
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different critical phases. In particular, the link between lattice operator and the operators that
dominate its CFT description changes at a transition between critical phases (discussed in
detail below). In the critical case one can determine c and ω, but this requires information
about more than one correlator. Inspecting the form of Eq. (14), displayed in Fig. 2, one con-
cludes that it is not necessary tomeasure the scaling dimension of allOα in order to determine
the phase. One method would be to measure the scaling dimensions of {Δα,Δα±1,Δα+2}
for some convenient α, and form the set of δα = Δα+1 − Δα . This difference is equal to
[(α − ω)/2c − 1/2]—this means that δα is a constant integer on plateaus of width6 2c, and
that neighbouring plateaus differ in value by one. If the δα are all different7 then we must
have c = 1/2 and ω can be determined easily using ω = α − δα . Otherwise, one should
then measure further scaling dimensions until the width of the constant plateau (equal to
2c) is found. Once c is known, ω may be determined: on the edge of the plateau we have
ω = α − 2cδα . Inferring the critical phase through these scaling dimensions is analogous to
distinguishing the gapped phases through the string order parameter. If our model is taken
to represent a spin chain then the Oα are local for α odd. In Appendix C we show that it
is possible to recover both c and ω using scaling dimensions of local operators on the spin
chain. Moreover, in gapped chains one can use the universality of the gapped correlations to
similarly infer ω from knowing only two correlation lengths; this is explained in Sect. 3.1.

2.5 The Dual Spin Chain

Our results apply not only to HBDI but also to certain spin-1/2 chains. We briefly review this
correspondence so that the reader can have both pictures in mind, and to help us make links
to the literature in the next section. We write the Pauli operators as

X =
(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (15)

Define Xn , Yn , Zn as the operators X , Y , Z acting on the nth site (and tensored with identity
on all other sites). A class of translation-invariant spin chains is given by Hamiltonians of
the form

Hspin = t0
2

∑

n∈sites
Zn −

∑

α>0

tα
2

(
∑

n∈sites
Xn

(
n+α−1∏

m=n+1

Zm

)

Xn+α

)

−

∑

α<0

tα
2

⎛

⎝
∑

n∈sites
Yn

⎛

⎝
n+|α|−1∏

m=n+1

Zm

⎞

⎠ Yn+|α|

⎞

⎠ . (16)

As before, we only allow a finite sum over α, have tα ∈ R and take periodic boundary
conditions. This is the class of generalised clustermodels. Note that this includes the quantum
Ising, XY and cluster models as special cases. In Appendix A.3 we give details of the Jordan-
Wigner transformation that relates Hspin to HBDI. The main point is that our results for the
behaviour of 〈Oα(1)Oα(N + 1)〉 apply equally well to the spin chain. The expressions for
Oα in terms of spin operators are given in Table 2. Some of these operators appeared in the
recent works [44,45]. Note that, as displayed in Table 2, Oα is local for odd α but remains a
non-local string for even α. One can easily see that for odd α, 〈Oα〉 is zero in any symmetric

6 For clarity, by a plateau of width 2c we mean that δα is constant for 2c consecutive values of α.
7 We need three values of δ j to check whether c = 1/2 as δα and δα+1 can be different if we happened to
choose α at a kink in the scaling dimension plot—see Fig. 2.
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Table 2 Spin operators that are the Jordan-Wigner dual of the fermionic operators Oα

α Oα(n)

Positive, odd XnYn+1Xn+2Yn+3 . . . Xn+α−1

Positive, even
(∏n−1

j=1 Z j

)
Yn Xn+1Yn+2Xn+3 . . . Yn+α−2Xn+α−1

Zero
∏n−1

j=1 Z j

Negative, odd Yn Xn+1Yn+2Xn+3 . . . Yn+|α|−1

Negative, even
(∏n−1

j=1 Z j

)
XnYn+1Xn+2Yn+3 . . . Xn+|α|−2Yn+|α|−1

state; hence Theorem 1a implies that for odd ω we have spontaneous symmetry breaking.
For even ω, however,Oω is a string order parameter for the spin chain. As we discuss further
in Sect. 3.1, this is indicative of the spin chain forming an interacting SPT phase. Note that
the two phases can coexist: for α = 3, the order parameter is O3(n) = Xn+1Yn+2Xn+3;
hence P =∏ j Z j and T = K have been broken. However, PT is preserved, and due to the
similarity of O3 with the cluster model Hamiltonian—

∑
j X j Z j+1X j+2—the ground state

is also an SPT phase protected by PT . Further details may be found in reference [40].

2.6 Relation to PreviousWork

In reference [46], Lieb, Schultz and Mattis set the stage for the analysis of determinantal
correlations in free fermion models and related spin chains. The key reference related to our
results for gapped models is the classic paper of Barouch and McCoy [31]. There the authors
study bulk correlations in the XY model which is the spin model equivalent to (2) with non-
zero t0, t1, t−1 only (and hence f (z) depends on two zeros). The section of that paper on zero
temperature correlations contains results for 〈Oα(1)Oα(N +1)〉 for α = 1,−1 in the phases
ω = 0, 1 that include what one would obtain from our theorems. Beyond that, the paper [47]
includes a calculation of the value of the order parameter for α = −1, 2 in the special case
that f (z) = z3 − λ. Some portion of the phase diagram for −2 ≤ ω ≤ 2 is mapped out
in reference [48] where order parameters are identified and calculated numerically. Several
papers, for example [49,50], study spin models with competing ‘large’ cluster term and Ising
term (i.e. non-zero tα , t−1 and t0). In these cases winding numbers are identified, but not
order parameters or their values. Our computation giving Theorem 1b is novel, extending
previous calculations by addressing the full set of translation invariant models in the BDI
class which require f (z) with an arbitrary (finite) set of zeros. Moreover, this generality
shows the robustness of these order parameters throughout the phase diagram.

As mentioned, several papers have identified the form of the order parameters for |ω| ≤ 4
in the spin language. Equivalent fermionic order parameters are easily found using the Jordan-
Wigner transformation and the paper [43] includes the fermionic Oα for |α| ≤ 2 as well as
discussing the general case. In our work we prove that the intuitive general case holds by
linking these order parameters to the generating function f (z) and matching the winding
number of f (z) to the ‘unwinding number’ of each correlator.

There are many works that study correlations in particular quantum phase transitions in
ourmodel. Again reference [31] should bementioned, alongwith [51], as seminal earlyworks
that derived critical behaviour for correlators 〈Oα(1)Oα(N +1)〉with |α| ≤ 1 at the c = 1/2
Ising transition. Transitions with higher c include the c = 1 XX model that is a standard
model in physics [52], and the same correlators were analysed in reference [53] using the
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mathematical methods found below.We also mention the quantum inverse scattering method
as a tool for calculating scaling dimensions in certain cases [54] .

An isotropic spin chain is invariant under spin-rotation around the Z axis. In our fermionic
model HBDI, this manifests as invariance under spatial inversion Hα ↔ H−α , and hence is
a model for which f (z) = f (1/z). This relation implies that ω = −c. The correlators
〈Oα(1)Oα(N + 1)〉 with |α| ≤ 1 in isotropic models with general c and ω = −c were
derived in references [55,56] using the same methods as this paper. Our results go further by
studying a wider class of models, including critical phases with general (c, ω), as well as a
wider class of observables: 〈Oα(1)Oα(N + 1)〉 for all α. This allows us to observe that from
knowledge of the scaling dimensions of these operators, one can identify the topological
invariant ω.

3 Physical Context and Discussion

In this sectionwe interpret our results and give them context. In Sect. 3.1we discuss universal-
ity and its implications for spin chains, as well as the relation to symmetry fractionalisation.
In Sect. 3.2 we relate correlation length in the bulk to localisation length at the edge and in
Sect. 3.3 we derive critical exponents from our results. In Sect. 3.4 we connect our lattice
results to continuum (CFT) models and finally in Sect. 3.5 we discuss entanglement scaling
approaching a transition.

3.1 SPT Phases and String Orders: Universality and Symmetry Fractionalisation

In Sect. 2.4, we saw that for both gapped and critical systems in our class of models, one can
measure the topological invariantω by looking at the string order parametersOα . For gapped
phases, one needs to find the value of α for which there is long-range order (Theorem 1a),
whereas in the critical case, one uses the scaling dimensions (seeTheorem4and the discussion
following it). The existence of topological string order parameters for critical phases is novel.
However, even for the gapped phases thatwe consider, the string order parameters are unusual.
This is for two reasons. Firstly, the usual justification for string orders relies on the concept
of symmetry fractionalisation, which arises in the classification of interacting SPT phases
and is usually not employed in the classification of non-interacting topological insulators
and superconductors. Secondly, even in the interacting case, phases which are protected by
anti-unitary symmetries do not give rise to the kind of string order parameters we discuss
in this work. Bridging this gap is the purpose of Sect. 3.1.2. However, first we discuss the
remarkable result that the correlations in the gapped phases exhibit universal properties.

3.1.1 Universality

In the gapped phases,Oα has correlation length ξα = ξ
|α−ω| (if α �= ω), see Fig. 2 (we assume

the generic case for this discussion). This means that although ξ depends on microscopic
properties (like the position of the zeros of f (z)), the ratio ξα/ξβ depends only on ω and is
hence constant in each phase. This has interesting consequences. In principle, to determine
the topological invariant of a gapped phase, one has to find an α such that |〈Oα(1)Oα(N )〉|
tends to a non-zero limit as N → ∞. This requires going through an arbitrarily large set
of observables. Surprisingly, it is sufficient to measure only, for example, two correlation
lengths ξα1 and ξα2 (for the observables Oα1 and Oα2 ) for any fixed choice of α1 and α2

123



Asymptotic Correlations in Gapped and Critical Topological Phases… 1175

Fig. 3 Consider a system which does not exhibit spontaneous symmetry breaking. a The ground state remains
invariantwhen applying a global symmetryU =∏n Un .bWhen actingwithUX on a line segment X of length
l  ξ , then deep within that segment, the action is indistinguishable from the global symmetry operation U .
Hence, the state can only be changed near the boundaries of X . In conclusion, effectively, U ≈ ULU R

satisfying |α1 − α2| ∈ {1, 2}. To see this, note that there are three cases. Firstly, if one finds
long-range order for either α1 or α2, then ω is known. Secondly, if ξα1 = ξα2 , one knows that
ω = α1+α2

2 . In any other case, α1 and α2 will either both be larger or smaller than ω, such

that
ξα1
ξα2

= ω−α2
ω−α1

. This can be uniquely solved, giving ω = α1ξα1−α2ξα2
ξα1−ξα2

.

The above shows that, using universality, one can replace an infinite number of observables
by just two. However, it has an even more surprising consequence in the spin language. If
we choose α1 = 1 and α2 = −1, then this corresponds to the correlation lengths ξX and ξY
of the local observables Xn and Yn . This fully determines the invariant

ω =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if limN→∞〈Y1YN 〉 �= 0
1 if limN→∞〈X1XN 〉 �= 0
0 otherwise and if ξX = ξY

ξX+ξY
ξX−ξY

otherwise.

(17)

This means that one can distinguish, for example, the trivial paramagnetic phase from the
topological cluster phase8 by measuring the decay of correlation functions of local observ-
ables. This is truly unusual and presumably an artifact of looking at spin models that are
dual to non-interacting fermions. It would be interesting to investigate such ratios between
correlation lengths in interacting models and determine whether this is a measure of the
interaction strength between quasi-particles.

3.1.2 Symmetry Fractionalisation

To contrast our analysis to the standard justification for string orders, we briefly repeat how
string order parameters arise within the context of symmetry fractionalisation. It is worth
emphasising that the known constructions for string order parameters of the type that we
discuss are only for SPT phases which are protected by unitary symmetries [35,57].

LetU be some on-site unitary symmetry, i.e. [U , H ] = 0 withU =∏n Un . Consider the
operatorUX =∏n∈X Un where X is some large line segment of length l (see Fig. 3). If l  ξ ,
then deep within X , UX looks like a bona fide symmetry operator. Hence, it is only near the
edge of X thatUX can have a non-trivial effect. In other words, if |gs〉 is the ground state, then
effectively UX |gs〉 = ULU R |gs〉, where UL and UR are operators that are exponentially
localised near the boundary of the region X . This can be made rigorous using matrix product
states [35,58]. This phenomenon is known as symmetry fractionalisation and is the essential
insight that led to the classification of (interacting) SPTphases in 1D [9,11,12,59]. To illustrate
this, consider the case with a symmetry group Z2 × Z2, generated by global on-site unitary
symmetries U and V . Since Un and Vn commute on every site, we have that UXV = VU X .

8 I.e. models that can be connected to H = −∑i Xi Zi+1Xi+2 without a phase transition.
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Moreover,UX = ULU R (when acting on the ground state subspace), implying thatUL andV
have to commute up to a complex phase.Using thatV 2 = 1,we arrive atULV = (−1)

ω
2 VUL

whereω ∈ {0, 2}. This defines a discrete invariant which allows to distinguish two symmetry-
preserving phases. (One says that the phases are labelled by the inequivalent classes of
projective representations of Z2 ×Z2.) In fact, one can show that in the phase where ω = 2,
the negative sign implies degeneracies both in the entanglement spectrum and, for open
boundary conditions, in the energy spectrum [8]. Here we will not go into such details,
referring the interested reader to the review in reference [40]. Instead, we consider the effect
on correlation functions.

One can consider the string correlation function 〈gs|UX |gs〉 = 〈UX 〉 = 〈ULU R〉. Due to
locality, we have that 〈UX 〉 ≈ 〈UL 〉〈UR〉 for l  ξ . Since SPT phases do not spontaneously
break symmetries, we have that 〈UL 〉 = 〈ULV 〉 = (−1)

ω
2 〈VUL 〉 = (−1)

ω
2 〈UL 〉. Hence,

we conclude that the string correlation function 〈UX 〉 has to be zero if ω = 2. Equivalently,
measuring 〈UX 〉 �= 0 implies that ω = 0, such that one calls this a string order parameter
for the trivial phase (ω = 0). Analogously, one can construct a string order parameter for the
non-trivial phase: if V,W are local operators anticommuting with V , then by repeating the
above argument, we conclude that 〈VUXW〉 �= 0 implies that ω = 2 (with V (W) localised
near the left (right) of region X ). Note that these string order parameters always work only
in one direction: there is no information if one measures them to be zero. This is in striking
contrast with the string order parameters we found for our non-interacting class of models.

Let us make this discussion more concrete with an example, where U = P = ∏n Zn

and V = Podd = ∏
m odd Zm . Two models with this symmetry are H0 = ∑

n Zn and
H2 = −∑n Xn−1Zn Xn+1. One can calculate that their symmetry fractionalisations are
ω = 0 and ω = 2, respectively. The above tells us that

∏N
n=1 Zn is a string order parameter

for the trivial phase. Similarly, taking Vn,n+1 = Yn Xn+1—which indeed anticommutes with

Podd—then V1,2

(∏N
n=1 Zn

)
VN+1,N+2, or equivalently X1Y2

(∏N
n=3 Zn

)
YN+1XN+2, is an

order parameter for the topological phase ω = 2. In this case, the string order parameters
we have derived—with respect to Z2 × Z2— for the trivial phase (connected to H0) and the
topological cluster phase (connected to H2) happen to be the same as we encountered in the
non-interacting case—with respect to the P and T symmetries—see Table 2.

Can wemake a connection with our non-interacting classification and the concept of sym-
metry fractionalisation? For this it is easiest to work in the fermionic language. It is known
that if one studies the fractionalisation of only the P and T symmetries, then there are only
eight distinct phases [60]. However, since our model is non-interacting, the P and T symme-
tries imply an additional structural symmetry: the Hamiltonian can only contain terms which
have an equal number of real and imaginary Majorana modes. This implies that if we have
any operator which has a well-defined number of real minus imaginary Majorana operators
(e.g. γnγn+1 would have ‘charge’ two), then the Hamiltonian time evolution would conserve
this. To see how this is useful, consider a fixed-point model Hα = i/2

∑
n∈sites γ̃nγn+α . It is a

simple exercise to check that for the symmetry fractionalisation of P = PL PR , we have that
PL has charge −ω (and PR charge ω). By the aforementioned argument and the concept of
adiabatic connectivity, these charges of PL and PR should be stable throughout each gapped
phase. It is easy to see that 〈V〉 = 0 for any operator whose charge is non-zero. Hence, in
this way we are naturally led to consider γ1 · · · γα (γ̃α+1γα+1 · · · γ̃NγN ) γ̃N+1 · · · γ̃N+α: this
operator can only have long-range order if α = ω.

The power of symmetry fractionalisation is that it is not specific to the non-interacting case.
Does that mean that if one considers interacting Hamiltonians preserving the aforementioned
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structural symmetry9, thatwe obtain an infinite number of distinct interacting phases, labelled
by Z and distinguished by the same string order parameters as the non-interacting case? This
is not clear: the structural symmetry is not a conventional symmetry; in particular, the charge
of this symmetry is not well-behaved under the multiplication of operators (which is usually
essential to preserve charge under renormalization group flow). Hence, it is perhaps unlikely
that this structural symmetry gives rise to non-trivial physics in the interacting case, but it
might nevertheless be interesting to explore further.

3.2 MajoranaModes: Localisation LengthVersus Correlation Length

In reference [13], we showed that if ω > 0, then the system has ω Majorana zero modes per
edge. More precisely, to each of the ω largest zeros {zi }i=1,··· ,ω of f (z) within the unit disk,
we associate a hermitian operator γ i

L , all of them mutually commuting and squaring to the
identity. Moreover, these operators commute with T and are exponentially localised near the
left edge, with respective localisation lengths−1/ ln |zi |. (The same is true for the right edge,
where they anticommute with T .) The crucial property which makes them so-called zero-
energy modes, is that they commute with the Hamiltonian (up to a finite-size error which is
exponentially small in system size). Hence we have ω mutually anticommuting symmetries,
from which one can show that to each edge we can associate a

√
2
ω
-fold degeneracy.10

This is to be contrasted with the fact that the ground state is unique for periodic boundary
conditions. This is a characteristic property of topological insulators (and more generally,
symmetry-protected topological phases) in one spatial dimension. This is well-known for the
gapped phases of the BDI class, but the proof in reference [13] shows that this analysis goes
through when the bulk is critical (i.e. c �= 0).

Reference [39] notes the link between the localisation length of the Majorana edge mode
and the behaviour of bulk spin correlations in a model equivalent to the XY model, and
conjectured that this is a general phenomenon. Here we simply point out that the largest
localisation length of aMajoranamode (if present) need not coincidewith the bulk correlation
length. Indeed, the latter is determined by the zero of f (z) closest to the unit circle. In
particular, if ω > 0, the localisation lengths of the Majorana modes are determined by zeros
within the unit disk, whereas it could certainly be that a zero outside the unit circle dominates
the bulk correlation length. This disagreement between the two quantities is consistent with
the observation in [13] that one can tune a gapped phase to a critical point whilst (some of)
the edge modes remain exponentially localised.

This discussion for ω > 0 holds also for ω < −2c (if we interchange the words ‘left’
and ‘right’), with the edge modes now being associated to zeros outside the unit circle. As
mentioned above, spatial left-right inversion corresponds to f (z) ↔ f (1/z), which at the
level the topological invariant corresponds to ω ↔ −ω − 2c. For any other value of ω, there
are no edge modes [13].

3.3 Critical Exponents

Critical exponents encode howdifferent physical quantities diverge upon approaching a phase
transition. In the classical case, the tuning parameter is usually the renormalised temperature

9 That is, we allow any interaction term that contains the same number of real as imaginary Majorana modes.
10 Hence the system as a whole has a 2ω-fold degeneracy.
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Table 3 Summary of the critical exponents found in Sect. 3.3

Critical exponent α β γ δ η ν z

Value 0 mc/4 2 − mc/2 8/mc − 1 mc/2 1 m

As above, c is half the number of zeros on the unit circle and m is the multiplicity of these zeros (taken to be
uniform). If m = 1, then c is the central charge

τ = T−Tc
Tc

. In the current quantum setting, there is an equally natural11 tuning parameter
ε ∈ R: if f (z) represents a gapless Hamiltonian, then fε(z) := f (z(1 − ε)) interpolates
between two gapped phases. One can think of this as shrinking (ε < 0) or expanding (ε > 0)
the radial component of the zeros of f (z). We will work in the case where the system is
gapless at ε = 0 with 2c zeros on the unit circle, allowing for a multiplicity m (which we
take to be the same for every distinct zero). This means we have 2c/m distinct zeros on the
unit circle. We emphasise that the expressions in the remainder of this section are derived
only in the case of uniform multiplicity. Our results allow for an analysis of the general case,
but we do not wish to pursue this here.

We derive four critical exponents: the anomalous scaling dimension, η, defined by the
scaling of the order parameter, Ψ , at the critical point (〈Ψ (1)Ψ (N )〉 ∼ 1/Nη); ν, which
encodes the divergence of the correlation length (ξ ∼ |ε|−ν); the dynamical critical exponent,
z, that relates how the correlation length ξ diverges relative to the characteristic time scale
defined by τ , the inverse energy gap (τ ∼ ξ z); and β which relates to the decay of the order
parameter (Ψ ∼ |ε|β ).

Exactly at the critical point, we have given explicit results above only for m = 1. In
particular, Theorem 4 gives us that η = c/2. In the special case of c = 1/2, we recover the
well-known result η = 1/4. For m > 1 and odd, we can use Eq. (113) from Appendix F
to easily derive that η = mc/2. The other three exponents are defined away from criticality
where we can allow for any m ≥ 1. The correlation length is determined by the nearest zero,
such that ξ ∼ 1/| ln |1+ε|| ∼ 1/|ε|. Hence, ν = 1; independent of c andm. The energy gap,
minz∈S1 | f (z)|, depends on the location of all zeros. However, close to criticality, we need to
care only about the zeros describing the transition. Moreover, each of the distinct zeros has a
local minimum, which all scale the same way. So without loss of generality, we can consider
f (z) = (z − (1 + ε))m . The gap scales as ∼ |ε|m , such that τ ∼ ξm with dynamical critical
exponent z = m. This is consistent withm = 1 being described by a CFT with central charge
c, since that implies z = 1. Lastly, we consider the order parameter given in Theorem 1b.
For each distinct zero, the order parameter has a factor |1 − (1 + ε)−2|m2/8 ∼ |ε|m2/8; all

other terms do not go to zero with ε. Combining 2c/m such factors, we have Ψ ∼ |ε|m2
8 × 2c

m .
Hence, β = mc/4. In the special case of the Ising transition,m = 1 and c = 1/2, this reduces
to the well-known result β = 1/8.

The above results are consistent with the well-known scaling relations [61]. In particular,
we can straightforwardly confirm that 2β = ν(η + d − 2), where our dimension is d = 2.
In fact, the aforementioned relationship implies that η = mc/2 for any multiplicity m.
Moreover, such scaling relations can be used to derive other critical exponents: such as
γ = ν(2−η) = 2−mc/2, α = 2− νd = 0 and δ = νd/β − 1 = 8/mc− 1. It is interesting
to note that the critical exponent γ changes sign for mc = 4. This data is summarised in
Table 3.

11 Moreover, one can check that this agrees with τ under the quantum-classical correspondence.
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3.4 CFT and Continuum-Lattice Correspondence

We now explain how certain features of Theorem 4 (and Theorem 10) fit in to a CFT analysis
of the critical point. This section is not rigorous, the aim is to complement the mathematical
proofs with a perhapsmore intuitive physical picture.We also use Theorem 10 tomake claims
about passing from the lattice to the continuum description of the operators Oα .

If our system has 2c non-degenerate zeros on the unit circle, then one can argue that
the appropriate low-energy theory is a CFT built from 2c real, massless, relativistic free
fermions [62]. Briefly, one can linearise the dispersion relation | f (k)| about all of its zeros
on the circle (Fermi momenta), and each local linearised mode is such a fermion. Moreover,
since | f (k)| = | f (−k)| we can combine the real fermions from a pair of complex conjugate
zeros to form a complex fermion with central charge one. This is helpful as complex fermions
can be bosonised using themethods given in [52,63,64]. In general, then,we have a lowenergy
theory of an even number of complex fermions and either 0, 1 or 2 real fermions (located at
k = 0 or π). The central charge is always equal to c.

3.4.1 High Level Analysis

In reference [65], general CFT considerations are applied to integrable models to find
asymptotic correlation functions of local operators An(x) that create fixed numbers, n j ,
of quasiparticles of type j (i.e. excitations near momentum ±k j ). For equal times, these take
the form

〈A†
n(0)An(x)

〉 =
∑

{m j }
CAn x

−2
∑

j Δ
( j)
n eix

∑
j m j k j (18)

for scaling dimensions Δ
( j)
n , Fermi momenta k j and the sum is over sets of m j ∈ 2Z . The

amplitudeCAn depends on the appropriate form factor [65]. The oscillatory term comes from
amultiplicative factor e−ixδ p whenA gives an intermediate excitation with momentum δ p—
these are non-zero when we have particle-hole excitations where the particles and holes are at
different Fermi points. Relevant discussion is found in references [54,65,66]. TheOα that we
consider are ‘square-roots’ of local operators in the sense that the productOα(n)Oα(n +m)

(for small m) is a local fermionic operator on the lattice and has an expansion dominated
by such A. One may then expect that correlations of Oα will have the same form as (18),
but with m j ∈ Z. This is verified in Theorem 10, apart from the possibility of an additional
(−1)x oscillation. This is needed when the low energy degrees of freedom are modulated
by this oscillation. The constant in Theorem 10 implicitly gives form factors of the relevant
fields [65,67].

3.4.2 CFT Operator Correspondence for One Real Fermion

We now consider more details of the CFT description and the correspondence with canonical
continuum operators. The following discussion will be in terms of the spin chain dual to the
fermionic system, as discussed in Sect. 2.5.

If our model has one zero on the unit circle (which must be at z = ±1, corresponding
to k = 0, π respectively), then our continuum limit has c = 1/2, and is hence described by
the Ising CFT [68]. The operator content of this theory is well understood and, amongst the
primary operators, there are exactly two with scaling dimension 1/8. These are the ‘spin’ and
‘disorder’ operators, denoted by σ and μ respectively. In the usual lattice Ising model, σ is
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the field corresponding to the local order parameter of the neighbouring ordered phase andμ

is a non-local string order parameter of the neighbouring paramagnetic phase. Moreover, σ
is odd under parity symmetry (realised on the lattice as P =∏ j Z j ), while μ is even under
P . Now, if we are in a model with ω = 0 and c = 1/2, then we can continuously tune to a
critical Ising chain H = ∑ j X j X j+1 ± Z j for which the correspondence is standard and
discussed in [68]. In particular, we will have Xn → σ(n) and

∏n
j=−∞ Z j → μ(n); note

that this is consistent with the aforementioned symmetry considerations. Moreover, models
in our class with ω = −1 and c = 1/2 are in the same phase as a critical Ising chain
H = ∑ j Y jY j+1 ± Z j where the analogous standard correspondence is Yn → σ(n) and∏n

j=−∞ Z j → μ(n), again consistent with locality and symmetry properties.
Our results on the lattice, in particular Theorem 4, allow us to extend this by showing that

a system with c = 1/2 and winding number ω has two operators with this dominant scaling
dimension: Oω and Oω+1. By considering locality and parity symmetry of the operators, as
well as scaling dimension, we identify Oω with σ when ω is odd and μ when ω is even;
Oω+1 is then the other field. Importantly, we conclude that the operators on the lattice that
have overlap with the dominant primary scaling fields depend on ω. Indeed, along a path
that connects a model with c = 1/2 and winding number ω to a model with c = 1/2 and
winding number ω′ �= ω then we must encounter a multicritical point with c ≥ 1 where the
pair of dominant operators in the c = 1/2 models will have degenerate scaling dimension
and the dominant pair changes as we go through this point—we give an example of this in
Sect. 3.4.4. Other operators Oα for α neither ω nor ω + 1 will be dominated by descendants
of σ for α odd and of μ for α even (the lattice operators have dimension 1/8 + j for some
j ∈ Z+, so we should take CFT descendants at level j). Note that in all correspondences we
may have a (−1)n oscillatory factor.

3.4.3 CFT Operator Correspondence for One Complex Fermion

Let us now consider the case c = 1 with a complex conjugate pair of zeros, at e±ikF , and
a U(1) symmetry generated by Sztot = 1/2

∑
i Zi (the standard model in this class is the XX

spin chain [52], which in our language corresponds to H = H−1+H1 with f (z) = z+1/z).
These are isotropic models with f (z) = f (1/z), which implies that ω = −c; we discuss
other values of ω later.

The fermionic Hamiltonian may be bosonised as described in [63,69,70] and [52, Chap.
20], passing also to a continuum limit. We denote the resulting bosonic fields by θ(x) and
ϕ(x), such that

[∂xϕ(x), θ(y)] = [∂xθ(x), ϕ(y)] = iπδ(x − y) (19)

where δ(x) is the Dirac delta function. We now recall some standard results for the
isotropic model [52,71]. Firstly, the vertex operator eiθ(x) creates a localised charge of
the aforementioned U(1) symmetry, and ∂xϕ(x) is a density fluctuation: the total density is
ρ(x) = (kF + ∂xϕ(x))/π . Vertex operators of the form ei(λ1θ(x)+λ2ϕ(x)) have scaling dimen-
sion (λ21 + λ22)/4. When λ1 ∈ Z and λ2 = 2k for k ∈ Z, these operators are well-defined
and mutually local. When λ1 ∈ Z and λ2 = 2k + 1 for k ∈ Z, these operators have a branch
cut extending to infinity. As discussed below, on the lattice this branch cut is related to the
non-local Jordan Wigner strings. Notice that this is an asymmetry in the role of the fields ϕ

and θ .
We now consider operator correspondences for Oα . Bosonisation will not fix constant

coefficients of the operators, sowewill usually suppress them in the following.Note, however,
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that hermiticity and symmetries constrain certain coefficients.Wemay also need to include an
additional antiferromagnetic oscillation in order to correctly correspond to the lattice model
and hence to our results.

Firstly, following [63,69], we note that ρ(x) generates the U(1) symmetry. Hence, we can
make the formal identification

e−i χ2
∑

j Z j = eiχ
∑

j (c
†
j c j−1/2) → eiχ

∫
(ρ(x)−1/2)dx . (20)

The Jordan-Wigner strings follow by setting χ = π and truncating the sum and integral
respectively. We can then make the correspondence (see, for example, [69,70] and [52, Chap.
20]):

n∏

i=−∞
Zi → aei(kFn+ϕ(n)) + ae−i(kFn+ϕ(n)) (a ∈ C). (21)

The fermionic creation operator creates a U(1) charge and is multiplied by a Jordan-Wigner
string, this leads to standard expressions for the dominant contributions to the right (+) and
left (−) moving continuum fermion fields

ψ±(x) = eiθ(x)±iϕ(x) + . . .
(
cn → ψ(n) � eikFnψ+(n) + e−ikFnψ−(n)

)
. (22)

Time-reversal symmetry swaps these right and left moving fields (one may check the lattice
expansion given in, for example, [70]) and so we have that ϕ → ϕ and θ → −θ under T .
We can also confirm that the right-hand-side of (21) is hermitian and does not transform12

under the U(1) or T , as required for the Z -string. The site at −∞ may appear problematic
in isolation, but we always consider two-point correlators and thus the infinite string to the
left will drop out (similarly in the continuum one may take correlation functions to avoid
considering the boundary). The meaningful correspondence here is:

〈 n∏

i=0

Zi

〉
→
〈 (

ei(kFn+ϕ(n)) + e−i(kFn+ϕ(n))
) (

eiϕ(0) + e−iϕ(0)
) 〉

, (23)

where we now suppress constant coefficients.
Now, by considering the U(1) action and time-reversal symmetry, we see that σ±

n →
e±iθ(n) (with real coefficients). We then have that

Xn → cos(θ(n))

Yn → sin(θ(n)). (24)

Note that the relation between σ+ and ψ± in the CFT corresponds on the lattice to (103).
The above correspondences are well known [52,69,70]. In our notation, (21) corresponds

to O0 and (24) correspond to O±1. Operators Oα for |α| > 1 are more involved. However,
the correspondences that we have already established should allow us to find the continuum
operator by taking operator products. We consider first the family of local spin operators,
with α odd. In particular, let us analyse O3(n) = XnYn+1Xn+2. From Theorem 4, we know
that this operator has scaling dimension 9/4. In the field theory the operators e±3iϕ and
e±3iθ share this scaling dimension, as well as operators that include derivatives, for example
(∂2θ)eiθ . We should exclude terms that include ei(2k+1)ϕ on the grounds of locality. We now

12 Under a U(1) rotation through χ ∈ R, lattice operators are conjugated by exp(iχ
∑

n Zn/2) and fields
transform as θ(x) → θ(x) + χ , ϕ(x) → ϕ(x).
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show that all operators depending solely on θ and that have the correct scaling dimension
may appear. Moreover, we give a method for determining the exact correspondence.

First, note that any product of three neighbouring X or Y operators can be expanded as
a linear combination of terms σ±

n σ±
n+1σ

±
n+2, with all possible sign combinations present.

These products transform separately under U(1) with charge m ∈ {−3,−1, 1, 3} equal to
the sum of the signs. The dominant terms would be e±iθ(n), with subdominant contributions
from e±3iθ(n) and products of e±iθ(n) and e±3iθ(n) with derivatives of θ(n). It is possible
that the coefficient of the dominant term and the first few subdominant terms vanish due to
destructive interference—Theorem 4 verifies that this occurs and as stated above O±3(n)

has the same scaling behaviour as e±3iθ(n). Details of a formal calculation in terms of the
CFT operator product expansion are given13 in Appendix B. Intuitively, O±3 is dominated
by terms that create three charges, as well as the remnants of several terms that create one
charge but (partially) destructively interfere with each other.

By generalising this idea to all odd α, we conjecture that Oα(n) has an expansion of the
form

Oα(n) →
|α|∑

m=0

ei(|α|−2m)θ(n)D(α,m)(θ(n)) + . . . (α odd). (25)

Dα,m(θ) is constant for m = ±α, and for other values of m contains products of derivatives
of θ such that the scaling dimensions of each term matches the extremal terms e±iαθ(n). This
is consistent with both Theorem 10 and calculations of the type in Appendix B. Note that this
conjecture includes all operators in the field theory that depend only on θ and that have the
correct scaling dimension; carefully taking operator products will give explicit expressions
for the D.

The case of α even follows the same pattern, except that we should always include a
Jordan-Wigner string: the dominant term of which is given in (21). Hence, we arrive at

Oα(n) →
|α|∑

m=0

(
ei(|α|−2m)θ(n)+i(kFn+ϕ(n)) + ei(|α|−2m)θ(n)−i(kFn+ϕ(n))

)
D(α,m)(θ(n))

+ . . . (α even), (26)

where, as above, Dα,m(θ) is constant for m = ±α and contains appropriate numbers of
derivatives such that all terms have the same scaling dimension. This is consistent with
Theorem 10 and CFT calculations. In all cases we should allow multiplication by a global
antiferromagnetic oscillation as discussed in the previous section.

The preceding analysis required the U(1) symmetry of isotropic models as a starting point.
In reference [40], generalised Kramers-Wannier dualities were discussed that map between
our models. One class of transformations swap models such that f (z) ↔ zm f (z) for some
m ∈ Z. If f (z) is isotropic, then zm f (z) is not—this allows us to extend the preceding
correspondence to anisotropic models. Anisotropic models that are dual to isotropic models
in this way have an appropriately transformed U(1) symmetry. First, let us separate two
cases: m even and m odd. When m is even, the transformation will be local, and when m
is odd it will be non-local (this is related to whether the neighbouring gapped phases have
a local order parameter). Now, in both cases we should take the correspondences (25) and
(26) and shift the label on the left-hand-side Oα → Oα+m while not shifting the right-
hand-sides. In the case that m is even, we take this as the correspondence. In the case that

13 Parenthetically, this calculation indicates that other triples of neighbouring X and Y operators will scale as
eiθ ; we have confirmed this in numerical simulations.
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Table 4 Behaviour of scaling dimensions across a transition between critical phases—the model is f (z) =
(1 − λ)z2 + 2λz − (1 + λ) and the dominant CFT fields associated to the dominant lattice operators are also
given

c ω Yn
∏n

j=1 Z j Xn
∏n

j=1 Z j Yn+1Xn+2 XnYn+1Xn+2

λ > 0 1/2 0 9/8 1/8 — μ 1/8 — σ 9/8 25/8

λ = 0 1 0 5/4 1/4 — cos(ϕ) 1/4 — e±iθ 1/4 — sin(ϕ) 5/4

λ < 0 1/2 1 25/8 9/8 1/8 — σ 1/8 — μ 9/8

m is odd, we alter the right-hand-side by swapping ϕ and θ . For example, in the transition
H = −∑n Xn Zn+1Xn+2 +∑n Zn we identify Xn with ei(kFn+θ(n)) + e−i(kFn+θ(n)). Notice
that for oddm, the oscillatory factor eikFn appears with the field θ(x). This is because ∂xθ(x)
is related to the density of the transformed U(1) symmetry. Moreover, this correspondence
is consistent with the requirement that the non-local vertex operators with factors e(2k+1)ϕ(x)

always correspond to non-local lattice operators.
The dualities discussed so far allow us to map an isotropic model to a representative of

each phase (c = 1, ω). As mentioned above, these representatives all have a U(1) symmetry
and are thus not generic. It is then nontrivial to extend this analysis to general anisotropic
models. Theorem 10 indicates, however, that this correspondence should continue to hold.
Since the above argument does not make use of the fact that our underlying lattice model is
non-interacting, we expect the correspondence to persist14 in interacting models if the U(1)
symmetry is preserved. However, if the U(1) symmetry is broken, we see no reason to expect
it to continue to hold (in contrast to the non-interacting case).

3.4.4 Example: Transition Between Topologically Distinct Critical Phases

To complement the discussion so far, we consider the example

f (z) = (1 − λ)z2 + 2λz − (1 + λ)

= (z − 1)
(
(1 − λ)z + (1 + λ)

)
. (27)

Tuning −1 ≤ λ ≤ 1 we interpolate between two critical phases, with a transition at λ = 0.
For λ = 1 the system is the standard critical Ising chain with H = −(

∑
j X j X j+1 + Z j ).

Models with λ > 0 are in the same phase: (c = 1/2, ω = 0). For λ = −1 we have
H = −(

∑
j X j Z j+1X j+2 − X j X j+1). Models with λ < 0 can be smoothly tuned to this

model and have (c = 1/2, ω = 1). For λ = 0, we have the c = 1 transition between
topologically distinct critical phases, with H = − 1

2 (
∑

j X j Z j+1X j+2 + Z j ). Table 4 gives
the behaviour of the scaling dimensions of the most dominant Oα as the system crosses the
transition. We emphasise that while both sides of the transition are described by an Ising
CFT, the scaling dimensions of the lattice operators change discontinuously. Note that the
c = 1 model has two real zeros so the CFT discussion above does not quite apply—a similar
bosonisation scheme does work, as applied to a doubled Ising model in reference [68].

14 Note that the scaling dimensions of the vertex operators will depend on the interactions, so the continuum
operators in our expansions (including derivative terms) will not necessarily all have the same dimension. The
dominant operators should be identified as a subset of these. Note also that for sufficiently strong interactions,
subdominant contributions that we ignore above can become important.
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3.4.5 CFT Operator Correspondence with c Complex Fermions

For higher values of c, we work formally with the linearised theory that consists of 2c real
fermions. Note that it has been shown that spin models with f (z) = ±zω(z2c ± 1) are
described at low energy by so(2c)1 WZW models [48,49], although a lattice-continuum
operator correspondence has not been made. We can smoothly connect15 any critical model
in HBDI to that subset of models [13].

Let us suppose for now that we have no real zeros and c complex conjugate pairs of zeros
(we order the zeros so that ki = −k2c−i ). Then we have c canonical complex fermions which
can each be bosonised as described above to give a set of fields θ j (x) and ϕ j (x). The relevant
vertex operators are of the form

τμ,ν(x) =
c∏

j=1

ei((μ j+ν j )θ j (x)+(μ j−ν j )ϕ j (x)) (28)

where μi and νi are half-integer and have scaling dimension Δμ,ν = ∑ j (μ
2
j + ν2j )/2 (we

suppress Klein factors [64]). The half-integer condition makes them twist operators for the
linearised fermionfield [72]. They act nontrivially on all fermionic sectors, and by considering
decoupled latticemodels with Hamiltonian H−m+Hm (where the bosonisation in each sector
is clear), their locality properties correctly reflect those of the operators Oα . Moreover, they
have a minimal scaling dimension of c/4 (notice that this coincides with the smallest scaling
dimension of the Oα , given in Theorem 4). As in the c = 1 case, when we have a U(1)
symmetry, then ∂xϕ j (x) or ∂xθ j (x) will correspond to fluctuations in the charge density.
Hence, the appropriate field will be accompanied by k j x—this is ϕ(x) (θ(x)) when the U(1)
charge is local (nonlocal) on the lattice. Again, as above, these oscillatory factors persist
away from these symmetric models.

Suppose now that we are in an isotropic model, with U(1) symmetry generated by Sztot.
The conjectured expansion of lattice operatorsOα goes through roughly as above. However,
the identification of, say, σ+ with a charge one operator is no longer so restrictive; this is
because charges can have different signs in the different sectors and cancel. By considering
the scaling dimensions, one concludes that the leading order terms have charge distributed
evenly throughout the different sectors. For example, observe that the charge-two operator
ei(θ1(x)+θ2(x)) withΔ = 1/2 dominates the charge-two operator ei(3θ1(x)−θ2(x)) withΔ = 5/2.

More generally, as argued in [56], in isotropic models σ+ = (O1 + iO−1) /2 will be
dominated by operators τμ,ν with

∑
j (μ j + ν j ) = 1 (charge condition) and |μi − ν j | ≤ 1

(dominance condition). These conditions give a sum of terms that are products of e±iθ j (x) or
e±i(ϕ j (x)+k j x) in each sector, and hence that can be distinguished by the presence or absence
of oscillatory factors e±ik j x . This is analogous to the sumover Fisher-Hartwig representations
(see Sect. 5) that we derive in Sect. 7.1, and the relevant oscillatory factors are confirmed in
Theorem 10 (indeed, each such term is represented in the final result). Further, in [56] it was
argued thatO0 will have

∑
j (μ j + ν j ) = 0 (charge condition) and |μi − ν j | ≤ 1. To extend

this to operators with |α| > 1, consider first the operators τμ,ν with
∑

j (μ j + ν j ) = |α|
(a maximal charge condition) and |μi − ν j | ≤ 1 (dominance condition). This gives a set of
operators that we expect to dominate the continuum limit of Oα . However, as in the c = 1
case, we expect that we should include terms where maximally charged operators eiRθ(x) are
substituted with a series of terms ei(R−2m)θ(x)|m=1,...,R multiplied by derivatives, such that

15 That is, along a path where the CFT data varies smoothly.
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each term has the same scaling dimension. The relevant scaling dimensions and oscillatory
factors are confirmed in Theorem 10.

To extend this to non-isotropic models, with ω = −c+m, we note that there will again be
two cases—m even andm odd. Form evenwe simply shift the correspondences argued for the
isotropic case. Form odd we shift and further swap ϕ j (x) and θ j (x). These correspondences
may also be derived from

∑
j (μ j +ν j ) = |c+ω−α| (a maximal charge condition, when this

is meaningful) and |μi −ν j | ≤ 1 (dominance condition)—althoughwhenm is oddwe should
swap ν j → −ν j in these equations. Then, asmentioned above, we should include descendant
operators with lower charge. These correspondences again agree with Theorem 10.

Example: Consider a model with c = ω = 2 (for example, H = H6 + H2). By solving∑2
j=1(μ j + ν j ) = 3 and then including descendants, we conjecture the correspondence:

O1(x) →
(
ei(2θ1(x)+ϕ1(x)+k1x) + ei(2θ1(x)−ϕ1(x)−k1x) + D(θ1)

(
ei(ϕ1(x)+k1x) + e−i(ϕ1(x)+k1x)

)

+ e−i(2θ1(x)+ϕ1(x)+k1x) + e−i(2θ1(x)−ϕ1(x)−k1x)
)
eiθ2(x) + (1 ↔ 2) + . . . . (29)

Note that all terms have Δ = 3/2, and all oscillate as either e±ik1x or e±ik2x as expected.
Furthermore, our conjecture gives the same expansion for O7, although the (suppressed)
coefficients are not expected to be the same in general. Indeed, Theorem 10 indicates that
the coefficients are different in the general case, since (95) is not symmetric under taking
sign-reversed Fisher-Hartwig representations.

In the case that c ≥ 1 and any zero is real, we do not conjecture the operator correspon-
dence. We expect that similar arguments could work after bosonising a doubled model—this
is performed for the c = 1/2 case in [73]. Note that Theorem 10 does not distinguish the
case of two real zeros from two complex conjugate zeros at the level of scaling dimension.

3.5 Entanglement Scaling

The entanglement entropy of a subsystem is another physically important quantity. Let ρA

be the ground state reduced density matrix on sites 1 up to N and consider asymptotics in
large N after taking the length of the (periodic) chain to infinity. The most general results for
isotropic critical chains in our class are given in [42,74]. Having identified the correlation
length in gapped chains, derived from the nearest zero to the unit circle, it is interesting to
consider the following theorem adapted from [75].

Theorem 5 (Its, Mezzadri, Mo 2008) Consider a sequence of gapped chains (as defined in
Eq. (2)) such that 2c of the zeros approach the unit circle, and that the limiting chain has no
degenerate zeros on the circle. We label these approaching zeros by ζ j , noting that ζ j can
be either inside or outside the circle, and is either real or a member of a complex conjugate
pair. Then the entanglement entropy of a subsystem of size N, in the limit N → ∞, has the
following expansion as |ζ j | → 1:

S[ρA] = −1

6

2c∑

j=1

log|ζ j − 1/ζ j | + O(1). (30)

Note that the O(1) term is constant with respect to all the zeros that approach the unit circle
(which are allowed to approach independently). Now, let us consider a sequence of models
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with a set of 2c zeros that approach the unit circle; for notational convenience let us fix them
to be complex zeros outside the unit circle, other cases lead to the same result. Let this set of
approaching zeros be specified by: {e±iφ1e1/ξ , e±iφ2et2/ξ

r2
, . . . e±iφcetc/ξ

rc }, where φi �= φ j

for i �= j , t j > 1 and r j < 1, and we approach the circle letting ξ → ∞. The conditions on
t j and r j ensure that a closest zero is eiφ1e1/ξ for ξ large enough. Inserting into Theorem 5,
we get that:

S[ρA] =
c∑

j=1

r j
3
log(ξ) + O(1). (31)

Having different rates of approach to the circle means that we are necessarily approaching
a multicritical point and we see crossover behaviour in the entanglement scaling. A simple
example that allows this behaviour is the approach to the c = 1 critical point with H =∑

i Xi Xi+1 − YiYi+1 which is infinitesimally close to a c = 1/2 line of transitions in the
phase diagram of the XY model.

This is reminiscent of the Calabrese-Cardy formula [76] that applies far more generally
and gives asymptotics as the lattice spacing16 a → 0

S[ρA] = c

3
log(ξ ′/a) + O(1), (32)

where c is the central charge of the underlying CFT and ξ ′ is the (fixed) correlation length
of the system under consideration. This may also be interpreted as a scaling limit ξ ′ 
a [77], and the formula was confirmed in this sense for the XY model in [78]. Further
relevant references are found in the review articles [77,79]. We see that Eq. (30) is equivalent
to formula (32) in the vicinity of a regular critical point. At multicritical points the path
approaching the transition is important, and the Calabrese-Cardy formula is expected to hold
along renormalization group flow lines in parameter space.

4 String Correlators as Determinants

We now begin the analysis necessary to prove the results given in Sect. 2.4.

4.1 Fermionic Two Point Correlators

After defining f (z) as in Eq. (3), we have that:

H =
∑

k

| f (k)|η†kηk + const (33)

where theBoguliobov quasiparticles are found by rotating theBloch sphere vector17 (c−k, c
†
k )

through an angle f (k)/| f (k)| about the x-axis, giving

ηk = 1

2

(
1 + f (k)

| f (k)|
)
c†k + 1

2

(
1 − f (k)

| f (k)|
)
c−k . (34)

The sum over k goes over momenta kn = 2πn/L , although we always work in the limit
where this sum becomes an integral from 0 to 2π . Details of this diagonalisation may be
found in, for example, [13,41,42]. The ground state, |gs〉, is the vacuum for the quasiparticles

16 Elsewhere in our work, units are fixed such that a = 1.
17 The ck are the Fourier transform of the lattice fermions from which we built the γn in Eq. (1).
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ηk , and from this we can easily calculate fermionic correlation functions—we refer the reader
to [42] for details. We will use

〈−iγ̃nγm〉 := 〈gs| (−iγ̃nγm) |gs〉 = 1

2π

∫ 2π

0

f (k)

| f (k)|e
−i(m−n)kdk

〈γ̃n γ̃m〉 = 〈γnγm〉 = δnm (35)

as elementary correlation functions in the rest of the paper, noting that it is arg( f (z)), on the
unit circle, that controls these correlations.

As an aside, note that for gapped chains the analysis of Sect. 6.2 allows us to find the large
N asymptotics of 〈−iγ̃nγn+N 〉. As explained in the discussion around Sect. 6.2.4, in generic
cases this correlator will be Θ(N−K e−N/ξ ) where K ∈ {1/2, 3/2} is easily determined. For
critical chains f (k) has jump discontinuities. Decomposing as in Eq. (85) and integrating
by parts, we have that the fermionic two point function is Θ(1/N )—this behaviour is as
expected from the CFT description.

4.2 Wick’s Theorem

Because the Hamiltonian (2) is quadratic, ground state expectation values have a Pfaffian
structure. More precisely, suppose that we have 2N distinct and mutually anticommuting
operators, An , then:

〈A1 · · ·A2N 〉 =
∑

all pairings

(−1)σ
∏

all pairs (m,n)

〈AmAn〉
(

= 〈A1A2〉〈A3A4〉 · · · 〈A2N−1A2N 〉 − 〈A1A3〉〈A2A4〉 · · · 〈A2N−1A2N 〉 + . . .

)
.

(36)

(−1)σ is the sign of the permutation that reorders the operators into each particular pairing.
This expression is proportional to the Pfaffian of the antisymmetric matrix 〈AmAn〉, and is
a form of Wick’s theorem that is given in reference [46].

4.3 String Correlation Functions

Consider the two point correlation function of Oα for α > 0:

〈Oα(1)Oα(N + 1)〉 = (−1)x 〈γ1 . . . γα

(
N∏

n=1

iγ̃nγn

)

γN+1γN+2 . . . γN+α〉 (37)

= (−1)x
〈
(−iγ̃1)(−iγ̃2) . . . (−iγ̃α)

(
N∏

n=α+1

γn(−iγ̃n)

)

γN+1γN+2 . . . γN+α

〉
(38)

We now transpose further terms to put unlike Majoranas as nearest neighbours and apply
Wick’s theorem:

〈Oα(1)Oα(N+1)〉 = (−1)N (α−1)
〈 N∏

n=1

(−iγ̃nγn+α)

〉
= (−1)N (α−1) det(〈−iγ̃nγm+α〉)Nm,n=1

(39)

= (−1)N (α−1) det

(
1

2π

∫ 2π

0

f (k)

| f (k)|e
−iαke−i(m−n)kdk

)N

m,n=1
. (40)
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For α < 0 an analogous calculation again leads to Eq. (40). Table 2 gives the spin operators
Jordan-Wigner dual to the fermionic operators Oα(n) and Table 5 gives the equivalent spin
correlators for all α. A derivation is given in Appendix A.4. Notice that for odd α these
operators and correlation functions are local in the spin variables, and for even α they are
nonlocal; they are always nonlocal for the fermions. Understanding the asymptotic behaviour
of the determinant (40) is the key to the results given in Sect. 2.

5 Toeplitz Determinants

Several theorems for the asymptotic behaviour of large Toeplitz determinants are required
to prove our results, hence we use this section to review them in detail. This section is
intended to not only state the results but to give an exposition of how to use them in practice.
The reader already familiar with these ideas can hence skip this section and refer back to
it where necessary. Note that we reformulate and simplify the statement of some theorems
appropriately for our application, the most general statements are available in the given
references.

First, recall that an N × N Toeplitz matrix, T , takes the following ‘translation-invariant’
form:

(T )mn = (tm−n) =

⎛

⎜⎜⎜⎜⎜
⎝

t0 t−1 t−2 . . . t−(N−1)
t1 t0 t−1 . . . t−(N−2)
t2 t1 t0 . . . t−(N−3)
...

...
...

. . .
...

tN−1 tN−2 tN−3 . . . t0

⎞

⎟⎟⎟⎟⎟
⎠

. (41)

This matrix can be thought of as the N × N truncation of an infinite matrix, with element
t−n on the nth descending diagonal. Consider a region of the complex plane, U , such that
S1 ⊆ U ⊆ C. A function t : U → C, integrable on the unit circle, generates a Toeplitz
matrix through its Fourier coefficients:

tn = 1

2π

∫ 2π

0
t
(
eik
)
e−inkdk. (42)

We refer to such t(z) as the symbol of the Toeplitz matrix18 and denote the Toeplitz deter-
minant of order N that is generated by t as

DN [t(z)] = det(tm−n)
N
m,n=1, (43)

i.e. it is defined simply as the determinant of the N × N truncated matrix generated by t .
It is the analytic properties of t that govern the form of the asymptotics of this determinant
as N → ∞. By inspecting Eq. (40), we see that 〈Oα(1)Oα(N + 1)〉 is, up to an oscillating
sign, a Toeplitz determinant of order N generated by

t(z) = z−α f (z)

| f (z)| . (44)

18 We will always go in this direction: from symbol to matrix. The reverse is possible providing the ti decay
fast enough.

123



Asymptotic Correlations in Gapped and Critical Topological Phases… 1189

To go further, we consider the symbol on the unit circle z = eik and attempt to factorise
it as:

t(z) = eV (z)tsingular(z). (45)

Here eV (z) is called the smooth part of the symbol, which we take to mean that V (z) is
analytic on the unit circle19. This implies that the winding number of exp

(
V
(
eik
))

is equal
to zero. The Fourier coefficients of V

(
eik
)
are

Vn = 1

2π

∫ 2π

0
V
(
eik
)
e−inkdk (46)

and we define the Wiener-Hopf factorisation of eV (z) as:

eV (z) = b+(z)eV0b−(z), b+(z) = e
∑∞

n=1 Vnz
n
, b−(z) = e

∑∞
n=1 V−n z−n

. (47)

In ourwork,wewill have three families of symbol to consider. Thefirst case is tsingular(z) =
1, which works when our symbol t(z) is smooth enough that its logarithm gives us an
appropriate V (z). The second case is tsingular(z) = zω, this is needed to represent symbols
t(z) that have an integral winding number ω. Finally, the third case represents symbols t(z)
with sign-change jump discontinuities. Let ζ = eiθ and consider the function on the unit
circle:

gζ,β(z) =
{
eiπβ, 0 ≤ argz < θ,

e−iπβ, θ ≤ argz < 2π.
(48)

For β half-integer this is piecewise proportional to i, with a sign change at z = ζ and at z = 1.
To represent a sign-change only at z = ζ , we put tζ,β

singular(z) = zβgζ,β(z), removing the jump

at z = 1. Conversely a jump only at z = 1 would be represented simply by zβ . Notice that
any half-integer β represents the sign-change through gζ,β , but the power of β that appears

distinguishes the tζ,β
singular(z). The singular part of a function with several sign-change jump

discontinuities can be decomposed as a product

tsingular(z) =
∏

j

t
ζ j ,β j
singular(z) =

∏

j

zβ j gζ j ,β j (z) = z
∑

j β j
∏

j

gζ j ,β j (z), (49)

where all β j are half-integer, but note that now only the total
∑

j β j is fixed by the symbol we
wish to represent—this redundancy has important consequences. As an example, consider
the symbol s(k) = sign(cos(k)), this has jump discontinuities at z = ±i. Hence we should
represent it by two β half-integer singularities, and the fact that there is no overall winding
implies that β1 = −β2. This gives a family of representations

s(z) = const × gi, 2n+1
2

(z)g−i,− 2n+1
2

(z) (50)

where n ∈ Z and the constant fixes the correct overall sign at z = 1.
With these ideas in place, notice that all three families of tsingular(z) can be represented

in the same way. If we use tsingular(z) = zβgζ,β(z) as a building block, then tsingular(z) = 1
is the case ζ = 1, β = 0 and tsingular(z) = zω is the case ζ = 1, β = ω. Motivated by

19 This smoothness requirement has been weakened bymany authors; a strong result is given in [80], to which
we refer the interested reader. For our purposes the strong condition of analyticity is acceptable.
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this discussion, we write down the canonical form of reference [80] for a symbol that is
non-vanishing on the unit circle and has sign-change jump discontinuities:

tcanon(z) = eV (z)z
∑m

j=1 β j

m∏

j=1

gz j ,β j (z)z
−β j
j , z = eik, k ∈ [0, 2π); (51)

where for j = 1, . . . ,m and 0 ≤ k1 < . . . < km < 2π , we have z j = eik j , β j ∈ 1
2Z

and the function V (z) must be smooth as above. The factor
∏

j z
−β j
j is just a multiplicative

constant and is there to align notation with [80]. Any β j in this expression must be nontrivial,
hence the symbol has m jump discontinuities. Note that we allow m = 0 when the symbol is
simply exp(V (z)), and the edge case z1 = 1 has g1,β1 = exp(−iπβ1). Our notation deviates
slightly from reference [80], where a β0 is associated to z = 1 even if there is no singularity
there—this does not affect the adapted theorems we quote below.

Now, as explained above, for a symbol t(z) with multiple jump discontinuities, there is an
infinite class of different tcanon(z) to which it is equal. In fact, if we find a single representation
with a set of {β j }, we can find another representation by shifting each β j → β j + n j such
that
∑

n j = 0; however, we may have to amend our choice of V (z) to include an additional
multiplicative constant. We are interested in representations where

∑
j β

2
j is minimal—these

will contribute to the leading-order asymptotics and so we refer to them as dominant.
Following [80], in order to write down the dominant asymptotics, it is helpful to introduce

the notion ofFH-representations. Given a symbol t(z)written in canonical form (51), replace
all β j by β̃ j = β j + n j such that

∑
j n j = 0. This new function is the FH-representation

t(z; n1, . . . , nm), defined relative to the representation t(z; 0, . . . , 0) = t(z). We then have
the equality:

t(z; n0, . . . , nm) =
m∏

j=1

z
n j
j t(z), (52)

thismeans that, in general, the FH-representation differs from a canonical form for the symbol
by a multiplicative constant. We illustrate this by example in Appendix D. An algorithm is
given in [80] to find the finite number of dominant FH-representations, where it is shown that
all of these contribute to the leading asymptotics of the determinant (43). For our purposes,
finding a dominant representation will be simple; and given one dominant FH-representation
of f (z) for which we define n j = 0, all other dominant FH-representations have n j ∈
{1,−1, 0}.

We now recall theorems relevant to the three cases introduced above. Szegő’s strong limit
theorem [81] gives the dominant asymptotics for matrices generated by smooth symbols with
no winding, i.e. the case m = 0. We use a form adapted from reference [80]:

Theorem 6 (Szegő 1952) Let t(z) = exp(V (z)) be a symbol, with V (z) smooth as explained
above and such that

∑∞
n=−∞ |n||Vn |2 < ∞. As the matrix dimension, N , goes to infinity:

DN [t(z)] = exp

(

NV0 +
∞∑

n=1

nVnV−n

)

(1 + o(1)). (53)

If we have a symbol with an integral winding number, i.e. m = 1, k1 = 0, β1 ∈ Z, the
next theorem, adapted from a result of Fisher and Hartwig [82], allows us to reduce it to
the product of a determinant that can be evaluated by Szegő’s theorem and another small
determinant.
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Theorem 7 (Fisher, Hartwig 1969) Let t(z) = eV (z)z−ν , where V (z) satisfies the conditions
for Theorem 6. Given b±(z) as defined in (47), define the auxilliary functions:

l(z) = b−(z)

b+(z)
m(z) = b+(1/z)

b−(1/z)
, (54)

with associated Fourier coefficients20 lk,mk.
For ν > 0 we have:

DN [z−νeV (z)] = (−1)NνDN+|ν|[eV (z)] × det

⎛

⎜
⎜
⎜
⎝

dN dN−1 . . . dN−ν+1

dN+1 dN dN−ν+2
...

...

dN+ν−1 dN+ν−2 . . . dN

⎞

⎟
⎟
⎟
⎠

(55)

where dk = lk + δ+
k . For ν < 0 we instead have dk = mk + δ−

k ; (55) is otherwise unchanged.
General estimates for the error terms δ±

k are given in [82]—the only case we need is as
follows. Suppose that the large Fourier coefficients of h(z) = eV (z) behave as |hn | = O(ρn)

and |h−n | = O(σ n) then for large k, δ+
k = O(ρ2kσ k) and δ−

k = O(ρkσ 2k).

Given the definitions in the above theorem, we can also state a formula from [82] for the
leading order correction to Theorem 6.

Theorem 8 (Fisher, Hartwig 1969) Let t(z) = eV (z) satisfy the conditions for Theorem 6.
Then we can write

log DN [t(z)] = NV0 +
∞∑

n=1

nVnV−n + E (1)
N + E (2)

N , (56)

where, for l(z) and m(z) defined above, we have E (1)
N = −∑∞

n=1 nlN+nmN+n. The error

term E (2)
N is subdominant—see [82] for general estimates. For the case relevant to us, with

ρ and σ defined in Theorem 7, we have E (1)
N = O(ρNσ N ) and E (2)

N = O(ρ2Nσ 2N ).

The final theoremwe need is the generalised Fisher-Hartwig conjecture. The asymptotics for
symbols with fractional jump discontinuities was initially conjectured by Fisher and Hartwig
in [32]; this conjecture was then generalised to the class of symbols that we need by Basor
and Tracy [83]. This generalised case was proved by Deift, Its and Krasovsky in [80], and
we give a simplified form of their result relevant to our work.

Theorem 9 (Deift, Its, Krasovsky 2011) Consider a Toeplitz matrix generated by t(z) in the
canonical form (51). Suppose β j /∈ Z for all j . Then, as the matrix dimension, N , goes to
infinity:

DN [t(z)] =
∑

Dominant
FH−reps: {n j }

⎛

⎝
m∏

j=1

z
n j N
j

⎞

⎠R(t(z; {n j })(1 + o(1)). (57)

Where:

20 These exist by the Wiener-Lévy theorem [82].
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R(t(z; {n j })) = N−∑m
j=1 β̃2

j exp

(

NV0 +
∞∑

n=1

nVnV−n

)
∏

1≤i< j≤m

|zi − z j |2β̃i β̃ j

×
m∏

j=1

b+(z j )
β̃ j b−(z j )

−β̃ j

m∏

j=1

G(1 + β̃ j )G(1 − β̃ j ).

(Recalling that β̃ j = β j + n j .) (58)

The Vn are unaltered when passing between FH-reps. Branches of b±(z j )β̃ j are determined

by b±(z j )β̃ j = eβ̃ j
∑∞

n=1 V±n z
±n
j . G(z) is the Barnes G-function [84, Sect. 5.17]; given as a

Weierstrass product by

G(z + 1) = (2π)z/2e− 1
2 z(z+1)− 1

2 γE z2
∞∏

j=1

((
1 + z

j

) j

exp

(
−z + z2

2 j

))

, (59)

where γE is the Euler-Mascheroni constant. It is clear fromEq. (59) thatG vanisheswhenever
the argument is a negative integer. Hence if β j ∈ Z, the RHS of (58) vanishes and this is not
the first term of the asymptotic expansion (instead we should use Theorem 7).

6 Gapped Chains: Analysis

6.1 Closed form for the Order Parameter—Proof of Theorem 1b

Since c = 0, the complex function is given by

f (z) = ρ
1

zNp

Nz∏

i=1

(z − zi )
NZ∏

j=1

(z − Z j ) (60)

=
⎛

⎝ρ

NZ∏

j=1

(−Z j )

⎞

⎠ zω
Nz∏

i=1

(1 − zi/z)
NZ∏

j=1

(1 − z/Z j ) =: ρ′zω f0(z). (61)

ρ′ = ρ
∏NZ

j=1(−Z j ), and it is only the sign of this real number that is important; moreover,

since the Z j come in complex conjugate pairs, the sign only depends on N+
Z , the number of

zeros on the positive real axis and outside the unit circle. For bookkeeping purposes, define

s = sign(ρ) × (−1)N
+
Z . (62)

If we consider (−1)N (ω−1)〈Oω(1)Oω(N )〉, then this is generated by t(z) = eV (z), where

V (z) − V0 = 1

2
(log f0(z) − log f0(z)) (63)

for a continuous logarithm that could be found by integrating the logarithmic derivative of
f . We instead jump to the following solution:

V (z) − V0 = 1

2

∑

i, j

Log(1 − zi/z) − Log(1 − zi/z) + Log(1 − z/Z j ) − Log(1 − z/Z j )

(64)
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= −1

2

∞∑

n=1

1

n

⎛

⎝
Nz∑

i=1

(
zi
z

)n
−
(
zi
z

)n
+

NZ∑

j=1

(
z

Z j

)n
−
(

z

Z j

)n
⎞

⎠ , (65)

where the function Log(z) is the principal branch of the complex logarithm—this is clearly
smooth and recovers f (z) when we take the exponential. Note that we used that the zeros
are either real, or occur in complex conjugate pairs. On the unit circle z = eik we can put
z = 1/z into (65).

This gives us an honest V (z) from which one can read off the Fourier coefficients:

V0 = log s = 0, iπ (66)

Vn =
⎧
⎨

⎩

1
2n

(∑
i z

n
i −∑ j Z

−n
j

)
n > 0

− 1
2n

(∑
i z

n
i −∑ j Z

−n
j

)
n < 0.

(67)

Inserting into Theorem 6 we reach:

det[t(z)] = sN exp

⎛

⎜
⎝

∞∑

n=1

− 1

4n

⎛

⎝
Nz∑

i=1

zni −
NZ∑

j=1

Z−n
j

⎞

⎠

2
⎞

⎟
⎠ . (68)

On expanding the square and interchanging the finite sums with the sum over n in the
exponent, we can then perform the sum over n leading to Theorem 1b. The term under
the fourth root is always a positive real, and the principal logarithm implies that we take
the positive root. For completeness, note that the oscillatory factor multiplying the order
parameter is given by eiπN (ω−1)+N log(s).

Note that with the Fourier coefficients of V in hand, we can find the Wiener-Hopf decom-
position (47) of our symbol when z is on the unit circle.

b+(z) = e
∑∞

n=1
1
2n

(∑
i z

n
i −
∑

j Z
−n
j

)
zn =

Nz∏

i=1

e− 1
2 Log(1−zzi )

NZ∏

j=1

e
1
2 Log(1−z/Z j )

b−(z) = e
−∑∞

n=1
1
2n

(∑
i z

n
i −
∑

j Z
−n
j

)
z−n =

Nz∏

i=1

e
1
2 Log(1−zi /z)

NZ∏

j=1

e− 1
2 Log(1−1/(zZ j )). (69)

Note that 1/b+(z) = b−(1/z). Moreover,

b+(z) =
√√√√
∏NZ

j=1(1 − zZ−1
j )

∏Nz
i=1(1 − zzi )

(70)

where the square-root is continuous on the unit circle and the branch is fixed as the positive
root of a positive real at z = 1.

6.2 Correlation Lengths

We now use Theorem 7 to find the behaviour of the correlation function 〈Oα(1)Oα(N + 1)〉
in the gapped phase ω. For definiteness, let us label the zeros by proximity to the unit circle:
|Zi | ≤ |Z j | and |zi | ≥ |z j | for i < j .
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6.2.1 Asymptotics of l(z),m(z)

The key ingredient that we need are the asymptotically large Fourier coefficients of the
auxilliary functions

l(z) = b−(z)

b+(z)
=
√√
√
√

∏Nz
i=1(1 − zzi )(1 − zi/z)

∏NZ
j=1(1 − zZ−1

j ))(1 − Z−1
j /z)

(71)

m(z) = 1/l(z). (72)

Note that so far l and m are defined only on the unit circle and with the principal branch of
the square-root (in fact, due to the complex-conjugate pairs of roots, the arguments of the
square-root are strictly positive). For the purposes of this calculation, we assume the generic
problemwhere the branch points in R = {zi , z−1

i , Z j , Z
−1
j } are all distinct, we will comment

later on the effect of multiplicity. We need the dominant asymptotic term of the nth Fourier
coefficient of l(k) for large n:

ln = 1

2π

∫ 2π

0
l(k) exp(−ink)dk

= 1

2π i

∫

S1

( ∏Nz
i=1(1 − szi )(1 − zi/s)

∏NZ
j=1(1 − sZ−1

j )(1 − Z−1
j /s)

)1/2
s−(n+1)ds. (73)

We analytically continue l(k) off the unit circle into the complex s-plane. The idea is to move
the contour of integration out to infinity, where the s−n term in the integrand will cause the
integral to vanish there. The integrand has branch cuts on which the contour gets snagged,
and the dominant contribution will come from the nearest branch points outside the unit
circle—this is the Darboux principle [85].

By inspection we have either a square-root or inverse square-root branch point at every
element of R. If there are an odd number of such points inside (and therefore, by symmetry,
outside) the unit circle, then zero and infinity are also branch points—hence there are always
an even number of branch points both inside and outside the unit circle.We choose any branch
cut pattern inside the unit circle (where no cut crosses the circle). Outside the unit circle we
order the branch points by radial distance from the origin. In generic circumstances there will
be either one real branch point (case A), or a complex-conjugate pair of branch points (case
B), closest to the origin. Choose the cuts to be leaving all branch points radially. An example
for each of the two cases is depicted in Fig. 4—we call the nearest branch point(s) s1 (and
s1), for arg(s1) ∈ [0, π ]. We connect up the radial cuts outside a circle of large radius, the
precise choice is unimportant.

In case A we consider the Hankel contour connecting infinity to the nearest real zero and
back—this is exactly the relevant part of the snagged contour. After parameterising s = s1et

for t ∈ R+ and where arg(t) = 0 below the axis and arg(t) = −2π above the axis, this
integral obeys the conditions for Watson’s lemma for loop integrals—see, for example, [86,
§15.6.1] and [87]. This gives us an asymptotic series of which we need only the first term.
Recall that we have ordered our zeros so that s1 is either 1/z1 or Z1—then we have

Proposition 1 Suppose there is a single real root closest to the unit circle. Then,
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Fig. 4 Schematic for the two generic cases of the computation (73). Blue (wavy) lines indicate branch cuts in
the integrand. The black curve is the initial integration contour S1, and the red (lighter) curve is the deformed
contour. × indicates the closest branch cuts to the unit circle that are outside the circle

ln =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−zn1
1

n3/2
1

2
√

π

(
(1 − z21)

∏Nz
i=2(1 − zi/z1)(1 − z1zi )

∏NZ
j=1(1 − Z−1

j /z1)(1 − z1Z
−1
j )

)1/2

︸ ︷︷ ︸
λ

(1 + O(1/n)) s1 = 1/z1

Z−n
1

1
n1/2

1√
π

( ∏Nz
i=1(1−Z1zi )(1−zi /Z1)

(1−Z−2
1 )
∏NZ

j=2(1−Z1Z
−1
j )(1−(Z1Z j )

−1)

)1/2
(1 + O(1/n)) s1 = Z1

(74)

where the square-root is principal (with positive real argument).

This follows from the above discussion after using the same method to estimate the contri-
bution of all other snagged contours—these are bounded above by |z∗|−n where |z∗| > s1,
and are thus exponentially subdominant.

In case B we use the same method but now sum over the dominant contributions coming
from the two branch points. This leads to

Proposition 2

ln =
⎧
⎨

⎩

1√
π
Im(c1zn1)

1
n3/2

(1 + O(1/n)) s1 = 1/z1

2√
π
Im(c2Z

−n
1 ) 1

n1/2
(1 + O(1/n)) s1 = Z1

(75)

for

c1 = −
(

− (1 − z21)(1 − z1z1)(1 − z1/z1)
∏Nz

i=2(1 − zi/z1)(1 − z1zi )
∏NZ

j=1(1 − Z−1
j /z1)(1 − z1Z

−1
j )

)1/2

c2 = −
(

−
∏Nz

i=1(1 − Z1zi )(1 − zi/Z1)

(1−Z−2
1 )(1 − Z1/Z1)(1 − (Z1Z1)−1)

∏NZ
j=2(1−Z1Z

−1
j )(1−(Z1Z j )−1)

)1/2
.

(76)
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This constant is the first term of the Taylor series of the regular part of the integrand at the
branch point, and the square root is continuously connected to the principal branch on the
real axis.

Note that in the case where we have only two roots, and they form a conjugate pair (as
happens in the XY model), the constants are evaluated with the principal square root.

The exceptional cases where Propositions 1 and 2 do not apply are when f (z) has zeros
with multiplicity, more than a pair of zeros closest to the unit circle, or both. We discuss these
cases below.

We also need the asymptotic behaviour of mn . Fortunately no further analysis is needed:
m(z) and l(z) share the same structure but are mutually inverse. Hence we have:

Proposition 3 In the case of a nearest singularity s1 on the real axis we have:

mn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−Z−n
1

1
n3/2

1
2
√

π

(
(1−Z−2

1 )
∏NZ

j=2(1−Z1Z
−1
j )(1−(Z1Z j )

−1)
∏Nz

i=1(1−Z1zi )(1−zi /Z1)

)1/2
(1 + O(1/n)) s1 = Z1

zn1
1

n1/2
1√
π

( ∏NZ
j=1(1 − Z−1

j /z1)(1 − z1Z
−1
j )

(1 − z21)
∏Nz

i=2(1 − zi/z1)(1 − z1zi )

)1/2

︸ ︷︷ ︸
κ

(1 + O(1/n)) s1 = 1/z1.

(77)

For a complex conjugate pair of nearest singularities we have:

mn =
⎧
⎨

⎩

1√
π
Im(c−1

2 Z−n
1 ) 1

n3/2
(1 + O(1/n)) s1 = Z1

2√
π
Im(c−1

1 zn1)
1

n1/2
(1 + O(1/n)) s1 = 1/z1,

(78)

where the ci are defined in (76).

Now, if a zero has multiplicity two then we get either a simple pole of l(z) (and hence a
zero of m(z)) or a zero of l(z) (and hence a simple pole of m(z)). A simple pole will give
an exponential decay e−n/ξ , using Cauchy’s theorem, with no algebraic prefactor (recall that
ξ = 1/| log |ζ�|| where ζ� is (any) one of the zeros of f (z) closest to the unit circle). A zero
of l(z) is not a singularity so our contour will not be snagged there—we must hence look
at the next-nearest singularity to the unit circle. Higher order multiplicities will give branch
points, higher-order poles or higher-order zeros, and the calculations similarly go through.
Higher-order poles will never have a vanishing residue for all n, and in fact for large n the
dominant term in the residue will come from derivatives of s−(n+1) in (73). Importantly, even
in these exceptional cases, the nearest zero always sets the longest correlation length for the
operators Oα . This is because, from the discussion above, either ln or mn has asymptotic
decay controlled by the nearest zero (and hence there is an observable with correlation length
ξ which follows from the calculation below).

Having more than two equidistant singularities requires summing over the contributions
from each of them; this will give an e−n/ξ decay for zeros of multiplicity one (the coefficient
must be calculated in each case, and for higher multiplicity one sums the contributions
outlined above)—there may be destructive interference for certain values of n. This can
include equidistant singularities coming from zeros both inside and outside the unit circle.
Another exceptional case of this type is two closest zeros both on the real axis (i.e. at a and
−a). Again we sum over the contributions which are given explicitly by the formulae in
Propositions 1 and 3.
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The final exceptional case is where we have degenerate closest zeros which are mutually
inverse. For example, if the closest zeros are at a and at 1/a ∈ R. This is the only case where
ξ defined in terms of one of these closest zeros is not realised as the longest correlation length
(although it is still an upper bound)—the contribution of the mutually inverse zeros cancels
in the definition of b±(z) and so they do not contribute to the asymptotics of anyOα . In such
a case, the longest correlation length is set by the closest zero of f (z) whose inverse is not a
zero. The starkest examples of this behaviour are in isotropic models, where b±(z) = 1 and
the correlation length is zero for all observables! This also follows from the observation that
the ground state of a gapped isotropic model in our class is always a product state.

In summary, we have, in generic cases, that ln andmn decay exponentially with correlation
length ξ . In exceptional cases their decay is at least this fast. Generically, if the nearest zero
is inside the circle, we have an algebraically decaying prefactor n−3/2 for ln and n−1/2 for
mn , this assignment is reversed if the nearest zero is outside. Moreover, if the nearest zero is
complex then ln and mn have an oscillatory prefactor.

6.2.2 Error Terms in Theorem 7

In order to use Theorem 7 we need to estimate the errors δ±
N . To do so, we need to find ρ and

σ such that for h(z) = eV (z), |hn | = O(ρn) and |h−n | = O(σ n) for large n. Recall that the
relevant eV (z) = eV0b+(z)b−(z)—this has exactly the same singularities as l(z) and m(z)
up to exchanging square-roots with inverse square-roots. The analysis above goes through
and we see that, in all non-degenerate cases, ρ = σ = 1/|s1|. We thus have that either
dn = ln + O(l2nmn) or dn = mn + O(lnm2n). For n large this means that we can replace
the matrix elements dn of the small determinant in Theorem 7 with either ln or mn without
affecting the leading order behaviour.

6.2.3 The Asymptotics of the Correlator 〈O˛(1)O˛(N + 1)〉—Proof of Theorem 2

Suppose that we are in the phase ω, then the generating function of the correlator is
seV (z)zω−α . In the case ω − α > 0, using Theorem 7 we have that

〈Oα(1)Oα(N + 1)〉 = (−1)N (ω−1)DN+ω−α(seV (z))

× det

⎛

⎜⎜⎜
⎝

mN mN−1 . . . mN−(ω−α)+1
mN+1 mN mN−(ω−α)+2

...
...

mN+(ω−α)−1 mN+(ω−α)−2 . . . mN

⎞

⎟⎟⎟
⎠

. (79)

The large determinant DN+ω−α(seV (z)) is of Szegő form, and is, to leading order, equal to
the result of Theorem 1b—i.e. the value of the order parameter. Inserting the dominant term
of mN as found in the previous section, the second determinant may be evaluated directly to
find the leading order term of the correlator.

We have almost proved Theorem 2, but need to do some further analysis to isolate the
exponential decay. This is the point where we specialise to generic situations, so that we are
guaranteed that mN = Θ(e−N/ξ ). Then, in the position (i, j) of the second matrix we have
a factor of e(−N+i− j)/ξ . The row and column index multiplicatively decouple, and so any
individual term of the Laplace expansion of the determinant contains a factor of e−N (ω−α)/ξ ,
hence we may factor this out and we have that:

123



1198 N. G. Jones, R. Verresen

〈Oα(1)Oα(N + 1)〉 = eiπN (ω−1)+N log s
(

lim
R→∞|〈Oω(1)Oω(R)〉|

)

× e−N (ω−α)/ξ det
(
(N + i − j)−KαN+i− j

)ω−α

i, j=1︸ ︷︷ ︸
det M(N )

. (80)

The matrix elements of M(N ) are derived from the propositions above: i.e. K = 1/2 or
3/2 and αn are the coefficients that can oscillate with n. Hence, det M(N ) will contribute
an algebraic dependence on N (and not affect the exponential scaling). For ω − α < 0 the
same calculation goes through with mn replaced by ln (and the second matrix has dimension
|ω − α|). We have hence proved Theorem 2.

Now, putting together Theorems 1b and 2 prove Theorem 1a. In particular, we have
shown that the correlators |〈Oα(1)Oα(N +1)〉| do indeed form a set of order parameters that
distinguish ω. The sign of f (z) (an invariant of our model) may be inferred by the presence
or absence of (−1)N oscillation. As can be seen in (80), this oscillation depends on both ω

and s, as defined in (62) (one must also take into account oscillations coming from det M).

6.2.4 The Correlation Length of 〈O!(1)O!(N)〉 in the phase!—Proof of Theorem 3

The proof follows from Theorem 8 and our calculations above. Firstly, using 6.2.2 we have
that E (2)

N is exponentially subdominant compared to E (1)
N . We do not evaluate E (1)

N in closed
form, but need that the first term in the sum (−ln+1mn+1) gives the dominant scaling, as
claimed in [32]. Thus, in the generic case, we have E (1)

N = O(|s1|−2N /N 2). To see this, one
needs to consider the different orders in the full asymptotic expansion of ln and mn , as given
byWatson’s lemma [86]. In particular, one can factor out the dominant term from |ln+1mn+1|
and E (1)

N then becomes a sum of many convergent series multiplied by non-positive powers
of N (along with exponentially subdominant contributions coming from other singularities
further from the circle than s1). One of these convergent series is O(1) and we denote it by
BN—this will oscillate with N if we have oscillation in lN and mN . Putting this together
one reaches Theorem 3. The constant BN , along with further corrections, are evaluated in
[31,51] for correlators that are equivalent to X and Y correlators in the XY model.

6.2.5 Possible Alternative Proof

An alternative approach to proving Theorem 2would be to use the Fisher-Hartwig conjecture.
The idea of such a proof is given in [88]—one should expand the Fourier contour defining
the Toeplitz matrix (42) out to the nearest singularity in the generating function, and then
rescale back to the unit circle. The deformed symbol is then singular on the unit circle (by
construction), and, if it can be written in Fisher-Hartwig form, then Theorem 9 can be used to
derive the leading order asymptotics. This method is applied in [53] to X and Y correlation
functions in the XY model.

7 Gapless Chains: Analysis

7.1 Scaling Dimensions

In this section we calculate the large N asymptotics of 〈Oα(1)Oα(N + 1)〉 for a system
described by (9) with non-zero c. This was solved for isotropic models (i.e. models where
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f (z) = f (1/z)) and for α ∈ {−1, 0, 1} in [56]. We now explain how to use Theorem 9
to find the answer in the general case. The idea is simple; take the symbol corresponding
to (−1)N (α−1)〈Oα(1)Oα(N + 1)〉: z−α f (z)/| f (z)| and find the dominant Fisher-Hartwig
representations. This goes as follows:

z−α f (z)/| f (z)| = sz−α zNz

zNp

Nz∏

j=1

(1 − z j/z)

|1 − z j/z|
2c∏

j=1

(z − eik j )

|z − eik j |
NZ∏

j=1

(1 − z/Z j )

|1 − z/Z j | (81)

= sC
Nz∏

j=1

(1 − z j/z)

|1 − z j/z|
NZ∏

j=1

(1 − z/Z j )

|1 − z/Z j |
︸ ︷︷ ︸

eV (z)

C−1zω−α
2c∏

j=1

(z − eik j )

|z − eik j |
︸ ︷︷ ︸

singular

. (82)

We reemphasise that in this analysis we pick the phase of the complex zeros such that
k j ∈ [0, 2π). The smooth part eV (z) can be analysed as in the gapped case—in particular,
the Fourier coefficients for n �= 0 are given by (67) (the phase factor C is needed to put
the singular part in canonical form, and this shifts V0). Turning to the unit circle, z = eik ,
the analysis of the singular part is split into three cases: a real zero at k = 0, π , a pair of
complex conjugate zeros at k = φ and k = 2π − φ, or a set of zeros of multiplicity greater
than one. The third (fine-tuned) case is discussed in Sect. 7.3, we ignore it for now. Note that
we explicitly exclude such cases in the statement of Theorem 4 where we limit ourselves to
chains described at low energy by a CFT. Now, for the real zero we have:

exp(ik) ± 1

| exp(ik) ± 1| = exp(ik/2) ×
{
cos(k/2)/| cos(k/2)|
i sin(k/2)/| sin(k/2)| = i.

(83)

For a zero at −1 we have a sign-change discontinuity at k = π , and a zero at 1 has a sign-
change-type21 singularity at k = 0. For a complex conjugate pair of zeros at exp(±iφ) we
have:

(eik − eiφ)(eik − e−iφ)

|eik − eiφ ||eik − e−iφ | = exp(ik) × sign(cos(k) − cos(φ)). (84)

Since φ �= 0 or π , sign(cos(k) − cos(φ)) has sign-change discontinuities at k = φ and
k = 2π − φ. We conclude that every zero contributes a factor exp(ik/2) as well as a sign-
change at the location of the zero, which we can represent with a gk j ,β j (z) for β j any
half-integer.

Putting this information back into the symbol we reach

z−α f (z)/| f (z)| = sC
Nz∏

j=1

(1 − z j/z)

|1 − z j/z|
NZ∏

j=1

(1 − z/Z j )

|1 − z/Z j |
︸ ︷︷ ︸

eV (z)

zc+ω−α
2c∏

j=1

gk j ,β j (z)e
−iβ j k j

︸ ︷︷ ︸
singular

,

(85)

where the β j are half-integer and

2c∑

j=1

β j = c + ω − α. (86)

21 I.e. we are in the limiting case where g1,β is actually constant, but the contribution to the Toeplitz deter-
minant is as if it were a sign-change singularity.
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We need to fix the multiplicative constant, C , by noting that the singular factors, isolated
above, usually jump between ±1, rather than ±i, and we also need to include

∏
e−iβ j k j in

the singular part of (51). This leads to C =∏2c
j=1 e

iβ j k j+δk j ,0iπ/2
/gk j ,β j (1).

To find the asymptotics we need some minimal representation (a set of β j minimising∑
j β

2
j ), from which we can generate a set of minimal FH-reps to insert into Theorem 9. We

find the solutions by first considering the cases c+ω−α = (2m−1)c, form ∈ Z, where the
minimal solution is unique:β j = 2m−1

2 for all j . Ifwehave (2m−1)c < c+ω−α < (2m+1)c
we form the set of minimal FH-reps by starting from β̃ j = 2m−1

2 and sending β̃ j → β̃ j + 1
for

c + ω − α − (2m − 1)c = (1 − m)2c + ω − α ∈ Z (87)

of the β̃ j . We will consider our starting FH-rep (with all ni = 0) to be the one where we shift
the first (1 − m)2c + ω − α of the β j . There are

(
2c

(1 − m)2c + ω − α

)
= (2c)!

((1 − m)2c + ω − α)!(2mc − ω + α)! (88)

minimal FH-reps in total. Given the parameters ω, α, c we get that m = 1 + �ω−α
2c �, where

�x� denotes the greatest integer less than or equal to x . Theorem 9 immediately gives the
dominant scaling

|〈Oα(1)Oα(N + 1)〉| = const × N−2Δ(1 + o(1)), (89)

where

Δα(c, ω) = 1

2

(
(2cm − ω + α)

(2m − 1)2

4
+ (2c(1 − m) + ω − α)

(2m + 1)2

4

)
. (90)

This formula for Δα obscures some features of this function, to bring them out define α̃ =
α − (ω + c), then one can show that

Δα(c, ω) = c

(
1

4
+ x2 − (x − [x])2

) ∣∣∣
x=α̃/2c

(91)

where [x] is the nearest integer to x . It is then clear that Δα is symmetric under α̃ ↔ −α̃

and that the minimal scaling dimension of our operators is c/4.

7.2 The Dominant Asymptotic Term

We can go further with Theorem 9 to get the first term in the asymptotic expansion of
〈Oα(1)Oα(N + 1)〉 at large N . Firstly, note that:

eV (z) = s
2c∏

j=1

eiβ j k j /gk j ,β j (1)

︸ ︷︷ ︸
eV0

Nz∏

j=1

(1 − z j/z)

|1 − z j/z|
NZ∏

j=1

(1 − z/Z j )

|1 − z/Z j |
︸ ︷︷ ︸

eV (z)−V0

. (92)
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The first factor is a pure phase and contributes to the asymptotics as eNV0 . By inspection22

V0 = Log(s) + i
2c∑

j=1

(β j (k j − π) + (2β jπ + π/2)δk j ,0), (93)

it is important to emphasise that this is an imaginary number, and again recall that k j ∈
[0, 2π). The second factor contributes in two ways: firstly through e

∑
n nVnV−n , exactly the

quantity we calculated in Sect. 6.1. Secondly, we need powers of the Wiener-Hopf factors
that were derived at the end of Sect. 6.1. Putting this all together we get:

Theorem 10

〈Oα(1)Oα(N + 1)〉 = N−2ΔαeiNK
∑

{n j }

⎛

⎝
2c∏

j=1

eiNk j n j

⎞

⎠ C({β j + n j })(1 + o(1)), (94)

where the sum is over all dominant FH-reps, these are parameterised by {n j } and defined in
Sect. 7.1.Δα isΔα(c, ω) given in (91) and K is equal to−iV0+π(α−1). The representation
dependent O(1) multiplier is given by

C({β̃ j }) =
⎛

⎜
⎝

∏Nz
i1,i2=1(1 − zi1 zi2)

∏NZ
j1, j2=1

(
1 − 1

Z j1 Z j2

)

∏Nz
i=1

∏NZ
j=1

(
1 − zi

Z j

)2

⎞

⎟
⎠

1/4

∏

1≤i< j≤2c

|eiki − eik j |2β̃i β̃ j

×
2c∏

j=1

(∏NZ
l=1(1 − eik j Z−1

l )(1 − e−ik j Z−1
l )

∏Nz
i=1(1 − eik j zi )(1 − e−ik j zi )

)β̃ j /2 2c∏

j=1

G(1 + β̃ j )G(1 − β̃ j ).

(95)

In our construction of the dominant FH-reps we start from setting all β̃ j to be equal and then
add 1 to a fixed number of them. This means that the difference β̃i − β̃ j is either 0 , 1 or−1 in
all dominant FH-reps. Hence, pairs of complex conjugate zeros eiki = e−ik j contribute einki N

to the oscillatory factor in (94), where n ∈ {0,±1}. We discuss the non-universal multiplier
(95) in Appendix E.

7.3 Degenerate Zeros on the Unit Circle

In the case that some of the zeros on the unit circle are degenerate, the analysis of the
singular part given above follows through by raising to the power of the relevant multiplicity.
Conjugate pairs of zeros must have the same multiplicity so contribute to the singular part as

(
(eik − eiφ)(eik − e−iφ)

|eik − eiφ ||eik − e−iφ |
)m

= exp(imk) ×
(
sign(cos(k) − cos(φ))

)m
. (96)

Equation (83) is similarly raised to the power m. We see an important difference between
odd and even multiplicity. For odd m the degenerate zeros behave as above and we have a
Fisher-Hartwig canonical form with half-integer β singularities at e±iφ . In the case that m
is odd for all zeros on the unit circle we can derive an analogue of Theorem 10, the steps
are given in Appendix F. For even m at any zero, there is no jump discontinuity and we do

22 The asymmetric second term in the sum is necessary because a singularity at k j = 0 is an edge case where

g0,β (1) = e−iπβ . For all other k we have gk,β (1) = e+iπβ .
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not analyse this here. The multicritical point in the XY model, with f (z) = (z + 1)2 is an
example of such a case.

8 Extensions of Our Results

8.1 Long-Range Chains

In this section we discuss the effect of allowing our model (2) to have non-zero coupling
constants between sites at ‘long-range’—i.e. that there is no finite constant beyond which all
couplings vanish.

First, consider the case that the couplings decay with an exponential tail at large distances.
This means that f (z) has a C∞ smooth part, and a well defined winding number. We still
have thatω = Nz−Np , but note that poles are no longer restricted to the origin. The theory of
Sect. 5, with care, may still be used to reach the same broad conclusions as in the finite-range
case. In addition, we need the main result of [89]:

Theorem 11 (Erhardt, Silbermann 1996) Take a symbol of the form

f (z) = exp(V (z))zβ,

i.e. a symbol with a single Fisher-Hartwig jump singularity at z = 1, and demand that
exp(V (z)) is a C∞ function. Then:

DN ( f (z)) = exp(NV0)N
−β2

(E + o(1)) (97)

where E is the constant defined implicitly in (58).

For nonvanishing E , or equivalently β /∈ Z, this is a special case of Theorem 9. However,
for β ∈ Z this gives us a concrete asymptotic bound on the Toeplitz determinant in the case
of a symbol with a C∞ smooth part.

Szegő’s theorem along with Theorem 11 allows us to extend the classification of gapped
phases via string order parameters to long-range chains with C∞ symbol. In particular, in
the phase ω we have that 〈Oω(1)Oω(N +1)〉 tends to a non-zero value that can be calculated
using Szegő’s theorem. Moreover, Theorem 11 proves that 〈Oα(1)Oα(N +1)〉 for all α �= ω

tends to zero at large N . This proves that Theorem 1a remains valid for long-range chains
with exponentially decaying couplings. In fact, one can go further than Theorem 11 and use
the methods of [82] to give an analogue of Theorem 2. The αth correlator in the phase ω is
O(e−N/ξα ), where ξα is defined as above and ξ is derived from the singularity of the symbol
closest to the circle (this singularity will come from either a zero or a pole of f (z)).

In critical chains, we may use the Fisher-Hartwig conjecture to derive the scaling dimen-
sions exactly as in the finite-range case, on condition that there are finitely many zeros of
f (z) that are on the unit circle, and that they remain well separated (this means that we may
write our symbol in the canonical form (51)). Note that a study of the critical scaling of
entanglement entropy for the isotropic subclass of such chains is included in [42]. While the
winding number remains well defined, further analysis must be given to extend the results
of [13] to long-range chains.

Models where couplings have algebraic tails are also physically relevant, and of topical
interest [90,91]. In this case, f (z) will no longer be analytic and so singularities occur in the
symbol distinct from Fermi points (zeros on the circle) and winding number (discontinuities
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in the logarithm). As f (z) is continuous, the winding number remains geometrically well-
defined for gapped models. The theory of Toeplitz determinants may still be used in this case,
and is deserving of a detailed analysis.

8.2 Uniform Asymptotics Approaching Transitions

Our results give asymptotic correlations at particular points in the phase diagram. One
may also be interested in how these correlations change along a path in parameter space,
particularly where this path crosses a transition. This problem was studied analytically in
reference [92] for the 2D classical Isingmodel (and hence the 1D quantumXYmodel). There
are two cases where relatively recent ‘black-box’ results in the literature can be applied to
a broader class of models. Firstly, consider a generalised Ising transition where we begin in
a general gapped phase and a single zero approaches the unit circle. The relevant Toeplitz
determinant asymptotics are given in reference [93]. Secondly, consider the case of two zeros
e±ik that come together. This is a generalisation of the approach to the multicritical point in
the XYmodel along the isotropic critical line. The relevant Toeplitz determinant asymptotics
are given in reference [94]. In both cases the crossover is controlled by a solution to the
Painlevé V equation (althought a different one in each case). Due to the multiplicative nature
of contributions to Toeplitz asymptotics, one would expect23 similar behaviour in more gen-
eral transitions where, as well as the approaching zeros, there are additional ‘spectator’ zeros
on the unit circle.

9 Conclusion

Using Toeplitz determinant theory, we have investigated string-like correlation functions in a
wide class of gapped and critical topological models. The salient features of their asymptotics
can be deduced from the zeros of the associated complex function f (z). For example, the
location of the zeros in the complex plane allow us to deduce whether the system is gapped or
critical, furthermore giving access to correlation lengths and universal scaling dimensions (as
summarised in Fig. 2). Even detailed information, like the exact value of the order parameter,
is a simple function of the zeros of f (z). The generality of these results allowed us to
derive lattice-continuum correspondences, critical exponents and order parameters for the
topologically distinct gapless phases. We now mention a few interesting paths to explore.

One surprising result was the universality of the ratios between the correlation lengths
ξα—this allowed for the extraction of the topological invariant ω. This was more striking
for the dual spin chains, where local observables can be used to measure ω. It would be
interesting to explore what happens upon introducing interactions. One possible scenario is
that ratios of distinct correlation lengths give a measure of the interaction strength between
the quasi-particles created by the corresponding operators.

One of the motivations of this work was to study how the invariants c and ω are reflected
in physical correlations. The full classification of topological gapless phases within this
symmetry class was obtained in the non-interacting case in reference [13]. Since this relied
on concepts that are well-defined only in the absence of interactions, it does not directly
generalise.24 However, correlation functions and their symmetries are much more general

23 We are grateful to the participants of the AIM workshop ‘Fisher-Harwig asymptotics, Szegő expansions
and statistical physics’ for discussions on this point.
24 However, numerical simulations indicated the stability away from the non-interacting limit.
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concepts, and having now characterised the topology in terms of them, a natural next step is
to use this to extend the classification to the interacting case.

Lastly, as discussed in the previous section, the exact solvability and Toeplitz theory
extend to cases with long-range couplings. This would certainly be interesting to explore, as
removing constraints on f (z) leads to new asymptotic behaviours of the correlation functions
beyond those that we have analysed in this paper.
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ADetails of HBDI and the Dual Spin Model

In this appendix we give details of certain claims in the introductory sections.

A.1 TheModel and Its Solution

Our model is a one-dimensional chain of L-sites, each hosting a spinless fermionic mode.
In other words, we have operators cn , labelled by a site index n, such that the fermionic
anticommutation relations are satisfied:

{
c†n, cm

} = δnm {cn, cm} = 0. (98)

The Hilbert space is the Fock space built from these L modes—i.e. H = ⊕L
n=0 Λn(C2),

where the direct sum is over antisymmetric n-particle states. We take periodic boundary
conditions, i.e. we identify sites 1 and L + 1, and reduce all site labels modulo L when
appropriate. The ordering of sites induces a notion of locality. We always work in a double
scaling limit N → ∞, L → ∞ and N/L → 0, where L is the system size and N is the
scale at which we are studying correlations. A local operator at site n should have support
on a number of sites around n that is independent of N and L .

Our model HBDI is defined in Eq. (2). This may be rewritten in terms of the fermions cn
as

HBDI =
R∑

r=−R

∑

n∈sites
ar c

†
ncn+r + br

2

(
c†nc

†
n+r − cncn+r

)
(+const) (99)

where:

ar = − tr + t−r

2

br = − tr − t−r

2
. (100)

A general time-reversal symmetric, translation-invariant spinless free fermion Hamiltonian
has a representation of the form (99) with ar = a−r ∈ R and br = −b−r ∈ R—the first
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condition follows from H = H† and the second from the anticommuting fermion algebra.
Through Eq. (100), this is in one-to-one correspondence with (2), which is hence general as
claimed.

A.2 Further Discussion of the Phase Diagram

We first consider smooth changes to our model HBDI. The coefficients tα are symmetric
functions of the zeros ζ j , so vary continuously upon a continuous change of the ζ j ; moreover
the results of Harris and Martin show that, for a fixed degree polynomial, the zeros vary
continuously with the coefficients [96]. We allow an increase in the range of f (z) by tuning
tα off 0 for α < αL or α > αR . In the first case we introduce a zero-pole pair at the origin, and
in the second case we introduce a zero-pole pair at infinity—hence these should be allowed
‘smooth operations’ whenwewant to classify phases by thinking of aHamiltonian in terms of
the zeros and pole of the corresponding f (z). The reverse is also important: we can decrease
the range by tuning tαR/L to zero, or deleting a zero-pole pair at the origin or infinity.

When we study gapless systems in this work, we usually focus on the case where the
zeros on the unit circle are non-degenerate. In that case, each zero corresponds to a linear
zero-energy crossing of the single-particle dispersion, which after linearisation contributes
a single real fermionic field to the low-energy description. Hence, c, as defined in terms of
the zeros, exactly coincides with the central charge of the bulk CFT—see also Sect. 3.4. If
any zero has degeneracy greater than one, then the low-energy theory will not be a CFT
and the scaling behaviour changes. One can see that under the allowed smooth operations,
ω = Nz − Np and c are invariants of these phases. For c > 0 these phases are always critical
points between neighbouring gapped phases—we can continuously move all zeros off the
unit circle either inside or outside to reach different c = 0 phases.

We now consider what constitutes a generic model in our class. Since we have a finite
number of zeros, fixed by the coupling range, by any reasonable distribution of zeros we
expect either no zero or one independent zero at a particular radius. Since any complex zeros
must come in conjugate pairs, we thus have either no zero, one real zero or two complex
zeros at a particular radius. This means that typically gapless models will have c = 1/2 or
c = 1. The theory extends easily to 2c nondegenerate zeros on the unit circle, and so we state
our main results for this case. Such higher-cmodels arise as multi-critical points in the phase
diagram. Typical gapped models will have either a single, real, zero or a complex conjugate
pair of zeros closest to the unit circle. For gapped models this will be the ‘generic case’ that
we refer to in some of our results. In the statements of our results we usually assume these
generic cases, but discuss how the results are altered in other cases. For example, we do
give results for some cases with degenerate zeros on the unit circle in Sect. 7.3. Then the
dispersion relation | f (k)| cannot be linearised and we do not have a CFT description. It is
clear that even conditioning on having many zeros on the unit circle, these are rare points in
parameter space.

Finally we mention the extra signs Σ . In the gapped case, the sign of f (1) is invariant—it
must be real so can only change by passing through zero and hence closing the gap. A gapped
model in the phaseω can be smoothly connected to f (z) = ±zω. In reference [13]we showed
that there are two invariant signs when c > 0 and the model is described by a CFT—in that
case we can continuously connect any model to one with f (z) = ±zω(z2c+ω ± 1), the two
signs cannot be removed without a phase transition.We hence have a description of the phase
diagram that labels both gapped and critical phases by the triple (ω, c;Σ) where Σ ∈ Z2

for c = 0 and Σ ∈ Z2 ×Z2 for c > 0 gives the relevant signs. This sign information is easy
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to keep track of, so we classify phases including this sign—one is free to discard the extra
information this gives.

A.3 The Spin Model

We now go into more detail related to Sect. 2.5. First a note on the Hilbert space of the spin
chain. It is formally similar to that of the fermionic chains, as both are built from a set of
two-dimensional Hilbert spaces. They differ in that the mathematical structure is simpler:⊗M

n=1 Hn , where the local Hilbert space Hn � C
2—in contrast to the fermions, operators

localised on distinct sites commute.
We now define a Jordan-Wigner transformation that allows us to (almost) map HBDI into

Hspin and back. Let

Zn = iγ̃nγn Xn =
n−1∏

m=1

(iγ̃mγm) γn Yn =
n−1∏

m=1

(iγ̃mγm) γ̃n . (101)

transform fermions into spins. The inverse transformation is given by

γn =
n−1∏

m=1

ZmXn γ̃n =
n−1∏

m=1

ZmYn . (102)

Note that we also have the relationship

σ+
n =

n−1∏

m=1

(iγ̃mγm) cn σ−
n =

n−1∏

m=1

(iγ̃mγm) c†n . (103)

Applying this transformation to Hspin gives us (2), except that for all couplings extending
over the final bond between sites L and L + 1 ≡ 1, we have a multiplicative factor of
(−1)F—the total fermionic parity. Since the Hamiltonian (2) is quadratic, it preserves the
parity, and so we can solve (2) in two total parity sectors. Details may be found in [41],
where it is shown that we get two copies of (2), one with periodic and one with antiperiodic
boundary conditions. Since we will be interested in bulk correlation functions, which will
be independent of boundary conditions in the L → ∞ limit, we claim that simply using our
results for the periodic fermion chain will be enough to understand these correlations in the
periodic spin chain.

A.4O˛ as a Spin Operator

In this section we explain how to derive the contents of Table 2, from which Table 5 follows.
The quickest way to proceed in all cases is to use the nearest-neighbour substitutions:

XnYn+1 = γn iγ̃nγn γ̃n+1 = −iγ̃n γ̃n+1 (104)

Yn Xn+1 = γ̃n iγ̃nγnγn+1 = +iγnγn+1. (105)

First consider the operator Xn+1Yn+2Xn+3Yn+4 . . . Xn+α . By substitutingwith (105) starting
from the right and then inserting the Jordan-Wigner form of Xn , we reach:

Xn+1Yn+2Xn+3Yn+4 . . . Xn+α = Xn+1iγn+2γn+3 . . . iγn+α−1γn+α (106)
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Table 5 Spin correlation functions that are the Jordan-Wigner dual of the fermionic string correlators
〈Oα(1)Oα(N + 1)〉
α 〈Oα(1)Oα(N + 1)〉
Positive, odd 〈X1Y2X3Y4 . . . Yα−1Xα XN+1YN+2XN+3 . . . YN+α−1XN+α〉
Positive, even 〈X1Y2 · · · Xα−1Yα

(∏N
j=α+1 Z j

)
YN+1XN+2 · · · XN+α〉

Zero 〈∏N
j=1 Z j 〉

Negative, odd 〈Y1X2Y3X4 . . . X|α|−1Y|α| YN+1XN+2YN+3 . . . XN+|α|−1YN+|α|〉
Negative, even 〈Y1X2 · · · Y|α|−1X|α|

(∏N
j=|α|+1 Z j

)
XN+1YN+2 · · · YN+|α|〉

=
n∏

m=1

(iγ̃mγm) γn+1iγn+2γn+3 . . . iγn+α−1γn+α (107)

= i(α−1)/2
n∏

m=1

(iγ̃mγm) γn+1γn+2γn+3 . . . γn+α−1γn+α

(108)

= Oα(n + 1) (α = 2m + 1 > 0). (109)

Using that
∏

m Zm =∏m γ̃mγm (i.e. the trivial correspondence for O0) and using (104) and
(105), the same reasoning leads to the other cases (including the correct phase factor). The
α odd and α = 0 cases in Table 5 follow immediately. For α even, we put the operators on
sites 1 up to α together and then simplify using the Pauli algebra.

B Expansion of Three Neighbouring Spin Operators

We wish to understand the CFT behaviour of lattice operators Pn+2Pn+1Pn where Pj =
X j or iY j . Using the substitutions (24) we can write up to an overall multiplicative
constant:

Pn+2Pn+1Pn →
(
:eiθ(n+2a): +s2 :e−iθ(n+2a):

) (
:eiθ(n+a): +s1 :e−iθ(n+a):

)

(
:eiθ(n): +s0 :e−iθ(n):

)
, (110)

for si = ±1, lattice spacing a and colons indicate normal ordering (as defined in [71]). We
then multiply out the brackets and use the normal ordering prescription to simplify. For all
choices of si apart from (1,−1, 1) and (−1, 1,−1), the dominant terms are proportional to
eiθ(n) and e−iθ(n). For si = (1,−1, 1) we have

iXn+2Yn+1Xn →:e3iθ(n): − :e−3iθ(n):

− √
2ia2 :θ ′′(x)

(
eiθ(n) + e−iθ(n)

)
: −√

8a2 :θ ′(x)2
(
eiθ(n) − e−iθ(n)

)
: + . . . (111)

where the ellipsis indicates terms with subdominant scaling dimension. That these terms all
have the same scaling dimension is a consequence of, for example, [71, Eq. 2.4.19]. The
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Table 6 Differences in scaling dimension derived from Eq. (14) for small c

c 1/2 1 3/2 2

δ′
α 2(α − ω) + 1 α − ω {2�x�, α − ω − 1 − �x�} {2�x�, α − ω − 2 − 2�x�}

δ′
α+2 − δ′

α 4 1 {1, 2} {0, 2} or 1
As defined above, x = (α − (ω + c))/2c

number of derivatives in each term exactly balances the difference in scaling dimension of
the vertex operators.

C Recovering (c,!) from Scaling Dimensions

We will show how to find c and ω even when we have access to the scaling dimensions of
Oα only for α odd (i.e. for the spin chain we have access to correlation functions of local
operators only). As explained in the main text, it is helpful to consider differences between
scaling dimensions. In this restricted case we calculate δ′

α := Δα+2 − Δα .
First suppose that c > 2, we are then guaranteed to see plateaus with repeated values of

δ′
α . If these plateaus are constant width then this width gives us c—if not, then a ‘plateau’ of
width one implies the presence of a kink in Δα(c, ω) at the even value of α that is skipped
over. We can then determine c, and hence ω as described in the main text.

For c ≤ 2 we are not guaranteed to see these plateaus, however, we can still recover c and
ω. By writing out δ′

α using Eq. (14), we derive the formulae in Table 6. These can be easily
distinguished by taking the next level of differences.25 Hence, given a finite set of Δα that
are derived from local observables in the spin chain, we can recover (c, ω). The size of the
required set is of order c.

D Example Representations of a Fisher-Hartwig Symbol

In Table 7, we give some representations of the symbol t(eik) = sign(sin k). The aim is to
illustrate the difference between canonical forms and FH-reps explained in Sect. 5.

E Discussion of Nonuniversal Factors

It is interesting to note that the order parameter given in Theorem 1b is a symmetric func-
tion in the variables {zi } and, separately, {1/Zi } (listing zeros with multiplicity as distinct
symbols). Another way to see why this occurs is through noting that a Toeplitz determi-
nant generated by t(eik) is the same as the average of τ(eik j ) := ∏

j t(e
ik j ) over the

group U(N ) (with eigenangles labelled by k j ) [42,97]. From the analysis of Sect. 6.1,
for t(z) = eV (z) we have that τ is a symmetric function separately in the arguments
{z j }, {1/Z j } and eik j ; so can be expanded in a basis of symmetric functions. Let us write

τ({z j , Z j , eik j }) =∑k aks
(1)
k ({z j })s(2)

k ({1/Z j })s(3)
k ({eik j }) for some constants ak and sym-

metric functions s(i)
k . When integrating over U(N ), s(1)

k ({z j })s(2)
k ({1/Z j }) can be factored

25 Note that c = 2 allows two possible patterns depending on the parity ofω. For evenω, starting at α = ω+1,
we see the differences {0, 1, 2, 3, 4, . . . }, whereas for odd ω, starting at α = ω, we see {0, 0, 2, 2, 4, 4, . . . }.
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Table 7 Example representations for the symbol f (eik ) = sign(sin k)

k1 = 0 k2 = π V (z) Symbol fc(z):

Canonical form 1: β1 = 1/2 β2 = −1/2 iπ/2 sign(sin k) = f (z) ×
Canonical form 2: β1 = −1/2 β2 = 1/2 −iπ/2 sign(sin k) = f (z) ×
Canonical form 3: β1 = −3/2 β2 = 3/2 iπ/2 sign(sin k) = f (z)

FH-rep(n0 = 0, n1 = 0) β1 = 1/2 β2 = −1/2 iπ/2 sign(sin k) = f (z) ×
FH-rep(n0 = −1, n1 = 1) β1 = −1/2 β2 = 1/2 iπ/2 −sign(sin k) = ei

∑
k j n j f (z) ×

FH-rep(n0 = −2, n1 = 2) β1 = −3/2 β2 = 3/2 iπ/2 sign(sin k) = ei
∑

k j n j f (z)

Note that the given parameters {ki , βi , V } fully specify the RHS of (51). In the final column, × indicates a
dominant representation

out for each k, leaving us with a result that is a sum over products of symmetric functions
and so the determinant is a symmetric function in the appropriate variables.

In the critical case we can rewrite the Θ(1) multiplier (95) in a way that gives a structure
similar to the order parameter. In particular, when we have that all |β j | = 1/2, then

C({β̃ j }) =
(∏Nz

i1,i2=1(1 − zi1 zi2)
∏NZ

j1, j2=1

(
1 − 1

Z j1 Z j2

)

∏Nz
i=1

∏NZ
j=1

(
1 − zi

Z j

)2

2c∏

i=1

∏

j �=i

(1 − eik j e−iki )sign(β̃i β̃ j )

×
∏2c

l=1
∏NZ

j=1

(
(1 − eikl Z−1

j )(1 − e−ikl Z−1
j )
)sign(β̃l )

∏2c
l=1
∏Nz

i=1

(
(1 − eikl zi )(1 − e−ikl zi )

)sign(β̃l )

)1/4(
G(3/2)G(1/2)

)2c
.

(112)

Notice that, up to the normalising G-functions, this constant is built from terms of the form
(1 − ζ±1

i ζ±1
j ) where the ζi are zeros of f (z). The sign of β̃ j somehow tells us whether the

j th zero on the unit circle acts as if it is inside the unit circle, or acts as if it is outside. Indeed,
we see that if the i th and j th zero are both inside or both outside, we get a positive power of
the term (1− eik j e−iki ) and if one is in and one is out it is a negative power—this mirrors the
behaviour of the factors coming from the zi and Z j . In the second line we have factors mixing
zeros on the circle with zeros inside and outside the circle. Since all zeros on the circle come
in complex conjugate pairs, terms of the form (1−eikl z j ) appear twice—however depending
on the relative sign of β j and β j ′ for this pair these factors can either cancel, or give a square.
A similar squared term appears in the factor matching the zi to the Z j on the first line. For
|β j | = n/2 for n > 1 we have amultiplicative effect where the contribution from the j th zero
on the circle is counted n times. This is reminiscent of the CFT description where operators
that involve many excitations give multiplicative contributions from the same Fermi point
(which is located at some momentum k j ).

F Critical Models with Degenerate Roots on the Unit Circle

Asexplained inSect. 7.3,we consider f (z)with zeros of oddmultiplicitym j at eik j . The index

runs over i = 1 . . . N0 and so the total number of zeros on the circle is givenby2c =∑N0
j=1 mi .

Note that by symmetry we must have equal multiplicities at complex conjugate zeros.
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The main difference in the analysis is that there is only one β for each unique zero (i.e.
the degenerate zeros at that point correspond to only one FH singularity, but contribute to the
winding multiple times)—this alters the sum rule (86), which becomes

N0∑

j=1

β j = c + ω − α. (113)

A method for solving (113) is to first solve (86) as in Sect. 7.1: assigning a half-integer β̂ ĵ

where ĵ = 1 . . . 2c. We then group these as:

β j =
∑

ĵ : z ĵ=z j

β̂ ĵ j = 1 . . . N0. (114)

As all multiplicities are odd, this will lead to a canonical form for the symbol, but not
necessarily a dominant FH-rep—this is because we minimised

∑2c
ĵ=1

β̂2
ĵ
whereas we need to

minimise
∑N0

j=1 β2
j . We proceed by adding one to the smallest β j and subtracting one from

the largest β j until the distance between smallest and largest is equal to zero or one. With
this set of β we can construct a dominant canonical form as in Sect. 7.1, noting that the sum
in the definition of V0 (93) should now range over unique zeros only (i.e. goes from 1 to N0).
Moreover, if the β j are not all equal, we construct the other dominant FH-reps β̃ j = β j +n j

as described in Sect. 5. We then have that β̃ j ∈ {� c+ω−α
N0

� − 1/2, � c+ω−α
N0

� + 1/2}, and the
scaling dimension follows. Theorem 9 leads again to a variant of Theorem 10, where we sum
over the dominant FH-reps just described, and where all products over the k j are over unique
zeros only.
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