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Abstract

We give an explicit and reasonably simple expression for the curvature tensor of a Θ-metric at
boundary points, in terms of the metric tensor and invariants of the Θ-structure. We examine the
behavior of the induced metric on level sets of a defining function near the boundary and describe the
asymptotic behavior of its curvature tensor. Some applications of these results are given.
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1 Introduction

A Θ-metric on a compact manifold-with-boundary can be thought of as a Riemann metric on the interior
having a certain type of singular behavior at the boundary. The singularity is measured by pairing the metric
with an algebra of smooth vector fields, VΘ, vanishing at the boundary in a way determined by a linear form
Θ. This class of metrics, and the associated vector bundles which they are sections of, was introduced by
Epstein, Melrose and Mendoza [5] to study the resolvent of the Laplacian of “Bergman-type” metrics on
strictly pseudoconvex domains. They showed that a Kähler metric of the form g = ∂∂ log φ, where φ is a
strictly plurisuperharmonic defining function, lifts to a Θ-metric on the “square root” of the domain. For
example the Cheng-Yau [4] and Bergman metrics lift to Θ-metrics.

It is well known that the curvature tensor of these Bergman-type metrics approaches a curvature tensor
of constant holomorphic sectional curvature near the boundary [7], [4]. The main result of this paper is an
expression for the dominant term near the boundary in the curvature tensor of an arbitrary Θ-metric, in
terms of invariants attached to the Θ-structure at the boundary (theorem 5.1). We do not assume that there
is any complex structure present, or if there is, that it has any particular relationship with the metric. Our
results generalize those of Klembeck [7] and, we think, set them in the proper context. An advantage of our
approach is that we are able to determine the structure of the curvature tensor of the induced metric on
level sets of a defining function, in terms of the invariants mentioned above. As an application we show that
for Bergman-type metrics, the curvature of the induced metric on level sets approaches the curvature tensor
of a Berger sphere metric at the boundary, exactly as in the case of the complex hyperbolic ball.
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We briefly summarize the contents and methods of this paper. In section 2 we introduce the basic ideas
about Θ-structures. Let X be a smooth, compact manifold-with-boundary and let Θ ∈ C∞(∂X, T ∗X) be
a one-form which is non-vanishing when pulled back to ∂X. Θ determines a Lie algebra of vector fields,
VΘ, which lifts to the space of all smooth sections of a vector bundle ΘTX. At boundary points, the Lie
algebra structure of VΘ lifts to a Lie algebra structure on the fiber, ΘT pX. Sections of the dual bundle,
ΘT

∗
X, correspond to sections of T ∗Xo becoming singular in the appropriate way at the boundary. The usual

exterior derivative lifts to an exterior derivative on sections of ΘT
∗
X, and at boundary points its action is

determined by the Lie algebra structure on the fibers (lemma 2.1). This “freezing of coefficients” simplifies
curvature computations at the boundary.

In section 3 we consider the familiar concepts of differential geometry in the Θ-setting. A Ck Θ-metric
is a positive definite Ck section of ⊗2 ΘT

∗
X. A Θ-metric determines (and is determined by) a Riemann

metric on Xo having a certain singular behavior at the boundary. We show that the Levi-Cevita connection
of this Riemann metric lifts to a “Θ-connection” on ΘTX, and that its curvature lifts to a well-defined
section of ⊗4 ΘT

∗
X. At boundary points, the lifted curvature tensor depends only on the metric tensor and

the Lie algebra structure on the fibers ΘT pX. In section 4 we define the invariants Ω ∈ Ck(∂X,ΘΛ2
X),

ξ ∈ Ck(∂X,End (ΘTX)), βN and βn ∈ Ck(∂X,ΘT ∗X) that we need to express the Θ-curvature tensor at
boundary points. These depend only on the metric tensor and the Θ-structure at boundary points. We then
determine the Θ-connection matrix at boundary points, in terms of a frame compatible with βn and βN , by
solving the Θ-analog of the first structure equation (lemma 4.1 and proposition 4.1).

In section 5 we prove our main result, theorem 5.1, which gives the (0, 4)-curvature tensor and Ricci
tensor of a Θ-metric at boundary points in terms of Ω, ξ, βn, βN and g. We show that the curvature tensor
is Einstein at the boundary if and only if ξ2 = −4F 2Id (where F = |βn|). In section 5.1 we consider the
Θ-analog of the induced metric on level sets of a defining function, and find the (0, 4) and Ricci curvature
tensors. We show that if ξ2 = −4F 2Id, then a component of the covariant derivative of the Ricci tensor
(with respect to its decomposition into irreducible components under the action of the orthogonal group) of
the induced metric becomes small in norm near the boundary (proposition 5.1).

Section 6 gives some applications of these results. Section 6.1 recovers the well-known facts about
Bergman-type metrics on strictly pseudoconvex domains, and gives analogous results for the induced metric
on level sets of a defining function (corollaries 6.1 and 6.2). In section 6.2 we recover Klembeck’s result on
the Bergman metric. In section 6.3 we show that any manifold whose boundary is a contact manifold admits
a complete “asymptotically Einstein” metric on its interior, in the sense that its Ricci tensor approaches, in
the norm defined by the metric, a constant negative multiple of the metric near the boundary (theorem 6.1).

Our convention for wedge products is that if α, β are covectors, then α ∧ β = 1
2 (α⊗ β − β ⊗ α).

Acknowledgments. We would like to thank Pat McDonald and Bun Wong for some helpful conversations.

2 Θ-Structure

In this section we will review some facts about Θ-structures. For more details see [5]. Let X be a smooth,
compact, N -dimensional (N > 2) manifold-with-boundary, let ι : ∂X → X be the inclusion map, and let
ρ ≥ 0 be a smooth defining function for X.

A Θ-structure on X is a projective class of one-forms Θ,

Θ ∈ C∞(∂X;T ∗X),

such that ι∗Θ is non-vanishing. A necessary (and sufficient of ∂X is connected) condition for X to admit
a Θ-structure is that the Euler characteristic of ∂X is zero (in particular if dim ∂X is odd then X always
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admits a Θ-structure). Associated with a Θ-structure is a subspace of C∞(X,TX),

VΘ :=
{
V ∈ ρC∞(X;TX) : Θ̃(V ) ∈ ρ2C∞(X)

}
,

where Θ̃ is any extension of Θ to a smooth one-form on X. The space VΘ is a C∞(X)-module and a Lie
algebra, independent of the choice of ρ, representative Θ, and extension Θ̃. A convenient frame (for a given
choice of ρ, Θ̃) is a local frame Y1, . . . , YN for TX such that, writing N = 2n if N is even or N = 2n + 1
otherwise,

dρ(YN ) = Θ̃(Yn) = 0, dρ(Yn) = Θ̃(YN ) = 1
and

Yi ∈ ker dρ ∩ ker Θ̃ if i 6= n,N .

A vector field V is in VΘ if and only if it can be written in terms of a convenient frame as

V = ρbnYn +
∑

i 6=n, N

ρbiYi + ρ2bNYN

for some smooth functions b1, . . . , bN . For p ∈ X, let Ip be the subspace of VΘ consisting of those elements
whose coefficients b1, . . . , bN all vanish at p for some (hence any) convenient frame. Let

ΘTX :=
⊔

p∈X

ΘT pX, where ΘT pX := VΘ mod Ip.

ΘTX is a smooth vector bundle over X, with local trivialization given by the coefficients bi. There is a
natural “evaluation” map, ιΘ : ΘTX −→ TX, obtained by choosing a representative element of VΘ and
evaluating at p; it is an isomorphism over Xo and the zero map over ∂X. VΘ lifts to the space of all smooth
section of ΘTX in the sense that for every V ∈ VΘ there corresponds a unique Ṽ ∈ C∞(X,ΘTX) such that
ιΘ ◦ Ṽ = V . Of course, Ṽ (p) is simply V mod Ip, which we will denote by [V ]p. The Lie algebra structure
on VΘ lifts to a Lie bracket on sections of ΘTX, satisfying ι ◦ [V,W ] = [ι ◦ V, ι ◦W ].

When p ∈ ∂X, Ip is an ideal in the Lie algebra VΘ. Thus the quotient, ΘT pX, inherits a Lie algebra
structure. For p ∈ ∂X, let

K1,p = {V ∈ VΘ : V = ρW, W ∈ C∞(X;TX) and tangent to ∂X} mod Ip

K2,p =
{
V ∈ VΘ : V = ρ2W, W ∈ C∞(X;TX)

}
mod Ip

and
K1 =

⊔
p∈∂X

K1,p, K2 =
⊔

p∈∂X

K2,p.

In terms of a convenient frame,

K1,p = span
{
[ρYi]p, i 6= n,N ; [ρ2YN ]p

}
K2,p = span

{
[ρ2YN ]p

}
.

This shows that K1 and K2 are sub-bundles of ΘTX over ∂X. K2 is a trivial line bundle (see the remark
following definition 4.1).
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A calculation shows that [
ΘT pX,

ΘT pX
]

= K1,p and [K1,p,K1,p] ⊆ K2,p

with equality holding if K1,p is not commutative. As a Lie algebra, ΘT pX is determined by its dimension
and the dimension of the center of K1,p (which is the co-rank of dι∗Θ).

Let ΘT
∗
X be the dual bundle to ΘTX. If Y1, . . . , YN is a convenient frame near p ∈ ∂X and α1, . . . , αN

is the dual frame, then ι∗Θρ
−1α1, . . . , ι∗Θρ

−1αN−1, ι∗Θρ
−2αN extend smoothly up to the boundary as local

sections of ΘT
∗
X to give a local frame for ΘT

∗
X near p (here ι∗Θ is the transpose of the vector bundle map

ιΘ). Let ΘΛm
X be the mth exterior power of ΘT

∗
X. Since the Lie algebra structure on VΘ lifts to a Lie

bracket on sections of ΘT
∗
X, we can define an exterior derivative operator on sections of ΘΛm

X by the
usual formula: for p ∈ X, V1,. . . , Vm+1 ∈ VΘ, β ∈ C1(X; ΘΛm

X),

(dβ)p ([V1]p, . . . , [Vm+1]p) = 1
(m+1)!

{∑m+1
i=1 (−1)i+1Vi ·

(
β(V1, . . . , V̂i, . . . , Vm+1)

)
+
∑

i<j(−1)i+jβ([Vi, Vj ], V1, . . . , V̂i, . . . , V̂j , . . . , Vm+1)
}∣∣∣

p
.

(1)

The value at p is independent of the choice of representatives Vi for the usual reasons at interior points, and
at boundary points because Ip is then an ideal in VΘ. Since ιΘ preseves Lie bracket, we have d ι∗Θ = ι∗Θd.

The following simple observation will be useful.

Lemma 2.1 Let β ∈ Cl(X; ΘΛm
X) (l > 0) and p ∈ ∂X. Then dβp depends only on the value of β at p and

the Lie algebra structure of ΘT pX. If f is a C1 function near p, then d(fβ)p = f(p)dβp.

Proof. The first sum in equation 1 vanishes at p because Vi ∈ ρC∞(X,TX). The second sum depends only
on the value of β and [Vi, Vj ] at p. The latter is equal to the Lie bracket of the Θ-tangent vectors [Vi]p, [Vj ]p
and is determined by the Lie algebra structure of ΘT pX. The second statement follows in the same way. //

3 Θ-Geometry

Since some of the motivating examples of a Θ-metric (such as the Bergman metric of a strictly pseudoconvex
domain (lifted to its square root), see section 6.2) are not smooth up to the boundary, we will work in the
“Ck category” (k ≥ 2). If ρ is a Ck+1 defining function for X, then there is a positive function f ∈ Ck(X)
and a smooth defining function ρ̃ such that ρ = fρ̃. Thus for example if T is a Ck section of TX, then ρ2T

is a Ck section of ΘTX. Equation 1 shows that d maps Ck(X,ΘΛm
X) into Ck−1(X,ΘΛm+1

X).

Definition 3.1 A Ck Θ-metric on X is a symmetric, positive definite, Ck section of ΘT
∗
X ⊗ ΘT

∗
X.

Since ιΘ canonically identifies ΘTX and TX over Xo, we can think of a Θ-metric as a Riemann metric on
Xo with a certain non-isotropic singularity at the boundary. We will briefly develop the idea of Θ-geometry,
guided by the treatment of b-geometry in [8]. Let E, F be vector bundles over X. A Θ-differential operator
of order m from sections of E to sections of F is a linear operator which can be expressed in terms of local
trivializations of E and F as a polynomial of degree at most m in elements of VΘ.

Definition 3.2 A Θ-connection on a vector bundle E over X is a first order Θ-differential operator

Θ∇ : Ck(X;E) −→ Ck−1(X; ΘT
∗
X ⊗ E),
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satisfying
Θ∇(fµ) = ι∗Θdf ⊗ µ+ fΘ∇µ

for all f ∈ Ck(X), µ ∈ Ck(X;E).

Let g be a Θ-metric on X. The Levi-Cevita connection of
(
Xo, (ι−1

Θ )∗g
)

lifts to a connection on ΘTX|Xo .
Pulling back by ι∗Θ, we obtain an operator from Ck(Xo,ΘTX) to Ck−1(Xo,ΘT

∗
X⊗ΘTX), which we denote

by Θ∇.

Lemma 3.1 Θ∇ extends to a Θ-connection on ΘTX.

Proof. Let β1, . . . , βN be an orthonormal basis of sections of ΘTX near p ∈ ∂X and β1,. . . , βN the dual
basis. We can define a matrix θi

j of Ck−1 local sections of ΘT
∗
X by solving the analog of the first structure

equation,
dβi = −

∑
k θ

i
k ∧ βk, i = 1, . . . , N,

0 = θi
j + θj

i .
(2)

We obtain
θi

j =
∑

−1
2
(Ai

kj −Ak
ji +Aj

ik)βk

where the Ai
jk are defined by

dβi =
∑
j<k

Ai
jkβ

j ∧ βk

(and the Ai
kj are defined for k ≥ j by requiring that Ai

kj = −Ai
jk). Since ι∗Θ is an isomorphism over the

interior and commutes with d, the θi
j restricted to Xo are the lift of the connection one-forms associated

with (ι−1
Θ )∗g and the frame ιΘ ◦ βi. Therefore Θ∇βi =

∑
θk

i ⊗ βk over Xo. If µ =
∑
µkβk is local section of

ΘTX near p ∈ ∂X, then over the interior we have Θ∇µ =
∑

k

(
ι∗Θdµ

k +
∑

j µ
jθk

j

)
⊗ βk. This extends to a

Ck−1 section near p, and shows that Θ∇ extends to a map Θ∇ : Ck(X,ΘTX) → Ck−1(X,ΘT ∗X ⊗ ΘTX).
It follows easily that Θ∇ is a Θ-connection. //

We can define a Θ-analog of the (0, 4)-curvature tensor, RΘ ∈ Ck−2(X,ΘΛ2
X ⊗ ΘΛ2

X), by

1
2

∑
j,k

Ri
ljkβ

j ∧ βk = dθi
l +
∑
m

θi
m ∧ θm

l (3)

where we have written RΘ =
∑
Ri

ljkβ
l⊗βj⊗βk⊗βi. OverXo, RΘ is the lift of the curvature of

(
Xo, (ι−1

Θ )∗g
)
.

It follows from lemma 2.1 and equations 2, 3 that when p ∈ ∂X, RΘ
p depends only on the value of g at p and

the Lie algebra structure, i.e., the Θ-structure, of ΘT pX.

4 The Structure equations for a Θ-metric

A Θ-metric determines the following natural orthogonal decomposition of ΘT pX at the boundary:

ΘT pX = K⊥1,p ⊕K1,p ∩K⊥2,p ⊕K2,p. (4)

We will need an orthonormal Θ-frame adapted to this decomposition.
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Definition 4.1 A Θ-structure is oriented by a vector field T tangent to ∂X if Θ(T ) > 0 (for some repre-
sentative of the projective class of one-forms determining the Θ-structure).

We always can find such a vector field by choosing a Riemann metric on ∂X and identifying ι∗Θ with
a vector field. An orientation determines a natural trivialization of K2 in the following way. Extend T to
a vector field on X (still denoted by T ). Since Θ(T ) > 0, [ρ2T ] 6= 0 near ∂X. The unit length section
corresponding to [ρ2T ] trivializes K2 over ∂X, and depends only on the Θ-metric and the oriented Θ-
structure. From now on we will fix ρ and assume that dρ(T ) = 0 and

∣∣[ρ2T ]
∣∣ = 1 near ∂X. An oriented

Θ-structure and a Θ-metric determine a two-form, Ω ∈ Ck(∂X; ΘΛ2
X), by

Ωp(vp, wp)[ρ2T ]p := pr2([vp, wp]), p ∈ ∂X,

where pr2 is the orthogonal projection onto K2 and the bracket is the pointwise Lie bracket of Θ-tangent
vectors. We also obtain a skew-symmetric endomorphism, ξ ∈ Ck(∂X; End (ΘTX)), by

g(vp, ξwp) := Ωp(vp, wp).

These invariants will be used in our expression for the Θ-curvature tensor at boundary points.
We observe that ι∗Θρ

−1dρ is a canonical section of ΘT
∗
X over ∂X, independent of the choice of defin-

ing function (proof: if ρ = fρ̃, then ι∗Θρ
−1dρ = ι∗Θρ̃

−1dρ̃ + ι∗Θf
−1df , with ι∗Θf

−1df ∈ ι∗ΘC
k(X,Λ1X) ⊂

ρCk(X,ΘΛ1
X)). Denote by βn the unit section corresponding to ι∗Θρ

−1dρ, and let βN be the section of
ΘT

∗
X dual to [ρ2T ] by the metric. Since dρ(T ) = 0, βn, βN are orthogonal unit sections of ΘT

∗
X in a

neighborhood of ∂X. Over the boundary they depend only on the metric and oriented Θ-structure. We can
now write the orthogonal decomposition 4 as

ΘT pX = (kerβn)⊥ ⊕ kerβn ∩ kerβN ⊕ (kerβN )⊥.

Fix a point po ∈ ∂X and extend to a local orthonormal frame β1, . . . , βN for ΘT
∗
X near po.

Lemma 4.1 At boundary points near po,

dβN = −1
2
Ω and dβi = −Fβn ∧ βi if i 6= N .

Here F := |ι∗Θρ−1dρ| depends only on the metric and Θ-structure over ∂X.

Proof. If p ∈ ∂X and vp = [V ]p, wp = [W ]p are in ΘT pX, then

d(βN )p(vp, wp) =
1
2
{
V (g(ρ2T,W ))−W (g(ρ2T, V ))− g(ρ2T, [V,W ])

} ∣∣
p
.

Since ρ2T , V , and W are Ck sections of ΘTX, the contraction with g is Ck up to the boundary. Since V ,
W vanish at the boundary,

−2d(βN )p(vp, wp) = g([ρ2T ]p, [vp, wp])p.

This recovers the K2,p component of [vp, wp] and shows that −2dβN = Ω.
Let YN := T and extend to a Ck convenient frame for TX near po (with respect to ρ and some extension

Θ̃ such that Θ̃(T ) = 1). Let α1, . . . , αN be the dual frame. Then

βi =
∑
i 6=N

ai
jι
∗
Θρ
−1αj + ai

N ι
∗
Θρ
−2αN
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with ai
N = βi([ρ2T ]) = g(βi, βN ) = δi

N . Therefore if i 6= N , we can write βi = ι∗Θρ
−1γi where γi is Ck up to

the boundary and
dβi = −Fβn ∧ βi + ι∗Θρ

−1dγi.

Since ι∗ΘC
k(X,Λ2X) ⊂ ρ2Ck(X,ΘΛ2

X), we have at boundary points dβi = −Fβn∧βN as sections of ΘΛ2
X.

//
As in lemma 3.1, define local sections θi

j of ΘT
∗
X satisfying the analog of the first structure equation by

Θ∇βj =
∑
θi

j ⊗ βi. Let 2θ =
∑N

i,j=1 θ
i
j ⊗ η

j
i , where ηj

i is the skew-symmetric matrix with 1 in row i, column
j, −1 in row j, column i, and zero elsewhere. We write the first structure equation as

∑
k

θ ∧ (βk ⊗ βk) =
N−1∑
k=1

Fβn ∧ βk ⊗ βk +
1
2
Ω⊗ βN . (5)

Here the wedge product is
(α⊗ ηj

i ) ∧ (γ ⊗ βk) = α ∧ γ ⊗ ηj
i βk

where ηj
i ∈ so(N) acts on the frame β1, . . . , βN in the natural way: ηj

i βk = δkjβi − δkiβj . Let ξ act on
ΘT

∗
X|∂X via the metric, so that ξβ(v) = −β(ξv).

Proposition 4.1 The unique solution to equation 5 at boundary points near po is

θ =
1
2
βN ⊗ ξ − 1

2

N∑
i=1

ξβi ⊗ ηN
i − F

N−1∑
i=1

βi ⊗ ηn
i .

Proof. We have

θ ∧

(
N∑

k=1

βk ⊗ βk

)
=

1
2

N∑
k=1

βN ∧ βk ⊗ ξβk +
1
2

N∑
k=1

βN ∧ ξβk ⊗ βk

+
1
2

N∑
k=1

ξβk ∧ βk ⊗ βN − F
N−1∑
k=1

βk ∧ βn ⊗ βk.

Since
∑N

k=1 β
k ⊗ ξβk = −

∑N
k=1 ξβ

k ⊗ βk,

θ ∧

(
N∑

k=1

βk ⊗ βk

)
=

1
2

N∑
k=1

ξβk ∧ βk ⊗ βN − F
N−1∑
k=1

βk ∧ βn ⊗ βk.

In this basis and with our wedge convention, Ω =
∑N

k=1 ξβ
k ∧ βk. The uniqueness follows in the usual way.

//

5 The curvature tensor

Before we state the main result of this section we fix some notation. Given (0, 2)-tensors h, k, we define a
(0, 4)-tensor h∧© k by

h∧© k(x, y, z, w) = h(x, z)k(y, w) + h(y, w)k(x, z)− h(x,w)k(y, z)− h(y, z)k(x,w).
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If h, k are both symmetric, then h∧© k is an algebraic curvature tensor; if ω is antisymmetric, then 4ω ⊗
ω + ω ∧©ω is a curvature tensor (see [2], 1.110, and [3], §3). We write the symmetric product of tensors as
α ◦β, with the convention that α ◦α = α⊗α for (0, 1) tensors. If A is a (1, 1)-tensor and h is a (0, 2)-tensor,
we let Ah denote the (0, 2)-tensor defined by Ah(V,W ) = h(AV,W ). Note that since ξ is skew-symmetric,
Ω = −ξg and ξ2g is a symmetric (0, 2)-tensor.

We will show below that at boundary points, ξβN = 2Fβn. It is not in general true that ξβn = −2FβN at
boundary points. Put ν = ξβn + 2FβN . Then ν is defined on a neighborhood of ∂X, and over ∂X depends
only on g and the oriented Θ-structure (see section 4). The main result of this section is the following
expression for the curvature of a Θ-metric at the boundary in terms of g and invariants of the Θ-structure.

Theorem 5.1 Let g be a Ck Θ-metric on X, k ≥ 2. Then at boundary points the Θ-curvature tensor of g
is

−1
8
(
4F 2g ∧© g + 4Ω⊗ Ω + Ω∧©Ω

)
+ Fg ∧©βN ◦ ν − 1

4
(
ξ2 + 4F 2

)
g ∧©βN ◦ βN .

The Ricci Θ-curvature tensor is

1
2
(
ξ2 − 2F 2N

)
g + F (N − 1)βN ◦ ν − 1

4
tr
(
ξ2 + 4F 2

)
βN ◦ βN .

Proof. We first prove a technical lemma. Define ξi
j by ξβj =

∑
i ξ

i
jβi, and note that ξβj = −

∑
i ξ

j
i β

i.

Lemma 5.1

1. At boundary points, ξβN = 2Fβn, and ξβN = 2Fβn.

2. [ηj
i , η

l
k] = δjkη

l
i + δjlη

i
k + δikη

j
l + δilη

k
j .

Proof. Since dρ(Yl) = δln, we have [βl, βN ] = 2FδlnβN + ρVΘ. Therefore at boundary points, g(βl, ξβN ) =
2Fδln, and ξl

N = 2Fδln. Since the ξi
j are skew-symmetric in i, j, ξβN = 2Fβn. The proof of 2 is a

straightforward computation. //
Fix po ∈ ∂X and choose a local orthonormal Θ-coframe β1, . . . , βN as in lemma 4.1. Using lemma 5.1.2,

the second structure equation 3 can be written

1
2
RΘ = dθ + θ ∧ θ

where RΘ =
∑

i<l

(∑
j,k R

i
ljk

)
⊗ ηl

i. Using lemmas 2.1, 4.1, and 5.1.1, we have at boundary points

d
(
ξβi
)

= F
N−1∑
l=1

ξi
lβ

n ∧ βl + FδinΩ = −Fβn ∧ ξβi + Fδin
(
Ω− 2Fβn ∧ βN

)
.

Therefore by proposition 4.1 we have, at boundary points,

dθ = −1
4
Ω⊗

(
ξ + 2FηN

n

)
+
F

2

N∑
i=1

βn ∧ ξβi ⊗ ηN
i + F 2

N∑
i=1

βn ∧ βi ⊗ ηn
i + 2F 2βn ∧ βN ⊗ ηN

n .
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Let Ak =
∑N

i=1 ξ
i
kη

N
i − 2Fηn

k , B = ξ − 2FηN
n . Then 2θ = βN ⊗B +

∑N
k=1 β

k ⊗Ak, and

θ ∧ θ =
1
4

N∑
k=1

βN ∧ βk ⊗ [B,Ak] +
1
8

N∑
k,l=1

βk ∧ βl ⊗ [Ak, Al]

=
1
4

N∑
k=1

βN ∧ βk ⊗ [B,Ak] +
1
8

N∑
i,k=1

ξβi ∧ ξβk ⊗ [ηN
i , η

N
k ]

+
F

2

N∑
i,k=1

ξβi ∧ βk ⊗ [ηN
i , η

n
k ] +

F 2

2

N∑
i,k=1

βi ∧ βk ⊗ [ηn
i , η

n
k ].

Using lemma 5.1, and Ω =
∑N

k=1 ξβ
k ∧ βk, we obtain (at boundary points)

dθ + θ ∧ θ = −1
8

(
2Ω⊗ ξ +

N∑
i,j=1

(ξβi ∧ ξβj + 4F 2βi ∧ βj)⊗ ηj
i

)
+ 2F 2βn ∧ βN ⊗ ηN

n

+
F

2

N∑
j=1

(ξβj ∧ βN ⊗ ηn
j + βj ∧ ξβn ⊗ ηN

j ) +
1
4

N∑
k=1

βN ∧ βk ⊗ [B,Ak].

Again using lemma 5.1,

1
4

N∑
k=1

βN ∧ βk ⊗ [B,Ak] = −1
4

N∑
k=1

βN ∧ ξβk ⊗ ([ξ, ηN
k ]− 2Fηn

k )

−F
2

N∑
k=1

βN ∧ βk ⊗ ([ξ, ηn
k ] + 2FηN

k )− 2F 2βn ∧ βN ⊗ ηN
n .

Recall ξβn = −2FβN + ν. Then

dθ + θ ∧ θ = −1
8

(
2Ω⊗ ξ +

N∑
i,j=1

(ξβi ∧ ξβj + 4F 2βi ∧ βj)⊗ ηj
i

)

−F
2

N∑
k=1

βN ∧ βk ⊗ [ξ, ηn
k ]− 1

4

N∑
k=1

βN ∧ ξβk ⊗ [ξ, ηN
k ] +

F

2

N∑
k=1

ν ∧ βk ⊗ ηk
N .

To obtain the (0, 4)-curvature tensor, we identify so(N) with ΘΛ2
X near po using the frame and the Θ-

metric. Then ηj
i is identified with 2βi ∧ βj (the factor of 2 comes from our wedge convention), ξ is identified

with Ω, and [ξ, ηl
k] with 2

(
ξβk ∧ βl + βk ∧ ξβl

)
. We have, for any (0, 1) tensors α, β, γ, δ,

4α ∧ β ⊗ γ ∧ δ = α⊗ γ ∧©β ⊗ δ, (6)

so that

4F 2
N∑

i,j=1

βi ∧ βj ⊗ βi ∧ βj = F 2
N∑

i,j=1

βi ⊗ βi ∧©βj ⊗ βj = F 2g ∧© g

and
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N∑
i,j=1

ξβi ∧ ξβj ⊗ βi ∧ βj =
1
4

N∑
i,j=1

ξβi ⊗ βi ∧© ξβj ⊗ βj =
1
4
Ω∧©Ω

(since ξ is skew-symmetric,
∑N

i=1 ξβ
i⊗ βi =

∑N
i=1 ξβ

i ∧ βi). Therefore the Θ-curvature tensor, evaluated at
boundary points, is

1
2
RΘ = − 1

16
(
4F 2g ∧© g + 4Ω⊗ Ω + Ω∧©Ω

)
+F

N∑
k=1

(
βk ∧ βN ⊗ βk ∧ ν + βk ∧ ν ⊗ βk ∧ βN

)
+

1
2

N∑
k=1

(
ξβk ∧ βN ⊗ ξβk ∧ βN − 4F 2βk ∧ βN ⊗ βk ∧ βN

)
(a pair of terms have been cancelled using lemma 5.1.1 and the skew-symmetry of ξ). Using equation 6 we
obtain the desired expression for the (0, 4)-curvature.

An easy computation shows that if A is a (1, 1)-tensor and h is a (0, 2)-tensor, then the Ricci contraction
of Ag ∧©h is

Ric(Ag ∧©h)(x, z) = (trh)Ag(x, z) + (trA)h(x, z)− h(Ax, z)− h(x,Atz).

Using this and a few elementary computations we obtain:

Ric(g ∧© g) = 2(N − 1)g, Ric(Ω⊗ Ω) = −ξ2g, Ric(Ω∧©Ω) = −2ξ2g
Ric(g ∧©βN ◦ ν) = (N − 2)βN ◦ ν (by lemma 5.1.1, tr (βN ◦ ν) = ν(βN ) = 0)

Ric(g ∧©βN ◦ βN ) = g + (N − 2)βN ◦ βN

Ric(ξ2g ∧©βN ◦ βN ) = ξ2g + (tr ξ2)βN ◦ βN − 2 Sym
(
(ξ2βN

)
⊗ βN )

where Sym is the symmetric part. Since ξ2βN = 2Fν − 4F 2βN ,

Ric(ξ2g ∧©βN ◦ βN ) = ξ2g +
(
tr ξ2 + 8F 2

)
βN ◦ βN − 4FβN ◦ ν.

This gives the desired expression for the Ricci tensor. //

Corollary 5.1 RicΘ = cg at boundary points for some function c on ∂X if and only if ξ2 = −4F 2Id (in
which case c = −F 2(N + 2)).

Proof. If ξ2g = −4F 2Id, lemma 5.2.1 implies ν = 0 and so by theorem 5.1, RicΘ = −F 2(N+2)g. Conversely,
suppose RicΘ = cg for some function c on ∂X. If ν 6= 0, then ν(βi) = α 6= 0 for some i 6= n, N . Evaluating
RicΘ = cg on (βN , βi) gives −g(βn, ξβi) = (N − 1)α. On the other hand, α = ν(βi) = −g(βn, ξβi). Since
N > 2, we conclude that α = 0 and ν = 0. Now evaluating RicΘ = cg on (βn, βn) gives c = −F 2(N + 2),
and evaluating on (βN , βN ) gives tr (ξ2 + 4F 2) = 0. Therefore ξ2g = −4F 2g, and so ξ2 = −4F 2Id. //

5.1 Curvature of level sets of a defining function

We now examine the behavior near the boundary of the metric induced on level sets of a defining function by
a Θ-metric. As above let (X, g) be a smooth manifold-with-boundary and Ck Θ-metric g (k ≥ 2). Let ρ ≥ 0

10



be a Ck+1 defining function for X, and U a neighborhood of ∂X where dρ 6= 0. Consider the hypersurfaces
Mε := {ρ = ε}, ε > 0, with the metric gε induced by (ι−1

Θ )∗g. Let Rε be the (0, 4)-curvature tensor of
(Mε, gε), let pr be the orthogonal projection onto ker dρ and let RΘ

ε = (pr ◦ ιΘ)∗Rε. Letting ε > 0 vary we
obtain a section

RΘ
ρ ∈ Ck−2(Xo ∩ U,ΘΛ

2
X ⊗ ΘΛ

2
X),

which we regard as the Θ-analog of the curvature tensor of Mε. Let pr1 denote the orthogonal projection
onto β⊥n .

Theorem 5.2 RΘ
ρ extends to a Ck−2 section of ΘΛ2

X ⊗ ΘΛ2
X over U . Over ∂X,

RΘ
ρ = −1

8
{
4Ω⊗ Ω + Ω∧©Ω + 2ξ2g ∧©βN ◦ βN − 4βN ◦ ν ∧©βN ◦ ξβn

}
◦ pr1

The Ricci contraction of RΘ
ρ over ∂X is

RicΘ
ρ =

1
4
{
2ξ2g −

(
tr (ξ2 + ν ◦ ξβn) ◦ pr1 − 4F 2

)
βN ◦ βN + ν ◦ (ν − 6FβN )

}
◦ pr1.

Proof. Lifting the Gauss curvature equation, we have over the interior

RΘ
ρ =

{
RΘ +

1
2
l∧© l

}
◦ pr1,

where l is the symmetric (0, 2)-tensor associated with Θ∇βn. Since pr1 extends to a smooth bundle map of
ΘTX over U (at the boundary pr1 is orthogonal projection onto K1), this clearly extends to Ck−2(U,ΘΛ2

X⊗
ΘΛ2

X). By proposition 4.1 we have, at boundary points,

Θ∇βn =
1
2
βN ⊗ ξβn +

1
2
ξβn ⊗ βN − F

∑
i 6=n, N

βi ⊗ βi.

A computation gives

l∧© l =
{
F 2g ∧© g − 2Fg ∧©βN ◦ ν + 2F 2g ∧©βN ◦ βN + βN ◦ ν ∧©βN ◦ ξβn

}
◦ pr1.

The expression for RΘ
ρ and RicΘ

ρ now follow from theorem 5.1 and some routine computations. //
Consider the case where N = 2n is even and ξ2 = −4F 2Id (see for example section 6). Then over ∂X,

RΘ
ρ = − 1

8

(
4Ω⊗ Ω + Ω∧©Ω− 8F 2g ∧©β2n ◦ β2n

)
◦ pr1

RicΘ
ρ = −2F 2

(
g − nβ2n ◦ β2n

)
◦ pr1.

(7)

We would like to see whether the curvature tensor of (Mε, gε) has any special properties in this case, at least
asymptotically as ε → 0+. Choosing a basis βi, βi+n (i 6= n, 2n) for β⊥n ∩ β⊥2n such that ξβi = −βi+n, we
see that at boundary points, RΘ

ρ restricted to K1 is 4F 2 times the curvature tensor of the Heisenberg group,
H2n−1 = Rn−1

q ×Rn−1
p ×Rt, with the metric

gh =

(
n−1∑
i=1

pidqi − dt

)2

+
n−1∑
i=1

(dqi)2 + (dpi)2.
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None of the irreducible components of the curvature tensor of H2n−1 with respect to the O(2n − 1) action
on curvature tensors vanish. Therefore we consider the (0, 3)-tensor ∇εRicε (where ∇ε is the Levi-Cevita
connection on Mε, and assuming that g is Ck with k ≥ 3). On any Riemannian manifold, the bundle
H ⊂ ⊗3T ∗M where ∇Ric takes its values decomposes into irreducible components under the action of the
orthogonal group as H = Q ⊕ S ⊕ A (see [2], chapter 16). For the Heisenberg group (H2n−1, gh), the
Q and S components of ∇Ric are zero. We will show that for (Mε, gε), ∇εRicε has this special property
“asymptotically.”

Proposition 5.1 Let (∇εRicε)Qε⊕Sε
be the component of ∇εRicε in Qε ⊕ Sε. Then

lim
ε→0+

sup
Mε

∣∣∣(∇εRicε)Qε⊕Sε

∣∣∣
gε

= 0.

Proof. We first show that the decomposition Hε = Qε ⊕ Sε ⊕ Aε lifts to the Θ-setting. For ε > 0, ι∗Θ gives
an inner product preserving vector bundle isomorphism between T ∗Mε and βn⊥ over Mε. Letting ε vary,
we define the correpsonding subbundles ΘH = ΘQ ⊕ ΘS ⊕ ΘA ⊂ ⊗3 ΘT

∗
X over Xo ∩ U . Since the fibers of

Hε, Qε, Sε, Aε and hence their Θ counterparts ΘH, etc., can be described in terms of the pointwise inner
product gε, resp. g (see [2], 16.2), ΘH and its orthogonal decomposition extends to the boundary.

It follows from the Gauss (connection) equation and the fact that Θ∇ is the lift of ∇ that for ε > 0,

(pr ◦ ιΘ)∗ (∇εRicε) = Θ∇RicΘ
ρ

∣∣
⊗3β⊥n

.

Since ιΘ preserves inner products and ΘQ, ΘS, etc., are the lift of Qε, Sε, etc., we have for ε > 0,∣∣∣(∇εRicε)Qε⊕Sε

∣∣∣
gε

=
∣∣∣((pr ◦ ιΘ)∗∇εRicε

)
ΘQ⊕ΘS

∣∣∣
g

=
∣∣∣(Θ∇RicΘ

ρ

)
ΘQ⊕ΘS

∣∣∣
g
.

(In the last equality we are considering RicΘ
ρ as an element of ⊗3βn⊥ (by restriction) and using the norm

on ⊗3βn⊥ induced by g.) Since Θ∇RicΘ
ρ extends continuously up to the boundary, it suffices to show that

its component in ΘQ⊕ ΘS vanishes at the boundary. Using equations 7 we can write

RicΘ
ρ = −2F 2

(
g − βn ◦ βn − nβ2n ◦ β2n

)
+ ρCk−3(U,⊗3 ΘT

∗
X).

Using lemma 2.1, we have at boundary points

Θ∇RicΘ
ρ = 2nF 2 Θ∇

(
βn ◦ βn + nβ2n ◦ β2n

)
.

Upon restricting to ⊗3β⊥n , the terms involving Θ∇(βn ◦ βn) will vanish. By proposition 4.1 we have at
boundary points

Θ∇β2n = 2Fβ2n ◦ βn − 1
2
Ω.

From this it follows that if X ∈ β⊥n ,
(
Θ∇RicΘ

)
(X,X,X) = 0. This means that the component in ΘQ⊕ ΘS

is zero at boundary points (see [2], 16.4). //
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6 Examples and Applications

6.1 Strictly pseudoconvex domains

Let U be a strictly pseodoconvex domain in a complex n-manifold with strictly plurisuperharmonic defining
function φ, so that U = {φ > 0}, ∂U = {φ = 0}, and the symmetric two-tensor h(u, v) := −ddcφ(u, Jv)
is positive-definite (J is the complex structure operator). We will assume that φ ∈ Ck+3(U), k ≥ 2, and
that ∂U is smooth. This implies that the oriented projective class of dcφ

∣∣
∂U can be represented by a smooth

one-form θ ∈ C∞(∂U , T ∗U). Let X be the “square root” of U , that is, the smooth manifold-with-boundary
formed by adjoining the square root of a smooth defining function to C∞(U) (see [5], §2). There exists a
positive Ck+2 function f such that fφ is a smooth defining function, so ρ :=

√
φ lifts to a Ck+2 defining

function for X. The “identity” map determines a canonical C∞ map

ι1/2 : X −→ U ,

which is a C∞ isomorphism over the interior and over the boundary (but not smoothly invertible up to
the boundary). We obtain a Θ-structure on X by taking Θ = ι∗1/2θ. Consider the Kähler form ωc :=
−2c−1ddc log φ, parameterized by the positive number1 c. The lift of ωc to X is

ωX,c := ι∗1/2ωc =
2
c

{
2ρ−1dρ ∧ ρ−2ι∗1/2d

cφ− ρ−2ι∗1/2dd
cφ
}
,

and the associated (complete) Kähler metric gc(u, v) := ωc(u, Jv) lifts to

gX,c := ι∗1/2gc =
2
c

{
2
(
ρ−1dρ

)2
+

1
2

(
ρ−2ι∗1/2d

cφ
)2

+ ρ−2ι∗1/2h

}
.

Since ι∗1/2d
cφ is in the projective class of Θ at boundary points, this shows that gc lifts to a Ck Θ-metric

on X, and ωc to a Ck section of ΘΛ2
X. After determining the invariants Ω and ξ, we use theorem 5.1 to

recover a well-known result about the curvature of gc near ∂U .

Proposition 6.1 Over ∂X we have Ω =
√
c ι∗ΘωX,c, ξ2 = −c Id, ν = 0 and F =

√
c/2.

Proof. Let T be a vector field near ∂X with
∣∣[ρ2T ]

∣∣
ι∗ΘgX,c

= 1 and let β2n be the Θ-covector field dual to

[ρ2T ] by ι∗ΘgX,c as in section 4. Using the expression for gX,c above we find

β2n =
1√
c
ι∗Θι

∗
1/2d

c log φ+ ρCk+1(X,ΘT
∗
X)

and so

dβ2n = −
√
c

2
ι∗ΘωX,c + ρCk(X,ΘΛ

2
X).

Using lemma 4.1 we obtain, at boundary points, Ω =
√
c ι∗ΘωX,c. Let ΘJ denote the lift of the complex

structure operator on U to an automorphism of ΘTX over Xo. Then ΘJ
2 = −Id, and ι∗ΘgX,c(v, w) =

ι∗ΘωX,c(v,ΘJw). It follows that ΘJ extends continuously up to ∂X, and ξ = −
√
c ΘJ over ∂X. Therefore

ξ2 = −c Id, F =
√
c/2, and ν = 0. //

Lifting the curvature tensor of gX,c to ΘΛ2
X ⊗ ΘΛ2

X gives the Θ-curvature tensor of ι∗ΘgX,c. Applying
theorem 5.1 we obtain

1The factor of 2 appears because of our wedge convention, which determines the relationship between exterior derivative
and tensor products. The parameter −c is the asymptotic value of the holomorphic sectional curvature of gc.
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Corollary 6.1 The curvature Rc of gc approaches the curvature tensor of constant holomorphic sectional
curvature −c at the boundary. I.e.,

lim
∂U

∣∣Rc +
c

8
(gc ∧© gc + 4ωc ⊗ ωc + ωc ∧©ωc)

∣∣
gc

= 0

and the Ricci tensor Ricc satisfies
lim
∂U

∣∣Ricc +
c

2
(n+ 1)gc

∣∣
gc

= 0.

Applying theorem 5.1 and proposition 5.1 we obtain the following results for the hypersurfaces Uε :=
{φ = ε}, which give an analog of Klembeck’s result [7] for these hypersurfaces. They show that for any
strictly pseudoconvex domain, the curvature tensor of the induced metric gc,ε behaves like a Berger sphere
metric near the boundary.

Corollary 6.2 Let Rc,ε be the (0, 4)-curvature tensor and Ricc,ε the Ricci tensor of (Uε, gc,ε), and let ιε :
Uε → U be the inclusion map. Then

1. limε→0 supUε

∣∣∣∣Rc,ε +
c

8
ι∗ε

(
4ωc ⊗ ωc + ωc ∧©ωc − 2gc ∧©

(
c−1/2dc log φ

)2
)∣∣∣∣

gc,ε

= 0

2. limε→0 supUε

∣∣∣∣Ricc,ε +
c

2

(
gc,ε − n ι∗ε

(
c−1/2dc log φ

)2
)∣∣∣∣

gc,ε

= 0

3. limε→0 supUε

∣∣∣(∇c,εRicc,ε)Qc,ε⊕Ac,ε

∣∣∣
gc,ε

= 0.

In [2], §16.56, Besse asks for examples of Riemannian manifolds with (∇Ric)Q⊕A = 0 which are neither
locally homogeneous, nor locally isometric to Riemannian products and have non-parallel Ricci tensor. Part
3 of corollary 6.2 shows that for any ε > 0 and sufficiently small, ∂U admits a Riemann metric g with
|(∇Ric)Q⊕A|g < ε.

6.2 The Bergman metric

Let U be a strictly pseudoconvex domain in Cn, n ≥ 2. Consider the Bergman metric

gB =
∑ ∂2

∂zi∂zj
log kB dzi ◦ dzj ,

where kB is the Bergman kernel of U restricted to the diagonal. Using Fefferman’s asymptotic expansion [6],
this can be written in a neighborhood of ∂U as

gB = −(n+ 1)
∑ ∂2

∂zi∂zj
log φdzi ◦ dzj

with associated Kähler form
ωB = −n+ 1

2
ddc log φ.

Here φ has the form ψ(Φ+Φ̃ψn+1 logψ)−1/(n+1), ψ being the Euclidean distance to ∂U and Φ, Φ̃ are smooth
up to the boundary with Φ > 0. This shows that

√
φ lifts to a C2n+1 defining function for the square root

of U , and gB to a C2n−1 Θ-metric. Corollary 6.1 shows that the curvature tensor of gB approaches the
curvature tensor of constant holomorphic sectional curvature −4/(n + 1) at the boundary, recovering the
well-known result of Klembeck [7].
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6.3 Manifolds with contact boundary

We will construct an “asymptotically Einstein” metric on the interior of any manifold whose boundary is a
contact manifold. For simplicity we will work in the C∞ setting.

Theorem 6.1 Let X be any smooth, 2n-dimensional manifold with contact boundary. For any c > 0 there
exists a complete smooth metric g on Xo such that

lim
∂X

|Ric + cg|g = 0. (8)

Proof. We may assume without loss of generality that c = 2(n + 1), since multiplying the metric by a
constant c > 0 scales the Ricci tensor by c−1. Fix an identification of a collar neighborhood of ∂X with
[0, 1) × ∂X. We will construct a Θ-metric on [0, 1) × ∂X whose Ricci tensor at boundary points satisfies
Ric = −2(n+1)g (as a Θ-tensor). We then extend the metric in a smooth but otherwise arbitrary way to X.
The restriction to Xo will be a Riemann metric whose Ricci tensor satisfies 8, and the boundary behavior
of the metric will insure completeness.

To construct the metric on [0, 1)×∂X we need to recall some facts about contact geometry, following [1].
A contact manifold M is a 2n − 1 manifold equipped with a one-form θ such that θ ∧ (dθ)n−1 is a volume
form. A contact metric structure is a quadruple (J, T, θ, b) consisting of a field of automorphisms J of TM ,
a vector field T , a contact form θ, and a Riemann metric b such that:

1. θ(T ) = 1

2. J2 = −Id+ θ ⊗ T

3. b(JX, JY ) = b(X,Y )− θ(X)θ(Y ) for all X, Y ∈ TM

4. If Φ is the two-form defined by Φ(X,Y ) = b(X, JY ), then Φ = dθ.

Item 3 implies that θ = b(T, ·), and 4 implies that dθ(T, ·) = 0 (so that T is the characteristic vector
field associated to the contact form). We will use the following fact (see [1], II.3): On any contact manifold
(M, θ), there exists a contact metric structure (J, T, θ, b) (same θ).

Fix a contact metric structure on ∂X. Let p2 be projection onto the second factor of [0, 1)×∂X and put
θ̃ := p∗2 θ. We give [0, 1)× ∂X the Θ-structure determined by the restriction of θ̃ to ∂X, and oriented by the
vector field T . Let t be the coordinate on [0, 1), let b̃ be the pull-back of the contact metric b and consider
the Θ-metric

g :=
(
t−1dt

)2
+
(
t−2θ̃

)2

+ t−2
(
b̃− θ̃2

)
.

If we regard T as a vector field on [0, 1)× ∂X annihilated by dt, then b̃(T, ·) = θ̃ (this follows from item
3 above). Then t2T has unit length, and by lemma 4.1,

Ω = −2d
(
t−2θ̃

) ∣∣∣
∂X

= −2
(
−2t−1dt ∧ t−2θ̃ + t−2dθ̃

) ∣∣∣
∂X

= −2
(
−2t−2dt ∧ t−2θ̃ + t−2p∗2 dΦ

) ∣∣∣
∂X

where Φ is the two-form in item 4. Therefore an extension of ξ to a continuous section of End
(
ΘT ([0, 1)× ∂X)

)
is given by ξ̃, where

g(U, ξ̃V ) = −2
(
−2t−1dt ∧ t−2θ̃ + t−2p∗2 dΦ

)
.
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Since J2 = −Id on ker dt∩ ker θ (by item 2 above) and t−1dt, t−2θ̃ are orthonormal, we see that ξ̃2 = −4Id,
and so ξ2 = −4Id. By theorem 5.1, the Ricci tensor of g at boundary points, as a Θ-metric, is −2(n+ 1)g.
Now extend g in a smooth but otherwise arbitrary way to X. For the Riemann metric determined by the
restriction of g to Xo, we obtain equation 8. The metric is complete because the term (t−1dt)2 prevents
geodesics from reaching the boundary in finite time. //
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