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ASYMPTOTIC DIAGONALIZATIONS OF A LINEAR
ORDINARY DIFFERENTIAL SYSTEM

Feipeng Xie, Ph.D.

Western Michigan University, 1995

Consider the following system:

^  =  A(t)y, t e l 0 = [*o» +oo)i

where A(t) =  A(t) +  R(t)  with A(t) a diagonal matrix and to is a finite number. 

In this dissertation, we will discuss the asymptotic solution of the system for the 

following two cases:

1. The real parts of the diagonal elements of A(t) are separated from each 

other for t € Iq by a fixed number and matrix R(t) € LP(I0), where p > 1.

2. The real parts of some eigenvalues of A(t) have same limit as t goes to 

infinite.

Harris and Lutz (1977) proved that, in Case 1, the asymptotic solution of 

the system can be obtained by performing certain transformations repeatedly k 

times (k satisfies 2k > p). In Chapter II of this dissertation, the result of Harris 

and Lutz is generalized and the asymptotic solutions are given directly.

The asymptotic solution of the system in Case 2 is discussed in Chapter III 

and some known results are extended. In Chapter IV the main result of Chapter 

III is used to find the deficiency index of a certain fourth order ordinary self-adjoint 

differential operator.
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CHAPTER I

INTRODUCTION

The result of N. Levinson [31] in 1948, known as the Levinson Theorem, 

plays an important role in the study of the asymptotic behavior of solution of 

a linear system of differential equations, but as it is mentioned in the preface of 

[14] the initial applications of the theorem were only of a very straightforward 

kind. In order to find the asymptotic solutions of the linear systems of differential 

equations for which the Levinson Theorem can not be used directly, we have seen 

many extensions of this important theorem in last forty years (e.g. R. Bellman 

[1], [2], K. Chiba and T. Kimura [3], E.A. Coddington and N. Levinson [4], W.A. 

Coppel [5], A. Devinatz [6], A. Devinatz and J. Kaplan [9], M.S.P. Eastham [10],

H. Gingold [17], H. Gingold, P.F. Hsieh and Y. Sibuya [18], W.A. Harris, Jr. and 

D.A. Lutz [21], [22], [23], W.A. Harris, Jr. and Y. Sibuya [24], P. Hartman [25], P. 

Hartman and A. Wintner [26], [27], P.F. Hsieh and F. Xie [28]). In this Chapter 

we will give a brief introduction of the development of this theory. A good source 

for the general theory can be found in the book by Eastham [14].

Consider the linear system of differential equations

§  =  m v ,  ( i- i)

where y is an n-dimensional vector and A(t) is an n x n matrix continuous on 

IQ =  [<0,oo), (tQ: finite). In order to state the Levinson theorem we need : 

A ssum ption  1.1. The matrix A(t) is in the form

A(t) =  A (i) + R(t),

1
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2

where A (t) =  diag{Ai(t), A2(t), • • • ,An(i£)}, with A j(t), (j  =  1,2, ••• ,« ), continu

ous on Jo.

A ssum ption  1.2. Let Djk(t) be the real part of Aj(t) — Ak(t), i.e. Djk(t) =  

7£(Aj(<) — Afc(t)), (j, k = 1,2, •••,« ). For each fixed j, the set of positive 

integers{l,2, •••,«}  is the union of two disjoint subsets Pfl  and Pj2, where

(i) k e  P51 if

A version of the Levinson theorem can be stated as the following. 

T h eo rem  L [31]. Under the Assumptions 1.1, 1.2 and 1.3, there exists an n x n  

matrix Q(t) such that

for some positive number K; 

(ii) k e  Pj2 if

for some positive number K.

A ssum ption  1.3. The matrix R(t) is an n x n matrix satisfying

R(t) G L \ I 0).

1. the derivative Q'(t) exists, and the entries o f Q(t) and Q'{t) are continuous

in t on the interval h ,

2. limt_ +00 Q(t) = 0,

3. the transformation:

changes system (1.1) into
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on the interval h ,  where In is the n x  n identity matrix.

Levinson also considered the following system:

&  =  [A +  V(<) + R(t)]y, (1.2)

where A is a constant matrix, V(t) and R(t) are n x n continuous matrices. 

A ssum ption  1.4. The entries of matrix V'(t) are continuous for t > t0, V(t) —> 0 

as t —* oo, and |V/(<)| G Lx(Iq).

T h eo rem  LE [31]. Assume that: (i) A is a constant matrix with distinct eigen

values; (ii) V(t) satisfies Assumption 1.4; (Hi) R'(t) is continuous for t > t0, 

R (t) G L x{If); and (iv) the eigenvalues of the matrix A + V(t) satisfy Assumption

1.2. Then there exists an n x n  matrix Q(t) such that

1. the derivative Q'{t) exists, and the entries of Q(t) and Q'(t) are continuous 

in t on the interval / 0)

2. limt_ +00 Q(t) =  0,

3. the transformation:

y = P[In +  Q{t)]z

changes system (1.2) into

on the interval Io, where P is a constant matrix such that P l A P  is a 

diagonal matrix and A(t) is a diagonal matrix with diagonal elements the 

eigenvalues of A + V ( t ) .

Assumption 1.2 and 1.3 are not independent, but related each other. If 

Djk(t), (j , k  = 1,2, ■ • •, n), satisfy some stronger condition, then R(t) does not 

need to be in L1(7o), but in L p(Iq) for some p > 1.
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An important extension of Theorem L for system (1.1) is the Hartman- 

Wintner theorem [27]. In order to state this theorem we need another two as

sumptions.

A ssum ption  1.5. There exists a positive constant 6 such that for each pair of 

indices j and k, (j  ^  k),

|T>j*(*)l >  ^ > 0> fo r  t e  Jo,

where Djk(t), (j, k = 1,2, • • •, n), are defined in assumption 1.2.

A ssum ption  1.6. R(t) € Lp(Io), for some constant p > 1.

A version of the Hartman-Wintner Theorem can be given as follows: 

T heo rem  H W  [27]. Under the Assumptions 1.1, 1.5 and 1.6 with 1 < p <  2, 

there exists an n x n matrix Q(t) such that

1. the derivative Q'(t) exists, and the entries of Q{t) and Q'(t) are continuous 

in t on the interval Io,

2. limt_ +00 Q(t) =  0,

3. the transformation:

V = [h + Q(t)\z

changes system (1.1) into

J  =  [A(t) +  diag{J?(<)}]z

on the interval Io, where J„ is the n x  n identity matrix.

Hartman-Wintner Theorem has been further generalized by Harris and 

Lutz [23].

T heo rem  H L [23]. Under the Assumptions 1.1, 1.5 and 1.6 (for any p > 1), 

there exists a sequence of n x n matrices Qi(t), (i =  0,1, • • •, k — 1), such that
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1. the derivatives Qi(t) exist, and the entries ofQi(t) and Q\{t) are continuous 

in t on the interval Iq for all i, (i =  0,1, • • •, k — 1),

2. limj_+oo Qi(t) =  0, (i = 0,1, • • •, k -  1),

3. the transformation:

V =  I K  J + Q iW W
t= 0

changes system (1.1) into

I T  =  A*W*‘

on the interval Io, where Ah(t) is a diagonal matrix which depends on all 

transformation matrices Qi(t), (f =  0,1, • • •, k — 1), and k satisfies 2k > p.

The inconvenience of the application of Theorem HL is that in order to find 

Ajfe(f) one has to find Qi(t), (i =  0,1, • • •, k — 1). In the next Chapter, a different 

approach will be taken, and a new result Theorem 2.1.1 will be introduced, where 

like the results of Theorem L and Theorem HW, the asymptotic solutions will 

be given directly. It is worth to point out that the application range of Theorem

2.1.1 strictly includes the application range of Theorem HL.

Now let us consider another case, if

limt_+ooZ)jfc(f) =  0, for some pair of indices j and k, (j ^  k),

then Assumption 1.5 is not satisfied. In this case, if Djk(t), ( j ,  k =  1,2, • • • ,n), 

still satisfy some condition which is a little stronger than Assumption 1.2, then 

R (t) needs only to partially satisfy Assumption 1.3.

Let

m  = {>•*(()}«=, (i-3)
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and

ri(<) =  maxj>i.|rjjt(/)|, r2(t) =  maxj<fc|rjfc(<)|. (1.4)

A ssum ption  1.7. There exist two positive constants 6 and K and a constant 

a, (0 <  a  <  1), independent of t, such that for each pair of indices j and k, 

(j, k =  1 ,2 ,. . .  ,n; k ^  j ) ,  either

exp{J^ Djk{r)dT} <  Aexp{ —8(s1~a — for all s > t, (1.5)

or

exp{j^ Z ? j f c ( r ) d r }  <  Kexp{—̂ ( i 1 "  — s 1 ")},' for all s <  t, (1.6)

where D j k ( t )  =  —  A * ( t ) ) ,  ( j , k  =  1 ,2 ,  • • • , n), are defined in Assumption

1.2 .

A ssum ption  1.8. The matrix R(t) is continuous and satisfies:

|i?(t)| =  o ( f “), as t —> +oo, (1.7)

and either

r+co
I t “ °'maxs>t[sorri(s)]dt < +oo, (1.8)

Jto

or

r+ o or+oo
/  t amaxa>t[sar2 (s)]dt < +oo. (1.9)

Jto

In [28] we proved the following theorem:

T h eo rem  H X  [28]. Under Assumptions 1.1, 1.7 and 1.8, there exists an n x n 

matrix Q(t) such that

1. the derivative Q'(t) exists, and the entries of Q(t) and Q'(t) are continuous 

in t on the interval Io,
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2. lim ,_+00 Q(t) = 0,

3. the transformation:

y = [In + Q(t)]z (1.10)

changes systems (1.1) into

dz
—  = [A(<) +  diag {R(t)}]z, (1.11)

on the interval Io, where In is the n x  n identity matrix.

In Chapter III, Theorem HX will be generalized. There we will consider 

the case Djk{t) = 0 ( l / t ) ,  for some j, k € {1,2, • • •, n}.

Asymptotic integration formulas for linear systems of differential equations 

with multiple eigenvalues for limt_ +0Oi4(f) have important application in the de

ficiency index problem for self-adjoint ordinary differential operators. In Chapter

IV, we will apply the main result of Chapter III to the deficiency index problem 

for certain fourth order differential operators.
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CHAPTER II

A GENERALIZATION OF THEOREM HW

2.1 Introduction and Main Theorems 

In Chapter I, we learned that for the system:

^  =  M t y ,  t e l 0 = (t0, + 0 0 ), (2.1)

if A (t) satisfies Assumptions 1.1, 1.5 and 1.6 (with p > 1), then the asymptotic 

solution of (2.1) can be obtained via a sequence of linear transformations as stated 

in Theorem HL. In practice, however, it is sometimes very difficult to find all the 

transformation matrices Qi(t) or their suitable approximations, (i =  0,1, • • •, k — 

1), on which the asymptotic integration formula depends. In this Chapter we will 

take a different approach and give another generalization of Theorem HW from 

Chapter I. This will provide the asymptotic integration formula directly. 

A ssum ption  2.1.1. The matrix A(t) is in the form

A(t) = A (t) +  P(i) +  R(t),

where A(i) =  diag{Ai(i),A2(2),• • • ,An(f)} with Aj(t), (j  =  1 ,2 ,••• ,« ), continu

ous on I0, and R(t) G L1(/o)*

A ssum ption  2.1.2. There exist two positive constants K and 6 such that for

each pair of indices j and k, ( j , k  =  1 ,2 , . . . ,  n; k ^  j ) ,  we have

exp{jf Djk(r)d,T} <  Aexp{—S(s — <)}, for s >  t and j  > k, (2.2)

and

exP{Jt Djfc(T)^T} 5: K exp {—6(t — a)}, for s < t  and j  < k, (2.3)

8
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where Djk(t) = 7l.(Aj(<) — \ k(t)), (j, k =  1,2, • • •, n), are defined in Assumption

1.2.

A ssum ption  2.1.3. The matrix P(t) satisfies:

||-P(t)|| 5- p(t)i for some p(t) G Lm(Io), m >  1.

T h eo rem  2.1.1. Under Assumptions 2.1.2, 2.1.3 and 2.1.1 with R (t) =  0, there 

exists a linear transformation:

y = (In + T(t)]z, (2.4)

with T(t)  =  {Tjk(t)} and Tjj(t) =  0, for all j ,  such that

1. for every pair o f indices j  and k, (j  ^  k), the derivative Tjk(t) exists, and 

both Tjk(t) and Tjk(t) are continuous on the interval io;

2. limj_+oo Pjk(t) =  0, ( j  ^  k );

3. the transformation (2-4) reduces the system

^  =  [A(t) +  P(t))y (2.5)

into 

dz •
=  [Ai(0  +  PjjW  +  1 2 Pjh(t)Thj,r(t) +  dj(t)]zj, ( j = 1,2, • • •, n), (2.6)

where pij(t), (i , j  =  1 ,2 ,••• ,« ), denote the entries of the n x  n matrix P(t);

dj(t) =  Pjh{t)Thj{t) ~T,h*j Pjh{i)Tkjr(t) 6 L \ l 0), for all j, and Tjl<r(t) 

which are approximations ofTji, j , l  =  1,2, j  ^  I, are defined as

follows:
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2i»,fc+i(0 =  /ry.expt/iCA^r) -  \i(T))dT}Uj,{s,Tk(s))ds, with 

r i/l0(t) =  0, and
(2.7)

Uji(t,Tk(t)) =  Pj/Ci) +  E  h*iPjh{t)Thi,k{i)

~  Tji,k(t)\pu(t) +  £/»*/P/fc(0̂ A/,fe(<)]>

with Tk to be approximations o fT ( t) ,  k =  0,1,2, • • • , r  — 1, and r to be the 

smallest non-negative integer such that r > m  — 2, and Tji to be defined as 

the follows:
j  t0, i f  j  < 1 ,

Tjl = <
( +oo, i f  j  > I .

In order to obtain a more general theorem, we need to first establish: 

L em m a 2.1.1. I f  there exists a n n x n  transformation matrix G(t) such that: (i) 

the derivative G'(t) exists, and the entries ofG(t) and G'(t) are continuous in t on 

the interval I0, (ii) limt_+00 G(t) =  0, (iii) the transformation: z = [/„ +  G(t)]w 

changes systems z ' =  [A(t) +  P(t)\z into

d w  A /4\
I T  =

where A(i) is a diagonal matrix satisfying Assumption 1.2, then under Assumption 

2.1.1, there exists an n x n transformation matrix Q(t) such that:

1. the derivative Q'[t) exists, and the entries ofQ(t) and Q'(t) are continuous 

in t on the interval Io,

2. limt_ +0O Q(t) =  0,

3. the transformation:

y = [In + Q(i)]z (2.8)
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changes system (2.1) into

^  =  [A(<) +  P(t)]z,  (2.9)

on the interval Io.

The proofs of the Theorem 2.1.1 and Lemma 2.1.1 will be given in Section

2.3 and Section 2.4, respectively. Combine Lemma 2.1.1 and Theorem 2.1.1, we

directly have:

Theorem  2.1.2. Under Assumptions 2.1.1, 2.1.2, and 2.1.3, there exist n x n 

matrices Q(t) and T(t) =  {Tjk(t)} with Tjj(t) =  0, for all j ,  such that

1. the derivatives Q'(t) and T'(t) exist, and the entries o f Q(t), T(t), Q'(t) and 

T'(t) are all continuous in t on the interval I0,

2. lim*_+0O Q(t) =  0, and limt_ +00 T(t) =  0,

3. the transformation:

y = [In + Q {tW n + T(t))z (2.10)

changes systems (2.1) into 

dz-
-jfc = [*j(*) +  WiW +  Pih{t)Thj , S )  +  dj{t)\zj , j  = 1, • • •, n, (2.11)

h^j

where Pij(t), (i , j  =  1,2, denote the entries o f n x  n matrix P(t);

dj(t) € L'ilo), for all j, and Thj,r are defined as in (2.7).

Remark for Assum ption 2.1.2. If Djk(t) satisfy Assumption 1.5, i.e. |Djfc(t)| > 

6 > 0, then Assumption 2.1.2 follows. On the other hand Assumption 2.1.2 gives 

the separation of real parts of Aj(t) in the average sense. For instance, if Aj(t) =  1
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and A2(t) = sin(t), then Assumption 1.5 is not satisfied, but Assumption 2.1.2 is 

satisfied, since

e x ? { J t (t)(It} < e2e~(3~t\  for s > t ,

and

exp{J^ I>i2 (r)dr}  <  e2e- ^- *), for s < t .

2.2 Examples

Three examples will now be given to show that the above new Theorems 

are often much simpler to apply than the classical results and have a wider range 

of application.

E xam ple  1. Consider the differential equation:

x" -  (1 +  <j>{t))x =  0, <j>{t)eLm( t > t 0). (2.12)

It can be changed into the following equivalent 2 x 2  system of differential equa

tions:

' - 1 0 ' 1
4- ~

1—

11
*

0 1 2 L t  <t> J

by means of
X 1 1 "

x' — 1  1

For m = 3, the asymptotic solutions of differential equation (2.12) have 

been given by Bellman [2], The method which Bellman used is complicated. In 

fact Bellman himself wrote tha t his method is in practice difficult to use because 

the algebraic complexities become overwhelming for larger m([2], p.133).

The above differential equation with m  = 3 has also been studied by Harris 

and Lutz as an application of Theorem HL [23]. The treatment there is not simple
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either, and becomes more difficult as m gets larger. By comparison to the two 

approachs above, Theorem 2.1.1 is easy to apply, as will now be shown.

C ase 1. If <j>(t) € L3(I0), by Theorem 2.1.1 with r  =  1, we have linear transfor

mation 2/1 =  z\ +  T\2%2 and y2 = z2 +  T2yZt, such that

^ = \ [ - t  -  m  -  m w o +<*> w i* .

—  =  - [ 2  +  4>(t) +  +  <l2( t ) \ z 2

where di(t) , d2(t) € Ll (I0),

T2lA(t) = \ f  e -2(a- ^ ( s ) d s ,  (2.13)
Z  */+ oo

and

Ti2 ,i(t) =  e~2̂ <j>(s)ds. (2.14)

Since
X i r 1 0(1) '

1o»

x ' . -11. . 0(1) 1 . "1No
1

we have

x\  =  (1 +  o(l))exp{^ [-1  -  i<£(s) -  J+oo e_2(T_a)</>(T)dr]ds},

and

x2 =  (1 +  o(l))exp{^ [1 +  ^<f>(s) -  i <f>(s) jf  e~2(s- T̂ (r)d r]d s} .

C ase 2. If <f>(t) € L4(I0), by Theorem 2.1.1 with r  =  2, we have linear transfor

mation i/i =  z\ +  T \ 2z2 and t/2 =  z2 +  T 2i Z\,  such that

d z  1
=  - [ - 2  -  m  -  <f>(t)T21,2(t) + *(*)]*!,

flz  1
=  ^[2 +  <f>{t) + <f>(t)Ti2i2(t) + d2{t)\z2 ,
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where di(t) , d2(t) G Ll ( lo),

T21i2(<) =  I  f  e~2̂ [cf>(s) + 2<j>(s)T21<1(s)]ds (2.15)
i J+OO

+lf  (2 .16)
& J+OO

and

1 /■( 
f  B- 2'

l  r*
Hm W = ~2 X  <r'‘('" ) W3> + (*)]* (2-17)

(2 .18)

Note that since

e~2̂ c l> { s )T l tl{s)ds and <j>(t) J \ ~ 2̂ ~^<f>(s)T22 l {s)ds G L x(Iq),

we have

*, =  (l+ o (l))exp{ jf‘[ - l - ^ ( 3) - | « 3) i£ ioe ' J(T" )W T )+ 2^(T )rj1,,(T)]<lT]i3},

and

*, = (1 + o (l))ex p {£ [l + i^ )  -  J*w £  Wt) + 2#(t)T„,1(t)]*.]*},

where T2iti(<) and T12)i(t) are defined in (2.13) and (2.14), respectively.

C ase 3. In general, if (j) G Lm(I0), for m > 2, by Theorem 2.1.1, with r taken 

to be the smallest integer such that r > m  — 2, we have the following asymptotic 

solution:

X l  =  (1 +  o (l))exp {^ [—1 -  i^ (a) -  ^ ( s )T 2i,r(s)jds}

and

x2 =  (1 +  o(l))exp{^ [1 +  ^<j>(s) +  ^ ( a ) 2 i 2ir(a)]<fa}, 

where T2iiT(t) and Ti2,r (t) are defined as follows:

r M* n W  = l f  e -2<*-‘>Ws) +  2 « . ) r i u («) +  «»)!? ,,» (» )]* ,
L J 4*oo
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Jim + iW  = ~ \ f  W s ) +  W M » )  +  *(• W w  W l* .

k = 1,2, • • • ,r  — 1, and T2 i,i (t) and r 12,i(<) are defined in (2.13) and (2.14), 

respectively.

E xam ple 2. Consider the following system of differential equations:

2/i
/

sinf <t>i (t) 2/i

. y2 . .  ^2(0 1 . 2/2 .
, i > 0 , (2.19)

where (j>x(f), <f>2(t) G L m(I0), for some m  > 1. As the diagonal elements coincide 

at t = (2k +  |)7T, (k: non-negative integers), Theorem HL is not applicable, but 

Assumption 2.1.2 is satisfied for Ai =  sinf, and A2 =  1, so the asymptotic solution 

of (2.19) can be obtained by Theorem 2.1.1.

C ase 1. If <j>i{t), <j>2 {t) € L2(/o), by Theorem 2.1.1 with r =  0, we know that the 

asymptotic solution of (2.19) is:

2/1 1 o ( l )  ' ■ (1 +  o ( l ) ) e - cosi+1 0

. 2/2 . . 0 ( 1 ) 1 . 0 ( l + o ( l ) ) e *
(2 .20)

C ase 2. If <j>i(t),(f>2(t) G L3(/0), by Theorem 2.1.1 with r  =  1, we have linear 

transformation yx =  z\ -+■ Tx2t\z2 and y2 =  z2 +  T2x<\zx so that

— [sinf +  <j>i(t)T2 i,i(t) +  di(t)\zi,

-2 -  =  [1 +  <̂2(i)?i2il(t) +  d2(t)]z2 ,

where dx(t), d2(t) G Lx(/0),

T2x,x(t) = f  e f > - ^ dTM ^ )d s  (2.21)
J +oo
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./O

Thus the asymptotic solution of (2.19) is:

2/i 1 0(1) ' (1 +  o(l))i0i 0

. 2/2 . . *(1) 1 ‘ . 0 (l +  o(l))i02

where u>i(<), w2(t) are:

i«i (<) =  exp { J  sins +  <j>i(s)T2hi(s)ds},

and

102 00 =  exp 1 +  ^2(3 )112,1 (a)ds}.

E xam ple  3. Consider the following system of differential equations

2/1 

2/2

—1 t 5sin(f +  f s)

t~^cos(t + 1~%) 1

2/1

2/2
, t > 1.

Since

sin(t +  t  5 ) — sint = 0 ( t  »), and cos(f + 1 5) — cost = 0 ( t  *),

we can rewrite (2.24) as 

- /

2/1 = {
2/2  .

—1 f ssint

t - 7  COSt 1
+  ^ ) }

2/1

2/2
, < > 1,

where the matrix R(t) is 2 x 2 and in L1(/q).

(2.22)

(2.23)

(2.24)

(2.25)
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Since t"£sint and t“ ?cost 6 L3(Iq), by Theorem 2.1.2 with r =  1, there

exist Q(t) and T(t) with limt_ 00Q(<) =  0 and limi_>00T(t) =  0 such that the linear

transformation y — [12 +  Q(t)][h +  T(t)\z changes (2.24) into:

—  ̂ =  [—1 +  (t"Ssint) T2i,i(t) +  di(t)]zi, (2.26)

^  =  [1 +  ( r 7cost) r 12li(<) +  d2(t)\z2 , (2.27)

where

T2i,i(t) = f  e~2(a~^ s~% cossds =  it"7 (s in t — 2cost) +  r 2i(t), (2.28)
’ J+OO 5

with r 2i(t) E L ^ I q), and

T12ti(t) = f  e -2̂ _s^ _ssinsds =  i t - 5(2sinf — cost) +  r 12(t), (2.29)
J l  0

with r 12(t) 6 Lx(70). So the asymptotic solution of (2.24) is:

Vi ’ 1 +  0(1) 0(1) (1 +  o(l))tOi 0

. y * . . 0(1) 1 +  0(1). 0 (1 +  o(l))to2

where w\(t), w2[t) are:

2 1 3
Wi(t) =  exp{ J  [—1 +  s - 5sinf • - s _7(sins — 2coss)]ds} 

=  (Ci +  o(l))exp{-f +

and

2
s - s(2sins — coss)]ds} 

=  (C2 +  o (l) )e x p { t-^ r t& } ,

with Ci and C2 to be two constants.

w2(t) =  exp{ J  [1 +. 3 1
'7 coss • -  

5
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2.3 The Proof of Theorem 2.1.1

The proof of Theorem 2.1.1 is based on a result obtained by Y. Sibuya [33]. 

Suppose that the system (2.1) is in the form

=  Aj{t)yj +  £  Bjk(t)yk, (j = 1,2, • • •, <r), (2.31)
fc=i

where yj are nj-column vectors, Aj(t) and Bjk(t) are rij x  rij and rij x  nk matrices,

respectively, where + n2 + • + na = n. Let G j(t,s)  be the rij x  rij matrix such

that

G'j (t,s) = Aj (t)Gj (t,s),

Gj(s, s) =  Inj , (j — 1,2, • • •, <t)

for i ,s  € / 0. Assume the following:

A ssum ption 2.3.1. There exist two positive constants K and 6 such that for 

any rij x nk matrix Cjk, we have

l l G j & s ^ G k & s r ' l l ^ K e W - ^ C j k l l  fo r  t < s , j  > k,
>4

and

||Gi (t,s)C jfcC?fc( t ,s ) -1| |< / C e - ^ - s>||C'ifc||, fo r  t > s, j  < k,

for t ,s  € Io. Here || • || denote the Euclidian norm.

A ssum ption 2.3.2. There exists a function f ( t )  such that

l l% (< )l l  < / ( < ) >  (i ,& =  l , 2 , . . . , ( 7 ) ,

and
fP

suPp>t(l +  P -  i )_1 J  f i T)dT -* Or as t -* +oo.
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Y. Sibuya [33] proved the following:

Theorem  S [33]. Under the Assumptions 2.3.1 and 2.3.2, there exists a linear 

transformation:

Vi =  +  2  Tjk{t)zk, (j =  1,2, • • •, a), (2.32)
Mi

with nj x  nk matrices Tjk(t), such that

1. for every pair of indices j  and k, (j  ^  k), the derivative T)k{t) exists, and

the entries o fT jk(t) and Tjk(t) are continuous on the interval Iq;

2. limt_ +00 Tjk(t) =  0, ( j ^  k)‘,

3. the transformation (2.32) reduces the system (2.31) to

dz-
- £  = {Aj(t) + B ijtt)  + ' E B ih( t ) n i (t)]zi , y =  1 ,2 ,.• • ,» ) . (2.33)

Mi

From the proof of this theorem, we know

Tji{t)= f  exp{ f  Aj(T)dT}Uji(s,T(s))e\p{— f  Ai{T)dr}ds, j  ±  I,
JTjl  J s  JS

where

Tjl =

and

j  +oo, if j  > I, 

\  t0, if j  < I,

Uji(t, T) = Bji(t) +  £  Bjh(t)Thi(t) -  T ^ B u i t )  + £  Blh(t)Thl(t)}, j  ±  I,
h^l h^l

for t G Iq.

If all Aj{t), (j =  1,2, are l x l  matrices (i.e. a  =  n), and

Aj(t) =  Aj(t), for all j, then we have:
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T h eo rem  S'. Under the Assumptions S.3.1 and 2.3.2, there exists a linear trans

formation:

Vi =  zi +  E  Tjk{t)zk, (j = 1 , 2 , • • •, n), (2.34)
*5*j

with scalars Tjk(t), such that

1 . for every pair of  indices j  and k, (j  ^  k), the derivative Tjk(t) exists, and 

both Tjk(t) and Tjk(t) are continuous on the interval Io!

2. lim^+oo Tjk(t) =  0, (j 7  ̂ fc)j

3. the transformation (2.34) reduces the system (2.31) to

d z '
- £  =  [-M*) +  M i )  +  E  W i)T«(<)]*j, U = 1 , 2 , • • •, n),

h^j

where b{j(t) denotes the l x l  matrix B{j(t), (i , j  =  1,2, • • • ,n).

In this case, we have

Tj,(t) =  f  exp{ A a ^ t )  -  X ^ d r j U j ^ T i s ^ d s ,  j  ±  I,
JTjl  J s

where

{ +oo, if j  > I, 

t0, if j  < I,

and

Uj,(t,T) =  bjt(t) +  E  bjh(t)Thl(t) -  Tsl( t ) M t )  + E  W ) T hl(t)}, j  ±  I,
h^l h&

for t € Iq.

From Theorem S', we know that the asymptotic solution of (2.31) depends 

on Tjk, (j , k =  1,2, • • • ,n ), but to find Tjk, (j , k  = 1,2, • • •, n), we need to solve 

a nonlinear system of integral equations which is at present very difficult. An
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important fact is that to find the asymptotic solution of (2.31) we need only to 

find suitable approximations of Tjk ,  (j , k = 1,2, • • •, n), and these approximations 

can be easily obtained by finite iterations. This is the idea behind the proof of 

Theorem 2.1.1.

P ro o f  o f T h eo rem  2.1.1. Under Assumption 2.1.2, Assumption 2.3.1 is satisfied.

Since p(t) 6 Lm(I0), by Holder’s inequality, we have

sup„>t(l +  x -  t ) - 1 J  p ( t )dr < supx>t[£ pm(r)dT]« -+ 0 , as t -> +oo,

that is Assumption 2.3.2 is satisfied. So by Theorem S', it follows that there exists 

a linear transformation:

Vi =  +  ]C  Tjk(t)zk, {j =  1,2, • • •, n), (2.35)
k*i

with scalars Tjk{t), such that

1. for every pair of indices j. and k, (j ^  k ) ,  the derivative Tjk(t) exists, and 

both Tjk(t) and Tjk(t) are continuous on the interval 70;

2. limt_ +00 Tjk{t) =  0, ( j ^  &);

3. the transformation (2.35) reduces the system

f  =  [A(() +  P(«))y (2.36)

to

dz-
= [Aj(<) +  Pjj(t) +  EPJk( t )Thj(t)}zj, (j =  1 ,2 , - . . ,n), (2.37)

h^ j

where Pij ( t ) ,  (i , j  =  1,2, • • • ,n),  denote the entries of n x n matrix P(t),

Tji(t) = f  exp{ f { \ j { r )  -  Xl(T))dT}Uji(s, T(s))ds , j  ±  I, (2.38)
JTjl JS
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and

Ujt(t ,T)  =  Pjl(t) +  ' £ Pjh(t)Th,(t) -  Tji(t)\pu(t) + YlPih(t)Thi(t)]. (2.39)
h±l h&

Let

Tji,k+i(t) = frj, exp{/at(^j(r ) ~  Xi(T))dT}Uj,{s,Tk(s))ds,

Tji,o(t) = 0,
(2.40)

Uji(t,Tk(t)) =  pji(t) +  E/i//Pj7i(<)^)i/,fc(0

-  7i/,*(0[p»(i ) +  T .h l> : lP lh ( t ) T h l ,k ( t ) } l

for j  ^  I and k =  0,1,2,• • • , r  — 1, where r is the smallest integer such that 

r >  m  — 2, and m is defined in Assumption 2.1.3. From (3.39) and (3.40) , we 

have:

T j , ( t )  =  [ '  exp{ / ‘(X ,(t) -  A , ( r ) ) , i r } K l ( s , r « )  -  £ /„(,,JTj\ JS

where j  ^  I and

Ujt(t ,T(t))  -  = J 2 M t ) ( T h,(t) -  Tu,k(t))
i±h

~  Tji,k(t))pu + (Tjitk(t) -  T j,(t))^p /* (f)T /l,ifc(t)

+TjI( t ) ' £ M t ) ( T M,li(t) - T hl(t)). (2.41)
W

In order to complete the proof, we establish:

L em m a 2.3.1. Under Assumptions 2.1.2 and 2.1.3, we have:

1 . Tji(t) is in Lm(I0), for '  j ,  I = 1,2, • • • ,n , j  £  I and for m defined in

Assumption 2.1.3.

2. I f

K i M - 2 M < ) l e m ) .  (2.42)
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for all j , l  = 1,2, • • •, n, then

ITji(t) -  Tjitk+i(t)\ e  L ^ ( I 0),

23

(2.43)

for all j ,  I =  1,2 ,• • • ,« .

P ro o f  o f L em m a 2.3.1. We first prove conclusion 1. Since limt_ +00 Thi(t) — 0 

and Thi(t) are continuous on 70, for all h, I = 1 , 2 , • • • ,n , and ||P(<)|| <  p(t) with 

p(t) € Lm(70), from (2.39), we have

\Uji(t,T)\ e  Lm{Io), j , l  = 1,2, • • • ,n , j ^ l .

In case j  > I, we have

lr i»(*)l =  I I  exP{ I  [^i(T) “  M T)]dT}Uji(s,T(s))ds\J+oo Js

r+co . r+oo
< j  e5(‘- i)|C/i/(s ,r (s )) |d s  =  Jo e \Uji(x + 1 , T(x  +  t))\dx. (2.44)

Let

I 0, if a; <  0.

In case j  < I, we have

=  I j to exP{ /  [Ai( r ) -  ^i(T)]dTWji{s,T(s))ds\

<  f  e-W-°)\u ,7 (s ,T (s ) ) |d s=  [° eSx\Uj,{x + i ,T ( x  + t))\dx. (2.45)
Jto J t o - t

Let

/(*)
_  f eSx, if a; <  0, 

\  0, if x > 0.

Set Uji(t,T(t)) =  0, for t £  Io, (j , l  =  1 ,2 ,••• ,« ), then in both cases j  > I and 

j  < I, we have:

/+ o o
f{x)\Uji{x + f, T{x + t))\dx. (2.46)

■OO
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By these extensions of Uji(t) and /(<), in both cases the function f ( x )  € Ll {—oo, oo), 

and Uji(x + 1, T(x  -f if)) €  Lm(—oo, oo), for all j ,  / =  1,2, • • •, n, and for each fixed 

x  G (—0 0 , 0 0 ). Thus, by the following Minkowski inequality([20], Theorem 203):

{ /  t /  / M d y Y d x } ^  < r * { r [ f ( x i y ) r d x } ^ dy,
j — 0 0  j — 0 0  j —00 j —00

for p > 1, and f ( x , y ) >  0, we have

( / +0° |r,-,(<)lm* ) 1/m < / +0°{ / +°° I M *  +  +  o ) lm^ } 1/m/(*)rf®
«/—00 •/—00 4/—00

< ll/ll.ll^ /IU - (2.47)

Hence

|2),(f)| € i m(70), for all j ,  / =  1,2, • • • ,n , j  ±  I.

To prove conclusion 2, first notice that by mathematical induction and 

Holder’s inequality we have:

Tjitk(t) —> 0, as t —> 0 0 , for all j ,  I =  1,2, • • •, n, k =  1,2, • • • .

Since

2j/,fcC0“ >0, 2 i/( i) -> 0 , as f -» 0 0 , and |pj/(f)| € Lm(I0),

for all j ,  / =  1,2, • • •, n, k =  1,2, • • • , from (2.41), if \Tji(t) -  Tji,k{t)\ <E LS(I0),

then by Holder’s inequality, we have

\Ud*,T(t)) -  Uji(t,Tk(t))\ e  L ^ ( l „). (2.48)

As in the proof for conclusion 1, from (2.48) we thus have conclusion 2.

The proof of Theorem 2.1.1 will be completed if we can show that

dj =  I -  T«,rW ) € i ‘ (7o), (2.49)
h / j
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for all j  =  1,2, • • •, n, where r  is the smallest integer such that r >  m — 2. Since 

Tji,o(t) = 0, for all j ,  I =  1, 2, • • • ,  n, (2.49) follows from Lemma 2.3.1 immediately.

□
R em ark . Notice that for 1 <  m  < 2, we have r  =  0 and

Ylt Pjh(t)Thj,r('t ) ~  °»
hjtj

for all j ,  I = 1,2, • • •, n, so Theorem 2.1.1 includes Theorem HW as a special case, 

in fact, in this case, we have

'Ep ,k ( t )Thj{t) e  L'Vo),
h^j

for all j ,  / =  1 , 2 , -*-,  n.

2.4 The Proof of Lemma 2.1.1

The proof is to be given in four steps.

STEP 1: By differentiating both sides of (2.8) and by (2.1), we obtain

+  [7n +  Q } ^  = [A (t) +  P(t) + R(t)][In +  Q]z. (2.50)

Hence if Q'{t) exists, then by (2.9), Q should satisfy the linear differential equation:

^  =  [A(() +  P(t)  +  H(()][/n +  Q] -  [ / , +  0][A(t) +  P(()], (2.51)

or, equivalently,

4 2  =  (A(() +  P(t)]Q -  Q[\(t)  + P(t)] +  [«(i)][/„ +  <31. (2.52)

A general solution Q(t) of (2.52) can be written in the form

Q(t) =  $ (t)C ® (t)-x +  J 1 $ ( i)$ (s ) - 1i 2( t)$ (s )$ ( t) - 1ds, (2.53)
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where C is an arbitrary constant matrix, $(t)  is an n x n fundamental matrix of

£  =  [A(() +  />(() +  « (()]* , (2.54)

and \P(<) is an n x n fundamental matrix of

^  =  [A(i) +  P (i))* . (2.55)

Thus Q(t) exists on 70 satisfying the first condition of Lemma 2.1.1. We shall prove 

the existence of the solution of (2.52) satisfying condition lim^+oo Q(t) =  0, in 

an interval I  =  { t  : ti <  t  < oo} for a large fi, then, by (2.53), Q(t) exists on Iq 

satisfying the required conditions.

STEP 2: We shall construct Q(t) by means of equation (2.52) and the condition 

lim* _ +00 Q(t) =  0. To do this, let $ (f , s) be the unique solution of the initial value 

problem:

^  =  [A (t) +  P(t)]Y, F (s) =  Tn + G(s), (2.56)

where G(t) is the transformation matrix given in the assumption of the Lemma. 

Then, (2.52) is equivalent to the following linear integral equation:

Q(t) = f  $(t,s)[In +  G ^ )] -1/ ^ ) ^  +  Q(s)][fn +  G (s)]$ (f,s)- 1ds, (2.57)

where by assumption,

$ (f,s) =  [/„ +  G(t)]exp{j" A (r)dr}. (2.58)

Let

[/» +  G(5)]-x[/„ +  Q(s)][/„ +  G(s)] = In +  H(s)  (2.59)

and let

R(s) =  [/„ +  G(a)]-xi2(«)[J» + G(s)], (2.60)
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then we can rewrite (2.57) as

H (t ) =  J  exp{J  A (r)d r}^(s)[/n +  if(s)]exp{— J  A(T)dr}ds .  (2.61) 

STEP 3: Let

H(t)  =  (fcy(<))nXn and R(t) =  (fy(t))nXn, 

we can write the integral equation (2.61) in the following form:

hjk(t) = S L  exP if.* *jk(r)dr}[rjk(s) +  E L i.M j rJh(s)hhJ(s)]ds, j  ^  k,
(2.62)

where j ,  k = 1 , 2 , • • •, n, and the initial points Tjk are chosen as the follows:

Tjk =

+oo if j  =  k,

t2 if j  < k,
4-oo if j  > k,

(2.63)

where t 2(> ti) is a suitable large number. As in the proof of Theorem L, by using 

successive approximations in a usual manner (see [31], [28]), it can be shown that

H {t) —> 0, as t —» 4-oo.

STEP 4: From (2.59), we have

Since

it follows that

G(t), H(t) —► 0, as t —► 4 -oo,

I n  4 "  Q { t )  I n i  0.S t  4*00.

(2.64)

(2.65)
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So

Q{t) —► 0, os t —► -|-oo.

□
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CHAPTER III

ASYMPTOTIC BEHAVIOR FOR SYSTEM HAVING MULTIPLE
EIGENVALUES

3.1 Introduction

In last chapter, we studied the asymptotic behavior of the solutions for the 

system of differential equations (1 .1 ) in which the real parts of the eigenvalues of 

A(t)  are separated from each other by a fixed number in the sense of Assumption

2.1.2 (see the Remark at the end of Section 2.1). In this chapter, we will consider 

the asymptotic behavior of the solutions for the system of differential equations 

(1.1) in which the real parts of some eigenvalues of A(t) have same limits as t goes 

to -{-oo. As mentioned in Chapter I, this problem has a close relationship with 

that of finding the deficiency index of linear differential operators.

Consider the linear system of differential equations

^  =  [A + V(t)  +  A(i)] y, (3.1)

where A is an n x n constant matrix, V  (t ) and R(t) are n x n  continuous matrices 

on 70 =  [f0, oo).

In Chapter I, we mentioned that by using Theorem L, Levinson proved the 

following theorem.

T h eo rem  LE [31]. Assume that (i) A is a constant matrix with distinct eigen

values; (ii) V(t) satisfies Assumption 1.4; (Hi) R'(t) is continuous for t > to, 

R(t)  € T/^/o); and (iv) the eigenvalues of the matrix A +  V(t) satisfy Assumption

1.2. Then there exists an n x  n matrix Q(t) such that

29
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1 . the derivative Q'(t) exists, and the entries of  Q(t) and Q'(t) are continuous 

in t on the interval Iq,

2. lim* _ +00 Q(t) =  0,

3. the transform ation:

y = P[In +  Q{t)]z

changes system (3.1) into

A M ,

on the in terva l Iq, where P is a constan t m atrix  such that P -1A P  is a 

diagonal m atrix  and  A(f) is a diagonal m atrix  with diagonal elem ents the 

eigenvalues o f  A + V{t).

If the eigenvalues of A are not all distinct, the analysis of the asymptotic 

behavior of the solution for above system involves much more delicate techniques. 

Here are some important results due to Devinatz and Kaplan [9] and Chiba and 

Kimura [3]. In order to introduce their theorems we need some assumptions. Let

^  =  E E ® %  with K iS =
»■=1 j= 1

be Jordan’s canonical form of A, where the A(s are the distinct eigenvalues of A, 

Kij are n,j by n,j matrices, and £  ©  denotes the direct sum of matrices. 

A ssum ption 3.1.1. The minimal polynomial of A is of degree n, that is e,- =  1, 

for all i =  1 , 2 , • • • ,s .

A,- 1 0 •••  0

0 A,- 1 • • •  0

0  0  0  ••• 1

0 0 0 • • •  A i
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R em ark : Under Assumption 3.1.1, the minimal polynomial of A is of the form

8 8

P(X) = J J ( A  — A ,- ) " '1 , with A; 7̂  A * if i k, and =  n.
«=i i'=i

Let

r -f 1 =  max{n,i, i =  1 , 2 , • • • ,s}.

A ssum ption  3.1.2. V(t)  is absolutely continuous on each compact subinterval 

in (f0 ,oo), tr |U '(f)| € L l (I0), and V(t) —> 0, as t —> +oo.

Let { A , j ( t ) }  denote the eigenvalues of A + V(t), where 1 <  i < s, and 

1 < j <  nn.

A ssum ption  3.1.3. The eigenvalues {A ,•_,•(£)} are absolutely continuous and sat

isfy:

(1) A i j ( t )  —* A,-, as t —> -foo, for 1 <  j  <  n,i;

(2 ) tr |AJj(t)|d< <  +oo, 1 <  i < s, 1 <  j  < nn.

A ssum ption  3.1.4. The matrix R(t)  satisfies

trR(t) e  L'Vo).

For any positive integer q, let

Hkq = Afci(t) +  •

Devinatz and Kaplan [9] proved the following:

T heo rem  D K  [9]. Suppose Assumptions 3.1.1, 3.1.2, 3.1.3 and 3.1.4 are all 

satisfied by system (3.1). Suppose, furthermore, that for each fixed (k,q), 1 <  k <  

s, 1 <  q <  n fci, all of pairs (j , p ), 1 <  i  <  s, 1 <  p <  nji, fall into one of  two 

classes and Jkq, where

(V  (j ,P ) € h q, if

/  'RiPkqi'r) -  /ijp(T)]dr -» oo, as t -* oo,
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and

J r n\nkq{T) -  HjP(r)]dT > - L , for t >  s >  0,

(2) (i,p ) G Jkq, i f

j  ftlVkqir) -  PiP(r)]rfr < L, for t > s > 0, 

where L is a positive constant.

Then there exists a positive constant t\, (tx >  t0), eigenvectors qi corresponding to 

\ { t 1 <  i <  s, and n linearly independent functions yij{t), 1 <  i <  s, 1 <  j  <  nn,  

which are solutions of (3.1) such that

yij(t)t~1 +1exp { -  /  A ;i(r)dr} -»</;, as t o o .
J t l

If not all e\s are equal to 1, we have the following theorem obtained by Chiba 

and Kimura [3]. To state it, we need:

A ssum ption 3.1.5. The Jordan’s canonical form J(t)  of A  +  V(t)  is written as 

follows:

J(<) = E E ®  •?«(<). =
i=i i=l

for t > tQ, where Jy(<) must also be n,j by n,-j matrices.

Let

n,- =  maxfc{n,jt}, n 0 =  max,{n,}.

Chiba and Kimura [3] proved the following:

T heorem  CK [3]. Let (h, I) be a pair of  indices such that 1 < h < s and 

1 <  / <  nhk, for some k. Suppose that:
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(A) Assumption 3.1.5 is satisfied.

(B) There exist 2s +  1 real-valued functions c*i(<), • • • )«,(<)/ ai(<)> • • •, a 4(<) 

and fi(t) continuous on [t0, oo) and a partitioning { /j, If} of  the set {1 , 2 , • • •, n} 

with the following properties:

(i) for to < t  < oo, we have

(ii) i f i  e h ,  then a,-(i) — (n,- — 1 )log{t) is an increasing function on [foj oo) 

and tends to oo as t —► oo. I f  i € h> then a ^ t )  is an increasing or decreasing 

function and ati(t) <  fi{t).

where \ \ - \ \ denotes any matrix norm.

Then for any j  such that n^j > I, there exists a solution y(t) of  (3.1) with the 

asymptotic expression

where qkji are the eigenvectors of  A associated with A/,.

From Assumption 3.1.2 and condition (C) in Theorem CK, it is easy to see 

that Theorems DK and CK cannot be applied to the system (3.1) with V'(t) 

L 1 (Iq). The range of the applications of Theorems DK and CK are also greatly 

limited by Assumptions 3.1.1 and 3.1.5 as well. Assumption 3.1.1 requires that 

the eigenvalues of A  are all distinct when A  is diagonalizable, and Assumption 

3.1.5 requires that the diagonal block Jij(t) of the Jordan’s canonical form J(t)  of
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A  +  V(t)  has the same order as the diagonal block K y  of the Jordan’s canonical 

form J  of A. Theorem HX in [28] generalized above results. In Theorem HX, the 

condition (C) of Theorem CK, Assumptions 3.1.1, Assumptions 3.1.2 and 3.1.5 

are removed. In this chapter we will generalize Theorem HX.

3.2 The Main Theorem

Consider the following system of equations:

f t = [A(i) + «(«)]»> (3-2)

where A(t) =  diag{Ai(t), A2(£), • • •, An(f)} is a diagonal matrix, and the entries of 

matrix R (t)  are small in certain sense to be seen below.

Note when A  is diagonalizable, system (3.1) can be changed into (3.2). For 

the sake of convenience, we assume, without loss of generality, that the diagonal 

elements of R (t)  are all zero.

As in Chapter I, let

m  =  {r* (i)}”,tai (3.3)

and

ri(t) =  maxi>jt|rj/.(t)|, r2 (t) =  maxj<fc|rj*(i)|. (3.4)

In order to obtain the asymptotic formula for the solution of the systems with 

Djk(t) =  0(t-1), t  > to, where Djk(t) are defined in Assumption 1.2, we assume 

the following:

A ssum ption  3.2.1. There exist two positive constants /?, (/3 > 1) and K such 

that for each pair of indices j and k, (j, k =  1 , 2 , • • • ,n; k ^  j ), either

exp{J^ Djk{r)dT} < Ar(-)^ , for all s > t, (3.5)
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or

e x p Djk(T)dr} < K ( j ) ^  for all s < t .  (3.6)

A ssum ption  3.2.2. The matrix R(t)  is continuous and satisfies:

|/2(t)| =  o(<-1), as t —» +oo, (3-7)

and either

r+oo
I <- 1maxs>ti/2»{sr1(s)}dt < +oo, (3.8)

Jto ~

or

r+ o o
I t - 1maxs>ti/2n{sr2 (s)}dt < +oo. (3.9)

J  to ~

T h eo rem  3.2.1. Under Assumption 3.2.1 and Assumption 3.2.2, there exists an 

n x n matrix Q(t) such that

1 . the derivative Q'{t) exists, and the entries ofQ(t)  and Q'(t) are continuous 

in t on the interval Io,

2 . lim< _ +00 Q(t) = 0 ,

3. the transformation:

y =  [Jn + Q(t)\z (3.10)

changes systems (3.2) into

f  =  A (<)*, (3.11)

on the interval Io, where /„ is the n x n identity matrix.
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This generalizes Theorem HX in the sense that Djk(t) can be of order 

0( t~x) for some or all j  ^  k. The proof of Theorem 3.2.1 will be given in Section

3.3, and two examples will be given in Section 3.4 to illustrate the application of 

the Theorem. Here, applying “shearing” transformations (see W. Wasow [36]) we 

will have two immediate results from Theorem HX and Theorem 3.2.1.

Consider the following 2 x 2  system:

dy_
dt

Xx(t) r1 2 (t)

. r2 1 (t) X2 (t)
V , (3.12)

we have:

P ro p o sitio n  3.2.1. I f  system (3.12) satisfies one of the following two conditions:

(a) Ai(<) and X2 (t) satisfy Assumption 1.7 for some a, (0 < a  < 1), and rX2 (t) =

0 (<_p), r2 i(t) =  0 (i-?), with p + q > I + 'ot; or

(b) Ai(t) and X2 (t) satisfy Assumption 3.2.1 andr\ 2 {t) =  0(t- 1(lnf)-p), r2 i(t) =

0 (t~1 (lnt)-? ), with p +  q >  1 ,

then there exist a 2 x 2  matrix Q(t) and a 2 x 2  diagonal matrix S ( t ) such that

(1 ) the derivative Q'(t) exists, and the entries of  Q(t) and Q'(t) are continuous

in t on the interval I0l

(2 ) lim(_ +00 <2 (t) =  0 ,

(3) the transformation:

V =  S(t)[I2 +  Q(t)]z

changes systems (3.12) into

d?
f t =[A ( t ) - S - \ t ) S ' ( t ) ] z  (3.13)
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on the interval Io, where S(t) — d iag{l,t *} in case (a); and S( t) =  

diag{l,(lnf)“'y} in case (b), with some real numbers 8 , and 7 .

P ro o f  o f P ro p o sitio n  3.2.1: (The proof is given under condition (a) by using 

Theorem HX. Similar proof can be obtained under condition (b) by using Theorem 

3.2.1.) Let c = p + q — a  — 1, 8  =  1 +  |  — p, and let S(t)  =  d iag{ l,i-5}, then 

system (3.12) is transformed into

dy
dt

Ai (<) f n {t)

. ^21 (t) A2 (t) +  6t j

(3.14)

by y = S(t)y, where

ru(<) = 0(r(1+f)),

and

r21(i) = o(rp_9+1+t) = o(r“).

By Theorem HX, there exists an 2 x 2 matrix Q(t) satisfing condition (1) and (2) 

in Proposition 3.3.1 such that the transformation y = [ / 2 +  Q(t)\z changes (3.14) 

into (3.13). □

In general, since for

S(t) = diag{i, r \ r 5v  • •, r 5"-1},

where 8 1 , 8 2, ■ ■ ■, 8 n_i are all non-zero real numbers, if we perform the transforma

tion

y(t) =  S{t) • z(t), 

then system (3.2) can be changed into

aj-x =  [ ( S - ' m W S i t )  -  S - \ t ) S ' ( t ) )  +  S- \ t )R ( t )S ( t ) ] z ,  (3.15)
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where

and

S~ \ t )A( t )S{ t )  -  S '-1(i)S'(<)

A*(*) 0

0  ^ 2 (1) -h *

0

0

0

r2 i(t)tSl

An(^) +  ^n-l t - 1

• S - ' W R W S i t )

ri2{t)t~Sl

0

Sn-l-5l

rx„ (< )< “ 5" - 1

r2n{t)tS l - Sn - 1

(3.16)

Thus we have the following proposition:

P ro p o sitio n  3.2.2. I f  there exist n — 1 non-zero real numbers Si, 6 2 , • • •, <Sn_i such 

that system (3.15) satisfies either the Assumptions 1.7 and 1.8 or Assumptions

3.2.1 and 3.2.2, then there exists an n x  n matrix Q(t) such that

1. the derivative Q’(t) exists, and the entries of  Q{t) and Q'{t) are continuous 

in t on the interval Io,

2. lim(_++00 Q(t) = 0,
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3. the transformation:

z = [In + Q{t)]w

changes systems (3.15) into

^  =  [ A ( i ) - S - ‘(()S'(i)]"> (3-17)

on the interval I0) where 5 - 1(<)5;(<) =  —diag-fO ,^-1, ^ -1)’ • •

3.3 Proof of Theorem 3.2.1

We will prove Theorem 3.2.1 under the condition (3.9) in Assumption 3.2.2. 

The proof is to be given in seven steps. A similar proof is valid also under condition 

(3.8). Here we use the successive approximation method similar to Gauss-Seidel 

iterations(e.g. see G.H. Golub and C.F. VanLoan [19] and R.S. Varga [34]) devel

oped in Hsieh and Xie [28].

STEP 1: By differentiating both sides of (3.10) and by (3.2), we obtain

^ z  +  [/„ +  Q]j t = [A(() +  fl(l)][/n +  Q\z. (3.18)

Hence, by (3.11), Q should satisfy the linear differential equation:

^  =  (A(<) +  «(()](/„ +  <31 -  [J, +  0]A (i), (3.19)

or, equivalently,

^  =  A(t)Q -  QA(t) + R(t)[In + Q). (3.20)

A general solution Q(t) of (3.20) can be written in the form

Q(t) = Q M C V i t ) - 1 +  f  $ ( t)$ (s ) - 1i?(s)'I'(s)^(<)-1ds, (3.21)
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where C is an arbitrary constant matrix, $ (t) is an n x n fundamental matrix of

- g  =  [A ( ( )  +  * ( ! ) ] * , (3.22)

and ®(<) is an n x n fundamental matrix of

(3.23)

Thus Q(t) exists on IQ satisfying condition (1) of Theorem 3.2.1. We shall prove

an interval I  =  {t : t2 < t < oo} for a large t2, then, by (3.21), Q(t) exists on 70 

satisfying the required conditions.

STEP 2: We shall construct Q(t) by means of equation (3.19) and the condition 

limt_ >+00 Q(t) =  0. To do this, let $(<, s) be the unique solution of the initial value 

problem:

the existence of the solution of (3.20) satisfying condition limt_+0O Q(t) = 0, in

—  = A(t)Y, V ( 3 )  = I„. (3.24)

Also, let

(3.25)

and

=  Aj(t) -  Ak{t), j ,  k = 1 , 2 , • • • ,n , (j  ^  k). (3.26)

Then, (3.19) is equivalent to the following linear integral equation:

(3.27)

where

(3.28)
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with A(t) =  diag{Ai(i), A2(<), • • •, A„(t)}.

STEP 3: Let

f i ( t )  — maxs>t |sri(s)] and r 2(t) =  maxs>f[sr2 (s)]. (3.29)

Then by (3.7), fi( t)  and r2 (t) are monotonic decreasing and tending to zero as 

t —* +oo. Moreover, by (3.9), we have

/O O

I  t ~ l r 2 { t ) d t  < +oo. (3.30)
J to

By the notation (3.25) and (3.26), we can write the integral equation (3.27) in the 

following form:

=  lL[Ylh=i,h1i j rjh(s)qhj{s)]ds,

=  frjk exP{/s A jjfe(T )dT }[rjifc(s) +  E L u #  rjh(s)qhk(s)]ds, (j  ^  k ) ,  

where j ,  k  =  1 , 2 , • • •, n, and the initial points Tjk are chosen as follows:

(3.31)

Tjk —

-foo if j  =  k ,

i 2 for the case (3.5), (j  ^  k ) ,  (3.32)

+oo for the case (3.6), (j  ^  k ) ,

where <2 is a suitable large number.

STEP 4: In order to utilize the condition (3.9), namely (3.30), define the “row

wise” successive approximations as follows:

% ,jk(t) = 0 ,

9p.jj =  Itjj [ELi rjh{s)qPlhj(s) + EX=i+i rjh(3)qp-i,kj{s )]ds,
(3.33)

QPjk(t) = Irjk exp { f *  Aj k ( T ) d T } [ r j k { s )  + E C \  rjh{s)qP,hk(s )

-I" E/i=j+l rjh{s )qp-l,hk{s )]ds, (j  7  ̂ fc),
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where j ,  k =  1,2, • • •, n, p =  1,2, • • •. Note that qp,ik(t) depends only on 

and qP,jk(t) dependents only on qp-\,hk(t) for h > j  and qP,hk(t) f°r h < j • There

fore, qPljk(t) is obtained in the increasing order of p and, for each p, in the increas

ing order of j, namely from the first row down, and thus the qp,jk{i) are defined 

successively.

STEP 5: We will see that qpjk{i) defined by (3.33) is uniformly bounded for all p 

on the interval [t2 ,+oo) for large enough <2 ; namely,

\qPljk ( t ) \< G ,  <€[<2 , + 0 0 ), (3.34)

for j ,  k =  1,2, ■ • •, n; p =  1,2, • • •. In order to prove this we provide the following

lemma, valid for each fixed p, (p =  1 , 2 , • • •).

L em m a 3.3.1. Suppose tha t there exist two positive constants G and <2) (h  > 1, 

large enough), such that

(a) k P-i,jfc(f)| < G, for t G [t2, + 0 0 ), j ,  k =  1,2, • • •, n;

( b )  / + “ S - ' f 2 ( S ' / r )<, s <  i ;

(c) +  W  =  2«/0-

Then we have 

l9p.j*(^)l —

' 2 nG[f1 (t2 ) + f 2 (*2 )]*"1/2J +  nGJt+°° s - 1r 2(s1/2i )ds, (j = k ),

- (1 +  nG)K\{[fx{t2 ) +  r 2 (<2)]< - 1 / 2  +  n(-\/t) +  M v^)} , (j  > k), (3.35)

2 ( 1  +  nG)Kx{[h{h ) + r?2(^2)]<_1/2J +  r 2 (i1/2J)}, (j  < k),

for t G [t2 j°°), and j , k  =  1,2, • • • ,n .
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P ro o f  o f L em m a 3.3.1: We will prove (3.35) in the increasing order of j.

C ase I : j  =  1. For k =  1, since

r 2 (s) <  s - 1maxt>s[sr2(<)] <  s - 1max*>a[2r2 (i)] =  s - 1f 2 (s), (3.36)

by (3.33), we have

k P,n(OI <  ft°° E L 2 rih(s)qp-i,hi(3)\ds
(3.37)

<  (n — 1 )G / t°° r 2(s)ds <  (n — 1)G Jf° s~1 r2 (s)ds.

For k =  2,3, • • • ,n , in case of (3.6), for t 6  [f2, oo), by (3.33) and (3.32), we have 

kp, 1*(0I < ST K W l r i k t i  + E L 2 rlh(s)qp, l M (s)\ds

< [1 +  (n -  l)G ]/f r  K ( ^ r 2 (s)ds (3.38)

<  [1 +  (n -  l)G ]/f{m ax5>t[sr2 (s)]} =  [1 +  (n -  l)G ]/fr2(<), 

v In case of (3.5), for t € [f2, oo), by (3.33) and (3.32), we have

|?p,i*(0I <  ^  ( f ^ M * )  +  E L 2 rlh(s)qp- l M (s)\ds

< ! t f + t2 K(-t)0 \rn(s) + E L 2 rlh(s)qp. l M (s)\ds

+  +  U = 2 rih(s)qp- l M (s)\ds (3.39)

<  [1 +  (n -  1 )G][max3>(,sr2(s)] f ^ + t '2 K s~ 1(^)l3ds 

+ [ 1  +  (n -  l)G][maxi>>A[sr2(s)]] f a K s ^ f f i d s .

Since

C h = f  [<75 + 7>* -  ( 7 «  5  (3-4°)

and

f ^ K a - K \ Y i >  < j ( \  -  ( ■ y f )  <  K,  (3.41)
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we have

kP,ifc(*)l <  K \\\ +  (« — +  K \\\ +  (n — l)G ]r2(v^)- (3.42)

Thus, (3.35) is true for j  =  1 and k = 1,2, • • •, n.

C ase I I : Assume that (3.35) is true for j  < m, (m  > 1), we want to show that

(3.35) is true for j  =  m.

C ase I la . For k < m , in case of (3.6), from (3.33) and the assumption

(3.35) for this case, (i.e. (3.34) is true for j  < m), we have

In case of (3.5), from (3.33) and by (3.40) and (3.41), with similar reasons as for 

(3.39), we have

kwnfcWI < S i  * (i)'|r»*(*) +  Z h =l  r mh{s)<lp,hk(S)

+ ELm+i rmk{s)qp_l M (s)\ds

< { [1  +  (m -  l)G][maxa>t2 {sr1(s)}] +  (n -  m)G[maxs><2 {sr2 (s)}]}

Hence,

(3.43)

+  2/i=m+l r mh(s)qP-i,hk(s )\ds

< [1 +  (m — l)G][maxa>t{sr1 (s)}]/t°° /f\s-1(£)^ds (3.44)

+  (n -  m)G[max3>t{57’2 (s)}] f t°° K s - ' f f l d s

= Ki[ 1 +  (m — l)C?]fi(t) +  K\{n — m)G f 2 {t).

. f tf +t* K S- ' ( j y d s
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+  {[1 +  (m -  l)G][maxJ>v7 {ar1(s)}] +  (n -  m)G[max,>t2 {sr2 (s)}]} 

■ i k K s - ' W d s

< /<Ti[{l +  (m -  l)G } fi( i2) +  (n -  m)Gf2(<2)]^- (3.45)

+  i f  [{ 1  + ( m -  l)G}h{y/i )  +  (n -  m )Gr2(\/<)]

<  +  nG]{[fi(<2) +  r2(<2)]^y +  ri(V^) +  r2 (\/i)}.

Thus, (3.35) is true for k < j  =  m.

C ase llb . For k = m,  from (3.33), we have

|<7p,mm(2)l <  f t {2/i=l |rm/i(s)9p,/im(s)| +  !CX=m+l |r mfc(5 )9p-l,fcm(s)|}<fs
(3.46)

< {Hh=i f t °  -s_1 kp,/.m(s)Ms}[maxs>t{sr1(s)}] +  (n -  m )G /t°° r2 (s)ds.

Since h < m  in the first summation, by the assumption (3.35) of this case, we 

have

\qP,hm(t)\ < 2(1 +  nG)I<i[[fi(t2) +  r2 {h)]t~** + hit**)]- (3-47)

Hence,

j r s_1 l9p,fcm(a)Ma
(3.48)

<  2(1 +  nG)I<i[[fi(t2) +  r2 (t2)] Jt°° s~ls ~ ^ d s  +  / “  s~1 f 2 {s**)ds].

Since

j H  s - ' s - ^ d s  = 2ht~*n, (3.49)

we have

/t°°s - 1 kp,Am(s)ks
(3.50)

<  2/l+1(l +  nG)/fi[[ri(<2) +  r 2(f2) ] r ^  +  f t°° s~1 f 2 {s:̂ )ds],
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for all h < m. Note here that f \  (t) and r2(t) are decreasing functions. Substituting

(3.50) into (3.46), we obtain

l9p,mm(<)l

<  2m+1I<i(m — 1 ) ( 1  +  nG)fi(t)[fi(t2) +  f 2{t2)]t~m (3.51)

+2mK i(m  — 1)(1 +  nG)fi(t)  / t°° s~1r2(s^7r)ds +  (n — m ) G / t°° r2(s)ds.

By condition (c) of the lemma, we have

2 nI<1(l + nG)h(t )  <  f  < G, (3.52)

for t € [<2 )0 0 )- Hence,

|<7p,mm(0l

< 2 (m — l)G[ri(<2) +  f 2(t2)]t~^n‘ +  (m — 1 )G /t°° s~1r2(s^n)ds
(3.53)

+  (n — m)G  / t°° r2(s)ds

< 2(m — l)G [fi(t2) +  r2(t2)]t~2™ -f- n G / t°° s~1r2(s^ r )ds.

Thus, (3.35) holds for j  =  k — m.

C ase llc . For k > m, in case of (3.6), from (3.33), we have

kp.mfcCOI

< S T  ^  rmk(s)qp M (s)

"b E/i=m+l '̂m/i(,®)9p—l,/ifc(̂ )|d>S
(3.54)

<  {[maxs><{sr2(s)}] +  E)TJi1[rnax*><l5?’»n/l(s)9p,/.fc(s)|]

+  (n -  m)G[maxa>t{sr2 (s)}]} f t°° K s ^ ^ Y d s

< K { h { t ) +  (m -  l)ri(t)[m axa><ll<fc<m_1|gp,Afc(a)|] +  {n -  m )G f2{t)}-
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Since h < m,  by the assumption (3.35) of this case, we have 

kp,/ife(OI
(3.55)

<  2 ( 1  +  nG)I<i[[h{h) + +  M * 2*)]-

Substituting these into (3.54), we obtain

\qP,mk(t)I <  K[?2 (t) + 2K i(m  -  1)(1 +  nG )fi(t)([r1(<) +  r2 {t)]t~fr
(3.56)

+  r2 (tv* )) +  (n -  m )G f 2 (t)].

By (3.52), we have

l9p,mfc(0l ^  K ifa i*) + ( r n -  l)G [ri(i) +  f2 (0]i_sfcr

+  (m — 1 )Gr2 (tT") +  (n — m)Gr2 (t)\
(3.57)

< K i(m  — l)G[fi(<) +  r 2 (f)]i—2™- _j_ _f. n G)r2 {t*™)

< 2KX{\ + nG){[ri{t) + r2{t)]t~*™ +  »~2 ( ^ ) } -  

Thus, (3.35) holds for this case.

In case of (3.5), from (3.33) and the assumption (3.35) of this case, since 

h < m  < k, we have

kp,mfc(i)| <  Si K(-t )P\rmk(s) + EJfal1 rmk(s)qP,hk(s )

"f" S/i=m+l rmh(s)qP-i,hk(s )\ds

< {maxs> <2 {sr2 (s)} +  (m -  l)G[max,>to{ar1(a)}]
(3.58)

+  (n -  m)G[maxa>t2 {sr2 {s)}]} f tf t+ t2  K s ^ f f i d a  

+  {maxs> ^ { s r2(s)} +  (m -  l)[m ax,>^il<fc<m_1 |?PlAfc(a){ar1 (a)}|]

+  (n -  m)G[maxs> ^ { s r 2(s)}]} f a K s ~ x{ \ f d s
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< K \{ h { h )  +  {fn — l )G f\ ( t2) + {n — m )G f2 (t2)}t 5™’

+  I<\[h{y/t) + 2 K 1(m  -  1 ) ( 1  +  nG )h{ \f i)[h{h )  +  f 2 {h )] t~ ^

-f 2K\(m  — 1)(1 -j- nG)ri(\/ri ) h ( t ^ n') +  (n — m )G f2 (\/t)].

By (3.52) and the fact that r 2(t) is monotonic decreasing, we have

l9p,m/t(<)l

<  K \[h (h )  +  (m -  1 )G fi(t2) +  (n -  m)Gr2 (t2 )]t~^n 

+  I<i[f2 (y/i) +  (m -  l)G[ri(<2) +  r2 (t2 )] t~ ^

+  (m  -  \)Gr2 (tv*) +  (n -  m)Gr2 (\/i)\
(3.59)

<  K \[h{h )  +  nG fx{h) + nGr2 (t2) +  +  »~2 (M]]*“ 5™'

+  I<i[f2 {y/i) +  (m -  l)G r2 ( t ^ )  +  (n -  m)Gr2 (\/t)\

<  2K i(l  +  nG)[fx{t2) +  f:2(t2)]t- 5Tn’ -f- / ^ ( l  +  nG)r2 {t7nr)

<  27fi(l +  nG){[ri(t2) +  r2(^2)]^~3nr +  r2 (t^m')}.

Thus, by (3.44), (3.45), (3.53), (3.57) and (3.59), we have for j  =  m,

|<7p,mfc(0l —

2 nG [ri(t2) +  r2 (t2 )]t~l/2m +  nG J+°° s~1 r2 (s1 2̂ 'n)ds, (m =  k),

< (l +  nG)7fi{[f1(t2) +  f 2 (t2) ] ^  +  f 1(\/t)  +  r2 (\/t)} , (m > fc), (3.60)

2 ( 1  +  nG)fei{[fi(<2) +  r2(*2)]<“1/2m +  ^ ( t 1/2"*)}, (m < &), 

for t £ [<2 , 0 0 ), and m, fc =  1 , 2 , • • •, n. '

S T E P  6 : In this step, we will show that, for large enough f2, the sequences 

{qP,jk(t)\p =  1 , 2 , • • •} converges uniformly to functions (jjk{t) on [t2 , 0 0 ) satisfying
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the expressions (3.31), for j ,  k  =  1,2, • • • ,n . In order to do that, let

Ik -  qP-i\\t =  max4>t,i<j,fc<„kjjb(s) -  <lp-i,jk(s)\. (3.61)

Note that, from (3.33), we have

Qp+i,jk{t) ~  Qp,jk{t) =

&G3& rM [ q P+i,hj(s) -  qp,hj(s)]

+  ^2h=j+1 rjh{s )[Qp,hj{s ) ~  9p—1,/ij("S)]}<̂S5 (i =  )̂>
(3.62)

%k exp[/i AjA.(r )d r]{ E iI1i rjh(s){qp+hhj{s) -  qp<hj(s)]

+  1 2 h=j+irjk{s )[qp,hj(s ) — ^p-i./ijX5)]}^5) (i ^  ^)-

We will establish:

Lemma 3.3.2. I f t 2 is large enough such that

(a)

/ +°° , i 1
s 1r2(s 2n)ds <  — , for t > t2,

and

w

then we have

k+itj*W — 9p,j*(0l —

{2 n[fi(t2 ) +  r2{t2)]t~1/V +  n/<+°0 s_1f:2(s1/2J)^ } lk p  -  9p-i||*2» (j =  *)» 

n K i{ [h ( t2 ) +  h { t 2)\-)ft +  r i(Vt)  +  r2(V^)}|k -  0P-ilk>  U >  *0> (3-63)

2nKlL{[fx{t2) +  r2 (t2 )]i~1/v +  h ( t l l v )}\\qP -  qP-i\\t2, ( j  <  k),
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for t  >  t2 and ji k =  1 )2 , • • •, n\p  — 1 , 2 , • • •.

Now for t 2 satisfying Lemma 3.3.2, we have

kp+i,i*C0 — 9p,jfc(0l — ^  1 1 9 p - i ||< 2  (3.64)

for t > t 2 and j , k  =  1,2, • • •, n; p =  1,2, • • •. Hence,

I l f r+ .- f r l lh S jI I® . - 9 , - . I k  (3.65)

and

Il9p+i -  9.11.. <  ^ 1 1 9 .  -  9oll.. =  i e  (3 .6 6 )

for p = 1,2, • • •. Therefore, the sequences {qP,jk(t)\p =  1,2, • • •} converge uniformly 

to functions qjk(t) on [f2, oo), for j ,  k =  1 , 2 ,• • • ,« , and furthermore, they satisfy 

the expressions (3.31).

Lemma 3.3.2 can be proved in a fashion similar to that for Lemma 3.3.1 

with slight modifications.

S T E P  7: In order to show that

limf_*oo9jfc(<) =  0, j , k  = 1,2, •••,*», (3.67)

note from Lemma 3.3.1, we have

l9jk(0l =  ^rnp-*oo|<7p1jfc('0l —

2 nG[fi(<2) +  r2(h)]i~* + nG s~1r2{s1̂ 1)ds, (j  =  k),

' ( 1  +  nGf)/f'1 {[r1(t2) +  +  h {V i)  +  r2 (\/i)} ,  (j  > k ), (3.68)

2 ( 1  +  n G )K \{[h {h ) +  r2{h)]t~v +  f 2 (j  < k),

for t G [<2 > ° ° ) 5 aQd j-, k =  1,2, • • •, n.  By (3.7), we have

limt_oofj(t) =  0, (j  = 1,2). (3.69)
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Thus, by (3.9), (3.68) and (3.69), (3.67) follows. This completes the proof of 

Theorem 3.2.1. g

3.4 Examples

In this section, we will use some examples to illustrate the application of 

Theorem 3.2.1.

Exam ple 1 . Consider

with

A(t) =

di = m v ,

1

cos(t3)
! ln(ln(t))

sinj f)
tin  (t)

1 +  2*- l

(3.70)

for t £ [2 , +oo).

A(t) satisfies Assumption 3.2.1 and 3.2.2 with f3 =  2, so by Theorem 3.2.1 

we know that (3.70) can be changed into

dz 
dt

1 0

0  1 +  2 1-1 

by y = [ / 2 +  Q(t)]z, where Q(t) -> 0, as t —* +oo.

Theorem L can not be applied to this example, because the corresponding 

R(t) does not satisfy R(t) £ X1(/o); Theorem LE can not be applied to this exam

ple, because the corresponding matrix A  has multiple eigenvalues; Theorem WH 

and Theorem HL can not be applied to this example, because the corresponding 

A(t) does not satisfy Assumption 1.5; Theorem HX can not be applied to this
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example, because the corresponding A(t) does not satisfy Assumption 1.7; The

orem 2.1.1 and Theorem 2.1.2 can not be applied to this example, because the 

corresponding A(t) does not satisfy Assumption 2.1.2; Theorem 3.1.1 and The

orem 3.1.2 can not be applied to this example, because the corresponding V(t) 

does not satisfy V'(t) € L x{Iq).

E xam ple  2 . Consider

with

A(t) =
1

* - 3 / 2

for t G [1, +oo).

System (3.71) can be changed into

(3.71)

dy
dt

l  +  r 3/4 +  | r 1

by

. 2 /—1

.2 4— 1 
8

i  -  r 3/ 4 +

y = y-
l l

t - 3 / 4  _ t - 3 / 4

By Proposition 3.2.1, we know that (3.72) can be changed into

(3.72)

dz
dt

o

i _ r 3/4 - 1 r 1
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by y = S(t)[l2 +  Q{i)]z, where Q(t) —* 0 , as t —* + 0 0  , and

S(t) =
1

0

0

t~s
, with 0  < 6 <

4

For similar reasons to those in Example 1, Theorem L, Theorem LE, 

Theorem WH, Theorem HL, Theorem HX, Theorem 2.1.1 and Theorem 2.1.2 

can not be applied to this example. Theorem 3.1.1 can not be applied to this 

example, because the eigenvalues of A(t) do not satisfy Assumption 3.1.3. Note 

in this case r — 1. Theorem 3.1.2 can not be applied to this example, because the 

corresponding R(t) does not satisfy condition (D) in Theorem 3.1.2. Note in this 

case no =  2, to satisfy Assumption 3.1.5, we have to let V(t)  be the zero matrix 

and let R (t) be

0  0

R(t) =
t - S /2 0
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CHAPTER IV

THE DEFICIENCY INDEX OF CERTAIN FOURTH ORDER ORDINARY 
SELF-ADJOINT DIFFERENTIAL OPERATORS

4.1 Introduction

Consider the self-adjoint ordinary differential operator

<W =  (4.1)
k= 0

defined on some interval (a,b) of the real axis, where b is either finite or +oo, the 

coefficients p*(<), (k = 0 , 1 , 2 , • • • ,n), are all real functions and p0(t) > 0 .

The differential operator (4.1) is self-adjoint in the sense that for any test 

functions u ,v  E C£°(a, 6),

f  l{u)vdt =  f  ul(v)dt.
Ja Ja

Hence, when restricted to the test functions, / is a densely defined symmetric 

operator in the Hilbert-Lebesgue space L2(a,b), so it has a symmetric closed 

extension designated by L q and called the minimal operator associated with I. 

Let

k =  dim { ( £ 0 — 2 /)Z>(L0)}x , m  =  dim{(L0 -  z /)D (L 0)}X, Im{z} > 0 ,

where D(Lq) is the domain of L0. The pair (k, m ) is called the deficiency index of 

L0. The knowledge of the deficiency index will give information about the spectra 

of self-adjoint extensions. Since the differential operator (4.1) has real coefficients, 

we have k = m. It is proved that, for (4.1), m can take any value between n and 2n. 

Thus the deficiency index problem for (4.1) is then the problem of determining the

54
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integer m in [n, 2n] for a certain class of real coefficients P k { t ) ,  { k  = 0 ,1,2, • • •, n). 

We may formulate this in the following way:

Find the dimension of the linear space of square integrable solutions to the 

equation

l(y) =  zy, Im{z}  ^  0. (4.2)

In the late 1960’s, W.N. Everitt ([15], [16]) first investigated the limit point 

problem for the following fourth order differential operator

2/ (4) -  { P i y J  +  P2V-

Stimulated by the work of Everitt, many other authors, including A. Devinnatz 

([7], [8 ]), S.P. Eastham ([11], [12], [13]), R.B. Paris and A.D. Wood [32], P.W. 

Walker [35], and A.D. Woocl [37], studied the deficiency index problem of the 

minimal operator associated with the following fourth order self-adjoint differential 

operator

Kv) = 2/(4)(*) “  «{<V(*)}' +  bt?y(t), t 6  (1 , oo), (4.3)

where a, and b are real numbers. In the a:/3-plane, the solution of differential 

equation (4.2) for differential operator (4.3) has special properties on the half-ray 

(3 = a  — 2, c* >  2, and most methods in determining deficiency index fail to apply 

to this case.

In this chapter, we will use the result in Chapter III to investigate the 

deficiency index of the minimal operator associated with the following differential 

operator

% ) =  y(4)( 0  ~  «{<V (0 }' +  c(t)t0y{t), t e  (1 , oo), (4.4)
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where c(t) = 6 (ln£),), and ce,0,rj,a,b are any real numbers. We are especially 

interested in the half-ray 0 = a  — 2, a  > 2. The purpose of this Chapter is to 

show that the new result in Chapter III can be used to do a  delicate analysis.

The main theorems of this Chapter are the following:

Theorem  4.1.1. I f  0  < a  — 2, a  > 2, or 0  = a  — 2, a  > 2, rj < —1, then the 

deficiency index for the minimal operator associated with the self-adjoint operator 

(4.4) is (2, 2) when a > 0, and is (3, 3) when a < 0.

T h eo rem  4.1.2. I f  a  — 2 < 0  < ^2^2, a  > 2, or 0  = a  — 2, a  > 2, rj > 1',

then the deficiency index for the minimal operator associated with the self-adjoint

operator (4.4) is (2, 2) when a >  0, b > 0; and is (3, 3) when a < 0, b < 0.

4.2 Asymptotic Analysis

By using quasi-derivatives [8 ], equation

yM(t) -  a{tay'{t)}' +  c(t)t^y(t) =  zy(t), Im{z} ±  0, (4.5)

can be changed equivalently to

^  =  B(t)U, (4.6)

where
0 1 0 0

0 0 1 0

0 atQ 0 - 1

c(t)tp - 2  0  0  0

U{t) =  (y, y', j/(2), j/[3])i

and

=  a t y  -
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Let Qo(t) be a positive measurable function such that 1/Q0(t) is integrable 

on every finite subinterval of (0,oo), but is divergent on the entire half-axis. Let 

us set

r* dr (4.7)

and denote its inverse by t =  t(s). Further, if we set F (s) =  U(t(s)), then (4.6) 

takes the form

(4.8)

Now let Qi(t) and Q2(t) be positive functions which are absolutely continuous on 

every finite subinterval of (0, oo). Set

C{s) =  diag{Q2 (<(5 )),Q i(i(5 )),<3 1 1 (<(5 )),Q 2 1 (f(s))}, 

and make the transformation:

V(s) =  C(s)VF(s),

then the differential equation (4.8) becomes

dW

(4.9)

(4.10)

ds
= A (s)W , (4.11)

where
-b 2 d\ 0 0
0 —b\ do 0
0 Ci bi -dr

■ zQoQl 0 0 b2

and

do =  «i =  aQ0Qlt(s)a, a2 = c{t{a))QQQ \ t { s f ,
Vi
, 1 dQk /, i j QoQi
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If we choose

Qo(*) a0 + 1 r"°, (a0 >  0), Q*(f) =  <"“*, (* =  1,2),

and take a0 (.s) =  1 , ai(s) =  «, di(s) =  1 , then we have

58

(4.12)

«o =  5 “ > “ i =  7 “ > “ 2 =

Thus i4(s) is now of the form

A(s) =
1

ao +  1

1 0  04a

o Is i  o

0  a —— — 1

L S1 s6
3a
4s

where

r o\ 4a  — 2/3 ■ 4a 3a — 2
7 (a,/?) =  —-------- > 1 , and 6 (a) =  , - > 2 , for /? <

(4.13)

2 + a

Write A(s) as

with

a  +  2

A(s) = A + V{s)

, a  >  2 .

A =
1

0  1 0  0

0 0 1 0

0  a 0  - 1

0 0 0 0

then A has a double eigenvalue at A =  0 and two simple eigenvalues at ± i /a / ( a 0+  

1). Hence there is an invertible matrix P such that

P~l A P  =  A

Ai 0 0 0

0 A2 0 0

0  0  0  l / ( a 0 +  l)

0 0 0 0
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where Ai =  —A2 =  ^ /a /(a 0 +  1 )-

Denote the eigenvalues of j4(s) by At(s), (k =  1,2,3,4), solve

(a0 + l)A(s)P(s) = P(s)A(s), (4.14)

where

A (s) =

Ai(s) 0 0 0

0 A2 (s) 0 0

0 0 A3(s) 1

.0  0 0 A 4{s)

with Ajfc(s) =  (a 0 +  l)Ajt(s), k = 1 ,2,3,4, we have

P(s) =

0  

1

Ms) M s )  Ms) - 7

9 i { s )  92 ( s )  g3{s)  a +  ( ^ ) 2 - A ^ ( s )

where

, (4.15)

f i . ( . ) +J <£) >,  »( . )  = t  = U. 3 .

Now let us compute Afc(s), k  =  1 , 2 ,3,4. The characteristic equation of the 

matrix (a 0 +  l)A(s) is

.5 ,a , ,3 a . , a c(s) z
A* -  # = ) *  + a}A2 + (= )* { (£ )•  + a} + ^  -  j  = 0. (4.16)

Case I: When j3 < a  -  2, a  > 2, or /? =  a  -  2, a  > 2, 77 < - 1 ,  by solving 

above equation, we can have

= 5< |< 7>2 + “X1 i t 1 "  + 1 ?  -  7 ) + *(«)}*]. (4.1T)
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where h(s) =  0(^r). If we choose the plus sign in (4.17) and use Taylor expansion, 

we have

A2 (s) =  a +  /ii(s),

where hi(s) =  0(j?)  and h[(s) =  0(pr). If we choose the negative sign in (4.17) 

and use Taylor expansion again, we have

A’(s) =  Q y  + h2(s ),

where h2(s) =  o(p-) and h'2(s) =  o(p-). Thus the eigenvalues of (a 0 +  1 M (3 ) are

A ^ )  =  -A 2 (s) =  y/a + h3(s),

and

\z (s)  = - X 4(s) = ^  + h4(s),

where h3(s) =  0(pr), h'3(s) = 0 ( £ ) ,  h4(s) = o(±) and h’4(s) = o(j?). Hence,

P(s) = P  + O (- )  with P  =  
s

1

y/a

a

0

1 1 0

—  y/a 0  1

a 0  0

0 0 a

(4.18)

It follows that for large s, P(s)  is invertible, and

P - '( s) =  P - '+ 0 ( - )
s

(4.19)

with

P - 1 =
2ay/a

0  a y/a — 1

0  —a y/a 1

2  ay/a 0  — 2  y/a 0

0  0  0  2 y/a
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Make the transformation

W(s) = P(s)X{s), (4.20)

then the differential equation (4.11) with i4(s) given by (4.13) becomes 

dX
ds

~  {A(s)/(a„ +1) — P~1(s)P'(s)}X.

Notice that 2 <  7  <6. Thus

0 .

o & )

and

P>(s) =

0 0 0

0( 1?)  0  

0 (&  Oft)  0(*) 0(£)  

0 ( »  ° < |S )  O (M ) 0(4) J

(4.21)

P-'(s)P'(s) =

O(jr) 0 ( jr) 0(1?) 0(1?)

O(jr) 0(*) 0($) 0(h)
0(1r) 0(1?) o(i) 0(1?)

.0 ( 5 $ ) 0 (5 $ ) 0 ( 1eM ) 0(15-) .

(4.22)

If we now take

and set

Q(s) =  diag{l, 1 , 1 ,
1

sln(lns)

X (s) = Q(s)Z(s),

then (4.21) becomes

(4.23)

dZ ri. r r- /— 3a 3a ln(lns) +  (Ins)-1 ..
*  =  Idla*{^ ’ 4 l ’"  47 +  - M i l s )  } +  * * » * •

(4.24)
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where

O(jr) o & ) 0(±)

0(j.r) 0(1r) 0(li) o(l?)

0(1r) O(lr) O(lr) ŝln(lna)
l̂n(ln.)|eM|j £̂ln(ln«)|c(»)|j Ĉln(ln»)|c(«)|j

o & )
2

Notice t = s “ + 2 , we have c(.s) =  6 ( ^ 5 )T,(ln5 )T,) it follows that

for 7  >  2, c(s)ln(lns)/s ' 1' - 1  is integrable, (4.25)

and

for 7  =  2, T] < —1, — ).!n ^ n,s) js integrable. (4.26)
s

So R (s ) satisfies the Assumption 3.2.2 of Theorem 3.2.1. Hence if a > 0, then

from (4.25) and (4.26), by Theorem 3.2.1, there exists a 4 x 4 matrix G(s) with

lim^-i-co G(s) =  0 such that the transformation:

Z(s) =  ( / 4 +  G(s))T(s), (4.27)

changes system (4.24) into

dT n  3a 3a ln(lns) +  (Ins)-1 . . .
-  =  d ,a g { ^ ,  -  A  -  S  )T. (4.28)

In case a < 0, the system (4.24) does not satisfy Assumption 3.2.2 of 

Theorem 3.2.1, but from (4.25), (4.26), and the proof of Theorem 3.2.1, it is not 

difficult to see that there still exists a 4 x 4 matrix G(s) with lims_*+00 G(s) =  0 

such that the transformation (4.27) changes system (4.24) into (4.28). Therefore 

w hen/? <  a  —  2, a  >  2, or (3 =  a — 2, a  >  2, 77 <  — 1, we have

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



63

Z(s) =

( l +  o(l))Zi(a) o(l)Z2(s) o(l)Z3(s) o(l)Z4(s)

°(l)Zi{s) ( l  + o(l))Z2(s) o(l)Z3(s) o(l)Z4(s)

o(l)Zi(s) o(l)Z2(s) (1 +  0 (1))Z3(5) o( 1 ) Z 4(s )

o{\)Z\(s) o(l)Z2(s) o{l)Z3{s) (l +  0 (l))Z 4 (s ) .

where

5 . 3a
Z x(s) =  (1 +  o(l))exp{v/a ( 5  -  s0)}, Z3(s) = (1 +  o(l))(—)« ,

5o

ZaW = (1 + o(l))exp{-̂ (« - *>)}, Zi(«) = (1 + ln(lnso) s

Since

X (s)  =  Q(s)Z(s), W(s)  =  P(s)X(s), V(s) = C (s)W (s ),

U{t) =  V(s_1(t)) and ux{t) =  y(t),

under the giving conditions we have the following four linear independent asymp

totic solutions for equation (4.5):

yx(t) =  ( l- fo (l))r"T e x p { v /a(i 2 -  V  )},

2/2 (t) =  (1 +  o ( l) ) r^ e x p { v /a ( t ? ‘ -  f2^ ) } ,  

ifa(t) =  ( 1  + o ( l ) ) r 2r
to

and

/j\ /*(K(3a- 4Xa+2) i /iy4(t) =  o(l)<  ̂ ( _ )  8 ln(lnf). (4.29)

Case II: When a  — 2 < /3 < a  > 2, or j3 = a  — 2, a > 2, rj > 0, by

solving (4.16), we can have

=  5 ( l (7 )2 +  0}[1 ±  {1 “  7*{a{T s f  + 1 ?  "  7 1 +  ' ,(3)}i)’ <4'30)
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where h(s) = O ( j ^ ) ,  1 <  7  <  2. By Taylor expansion, if we choose the plus 

sign in (4.30), we have

A2 (s) =  a + hi (a),

where hi(s) =  O ( ^ )  and h[(s) =  0 ( ^ 7); and if we choose the negative sign 

in (4.30), we have

= <$T> + *»<*>-

where h2(s) =  o(4f) and h'2(s) .= o(p-). Thus the eigenvalues of (a 0 +  l)^4(s) are

Ai(s) =  —A2 (s) =  y/a +  h3(s), (4-31)

and

C(s) ' (4.32)A3 (s) =  —A4 (s) =  \ — -  +  h4{s),
as~<

where feW  =  O ( ^ ) ,  *£(«) = 0 ( j& ) .  and AJ(,) =

0 ( -----.} ) ). Hence,
Ks*-</2y / c ( s ) J

c(a),
P(s) = P + 0 ( \ l ^ )  with P  =

1 1 1 0  

y/a — y/a 0  1

a a 0  0  

0  0  0  a

(4.33)

it follows that for large s, P(s)  is invertible, and

p-‘W = p -1 + o(J3&) (4.34)

with
0 a y/a - 1

1 0 —a y/a 1

2  ay/a 2  ay/a 0 — 2  y/a 0

0 0 0 2  y/a
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Make the transformation

W{s) =  P(s)X(s),  

then the differential equation (4.11) with A(s) given by (4.13) becomes

^  =  {Am/(<*>+ 1 ) -  p - \ s ) n ° ) } x .

Notice 7  <  6, we have

P \s )  =

Thus

P - ' ( s ) P ' ( s )  =

o(*) 0 (±) 0(̂ 372) 0

0(tf) 0(*) °(£) O(Jr)

. 0 (6 ®) 0 (6®) o(^g?) o(jr) .

' 0(£) o(*) o & )

o(*) O(p-) °(pW) °{j*)

o(*) O(pr) °(£) 0(jt)

. 0 (6®) ■0(5®) o(%g£) o($)

(4 .35)

(4.36)

(4.37)

Suppose that T(s)  is a  4 x 4 differentiable matrix with T(s)  —> 0 as s —» oo 

such that for all sufficiently large s, I  + T(s) has an inverse. So we may write

{ / +  T (s ) } " 1 =  /  -  T(s)  +  T 2 (s){7 +  T ( s ) } - \

Make the transformation X (s) =  (7 +  T(s))Y(s)  so that (4.36) becomes 

dY
ds

=  (A0 (s) +  [A0 ,T](s) -  P (s)- 'P '(s)  +  i?: (s)}F,

where A0 =  A /(a0 +  1), [A0, T ] =  A0T  -  T A0, the Lie product, and 

Ri{s) =  - T A 0T  + T \ I  +  T ) " 1 A0(7 + T) + T P ~ XP 'T  +  

+[T, P~XP'\ +  T 2(7 +  T )" 1P " 1P'(7  +  T) -  (7 +  T)~XT'.

(4.38)

(4.39)

(4.40)
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Let tjk(s) be the entries of T(s), and take

tjk(s) =  0 for j  = 1,2,3, A; =  1,2,3,4, and i4 4(s) =  0.

Then we get

[Ao ,T] =

0  0  0  0

0 0 0 0

Lu/(<*o +  l) 4̂ 2 / ( 0 0  +  1 ) 4̂3 /(<^0 +  1) 0
(A4 — Aj)t4i (A4 — A2)t42 (A4 — Aa)t43 —t43/(ao  +  1)

, (4.41)

with all quantities being evaluated at s. Choose

) ~  \ 4(s) -  Ak(s) ’ ( “  "  3)*
(4.42)

Recalling the order of magnitude of P(s)~1P'(s), noting the values of Ajt(s), and 

the values of Ajt(s) given by (4.31), (4.32), and the form of <7t(s) given after (4.15), 

we see that

Uk{s) =  0 ( |c (s ) |/s1+7), and t'4k(s) =  0 ( |c (s ) |/S2+̂ ), for A: =  1,2.

For t43(s), we have

U3{s) /(a0 +  1 ).=

where h(s) is integrable.

Let us set

=  T: + h(s )ia(A4(s) -  A3(s)) 4s

R 2(s ) =  [A0, T](S) -  P(s)- 'P '(s)  +  X,(») +  diag{0,0, -  J ,  J } .

We see that certainly the first three elements of the last row of R 2(s) which are in 

fact the first three elements of the last row of Ri(s)  are of 0 ( l / s 2), and the other 

elements of R 2(s) are integrable. Thus (4.38) can be written as

d Y
ds

=  { A 4(s)  +  R 2( s ) } Y, (4.43)
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where

A i ( a )  =

Ai (s) 0

0 A2(s)

0  0

0  0

0  0

0  0

Aa(a) +  % l/(« o  +  1 )
0 A4 (5) -  *

Repeat the operation we have performed above, i.e. make a transformation 

of the form (I  + T(s)), but using the matrix P 2(s) instead of —P(s)~1P ,(s). 

Because A4 —A3 —^  is asymptotic to d ( ^ ^ ) 1/,2? where d is some non-zero constant 

and 7  <  2 , we see that

(i) if 7  <  2 , we arrive at a differential equation

d Y
ds

= {Al (s) + R(s)}Y, (4.44)

where the first three elements of the last row of R(s) are o(l/s^) (£ >  2) and the 

other elements of R(s)  are integrable;

(ii) 7  =  2 , we arrive at a differential equation

d Y
ds

(4.45)

with

A 2 ( s ) =

A j(s)  0 0

0 A2(s ) 0

0 0 A3(s )  +  £  +  a(c(sd))1/2

0 0 0

0  

0

l / ( o 0 +  1)

~  ~  s(c(s)y/2 .

where d is a positive number, the first two elements of the last row of R(s) are 

o(l/s^), (£ >  2), r 43(s) =  ( , ti-s)T,s2]) and the other elements of R(s) are

integrable.

In case (i), we take

Q(s) =  diag{l, 1 , 1 , — }, with £ / 2  > /i >  1 ,
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and set

Y(s)  =  Q(s)Z(s), (4.46)

then we have

§  = [ d ia g { ^ , - v ^ ,  \ l ^  + h  - \ l ^  -  i  B  + AM1Z. (4-47)M »  . 7 
as7  4 s ’

'c(s) 7 ! /*■
as7  4s s

where £ > 2, so i?(s) G X1. Hence by Theorem L, there exists a 4 x 4 matrix G(s) 

with lims_ , +00 G(s) =  0 such that the transformation:

Z ( s ) =  ( / 4 +  G ( s ) ) D ( s ) , (4.48)

changes system (4.47) into

i f  =  d ia g { ^ ,  l / ^  +  X ,.- , / I f L  -X +  £}C . (4.49)
ds 6 lv  ’ v ’ Va s 7 4 s’ V as7 4s s 3 v '

Therefore when ot — 2 < /? <  a  > 2, we have

Z(s) =

(l +  o(l))Zx(s) o(l)Z 2(s)

o(l)Z i(s) ( l  +  o(l))Z 2(s) 

o(l)ZX(s) o(l)Z 2(s)

o(l)Z x(s) o(l)Z 2(s)

°(l)Z 3 (s) ° ( l ) ^ 4 (s)

o(l)Z 3 (s) o(l)Z 4 (s)

(l +  o(l))Z 3 (s) o(l)Z 4 (s)

o(l)Z 3 (s) (1  +  o(l))Z 4 (s)

where

Zx(s) =  (1 +  ^(l^exp-fVaGs -  -So)}, Z2(s) =  ( 1  +  o (l))exp{-V a(s -  s0)}, 

Z ,(S) =  ( 1  +  o ( l ) ) ( £ r 'V p { £  y ® 5 f a } ,

Z .W  =  (1 +  „ (1 )) (± )-V 4 exp{_  £

Since

Y(s) = Q(s)Z(s), X (s)  =  ( /  +  T (s))y (s), W(s) =  P(s)X(s),
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V(s) =  C(s)W (s), U(t) =  V(«_1 (0 ) and m (f) =  y(t),

under the giving conditions, we have the following four linear independent asymp

totic solutions for equation (4.5):

= (1 + o(l))r^exp{v/a(t2̂  -  <?")},

a±2

and

y2(t) =  ( 1  +  o(l))< 3“exp{v/a (<0 2 “  ^ ) } >

3a . t  (q+2)-y
Vs(t) = (1 +  o(l))f { l-)L2¥ h  exp{j t ^ 2  ^

/ “±2 sC{X 2 )
axy(a+2)/2 dx},

c(x
axT'(“ + 2) / 2

dx}.

In case (ii), we take

Q(s) =  diag{l, 1 , 1 ,
1

sln(lns)

and set

Y(s)  =  Q(s)Z(s), (4.50)

then from (4.45) we have 

dZ

where

ds
=  [diag{y/a, -y /a ,  A£(s), A^(s)} +  R(s)]Z,

os'1 2 s s(c(s) ) 1/ 2 ’

as'1' 2 s sln(lns) s(c(s))1/2’

(4.51)
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and when 77 >  1, R(s) satisfies the Assumption 3.2.2 of Theorem 3.2.1. Hence 

if a > 0, 6  > 0, by Theorem 3.2.1, there exists a 4 x 4 matrix G(s) with

lim3_ +00 G(s) =  0 such that the transformation:

Z ( s )  = (I4 + G ( s ) ) D ( s ) , (4.52)

changes system (51) into

dD
-T- = diag{v^, - \ / a ,  AJfs), AJ(s)}Z>. (4.53)

If a < 0, b < 0, as mentioned in case I, by following the proof of Theorem 

3.2.1, equation (4.53) can also be obtained. Therefore when /? =  a  — 2, a  > 2, 

ab > 0 , 77 >  1 , we have

Z(s) =

(1 +  0 (1 ) ) ^ ^ )  o(l)Z2(s) o(l)Z3(s) o{l)Z4{s)

o(l)Z i(a) ( l  +  o(l))Z 2(a) o{l)Z3{s) o(l)Z4(s)

o ^ Z r i s )  o{l)Z2(s) ( l +  o(l))Z 3 (s) o(l)Z4{s)

o(l )Z1(s) o{l)Z2(s) o(l)Z 3 (s) (l +  o(l))Z 4 (s)

where

Zi(s) =  (1 +  o(l))exp{\/a(s -  s0)}, Z2(s) =  (1 +  o(l))exp{--v/a(s -  s0)}, 

=  ( 1  +  o ( l ) ) ( i ) '^ e x p { £  1j ^ L r/-  +  ^ d x ) ,

z M  -  ( 1  +  0 ( i ) ) M M ( ± ) V * exp{_ _ ^ _  _  /■ M d x ) .
v ln(lnso) So ®(c(s))*/2 J30 V a x 2

Since

Y(s)  =  Q(s)Z(s), X (s )  = (!  + T(s))Y(s), W(s) = P(s)X(s),

y (s) =  C(s)W (s), U(t) =  V(s 1(t)) and ui(i) =  y(t),
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under the given conditions we have the following four linear independent asymp

totic solutions for equation (4.5):

y ^ t )  =  ( 1  +  o(l))t 3"exp{y/a^t3̂  -  <?")}, 

y2(t) =  ( 1  +  o ( l) )r^ e x p { > /a (V ~  -  t ^ ) } ,

and r/4 (f) =

4.3 Deficiency Index

Using the previous asymptotic results, we can now determine the deficiency 

index for the minimal operator associated with the self-adjoint operator (4.4).

(1) In case /3 < a  — 2, a > 2, or /? =  a — 2, a  > 2, 77 < —1:

For a > 0, we have \ fa  > 0, so yi(t) is not square integrable, but y2 {t) is

square integrable. The square integrability of y3 (i) and y,\(t) is independent of a. 

When a > 2, we have yz(t) is not square integrable, but y4 (t) is square integrable. 

Since no non-trivial combination of 7/1 (t) and ij3 {t) is square integrable, it follows 

that in this case the deficiency index is (2 , 2 ).

For a < 0, we have y/a puje imaginary number, so both yi(t) and 2/2 OO are 

square integrable. So in this case the deficiency index is (3, 3).

This proves Theorem 4.1.1, that is if /? < a  — 2, a > 2, or ft =  a — 2, a > 

2, T) <  — 1, then the deficiency index for the minimal operator associated with

the self-adjoint operator (4.4) is (2, 2) when a > 0, and is (3, 3) when a < 0.

(2 ) In case a  — 2 < /? <  ^ 5^ ,  a  > 2, or /3 =  a  — 2, a > 2 , ab > 0, 77 >  1 .
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For a > 0, 6  >  0, we have y/a > 0, so 2/1 (2) is not square integrable, but 

r/2 (2) is square integrable. We can also see that 2/3 (2) is not square integrable, but 

2/4 (2) is square integrable. Since no non-trivial combination of 2/i(2) and 2/3 (2) is 

square integrable, it follows tha t in this case the deficiency index is (2 , 2 ).

For a <  0, 6 <  0, we have y/a pure imaginary number, so both 2/1 (2) and 

2/2(2) are square integrable. Since in this case 2/3 (2) is not square integrable, and 

2/4 (2) is square integrable, it follows that in this case the deficiency index is (3, 3).

This proves Theorem 4.1.2, that is if a  — 2 < /3 < 2s t 2 jQr > 2, or j3 = 

a  — 2 , a  > 2 , j / > 1 , then when a > 0 , b > 0 , the deficiency index for the 

minimal operator associated with the self-adjoint operator (4.4) is (2, 2); when 

a < 0 , 6 <  0 , the deficiency index for the minimal operator associated with the 

self-adjoint operator (4.4) is (3, 3).

E xam ple  1. If /3 < a  — 2, a  > 2, then from Theorem 4.1.1 the deficiency index 

for the minimal operator associated with the self-adjoint operator (3) is (2, 2) 

when a > 0, and is (3, 3) when a < 0. This is the main result of [35].

E xam ple  2 . Let /? =  a — 2, a  > 2, and let 6 (2) =  (ln2 )_r,, 7/ > 1 , then from 

Theorem 4.1.1 the deficiency index for the minimal operator associated with the 

self-adjoint operator (4.4) is (2, 2) when a > 0, and is (3, 3) when a < 0. 

E xam ple  3. Let /? =  a — 2, a > 2, and let b(t) = (\nt)v,rf > 1 , then from 

Theorem 4.1.2 the deficiency index for the minimal operator associated with the 

self-adjoint operator (4.4) is (2, 2) when a > 0, 6 > 0, and is (3, 3) when

a < 0 , 6 <  0 .
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