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1
Introduction

Stochastic service systems describe situations in which cus-
tomers compete for service from scarce resources. Think of
check-in lines at airports, waiting rooms in hospitals or queues
in supermarkets, where the scarce resource is human man-
power. Next to these traditional settings, resource sharing is
also important in large-scale service systems such as the inter-
net, wireless networks and cloud computing facilities. In these
virtual environments, geographical location does not play a
restricting role on the system size, paving the way for the
emergence of large-scale resource sharing networks. This the-
sis investigates how to design large-scale systems in order to
achieve economies-of-scale, by which we mean that the sys-
tem is highly occupied and hence utilizes efficiently the ex-
pensive resources, while at the same time, the offered service
levels remain high. In this introductory chapter, we give an
overview of the available machinery that supports such prin-
ciples and explain how this thesis contributes to the existing
study of large-scale service systems. A crucial concept behind
most of the results discussed in the chapter is the Central Limit
Theorem (CLT) – arguably one of the most important theorems
in mathematics and science.

1



2 Chapter 1. Introduction

1.1 Service systems & queueing theory

1.1.1 Quality vs. Efficiency

Large-scale service systems take many shapes and forms. Classical examples of
large-scale service systems include call centers [72, 175, 220, 80, 43, 49, 229, 30, 135]
and communication systems [142, 14, 133, 143, 207]. More recently, congestion-
related issues in health care facilities and cloud-computing facilities have received
much attention [17, 94, 225, 95, 205]. In all settings, one can think of service systems
as being composed of customers and servers. In call centers, customers typically call
to request help from one of the agents (servers). In communication networks, the
data packets are the customers and the communication channels are the servers.
In health care facilities, patients are the customers, and nurses/physicians are the
servers. The system scale may refer to the size of the client base it caters to, or the
magnitude of its capacity, or both. Next to the central notions of customers and
servers, we emphasize that service systems are inherently stochastic, that is, subject
to uncertainty. Although arrival volumes can be anticipated to some extent over a
certain planning horizon, for instance through historical data and forecasting meth-
ods, one cannot predict with certainty future arrival patterns. Moreover, service
requirements are typically random as well, adding more uncertainty. This intrinsic
stochastic variability is a predominant cause of delay experienced by customers in
the system.

Due to the inherent randomness in both their arrival and service processes,
stochastic models have proved instrumental in both quantifying and improving the
operational performance of service systems. Queueing theory and stochastics pro-
vide the mathematical tools to describe and evaluate these service systems. Queue-
ing models are often able to capture and explain fundamental phenomena that are
common across applications.

A standard model for service systems is the M/GI/s queue, which we will refer
to as the many-server queue. This model assumes that customers arrive to the queue
according to a Poisson process with rate λ, and customer service times are mutually
independent and identically distributed (i.i.d.) samples from the distribution of a
non-negative random variable B. The parameter s denotes the number of servers in
the system, and hence restricts the number of simultaneous services. The case s = 1
corresponds to a single-server queue.

First principles say that the queueing process is stable, that is, the number of
customers does not explode as time evolves, if and only if the expected workload
R := λE[B] brought into the system per time unit is strictly less than the system
capacity. In other words, the utilization of the queue, defined as ρ := λE[B]/s
should remain strictly below one. Naturally, a system manager prefers to operate
at a utilization level close to one, so that resources are used efficiently. However, it
is known that pushing the occupation levels to 100% leads to an explosive increase
in congestion. That is, the expected queue length and customer waiting time in-
crease indefinitely, thereby reducing the quality-of-service (QoS) and also customer
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satisfaction. These seemingly conflicting objectives give rise to a classical trade-off
between customer satisfaction and costs of resources.

1.1.2 Economies-of-scale

Under the assumption that service times are exponentially distributed with mean
1/µ, the many-server queue reduces to the well-studied M/M/s queue. Despite its
simplicity, the analysis of the M/M/s queue explains mathematically the distinctive
traits of queues in general, such as the non-linear effect of utilization on the queue
size, and pooling effects.

Let W(s) denote the waiting time of a customer and Q(s) the queue length (in-
cluding the customers in service) in the steady-state M/M/s queue. Without loss
of generality, we fix µ = 1, so that ρ = λ/s. A straightforward balance argument
gives the stationary distribution:

πk := P(Q(s) = k) =

{

π0
λk

k! , if k < s,

π0
λs

s! ρk−s if k ≥ s,
(1.1)

where

π0 :=
( s−1

∑
k=0

λk

k!
+

1

1 − ρ

λs

s!

)−1
.

Natural QoS indicators include the expected waiting time E[W(s)] and the delay
probability P(W(s)

> 0). Invoking the PASTA (Poisson arrivals see time averages)
property [224], we know that the delay probability equals the probability of the
queue length being greater or equal to the number of servers s. Thus,

P(W(s)
> 0) = P(Q(s) ≥ s) =

λs

s!

(

(1 − ρ)
s−1

∑
k=0

λk

k!
+

λs

s!

)−1
. (1.2)

By Little’s law, which says that E[(Q(s) − s)+] = λE[W(s)], we furthermore have

E[W(s)] = P(W(s)
> 0)

1/s

1 − ρ
. (1.3)

From these formulae, it is readily seen that P(W(s)
> 0) → 1 and E[W(s)] → ∞ as

ρ ↑ 1 . That is, increasing λ to s, while keeping the latter fixed, leads to a system
in which all customers are delayed before service, and the expected delay before
reaching a server increases to infinity.

The M/M/s queue also reveals the effect of resource pooling. To illustrate the op-
erational benefits of sharing resources, we compare a system of s separate M/M/1
queues, each serving a Poisson arrival stream with rate λ < 1, against one M/M/s
queue facing arrival rate λs. The two systems thus experience the same total work-
load and utilization, namely ρ = λ. We fix the value of λ and vary s. Obviously,
the waiting time and queue length distribution in the first scenario are unaffected
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Figure 1.1: Effects of resource pooling in the M/M/s queue.

by the parameter s, since there is no interaction between the single-server queues.
This lack of coordination tolerates a scenario of having an idle server, while the total
number of customers in the system exceeds s, therefore wasting resource capacity.
Such an event cannot happen in the many-server scenario, due to the central queue.
This central coordination improves QoS. Indeed Figure 1.1 shows that the reduction
in expected waiting time can be substantial.

So pooling kills two birds with one stone: QoS for customers improves and the
system efficiency increases.

1.1.3 Many-server scaling regimes

Now that we know that economies-of-scale can be achieved, it is relevant to ask how
to match capacity s to a demand λ in the setting where both s and λ become large.
The expressions in (1.2) and (1.3) provide a starting point for finding such demand-
capacity relations, particularly when we apply asymptotic analysis for s → ∞, [101,
43, 184]. Asymptotic theory of many-server systems relies on the prerequisite that
the limiting behavior of the service system is determined by the way in which
capacity s is adjusted to demand, assuming demand grows large. We illustrate
this idea by investigating typical sample paths of the queue length process Q =
{Q(t)}t≥0 of an M/M/s queue for increasing values of λ.

Figure 1.2 depicts a sample path for λ = 3 and s = 4. The number of customers
queueing at time t is given by (Q(t)− s)+ with (·)+ := max{0, ·}. The number of
idle servers is given by (s − Q(t))+. In Figure 1.2, the red and green area hence
represent the cumulative queue length and cumulative number of idle servers, re-
spectively, over the given time period. Bearing in mind the dual goal of QoS and
efficiency, we want to minimize both of these areas simultaneously.

Next, we conduct a similar sample path experiment for increasing values of λ.
Since s > λ is required for stability, the value of s needs to be adjusted accordingly.
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We propose three scaling rules:

s
(1)
λ = [λ + β] , s

(2)
λ =

[

λ + β
√

λ
]

, s
(3)
λ = [λ + β λ] , (1.4)

for some β > 0, where [·] denotes the rounding operator. Note that these three
rules differ in terms of overcapacity s − λ. Figure 1.3 depicts typical sample paths
of the queue length process for increasing values of λ for the three scaling rules
with β = 0.5.

Observe that for all scaling rules, the stochastic fluctuations of the queue length
processes relative to λ decrease with the system size. Moreover, the paths in Figure
1.3 appear to become smoother with increasing λ. Of course, the actual sample
path always consists of upward and downward jumps of size 1, but we will show
how proper centering and scaling of the queue length process indeed gives rise to
a diffusion process in the limit as λ → ∞. Although the difference in performance of
the three regimes is not yet evident for relatively small λ, clear distinctive behavior
occurs for large λ.

Under sλ
(1), the majority of customers is delayed and server idle time is low,

since ρ = (1 + β/λ)−1 → 1 as λ → ∞. Systems dimensioned according to this rule
value server efficiency over customer satisfaction and therefore this regime is in the
literature also known as the efficiency-driven (ED) regime [229].

In contrast, the third scaling rule s
(3)
λ yields a constant utilization level ρ =

1/(1 + β), which stays away from 1, even for large λ. Queues operating in this
regime exhibit significant server idle times. Moreover, for the particular realization
of the queueing processes for λ = 50 and λ = 100 none of the customers waits. This
customer-centered regime is known as the quality-driven (QD) regime [229].

The scaling rule s
(2)
λ is in some ways a combination of the other two regimes.

First, we have ρ = (1 + β/
√

λ)−1 → 1 as λ → ∞, which indicates efficient usage
of resources as the system grows. The sample paths, however, indicate that only
a fraction of the customers is delayed, and only small queues arise, which suggest
good QoS. This regime is therefore called quality-and-efficiency driven (QED) regime.

0 2 4 6 8
0

2

4

6

8

10

→ t

Q
(t
)

Figure 1.2: Sample path of the M/M/s queue with λ = 3 and s = 4.
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Since this scaling regime and the related square-root staffing rule

sλ = λ + β
√

λ (1.5)

strikes the right balance between the two profound objectives of capacity allocation
in service systems, we discuss in the next section the mathematical foundations of
the QED regime and quantify the favorable properties revealed by Figure 1.3.

1.2 The QED regime: two canonical examples

We saw in Figure 1.1 the advantageous effect of resource pooling and economies-
of-scale in many-server systems. In this section, we will explain how this is related
to the Central Limit Theorem (CLT).

Theorem 1.1 (Central Limit Theorem, e.g. [37, Thm. 27.1]). Consider a sequence
X1, X2, . . . , Xn of independent and identically distributed random variables having mean µ

and positive variance σ2. Then,

∑
n
i=1 Xi − nµ√

nσ

d⇒ N (0, 1), for n → ∞.

where
d⇒ denotes convergence in distribution and N (0, 1) is a random variable with stan-

dard normal distribution.

We shall now apply the CLT to the delay probability in the M/M/s queue.
Striking the proper balance between queueing delay and server efficiency asymp-
totically, i.e. balancing the green and red areas in Figure 1.3, in mathematical terms
boils down to choosing a service level sλ such that both the delay probability
P(Q(sλ) ≥ sλ) and P(Q(sλ) < sλ) remain strictly smaller than 1 as λ → ∞. In other
words, one would like to see that P(Q(sλ) ≥ sλ) converges to a non-degenerate limit
α ∈ (0, 1) as λ → ∞.

To get a feel for the natural scale of the queue, we first examine the situation
with unlimited capacity. More precisely, let Q(∞) be the number of customers in a
steady-state M/GI/∞ queue with mean service requirement E[B] = 1. Notice that
in this infinite-server setting, Q(∞) also represents the steady-state number of busy
servers. It is well known that Q(∞) follows a Poisson distribution with mean equal
to the expected workload, in our case R = λ. Moreover, if we assume that λ is
integer, then a Poisson random variable with rate λ can be viewed as the sum of λ

i.i.d. Poisson random variables with rate 1. In other words, Q(∞) = ∑
λ
i=1 Pi, where

the Pi’s, i = 1, 2, . . . , n, have Poisson distribution with unit mean and variance, and
are mutually independent. The CLT thus gives

P(Q(∞) ≥ xλ) = P

(

Q(∞) − λ√
λ

≥ xλ − λ√
λ

)

≈ 1 − Φ

(

xλ − λ√
λ

)

, (1.6)
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where Φ denotes the cumulative distribution function of the standard normal dis-
tribution for large λ. Hence, the probability in (1.6) converges to a constant value
away from both 0 and 1 if and only if (xλ − λ)/

√
λ → x ∈ R, or equivalently

xλ = λ + x
√

λ + o(
√

λ), as λ → ∞. Here, the relation u(λ) = o(v(l)) implies that
u(λ)/v(λ) → 0 as λ → ∞. Equation (1.6) also shows that the leading order of the
random variable describing the queue length is λ, while the stochastic fluctuations
are of order

√
λ.

If we now pretend, for a moment, that the infinite-server queue serves as a
good approximation for the many-server queue with sλ servers, then (1.6) says
that the steady-state probability of delay for sλ = λ + β

√
λ obeys the Gaussian

approximation

P(W(sλ) > 0) = P(Q(sλ) ≥ sλ) ≈ 1 − Φ(β), (1.7)

where Φ denotes the cumulative distribution function (cdf) of the standard normal
distribution. Of course, the infinite-server system ignores the one thing that makes
a queueing system unique, namely that a queue is formed when all servers are busy.
During these periods of congestion, customers will depart from a system with a fi-
nite number of servers at a slower pace than in its infinite-server counterpart. So
the approximation in (1.7) is likely to overestimate the actual delay probability, and
a more careful investigation of the queue length process in many-server settings is
needed. Nevertheless, the infinite-server heuristic reveals that in a well-managed
system, i.e. queues are of acceptable length, the size at which the system oper-
ates is of the order λ, with fluctuations of order

√
λ. We shall now demonstrate

through two canonical examples how these guessed natural scalings can be turned
into mathematically rigorous statements. Both examples which will play a key role
in this thesis.

1.2.1 The M/M/s queue

Converging delay probability. Let Q(s) denote the steady-state number of cus-
tomers in an M/M/s queue with arrival rate λ and mean service requirement 1,
of which the probability distribution is given in (1.1). Halfin & Whitt [101] showed
that, just as the tail probability in the infinite-server setting, the delay probability
in the M/M/s queue converges under scaling (1.5) to a value between 0 and 1.
Moreover, they showed that this is in fact the only scaling regime in which such a
non-degenerate limit exists and identified its value. Let ϕ denote the probability
density function (pdf) of the standard normal distribution.

Proposition 1.1 ([101, Prop. 2.1]). The probability of delay in the M/M/sλ queue has
the non-degenerate limit

lim
λ→∞

P(W(sλ) > 0) = α ∈ (0, 1) (1.8)

if and only if
lim

λ→∞
(1 − ρsλ

)
√

sλ → β, β > 0, (1.9)
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where α is given by

α =

(

1 +
β Φ(β)

ϕ(β)

)−1

=: g(β). (1.10)

Proof. We first prove the sufficiency condition. Rewrite (1.2) as

P(Q(sλ) ≥ sλ) =

(

1 + (1 − ρsλ
)

P(Pois(λ) < sλ)

P(Pois(λ) = sλ)

)−1

. (1.11)

Similar to (1.6) we find

P(Pois(λ) < sλ) = P

(

Pois(λ)− λ√
λ

<
sλ − λ√

λ

)

= P

(

Pois(λ)− λ√
λ

< (1 − ρsλ
)

sλ√
λ

)

= P

(

Pois(λ)− λ√
λ

< (1 − ρsλ
)
√

sλ (1 + o(1))

)

→ Φ(β), (1.12)

for λ → ∞. Using Stirling’s approximation, we get

P(Pois(λ) = s) = e−λ λsλ

sλ!
∼ e−λλsλ · 1√

2π sλ

(

e

sλ

)sλ

=
1√

2πsλ
esλ−λ−sλln(ρsλ

).

Since ln(ρsλ
) = −(1 − ρsλ

)− 1
2 (1 − ρsλ

)2 + o((1 − ρsλ
)2) we find that

P(Pois(λ) = s)

1 − ρsλ

=
1

(1 − ρsλ
)
√

sλ

e−
1
2 (1−ρsλ

)2sλ+o((1−ρsλ
)2sλ)

√
2π

→ 1

β

e−
1
2 β2

√
2π

=
ϕ(β)

β
.

(1.13)
Substituting (1.12) and (1.13) into (1.11) gives (1.10). The necessary condition fol-
lows directly by the characterization of P(Q(sλ) ≥ sλ) as in (1.11) by observing,
through (1.12) and (1.13), that the term

(1 − ρsλ
)

P(Pois(λ) < sλ)

P(Pois(λ) = sλ)

has a limiting value in (0, ∞) only if (1 − ρsλ
)
√

sλ → β for some β > 0.

Observe that g(β) is a strictly decreasing function on (0, ∞) with g(β) → 1 as
β → 0 and g(β) → 0 for β → ∞. Thus all possible delay probabilities are achievable
in the QED regime, which will prove useful for the dimensioning of systems (see
Section 1.3).

Although Proposition 1.1 is an asymptotic result for λ → ∞, Figure 1.4 shows
that g(β) can serve as an accurate approximation for the delay probability for rela-
tively small λ.

From Proposition 1.1, it also follows that under (1.9),

√
sλ E[W(sλ)] =

P(W(sλ) > 0)

(1 − ρsλ
)
√

sλ
→ g(β)

β
=: h(β), as λ → ∞, (1.14)
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Figure 1.4: The delay probability P(Q(sλ) ≥ sλ) with sλ = [λ + β
√

λ] for β =
0.1, 0.5, and 1 as a function of λ.

where we have used the characterization of E[W(sλ)] in (1.3). This implies that in
the QED regime, the expected waiting time vanishes at rate 1/

√
sλ as λ → ∞. By

Little’s law this implies that the expected queue length is O(
√

sλ). By the relation
u(λ) = O(v(λ)) we mean that lim supλ→∞ u(λ)/v(λ) < ∞. While these are all
steady-state results, similar statements can be made for the entire queue-length
process, as shown next.

The theoretical results of the QED regime we presented here are based on
steady-state queueing analysis. But at the heart of the QED theory lies a much
deeper result in which the entire queue-length process, over all points in time, con-
verges to some other limiting process.

Process-level convergence. Obtaining rigorous statements about stochastic-process
limits poses considerable mathematical challenges. Rather than presenting the deep
technical details of the convergence results, we give a heuristic explanation of how
the limiting process arises and what it should look like.

The queue-length process Q(sλ) in Figure 1.3 with scaling rule sλ = [λ + β
√

λ]
appears to concentrate around the level sλ. As argued before, the stochastic fluc-
tuations are of order

√
λ, or equivalently

√
sλ. For that reason, we consider the

centered and scaled process

X(sλ)(t) :=
Q(sλ)(t)− sλ√

sλ
, for all t ≥ 0, (1.15)

and ask what happens to this process as λ → ∞. First, we consider the expected
drift conditioned on X(sλ)(t) = x. When x > 0, this corresponds to a state in
which Q(sλ) > sλ and hence all servers are occupied. Therefore, the expected rate
at which customers leave the system is sλ, while the arrival rate remains λ, so that
the expected drift of X(sλ)(t) in x > 0 satisfies

λ − sλ√
sλ

→ −β, as λ → ∞,
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Figure 1.5: Sample paths of the normalized queue length process X(sλ)(t) with
λ = 5, λ = 5 and λ = 500 and sλ = [λ + 0.5

√
λ].

under scaling
√

sλ(1 − ρsλ
) → β in (1.9). When x ≤ 0, only sλ + x

√
sλ servers are

working, so that the net drift is

λ − (sλ + x
√

sλ)√
sλ

→ −β − x, as λ → ∞.

Now, imagine what happens to the sample paths of {X(sλ)(t)}t≥0 as we increase
λ. Within a fixed time interval, larger λ and sλ will trigger more and more events,
both arrivals and departures. Also, the jump size at each event epoch decreases as
1/

√
sλ as a consequence of the scaling in (1.15). Hence, there will be more events,

each with a smaller impact, and in the limit as λ → ∞, there will be infinitely many
events of infinitesimally small impact. This heuristic explanation suggests that the
process X(sλ)(t) converges to a stochastic-process limit, which is continuous, and
has infinitesimal drift −β above zero and −β − x below zero. Figure 1.5 visualizes
the appearance of the suggested scaling limit as λ and sλ increase.

The following theorem by Halfin & Whitt [101] characterizes this scaling limit
more formally.
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Theorem 1.2. Let X(sλ)(0)
d⇒ X(0) ∈ R and

√
sλ(1 − ρsλ

) → β. Then for all t ≥ 0,

X(sλ)(t)
d⇒ X(t), as λ → ∞,

where X(t) is the diffusion process with infinitesimal drift m(x) given by

m(x) =

{ −β, if x > 0,
−β − x, if x ≤ 0

and infinitesimal variance σ2(x) = 2.

The limiting diffusion process {X(t)}t≥0 in Theorem 1.2 is a combination of a
negative-drift Brownian motion in the upper half plane and an Ornstein-Uhlenbeck
(OU) process in the lower half plane. We refer to this hybrid diffusion process as the
Halfin-Whitt diffusion. Much is known for such diffusion processes with piecewise
linear drift coefficient, see [210, 75]. Its stationary distribution can for instance be
derived, see e.g. [51].

Proposition 1.2. Let X(t)
d⇒ X(∞) as t → ∞ for a random variable X(∞) and (1 −

ρsλ
)
√

sλ → β for λ → ∞. Then

P(X(∞) > 0) = g(β), (1.16)

P(X(∞) ≥ x|X(∞) > 0) = e−βx, for x > 0, (1.17)

P(X(∞) ≤ x|X(∞) ≤ 0) =
Φ(β + x)

Φ(β)
, for x ≤ 0. (1.18)

This result shows that as the system grows large, the Q(sλ)(t) concentrates around
sλ, and the fluctuations are of order

√
sλ. Moreover, Proposition 1.2 iterates the

limiting values for the delay probability and scaled expected delay. Namely,

P
(

W(sλ) > 0
)

→ P(X(∞) > 0) = g(β)

and
√

sλE[W(sλ)] ≈ E[Q(sλ)]√
sλ

→ E[X(∞)] =
∫ ∞

0
g(β)e−βxdx =

g(β)

β
,

For obvious reasons, the QED regime is also referred to as the Halfin-Whitt regime,
and both these names are used interchangeably in this thesis.

1.2.2 The M/D/s queue

We next consider a many-server queue with deterministic service requirements
equal to one, a Poisson arrival process of rate λ and sλ servers. We let Q(sλ)(t)
be the process describing the number of customers in the system and only examine
the process at discrete time epochs t = 0, 1, 2, . . .. In our analysis, we focus on the
queue length process Z(sλ)(t) := (Q(sλ)(t)− sλ)

+.
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Since we discretize time, the number of new arrivals per time period is given by
the sequence of i.i.d. random variables {Ak}k≥1, which has a Poisson distribution

with mean λ. At the start of the kth period, Z(sλ)(k) customers are waiting. Because
the service time of a customer is equal to the period length, all min{Q(sλ)(k), sλ}
customers in service at the beginning of the period will have left the system by
time t = k + 1. This implies that min{Z(sλ)(k), sλ} of the waiting customers are
taken into service during period k, but could not possibly have departed before
its end, due to the deterministic service times. If Z(sλ)(k) < sλ, then additionally
min{Ak, sλ − Z(sλ)(k)} of the new arrivals are taken into service. This yields a total
of Ak arrivals, and min{Z(sλ)(k) + Ak, sλ} departures from the queue during period
k, which gives the Lindley type recursion [148], with Z(sλ)(0) = 0,

Z(sλ)(k+ 1) = Z(sλ)(k)+ Ak −min{Z(sλ)(k)+ Ak, sλ} = max{0, Z(sλ)(k)+ Ak − sλ}.
(1.19)

The queue length process thus gives rise to a random walk with i.i.d. steps of size
(A(sλ) − sλ), with a reflecting barrier at zero. We can iterate the recursion in (1.19)
to find

Z(sλ)(k + 1) = max
{

0, Z(sλ)(k) + Ak − sλ

}

= max
{

0, max{0, Z(sλ)(k − 1) + (Ak−1 − sλ)}+ (Ak − sλ)}
}

= max
{

0, (Ak − sλ), Z(sλ)(k − 1) + (Ak − sλ) + (Ak−1 − sλ)
}

= max
0≤j≤k

{
j

∑
i=1

(Ak−i − sλ)
}

d
= max

0≤j≤k

{
j

∑
i=1

(Ai − sλ)
}

, (1.20)

where the last equality in distribution holds due to the duality principle for ran-
dom walks, see e.g. [188, Sec. 7.1]. For stability, the expected step size satisfies
E[Ak − sλ] = λ − sλ < 0. We use the shorthand notation for the partial sum
Sk := ∑

k
i=1(Ai − sλ). Let Z(sλ)(∞) := limk→∞ Z(sλ)(k) denote the stationary queue

length in this M/D/s queue, which can be shown to exist under our assumptions.
The probability generating function (pgf) of Z(sλ)(∞) can then be expressed in terms
of the pgf of the positive parts of the partial sum:

E[wZ(sλ)(∞)] = exp
{

−
∞

∑
k=1

1

k
(1 − E[wS+

k ])
}

, |w| ≤ 1. (1.21)

From (1.21), which is a special case of Spitzer’s identity [197], we obtain for the
mean queue length and empty-queue probability the expressions

E[Z(sλ)(∞)] =
∞

∑
k=1

1

k
E[S+

k ],

P(Z(sλ)(∞) = 0) = exp
{

−
∞

∑
k=1

1

k
P(S+

k > 0)
}

. (1.22)
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Although explicit, the expressions in (1.22) reveal little of the structure of the queue
length process. Hence, we again turn to asymptotics.

Gaussian random walk. We take another look at the identity in (1.20), and ask
ourselves what happens if λ grows large. Since E[Ak − sλ] = λ − sλ = −β

√
λ +

o(
√

λ) under the QED scaling (1.5), it makes sense to consider the scaled queue

length process X(sλ)(k) := Z(sλ)(k)/
√

λ for all k ≥ 0, with scaled steps Y
(sλ)
k :=

(Ak − sλ)/
√

λ. Dividing both sides of (1.20) by
√

λ then gives

X(sλ)(k + 1) = max
0≤j≤k

{
j

∑
i=1

Y
(sλ)
i

}

. (1.23)

Observe that Ak
d
= Pois(λ) with Pois(λ) a random variable with mean λ. Hence by

the CLT

Y
(sλ)
k =

Ak − sλ√
λ

=
Ak − λ√

λ
− β

d⇒ Yk
d
= N (−β, 1),

for λ → ∞, where N (−β, 1) denotes a normally distributed random variable with
mean −β and standard deviation 1. So we expect the scaled queue length process
to converge in distribution to a reflected random walk with normally distributed
increments, i.e. a reflected Gaussian random walk. Indeed, it is easily verified that
[121],

X(sλ)(k)
d⇒ Mβ(k) := max

0≤j≤k

{
j

∑
i=1

Yj

}

, λ → ∞. (1.24)

Let Mβ := limk→∞ Mβ(k) denote the all-time maximum of a Gaussian random walk.
It can be shown that Mβ almost surely exists and that

X(sλ)(∞) := lim
k→∞

X(sλ)(k)
d⇒ Mβ,

for instance by [197, Prop. 19.2] and [20, Thm. X6.1]. The following theorem can be
proved using a similar approach as in [122]. (We prove this result in a more general
setting in Chapter 3.)

Theorem 1.3. Let X(sλ)(∞) be the scaled queue length in steady-state. If (1 − ρsλ
)
√

λ →
β, then as λ → ∞,

(i) X(sλ)(∞)
d⇒ Mβ,

(ii) P(X(sλ)(∞) = 0) → P(Mβ = 0),

(iii) E[X(sλ)(∞)k] → E[Mk
β], for any k > 0.

The Gaussian random walk is well studied [191, 57, 115, 38, 115] and there is an
intimate connection with Brownian motion. The only difference, one could say, is
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Figure 1.6: Brownian motion (gray) and embedded Gaussian random walk
(marked) with their respective running maxima (dashed and dotted, respectively).

that Brownian motion is a continuous-time process, whereas the Gaussian random
walk only changes at discrete points in time. If {B(t)}t≥0 is a Brownian motion
with drift −µ < 0 and infinitesimal variance σ2 and {W(t)}t≥0 is a random walk
with N (−µ, σ2) steps and B(0) = W(0), then W can be regarded as the process B

embedded at equidistant time epochs. That is, W(t)
d
= B(t) for all t ∈ N+. For the

maximum of both processes this coupling implies

max
k∈N+

W(k) = max
k∈N+

B(k) ≤st max
t∈R+

B(t), (1.25)

where ≤st denotes stochastic dominance. This difference in maximum is visualized
in Figure 1.6. It is known that the all-time maximum of Brownian motion with
negative drift −µ and infinitesimal variable σ2 has an exponential distribution with
mean σ/2µ [104]. Hence, (1.25) implies that Mβ is stochastically upper bounded by
an exponential random variable with mean 1/2β.

Despite this easy bound, precise results for Mβ are more involved. Let ζ denote
the Riemann zeta function, which is defined as, see e.g. [174, Eq. 25.2.1],

ζ(s) =
∞

∑
n=1

1

ns
. (1.26)
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Theorem 1.4 ([57, Thm. 1] & [115, Thm. 2 & 3]). For 0 < β < 2
√

π,

P(Mβ = 0) =
√

2β exp

{

β√
2π

∞

∑
l=0

ζ(1/2 − l)

l!(2l + 1)

(−β2

2

)l
}

, (1.27)

E[Mβ] =
1

2β
+

ζ(1/2)√
2π

+
β

4
+

β2

√
2π

∞

∑
l=0

ζ(−1/2 − l)

l!(2l + 1)(2l + 2)

(−β2

2

)l

, (1.28)

Var Mβ =
1

4β2
− 1

4
− 2 ζ(−1/2)√

2π
β − β2

24

− 2β3

√
2π

∞

∑
l=0

ζ(−3/2 − l)

l!(2l + 1)(2l + 2)(2l + 3)

(−β2

2

)l
. (1.29)

1.2.3 Characteristics of the QED regime

Now that we have seen how the square-root staffing rule (1.5) yields non-degenerate
limiting behavior in two classical queueing models, we shall elaborate on how the
QED regime gives rise to (at least) three desirable properties. The first property
relates to the efficient usage of resources, expressed as

ρsλ
=

λ

sλ
= 1 − β√

sλ
+ O

(

1/λ
)

, (Efficiency)

where we have used that sλ = O(λ). The second distinctive property is the balance
between QoS and efficiency:

P(W(sλ) > 0) → g(β), and P(W(sλ) > 0) → 1 − P(Mβ = 0), (Balance)

as sλ → ∞, in the M/M/s queue and M/D/s queue, respectively. The third
property relates to good QoS:

E[W(sλ)] =
h(β)√

sλ
+ o(1/

√
sλ) and E[W(sλ)] =

E[Mβ]√
sλ

+ O(1/
√

sλ), (QoS)

in the M/M/s queue and M/D/s queue, respectively. Hence the expected waiting
time vanishes at rate 1/

√
sλ.

Both limiting functions g(β) and 1 − P(Mβ = 0) can take all values in (0, 1) by
tuning the parameter β.

Since the mathematical underpinning of these properties comes from the CLT,
we can expect the properties to hold for a much larger class of models. These
models should then be members of the same universality class (to which the CLT
applies). Let us again show this by example.

Consider a stochastic system in which demand per period is given by some
random variable A, with mean µA and variance σ2

A < ∞. For systems facing large
demand we propose to set the capacity according to the more general rule

s = µA + βσA,
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which consists of a minimally required part µA and a variability hedge βσA. As-
sume that the workload brought into the system is generated by n stochastically
identical and independent sources. Each source i generates Ai,j work in the jth pe-

riod, with E[Ai,j] = µ and Var Ai,j = σ2. Then the total amount of work arriving to

the system during one period is A
(n)
j = ∑

n
i=1 Ai,j with mean nµ and variance nσ2.

Assume that the system is able to process a deterministic amount of work sn per
period and denote by U(n)(j) the amount of work left over at the end of period j.
Then,

U(n)(j + 1) =
(

U(n)(j) + A
(n)
j − sn

)+
. (1.30)

Given that sn > E[A
(n)
1 ] = nµ, the steady-state limit U(n) := limj→∞ U(n)(j) exists

and satisfies

U(n) d
=
(

U(n) + A
(n)
1 − sn

)+
. (1.31)

This framework is also known as the bulk service queue or the Anick-Mitra-Sondhi
model [14, 113, 117]. In this scenario, increasing the system size is done by increas-
ing n, the number of input flows. As we have seen before, it requires a rescaling of
the process U(n) by an increasing function c(n), in order to obtain a non-degenerate
scaling limit U := limn→∞ U(n)/c(n). (We omit the technical details needed to jus-
tify the interchange of limits.) From (1.31) it becomes clear that the scaled increment

A
(n)
j − sn

c(n)
=

∑
n
i=1 Ai,j − nµ

c(n)
+

nµ − sn

c(n)
(1.32)

only admits a proper limit if c(n) is of the form c(n) = O(
√

n), by the virtue of the
CLT, and (sn − nµ)/c(n) → β > 0 as n → ∞. Especially for c(n) = σ

√
n, this reveals

that U has a non-degenerate limit, which is equal in distribution to the maximum
of a Gaussian random walk with drift −β and variance 1, if

sn = nµ + β
√

nσ + o(
√

n).

Moreover, the results on the Gaussian random walk presented in Section 1.2.2 are
applicable to this model and the key features of the QED scaling carry over to this
more general setting as well. In conclusion, the many-sources framework shows
that the QED scaling finds much wider applications than queueing models with
Poisson input only.

1.2.4 Related literature

We now provide a partial overview on the literature on heavy-traffic analysis in
queueing theory and the QED regime in particular.

Conventional heavy-traffic. Before the formal introduction of the Halfin-Whitt scal-
ing regime in 1981, see [101], the existing literature on the asymptotic analysis
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of queues mostly evolved around two types of scaling regimes: single-server and
infinite-server regimes.

The idea of studying a sequence of queues in which the utilization approaches
100%, i.e. heavy-traffic, was first laid out by Kingman in the 1960s. In [140, 141]
he showed how in the GI/G/1 queue, under mild conditions on the arrival and
service processes, the scaled steady-state waiting time (1 − ρ)W(1) converges to an
exponentially distributed random variable. The notion that heavily loaded sys-
tems admit a scaling limit that is remarkably simple compared to the otherwise
intractable pre-limit queueing systems triggered a surge of research within the field
of queueing theory in the 1960s and 1970s, see [42, 111, 52, 171, 145, 146, 217] among
others. These works conduct their asymptotic analysis in what we now call conven-
tional heavy-traffic. That is, the service times and number of servers are held fixed,
while the arrival rate approaches the critical value from below. A noteworthy result
of these efforts is the extension of Kingman’s findings to the GI/G/s, which finds
that the scaled queue length (1 − ρ)Q(s) converges in distribution to an exponen-
tial random variable with mean (c2

a + c2
s )/2, where ca and cs denote the coefficient

of variation of the interarrival and service time distribution, respectively. We re-
mark that this limiting result is the key ingredient to the widely applied Kingman
formula

E[W(1)] ≈ ρ

1 − ρ
· c2

a + c2
s

2
· E[B], (1.33)

which serves as an approximation to the expected waiting time in the single-server
queue. The limit (1.33) reveals that in the conventional heavy-traffic regime, the
expected waiting time explodes as ρ → 1. Hence, efficient usage of resources is
achieved, at the expense of poor QoS.

An alternative regime that received much attention, see e.g. [108, 42, 109, 110,
218], fixes the service time distribution while increasing both the arrival rate λ and
the number of servers to infinity simultaneously, such that the ratio λ/s remains
constant. It has been shown that the sequence of queues under this scaling start
resembling the behavior of infinite-server queues as λ and s grow. That is, the
probability of a customer finding a queue on arrival is negligible. The sample paths
in Figure 1.3 are illustrative for this regime. Since the utilization level ρ remains
strictly away from one in the limit, this setting is in the literature typically not
recognized as heavy-traffic.

As Halfin & Whitt indicate themselves, the QED regime in which service times
are held fixed, and λ and s tend to infinite while satisfying (1 − ρ)

√
s → β, is a

hybrid between the two aforementioned regimes. Namely, it considers the efficiency
property of the conventional heavy-traffic scaling, and the good QoS levels from
infinite-server queues.

The G/G/s queue in the QED regime. We have demonstrated in Section 1.2 how
to obtain QED limits for the M/M/s queue and the M/D/s queue. When one
moves beyond the exponential and deterministic assumptions, establishing QED
behavior becomes mathematically more challenging.
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The heavy-traffic analysis of the G/G/s queue requires fundamentally differ-
ent approaches than for Markovian queues. Most of the research conducted on
the G/G/s in the Halfin-Whitt regime evolves around the characterization of the
stochastic process limit of the appropriately centered and scaled queueing process
in terms of diffusion processes, under various assumptions on the model primi-
tives. Puhalskii & Reiman [181] analyzed the multi-class queue with phase-type
service times in the Halfin-Whitt regime. Heavy-traffic limits for queues in which
service time distributions are lattice-based and/or have finite support are stud-
ied by Mandelbaum & Momčilović [155] and Gamarnik & Momčilović [78]. Ap-
proaches through measure-valued processes are taken by Kang, Kaspi & Ramanan
[129, 128, 130]. The most general class of distributions is considered by Reed [184]
and Puhalskii & Reed [180], who impose no assumption on the service time distri-
bution except for the existence of the first moment. For a survey on the techniques
required for the analysis of process limits of G/G/s queues, we refer the reader to
[176] and references therein.

Considerably less is known for the corresponding steady-state distribution of
the G/G/s queue in the QED regime. Namely, under the assumption of general
service time distributions, truly infinite-dimensional limits arise, since the Marko-
vian nature of the service time and ‘age’ process can no longer be exploited. Works
that have been able to characterize limiting behavior for the specific service time dis-
tribution classes include Jelenkovic et al. [122], who assume deterministic service
times, and Whitt [222], who identifies the heavy-traffic limit in the case of hyper-
exponentially distributed service times. Progress in the understanding of steady-
state behavior of G/G/s queues in the Halfin-Whitt regime has been facilitated
by Gamarnik & Goldberg [86, 77], who perform their analysis under the mild as-
sumption that the service time distribution has finite (2 + ε) moment. A significant
advance has been made by Aghanjani & Ramanan [9], who identify the limit as
the steady-state distribution of infinite-dimensional Markov process, given that the
service time distribution has finite (3 + ε) moment, while drawing upon previous
results by Kang, Kaspi & Ramanan [129, 128, 130].

Model extensions. Many extensions to the standard many-server queue can be
considered. A feature ubiquitous to service systems involving humans is customer
abandonment [80, 49, 229, 159]. The M/M/s + M queue introduced by Palm [175],
also known as the Erlang-A model [82, 210], acknowledges this feature by assigning
every customer an exponentially distributed patience time upon his arrival (denoted
by +M in the model definition). If a customer has not yet started receiving ser-
vice by the expiration of his patience, he leaves the system. Note that abandon-
ments render queues stable under any load. Under QED scaling, the more general
G/G/s + G queue has received much attention under various modeling assump-
tions, see e.g. [82, 80, 223, 158, 229, 156, 128, 64, 185, 126, 231]. Noteworthy findings
include the vanishing abandonment probability [82] and insensitivity of the pa-
tience time distribution as long as its density at 0, i.e. the probability of abandoning
immediately upon arrival, is fixed, as the system grows large under QED scaling.
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Overviews of queues with abandonment and their asymptotic counterpart are given
by Zeltyn & Mandelbaum [229] and Dai & He [65] and Ward [214].

Other features that have been studied in the QED regime include multiple cus-
tomer classes, see e.g. [105, 23, 97, 100, 206], or heterogeneous servers [16, 19, 157,
202]. These models are all interesting in their own respect and are fairly well-
understood. Therefore, we choose to focus in this thesis on a different set of exten-
sions, which will be discussed in Section 1.4.

1.3 Dimensioning

We adopt the term dimensioning used by Borst, Mandelbaum & Reiman [43] to say
that the capacity of a service system is adapted to the load in order to reach certain
performance levels. In [43] dimensioning refers to the staffing problem in a large-
scale call center and key ingredients are the square-root staffing rule in (1.5) and the
QED regime. We now revisit the results in [43] and its follow-up works to explain
this connection to the QED regime.

1.3.1 Constraint satisfaction

Consider the M/M/s queue with arrival rate λ and service rate µ. A classical
dimensioning problem is to determine the minimum number of servers s necessary
to achieve a certain target level of service, say in terms of waiting time.

Suppose we want to determine the minimum number of servers such that the
fraction of customers who are delayed in the queue is at most ε ∈ (0, 1). Hence we
should find

s∗λ(ε) := min
{

s ≥ λ |P(W(s)
> 0) ≤ ε

}

. (1.34)

But alternatively, we can use the QED framework, which says that under (1.9),
lims→∞ P(W(sλ) > 0) = g(β) (see Proposition 1.1). Then by (1.34), s∗λ(ε) can be
replaced by

ssrs
λ (ε) = ⌈λ + β∗(ε)

√
λ⌉, (1.35)

where β∗(ε) solves

g(β∗) = ε. (1.36)

In Figure 1.7 we plot the exact staffing level s∗λ(ε) and the heuristically obtained
staffing level ssrs

λ (ε) as functions of ε for several loads λ.

Observe that even for very small values of λ, the staffing function ssrs(ε) coin-
cides with the exact solution for almost all ε ∈ (0, 1) and differs no more than by
one server for all ε. Borst et al. [43] recognized this in their numerical experiments
too, and Janssen, van Leeuwaarden & Zwart [120] later confirmed this theoretically.
One can easily formulate other constraint satisfaction problems and reformulate
them in the QED regime. For instance, constraints on the mean waiting time or
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Figure 1.7: Staffing levels as a function of the delay probability targets ε.
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the tail probability of the waiting time, e.g. P(W(s)
> T), which are asymptoti-

cally approximated by h(β)/
√

λ and g(β)e−β
√

λT , respectively. See [43] for more
examples.

1.3.2 Optimization

One can also consider optimization problems, for instance to strike the right balance
between the costs for servers and costs incurred by customer dissatisfaction. More
specifically, assume a salary cost of a per server per unit time, and a penalty cost of
q per waiting customer per unit time, yielding the total cost function

C̄λ(s) := a s + q λE[W(s)]

and then ask for the staffing level s that minimizes C̄λ(s). Since s > λ, we have
C̄λ(s) > a λ for all feasible solutions s. Moreover, the minimizing value of C̄λ is
invariant with respect to scalar multiplication of the objective function. Hence we
have to optimize

Cλ(s) = r (s − λ) + λE[W(s)], r = a/q. (1.37)

Denote by s∗λ(r) := arg mins>λ Cλ(s) the true optimal staffing level. With sλ = λ +

β
√

λ and the QED limit in (1.14), we can replace (1.37) by its asymptotic counterpart:

Cλ(sλ)√
λ

= r β +
√

λE[W(s)] → r β +
g(β)

β
=: Ĉ(β), λ → ∞.

Once again we obtain a limiting objective function that is easier to work with than
its exact pre-limit counterpart. Hence, in the spirit of the asymptotic staffing proce-
dure in the previous subsection, we propose the following method to determine the
staffing level that minimizes overall costs. First, (numerically) compute the value
β∗(r) = arg minβ>0 Ĉ(β), which is well-defined, because the function Ĉ(β) is strictly

convex for β > 0. Then, set ssrs
λ (r) = [λ + β∗(r)

√
λ]. In Figure 1.8 we compare the

outcomes of this asymptotic staffing procedure against the true optima as a func-
tion of r ∈ (0, ∞), for several values of λ. The staffing levels ssrs

λ (r) and s∗λ(r) are
aligned for almost all r, and differ no more than one server for all instances.

1.3.3 Time-varying dimensioning

So far we have only considered queues in which the model primitives are constant
over time. In practice, though, the arrival rate can fluctuate and depends on the
time of day, the day of the week, season or even larger time scales. It is therefore
more realistic to describe these mostly predictable fluctuations through λ(t), which
represents the instantaneous arrival rate of the arrival process at time t ∈ R. The ex-
istence of time-varying demand requires a re-evaluation of staffing levels through-
out the planning horizon as well. That is, the number of servers s(t) becomes a
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function of time, rather than a constant and this clearly asks for an adaptation of
the dimensioning procedures in Sections 1.3.1 and 1.3.2.

We explain the concept of time-varying staffing and the connection with the
QED regime through the time-varying extension of the M/M/s queue known as
the Mt/M/st queue, where the subscript t refers to the time-varying nature of both
the arrival process and the staffing level. In this setting, customers arrive accord-
ing to a non-homogeneous Poisson process with rate function λ(t) and customers
have exponentially distributed service times with mean 1/µ. Under a constraint
satisfaction strategy, we aim to find the staffing function s(t) such that the delay
probability is at most ε ∈ (0, 1) for all t. The analysis and optimization of time-
varying many-server queueing systems is known to be intrinsically hard, but many
approximation techniques and heuristic methods have been proposed throughout
the years [91, 125].

A natural but naive approach is the pointwise-stationary approximation (PSA) [91],
which evaluates the system at time t as if it were in steady-state with instantaneous
parameters λ = λ(t), µ and s = s(t). Consequently, the analysis and optimiza-
tion of queues is performed on steady-state performance metrics. Variants of the
PSA method include the simple-stationary approximation (SSA) [92], which uses the
long-term (moving) average arrival rate instead of the instantaneous arrival rate,
and the stationary-independent-period-by-period approximation (SIPP) [92], which splits
the time-horizon into multiple intervals and performs steady-state analysis with
the averaged parameters in each of these intervals, among others. PSA performs
well in slowly varying environments with relatively short service times [91, 219].
However, when the model parameters fluctuate significantly, as is often the case in
real-life systems, the accuracy of PSA can be poor, as we will see in the numerical
experiment at the end of this section.

The main reason why PSA, SSA and SIPP can fail is that these methods neglect
that customers are actually residing in the system (being in service or waiting in the
queue) for some time. In contrast, staffing decisions should be based on the number
of customers present in the system rather than the arrival rate at that particular
time. Jennings et al. [125] introduced a more sophisticated method that exploits
the relation with infinite-server queues. We explain their idea in the context of the
Mt/M/st queue. By Eick et al. [71], the number of customers in the Mt/M/∞

queue at time t is Poisson distributed with mean

R(t) = E [λ(t − Be)]E[B] =
∫ ∞

0
λ(t − u)P(B > u)du =

∫ ∞

0
λ(t − u) e−µu du.

(1.38)
We remark that this result holds for more general service time distributions. Now,
recall that in large systems in the QED regime, the expected delay is negligible.
Therefore, under these conditions, the many-server system may be approximated
by the infinite-server approximation with offered load as in (1.38). Accordingly,
we can determine the staffing levels s(t) for each t based on steady-state M/M/s
measures with offered load R = R(t). Jennings et al. [125] proceed by exploiting the
heavy-traffic results of Halfin-Whitt (1.14). In conjunction with the dimensioning
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Figure 1.9: Time-varying parameters of a real-world emergency department.

scheme in Section 1.3.1, the authors propose to set

s(t) =

⌈

R(t) + β∗(ε)
√

R(t)

⌉

, (1.39)

where β∗(ε) solves g(β∗(ε)) = ε. Remark that the number of servers is rounded up
to ensure that the achieved delay probability is indeed below ε. This method was
called in [125, 161] the modified-offered-load (MOL) approximation, and we adopt this
term in this thesis.

Let us demonstrate that this approximation scheme works. Figure 1.9(a) shows
an arrival rate pattern λ(t) and corresponding offered load function R(t) for µ =
1/2. This arrival rate stems from a real-world emergency department [194]. The
resulting staffing level functions based on the PSA and MOL approximations with
ε = 0.3 are plotted in Figure 1.9(b).

Through simulation, we evaluate the delay probability as a function of time for
ε = 0.1, 0.3 and 0.5. In Figure 1.10 we see how the PSA approach fails to stabilize
the performance of the queue, whereas the MOL method does stabilize around the
target performance. The erratic nature of the delay probability as a function of time
can be explained by rounding effects of the staffing level. Since this rather simple
but elegant technique to address time-varying dimensioning is provably effective,
we will adopt the underlying idea of the MOL method in various different settings
in this thesis.

1.4 Contributions

We have explained how the QED regime can be used to dimension and staff large-
scale service systems. The basic concepts, however, were explained for the relatively
simple M/M/s and Mt/M/st queue. Many real-world service systems have essen-
tial features that are not captured by these elementary models. We will now discuss
some of these features and address the need to consider more involved models and
extend the existing QED theory.
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1.4.1 Non-classical scaling regimes and pre-limit behavior

The QED theory is centered around the scaling relation
√

λ(1 − ρλ) → β, or equiv-
alently sλ = λ + β

√
λ + o(

√
λ), for λ → ∞.

It is worthwhile to study how pre-limit behavior of many-server queues is af-
fected when one deviates from the square-root staffing rule. Consider a novel family
of heavy-traffic scaling regimes, described in terms of the parameter η for which we
assume that

λη(1 − ρλ) → β, as λ → ∞, β > 0. (1.40)

The parameter η ≥ 0 defines a whole range of possible scaling regimes, including
the classic case η = 1/2, as well as the cases η = 0 and η = 1 investigated in Sub-
section 1.1.3. In terms of a capacity sizing rule, the condition (1.40) is tantamount
to sλ = λ + β λ1−η . This framework thus bridges the gap between the QD and
QED regime if η ∈ (0, 1/2) and the QED and ED regime if η ∈ (1/2, 1), in the
M/M/s model. Similar capacity sizing rules have been considered in [29, 150] for
many-server systems with uncertain arrival rates. Hence, for η ∈ (0, 1/2) the vari-
ability hedge is relatively large, so that the regime parameterized by η ∈ (0, 1/2)
can be seen as moderate heavy traffic: heavy-traffic conditions in which the full oc-
cupancy is reached more slowly, as a function of λ, than for classical heavy traffic.
See [56, 182, 179, 21, 23, 24, 22] for more details. For opposite reasons the range
η ∈ (1/2, ∞) corresponds to extreme heavy traffic due to a relatively small variabil-
ity hedge.

We use the insights of Section 1.2 and the connection of the QED scaling to
the CLT to argue intuitively that the following trichotomy in the qualitative sys-
tem behavior as λ → ∞ holds under scaling (1.40). For η ∈ (0, 1/2) the empty-
system probability converges to 1, because the order of the variability hedge βλ1−η

is greater than strictly necessary to accommodate the stochastic fluctuations in de-
mand. Scalings in which η ∈ (1/2, ∞), have adverse behavior, since stochastic
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fluctuations are not accounted for sufficiently, so that the probability of delay con-
verges to 1. The value η = 1/2 is therefore the tipping point, at which the delay
probability converges to a limit between 0 and 1. Above and below this critical
value, the asymptotic performance of the queue flips to either one of the extremes.

In Chapter 2, we formalize this heuristic argument and conduct an asymptotic
analysis to reveal the rate at which the limit of performance metrics is attained,
depending on the parameters η and β and the system size λ, sλ.

1.4.2 Overdispersed arrivals

Until now we have considered queueing systems with perfect knowledge on the
model primitives, including the mean demand per time period. For large-scale
service systems, the dominant assumption in the literature is that demand arrives
according to a non-homogeneous Poisson process, which in practice translates to
the assumption that arrival rates are known for each basic time period (second,
hour or day).

Although natural and convenient from a mathematical viewpoint, the Poisson
assumption often fails to be confirmed in practice. A deterministic arrival rate
implies that the demand over any given period is a Poisson random variable, whose
variance equals its expectation. A growing number of empirical studies of service
systems shows that the variance of demand typically exceeds the mean significantly,
see [26, 29, 30, 49, 58, 80, 99, 127, 138, 150, 165, 187, 200, 228]. The feature that
variability is higher than one expects from the Poisson assumption is referred to as
overdispersion.

Due to its inherent connection with the CLT, the dimensioning rule in (1.5) relies
heavily on the premise that the variance of the number of customers entering the
system over a period of time is of the same order as the mean. Subsequently, when
stochastic models do not take into account overdispersion, resulting performance
estimates are likely to be overoptimistic. The system then ends up being under-
provisioned, which possibly causes severe performance problems, particularly in
critical loading.

To deal with overdispersion, existing capacity sizing rules like the square-root
staffing rule need to be modified in order to incorporate a correct hedge against
(increased) variability. Following our findings in Section 1.2.3, we propose a capac-
ity allocation rule similar to (1.5) in which the original variability hedge is replaced
by an amount that is proportional to the square-root of the variance of the arrival
process.

In Chapter 3, we elaborate on this idea and show how to adapt the scaling of
the queueing process appropriately to achieve QED-type behavior in the presence
of overdispersion.
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1.4.3 Finite-size constraints

The canonical examples in Section 1.2 assume an infinite amount of waiting space.
Physical service systems, however, are sometimes limited in the number of cus-
tomers that can be held in the system simultaneously. For instance in a call center,
the maximum number of clients in service or queueing is restricted by the number
of available trunk lines [135], while in the emergency department of a hospital, the
number of beds constrains the number of patients that can be admitted [225]. De-
pending on the practical setting and admission policy, if the maximum capacity, say
n, is reached, newly arriving customers either leave the system immediately (block-
ing), reattempt getting access later (retrials) or queue outside the facility (holding).
In any case, expectations are that the queueing dynamics within the service facility
are affected considerably in the presence of such additional capacity constraints.

We illustrate these implications through the M/M/s/n queue, that is, the stan-
dard M/M/s queue with additional property that a customer who finds upon
arrival n customers already present in the system, is deferred and considered lost.
To avoid trivialities, let n ≥ s. Since the expected workload reaching the servers is
less than in the unconstrained scenario, one expects less congestion and resource
utilization.

Consider the M/M/sλ/nλ in the QED regime. So, let λ increase while sλ scales
as sλ = λ + β

√
λ + o(

√
λ). We then ask how nλ should scale along with λ and

sλ to maintain the non-degenerate behavior as seen in Section 1.2. We provide
a heuristic answer. Let Q(sλ ,nλ) and W(sλ ,nλ) denote the number of customers in
the system and the waiting time in the M/M/sλ/nλ queue in steady state. Note
through Proposition 1.2 that if there were no finite-size constraints, we would have,
for λ large,

P(Q(sλ) ≥ nλ) = P

(

Q(sλ) − sλ√
sλ

≥ nλ − sλ√
sλ

)

→







g(β), if nλ = sλ + o(sλ),
g(β) e−βγ, if nλ = sλ + γ

√
sλ + o(

√
sλ),

0, if nλ = sλ + Ω(
√

sλ),
(1.41)

as λ → ∞ for some γ > 0. Here, the relation u(λ) = Ω(v(λ)) implies u(λ)/v(λ) >
1 for λ → ∞. Hence, asymptotically the finite-size effects only play a role if the
extra variability hedge of nλ is of order

√
sλ (or equivalently o(

√
λ)). Furthermore,

if the variability hedge is o(
√

λ), then we argue that asymptotically, all customers
who do enter the system have probability of delay equal to zero. More formally,
under the two-fold scaling rule

{

sλ = λ + β
√

λ + o(
√

λ),

nλ = sλ + γ
√

sλ + o(
√

λ),
(1.42)
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Figure 1.11: Sample paths of the normalized queue length process X(sλ ,nλ)(t) with
λ = 5, 50, 100 and 500 under scaling (1.42) with β = 0.5 and γ = 1.

it is not difficult to deduce that, see e.g. [160],

P(W(sλ ,nλ) > 0) →
(

1 +
β Φ(β)

(1 − e−βγ)ϕ(β)

)−1

, as λ → ∞, (1.43)

which is strictly smaller than g(β) in (1.4), but still bounded away from both 0
and 1. Furthermore, the buffer size of the queue is nλ − sλ = γ

√
sλ, so that by

Little’s law, the expected waiting time of an admitted customer is O(1/
√

sλ). Even
though resource utilization in the M/M/sλ/nλ is less efficient than in the queue
with unlimited waiting space, it can easily be shown that ρ → 1 as λ → ∞. Hence,
all three key characteristics of the QED regime are carried over to the finite-size
setting if adhered to scaling (1.42).

On a process level, adding a capacity constraint translates to adding a reflection
barrier to the normalized queue length process X(sλ ,nλ) = (Q(sλ ,nλ) − sλ)/

√
sλ, at γ,

as is illustrated by the sample paths of X(sλ ,nλ) for three values of λ in Figure 1.11.
It has been shown by [160] that under (1.42)

√
sλ P(block) =

√
sλ P(Q(sλ ,nλ) = nλ) → f (β, γ), as λ → ∞, (1.44)

for a non-negative function f .
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The idea of the two-fold scaling in (1.42) can be extended to settings in which
the interior is in fact a network of queues, rather than the single-station setting dis-
cussed here, see [135, 225, 205] for examples of such semi-open queueing networks.

When customers retry getting access after being blocked initially, the QED anal-
ysis becomes much more difficult, and no explicit limiting results are known. Nev-
ertheless, observe that the volume of blocked arrivals is by (1.44) of order

√
λ, the

exact same magnitude as the variability hedge of both sλ and nλ. Therefore, retrials
and holding customers have a non-negligible effect on the service levels within the
facility in the QED regime. This will be the topic of Chapters 4 and 5.

1.4.4 Pre-limit behavior

The results on queues in the QED regime discussed in Section 1.2 are in two ways
of an asymptotic nature. First, the heavy-traffic limits prescribe the queueing dy-
namics for λ, sλ → ∞. Real-world systems obviously do not experience infinite
demand nor have infinite capacity, and hence the heavy-traffic limits only form an
approximation for such finite-sized systems. Although these approximations are
qualitatively insightful, the asymptotic analyses do not reveal much about their ac-
curacy with respect to actual performance. For instance, we would like to know
how fast the convergence takes place, and how inaccuracies in asymptotic approxi-
mations percolate into inaccuracies in pre-limit systems. To answer such questions,
it would be helpful to have an asymptotic estimate for the difference between the
(scaled) queueing process and its limiting counterpart, to be able to judge the er-
ror made by relying on asymptotic as opposed to actual performance evaluation.
Characterization of the error term gives rise to so-called corrected diffusion approxima-
tions [191, 38, 117], which are refinements to heavy-traffic limits for finite systems,
and are also related to universal approximations [98, 107, 47, 48]. We will derive
such corrected diffusion approximations in the context of the novel scaling regimes
mentioned in Section 1.4.1 in Chapter 2.

Second, the bulk of queueing literature is concerned with the performance anal-
ysis and optimization of steady-state systems. However, in practice, service systems
certainty do not run infinitely long, which renders this assumption questionable.
Validation of the steady-state assumption is related to the relaxation time of a queue-
ing process [5, 6, 114, 209, 210, 76], which prescribes the time it takes a system
starting out of equilibrium to approximate its stationary distribution. In case the
relaxation time is small, stationary performance evaluation is likely to be accurate.
On the contrary, if the relaxation time is large, a time-dependent analysis of the
queueing system is required in order to capture realistic behavior. Subsequently,
we can investigate the implications of applying staffing principles that are based on
steady-state performance metrics in settings which are inherently transient over the
planning period. We will touch upon this topic in Chapter 6.
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1.5 Outline of the thesis

The remainder of this thesis builds upon the ideas behind the QED scaling regime
exhibited in this introductory chapter, and is organized as follows.

Chapter 2 is concerned with the analysis of the limiting behavior of queues
in case one deviates from the square-root staffing principle as demand grows large.
Using the bulk-service queue together with the many-sources paradigm as a vehicle,
we derive corrected diffusion approximations for the performance metrics of pre-
limit systems in these alternative scaling regimes. The work presented in Chapter 2
is based on [118].

In Chapter 3, we also analyze the bulk-service queueing model, but with many
correlated sources, so that demand becomes overdispersed. As we alluded to in
Section 1.4.2, this requires an alternative scaling of the queue length process and
associated staffing rule. This chapter exhibits the ideas of [163].

In Chapter 4, we discuss how QED-type behavior prevails in simple settings
in which the system size is finite, given appropriate capacity-sizing rules. More
specifically, we show how customer retrials can be incorporated heuristically into
the performance analysis of finite-size systems in the QED regime. The content of
this chapter is based on [211] and [212].

Building upon the insights gained in Chapter 4, we show in Chapter 5 how the
approximation methods carry over to a more complex finite-size queueing system,
inspired by delay analysis in a health care facility. We show how the QED scaling
limits for this model offer surprisingly accurate approximations for realistic model
parameters in systems of small to moderate size, and develop a staffing algorithm
for dimensioning such systems. Chapter 5 is based on the ideas of [213].

Chapter 6 investigates the validity of a capacity allocation rule based on steady-
state performance metrics in practical settings. Namely, in realistic scenarios, the
parameters of a queueing model are typically subject to change over the planning
period. This asks for a more elaborate transient analysis of the queue dynamics,
and an adaptation of the staffing level. In this chapter, we present how to do so
appropriately in a single-server queueing model facing a Lévy input process by
prescribing a correction to the steady-state optimum, which has a square-root form.
This chapter is based on [164].

Chapter 7 presents the analysis of an inventory model with backlogs, perishable
goods and consumer impatience. This model resembles the inventory level of a
blood bank, and can be regarded as a shot-noise model with both positive and
negative jumps and exponential decay rates above and below zero. Besides the
derivation of the stationary distribution of the inventory level, we show how under
appropriate scaling the process converges to an Ornstein-Uhlenbeck process. The
latter allows for a more tractable approximate analysis of the model in case the
number of blood deliveries and demand is large. Chapter 7 is based on [28].
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2
Novel heavy-traffic regimes

In this chapter, we introduce a family of heavy-traffic scalings
for a large-scale service system meant to serve jobs coming
from a large pool of customers. The scaling rules are inspired
by the classical QED regime discussed in Chapter 1, but lead
to a range of different system behaviors that includes the ED,
QED and QD regime as special cases. To determine the scal-
ing limits, we describe the performance measures in terms of
Pollaczek integrals and use asymptotic techniques to evaluate
these integrals in the large-system limit.

Based on
Novel heavy-traffic regimes for large-scale service systems

Guido Janssen, Johan van Leeuwaarden & Britt Mathijsen
In SIAM Journal of Applied Mathematics, 75(2), 787-812 (2015)
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2.1 Introduction & motivation

We study the workload process of a system, experiencing stochastic demand and
deterministic capacity sn per period, at equidistant time epochs. Demand is as-
sumed to be generated by n stochastically identical and independent sources. Let
Ai,j denote the workload brought into the system by source i in period j, for which

E[Ai,j] = µ and Var Ai,j = σ2. Then the total amount of demand arriving to the

system in period j is A
(n)
j = ∑

n
i=1 Ai,j with E[A

(n)
j ] = nµ and Var A

(n)
j = nσ2.

As explained in Chapter 1, a good capacity sizing rule for achieving economies-
of-scale is sn = nµ + β

√
nσ for some β > 0. If we denote the system utilization

by ρn := nµ/sn, then this dimensioning rule in the bulk service queue with many
sources is tantamount to the heavy-traffic scaling

√
n(1 − ρn) → γ =

βσ

µ
, as n → ∞. (2.1)

Starting from this setting, we introduce a novel family described in terms of a pa-
rameter η for which we assume that

nη(1 − ρn) → γ, as n → ∞, γ > 0. (2.2)

The parameter η ≥ 0 defines a whole range of possible scaling regimes, including
the classical case η = 1/2. In terms of a capacity sizing rule for systems with
many customers, the condition (2.2) is tantamount to sn = nµ + βσn1−η . Similar
capacity sizing rules have been considered in [29, 150] for many-server systems with
uncertain arrival rates. Hence, for η ∈ (0, 1/2) the variability hedge is relatively
large, so that the regime parameterized by η ∈ (0, 1/2) can be seen as moderate
heavy traffic: heavy-traffic conditions in which the full occupancy is reached more
slowly, as a function of n, than for classical heavy traffic. For opposite reasons the
range η ∈ (1/2, ∞) corresponds to extreme heavy traffic due to a relatively small
variability hedge. Note that the case η = 0 does not lead to 100% system utilization
when n → ∞.

In this chapter we show that economies-of-scale can be achieved for a large
range of η, although the nature of the benefits obtained by operating on large scale
depends on the precise capacity sizing rule (hence the parameter η). We quan-
tify performance in terms of stationary measures: The mean and variance of the
congestion in the system, and the probability of an empty system. For these per-
formance measures we derive heavy-traffic limits under the scalings (2.2) that are
relatively simple functions of only the first two moments of the demand per period.
Such parsimonious expressions are useful for quantifying and improving system
behavior. The heavy-traffic limits, however, provide also qualitative insight into the
system behavior. Our asymptotic analysis shows that mean congestion is O(nη),
which implies that delays experienced by the customers are negligible for all values
of η ∈ [0, 1), are roughly constant for η = 1, and grow without bound for η > 1. We
expect this qualitative behavior to be universal for a wide range of stochastic models
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to which the regime (2.2) is applied. We further show the existence of the following
trichotomy as n → ∞ under (2.2): For η ∈ (0, 1/2) the empty-system probability
converges to 1, for η ∈ (1/2, 1) it converges to 0, while only for η = 1/2 there is
a limiting value in (0, 1). Hence, as expected, the system performance deteriorates
with η, in a rather crude way for the empty-system probability, and in only a mild
way for mean congestion levels. The regime (2.2) thus presents a range of possible
capacity sizing rules that all lead to economies-of-scale, and depending on what is
the desired nature of performance for a particular service system, an appropriate η

can be selected. From the quantitative perspective, our detailed asymptotic analysis
leads to more precise asymptotic estimates for the performance measures in heavy
traffic, which reveal the exact manner in which congestion is influenced by η and γ.

Motivating examples. The bulk service queueing model is one of the canonical
models in queueing theory, having a wide range of applications in fields like digi-
tal communication, wireless networks, road traffic, reservation systems, health care
and many more (see [53] and [207, Chap. 2] for an overview). In road traffic, the
basic model for congestion at an intersection, known as the fixed-cycle traffic-light
queue [170, 208], is related to our discrete bulk service queue. Then sn represents
the maximum number of delayed cars in front of a traffic light that can depart dur-

ing one green period, while A
(n)
j is the number of newly arriving cars during a

consecutive green and red period.
An example from health care is panel sizing [227]. Say a general practitioner

has a pool of n clients (typically in the order of 2,500 [93]), all of which are po-

tential patients, and together require A
(n)
j consults per day. Further assume that

the practitioner can see a maximum number of sn patients per day. What is then an
appropriate patient panel size n, which strikes a reasonable balance between access-
ing medical care in a timely manner and restricting the time that the practitioner
sits idle? The panel size application is one of many examples of an appointment
book, referring to some schedule of appointments for a fixed period, with capacity

sn appointments per period and newly arriving number of appointments A
(n)
j per

period. See [66] for another recent example of an appointment book in a health care

setting, again in terms of our bulk service queue, with A
(n)
j the new patients per

day and sn the number of available beds.
For all examples above, and many more, our new class of heavy-traffic scal-

ings (2.2) presents capacity sizing rules for which the expected performance can be
quantified using the results in this chapter. This will be helpful in dimensioning the
systems (How much capacity is needed to achieve a certain target performance?)
while exploiting economies-of-scale. For appointment books, our model together
with the capacity sizing rules (2.2) is particularly relevant for advanced access [93],
a scheduling approach in health care designed to reduce delays by offering every
patient a same-day appointment, regardless of the urgency of the problem. In that
way, patients do not have to wait long for appointments, and practices do not waste
capacity by holding appointments in anticipation of urgent cases.
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Pollaczek’s formula. Next to the freedom to model different situations, another
advantage of our model is that it is mathematically tractable, in the sense that it
can be subjected to powerful mathematical methods from complex and asymptotic
analysis. In order to establish the heavy-traffic limits we start from Pollaczek’s
formula for the transform of the stationary queue length distribution in terms of
a contour integral. From this famous transform representation, contour integrals
for the empty-system probability and the mean and variance of the congestion im-
mediately follow. Contour integrals are often amenable to asymptotic evaluation
(see e.g. [61]), particularly for obtaining classical heavy-traffic asymptotics. We also
subject the contour integral representations to asymptotic evaluation, but not under
classical heavy-traffic scaling. This asymptotic analysis requires a non-standard sad-
dle point method, tailored to the specific form of the integral expressions that arise
under the capacity sizing rule (2.2).

Saddle point method. In complex analysis, the saddle point method in its standard
form is a useful technique to estimate the asymptotic behavior of integrals of the
form

I(n) =
∫

C
h(z) en f (z) dz, (2.3)

as n → ∞, where C is a contour in the complex plane, and f (z) and h(z) are
functions that are analytic in some neighborhood of C. The main idea behind the
saddle point method is that if the integrand in (2.3) exhibits a sharp peak along
the contour, then one may naturally expect that a small neighborhood around this
peak provides the dominant contribution to the integral. More specifically, for large
values of n, the function f and its associated maximum f (z∗) for z∗ ∈ C to a large
extent determine the magnitude of the integrand (where z∗ is well-defined due to
analyticity of f . In the setting of this chapter, C is a closed curve, which implies
that the value z∗ must be a saddle point of f , i.e. f ′(z∗) = 0. Subsequently, one
can replace f (z) in (2.3) by its Taylor expansion around z∗ and deduce through the
Laplace method, see e.g. [67], that

I(n) =
√

2π i
h(z∗) en f (z∗)
√

n | f ′′(z∗)|
(

1 + O(1/n)
)

,

as n → ∞. In Section 2.3, we show how the contour integrals describing station-
ary measures for the queue length, derived through Pollaczek’s formula, can be
reformulated into the shape of (2.3). However, we will show that the saddle point
method in its standard from cannot be applied to asymptotically characterize other
stationary measures like the mean or mass at zero. Indeed, for our model the sad-
dle point (the solution of (2.21)) converges to one (as n → ∞), which is a singular
point of the integrand, and renders the standard saddle point method useless. The
non-standard saddle point method discussed in this chapter, originally proposed by
[67], is made specifically to overcome this complication. This leads to asymptotic
expansions for the performance measures, of which the limiting forms correspond
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to the heavy-traffic limits, and pre-limit forms present refined approximations for
pre-limit systems (n < ∞) in heavy traffic. Such refinements to heavy-traffic limits
are commonly referred to as corrected diffusion approximations [191, 38, 20].

Further connections to the literature. We now discuss two classes of stochastic
systems for which the heavy-traffic regime (2.1) has been studied extensively, and
for which our new family of regimes (2.2) is largely unexplored. We discuss these
classes because, despite the fact that the Pollaczek formula does not hold, we believe
the qualitative results that we reveal for our particular model should to a large
extent carry over to these settings as well, presenting some interesting avenues for
further research (see Section 2.6.2).

The first class concerns so-called nearly-deterministic systems [192, 193], denoted
by Gn/Gn/1 system, where Gn stands for cyclic thinning of order n, indicating
that some point process is thinned to contain only every nth point. As n → ∞,
the Gn/Gn/1 systems approach the deterministic D/D/1 system. For Gn/Gn/1
systems, [192] establishes stochastic-process limits, and [193] derives heavy-traffic
limits for stationary waiting times. In the framework of [192, 193], our stochas-
tic model corresponds to a D/Gn/1 queue, where the sequence of service times

{A
(n)
j }j≥1 follows from a cyclically thinned sequence of i.i.d. random variables Ai,j.

It follows from [193, Theorem 3] that the rescaled stationary waiting time process
converges under (2.1) to a reflected Gaussian random walk. Hence, the perfor-
mance measures of the nearly deterministic system, under (2.4) and (2.1), should be
well approximated by the performance measures of the reflected Gaussian random
walk, giving rise to heavy-traffic approximations. This connection is discussed in
detail in Section 2.4.2. It seems likely that results similar to those presented in this
chapter can be obtained by applying the scaling (2.2) to the nearly-deterministic
systems in [192, 193], and because Pollaczek’s formula also applies to this setting,
the non-standard saddle point method developed in this chapter can provide the
appropriate methodology.

The second class concerns multi-server systems, and in particular the many-
server regime. When we interpret sn as the number of servers, instead of capacity
per time slot or order of thinning, the scaling (2.1) is similar to the QED or Halfin-
Whitt regime for the M/M/sn system. As we have reviewed in Chapter 1, the QED
regime is characterized by a delay probability that converges to a non-degenerate
limit away from both zero and one, and the mean delay is asymptotically negligible
as the number of servers grows large. The QED regime (2.1) is naturally positioned
in between the Quality-Driven (QD) regime and the Efficiency-Driven (ED) regime.
In the QD regime, the load remains bounded away from 1, which corresponds to
setting η = 0 in (2.2). Hence, the range η ∈ (0, 1/2) bridges the gap between the
QED regime and the QD regime. Likewise, the ED regime corresponds to setting
η = 1 in (2.2), so that the range η ∈ (1/2, 1] connects the QED regime and ED
regime. For the birth-death process describing the M/M/sn system, Maman [150]
introduced a scaling similar to (2.2), and called it the QED-c regime, also bridging
the ED and QD regimes. Theorem 4.1 of [150] says that the expected waiting time
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under the scaling sn = nµ + βσn1−η is of order s
1−η
n , which is equivalent to the

expected queue length being of order nη by Little’s law. We should stress though
that we expect the mathematical techniques that are needed to establish heavy-
traffic results could be entirely different than in this chapter, because Pollaczek’s
formula does not apply to many-server settings.

The specific model assumptions will determine to a large extent the appropriate
methodology. Under Markovian assumptions leading to the M/M/sn system, sim-
ple exact solutions are available for the stationary distribution. This makes it possi-
ble to describe performance measures like the mean congestion directly in terms of
real integrals. Where the saddle point method is used for integrals in the complex
plane, the Laplace method (see e.g. [74]) is used for real integrals. Hence, for the
asymptotic evaluation of the M/M/sn system under the scaling (2.2), the Laplace
method seems an appropriate methodology, although again one needs to deal with
possible singularities in the integrand. For G/D/sn systems, which assume de-
terministic service times, it has been shown in [122] that using a decomposition
property the dynamics of this multi-server systems can be captured in terms of
a single-server system. Hence, for these systems, Pollaczek’s formula applies, and
our saddle point method can most likely be applied to obtain heavy-traffic results in
the regimes (2.2). Under more general conditions, for instance leading to a G/G/sn

system, it is simply unclear at this stage how to obtain precise heavy-traffic approx-
imations for (2.2), because a tractable description of the performance measures is
not available; see Section 1.2.4 for details.

Structure of the chapter. In Section 2.2 we present in detail the model and the fam-
ily of heavy-traffic scalings. In Section 2.3 we introduce the saddle point method.
In Section 2.4 we apply the saddle point method for the mean congestion level.
Theorem 2.1 gives for all heavy-traffic scalings the limiting behavior in terms of an
integral expression. As a consequence, we show in Proposition 2.1 that there are
two types of heavy-traffic behavior, depending on whether η ∈ (0, 1/2) or η ≥ 1/2.
In Section 2.4.2 we discuss for the case η = 1/2 the connection with the Gaus-
sian random walk and the Riemann zeta function. In fact, we show that for all
η ≥ 1/2 there exists a connection between the integral expression in Theorem 2.1
and the Riemann zeta function. In Section 2.5 we apply the saddle point method
to obtain several more heavy-traffic results, including refined heavy-traffic approx-
imations for the mean congestion level, and the leading heavy-traffic behavior for
the variance of the stationary congestion level and for the empty-system probabil-
ity. Finally, in Section 2.6 we confirm through numerical experiments the accuracy
of our heavy-traffic approximations, and moreover show that under (2.2), various
multi-server systems behave similar to our discrete bulk service queue.
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2.2 Model description & heavy-traffic regimes

We thus consider a discrete stochastic model in which time is divided into periods of

equal length. At the beginning of each period j = 1, 2, 3, ... new demand A
(n)
j arrives

to the system. The demands per period A
(n)
1 , A

(n)
2 , . . . are assumed independent and

equal in distribution to some non-negative integer-valued random variable A(n). We
will omit the superscript (n) if no ambiguity is possible. The system has a service
capacity sn ∈ N per period, so that the recursion

Q(j + 1) = max{Q(j) + A
(n)
j − sn, 0}, j = 1, 2, ..., (2.4)

assuming Q(0) = 0, gives rise to a Markov chain {Q(j)}j≥1 that describes the
congestion in the system over time. The probability generation function (pgf)

Ã(z) =
∞

∑
k=0

P
(

A(n) = k
)

zk

of A(n) is assumed analytic in a disk |z| < r with r > 1, which implies that all
moments of A(n) exist. We also assume that

Ã′(1) = E[A
(n)
j ] = µA < sn. (2.5)

Under the assumption (2.5) the function zsn − Ã(z) has exactly sn zeros in the
closed unit disk, one of these being z = 1 (see [8]). We further assume that P(A(n) =
j) > 0 for some j > sn. Under this assumption the function zsn − Ã(z) also has
zeros outside |z| ≤ 1, and we let r0 be the minimum modulus of these zeros. The
number r0 is the unique zero of zsn − Ã(z) with real z > 1; see e.g. [113]. Moreover,
under assumption (2.5) the stationary distribution limj→∞ P (Q(j) = k) = P(Q =
k), k = 0, 1, . . . exists, with the random variable Q defined as having this stationary
distribution.

We let

Q̃(w) =
∞

∑
j=0

P(Q = j)wj

be the pgf of the stationary distribution. Q̃(w) is analytic in |w| < r0, and given by
Pollaczek’s formula (see e.g. [2, 61]). In our discrete setting, we shall first derive a
useful expression for Q̃(w).

Lemma 2.1. For any ε > 0 with 1 + ε < r0,

Q̃(w) = exp
( 1

2πi

∫

|z|=1+ε
ln
(w − z

1 − z

) (zsn − Ã(z))′

zsn − Ã(z)
dz
)

(2.6)

holds when |w| < 1 + ε.
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Proof. We shall establish (2.6) for any w ∈ (1, 1 + ε), and then the full result follows
from analyticity of Q̃(w) and of

ln
(w − z

1 − z

)

= ln
(1 − w/z

1 − 1/z

)

= −
∞

∑
k=1

1

k

((w

z

)k
−
(1

z

)k)

in w, |w| < 1 + ε for any z with |z| = 1 + ε.
Our starting point is the formula, see [45],

Q̃(w) =
(sn − µA)(w − 1)

wsn − Ã(w)

sn−1

∏
k=1

w − zk

1 − zk
(2.7)

that holds for all w, |w| < r0, in which z1, . . . , zsn−1 are the sn − 1 zeros of zsn − Ã(z)
in |z| < 1. Fix w ∈ (1, 1 + ε). Then ln [(w − z)/(1 − z)] is analytic in z ∈ C\[1, w]. It
follows that

IC =
1

2πi

∫

|z|=1+ε
ln
(w − z

1 − z

) (zsn − Ã(z))′

zsn − Ã(z)
dz

=
sn−1

∑
k=1

ln
(w − zk

1 − zk

)

+
1

2πi

∫

C
ln
(w − z

1 − z

) (zsn − Ã(z))′

zsn − Ã(z)
dz, (2.8)

where C is a contour encircling [1, w] in the positive sense with none of the zk’s
in its interior. We let δ ∈ (0, w−1

2 ) and we take C the union of two line segments,
from 1 + δ − i0 to w − δ − i0 and from w − δ + i0 to 1 + δ − i0, and two circles, of
radius δ and encircling 1 and w in positive sense. A careful administration of the
various contributions to the integral IC in (2.8), taking account of the branch cut
[1, w], yields

IC = ln

(

(sn − µA)(w − 1)

ws − Ã(w)

)

+ O(δ ln δ).

Using this in (2.7) and letting δ ↓ 0, we get (2.6) for w ∈ (1, 1 + ε) and the proof is
complete.

Using P(Q = 0) = Q̃(0), µQ = Q̃′(1) and σ2
Q = Q̃′′(1) + Q̃′(1) − (Q̃′(1))2, it

follows by straightforward manipulations that

P(Q = 0) = exp
[ 1

2πi

∫

|z|=1+ε
ln
( z

z − 1

) (zsn − Ã(z))′

zsn − Ã(z)
dz
]

, (2.9)

µQ =
1

2πi

∫

|z|=1+ε

1

1 − z

(zsn − Ã(z))′

zsn − Ã(z)
dz, (2.10)

σ2
Q =

1

2πi

∫

|z|=1+ε

−z

(1 − z)2

(zsn − Ã(z))′

zsn − Ã(z)
dz. (2.11)

Because sn appears directly in expressions (2.9)-(2.11), we will be conducting our
analysis with respect to sn rather than n. Note that this has no consequences for
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our results on the convergence speed of the performance metrics, since sn = O(n).
Furthermore, we will omit the index n when describing the capacity sn in the re-
mainder of the chapter for brevity.

We next discuss in more detail the family of heavy-traffic scalings considered

in this chapter, which combines two features. First, we have assumed that A
(n)
j is

in distribution equal to the sum of work generated by all sources, A1,j + ... + An,j,
where the Ai,k are for all i and k i.i.d. copies of a random variable X, of which the
pgf X̃(z) = ∑

∞
k=0 P(X = k)zk has radius of convergence r > 1, and

0 < E[A(n)] = nµ = nX̃′(1) < sn.

Hence

ϑ :=
n

sn
∈ (0, 1/µ). (2.12)

Second, we scale the system according to (2.2), for which we assume that

ρsn = ϑ µ = 1 − γ

s
η
n

(2.13)

in which γ > 0 is bounded away from 0 and ∞ as sn → ∞. In the remainder of
this chapter, we will omit the subscript in sn. The condition that P(A(n) = k) > 0
for some k > s holds when the degree d of X̃(z) (with d = ∞ if X̃(z) is not a
polynomial) is such that nd > s.

To avoid certain complications when applying the saddle point method, we fur-
ther assume that

|X̃(z)| < X̃(r1), |z| = r1 , z 6= r1, (2.14)

for any r1 ∈ (0, r). This implies that r0 is the unique zero of zs − Ã(z) on |z| = r0.
This condition is related to Cramér’s condition, see [20, pp. 189 and 355], and it has
also been used in [114]. Condition (2.14) holds when the set of all j = 0, 1, . . . such
that P(X = k) > 0 is not contained in an arithmetic progression with a ratio larger
than one (see also [8]).

2.3 Non-standard saddle point method

We illustrate our saddle point method for µQ. As a first step, we bring (2.10) in a
form which is amenable to saddle point analysis.

Lemma 2.2.

µQ =
s

2πi

∫

|z|=1+ε

g′(z)
z − 1

exp(s g(z))

1 − exp(s g(z))
dz (2.15)

with

g(z) = −ln z + ϑ ln(X̃(z)). (2.16)
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Proof. With Ã(z) = X̃n(z),

(zs − Ã(z))′

zs − Ã(z)
=

s zs−1 − n X̃′(z) X̃n−1(z)

zs − X̃n(z)

=
s

z
− s

z

(n

s

z X̃′(z)
X̃(z)

− 1
) z−s X̃n(z)

1 − z−s X̃n(z)
. (2.17)

Write z−s X̃n(z) = exp(s g(z)). Noting that

1

2πi

∫

|z|=1+ε

s

z

1

1 − z
dz = 0, (2.18)

and that

g′(z) =
1

z

(

ϑ
z X̃′(z)
X̃(z)

− 1
)

, (2.19)

gives (2.15).

Let us now explain how the standard saddle point method can be applied to
(2.15). Since

g(1) = g(r0) = 0 ; g(z) < 0 , 1 < z < r0, (2.20)

and by strict convexity of

z−s X̃n(z) = z−s Ã(z) =
∞

∑
k=0

ak zk−s, z ∈ (0, r),

g(z) has a unique minimum on [1, r0]. This minimum is found by solving z ∈ [1, r0]
from g′(z) = 0, and this yields the equation

X̃(z) = ϑ z X̃′(z). (2.21)

Denote the solution z ∈ (1, r0) of (2.21) by zsp, and observe that zsp is a saddle point
of g(z), explaining the notation. Thus, the saddle point method can be used for the
integral in (2.15) by taking 1 + ε = zsp.

In the case that ϑ = n/s is bounded away from 1/µ as s → ∞, we have that
the minimum value of g(z), 1 ≤ z ≤ r0, is negative and bounded away from 0.
Furthermore, zsp is bounded away from 1, and the saddle point method can be
applied in the classical way by replacing

exp(s g(z))

1 − exp(s g(z))
by exp(s g(z)),

at the expense of an exponentially small relative error, and performing an expansion
of g′(z)/(zsp − 1) = d1(z − zsp) + O((z − zsp)2) with d1 = g′′(zsp)/(zsp − 1) 6= 0.
Using that g(z∗) = (g(z))∗, where the ∗ denotes complex conjugation, it can be
shown that

µQ =
exp(s g(zsp))

(zsp − 1)2
√

2πs g′′(zsp)
(1 + O(s−1)). (2.22)
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We next explain why the standard saddle point method does not work for the
heavy-traffic scaling considered in this chapter. Since we operate in (2.13), ϑµ → 1
as s → ∞, and

zsp − 1 =
γ

a2 sη + O(s−2η), (2.23)

g(zsp) =
−γ2

2a2s2η
+ O(s−3η), (2.24)

g′′(zsp) = a2 + O(s−η), (2.25)

where

a2 =
σ2

µ
− γ

sη

(σ2

µ
− 1
)

. (2.26)

Hence, exp(sg(z)) near z = zsp is (as s → ∞): vanishingly small when η ∈ (0, 1/2),
bounded away from 1, but non-negligible when η = 1/2, and tending to 1 when
η ∈ (1/2, ∞). Furthermore, (z − 1)−1 in (2.15) is unbounded near z = zsp as s → ∞.
Therefore, an adaptation of the standard saddle point method is required, and the
resulting asymptotic form of µQ will deviate significantly from the standard case
(2.22). In particular, since zsp → 1, this asymptotic form will contain information
from X(z) at z = 1, rather than at a point away from 1 as is the case in (2.22).

The required adaptation of the saddle point method is modeled after a device
developed in [67, Sec. 5.12]. We use a substitution z = z(v) in (2.15) with real v and
z(0) = zsp such that for sufficiently small v,

g(z(v)) = g(zsp)− 1
2 v2 g′′(zsp). (2.27)

This is feasible, since

g(z) = g(zsp) +
1
2 g′′(zsp)(z − zsp)

2
(

1 +
g′′′(zsp)

3g′′(zsp)
(z − zsp) + ...

)

(2.28)

with g′′(zsp) positive and bounded away from 0 as s → ∞. Hence, z(v) can be
found for small v by inverting the equation

(z − zsp)
(

1 +
g′′′(zsp)

3g′′(zsp)
(z − zsp) + ...

)1/2
= iv. (2.29)

By Lagrange’s inversion theorem [67], there is a δ > 0 (independent of s) such that

z(v) = zsp + iv +
∞

∑
k=2

ck(iv)
k, |v| < δ, (2.30)

with real coefficients ck (since g(z) is real for real z) and

c2 = − g′′′(zsp)

6g′′(zsp)
. (2.31)



44 Chapter 2. Novel heavy-traffic regimes

Thus
z(v) = zsp + iv − c2 v2 + O(v3), |v| ≤ 1

2 δ, (2.32)

where the order term holds uniformly in s. The uniformity statement follows from
an inspection of the usual argument by which Lagrange’s theorem is proved, noting
that the inversion in (2.27) with g as in (2.16) is considered for ϑ → 1/µ, zsp → 1
with radius of convergence r away from 1.

By (2.14) we can restrict the integration in (2.15) to a fixed but arbitrarily small
subset of |z| = zsp near z = zsp, at the expense of an exponentially small error. Fur-
thermore, by Cauchy’s theorem and again at the expense of an exponentially small
error, the integration path can be deformed in accordance with the transformation
in (2.27)–(2.32). Set

q(v) = g(zsp)− 1
2 v2 g′′(zsp) (2.33)

and note that from (2.27),

g′(z(v)) z′(v) = −v g′′(zsp).

Then substituting z = z(v) in (2.15), µQ is given with exponentially small error by

s

2πi

∫ 1
2 δ

− 1
2 δ

g′(z(v))
z(v)− 1

exp(s g(z(v)))

1 − exp(s g(z(v)))
z′(v)dv,

which gives the following result.

Lemma 2.3. The mean stationary congestion level is given with exponentially small error
by

µQ =
−s

2πi
g′′(zsp)

∫ 1
2 δ

− 1
2 δ

v

z(v)− 1

exp(s q(v))

1 − exp(s q(v))
dv. (2.34)

In a similar fashion we get that P(Q = 0) and σ2
Q, see (2.9) and (2.11), are given,

both with exponentially small error, by

−s

2πi
g′′(zsp)

∫ 1
2 δ

− 1
2 δ

v ln
( z(v)

z(v)− 1

) exp(s q(v))

1 − exp(s q(v))
dv (2.35)

and
−s

2πi
g′′(zsp)

∫ 1
2 δ

− 1
2 δ

v z(v)

(z(v)− 1)2

exp(s q(v))

1 − exp(s q(v))
dv, (2.36)

respectively.

2.4 Heavy-traffic limits for the mean congestion level

In this section we apply the non-standard saddle point method explained in Section
2.3 to the Pollaczek integral representation for the mean stationary congestion level
µQ. In Section 2.4.1 we first derive an integral representation for the leading order
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behavior of µQ with a relative error of order O(s−1), which serves as a heavy-
traffic approximation in the regime ρs = 1 − γ/sη with η > 0. We also consider
separately the cases of moderate heavy traffic (η ∈ (0, 1/2)) and extreme heavy
traffic (η ∈ (1/2, ∞)), for which the integral representation leads to vastly different
alternative expressions. We find that µQ → 0 more rapidly than any power of 1/s
when η ∈ (0, 1/2). When η ≥ 1/2 the saddle point method yields an integral
representation with relative error O(s−min(1,η)). In Section 2.4.2 we specialize this
general result to the CLT case η = 1/2, and make a connection with existing results.

2.4.1 Leading order behavior in integral form

Theorem 2.1. The mean stationary congestion level is given by

µQ =
2

π
σ

√

s

2µ

∫ ∞

0

t2

d2(s) + t2

exp(−d2(s)− t2)

1 − exp(−d2(s)− t2)
dt
(

1 + O(s−min(1,η))
)

(2.37)
with d2(s) = s1−2ηγ2µ/(2σ2).

Proof. According to Lemma 2.3, µQ is given with exponentially small error by (2.34)
with q(v) given in (2.33). Since z(−v) = z∗(v) for real v, we have

v

z(v)− 1
+

−v

z(−v)− 1
= −2iv

Im(z(v))

|z(v)− 1|2

=
−2iv2 + O(v4)

(zsp − 1)2 + v2 − 2c2(zsp − 1) v2 + O(v4)

=
−2iv2

(

1 + O(v2)
)

(zsp − 1)2 + v2 − 2c2(zsp − 1) v2
, (2.38)

for − 1
2 δ ≤ v ≤ 1

2 δ. where (2.32) and ck ∈ R have been used. Using (2.38) in

(2.34) and extending the integration range from [− 1
2 δ, 1

2 δ] to (−∞, ∞) while using
symmetry of q(v), we get that µQ is given with exponentially small error by

s g′′(zsp)

π

∫ ∞

0

v2
(

1 + O(v2)
)

(zsp − 1)2 + v2 − 2c2(zsp − 1) v2

exp(s q(v))

1 − exp(s q(v))
dv. (2.39)

With
B = exp(s g(zsp)), α = g′′(zsp), (2.40)

Equation (2.39) takes the form

sα

π

∫ ∞

0

v2
(

1 + O(v2)
)

(zsp − 1)2 + v2 − 2c2(zsp − 1) v2
· B exp(− 1

2 s α v2)

1 − B exp(− 1
2 s α v2)

dv. (2.41)

Since (zsp − 1)2 = (γ/a2)
2s−2η +O(s−4η), see (2.23), the integrand in (2.41) in lead-

ing order has the form

B v2 exp(−s D v2)

(v2 + C s−2η)(1 − B exp(−s D v2))
,
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and this is reminiscent of the integrand in [67, Eq. (5.12.3)] for the case κ = 2η.
Proceeding as in [67, Sec. 5.12], the substitution v = t

√

2/(sα) brings (2.41) into the
form

2

π

√

1
2 sα

∫ ∞

0

t2(1 + O(t2/s))
1
2 sα(zsp − 1)2 + t2 − 2c2(zsp − 1)t2

B exp(−t2)

1 − B exp(−t2)
dt. (2.42)

From (2.23)–(2.26) and (2.40),

2

π

√

sα

2
=

2

π
σX

√

s

2 µ
(1 + O(s−η)), (2.43)

1
2 s α (zsp − 1)2 = d2(s) + O(s1−3η), (2.44)

2 c2(zsp − 1) = O(s−η), (2.45)

s g(zsp) = −d2(s) + O(s1−3η), (2.46)

where

d2(s) =
b2

0

s2η−1
, b2

0 :=
γ2µ

2 σ2
. (2.47)

In the case that 2η − 1 < 0, we have that 1
2 s α (zsp − 1)2 → ∞ and that

B = exp(s g(zsp)) = O(exp(−b2s1−2η)) (2.48)

for any b ∈ (0, b0). From (2.42) it then follows that µQ = O(exp(−b2 s1−2η)) for any
b ∈ (0, b0). In the case that 2 η − 1 ≥ 0, we have that d2(s) is bounded, and using
that 1/s3η−1 = O(d2(s)/sη), we get

1
2 s α (zsp − 1)2 + t2 − 2 c2 (zsp − 1) t2 = d2(s) + t2 + O

(

s−η (d2(s) + t2)
)

=
(

d2(s) + t2
) (

1 + O(s−η)
)

.

Hence, in this case,

t2(1 + O(t2/s))
1
2 s α(zsp − 1)2 + t2 − 2c2(zsp − 1)t2

=
t2

d2(s) + t2

(

1 + O(s−η) + O(t2/s)
)

. (2.49)

Furthermore,

1 − B exp(−t2) = 1 − exp(−d2(s)− t2)
(

1 + d2(s)O(s−η)
)

= (1 − exp(−d2(s)− t2))
(

1 +
d2(s)

exp(d2(s) + t2)− 1
O(s−η)

)

= (1 − exp(−d2(s)− t2)) (1 + O(s−η)),

It follows therefore that

B exp(−t2)

1 − B exp(−t2)
=

exp(−d2(s)− t2)

1 − exp(−d2(s)− t2)
(1 + O(s−η)). (2.50)
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Combining the three items (2.43), (2.49) and (2.50), we obtain for (2.42) the result

2

π
σ

√

s

2 µ

∫ ∞

0

t2

d2(s) + t2
· exp(−d2(s)− t2)

1 − exp(−d2(s)− t2)
dt
(

1 + O(s−η) + O(s−1)
)

,

and this gives (2.37).

Theorem 2.1 gives the leading-order behavior of µQ as s → ∞ with a relative

error of O(s−min(1,η)). By considering in more detail the integral expressions, we
obtain the following result, describing two different heavy-traffic behaviors.

Proposition 2.1. If η ∈ (0, 1/2) the mean congestion level satisfies

µQ = O
(

exp(−b2s1−2η)
)

,

for any b ∈ (0, b0). If η ∈ [1/2, ∞) the mean congestion level is given by

µQ = sη σ2

2µγ

(

1 + O(smax(1/2−η,−1))
)

.

The first assertion in Proposition 2.1 follows from the observation in (2.48), to-
gether with (2.42). The second assertion is based on a connection between the
integral in Theorem 2.1 and the Riemann zeta function, which is explained in the
next subsection.

2.4.2 Classical heavy traffic and the Gaussian random walk

We now build on Theorem 2.1 to obtain further results for the classical heavy traffic
case η = 1/2, for which we know from [193, Thm. 3] that the rescaled congestion
process converges under (2.1) to a reflected Gaussian random walk. The latter is
defined as (Sβ(k))k≥0 with Sβ(0) = 0 and

Sβ(j) = Y1 + . . . + Yj

with Y1, Y2, . . . i.i.d. copies of a normal random variable with mean −β and variance
1. Assume β > 0 (negative drift), and denote the all-time maximum of this random
walk by Mβ.

Denote by Q
(s)
∞ the stationary congestion level for a fixed s (that arises from

taking j → ∞ in (2.4)), and remember that we have assumed ϑ = n/s fixed. Then,
using ρs = 1 − γ/

√
s, with

γ =
βσ

µ
√

ϑ
, (2.51)

the spatially-scaled stationary congestion levels reach the limit Q
(s)
∞ /(σ

√
n)

d⇒ Mβ

as s, n → ∞ (see [122, 192, 193]). From [193, Thm. 4] we then know that under the
standard heavy-traffic scaling (2.1)

E[Q
(s)
∞ ]

σ
√

n
→ E[Mβ], as s, n → ∞, (2.52)
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from which it follows that
µQ ≈ σ

√
n E[Mβ]. (2.53)

The random variable Mβ was studied in [57, 115]. In particular, [115, Thm. 2] yields,
for β < 2

√
π,

E[Mβ] =
1

2β
+

ζ(1/2)√
2π

+
β

4
+

β2

√
2π

∞

∑
r=0

ζ(−1/2 − r)

r!(2r + 1)(2r + 2)

(−β2

2

)r

,

where ζ denotes the Riemann zeta function, which is defined as, see (1.26). Hence,
for small values of β,

µQ ≈ σ
√

n E[Mβ] ≈
σ
√

n

2β
=

√
s

σ2

2µγ
. (2.54)

We will now show how the approximation (2.54) follows from Theorem 2.1, and
also how similar steps give rise to Proposition 2.1.

Consider the integral

G0(b) = G1(b)− G2(b) =
∫ ∞

0

t2

b2 + t2

exp(−b2 − t2)

1 − exp(−b2 − t2)
dt, (2.55)

where b > 0 and

G1(b) =
∫ ∞

0

exp(−b2 − t2)

1 − exp(−b2 − t2)
dt , G2(b) =

∫ ∞

0

b2

b2 + t2

exp(−b2 − t2)

1 − exp(−b2 − t2)
dt.

(2.56)
We have, as in [115, Sec. 2],

G1(b) =
∞

∑
k=0

∫ ∞

0
exp(−(k + 1)(b2 + t2))dt

=

√
π

2

∞

∑
k=0

e−(k+1)b2

√
k + 1

=

√
π

2
e−b2

Φ(e−b2
, 1/2, 1)

=
π

2b
+

√
π

2

∞

∑
r=0

ζ( 1
2 − r)

(−1)r b2r

r!
, (2.57)

where the last identity holds when 0 < b <

√
2π and Φ(z, s, v) is Lerch’s transcen-

dent, which is defined as, see [174, Eq. 25.14.1],

Φ(z, s, v) =
∞

∑
n=0

zn

(v + n)s
, for v 6= 0,−1,−2, . . . , |z| < 1; ℜs > 1, |z| = 1.

As to G2(b), we make a connection with the complementary error function

erfc(z) =
2√
π

∫ ∞

z
e−t2

dt =
2

π
e−z2

∫ ∞

0

e−z2t2

1 + t2
dt,
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see [174, Secs. 7.2 and 7.7.1]. We thus compute

G2(b) =
∞

∑
k=0

e−(k+1)b2
∫ ∞

0

b2

b2 + t2
e−(k+1)t2

dt

=
π

2
b

∞

∑
k=0

erfc(b
√

k + 1). (2.58)

From [115, Eq. (4.3) & (4.23)],

∞

∑
n=1

1√
2π

∫ ∞

β
√

n
e−x2/2 dx =

1

2β2
− 1

4
− 1√

2π

∞

∑
r=0

ζ(−1/2 − r)(−1/2)r

r! (2r + 1)
β2r+1 (2.59)

in which 0 < β < 2
√

π. Taking β = b
√

2 in (2.59), we get

G2(b) =
π

4b
− π

4
b −

√
π

∞

∑
r=0

ζ(−1/2 − r)(−1)r b2r+2

r! (2r + 1)
(2.60)

when 0 < b <

√
2π. The two results in (2.57) and (2.60) can be combined, as in

[115, Sec. 2.5.2], and this yields

G0(b) =
π

4b
+

π

4
b +

√
π

2
ζ(1/2) +

√
π

∞

∑
r=0

ζ(−1/2 − r)(−1)r b2r+2

r! (2r + 1)(2r + 2)
(2.61)

when 0 < b <

√
2π.

Using (2.61) in (2.53), we find that the leading order behavior of µQ is given as

σX

√

s

2µ

[

1

2b0
+

b0

2
+

ζ(1/2)√
π

+
2√
π

∞

∑
r=0

ζ(−1/2 − r)(−1)rb2r+2
0

r! (2r + 1)(2r + 2)

]

(2.62)

with relative error of O(s−1/2) in which b0 is given by (2.47). The expression (2.62)
is exactly equal to the right-hand side of [115, Eq. (4.25)] times

√
s when we take

there σ = µ = 1 and β = b0

√
2. Notice that, with γ as in (2.51),

σ

√

s

2µ

1

2b0
=

σ
√

n

2β
,

which confirms the approximation (2.54).

According to Theorem 2.1, we have for η ≥ 1/2,

µQ =
2

π
σ

√

s

2 µ
G0(d(s))

(

1 + O(s−min(1,η))
)

.

When η = 1/2, so that d(s) = b0 is independent of s, the series representation for
G0 in (2.61) can be used, as long as b0 ∈ (0,

√
2π). When η > 1/2, we have that

d(s) = b0/sη−1/2 → 0 as s → ∞, and so this series representation can be used when
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s is large enough. We then have from (2.61) and b2
0 = γ2µ/2 σ2, while replacing the

whole series at the right-hand side by O(b2), for µQ the leading order behavior

sη

[

σ2

2 γ µ
+

σ ζ(1/2)
√

2 π µ

1

sη−1/2
+

1

4
γ

1

s2η−1
+ O(s3/2−3η)

]

(2.63)

with relative error O(s−min(1,η)). Retaining the constant term σ2/(2γµ) and estimat-
ing the other terms between the brackets in (2.63) as O(s1/2−η), we get Proposition
2.1.

2.5 More heavy-traffic results

In this section we apply the non-standard saddle point method to obtain several
more heavy-traffic results. In Section 2.5.1 we derive refined heavy-traffic approxi-
mations for the mean congestion level by considering higher-order correction terms.
In Section 2.5.2 we derive the leading heavy-traffic behavior for the variance of the
stationary congestion level, and in Section 2.5.3 for the empty-system probability.
To keep the developments tractable, we restrict Section 2.5.1 to η = 1/2, and Section
2.5.2 and Section 2.5.3 to η ∈ (0, 1], although the same technique will work for all
values η > 0.

2.5.1 Correction term for the mean congestion level for η = 1/2

Our saddle point method not only establishes the leading-order heavy-traffic ap-
proximations, but also allows to derive refinements to these approximations. In this
section we demonstrate how this works for the mean congestion level in the case
η = 1/2.

To obtain a refinement or correction term from (2.42), we must be more pre-
cise about the O(s−η) terms that occur in the approximations in Section 2.4.1 for
1
2 s α(zsp − 1)2, B and

√
s α/2. When higher-order corrections are required, we

should include higher-order terms in the approximations of these quantities, and
be more specific about the O(t2/s) and O(t4/s) in the integrand in (2.42).

Let g(i), i = 1, 2, ... denote the ith derivative of g and define, see (2.12) and (2.16)
with ϑ = (1 − γ/sη) µ−1,

ai = g(i)(1); g(z) = −ln z + ϑ ln X̃(z).

Dropping the X from µ and σ2 for brevity, we have

a1 = − γ

sη , a2 =
σ2

µ
− γ

sη

(σ2

µ
− 1
)

,

a3 = −2 +
(

1 − γ

sη

)( X̃′′′(1)
X̃′(1)

− 3X̃′′(1) + 2(X̃′(1))2
)

.
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For the purpose of finding a first-order correction term, we note that

α = g′′(zsp) = a2 + (zsp − 1) a3 + O(s−1),

zsp − 1 = − a1

a2
− a3

2a2

( a1

a2

)2
+ O(s−3/2),

c2 = − g′′′(zsp)

6g′′(zsp)
= − a3

6a2
+ O(s−1/2),

g(zsp) = − a2
1

2a2
− a3

6a3
2

a3
1 + O(s−2).

This gives rise to

√

1
2 s α = σ

√

s

2µ

(

1 +
C1√

s
+ O(s−1)

)

, (2.64)

1
2 s α(zsp − 1)2 =

γ2 µ

2σ2
+

C2√
s
+ O(s−1), (2.65)

2c2(zsp − 1) =
C3√

s
+ O(s−1), (2.66)

B = exp(s g(zsp)) = exp
(

− γ2 µ

2σ2

)(

1 +
C4√

s
+ O(s−1)

)

, (2.67)

with explicitly computable constants C1, C2, C3, C4. Remembering that b2
0 =

γ2µ/2σ2, see (2.47), we then get with errors of order 1/s

t2(1 + O(t2/s))
1
2 s α(zsp − 1)2 + t2 − 2c2(zsp − 1) t2

=
t2

b2
0 + t2

− 1√
s

(

(C2 + b2
0 C3)

t2

(b2
0 + t2)2

− C3
t2

b2
0 + t2

)

, (2.68)

and

B exp(−t2)

1 − B exp(−t2)
=

exp(−b2
0 − t2)

1 − exp(−b2
0 − t2)

+
C4√

s

exp(−b2
0 − t2)

(1 − exp(−b2
0 − t2))2

. (2.69)
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Using (2.64), (2.68) and (2.69) in (2.42) we get with an absolute error of order 1/
√

s

µQ =
2

π
σ

√

s

2µ

(

1 +
C1√

s

)

·
∫ ∞

0

( t2

b2
0 + t2

− 1√
s

(

(C2 + b2
0 C3)

t2

(b2
0 + t2)2

− C3
t2

b2
0 + t2

))

·
( exp(−b2

0 − t2)

1 − exp(−b2
0 − t2)

+
C4√

s

exp(−b2
0 − t2)

(1 − exp(−b2
0 − t2))2

)

dt

=
2σ

π

√

s

2µ
G0(b0)

+
2σ

π

√

1

2µ

(

(C1 + C3) G0(b0)− (C2 + b2
0 C3) G3(b0) + C4 G4(b0)

)

,

(2.70)

where G0 is as in (2.55), and

G3(b0) =
∫ ∞

0

t2

(b2
0 + t2)2

exp(−b2
0 − t2)

1 − exp(−b2
0 − t2)

dt, (2.71)

G4(b0) =
∫ ∞

0

t2

b2
0 + t2

exp(−b2
0 − t2)

(1 − exp(−b2
0 − t2))2

dt. (2.72)

We shall express the integrals in (2.71) and (2.72) in terms of ζ-functions. By partial
integration

G3(b) =
1

2

∫ ∞

0

1

b2 + t2

exp(−b2 − t2)

1 − exp(−b2
0 − t2)

dt

−
∫ ∞

0

t2

b2 + t2

exp(−b2 − t2)

(1 − exp(−b2 − t2))2
dt

=
1

2b2
G2(b)− G4(b), (2.73)

see (2.55) and (2.72). Since G2(b) is expressed in terms of ζ-functions in (2.60), it is
sufficient to consider G4(b).

As to G4(b),

G4(b) = G5(b)− G6(b),

where

G5(b) =
∫ ∞

0

exp(−b2 − t2)

(1 − exp(−b2 − t2))2
dt,

G6(b) =
∫ ∞

0

b2

b2 + t2

exp(−b2 − t2)

(1 − exp(−b2 − t2))2
dt.
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We have, compare (2.57),

G5(b) =
∞

∑
k=0

(k + 1)
∫ ∞

0
e−(k+1)(b2+t2) dt

=

√
π

2
e−b2

Φ(e−b2
,− 1

2 , 1) =
π

4b3
+

√
π

2

∞

∑
r=0

ζ(− 1
2 − r)

(−1)r b2r

r!
, (2.74)

the last identity being valid when 0 < b <

√
2π. Next we have, compare (2.58),

G6(b) =
∞

∑
k=0

(k + 1) b2
∫ ∞

0

exp(−(k + 1)(b2 + t2))

b2 + t2
dt

=
π

2
b

∞

∑
k=0

(k + 1) erfc(b
√

k + 1).

From [115, Eq. (5.4) & (5.21)] we have

∞

∑
n=1

n√
2π

∫ ∞

β
√

n
e−x2/2 dx =

3

4β4
− 1

24
− 1√

2π

∞

∑
r=0

ζ(−3/2 − r)(−1/2)r

r! (2r + 1)
β2r+1 (2.75)

when 0 < β < 2
√

π. Taking β = b
√

2 in (2.75), we get

G6(b) =
3π

16b2
− πb

24
−
√

π
∞

∑
r=0

ζ(−3/2 − r)(−1)r

r! (2r + 1)
b2r+2 (2.76)

when 0 < b <

√
2π. The two results (2.74) and (2.76) can be combined, as in [115,

Sec. 5] and this yields

G4(b) =
π

16b3
+

πb

24
+ 1

2 ζ(−1/2)
√

π +
√

π
∞

∑
r=0

ζ(−3/2 − r)(−1)r b2r+2

r! (2r + 1)(2r + 2)
(2.77)

when 0 < b <

√
2π. Finally, we can rewrite

1

2b2
G2(b) =

π

8b3
− π

8b
−

√
π

2

∞

∑
r=0

ζ(−1/2 − r)(1−)rb2r

r!(2r + 1)

=
π

8b3
− π

8b
−

√
π

2

∞

∑
r=−1

ζ(−3/2 − r)(−1)r+1b2r+2

(r + 1)!(2r + 3)

=
π

8b3
− π

8b
− 1

2 ζ(−1/2)
√

π +
√

π
∞

∑
r=0

ζ(−3/2 − r)(−1)rb2r+2

r! (2r + 2)(2r + 3)
(2.78)
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and use (2.77) and (2.78) in (2.73), by which we obtain for 0 < b <

√
2π,

G3(b) =
π

16b3
− π

8b
− πb

24
− ζ(−1/2)

√
π

+
√

π
∞

∑
r=0

ζ(−3/2 − r)(−1)rb2r+2

r! (2r + 2)

[ 1

2r + 3
− 1

2r + 1

]

=
π

16b3
− π

8b
− πb

24
− ζ(−1/2)

√
π − 2

√
π

∞

∑
r=0

ζ(−3/2 − r)(−1)r b2r+2

r! (2r + 1)(2r + 2)(2r + 3)
.

(2.79)

The right-hand side of (2.79) equals the right-hand side of [115, Eq. (2.3)] multiplied
by π/(2b) with β = b

√
2.

2.5.2 Variance of the congestion level

We have from (2.36) in Section 2.2, using the same approach and notation as in
Section 2.4.1 for µQ, that σ2

Q is given with exponentially small error by

−s α

2πi

∫ 1
2 δ

− 1
2 δ

v z(v)

(z(v)− 1)2

B exp(− 1
2 s α v2)

1 − B exp(− 1
2 s α v2)

dv, (2.80)

with B and α given in (2.40). From z(−v) = z∗(v) for real v we now compute

z(v)

(z(v)− 1)2
− z(−v)

(z(−v)− 1)2
= −2i

|z(v)|2 − 1

|z(v)− 1|4 Im(z(v)),

and so (2.80) becomes

sα

π

∫ 1
2 δ

0

|z(v)|2 − 1

|z(v)− 1|4 v Im(z(v))
B exp(− 1

2 s α v2)

1 − B exp(− 1
2 s α v2)

dv. (2.81)

From
Im(z(v)) = v + O(v3), |z(v)|2 − 1 = z2

sp − 1 + O(v2),

we get for the expression in (2.81)

sα

π

∫ 1
2 δ

0

v2 (z2
sp − 1 + O(v2))(1 + O(v2))

((zsp − 1)2 + v2 + O((zsp − 1) v2) + O(v4))2

B exp(− 1
2 s α v2)

1 − B exp(− 1
2 s α v2)

dv.

(2.82)
When 2η − 1 < 0, we have as for the case of µQ in Section 2.4.1 that the whole
expression in (2.82) is O(exp(−b2 s1−2η)) for any b ∈ (0, b0), as s → ∞. When
2η − 1 ≥ 0, we get as in the case of µQ after substitution v = t

√

2/(s α) for the
expression in (2.82)

2

π

( s α

2

)3/2 ∫ ∞

0

t2 (z2
sp − 1 + O(t2/s))(1 + O(t2/s))

(d2(s) + t2)2 (1 + O(1/sη) + O(t2/s))

B e−t2

1 − B e−t2 dt.
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When 2η − 1 ≥ 0, the leading order behavior of σ2
Q depends crucially on the factor

z2
sp − 1 + O(t2/s), where

z2
sp − 1 =

2 γ µ

σ2 sη

(

1 + O(s−η)
)

is dominant when η < 1, while the O(t2/s) is dominant when η > 1. In the case
that η ∈ (1/2, 1), we get for the leading order behavior of σ2

Q

2

π

( s α

2

)3/2 2 γ µ

σ2 sη

∫ ∞

0

t2

(d2(s) + t2)2
· e−d2(s)−t2

1 − e−d2(s)−t2 dt
(

1 + O(sη−1)
)

=
γ σ

π

( 2

µ

)1/2
s3/2−η G3(d(s))

(

1 + O(sη−1)
)

,

where (2.25), (2.26) and (2.40) have been used for α = g′′(zsp) and where G3 is given
in (2.71).

When we insert the expansion (2.79) for G3(b), with the whole series on the
second line being O(b2), we get the leading order behavior of σ2

Q as

s2η
( σ4

4 γ2µ2
− σ2

4 µ

1

s2η−1
−
(2 σ2

π µ

)1/2 γ ζ(−1/2)

s3η−3/2

− γ2

24 s5η−5/2
+ O(s1−4η)

) (

1 + O(sη−1)
)

= s2η σ4

4 γ2 µ2

(

1 + O(smax(1−2η,η−1))
)

(2.83)

when η ∈ (1/2, 1). For the case η = 1/2, we get the leading order behavior,
assuming 0 < b0 <

√
2π,

σ2s

µ

[

1

8 b2
0

− 1

4
− 1

12
b2

0 −
2 ζ(−1/2)√

π
b0 −

4√
π

∞

∑
r=0

ζ(−3/2 − r) (−1)r b2r+3
0

r! (2r + 1) (2r + 2) (2r + 3)

]

(2.84)

with relative error O(s−1/2). The expression between brackets in (2.84) coincides
with the right-hand side of [115], (2.3) with β = b0

√
2.

This leads to the following two results.

Theorem 2.2. For η ∈ [1/2, 1),

σ2
Q =

γ σX

π

√

2

µ
s3/2−η G3(d(s))

(

1 + O(sη−1)
)

with G3 given in (2.71).
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Proposition 2.2. For η ∈ (0, 1/2), and for all b < b0,

σ2
Q = O(exp(−b2 s1−2η)).

For η = 1/2, σ2
Q equals expression (2.84) with relative error O(s−1/2). For η ∈ (1/2, 1)

and b0 ∈ (0,
√

2π), σ2
Q has the form in (2.83).

As in Section 2.5.1 for the mean congestion level with η = 1/2, it is possible to
give a correction term which involves now integrals and series with ζ-functions as
considered in [116, Secs. 4-5].

2.5.3 The empty-system probability

We have from (2.9) by proceeding as in (2.17)–(2.19) that

ln [P(Q = 0)] =
s

2πi

∫

|z|=1+ε
ln
( z

z − 1

) g′(z) exp(s g(z))

1 − exp(s g(z))
dz

=
1

2πi

∫

|z|=1+ε

1

z(z − 1)
ln (1 − exp(s g(z))) dz, (2.85)

where in the last step we used partial integration (noting that Re [g(z)] < 0 on
|z| = 1 + ε). Then, as in Section 2.2 for µQ, the last integral in (2.85) is, with
exponentially small error, given by

1

2πi

∫ 1
2 δ

− 1
2 δ

z′(v)
z(v)(z(v)− 1)

ln
(

1 − B exp
(

− 1
2 s αv2

)

)

dv. (2.86)

Now for v ≥ 0 from z(−v) = z∗(v), z′(−v) = −(z′(v))∗,

z′(v)
z(v)(z(v)− 1)

+
z′(−v)

z(−v)(z(−v)− 1)
= 2i Im

[ z′(v)
z(v)(z(v)− 1)

]

= 2i Im
[ z′(v) z∗(v)(z∗(v)− 1)

|z(v)|2 |z(v)− 1|2
]

= 2i
zsp − 1 + O(v2)

(zsp + O(v2))((zsp − 1)2 + v2 − 2c2(zsp − 1) v2 + O(v4))
,

where we used (2.30) and the fact that zsp and c2 are real with zsp > 1. Therefore,
we get for the expression in (2.86)

1

π

∫ 1
2 δ

0

1

zsp+O(v2)

zsp − 1 + O(v2)

(zsp − 1)2 + v2 + O((zsp − 1)v2) + O(v4)

· ln
(

1 − B exp(− 1
2 s αv2)

)

dv. (2.87)

In the case that 2η − 1 < 0, we have as earlier that the whole expression in (2.87)
is O(exp(−b2 s1−2η)) for any b ∈ (0, b0), as s → ∞. In the case that 2η − 1 ≥ 0, we
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substitute v = t
√

s/(2 α), and we get as earlier for the expression (2.87), assuming
also that η < 1,

1

π

√
s α/2

∫ ∞

0

zsp − 1 + O(t2/s)

(d2(s) + t2) (1 + O(s−η) + O(t2/s))
ln(1 − B e−t2

)dt

=
1

π

∫ ∞

0

√
s α/2 (zsp − 1)

d2(s) + t2
ln(1 − B e−t2

)dt
(

1 + O(sη−1)
)

=
1

π

∫ ∞

0

d(s)

d2(s) + t2
ln(1 − e−d2(s)−t2

)dt
(

1 + O(sη−1)
)

.

Here we also used (2.44) and that 1/s3η−1 = O(d2(s)/sη), so that

( 1
2 s α)1/2 (zsp − 1) = d(s)

(

1 + O(s−η)
)

= d(s)
(

1 + O(sη−1)
)

,

since η ≥ 1/2.
We have for b > 0

1

π

∫ ∞

0

b

b2 + t2
ln(1 − exp(−b2 − t2))dt = −1

2

∞

∑
k=0

1

k + 1
erfc(b

√
k + 1) = −F(b

√
2),

(2.88)

where according to [115, Eq. (3.3) & (3.12)] for β > 0

F(β) =
∞

∑
n=1

1

n

1√
2π

∫ ∞

β
√

n
e−x2/2dx

= −ln β − 1

2
ln 2 − 1√

2π

∞

∑
r=0

ζ(1/2 − r) (−1/2)r β2r+1

r! (2r + 1)
, (2.89)

the last identity being valid for 0 < β < 2
√

π.
Using (2.89) with β2 = d2(s) = b2

0/s2η−1, with the entire series on the second
line being O(β), we get the leading order behavior of ln[P(Q = 0)] as

(

−(η − 1/2) ln s + ln(2 b0) + O(s1/2−η)
) (

1 + O(sη−1)
)

(2.90)

when η ∈ (1/2, 1). For η = 1/2, we get the leading order behavior, assuming
0 < b0 <

√
2π,

ln(2 b0) +
1√
π

∞

∑
r=0

ζ(1/2 − r) (−1)r

r! (2r + 1)
b2r+1

0 (2.91)

with relative error O(s−1/2). The expression (2.91) coincides with ln[P(M = 0)] as
given by [115, Eq. (2.1)] with β = b0

√
2. The next two results summarize the above.

Theorem 2.3. For η ∈ (1/2, 1),

ln[P(Q = 0)] = −F
(

d(s)
√

2
)

(

1 + O(sη−1)
)

with F given by (2.89).
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Proposition 2.3. For η ∈ (0, 1/2), and for all b < b0,

ln[P(Q = 0)] = O(exp(−b2 s1−2η)).

For η = 1/2, ln[P(Q = 0)] equals −F(b0

√
2) with a relative error O(1/

√
s). For

η ∈ (1/2, 1) and 0 < b0 <

√
2π, ln[P(Q = 0)] has leading order behavior as in (2.90).

As in Section 2.5.1 for the mean congestion level case with η = 1/2, it is possible
to give a correction term which involves now the integrals in (2.88) and (2.57).

2.6 Numerical examples

2.6.1 Accuracy of the approximations

In this subsection we present a numerical example that serves to illustrate the accu-
racy of the derived heavy-traffic approximations. Consider the Poisson case

X̃(z) = ez−1, µ = σ2 = 1.

We fix µ and vary n with the value of s, according to

ϑ =
n

s
= 1 − γ

sη

for some γ > 0 and η ≥ 1/2. To calculate the exact value of the mean congestion
level we use the expression, see [45],

µQ =
σ2

A

2(s − µA)
− s − 1 + µA

2
+

s−1

∑
k=1

1

1 − zk
.

Here z1, . . . , zs−1 are the zeros of zs − A(z) in |z| < 1. We apply the method of suc-
cessive substitution described in [113] to obtain accurate numerical approximations
for z1, ..., zs−1 and consequently µQ.

From Theorem 2.1, we find that the leading order behavior of µQ is given by

√
2s

π
G0

( γ√
2 sη− 1

2

)

. (2.92)

In order to find the correction terms, we proceed by setting η = 1/2. Deriving
constants C1, C2, C3, and C4 for our setting and substituting these into (2.70), we get
for µQ, with an absolute error of O(s−1/2), the approximation

√
2 s

π

((

1 − γ

3
√

s

)

G0(b0)−
γ3

3
√

s
( G3(b0) + G4(b0))

)

,

which by (2.55) and (2.73) reduces to

√
2 s

π
G0(b0)−

√
2 γ

3 π
G1(b0). (2.93)
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s ρ µQ (2.92) (2.93)

10 0.683 0.244 0.399 0.247
20 0.776 0.410 0.565 0.412
50 0.858 0.739 0.893 0.741

100 0.900 1.110 1.263 1.111
200 0.929 1.633 1.787 1.634
500 0.955 2.672 2.825 2.673

1000 0.968 3.843 3.996 3.843

Table 2.1: Numerical results for γ = 1.

s ρ µQ (2.92) (2.93)

10 0.968 13.707 14.046 13.732
20 0.977 19.533 19.865 19.551
50 0.985 31.084 31.409 31.095

100 0.990 44.097 44.419 44.106
200 0.992 62.499 62.819 62.505
500 0.995 99.008 99.325 99.011

1000 0.996 140.152 140.468 140.154

Table 2.2: Numerical results for γ = 0.1.

η = 0.6 η = 0.75 η = 0.9

s µQ (2.92) µQ (2.92) µQ (2.92)

10 17.781 18.125 25.970 26.318 37.553 37.905
20 27.309 27.647 44.391 44.734 71.195 71.541
50 47.948 48.281 89.623 89.961 164.637 164.978

100 73.245 73.574 152.031 152.367 309.353 309.692
200 111.752 112.079 257.435 257.769 580.170 580.507
500 195.082 195.409 515.443 515.776 1329.581 1329.917

1000 297.122 297.448 870.524 870.857 2487.227 2487.562

Table 2.3: Numerical results for γ = 0.1 and several values of η.
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Figure 2.1: µQ plotted against s on log scale for 3 queues for η = 0.75.

Numerical results for η = 1/2 and various values of s are given in Table 2.1 and
2.2, for γ = 1 and γ = 0.1, respectively. We note that for small s the leading
order approximation is still off by a significant amount, while the refinement only
shows an error in the second decimal for γ = 0.1. This seems to justify the use of
the correction term. In Table 2.3 we compare the approximation (2.92) against the
exact value of µQ for three values of η ≥ 1/2 to assess the influence of η. Clearly,
the leading order approximation is relatively accurate for all three scenarios. As
expected, the mean congestion increases along with η, since utilization approaches
1 more rapidly in this case.

2.6.2 Connection to other queueing models

As argued in the introduction, we believe that the heavy-traffic behavior for the
discrete model in this chapter will up to leading order be universal for a wide
range of other models (when subjected to the same heavy-traffic regime (2.2)). We
shall now substantiate this for many-server systems, for which under (2.2), it turns
out that the mean congestion is O(sη). We compare the mean congestion level
in our discrete queue with that in the multi-server systems M/M/s, M/D/s and
Gamma/Gamma/s, all with unit mean service time and occupation rate 1 − γ/sη .

Figure 2.1 shows on logarithmic scale the mean congestion levels for γ = 0.1
and η = 0.75 under the specified scaling for three systems. We also display three
lines with slope 0.75 for comparison, which confirms that mean congestion levels
are of the order sη , also in these multi-server system. Formally establishing this
heavy-traffic behavior for these multi-server system is an important open problem
and requires other mathematical approaches than the ones taken in this chapter (see
the introduction for more details).

Figure 2.2 shows the mean queue length in the M/M/s system for several values
of η, again on logarithmic scale, together with lines with slope η. For η ≥ 1/2, we
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Figure 2.2: µQ of M/M/s plotted against s on log scale for different values of η.

see the same O(sη) behavior, similar as for µQ in our discrete model. For η < 1/2
the mean queue length decays, again in agreement with our results for µQ. We
note that this qualitative behavior of the M/M/s system was also observed by [150,
Thm. 4.1], by proving that the mean waiting time in the M/M/s queue under (2.2)
is of order 1/s1−η , which by Little’s law implies the mean queue length to be of
order sη .
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3
Overdispersion

Arrival processes to service systems often display fluctuations
that are larger than anticipated under the Poisson assumption,
a phenomenon that is referred to as overdispersion. Motivated
by this, we analyze a class of discrete stochastic models for
which we derive heavy-traffic approximations that are scalable
in the system size. Subsequently, we show how this leads to
novel capacity sizing rules that acknowledge the presence of
overdispersion. This, in turn, leads to robust approximations
for performance characteristics of systems that are of moderate
size and/or may not operate in heavy traffic.
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64 Chapter 3. Overdispersion

3.1 Introduction

In the previous chapter, we analyzed the scaling limit of a queueing model in which
demand exhibits stochastic fluctuations that are asymptotically proportional to the
square-root of the nominal load, while we deliberately chose to deviate from the
square-root staffing principle by allocating a variability hedge that does not match
the order of these fluctuations. This chapter in some ways does the opposite. We
assume the demand faced by the queueing system is more volatile than anticipated
by the independent many-sources paradigm that leads to Poisson traffic models. As
will become clear in this chapter, this in fact requires an adaptation of the square-root
staffing principle in order to maintain the desirable properties of the QED regime.
We start by motivating our research through empirical evidence of the presence of
so-called overdispersion in arrival processes faced by service systems reported by re-
cent literature.

Motivation. The bulk of the queueing literature assumes perfect knowledge about
the model primitives, including the mean demand per time period. For large-scale
service systems, like health care facilities, communication systems or call centers,
the dominant assumption is that demand arrives according to a (non)homogeneous
Poisson process, which in practice translates into the assumption that arrival rates
are known for each basic time period (second, hour or day). Although natural and
convenient from a mathematical viewpoint, the Poisson assumption often fails to be
confirmed in practice. A deterministic arrival rate implies that the demand over any
given period is a Poisson random variable, whose variance equals its expectation. A
growing number of empirical studies shows that the variance of demand typically
deviates from the mean significantly. Recent work [137, 139] reports variance being
strictly less than the mean in health care settings employing appointment booking
systems. This reduced variability, known as underdispersion, can be accredited to
the goal of the booking system to create a more predictable arrival pattern. On
the other hand, in other scenarios with no control over the arrivals, the variance
typically dominates the mean, see [26, 29, 30, 49, 58, 81, 99, 127, 138, 150, 165, 187,
200, 228]. The feature that variability is higher than one expects from the Poisson
assumption is referred to as overdispersion. The latter concept will be the center of
our attention in this chapter.

Stochastic models with the Poisson assumption have been widely applied to op-
timize capacity levels in service systems. The goal is to minimize operating costs
while providing sufficiently high QoS in terms of performance measures such as
mean delay or excess delay. When stochastic models, however, do not take into
account overdispersion, resulting performance estimates are likely to be overopti-
mistic. The system then ends up being underprovisioned, which possibly causes
severe performance problems, particularly under critical loading.

Causes of overdispersion. The literature discussed above proves that the presence
of overdispersion is widespread across applications. It however does not specify
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what causes the increased variability in the arrival process. We name two possible
explanations.

First, we revisit the many-sources characterization of demand inflow discussed
in Chapter 2. Recall that in this setting, demand is generated by n stochastically
identical and independent sources, with n large, so that workload arriving to the

system in period j is given by A
(n)
j = ∑

n
i=1 Ai,j, where Ai,j, i = 1, 2, . . . , n are

i.i.d. random variables. This resulted in nominal workload µn = nµ and σ2
n = nσ2,

thus both of order n. If we now relax the assumption on the (pairwise) indepen-
dence of the sources, but rather consider the scenario in which these are positively
correlated, then the nominal load remains to be equal to nµ, while the variance of
demand becomes

σ2
n = Var A

(n)
j = n Var A1,j + n(n − 1)Cov(A1,j, A2,j),

which is of higher order than n if n Cov(A1,j, A2,j) → ∞ as n → ∞.

A second interpretation of overdispersion in arrival processes relates to arrival
rate uncertainty. The canonical process for modeling the arrival process of a service
system is the Poisson process with a given arrival rate λ. Since model primitives,
in particular the arrival rate, are typically estimated through historical data, these
are prone to be subject to forecasting errors. In the realm of Poisson processes, this
inherent uncertainty can be acknowledged by viewing the arrival rate Λn itself as
being stochastic. The resulting doubly stochastic Poisson process, also known as
Cox process (first presented in [62]), implies that demand in a given interval Aj

follows a mixed Poisson distribution. In this case, the expected demand per period
equals µn = E[Λn], while the variance is σ2

n = E[Λn] + Var Λn. By selecting the
distribution of the mixing factor Λn, the magnitude of overdispersion can be made
arbitrarily large, and only a deterministic Λn leads to a true Poisson process.

The mixed Poisson model presents a useful way to fit both the mean and vari-
ance to real data, particularly in case of overdispersion. The mixing distribution can
be estimated parametrically or non-parametrically, see [127, 150]. A popular para-
metric family is the Gamma distribution, which gives rise to an effective data fitting
procedure that uses the fact that a Gamma mixed Poisson random variable follows
a negative binomial distribution. We will in this chapter adopt the assumption of a
Gamma-Poisson mixture as the demand process.

Adapted QED scaling. To deal with overdispersion new models are needed, scal-
ing rules must be adapted, and existing capacity sizing rules need to be modified
in order to incorporate a correct hedge against (increased) variability. In this chap-
ter, we consider an extension of the discrete queueing model of Chapter 2 that has
a doubly stochastic Poisson process as input, Aj ∼ Pois(Λn) and we identify the
heavy-traffic regime in which it displays QED behavior. That is, it fits the three
asymptotic characteristics in Section 1.2.3 of this thesis. As we argued in that par-
ticular section, a sensible candidate capacity allocation rule is sn = µn + βσn for
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some β > 0, which is equivalent to the scaling

µn

σn
(1 − ρn) → β, as n → ∞.

We will verify mathematically that this is asymptotically the appropriate choice.
Studies that have adressed similar capacity allocation problems with stochastic ar-
rival rates include [144, 150, 220, 223]. Of the aforementioned papers, our work
best relates to [150], in the sense that we also assess the asymptotic performance
of a queueing system having a stochastic arrival rate in heavy traffic. We there-
fore expand the paradigm of the QED regime, in order to have it accommodate for
overdispersed demand that follows from a doubly stochastic Poisson process.

Structure of the chapter. The remainder of this chapter is structured as follows.
Our model is introduced in Section 3.2 together with some preliminary results. In
Section 3.3 we derive the classical heavy-traffic scaling limits for the queue length
process in the presence of overdispersed arrivals both for the moments and the
distribution itself. Section 3.4 presents our main theoretic result, which provides a
robust refinement to the heavy-traffic characterization of the queue length measures
in pre-limit systems. In Section 3.5, we describe the numerical results and demon-
strate the heavy-traffic approximation for a real data set coming from a health care
setting. Section 3.6 provides some concluding remarks.

3.2 Model description

We consider the same mathematical model as in Section 2.2, in which time is di-
vided into periods of equal length. At the beginning of each period j = 1, 2, 3, ...

new demand A
(n)
j arrives to the system. The demands per period A

(n)
1 , A

(n)
2 , ...

are assumed independent and equal in distribution to some non-negative integer-
valued random variable A(n). The system has a service capacity sn ∈ N per period,
the steady-state queue length can be characterized as, see (1.27),

Q(n) d
= max

k≥0

{ k

∑
i=1

(A
(n)
i − sn)

}

. (3.1)

For brevity, we define µn := E[A
(n)
1 ] and σ2

n = Var A
(n)
1 . The behavior of Q(n)

predominantly depends on the characteristics of A(n) and sn. As noted before, µn <

sn is a necessary condition for the maximum in (3.1) to be finite and consequently
for the queue to be stable. Before continuing the analysis of Q(n), we impose a set
of conditions on the asymptotic properties of sn, µn and σn.

Assumption 3.1.

(a) (Asymptotic growth)
µn, σn → ∞, for n → ∞.
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(b) (Persistence of overdispersion)

σ2
n/µn → ∞ for n → ∞.

(c) (Heavy-traffic condition) The utilization ρn := µn/sn → 1 as n → ∞, while

sn = µn + β σn, (3.2)

for some β > 0. This is equivalent to requiring

(1 − ρn)
µn

σn
→ β, for n → ∞. (3.3)

Assumption 3.1 is assumed to hold throughout the remainder of this chapter. Since
we are mainly interested in the system behavior in heavy traffic, it is appropriate to
study the queue length process in a scaled form. Substituting sn as in Assumption
3.1(c), and dividing both sides of (3.1) by σn, gives

Q(n)

σn
= max

k≥0

{ k

∑
i=1

(A
(n)
i − µn

σn
− β

)}

. (3.4)

By defining Q̂(n) := Q(n)/σn and Â
(n)
i := (A

(n)
i − µn)/σn, we see that the scaled

queue length process is in distribution equal to the maximum of a random walk
with i.i.d. increments distributed as Â(n)− β. Besides E[Â(n)] = 0 and Var Â(n) = 1,
the scaled and centered arrival count Â(n) has a few other nice properties which we
turn to later in this section.

The model in (3.1) is valid for any distribution of A(n), also for the original case
where the number of arrivals follows a Poisson distribution with fixed parameter
λn, but in that case Assumption 3.1(b) does not hold. Instead, we assume A(n)

to be Poisson distributed with uncertain arrival rate rendered by the non-negative
random variable Λn. This Λn is commonly referred to as the prior distribution,
while A(n) is given the name of a Poisson mixture, see [87]. Given that the moment
generation function of Λn, denoted by MΛ

n (·), exists, we are able to express the
probability generating function (pgf) of A(n) through the former. Namely,

Ã(n)(z) = E[E[zA(n) |Λn]] = E[exp(Λn(z − 1))] = MΛ
n (z − 1). (3.5)

From (3.5), we get

µn = E[A(n)] = E[Λn], σ2
n = Var A(n) = Var Λn + E[Λn], (3.6)

so that µn < σ2
n if Λn is non-deterministic. Assumption 3.1(b) hence translates to

Var Λn/E[Λn] → ∞, n → ∞.

The next result relates the converging behavior of the centered and scaled Λn to
that of Â(n).
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Lemma 3.1. Let µn, σ2
n → ∞ and σ2

n/µn → ∞. If

Λ̂n :=
Λn − µn

σn

d⇒ N (0, 1), for n → ∞,

then Â(n) converges weakly to a standard normal variable as n → ∞.

The proof can be found in Appendix 3.A. The prevalent choice for Λn is the Gamma
distribution. The Gamma-Poisson mixture turns out to provide a very good fit to
arrival counts experienced by service systems, as was observed by [127]. Assuming
Λn to be of Gamma type with scale and rate parameters an and 1/bn, respectively,
we get for the pgf of A(n):

Ã(n)(z) =
( 1

1 + bn(1 − z)

)an

, (3.7)

in which we recognize the pgf of a negative binomial distribution with parameters
an and 1/(bn + 1), so that

µn = anbn, σ2
n = anbn(bn + 1).

Note that in the context of a Gamma prior, the restrictions in Assumption 3.1 reduce
to only two rules. For completeness, we include the revised list below.

Assumption 3.2.

1. (Asymptotic regime and persistence of overdispersion)

an, bn → ∞, for n → ∞.

2. (Heavy-traffic condition) Let

sn = anbn + β
√

anbn(bn + 1),

for some β > 0, or equivalently

(1 − ρn)
√

an → β, for n → ∞.

The next result follows from the fact that Λn is a Gamma random variable:

Corollary 3.1. Let Λn ∼ Gamma(an, 1/bn), A(n) ∼ Pois(Λn) and an, bn → ∞. Then
Â(n) converges weakly to a standard normal random variable as n → ∞.

Proof. By Lemma 3.1, it is sufficient to prove that Λ̂n
d⇒ N (0, 1) for this particular

choice of Λn. We do this by proving the pointwise convergence of the characteristic
function (cf) of Λ̂n to exp(−t2/2), the cf of the standard normal distribution. Let
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φG(·) denote the characteristic function of a random variable G. By basic properties
of the cf,

φ
Λ̂n

(t) = e−iµnt/σn φΛn
(t/σn) = e−iµnt/σn

(

1 − ibnt

σn

)−an

= exp
[

− iµnt

σn
− an ln

(

1 − ibnt

σn

)]

= exp
[

− iµnt

σn
− an

(

− i bnt

σn
+

b2
nt2

2σ2
n
+ O(b3

n/σ3
n)
)]

= exp
[

− bn t2

2(bn + 1)
+ O (1/

√
an)
]

→ exp
(

−t2/2
)

,

for n → ∞. By Lévy’s continuity theorem this implies Λ̂n is indeed asymptotically
standard normal.

The characterization of the arrival process as a Gamma-Poisson mixture is of
vital importance in later sections.

Expressions for the stationary distribution. Our main focus is on the stationary
queue length distribution, denoted by

P(Q(n) = i) = lim
k→∞

P(Q(n)(k) = i).

Denote the pgf of Q(n) by

Q̃(n)(w) :=
∞

∑
i=0

P(Q(n) = i)wi.

Furthermore, let µQ := E[Q(n)] and σ2
Q := Var Q(n) denote the stationary mean and

variance of the queue length, respectively. To avoid notational complexity, we omit
the superscript (n) in these definitions. To continue our analysis of Q(n), we need
one more condition on A(n).

Assumption 3.3. The pgf of A(n), denoted by Ã(n)(w), exists for |z| < r0, for some
r0 > 1, so that all moments of A(n) are finite.

We next recall two characterizations of Q̃(n)(w) that play prominent roles in the
remainder of our analysis. The first characterization of Q̃(n)(w) originates from
a random walk perspective. As we see from (3.1), the (scaled) stationary queue
length is equal in distribution to the all-time maximum of a random walk with
i.i.d. increments distributed as A(n) − β (or Â(n) − β in the scaled setting). Spitzer’s
identity, see e.g. [20, Theorem VIII4.2] and Section 1.2.2 of this thesis, then gives

Q̃(n)(w) = exp

{

∞

∑
k=1

1

k

(

E

[

w

(

∑
k
i=1{A

(n)
i −sn}

)+
]

− 1
)

}

,
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where (x)+ = max{x, 0}. Hence,

µQ = E[Q(n)] = Q̃(n)′(1) =
∞

∑
k=1

1

k
E

[ k

∑
i=1

(A
(n)
i − sn)

]+
,

σ2
Q = Var Q(n) = Q̃(n)′′(1) + Q(n)′(1)−

(

Q̃(n)′(1)
)2

=
∞

∑
k=1

1

k
E

[( k

∑
i=1

(A
(n)
i − sn)

)+]2
,

P(Q(n) = 0) = Q̃n(0) = exp
{

−
∞

∑
k=1

1

k
P

(

∑
k
i=1(A

(n)
i − sn) > 0

)}

.

A second characterization follows from Pollaczek’s formula, see [2] and Section
2.2.2 of this thesis:

Q̃(n)(w) = exp
{ 1

2πi

∫

|z|=1+ε
ln
(w − z

1 − z

) (zsn − Ã(n)(z))′

zsn − Ã(n)(z)
dz
}

, (3.8)

which is analytic for |w| < r0, for some r0 > 1. Therefore, ε > 0 has to be chosen
such that |w| < 1 + ε < r0. This gives

µQ =
1

2πi

∫

|z|=1+ε

1

1 − z

(zsn − Ã(n)(z))′

zsn − Ã(n)(z)
dz, (3.9)

σ2
Q =

1

2πi

∫

|z|=1+ε

−z

(1 − z)2

(zsn − Ã(n)(z))′

zsn − Ã(n)(z)
dz, (3.10)

P(Q(n) = 0) = exp
{ 1

2πi

∫

|z|=1+ε
ln
( z

z − 1

) (zsn − Ã(n)(z))′

zsn − Ã(n)(z)
dz
}

. (3.11)

Pollaczek-type integrals like (3.8)-(3.11) first occurred in the work of Pollaczek
on the classical single-server queue (see [2, 61, 117] for historical accounts). These
integrals are fairly straightforward to evaluate numerically and hence give rise to
efficient algorithms for performance evaluation [2, 41]. The integrals also proved
useful in establishing heavy-traffic results by asymptotic evaluation of the integrals
in various heavy-traffic regimes [141, 61, 118, 40], and in this paper we follow that
approach for a heavy-traffic regime that is suitable for overdispersion.

3.3 Heavy-traffic limits

In this section we present the result on the convergence of the discrete process Q̂(n)

to a non-degenerate limiting process and of the associated stationary moments. The
latter requires an interchange of limits. Using this asymptotic result, we derive two
sets of approximations for µQ, σ2

Q and P(Q(n) = 0), that capture the limiting behav-

ior of Q(n). The first set provides a rather crude estimation for the first cumulants
of the queue length process for any arrival process A(n) satisfying Assumption 3.1.
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The second set, which is the subject of the next section, is derived for the specific
case of a Gamma prior and is therefore expected to provide more accurate, robust
approximations for the performance metrics.

We start by indicating how the asymptotic properties of the scaled arrival pro-
cess give rise to a proper limiting random variable describing the stationary queue
length. The asymptotic normality of Â(n) provides a link with the Gaussian ran-
dom walk and nearly deterministic queues [192, 193]. The main results in [192, 193]
were obtained under the assumption that ρn ∼ 1 − β/

√
n, in which case it follows

from [193, Thm. 3] that the rescaled stationary waiting time process converges to a
reflected Gaussian random walk.

We shall also identify the Gaussian random walk as the appropriate scaling
limit for our stationary system. However, since the normalized natural fluctuations
of our system are given by µn/σn instead of

√
n, we assume that the load grows like

ρn ∼ 1 − β
µn/σn

. Hence, in contrast to [192, 193], our systems’ characteristics display

larger natural fluctuations, due to the mixing factor that renders the arrivals. Yet, by
matching this overdispersed demand with the appropriate hedge against variability,
we again obtain Gaussian limiting behavior. This is not surprising, since we saw in
Lemma 3.1 that the increments start resembling Gaussian behavior for n → ∞. The
following result summarizes this.

Theorem 3.1. Let Λn be a non-negative random variable such that (Λn − µn)/σn is
asymptotically standard normal, with µn and σn as defined in (3.6), and E[Λ3

n] < ∞

for all n ∈ N. Then under Assumption 3.1, for n → ∞,

(i) Q̂(n) d⇒ Mβ,

(ii) P(Q(n) = 0) → P(Mβ = 0),

(iii) E[Q̂(n)] → E[Mβ],

(iv) Var Q̂n → Var Mβ,

where Mβ is the all-time maximum of a random walk with i.i.d. normal increments with
mean −β and unit variance.

The proof of Theorem 3.1 is given in Appendix 3.A. The following result shows
that Theorem 3.1 also applies to Gamma mixtures, which is a direct consequence of
Corollary 3.1.

Corollary 3.2. Let Λn ∼ Gamma(an, bn). Then under Assumption 3.2 the four con-
vergence results of Theorem 3.1 hold true.

It follows from Theorem 3.1 that the scaled stationary queueing process con-
verges under (3.3) to a reflected Gaussian random walk. Hence, the performance
measures of the original system should be well approximated by the performance
measures of the reflected Gaussian random walk, yielding heavy-traffic approxima-
tions.
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Like our original system, the Gaussian random walk falls in the classical setting
of the reflected one-dimensional random walk, whose behavior is characterized by
both Spitzer’s identity and Pollaczek’s formula. In particular, Pollaczek’s formula
gives rise to contour integral expressions for performance measures that are easy to
evaluate numerically, also in heavy-traffic conditions. The numerical evaluation of
such integrals is considered in [2]. For E[Mβ] such an integral is as follows

E[Mβ] = − 1

π

∫ ∞

0
Re
[1 − φ(−z)

z2

]

dy, (3.12)

where z = x + iy with an appropriately chosen real part x, with φ(z) = exp(−β z +
1
2 z2), the Laplace transform of a normal random variable with mean −β and unit
variance. Note that this integral involves complex-valued functions with complex
arguments. Similar Pollaczek-type integrals exist for P(Mβ = 0) and Var Mβ, see
[2]. The following result simply rewrites these integrals in terms of a real integral
and uses the fact that the scaled queue length process mimics the maximum of the
Gaussian random walk for large n.

Corollary 3.3. Under Assumption 3.1, the leading order behavior of P(Q(n) = 0), µQ and
σ2

Q as n → ∞ are given by, respectively,

exp
[ 1

π

∫ ∞

0

β/
√

2
1
2 β2 + t2

ln
(

1 − e−
1
2 β2−t2

)

dt
]

, (3.13)

√
2σn

π

∫ ∞

0

t2

1
2 β2 + t2

exp(− 1
2 β2 − t2)

1 − exp(− 1
2 β2 − t2)

dt, (3.14)

√
2βσ2

n

π

∫ ∞

0

t2

( 1
2 β2 + t2)2

exp(− 1
2 β2 − t2)

1 − exp(− 1
2 β2 − t2)

dt. (3.15)

Proof. According to [2, Eq. (15)],

− ln [P(Mβ = 0)] = c0, E[Mβ] = c1, Var Mβ = c2,

where

cn =
(−1)nn!

π
Re
[

∫ ∞

0

ln (1 − exp(β z + 1
2 z2))

zn+1
dy
]

,

in which z = −x + i y, y ≥ 0, and x is any fixed number between 0 and 2β. Take
x = β, so that

βz + 1
2 z2 = − 1

2 β2 − 1
2 y2 ≤ 0, y ≥ 0.

For n = 0, this gives

c0 =
1

π
Re
[

∫ ∞

0

ln (1 − exp(− 1
2 β2 − 1

2 y2))

−β + i y
dy
]

= − 1

π

∫ ∞

0

β

β2 + y2
ln (1 − exp(− 1

2 β2 − 1
2 y2))dy

= − 1

π

∫ ∞

0

β/
√

2
1
2 β2 + t2

ln (1 − exp(− 1
2 β2 − t2))dt,
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where we used that

Re
[ 1

−β + i y

]

=
−β

β2 + y2
,

together with the substitution y = t
√

2. For n = 1, 2, . . . , partial integration gives

cn =
(−1)nn!

π
Re
[

∫ ∞

0

ln(1 − exp(− 1
2 β2 − 1

2 y2))

(−β + i y)n+1
dy

=
(−1)n−1(n − 1)!

π
Im
[

∫ ∞

0
ln(1 − exp(− 1

2 β2 − 1
2 y2))d

( 1

(−β + i y)n

)]

= − (−1)n−1(n − 1)!

π
Im
[

∫ ∞

0

y

(−β + i y)n

exp(− 1
2 β2 − 1

2 y2)

1 − exp(− 1
2 β2 − 1

2 y2)
dy
]

,

where we have used that

Im
[ ln(1 − exp(− 1

2 β2 − 1
2 y2))

(−β + i y)n

]∣

∣

∣

∞

0
= 0.

Using
1

(−β + i y)n
= (−1)n (β + i y)n

(β2 + y2)n
,

we then get

cn =
(n − 1)!

π
Im
[

∫ ∞

0

y(β + i y)n

(β2 + y2)n

exp(− 1
2 β2 − 1

2 y2)

1 − exp(− 1
2 β2 − 1

2 y2)
dy
]

,

which after the substitution of y = t
√

2 gives

c1 =
1

π

∫ ∞

0

y2

β2 + y2

exp(− 1
2 β2 − 1

2 y2)

1 − exp(− 1
2 β2 − 1

2 y2)
dy

=

√
2

π

∫ ∞

0

t2

1
2 β2 + t2

exp(− 1
2 β2 − t2)

1 − exp(− 1
2 β2 − t2)

dt, (3.16)

c2 =
2β

π

∫ ∞

0

y2

(β2 + y2)2

exp(− 1
2 β2 − 1

2 y2)

1 − exp(− 1
2 β2 − 1

2 y2)
dy

=
β
√

2

π

∫ ∞

0

t2

( 1
2 β2 + t2)2

exp(− 1
2 β2 − t2)

1 − exp(− 1
2 β2 − t2)

dt.

3.4 Robust heavy-traffic approximations

We shall now establish robust heavy-traffic approximations for the canonical case
of Gamma-POisson mixutres; see (3.7). As noted earlier, Gamma mixing yields
an arrival process that has a negative binomial distribution, which allows us to
establish the detailed asymptotic results in the next theorem.
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Theorem 3.2. Let an, bn and sn be as in Assumption 3.2. Then the leading order behavior
of µQ is given by

√
2 βn

π

( bn + ρn

1 − ρn

)

∫ ∞

0

t2

1
2 β2

n + t2

exp(− 1
2 β2

n − t2)

1 − exp(− 1
2 β2

n − t2)
dt (1 + o(1)), (3.17)

where

β2
n = sn

(1 − ρn

bn + 1

)2(

1 +
bn

ρn

)

. (3.18)

Furthermore, the leading order behavior of P(Q(n) = 0) and σ2
Q is given by

exp
[ 1

π

bn + ρn

bn + 1

∫ ∞

0

βn/
√

2
1
2 β2

n + t2
ln
(

1 − e−
1
2 β2

n−t2
)

dt
]

,

and

β3
n/

√
2

π

( bn + ρn

1 − ρn

)2( bn + 1

bn + ρn
+ 1
)

∫ ∞

0

t2

( 1
2 βn + t2)2

exp(− 1
2 βn − t2)

1 − exp(− 1
2 β2

n − t2)
dt, (3.19)

respectively.

The proof of Theorem 3.2 requires asymptotic evaluation of the Pollaczek-type
integrals (3.8)-(3.11), for which shall use the non-standard saddle point method—
originally proposed by [67] and also applied in Chapter 2 of this thesis—to turn
these contour integrals into practical approximations.

In contrast to the setting of Chapter 2, both the relevant saddle point and the
analyticity radius tend to one as n → ∞, which is a singular point of the integrand,
in the setting with overdispersion. For the proof of Theorem 3.2, we therefore
modify the special saddle point method developed in Chapter 2 to account for this
circumstance.

Proof. Our starting point is the probability generating function of the number of
arrivals per time slot, given in (3.7), which is analytic for |z| < 1+ 1/bn =: r. Under
Assumption 3.2, we consider µQ as given in (3.9). We set

g(z) = −ln z +
1

sn
ln
[

Ã(n)(z)
]

= −ln z − an

sn
ln (1 + (1 − z)bn) , (3.20)

to be considered in the entire complex plane with branch cuts (−∞, 0] and [r, ∞).
The relevant saddle point zsp is the unique zero z of g′(z) with z ∈ (1, r0). Since

g′(z) = −1

z
+

ρn

1 + (1 − z)bn
, (3.21)

this yields,

1 + (1 − zsp)bn = ρnzsp, i.e., zsp = 1 +
1 − ρn

ρn + bn
. (3.22)
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We then find

µQ =
sn

2πi

∫

|z|=1+ε

g′(z)
z − 1

exp(sn g(z))

1 − exp(sn g(z))
dz, (3.23)

and we take here 1 + ε = zsp. There are no problems with the branch cuts since we
consider exp(sng(z)) with integer sn.

We continue as in Chapter 2, Section 3 and thus we intend to substitute z = z(v)
in the integral in (3.23), where z(v) satisfies

g(z(v)) = g(zsp)− 1
2 v2 g′′(zsp) =: q(v)

on a range − 1
2 δn ≤ v ≤ 1

2 δn with δn → 0 as n → ∞. Note that, this range de-

pends on n, whereas these bounds ± 1
2 δn remained bounded away from zero in

[118]. This severely complicates the present analysis. We consider the approximate
representation

−sn g′′(zsp)

2πi

∫
1
2 δn

− 1
2 δn

v

z(v)− 1

exp(sn q(v))

1 − exp(sn q(v))
dv (3.24)

of µQ. We have to operate here with additional care, since both the analyticity
radius r = 1 + 1/bn and the saddle point zsp outside zero r0 tend to 1 as n → ∞.
Specifically, proceeding under the assumptions that (1 − ρn)2an is bounded while
an → ∞ and bn ≥ 1, see Assumption 3.2, we have from (3.22) that

zsp − 1 =
1 − ρn

bn + ρn
=

1 − ρn

bn
+ O

(1 − ρn

b2
n

)

, (3.25)

where the O-term is small compared to (1 − ρn)/bn when bn → ∞. Next, we
approximate r0, using that r0 > 1 satisfies

−ln r0 −
ρn

bn
ln (1 + (1 − r0)bn) = 0.

Write r0 = 1 + u/bn, so that we get the equation

0 = −ln

(

1 +
u

bn

)

− ρn

bn
ln(1 − u)

= − u

bn

(

1 − ρn − 1
2

( 1

bn
+ ρn

)

u − 1
3

(−1

b2
n
+ ρn

)

u2 + · · ·
)

,

where we have used the Taylor expansion of ln(1 + x) at x = 0. Thus we find

u =
2(1 − ρn)

ρn + 1/bn
+ O(u2) = 2(1 − ρn) + O((1 − ρn)

2) + O
(1 − ρn

bn

)

,

and so,

r0 = 1 + 2
1 − ρn

bn
+ O

( (1 − ρn)2

bn

)

+ O
(1 − ρn

b2
n

)

.
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In (3.24) we choose δn so large that the integral has converged within exponentially
small error using ±δn as integration limits, and, at the same time, so small that
there is a convergent power series

z(v) = zsp + iv +
∞

∑
k=2

ck(iv)
k, for |v| ≤ 1

2 δn. (3.26)

To achieve these goals, we supplement the information on g(z), as given by (3.20)−
(3.22), by

g′′(z) =
1

z2
+

ρnbn

(1 + (1 − z)bn)2
, g′′(1) = 1 + ρnbn, g′′(zsp) =

1

z2
sp

(

1 +
bn

ρn

)

.

(3.27)
Now

exp(sn q(v)) = exp(sn g(zsp)) exp(− 1
2 sn g′′(zsp) v2),

and

sn g′′(zsp)v
2 = sn bnv2(1 + o(1)) = an(bn v)2(1 + o(1)).

Therefore, (3.24) approximates µQ with exponentially small error when we take 1
2 δn

of the order 1/bn.

We next aim at showing that we have a power series for z(v) as in (3.26) that
converges for |v| ≤ 1

2 δn with 1
2 δn of the order 1/bn.

Lemma 3.2. Let

rn :=
1

2 bn
− (zsp − 1), mn := 2

3 ρnrn

√

bn + ρ−1
n

bn + ρn
,

where we assume rn > 0. Then (3.26) holds with real coefficients ck satisfying

|ck| ≤
rn

mk
n

, k = 2, 3, . . . . (3.28)

Proof. We let

G(z) :=
2(g(z)− g(zsp))

g′′(zsp)(z − zsp)2
. (3.29)

Then G(zsp) = 1 and so we can write (3.4) as

F(z) := (z − zsp)
√

G(z) = iv (3.30)

when |z − zsp| is sufficiently small. Since F(zsp) = 0, F′(zsp) = 1, the Bürmann-
Lagrange inversion theorem implies validity of a power series as in (3.26), with real
ck since G(z) is positive and real for real z close to zsp. We therefore just need to
estimate the convergence radius of this series from below.



3.4. Robust heavy-traffic approximations 77

To this end, we start by showing that

Re[g′′(z)] >
4

9
ρ2

n
bn + ρ−1

n

bn + ρn
, |z − zsp| ≤ rn. (3.31)

For this, we consider the representation

G(z) = 2
∫ 1

0

∫ 1

0

g′′(zsp + s t(z − zsp))

g′′(zsp)
tdsdt. (3.32)

We have for ζ ∈ C and |ζ − 1| ≤ 1/2bn ≤ 1/2 from (3.27) that

Re[g′′(ζ)] = Re(1/ζ2) + ρnbn Re
[( 1

1 + (1 − ζ)bn

)2]

≥ 4
9 (1 + ρnbn). (3.33)

To show the inequality in (3.33), it suffices to show that

min
|ξ−1|≤1/2

Re
( 1

ξ2

)

=
4

9
. (3.34)

The minimum in (3.34) is assumed at the boundary |ξ − 1| = 1/2, and for a bound-
ary point ξ, we write

ξ = 1 + 1
2 cos θ + 1

2 i sin θ, 0 ≤ θ ≤ 2π,

so that

Re
( 1

ξ2

)

=
1 + cos θ + 1

4 cos 2θ

( 5
4 + cos θ)2

.

Now
d

dθ

[1 + cos θ + 1
4 cos 2θ

( 5
4 + cos θ)2

]

=
sin θ (1 − cos θ)

4( 5
4 + cos θ)3

vanishes for θ = 0, π, 2π, where Re(1/ξ2) assumes the values 4/9, 4, 4/9, respec-
tively. This shows (3.34).

We use (3.34) with ξ = ζ and with ξ = 1 + (1 − ζ)bn, with

ζ = ζ(s, t) = zsp + st (z − zsp), 0 ≤ s, t ≤ 1, (3.35)

where we take ζ such that |ζ − 1| ≤ 1/2bn. It is easy to see from 1 < zsp < 1+ 1/2bn

that |ζ − 1| ≤ 1/2bn holds when |z − zsp| ≤ rn = 1/2bn − (zsp − 1). We have,
furthermore, from (3.22) that 0 < g′′(zsp) ≤ 1 + bn/ρn. Using this, together with
(3.33) where ζ is as in (3.35), yields

Re[G(z)] ≤ 4

9

1 + ρnbn

1 + bn/ρn
2
∫ 1

0

∫ 1

0
t dsdt = 4

9 ρ2
n

bn + ρ−1
n

bn + ρn

when |z − zsp| ≤ rn, and this is (3.31). We therefore have from (3.30) that

|F(z)| > rn ·
2

3
ρn

√

bn + ρ−1
n

bn + ρn
= mn, |z − zsp| = rn.
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Hence, for any v with |v| ≤ mn, there is exactly one solution z = z(v) of the equation
F(z)− iv = 0 in |z − zsp| ≤ rn by Rouché’s theorem. This z(v) is given by

z(v) =
1

2πi

∫

|z−zsp|=rn

F′(z) z

F(z)− iv
dz,

and depends analytically on v, |v| ≤ mn. From |z(v) − zsp| ≤ rn, we can finally
bound the power series coefficients ck according to

|ck| =
∣

∣

∣

1

2πi

∫

|iv|=mn

z(v)− zsp

(iv)k+1
d(iv)

∣

∣

∣
≤ rn

mk
n

,

and this completes the proof of the lemma.

Remark 3.1. We have zsp − 1 = o(1/bn), see (3.25), and so

rn =
1

2bn
(1 + o(1)), mn =

1

3bn
(1 + o(1)),

implying that the radius of convergence of the series in (3.26) is indeed of order
1/bn (since we have assumed bn ≥ 1).

We let δn = mn, and we write for 0 ≤ v ≤ 1
2 δn

v

z(v)− 1
+

−v

z(−v)− 1
=

−2iv Im(z(v))

|z(v)− 1|2 ,

where we have used that all ck are real, so that z(−v) = z(v)∗, where ∗ denotes the
complex conjugate. Now from (3.28) and realness of the ck, we have

Im(z(v)) = v +
∞

∑
l=1

c2l+1(−1)l v2l+1 = v + O(v3), (3.36)

and in similar fashion

|z(v)− 1|2 = (zsp − 1)2 + v2 + O((zsp − 1)2v2) + O(v4) (3.37)

when 0 ≤ v ≤ 1
2 δn. The order terms in (3.36)-(3.37) are negligible in leading order,

and so we get for µQ(n) via (3.24) the leading order expression

−sn g′′(zsp)

2πi

∫
1
2 δn

0

−2iv2

(zsp − 1)2 + v2

exp(sn q(v))

1 − exp(sn q(v))
dv.

We finally approximate q(v) = g(zsp)− 1
2 g′′(zsp)v2. There is a z1, 1 ≤ z1 ≤ zsp such

that
g(zsp) = − 1

2 (zsp − 1)2 g′′(z1),

and, see (3.25) and (3.27),

g′′(z1) = g′′(zsp) + O((1 − ρn)bn).
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Hence

sn q(v) = − 1
2 sn g′′(zsp) [(zsp − 1)2 + v2] + O((1 − ρn)bnsn(zsp − 1)2)

= − 1
2 sn g′′(zsp)[(zsp − 1)2 + v2] + O((1 − ρn)

2an), (3.38)

where (3.25) has been used and anbn = sn(1 + o(1)) Therefore, the O-term in (3.38)
tends to 0 by our assumption that (1 − ρn)2an is bounded. Thus, we get for µQ(n) in
leading order

sng′′(zsp)

π

∫
1
2 δn

0

v2

(zsp − 1)2 + v2

exp(− 1
2 g′′(zsp)sn((zsp − 1)2 + v2))

1 − exp(− 1
2 g′′(zsp)sn((zsp − 1)2 + v2))

dv, (3.39)

When we substitute t = v
√

sn g′′(zsp)/2 and extend the integration in (3.39) to all

t ≥ 0 (at the expense of an exponentially small error), we get for µQ(n) in leading
order

1

π

√

2 sn g′′(zsp)
∫ ∞

0

t2

1
2 β2

n

exp(− 1
2 β2

n − t2)

1 − exp(− 1
2 β2

n − t2)
dt,

where

β2
n = sn g′′(zsp)(zsp − 1)2.

Now using (3.22) and (3.27), we get the result of Theorem 3.2. A separate analysis
of βn is provided in Subsection 3.5.1.

3.5 Numerical & empirical studies

A similar analysis, modeled after the one given in Chapter 2 gives under Assump-
tion 3.1 the leading-order expression

1

zspπ

∫ ∞

0

βn/
√

2
1
2 β2

n + t2
ln(1 − e−

1
2 β2

n−t2
)dt (3.40)

for ln P(Q(n) = 0). Observe that the quantity in (3.40) is negative, but bounded
away from −∞ when βn is bounded away from 0. Furthermore, we find for the
variance of Q(n) the approximation

β3
n/

√
2

π

zsp + 1

(zsp − 1)2

∫ ∞

0

t2

( 1
2 βn + t2)2

exp(− 1
2 βn − t2)

1 − exp(− 1
2 β2

n − t2)
dt.

Note that we can write (3.17) as

µQ ≈ σ̃n E[Mβn
] and σ2

Q ≈ σ̃2
n Var Mβn
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with

σ̃n = βn

( bn + ρn

1 − ρn

)

. (3.41)

This robust approximation for µQ is suggestive of the following two properties
that extend beyond the mean system behavior, and hold at the level of approximat-
ing the queue by σn times the Gaussian random walk:

(i) At the process level, the space should be normalized with σn, as in (3.5). The
approximation (3.17) suggests that it is better to normalize with σ̃n. Although
σ̃n → σn for n → ∞, the σ̃n is expected to lead to sharper approximations for
finite n.

(ii) Again at the process level, it seems better to replace the original hedge β by
the robust hedge βn. This thus means that the original system for finite n is
approximated by a Gaussian random walk with drift −βn. Apart from this
approximation being asymptotically correct for n → ∞, it is also expected to
approximate the behavior better for finite n.

3.5.1 Convergence of the robust hedge

We next examine the accuracy of the heavy-traffic approximations for µQ and σ2
Q,

following Corollary 3.3 and Theorem 3.2. We expect the robust approximation to be
considerably better than the classical approximation when βn and σ̃n differ substan-
tially from their limiting counterparts. Before substantiating this claim numerically,
we present a result on the convergence rates of βn to β and σ̃n to σn.

Proposition 3.1. Let an, bn and sn as in Assumption 3.2. Then

β2
n = β2

(

1 − 1

1 + bn + σn/β

)

. (3.42)

Proof. From (3.18), we have

β2
n = sn

(1 − ρn

bn + 1

)2(

1 +
bn

ρn

)

=
1

sn

( sn − anbn

bn + 1

)2(

1 +
sn

an

)

=
1

sn

β2 anbn(bn + 1)

(bn + 1)2

(

1 +
sn

an

)

= β2 bn

bn + 1

(

1 +
an

sn

)

=: β2 F̄n.

Now,

F̄n =
bn

bn + 1

(

1 +
an

sn

)

=
bn

bn + 1
+

1

bn + 1

anbn

sn

= 1 − 1

bn + 1

(

1 − anbn

sn

)

= 1 − 1

bn + 1

β σn

sn

= 1 − 1

bn + 1

1

1 + µn
βσn

= 1 − 1

bn + 1 + 1
β

√

anbn(bn + 1)
,

which together with σ2
n = anbn(bn + 1) proves the proposition.
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Figure 3.1

Note that βn always approaches β from below. Also, (3.42) shows that bn is the
dominant factor in determining the rate of convergence of βn.

Proposition 3.2. Let σ̃n as in (3.41). Then

σ̃n = σn + bnβn + O(1).

Proof. Straightforward calculations give

σ̃n = βn

( snbn + anbn

sn − anbn

)

=
βn

β

bn

σn
(sn + an) =

βn

β

√

bn

an(bn + 1)

(

an(bn + 1) + β
√

anbn(bn + 1)

)

=
βn

β

(

√

anbn(bn + 1) + βbn

)

=
βn

β
σn + βnbn.

Applying Proposition 3.1 together with the observation

σn

√

1 − 1

1 + bn + σn/β
= σn(1 + O(1/

√
anbn)) = σn + O(1)

yields the result.

In Figure 3.1, we visualize the convergence speed of both parameters in case
µn = n, σn = nδ with δ = 0.7 and β = 1. This implies an = n/(n2δ − 1) and
bn = n2δ − 1.

We observe that βn starts resembling β fairly quickly, as predicted by Proposition
3.1; σ̃n, on the other hand, converges extremely slowly to its limiting counterpart.
Since µQ and σ2

Q are approximated by β̃n and σ̃2
n , multiplied by a term that remains

almost constant as n grows, the substitution of σn by σ̃n, is essential for obtaining
accurate approximations, as we illustrate further in the next subsection.
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sn ρn µQ (3.14) (3.17) σQ (3.15) (3.19)

5 0.609 0.343 0.246 0.363 1.002 0.835 0.978
10 0.683 0.535 0.400 0.551 1.239 1.063 1.216
50 0.815 1.405 1.168 1.405 1.995 1.817 1.971

100 0.855 2.113 1.824 2.105 2.445 2.270 2.420
500 0.920 5.446 5.006 5.412 3.923 3.762 3.899

Table 3.1: Numerical results for the Gamma-Poisson case with β = 1 and δ = 0.6.

sn ρn µQ (3.14) (3.17) σQ (3.15) (3.19)

5 0.550 0.462 0.284 0.479 1.162 0.896 1.130
10 0.587 0.852 0.521 0.855 1.570 1.213 1.528
50 0.668 3.197 2.093 3.106 3.025 2.433 2.947

100 0.700 5.561 3.784 5.377 3.983 3.270 3.887
500 0.766 19.887 14.741 19.202 7.514 6.455 7.361

Table 3.2: Numerical results for the Gamma-Poisson case with β = 1 and δ = 0.8.

3.5.2 Comparison between heavy-traffic approximations

We set µn = n and σ2
n = n2δ with δ >

1
2 , so that sn = n + βnδ, and an = n/(n2δ−1 −

1) and bn = n2δ−1 − 1.

Tables 3.1-3.4 present numerical results for various parameter values. In these
tables, we fixed sn to integer values, and use the associated value of n in our cal-
culations. The exact values of the performance measures are calculated using the
method in Appendix 3.B. Several conclusions are drawn from these tables. Observe
that the heavy-traffic approximations based on the Gaussian random walk, (3.14)
and (3.15), capture the right order of magnitude for both µQ and σQ. However, the

values are off, in particular for small sn and relatively low ρn := E[A(n)]/sn. The
inaccuracy also increases with the level of overdispersion. In contrast, the approx-
imations that follow from Theorem 3.2, (3.17) and (3.19) are remarkably accurate.
Even for small systems with sn = 5 or 10, the approximations for µQ are within

sn ρn µQ (3.14) (3.17) σQ (3.15) (3.19)

5 0.949 11.532 11.306 11.495 3.634 3.559 3.602
10 0.961 17.565 17.268 17.548 4.474 4.398 4.444
50 0.979 46.368 45.869 46.418 7.241 7.168 7.218

100 0.984 70.340 69.735 70.430 8.910 8.839 8.888
500 0.991 184.900 183.989 185.108 14.422 14.357 14.404

Table 3.3: Numerical results for the Gamma-Poisson case with β = 0.1 and δ = 0.6.
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sn ρn µQ (3.14) (3.17) σQ (3.15) (3.19)

5 0.931 15.730 15.209 15.909 4.276 4.127 4.233
10 0.939 27.561 26.672 27.958 5.652 5.466 5.605
50 0.955 100.660 97.967 102.070 10.760 10.476 10.698

100 0.961 175.591 171.360 177.818 14.189 13.855 14.117
500 0.971 638.097 626.346 644.105 26.963 26.490 26.864

Table 3.4: Numerical results for the Gamma-Poisson case with β = 0.1 and δ = 0.8.

6% of the exact value for small ρn and within 2% for ρn close to 1. For σ2
Q, these

percentages even reduce to 3% and 1%, respectively. For larger values of sn these
relative errors naturally reduce further. Overall, we observe that the approxima-
tions improve for heavily loaded systems, and the corrected approximations are
particularly useful for systems with increased overdispersion.

3.5.3 Capacity allocation in health care

We next apply our model and robust approximations to real-life patient arrivals. We
consider emergency patients who require diagnostic tests at the radiology depart-
ment of a hospital. Green [89] points out that patients at the radiology department
can be roughly categorized into three groups: Inpatients, outpatients and emer-
gency patients. Inpatient and outpatient arrivals are relatively predictable as these
are usually scheduled by appointment. Emergency patients, on the other hand, are
inherently unpredictable: They typically require urgent care and therefore timely
access to testing facilities, as well as a quick assessment of the test results. This leads
to prioritization of emergency patients over the other two groups in such settings,
so that they do not experience any delay caused by the groups of lower priority.
However, patients from the same top-priority group can still cause considerable
congestion. A careful evaluation of capacity allocation is hence required, bearing in
mind that additional sophisticated pieces of medical equipment are very costly.

In the setting we study, capacity is defined by the number of time slots available
to perform radiology tests on emergency patients in a given time period, which we
set at 24 hours. As radiology tests are commonly performed in appointment slots of
fixed length, the number of slots available per day is also indirectly fixed. In terms
of our model parameters, see Section 3.2, we have s as the number of slots per
day allocated to emergency patients, and A(k) the number of test requests received
by the department on day k. We omit the subscript n in this section due to the
absence of limits. Then E[Q] can be interpreted as the expected number of patients
whose test is carried over to the next day. A more natural performance measure in
this setting is the expected waiting time, namely the time between the physician’s
request and the actual start of the test. However, Little’s law implies that there is a
linear relation between the two, hence we choose to only evaluate E[Q].

The data set on which our empirical study is based originates from the emer-
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gency department of SKHospital, monitored over a period of 76 days from Septem-
ber to November 2012. We extracted information of ED patients referred to the
radiology department by the ED physicians, which includes the time the test re-
quest was made and the exact test type performed. The two test types, X-ray and
CT scans, are performed on different equipment and hence it makes sense to ana-
lyze their queueing processes separately.

We refer to test requests as arrivals. The empirical cumulative distribution func-
tions of the number of arrivals per day, for each type, are depicted by the black
lines in Figure 3.2. The sample means equal 69.81 and 17.47, for the X-ray and CT
scans respectively, whereas the sample variances are 121.8 and 26.12. These values
suggest that fitting a Poisson distribution is inappropriate, which is visually backed
up by the fitted Poisson cdf, depicted in Figure 3.2 by the red line. To strengthen
this claim, we tested both samples for the Poisson assumption using the disper-
sion test, see Appendix 3.C, and obtained p-values equal 7.01 · 10−3 and 3.57 · 10−3

respectively, which allow us to safely reject the Poisson hypothesis in both cases.

In search for a better distributional fit with the arrivals count, we resort to
Gamma-Poisson mixtures. Here we employ the procedure in [127], which is ba-
sically a maximum log-likelihood method, to obtain estimates for the parameters a
and b. This yields

âX−ray = 95.68, b̂X−ray = 0.7297, âCT = 37.19, b̂CT = 0.4698.

Applying the bootstrapping method to the data and the fitted model, also described
in the appendix of [127], returns p-values that equal 0.7354 and 0.2120 for X-ray
and CT scans, respectively. Therefore, the null hypothesis, stating that the data
originated from a Gamma-Poisson mixture, cannot be rejected. The cdfs of the
fitted Gamma-Poisson distributions, plotted in Figure 3.2, give visual confirmation
of this claim as well. Naturally, we also compared the estimated densities to the
empirical pdf of the data. However, these fail to give a convincing visual fit due to
the relatively small sample size and are therefore omitted here.

We now have clear evidence that both the X-ray and CT scan facilities face an
overdispersed arrival stream. In our final step of the empirical study we now evalu-
ate the accuracy of our performance measure of interest E[Q], and the consequences
of assessing system performance while ignoring the presence of overdispersion. We
take the following approach: Trivially, we need to choose s > E[A] in order for the
system to be stable. Hence, we vary s from 70 to 80 for X-rays and from 18 to 24
for CT scans and simulate the queue length process by sampling the number of re-
quests per day from the actual arrival counts. The number of iterations performed
is 108 for each configuration, excluding a warm-up interval of length 107 (days).
Around the mean of Q obtained from this simulation, we create a 95% confidence
interval. Next, we approximate the expected stationary queue length under two
scaling rules. Assuming Poisson arrivals, the appropriate capacity allocation rule
would be s = µ̂ + β

√

µ̂, for some β > 0. Our novel capacity sizing rule prescribes

s = µ̂ + βσ̂ = âb̂ + β

√

âb̂(b̂ + 1). We compute the first approximation based on
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Figure 3.2: Empirical, fitted Poisson and fitted Gamma-Poisson cumulative distri-
bution functions of the number of arrivals.

square-root safety capacity sizing by deducing β for each s, which we substitute
in E[Qsrs] ≈

√

µ̂ E[Mβ]. Similarly, we obtain β from the new rule, and plug this

value, together with the fitted parameters â and b̂, into (3.17). The results are given
in Tables 3.5 and 3.6. The last column shows the 95% relative error bound of the
second approximation.

s ρ E[Q] (± conf. iv.) E[Qsrs] (3.14) (3.17) rel. error

70 0.997 328.313 ± 6.6 · 10−2 186.664 324.231 325.221 9.6 · 10−3

71 0.983 45.073 ± 1.0 · 10−2 24.946 45.290 45.308 5.4 · 10−3

72 0.970 21.988 ± 5.4 · 10−3 11.650 21.982 22.129 6.6 · 10−3

73 0.956 13.546 ± 3.6 · 10−3 6.847 13.455 13.649 7.8 · 10−3

74 0.943 9.230 ± 2.7 · 10−3 4.438 9.106 9.319 1.0 · 10−2

75 0.931 6.655 ± 2.1 · 10−3 3.031 6.513 6.731 1.2 · 10−2

76 0.919 4.949 ± 1.7 · 10−3 2.136 4.821 5.037 1.8 · 10−2

77 0.907 3.755 ± 1.4 · 10−3 1.534 3.650 3.861 2.8 · 10−2

78 0.895 2.884 ± 1.1 · 10−3 1.115 2.807 3.009 4.4 · 10−2

79 0.884 2.230 ± 1.0 · 10−3 0.816 2.183 2.374 6.5 · 10−2

80 0.873 1.734 ± 8.5 · 10−4 0.600 1.710 1.890 9.1 · 10−2

Table 3.5: Computational results for X-ray.

Based on these figures, we make several remarks. First, assuming the conven-
tional regime (neglecting overdispersion) the approximation severely overestimates
system performance in both queues. Because the square-root safety margin under-
estimates the stochastic fluctuations in the arrival process, the safety parameter β

is overestimated, which leads to a smaller magnitude of the approximated queue
length process. This clearly illustrates the distorted view estimated performance
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s ρ E[Q] (± conf.iv.) E[Qsrs] (3.14) (3.17) rel. error

18 0.970 22.116 ± 4.9 · 10−3 14.235 21.965 21.724 1.8 · 10−2

19 0.919 6.289 ± 1.7 · 10−3 3.640 5.941 6.040 4.0·10−2

20 0.873 3.101 ± 1.0 · 10−3 1.589 2.772 2.917 6.0·10−2

21 0.832 1.767 ± 6.6 · 10−4 0.800 1.507 1.658 6.1·10−2

22 0.794 1.066 ± 4.6 · 10−4 0.425 0.874 1.016 4.7·10−2

23 0.760 0.653 ± 3.3 · 10−4 0.230 0.522 0.649 7.1·10−3

24 0.728 0.377 ± 2.3 · 10−4 0.124 0.315 0.424 1.2·10−1

Table 3.6: Computational results for CT scan.

characteristics can give under the wrong scaling. Secondly, it is worth noticing the
very good proximity of (3.17) to the values obtained through simulation. As we
expected, the quality of the approximation deteriorates with increasing values of
s. This makes sense, because we assumed the system to be in heavy traffic in the
derivation of the formulas. What is surprising, on the other hand, is the fact that
the approximation performs very well, even though the parameter b is very small
for these particular data sets, while the analysis of Theorem 3.2 assumes that a and
b are large. This demonstrates that the approximation scheme is remarkably robust
and is able to capture the pre-limit behavior of these types of queues very well.

3.6 Conclusion & future research

In this chapter, we proposed an adaptation to the square-root staffing rule for ser-
vice systems facing overdispersed demand, using the bulk service queue as a vehicle
for our analysis. Subsequently, we derive two sets of asymptotic approximations for
the scaled steady-state queue length moments for large arrival volumes. The first
set being based on the resemblance with the maximum of a Gaussian random walk,
the second set being derived through a non-standard saddle point method, assum-
ing arrivals follow a Gamma-Poisson mixture. Numerical experiments indicated
that our approximations capture the pre-limit behavior well under different order
of overdispersion, and are robust against any parameter estimation errors.

Although our method provides a robust way to approximate and dimension
queues with overdispersed arrival processes, we see some interesting directions for
future research.

First, we accentuate that our model is a discrete time queueing model in which
a deterministic amount of workload can we handled within each period. This ap-
proach allowed us to use Pollaczek’s formula as a starting point to obtain more
refined asymptotic approximations for the performance indicators of the system. In
case we consider queueing models of birth-death-type, such as the M/M/s queue,
in the presence of overdispersion demand, different techniques are required to pro-
vide scaling limits and corresponding capacity allocation rules, see e.g. [150]. Al-
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though we expect that, just as in the novel scaling regimes of Chapter 2, the asymp-
totic behavior of the bulk service queue and the multi-server queueing models to
be similar, this needs proper analysis and understanding.

Second, empirical work, see e.g. [26], shows that in real-life settings, demand in
consecutive time periods is often positively correlated, rather than independently
distributed as assumed in this chapter. This correlation structure obviously alters
the queue’s dynamics and presumably requires an adaptation of the square-root
staffing rule as well, making it a worthwhile direction for further analysis.

Last, we have only considered the analysis of the queueing model in steady
state. Typical service systems however do not face a constant expected arrival rate,
nor do they run infinitely long. Henceforth, it would be interesting to study the
influence of overdispersion on the transient dynamics of the queue and to investi-
gate the capacity allocation problem in scenarios with time-varying demand. The
theory developed in this chapter may serve as a building block to tackle these more
profound questions.

Appendix

3.A Proofs of convergence results

This section presents the details of the proof of Lemma 3.1 and Theorem 3.1, using
the random walk perspective of the process {Q(n)(k)}∞

k=0. This section is structured
as follows. The next two lemmata are necessary for proving the first assertion of
Theorem 3.1, concerning the weak convergence of the scaled process to the maxi-
mum of the Gaussian random walk, which is summarized in Proposition 3.4. The
two remaining propositions of this section show convergence of Q̂(n) at the process
level as well as in terms of the three characteristics.

Let us first fix some notation:

Y
(n)
k := Â

(n)
k − β, S

(n)
k =

k

∑
i=1

Y
(n)
i , (3.43)

with S
(n)
0 = 0 and k = 1, 2, .... Then (3.4) can be rewritten as

Q̂(n) d
= max

k≥0

{

∑
k
i=1Y

(n)
i

}

=: M
(n)
β , (3.44)

Last, we introduce the sequence of independent normal random variables Z1, Z2, . . .
with mean β and unit variance 1, and

Mβ
d
= max

k≥0
{∑

k
i=1Zi}.



88 Chapter 3. Overdispersion

3.A.1 Proof of Lemma 3.1

Proof. We show weak convergence of the random variable Â(n), as defined in Sec-
tion 3.2, to a standard normal random variable. Since Λ̂n is asymptotically standard
normal, its characteristic function converges pointwise to the corresponding limit-
ing characteristic function, i.e.

lim
n→∞

φ
Λ̂n

(t) = lim
n→∞

e−iµnt/σn φΛn
(t/σn) = e−t2/2, ∀t ∈ R. (3.45)

Furthermore, by definition of A(n),

φA(n)(t) = E

[

exp(Λn(e
it − 1))

]

= φΛn

(

−i(eit − 1)
)

,

so that

φ
Â
(n)
k

(t) = e−iµnt/σn φ
A
(n)
k

(t/σn) = e−iµnt/σn φΛn

(

−i(eit/σn − 1)
)

. (3.46)

Now fix t ∈ R. By using

−i(eit/σn − 1) =
t

σn
− it2

2σ2
n
+ O

(

t3/σ3
n

)

,

we expand the last term in (3.46),

φΛn
(t/σn) +

(

− i t2

2σ2
n
+ O

(

t3/σ3
n

))

φ′
Λn

(t/σn) + O
((

− i t2

2σ2
n
+ O

(

t3

σ3
n

)

)2
φ′′

Λn

( t

σn

))

= φΛn
(t/σn)−

( i t2

2σ2
n
+ O

(

t3/σ3
n

))

φ′
Λn

(ζ)

for some ζ such that |ζ − t/σn| < |i(1 − eit/σn)− t/σn|. Also,

|φ′
Λn

(u)| =
∣

∣

∣

∣

δ

du

∫ ∞

−∞
eiuxdFΛn

(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0
ix eiuxdFΛn

(x)

∣

∣

∣

∣

≤
∫ ∞

−∞
|ix eiux|dFΛn

(x) =
∫ ∞

0
xdFΛn

(x) = µn (3.47)

for all u ∈ R. Hence, by substituting (3.46),

∣

∣

∣

∣

φ
Â
(n)
k

(t)− e−iµnt/σn φΛn
(t/σn)

∣

∣

∣

∣

=

∣

∣

∣

∣

e−iµnt/σn

(

i t2

2σ2
n
+ O(t3/σ3

n)

)

φ′
Λn

(ζ)

∣

∣

∣

∣

≤
(

t2

2σ2
n
+ O(t3/σ3

n)

)

|φ′
Λn

(ζ)|

=
µnt2

σ2
n

+ O

(

µnt3

σ3
n

)

, (3.48)
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which tends to zero as n → ∞ by our assumption that µn/σ2
n → 0. Finally,

∣

∣

∣

∣

φ
Â
(n)
k

(t)− e−
1
2 t2
∣

∣

∣

∣

≤
∣

∣

∣

∣

φ
Â
(n)
k

(t)− e−iµnt/σn φΛn
(t/σn)

∣

∣

∣

∣

+

∣

∣

∣

∣

e−iµnt/σn φΛn
(t/σn)− e−

1
2 t2
∣

∣

∣

∣

,

in which both terms go to zero for n → ∞, by (3.45) and (3.48). Hence φ
Â
(n)
k

(t)

converges to e−t2/2 for all t ∈ R, so that we can conclude by Lévy’s continuity

theorem that Â
(n)
k

d⇒ N (0, 1).

3.A.2 Proof of Theorem 3.1

To secure convergence in distribution of Q̂(n) to Mβ, i.e. the maximum of a Gaussian
random walk with negative drift, the first assertion of Theorem 3.1, the following

property of the sequence {Y
(n)
k }n∈N needs to hold.

Lemma 3.3. Let Y
(n)
k be defined as in (3.43) with µn, σ2

n < ∞ for all n ∈ N. Then the

sequence {(Y(n)
k )+}n∈N is uniform integrable, i.e.

lim
K→∞

sup
n

E

[

Y
(n) +
k |✶{|Y(n) +

k |≥K}

]

= 0.

Proof. Because the sequence {Y
(n)
k }k∈N is i.i.d. for all n, we omit the index k in this

proof. First, fix K > 0 and note that

E[|Y(n)+|✶{|Y(n) +| ≥ K}] = E[Y(n)+
✶{Y(n)+ ≥ K}] = E[Y(n)

✶{Y(n)≥K}].

This last expression can be bounded from above using the Cauchy-Schwarz inequal-
ity, so that

E[Y(n)
✶{Y(n)≥K}] ≤ E[Y(n) 2]1/2

P(Y(n) ≥ K)1/2.

By the definition of Y(n), we know E[Y(n)] = −β and Var Y(n) = Var A(n)/σ2
n = 1.

Using this information, we find

E[Y(n) 2] = Var Y(n) + (E[Y(n)])2 = 1 + β2

and

P(Y(n) ≥ K) = P(Y(n) + β ≥ K + β) ≤ P(|Y(n) + β| ≥ K + β)

≤ Var Y(n)

(K + β)2
=

1

(K + β)2
,

where we used Chebyshev’s inequality for the last upper bound. Therefore,

lim
K→∞

sup
n

E[|Y(n) +|✶{|Y(n) + |≥K}] = lim
K→∞

sup
n

E[Y(n)
✶{Y(n)≥K}]

≤ lim
K→∞

sup
n

E[Y(n) 2]1/2
P(Y(n) ≥ K)1/2

≤ lim
K→∞

√

1 + β2

K + β
= 0.



90 Chapter 3. Overdispersion

By combining the properties proved in Lemma 3.1 and 3.3 with Assumption 3.2,
the next result follows directly by [20, Thm. X6.1].

Proposition 3.3. Let Q̂(n) as in (3.44). Then

Q̂(n) d⇒ Mβ, as n → ∞.

Although Proposition 3.3 tells us that the properly scaled Q(n) converges to a
non-degenerate limiting random variable, it does not cover the convergence of its
mean, variance and the empty-queue probability. In order to secure convergence of
these performance measures as well, we follow the approach similar to [193], using
Assumptions 3.2 and 3.3.

Proposition 3.4. Let Q̂(n) as in (3.44), µn, σ2
n → ∞ such that both σ2

n/µn → ∞ and
E[Â(n)3] < ∞. Then

P(Q̂(n) = 0) → P(Mβ = 0),

E[Q̂(n)] → E[Mβ],

Var Q̂(n) → Var Mβ,

as n → ∞.

Proof. First, we recall that Q̂(n) d
= M

(n)
β for all n ∈ N, so that P(Q̂(n) = 0) =

P(M
(n)
β = 0), E[Q̂(n)] = E[M

(n)
β ] and Var Q̂(n) = Var M

(n)
β as defined in (3.43).

Our starting point is Spitzer’s identity, see [20, p. 230],

E[e
itM

(n)
β ] = exp

( ∞

∑
k=1

1

k
(E[eit(S

(n)
k )+ ]− 1)

)

, (3.49)

with S
(n)
k as in (3.43), and M

(n)
β the all-time maximum of the associated random

walk. Simple manipulations of (3.49) give

ln P(M
(n)
β = 0) = −

∞

∑
k=1

1

k
P(S

(n)
k > 0), (3.50)

E[M
(n)
β ] =

∞

∑
k=1

1

k
E[S

(n) +
k ] =

∞

∑
k=1

1

k

∫ ∞

0
P(S

(n)
k > x)dx, (3.51)

Var M
(n)
β =

∞

∑
k=1

1

k
E[(S

(n) +
k )2] =

∞

∑
k=1

1

k

∫ ∞

0
P(S

(n)
k >

√
x)dx. (3.52)

By Lemma 3.1, we know

P(S
(n)
k > y) = P

(

k

∑
i=1

Y
(n)
i > y

)

→ P

(

∑
k
i=1Zi > y

)

,
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for n → ∞, where the Zi’s are independent and identically normally distributed
with mean −β and variance 1. Because equivalent expressions to (3.50)-(3.52) apply
to the limiting Gaussian random walk, it is sufficient to show that the sums converge
uniformly in n, so that we can apply dominated convergence to prove the result.

We start with the empty-queue probability. To justify interchangeability of the
infinite sum and limit, note

P(S
(n)
k > 0) ≤ P(|S(n)

k + kβ| > kβ) ≤ k

β2k2
=

1

β2k
,

where we used that E[S
(n)
k ] = kE[Y

(n)
1 ] = −kβ and Var S

(n)
k = k and apply Cheby-

chev’s inequality, so that

∞

∑
k=1

1

k
P(S

(n)
k > 0) ≤

∞

∑
k=1

1

β2k2
< ∞, ∀n ∈ N.

Hence,

lim
n→∞

ln P(Q̂(n) = 0) = lim
n→∞

−
∞

∑
k=1

1

k
P(S

(n)
k > 0) = −

∞

∑
k=1

1

k
lim

n→∞
P(S

(n)
k > 0)

= −
∞

∑
k=1

1

k
P(∑k

i=1Zi > 0) = ln P(Mβ = 0).

Finding a suitable upper bound on 1
k

∫ ∞

0 P(Q̂(n)
> x)dx and 1

k

∫ ∞

0 P(Q̂(n)
>

√
x)dx

requires a bit more work. We initially focus on the former, the latter follows easily.
The following inequality from [167] proves to be very useful:

P(S̄(k) > y) ≤ Cr

( k σ2

y2

)2
+ k P(X > y/r), (3.53)

where S̄(k) is the sum of k i.i.d. random variables distributed as X, with E[X] = 0
and Var X = σ2, y > 0, r > 0 and Cr a constant only depending on r. We take
r = 3 for brevity in the remainder of the proof, although any r > 2 will suffice. We
analyze the integral in two parts, one for the interval (0, k) and one for [k, ∞). For
the first part, we have

∫ k

0
P(S

(n)
k > x)dx =

∫ k

0
P(∑∞

i=1 Â
(n)
i > x + kβ)dx ≤

∫ k

0
P(∑∞

i=1 Â
(n)
i > kβ)dx

= k P(∑k
i=1 Â

(n)
i > kβ) ≤ C3

k2β6
+ k2

P(Â(n)
>

1
3 k), (3.54)

where we used (3.53) in the last inequality. Hence,

∞

∑
k=1

1

k

∫ k

0
P(S

(n)
k > x)dx ≤ C3

β6

∞

∑
k=1

k−3 +
∞

∑
k=1

k P(Â(n)
>

1
3 k)

≤ C∗
1 +

∞

∑
k=1

k P(Â(n)
>

1
3 k). (3.55)
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With the help of the inequality (see [193]),

(b − a)a P(X > b) ≤
∫ b

a
x P(X > x)dx for 0 < a < b, (3.56)

we get by taking a = (k − 1)/3 and b = k/3,

k P(Â(n)
>

1
3 k) ≤ 9 k

k − 1

∫ k/3

(k−1)/3
x P(Â(n)

> x)dx

≤ 18
∫ k/3

(k−1)/3
x P(Â(n)

> x)dx, (3.57)

for k ≥ 2. Since the tail probability for k = 1 is obviously bounded by 1, this yields

∞

∑
k=1

k P(Â(n)
>

1
3 k) ≤ 1 + 18

∞

∑
k=2

∫ k/3

(k−1)/3
x P(Â(n)

> x)dx

≤ 1 + 18
∫ ∞

0
x P(Â(n)

> x)dx ≤ 1 + 18 E[Â(n)2] < ∞, (3.58)

since Â(n) has finite variance by assumption. This completes the integral over the
first interval. For the second part, we use (3.53) again to find

∫ ∞

k
P(S

(n)
k > x)dx =

∫ ∞

k
P(∑∞

i=1 Â(n)
> x + kβ)dx ≤

∫ ∞

k
P(∑∞

i=1 Â(n)
> x)dx

≤ C3

∫ ∞

k

k2

x6
dx + k

∫ ∞

k
P(Â(n)

>
1
3 x)dx

=
5C3

k3
+ k

∫ ∞

k
P(Â(n)

>
1
3 x)dx. (3.59)

So,
∞

∑
k=1

1

k

∫ ∞

k
P(S

(n)
k > x)dx ≤ C∗

2 +
∞

∑
k=1

∫ ∞

k
P(Â

(n)
i >

1
3 x)dx, (3.60)

for some constant C∗
2 . Last, we are able to upper bound the second term in (3.60)

by Tonelli’s theorem:

∞

∑
k=1

∫ ∞

k
P(Â

(n)
i >

1
3 x)dx ≤

∫ ∞

1
xP(Â(n)

>
1
3 x)dx

≤ 9
∫ ∞

0
yP(Â(n)

> y)dy = 9E[Â(n)2] < ∞. (3.61)

Combining the results in (3.55), (3.58), (3.60) and (3.61), we find

∞

∑
k=1

1

k

∫ ∞

0
P(S

(n)
k > x)dx < ∞,



3.B. Numerical procedures 93

and thus

lim
n→∞

E[Q̂(n)] = lim
n→∞

∞

∑
k=1

1

k

∫ ∞

0
P(S

(n)
k > x)dx

=
∞

∑
k=1

1

k

∫ ∞

0
P(∑k

i=1Zi > x)dx = E[Mβ].

Finally, we show how the proof changes for the convergence of Var Q̂(n). The ex-
pressions for E[Q̂(n)] and Var Q̂(n) in (3.50) and (3.51) only differ in the term

√
x.

Hence only minor modifications are needed to also prove convergence of the vari-
ance. Note that boundedness of the integral over the interval (0, k) in (3.54)-(3.58)
remains to hold when substituting

√
x for x. (3.59) changes into

∫ ∞

k
P(S

(n)
k >

√
x)dx =

∫ ∞

k
P(∑∞

i=1 Â
(n)
i >

√
x + kβ)dx

≤ C3

∫ ∞

k

k2

(
√

x + kβ)6
dx + k

∫ ∞

k
P(Â(n)

>
1
3

√
x)dx

≤ C∗
4

k
+ k

∫ ∞

k
P(Â(n)

>
1
3

√
x)dx,

for some constant C∗
4 , so that

∞

∑
k=1

1

k

∫ ∞

k
P(S

(n)
k >

√
x)dx ≤ C∗

4 +
∞

∑
k=1

∫ ∞

k
P(Â(n)

>
1
3

√
x)dx.

Lastly, we have

∞

∑
k=1

∫ ∞

k
P(Â(n)

>
1
3

√
x)dx ≤

∫ ∞

1
xP(Â(n)

>
1
3

√
x)dx

≤ 18
∫ ∞

0
y2

P(Â(n)
> y)dy = 18 E[Â(n)3] < ∞.

Therefore the sum describing the variance is also uniformly convergent in n, so that
interchanging of infinite sum and limit is permitted and

lim
n→∞

Var Q̂(n) = lim
n→∞

∞

∑
k=1

1

k

∫ ∞

0
P(S

(n)
k >

√
x)dx

=
∞

∑
k=1

1

k

∫ ∞

0
P(∑k

i=1Zi >
√

x)dx = Var Mβ.

3.B Numerical procedures

An alternative characterization of the stationary distribution is based on the analysis
in [45] and considers a factorization in terms of (complex) roots:

Q(n)(w) =
(sn − E[A(n)])(w − 1)

wsn − Ã(n)(w)

sn−1

∏
k=1

w − zn
k

1 − zn
k

,
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where zn
1 , zn

2 ..., zn
sn−1 are the sn − 1 zeros of zsn − Ã(n)(z), in |z| < 1, yielding

µQ =
σ2

n

2(sn − µn)
− sn − 1 + µn

2
+

sn−1

∑
k=1

1

1 − zn
k

,

P(Q(n) = 0) =
sn − µA

Ã(n)(0)

sn−1

∏
k=1

zn
k

zn
k − 1

,

which for our choice of Ã(n)(z) becomes

µQ =
anbn(bn + 1)

2β
√

anbn
− 2anbn + β

√

anbn(bn + 1)− 1

2
+

sn−1

∑
k=1

1

1 − zn
k

,

P(Q(n) = 0) = β
√

anbn(bn + 1)(1 + bn)
an

sn−1

∏
k=1

zn
k

zn
k − 1

,

where z1, ..., zsn−1 denote the zeros of zsn − Ã(n)(z) in |z| < 1. A robust numerical
procedure to obtain these zeros is essential for a base of comparison. We discuss
two methods that fit these requirements. The first follows directly from [113].

Lemma 3.4. Define the iteration scheme

zn,l+1
k = wn

k [Ã
(n)(zn,l

k )]1/sn , (3.62)

with wn
k = e2πik/sn and zn,0

k = 0 for k = 0, 1, . . . , sn−1. Then zn,l
k → zn

k for all k =
0, 1, ..., sn − 1 for l → ∞.

Proof. The successive substitution scheme given in (3.62) is the fixed point iteration
scheme described in [113], applied to the pgf of our arrival process. The authors
show that, under the assumption of Ã(n)(z) being zero-free within |z| ≤ 1, the
zeros can be approximated arbitrarily closely, given that the function [Ã(n)(z)]1/sn

is a contraction for |z| ≤ 1, i.e.

∣

∣

∣

d

dz
[Ã(n)(z)]1/sn

∣

∣

∣ < 1.

In our case,

∣

∣

∣

d

dz
[Ã(n)(z)]1/sn

∣

∣

∣
=
∣

∣

∣

d

dz
(1 + (1 − z)bn)

−an/sn

∣

∣

∣
=

anbn

sn

∣

∣

∣
1 + (1 − z)bn

∣

∣

∣

−an/sn−1
,

(3.63)

where anbn/sn = ρn is close to, but less than 1 and

|1 + (1 − z)bn| ≥ |1 + bn| − |z|bn = 1 + (1 − |z|)bn ≥ 1,

when |z| ≤ 1. Hence the expression in (3.63) is less than 1 for all |z| ≤ 1. Evidently,

Ã(n)(z) is also zero-free in |z| ≤ 1. Thus [113, Lemma 3.8] shows that zn,l
k as in (3.62)

converges to the desired roots zn
k for all k as l tends to infinity.
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Remark 3.2. The asymptotic convergence rate of the iteration in (3.62) equals
d
dz [Ã

(n)(z)]1/sn evaluated at z = zn
k . Hence, convergence is slow for zeros near 1

and fast for zeros away from 1.

A different approach is based on the Bürmann-Lagrange inversion formula.

Lemma 3.5. Let wn
k = e2πik/sn and αn = an/sn. Then the zeros of zsn − Ã(n)(z) are given

by

zn
k =

∞

∑
l=1

1

l!

β[lαn + l − 1)

β(lαn)

bn + 1

bn

( bn

(bn + 1)αn+1

)l
(wn

k )
l ,

for k = 0, 1, ..., sn − 1.

Proof. Note that we are looking for z’s that solve

z [Ã(n)(z)]−1/sn = z (1 + (1 − z)bn)
an/sn = w,

where w = wk = e2πik/sn . The Bürmann-Lagrange formula for z = z(w), as can be
found in [67, Sec. 2.2] for z = z(w) is given by

z(w) =
∞

∑
l=1

1

l!

(

d

dz

)l−1
[

(

z

z(1 + (1 − z)bn)an/sn

)l
]

z=0

wl

=
∞

∑
l=1

1

l!

(

d

dz

)l−1 [(

1 + (1 − z)bn)
−l an/sn

)]

z=0
wl .

Set αn = an/sn. We compute

(

d

dz

)l−1 [

(1 + (1 − z)bn)
−lαn

]

z=0
=

β(lαn + l − 1)

β(lαn)

1 + bn

bn

(

bn

(1 + bn)αn+1

)l

.

With cn = bn/(1 + bn)αn+1 and dn = (1 + bn)/bn, we thus have

z(w) = dn

∞

∑
l=1

β(lαn + l − 1)

β(l + 1)β(lαn)
cl

n wl .

By Stirling’s formula

β(lαn + l − 1)

β(l + 1)β(lαn)
=

D

l
√

l

(

(αn + 1)αn+1

ααn
n

)l

,

where D = α1/2
n (αn + 1)−3/2(2π)−1/2. Now,

(αn + 1)αn+1

ααn
n

cn =
(αn + 1)αn+1

ααn
n

· bn

(1 + bn)αn+1
=

(

bn + ρn

bn + 1

)ρn/bn+1 ( 1

ρn

)ρn/bn

.

This determines the radius of convergence rBL of the above series for z(w):

1

rBL
:=

(

bn + ρn

bn + 1

)ρn/bn+1 ( 1

ρn

)ρn/bn

. (3.64)
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The derivative with respect to ρn of the quantity

(

1 +
ρn

bn

)

ln

(

bn + ρn

bn + 1

)

+
ρn

bn
ln

(

1

ρn

)

(3.65)

is given by
1

bn
ln
( bn + ρn

bnρn + ρn

)

> 0

for 0 < ρn < 1 and bn > 0. Furthermore, the quantity in (3.65) vanishes at ρn = 1
and is therefore negative for 0 < ρn < 1 and bn > 0.

Remark 3.3. The formula for the radius of convergence in (3.64) clearly shows the
decremental effect of both having a large bn and of having ρn close to 1. The
quantities β(lα + l − 1)/(β(l + 1)β(lα)) in the power series for z(w) are not very
convenient for recursive computation, although normally αn = an/sn is a rational
number.

3.C Statistical procedures

To calibrate our model to real data, we now discuss some statistical procedures to
show the presence of overdispersion and to estimate the parameters of the mixed
Gamma-Poisson distribution. Let x1, ..., xn denote the observed arrival counts in
consecutive time slots. These observations can be interpreted as realizations of the
random variables A1, ..., AN , and

āN =
1

N

N

∑
i=1

xi, s̄2
N =

1

N − 1 ∑
i=1

(xi − x̄i)
2,

the sample mean and variance with equivalent random variables ĀN and S2
N , re-

spectively. Several tests with null hypothesis that x1, ..., xN originate from a (con-
stant rate) Poisson distribution were discussed by [50]. We mention two of them.
The first is frequently referred to as the dispersion test, and is based on the test
statistic

DN =
(N − 1)S2

N

ĀN
,

which is approximately chi-squared distributed with N − 1 degrees of freedom.
When using a significance level α, the critical value is equal to the (1− α)-th quantile
of chi-squared distribution χ2

N−1,1−α. The second test, which is also used in [127],
involves the test statistic

TN =
√

N/2
( S2

N

ĀN
− 1
)

,

which is known as the Neyman-Scott test statistic. Under the null hypothesis TN

tends to a standard normal random variable for large N. Hence both test statistics
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rely on the ratio of the sample variance and sample mean, which should be 1 if
A1, ..., AN are indeed i.i.d. Poisson distributed. Excessive values of DN and TN

therefore raise the suspicion of overdispersed arrivals.
Once either (or both) of the Poisson tests rejects the hypothesis of arrivals origi-

nating from a unicomponent Poisson process, we fit the data to the Gamma-Poisson
mixture. Note that if we assume Ai to be distributed as a Poisson random variable
with random rate Λi, which is in turn Gamma distributed with parameters a and
1/b, then Ai is in fact a negative binomial random variable with parameters r = a
and p = b/(b + 1). Finding estimators â and b̂ therefore is equivalent to fitting a
negative binomial distribution to the data to obtain r̂ and p̂, followed by retrieving
â = r̂ and b̂ = p̂/(1 − p̂). We proceed by applying the maximum likelihood estima-
tion method described in [127] to find r̂ and p̂. This method prescribes to set r̂ to be
the value of r for which the profile loglikelihood function defined by

L(r) =
1

N

N

∑
i=1

ai

∑
j=1

ln(r + j + 1) + r ln r − (r + āN) ln(r + āN),

is attained. Subsequently, p̂ = r̂/(r̂ + āN), so that â = r̂ and b̂ = r̂/āN .
Finally, given the estimators â and b̂, we need statistical evidence that the ob-

tained Poisson mixture indeed fits the data reasonably well. Here we again cite
[127], who give a method to retrieve the p-value for the goodness-of-fit based on
bootstrap and Monte-Carlo simulation. In our experiments, we work with 106 repli-
cations of the Monte-Carlo simulation to obtain the approximated p-value. We refer
to the appendix of [127] for further details on this method.
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4
Retrial queues in the QED regime

Large-scale queueing systems with retrying customers are in-
trinsically hard to evaluate analytically. We in this chapter
explore and extend the asymptotic approximation technique
proposed by Avram et al. [25], that is able to characterize the
impact of slow retrials in the QED regime, in three queueing
models. The technique evolves around a fixed-point equation
that quantifies the increased inflow due to retrials implicitly.
We translate this fixed-point method into a powerful and el-
egant dimensioning procedure that is able to deal with both
stationary and time-varying demand.

Based on
Delayed workload shifting in many-server systems

Johan van Leeuwaarden, Britt Mathijsen & Fiona Sloothaak
In SIGMETRICS Performance Evaluation Review, 43(2), 10–12 (2015)

and
Cloud provisioning in the QED regime

Johan van Leeuwaarden, Britt Mathijsen & Fiona Sloothaak
In Proceedings of the 9th EAI International Conference on Performance Evaluation

Methodologies and Tools, 180–187 (2016)
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4.1 Introduction

Retrial queues. In the previous chapters, we analyzed queueing systems in which
all arriving customers join the queue and stay until eventually completing service
with one of the servers. From a practical perspective though, these assumptions
are questionable. For instance, in call centers, customer impatience is known to
play a crucial role in the queueing dynamics, see e.g. [80, 49, 229]. Similar features
are also seen in health care [65, 17]. However, impatience may not be the only
cause of customers leaving the system without being seen by a server. Physical
constraints may force system managers to apply some sort of admission policy. The
simplest example of such admission control is the busy-signal in call centers, in
which arriving customers finding all servers busy are simply discarded. But more
elaborate strategies can be considered. A straightforward relaxation of the busy-
signal policy is to allow a finite amount of waiting space, and block customers who
find a full waiting room upon arrival. Many other options, such as probabilistic
and dynamic admission control policies may be considered, see e.g. [119, 18] and
references therein.

Since customers arrive to the system for the purpose of getting assistance from
one of the servers, it is reasonable to assume that these refused customers retry
getting access tot the system at a later point in time. In fact, retrials are widely
observed in telecommunication systems, see e.g. [60, 73, 151, 10], and customers
typically repeat their attempt until successful. Naturally, retrials have a detrimental
effect on the performance of the queueing system in terms of QoS, compared to the
setting in which blocked customers do not return. Hence, one needs to account for
their impact in both performance analysis and the staffing decisions.

Unfortunately, the modeling of retrials is analytically challenging [60, 73], and
numerical approaches become computationally infeasible as the number of servers
increases, which is precisely the regime we are interested in. We therefore aim to
tackle the performance analysis of such retrial systems in an asymptotic manner.
We do so through a clever technique that was recently documented by Avram et
al. [25].

Fixed-point equation. In this chapter, we will show how the asymptotic approxima-
tion technique of [25] can be extended to more complex large-scale retrial queueing
systems in the QED regime. In [25], the authors study the M/M/s/s queue with
slow retrials. That is to say, customers retry only after a (stochastic) delay period
that is relatively long compared to the service time. Under this assumption, the
authors combine QED limits with a fixed-point equation, which characterizes the
impact of retrials implicitly. We summarize and reformulate their main ideas here
for completeness.

Consider the standard M/M/s/s queue with arrival rate λ and service rate
µ = 1, so that the offered load is R = λ. Customers finding upon arrival all s
servers busy retry after a stochastic delay with mean 1/δ. The first ingredient of the
method is Cohen’s equation. This result, first reported by Cohen [60], says that the
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stationary distribution of a M/M/s/s queue with retrials converges as 1/δ → ∞ to
that of a M/M/s/s queue with increased arrival rate R + Ω, where Ω is the unique
positive solution to

Ω = (R + Ω) B(R + Ω, s), (4.1)

where B(R, s) denotes the blocking probability in the M/M/s/s queue with offered
load R, i.e. the Erlang-B formula:

B(R, s) :=
Rs/s!

∑
s
k=0 Rk/k!

=
P(Pois(R) = s)

P(Pois(R) ≤ s)
. (4.2)

Equation (4.1) essentially equates the arrival volume generated by retrials, given by
definition on the left-hand side, to the right-hand side which quantifies this volume
as a fraction of customers blocked times the increased arrival volume. Indeed,
the retrial stream can for long retrial times be considered as independent from the
primary arrival stream, yielding a thinned Poisson process [60].

The second crucial observation is that under QED scaling, i.e. s = R + β
√

R +
o(
√

R), we have
√

R · B(R, R + β
√

R) → ϕ(β)

Φ(β)
=: f0(β), (4.3)

as R → ∞ for all β ∈ R, see e.g. Lemma 1 of [25] or the proof of Proposition
1.1 in this thesis. Hence, we heuristically deduce that Ω = α

√
R for some α > 0

and denote Rtot = R + Ω – a rigorous argument can be found in [25]. Rewrite
R = Rtot − α

√
Rtot + o(

√
Rtot) and note that Rtot = O(R). Then (4.1) becomes

α
√

Rtot = Rtot · B
(

Rtot, Rtot + (β − α)
√

Rtot

)

+ o(
√

Rtot). (4.4)

Dividing both sides of (4.4) by
√

Rtot and letting Rtot → ∞ then together with (4.3)
yields the fixed-point equation

α = f0(β − α). (4.5)

It can be shown that this fixed-point equation has a unique positive root for all
β > 0, which can be computed numerically. Recalling Cohen’s retrial queue char-
acterization, Avram et al. [25] conclude that the loss system with slow retrials can
in the QED regime be characterized in terms of the original loss system without
retrials, but with a corrected QoS-parameter β − α.

Structure of the chapter. The fixed-point method of Avram et al. provides a quick
and elegant way to approximate the behavior of large-scale loss systems that expe-
rience retrials. In the remainder of this chapter we will explore if and how this tech-
nique extends to three more complex queueing settings. These three models have
in common that (i) they exhibit QED limiting behavior, which can be quantified
explicitly, and (ii) the blocking probability is O(1/

√
R), so that the retrial volume is

O(
√

R). Note that these were the two essential features for the fixed-point method
to work.
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In Section 4.2 we describe a direct extension of the M/M/s/s queue, in which
some amount of waiting room is present. That is, we analyze the M/M/s/n queue
with retrials, where n > s. Naturally, this requires a scaling for both s and n as
R → ∞, which will become clear in this section. Motivated by a process related
to cloud computing, we in Section 4.3 study a tandem queueing network, in which
total number of concurrent admissions is limited. Section 4.4 analyzes a queueing
model in which all customers are admitted upon arrival, but make the deliberate
decision to abandon the queue and retry later in case their patience runs out. In
Section 4.5 we show how the fixed-point method together with QED scaling can be
used for dimensioning purposes in both stationary and time-varying environments.
We end the chapter in Section 4.6 with some final remarks and suggestions for
future research.

4.2 The M/M/s/n queue

In this section, we discuss a simple extension of the loss model of [25], namely
the M/M/s/n queue with retrials with n > s, to expose typical behavior of retrial
queues and the influence of the retrial rate δ. Second, we illustrate the fixed-point
method for this model and perform numerical experiments to verify its accuracy.

4.2.1 Markov process

We consider the standard M/M/s/n queue with arrival rate λ and service rate µ.
Without loss of generality, we set µ = 1 throughout this chapter, so that offered
load R equals λ. A customer that finds upon arrival a free server occupies this
server immediately, while customers that meet more than s but fewer than n > s
customers in the system are admitted and wait in a queue for a server to become
available. Customers who meet upon arrival n customers are not admitted directly,
but will retry after an exponentially distributed time with mean 1/δ. Each initially
blocked customer performs retrials until admitted eventually; see Figure 4.1.

n

s
Pois(λ)

exp(µ)

exp(δ)

Figure 4.1: An M/M/s queue with space constraints and retrials.

Quasi-birth-death process. The system state can be described by a two-dimensional
process {(Q(t), N(t))}t≥0 with Q(t) the number of customers inside the system
(either being served or waiting), and N(t) the number of customers in the retrial
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N(t)

Q(t)

n
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j

i

λ

λ s

s

λ

λ

λ

j

iδ

λ

s

iδ

λ

s

Figure 4.2: Transition diagram of the Markov process (Q(t), N(t)).

orbit. Under the above assumptions, this process is a continuous-time Markov
chain on the semi-infinite strip {0, 1, . . . , n} × {0, 1, . . .}. Its transition diagram is
presented in Figure 4.2. From this diagram it is evident that the process is a quasi-
birth-death (QBD) process. Under stability condition R > s, the QBD structure of
the process allows for numerical computation of the stationary distribution π(i, j),
where

π(i, j) = lim
t→∞

P (Q(t) = i, N(t) = j) .

The stationary probability that an arriving customer has to wait or is blocked is
given by, respectively,

Pr(delay) =
n

∑
i=s

∞

∑
j=0

π(i, j), Pr(block) =
∞

∑
j=0

π(n, j). (4.6)

Here, the subscript r is meant to indicate that we consider the system with retrials.

Influence of retrial rate δ. We first compute the stationary distribution of the
Markov process numerically, in order to understand the influence of retrials on
the queue performance. In particular, we investigate the effect of varying δ on the
delay and blocking probability as defined in (4.6). In Figure 4.3 we fix R = 10 and
s = 12, and plot the delay and blocking probability as a function of log10(δ) for sev-
eral values of n. We see that the value of δ indeed does influence the performance
of the queue, and its effect is particularly pronounced in systems with n close to s.
Both the delay probability and the blocking probability increase with δ. This can
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−3 −2 −1 1 2 3

0.1
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(a) Delay probability
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0.1

0.2

0.3

0.4

0.5

log10(δ)

Pr(block)
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Figure 4.3: Performance metrics of the basic model with R = 10 and s = 12 as a
function of log10(δ) for several n.

be explained as follows. If a customer finds n customers on arrival (or retrial) and
hence gets blocked, she is more likely to find a less congested system in case she
retries after a relatively long amount of time than a short retrial time, because the
system might not yet have had enough time to recover from the congested period.
Slow retrials hence create an opportunity to smooth out workload over time, result-
ing in better quality-of-service. Figure 4.3 also suggests that performance no longer
changes if δ is decreased below 10−1 or increased beyond 102.

Also, we note that the delay probability increases with n, and the blocking prob-
ability decreases with n, regardless of the value of δ. Fewer customers get blocked if
the waiting room (n − s) increases. On the other hand, this allows more customers
to enter the system, creating higher congestion levels.

Finally, notice that the delay probability approaches a constant as δ → ∞. In fact,
this constant equals the delay probability in the standard M/M/s queue, see Equa-
tion (1.2), which under these parameter settings equals 0.449 and is represented
by the dashed horizontal line. Indeed, when δ → ∞ blocked customers retry get-
ting access to the system instantaneously and effectively create a queue (in random
order) outside the system, which immediately fills up vacant spaces after service
completions. Therefore, the M/M/s/n queue with instant retrials essentially re-
sembles the behavior of the M/M/s queue. By similar reasoning, the blocking
probability in the M/M/s/n queue approaches as δ → ∞ the probability that the
number of customers in the M/M/s queue exceeds n.

Figure 4.3 shows that the influence of retrials on congestion can be significant.
For fast retrials, we are able to characterize the performance metrics through the
standard multi-server queue. However, for slow retrials, say δ < 10−1, the system
behavior is not comparable to that of the open M/M/s queue.
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4.2.2 QED regime

Following the approach of Avram et al. [25], we choose to take a step back and con-
sider the model in Figure 4.1 without the retrials first. When blocked customers are
simply discarded, the process {(Q(t), N(t))}t≥0 reduces to that of the M/M/s/n
queue. In this case N(t) = 0 and Q(t) is a birth-death process with stationary
distribution

π(i) = lim
t→∞

P(Q(t) = i) =

{

π(0) Ri

i! , if i < s,

π(0) Ri

s!si−s , if s ≤ i ≤ n,

where

π(0) =
( s−1

∑
i=0

Ri

i!
+

n

∑
i=s

Ri

s!si−s

)−1
.

Hence,

P(delay) = π(0)
n

∑
i=s

Ri

s!si−s
, P(block) = π(0)

Rn

s!sn−s
. (4.7)

The M/M/s/n queue is well understood. In particular, Massey & Wallace [160]
identified the asymptotic scaling regime for s and n under which QED-type behav-
ior prevails. Namely, under the two-fold scaling rule

s = R + β
√

R + o(
√

R),

n = s + γ
√

R + o(
√

R), (4.8)

for β ∈ R and γ > 0, they show that the delay probability converges to a value
strictly between 0 and 1, while the blocking probability vanishes as R → ∞. Note
that this is in line with our reasoning in Section 1.4. In the next proposition, we cite
the asymptotic results of [160] for completeness.

Proposition 4.1 ([160]). If s and n scale according to (4.8), then in the M/M/s/n queue,

P(delay) → 1 − e−βγ

1 − e−βγ + β Φ(β)/ϕ(β)
=: g(β, γ), (4.9)

√
R P(block) → β e−βγ

1 − e−βγ + β Φ(β)/ϕ(β)
=: f (β, γ), (4.10)

as R → ∞.

Before turning to the asymptotic analysis of the model with retrials, we check
empirically whether the scaling in (4.8) also achieves the desirable limiting behavior
in case blocked customers are not discarded. In Figure 4.4 we plot sample paths
Q(t) and N(t) in the system with retrials with β = 0.5 and γ = 1 and slow retrials
(δ = 0.1) for increasing values of R.

From these sample paths, we observe that indeed the server utilization ap-
proaches unity as R tends to infinity, indicating efficient usage of resources. This
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Figure 4.4: Sample paths of Q(t) (blue) and N(t) (red) for increasing R while s and
n are scaled as in (4.8) with β = 0.5 and γ = 1 and retrial rate δ = 0.1.
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should not be surprising, since although retrials occur, all customers eventually re-
ceive service, so that the server utilization equals R/s = R/(R + β

√
R) → 1 as

R → ∞. Furthermore, we see that the number of customers in the system con-
centrates around the level s, implying a delay probability away from both 0 and
1. Observe that the order of magnitude of N(t), the number of customers in the
retrial orbit, is smaller than Q(t) or R. This implies that as R grows large, only
a small fraction of customers ends up retrying. Naturally, the order of N(t) also
depends on the mean retrial time 1/δ. It can be numerically verified that the ex-
pected retrial population grows linearly in 1/δ. Last, observe that N(t) is increasing
only if Q(t) = n, which is visible through the surges in the sample paths of N(t)
in Figure 4.4. This is illustrative for the dependency between the two coordinates
of the process {(Q(t), N(t))}t≥0 and therefore, we cannot expect to find a simple
decoupling in the limit either. Instead, we propose to evaluate the model with re-
trials through a heuristic approach which builds upon the asymptotic behavior of
the model without retrials.

4.2.3 Fixed-point method

We continue to translate the ideas behind the fixed-point method by noting that due
to (4.10), the fraction of blocked customers is of order 1/

√
R, which implies that the

mean additional load due to retrials must be of order
√

R. We can thus assume that
the total arrival rate Rtot takes the form Rtot = R + α

√
R for some α > 0. Then,

using that R = O(Rtot), the first scaling rule in (4.8) is asymptotically equivalent
with

s = Rtot + (β − α)
√

Rtot + o(
√

Rtot), (4.11)

while the scaling for n remains unchanged. We thus argue that the retrial system
in the QED regime mimics an M/M/s/n queue with parameters βα = β − α and
γ. Note that the volume of blocked users in this setting is f (β − α, γ)

√
Rtot. This

quantity must equal the mean additional load α
√

R ∼ α
√

Rtot and therefore we
obtain the fixed-point equation

α = f (β − α, γ). (4.12)

Numerically determining α is straightforward, particularly because it is uniquely
defined.

Lemma 4.1. Equation (4.12) has a unique solution for all β, γ > 0.

Proof. Let h(β) := ϕ(β)/Φ(β) and w(β) := (1 − e−βγ)/β. Write

f (β) := f (β, γ) =
(1 − βw(β))h(β)

1 + w(β)h(β)
, (4.13)

so that

β + f (β) =
β + h(β)

1 + w(β)h(β)
(4.14)
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For h(β) it is known that, see [189], for β ∈ R,

h(β) > −β, −1 < h′(β) < 0, h′′(β) > 0, (4.15)

so that h(β) is non-negative and non-increasing in β ∈ R, while β + h(β) is positive
and strictly increasing in β ∈ R. Because ex ≥ 1 + x,

w′(β) =
e−βγ

β2
(1 + βγ − eβγ) ≤ 0 (4.16)

so w(β) is also non-negative and non-increasing in β ∈ R. It thus follows that
β + f (β) is strictly increasing in β ∈ R. Moreover, β + f (β) → 0 as β → −∞ and
β + f (β) → ∞ as β → ∞. Let ∆ = β − α, and rewrite (4.12) as

β = ∆ + f (∆). (4.17)

Hence, for each fixed β > 0 there is a unique solution ∆ ∈ R from which α = β − ∆

follows.

As a result, the delay probability Pr(delay) and the blocking probability Pr(block)
in the model with retrials can be approximated in the QED regime by

Pr(delay) ≈ g(β − α, γ), Pr(block) ≈ α/
√

R, (4.18)

which should become more accurate as R grows large.

We next test the accuracy of the approximated delay probability in (4.18) in the
basic model with slow retrials against the true values obtained through simulation.
Given R, s, and n, we compute β = (s − R)/

√
R and γ = (n − s)/

√
R in order to

approximate the delay and blocking probability as in (4.18) with α as in (4.12). First,
we assess the quality of the fixed-point approximation for a large but finite system
with R = 100. In Figure 4.5, we plot the simulated delay probability against the
approximation as a function of s (or equivalently β). We consider different values of
γ, namely γ = 0.5, 1 and 2, which corresponds to waiting room size γ

√
100 = 5, 10

and 20, respectively. For comparison, we also include g(β, γ), the asymptotic delay
probability in the system with no retrials, in these plots.

We observe that the heuristic is remarkably accurate in describing both the delay
and blocking probability over all values of β, γ > 0 considered here. The approx-
imation improves as γ increases. Figure 4.5 also clearly illustrates the impact of
retrials on the performance measures, which decreases with both β and γ.

Table 4.1 furthermore shows how the accuracy of the approximations increases
as R increases. In this table, we used the simulated delay and blocking probability
for systems of increasing size while adhering to the two-fold scaling rule of (4.8).
The values of s and n are rounded to the nearest integer.
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Figure 4.5: Accuracy of the delay probability approximation in basic model with
R = 100 and δ = 0.01.
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(β, γ) = (0.5, 0.5) (β, γ) = (1, 0.5)

R s n Pr(delay)
√

RPr(bl.) s n Pr(delay)
√

RPr(bl.)

5 6 7 0.5019 0.5982 7 8 0.2607 0.2610

10 12 14 0.3697 0.3679 13 15 0.2298 0.1966

50 54 58 0.3509 0.4931 57 61 0.1765 0.2019

100 105 110 0.3640 0.6336 110 115 0.1579 0.2178

500 511 522 0.3460 0.6780 522 533 0.1482 0.2297

1000 1016 1032 0.3333 0.6481 1032 1048 0.1412 0.2141

Approx 0.3225 0.6734 Approx 0.1349 0.2206

(β, γ) = (0.5, 1) (β, γ) = (1, 1)

R s n Pr(delay)
√

RPr(bl.) s n Pr(delay)
√

RPr(bl.)

5 6 8 0.5337 0.4065 7 9 0.2866 0.1612

10 12 15 0.3932 0.2701 13 16 0.2472 0.1374

50 54 61 0.3993 0.3171 57 64 0.2063 0.1183

100 105 115 0.4333 0.3754 110 120 0.1971 0.1143

500 511 533 0.4247 0.3986 522 544 0.1928 0.1202

1000 1016 1048 0.4115 0.3689 1032 1064 0.1831 0.1088

Approx 0.4062 0.3828 Approx 0.1798 0.1106

Table 4.1: Numerical results of the fixed-point method for the basic model as R →
∞.
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4.3 Cloud model

The second model we consider in this chapter is inspired by cloud computing ser-
vices. We shall see how our fixed-point heuristic helps cloud providers in their
provisioning process.

4.3.1 Practical context

Cloud computing enables network access to a shared pool of configurable comput-
ing resources, allowing users (e.g. companies, service providers) to store and pro-
cess their data in third-party data centers, without investing in the operating equip-
ment themselves. At the foundation of cloud computing lies the idea of sharing
resources to achieve economies-of-scale in terms of maximizing computing power
usage and reducing the overall cost of resources such as energy and infrastructure.
Cloud providers, such as Amazon EC2, Windows Azure and Rackspace [15], offer
virtual machine (VM) provisioning, which allows users to request VM instances
configured to their preference. In a service system context, the provider thus serves
users by supplying them with a VM that matches their requirements, running on
one of the cloud’s physical machines.

Let us describe the cloud provisioning process in more detail; see Figure 4.6.
At the highest granularity level there are the end-users, devices typically directly
operated by humans, using an application provider (AP), usually a company that
provides software usage over the internet (e.g. SaaS [166]). To some extent, the
AP will rely on a static set of computing resources, but certainly in case of sudden
surges in workload, these might not be sufficient. When the AP recognizes the need
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for additional capacity, for instance by auto-scaling procedures [1], a VM request
is submitted to the cloud provider. The request is handled by a host server that
starts the set-up of the VM with requested specifications. This includes elementary
operations such as copying the VM image and assigning an IP address. Each server
is able to host multiple VM instances in parallel, although the VMs in set-up need
their dedicated attention, due to concurrency level constraints incurred by large I/O
activities. Once the set-up is completed, the VM is ready for use, and the AP may
start using the additional computing resources.

Our focus lies on the capacity allocation within the cloud environment, so the
right-hand side of Figure 4.6. Successful management of cloud systems requires
the right scaling of both the number of host servers (denoted by s) at the first I/O
queue and the maximum number of VMs (denoted by n) that can be hosted simul-
taneously. Moreover, this needs to be done in a dynamic way in order to respond
effectively to the time-varying demand. The capacity n defines a hard constraint on
whether a new VM request will be accepted immediately or not. Therefore, new
requests will be delayed or even dropped if the available host capacity is insuffi-
cient, which is more likely to occur during periods in which the s host servers are
overloaded.

4.3.2 Queueing model

To describe the cloud system in mathematical terms, we extend the model proposed
by Tan et al. [205]. Each host server may host a number of VM instances at the same
time, yielding a total number of n parallel VM instances. Requests, arriving to
the system according to a Poisson process with rate λ, are granted only if one of
these n positions is available. Otherwise, the user retries getting access after an
exponentially distributed time with mean 1/δ. If granted, the request is assigned to
a host server not busy initializing another VM instance, if available, or waits for one
to become available. This start-up time is assumed to be exponentially distributed
with mean 1/µ. On completion of the initialization phase, VM usage is initiated by
the client. The VM continues to be occupied for a random amount of time, with
mean 1/κ, until release by the user. We note that the model of Tan et al. [205]
has three queues in tandem, one M/M/s queue, followed by two M/M/∞ queues
that separately model a second initialization phase and the actual VM usage by the
cloud user. We thus replace the two M/M/∞ queues by one M/G/∞ queue with
an aggregated service time, which does not alter the system performance analysis.
This yields the queueing model in Figure 4.7.

Remark 4.1. We mention that a queueing model similar to the one in Figure 4.7
without retrials is analyzed by Khudyakov et al. [135] in a telecommunication en-
vironment. In their work, s and n represent the number of agents and trunk lines
in a call center. Although the order of the two queues is switched, the stationary
analysis of their model and the cloud model is the same, due to the product-form
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Figure 4.7: Abstracted model of VM provisioning process.

structure of the stationary distribution. In fact, Tan et al. [205] use the results of
[135] in their asymptotic analysis.

An exact analysis of the cloud model is again obstructed by the absence of a
product-form solution in case of retrials. We therefore turn to the QED paradigm
to approximate the system behavior as R → ∞.

Following the approach in [135, 205], we argue that the appropriate QED scaling
for s and n should be

s = R + β
√

R + o(
√

R), β > 0,

n = s + R/κ + γ
√

R/κ + o(
√

R), γ > 0, (4.19)

where R = λ/µ = λ. To understand why this is indeed the correct scaling regime
to obtain non-degenerate limiting behavior, we recall the arguments we presented
in Section 1.3. Namely, in order to achieve QED performance, one allocates the
nominal workload brought towards the queue plus a variability hedge that is pro-
portional to the square-root of this amount. For s, this results in the standard
square-root staffing rule. For n, this is the sum of the capacity needed at the multi-
server queue, i.e. s, and the consecutive infinite-server queue. Since the expected
workload at the second queue equals R/κ, the capacity required at this stage equals
R/κ + γ

√
R/κ for some γ. In total, this yields the scaling for the number of VMs

n as in (4.19). The limiting behavior of this queueing model without retrials is
documented in [135, 205].

Proposition 4.2. Let s and n in the cloud model of Figure 4.7 without retrials scale as in
(4.19). Then, as R → ∞,

P
c(delay) → ξ1 − ξ2

η + ξ1 − ξ2
=: gc(β, γ), (4.20)

√
R · P

c(block) → ν

η + ξ1 − ξ2
=: fc(β, γ), (4.21)

where

η =
∫ β

−∞
Φ
(

γ + (β − t)
√

κ
)

ϕ(t)dt, ξ1 =
ϕ(β)Φ(γ)

β
,

ξ2 =
1

β
ϕ

(

√

β2 + γ2

)

e
1
2 (γ−β/

√
κ)2

Φ(γ − β/
√

κ),
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ν =

√

κ

1 + κ
ϕ
(γ + β

√
κ√

1 + κ

)

Φ
( β − γ

√
κ√

1 + κ

)

+ β ξ2.

4.3.3 Fixed-point method

Proposition 4.2 shows that also in this model, the blocking probability vanishes at
rate 1/

√
R, making it amenable to our fixed-point method for retrials. Let α

√
R the

volume of retrials, so that a total arrival rate is Rtot = R + α
√

R, or equivalently
R = Rtot − α

√
Rtot + o(

√
Rtot). Substituting this into the two-fold scaling rule in

(4.19) gives

s = Rtot + (β − α)
√

Rtot + o(
√

Rtot),

n = s +
Rtot

κ
+
(

γ − α√
κ

)

√

Rtot

κ
+ o(

√

Rtot).

Accordingly, the constant α is defined as the solution of the fixed-point equation

fc

(

β − α, γ − α/
√

κ
)

= α. (4.22)

Approximations for the delay and blocking probability in the cloud model with
retrials are hence given by

P
c
r(delay) ≈ gc

(

β − α, γ − α/
√

κ
)

, P
c
r(block) ≈ α/

√
R. (4.23)

Note that in contrast to the fixed-point equation (4.12) for the basic model, the
second argument γ − α/

√
R is also corrected.

We next test the accuracy of the fixed-point equation for several instances. In Table
4.2, we present the simulation results for κ = 0.02, 0.2 and 1, and two pairs of (β, γ)
for increasing R.

First, observe from Table 4.2 that n now lives on a different scale than s. This
is required to facilitate the long sojourn time of customers in the second stage,
which is proportional to 1/κ, creating the need for larger system size. Besides that,
the numerical results show that the fixed-point approximation is again remarkably
accurate over a wide range of parameter settings. Even for cloud systems as small
as 50 servers, the fixed-point method gives accurate approximations.

4.4 Abandonments

Whereas in the basic model of Section 4.2, retrials were governed by the system ar-
chitecture (arriving customers are requested to reattempt if n customers are present
in the system), we now consider a setting in which departures from the queue
are customer-initiated. That is, customers deliberately decide to leave the queue
to return for service at a later time. Hence we consider a queueing system with
abandonments and retrials.
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(β, γ) = (0.5, 1) (β, γ) = (1, 1)

R s n Pc
r(del)

√
R Pc

r(bl) s n Pc
r(del)

√
R Pc

r(bl)

5 6 13 0.5309 0.5540 7 14 0.2800 0.2426

10 12 25 0.3864 0.3810 13 26 0.2393 0.2164

50 54 111 0.3904 0.4525 57 114 0.1965 0.2010

100 105 215 0.4300 0.5474 110 220 0.1859 0.1952

500 511 1033 0.4139 0.5586 522 1044 0.1787 0.2052

1000 1016 2048 0.4003 0.5479 1032 2064 0.1660 0.1803

Approx 0.4029 0.5638 Approx 0.1709 0.1992

(a) κ = 1

(β, γ) = (0.5, 1) (β, γ) = (1, 1)

R s n Pc
r(del)

√
R Pc

r(bl) s n Pc
r(del)

√
R Pc

r(bl)

5 6 36 0.5664 0.3049 7 37 0.3079 0.1457

10 12 69 0.4263 0.2227 13 70 0.2683 0.1410

50 54 320 0.4444 0.2555 57 323 0.2293 0.1334

100 105 627 0.4826 0.3085 110 632 0.2187 0.1379

500 511 3061 0.4842 0.3235 522 3072 0.2182 0.1358

1000 1016 6087 0.4630 0.2906 1032 6103 0.2039 0.1332

Approx 0.4687 0.3029 Approx 0.2042 0.1326

(b) κ = 0.2

(β, γ) = (0.5, 1) (β, γ) = (1, 1)

R s n Pc
r(del)

√
R Pc

r(bl) s n Pc
r(del)

√
R Pc

r(bl)

5 6 272 0.5836 0.1085 7 273 0.3217 0.0738

10 12 534 0.4456 0.0945 13 535 0.2822 0.0781

50 54 2604 0.4683 0.1031 57 2607 0.2429 0.0764

100 105 5176 0.5106 0.1064 110 5181 0.2345 0.0759

500 511 25669 0.5130 0.1158 522 25680 0.2353 0.0795

1000 1016 51240 0.4946 0.0975 1032 51256 0.2223 0.0744

Approx 0.4999 0.0862 Approx 0.2207 0.0595

(c) κ = 0.02

Table 4.2: Numerical results of the fixed-point method for the cloud model with
slow retrials as R → ∞.
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4.4.1 The Erlang-A model

The canonical model for abandonments is the M/M/s + M or Erlang-A model
[175, 82]. The queueing dynamics of the Erlang-A model are similar to those in
the M/M/s queue, with the additional feature that each customer is assigned an
i.i.d. patience time, which is exponentially distributed with mean 1/θ. If a cus-
tomer’s patience time expires before reaching an available server, she leaves (aban-
dons) the system. As the number of customers in the Erlang-A queue is a birth-
death process, its stationary distribution and associated performance measures are
fairly well-understood, also in the QED regime [82, 229, 230]. Most importantly to
us, Garnett et al. [82] and Zeltyn & Mandelbaum [229] identified the asymptotic
delay and abandonment probability in the Erlang-A model under QED scaling.

Proposition 4.3. [229, Thm. 4.1] Let s = R + β
√

R + o(
√

R) for some β ∈ R. Then in
the M/M/s + M queue

P
a(delay) →

(

1 +
√

θ
h(β/

√
θ)

h(−β)

)−1

=: ga(β) (4.24)

√
R P

a(abandon) →
√

θ h(β/
√

θ)− β

1 +
√

θ h(β/
√

θ)/h(−β)
=: fa(β), (4.25)

as R → ∞ where h(β) = ϕ(β)/Φ(−β).

We remark that in [229], the QED limits for generally distributed patience time
were derived. Although our heuristic also works for this more general setting, we
focus on the exponentially distributed patience here to convey our main ideas.

Remark 4.2. Large-scale Markovian multi-server queues with abandonments and
retrials have been thoroughly studied in a series of papers by Mandelbaum et
al. [152, 154, 153]. In these works, the authors consider a system with time-varying
arrivals and a retrial rate that remains bounded away from zero, for which they
deduce fluid and diffusion limits as the system grows large. These limits provide
approximations for the time-dependent queue length and virtual waiting time pro-
cesses, including their means and variances. We in this section take a different
approach by assuming δ → 0, which enables us to characterize the steady-state
behavior of queues with abandonments and retrials.

4.4.2 Fixed-point method

Next, we include (slow) retrials. More specifically, we assume that customers who
abandon the queue rejoin the queue after an exponentially distributed time with
mean 1/δ ≫ 1. Just as in the M/M/s/n queue, the M/M/s + M queue with
retrials is analytically intractable, and therefore we apply our fixed-point method to
approximate its performance in the QED regime.



4.4. Abandonments 117

105 110 115 120
0

0.2

0.4

0.6

0.8

1

s

P
a r
(d

el
ay
)

θ = 0.2
θ = 1
θ = 10

Figure 4.8: Simulated (solid) and approximated (dashed) delay probability in the
M/M/s + M queue with retrials and R = 100, δ = 0.01.

Observe through Proposition 4.3 that the fraction of customers leaving before
receiving service is roughly α/

√
R. Following the reasoning of Section 4.2.3, the

total arrival volume, consisting of new arrivals and reattempting customers, is
Rtot = R + α

√
R, with

α = fa(β − α). (4.26)

Accordingly, this yields the following approximations for the delay and abandon-
ment probability in the system with retrials

P
a
r (delay) ≈ ga(β − α), P

a
r (abandon) ≈ α/

√
R. (4.27)

We test our heuristic in the model with abandonment with parameters R = 100,
δ = 0.01. For θ = 0.2, customers are quite patient, as they are willing to wait on
average 5 times their expected service time. Customer abandonment becomes more
dominant for the cases in which customers are reasonably patient θ = 1 and very
impatient θ = 10.

In Figures 4.8 and 4.9, we plot the simulated delay and (scaled) abandonment
probability against approximations obtained through the fixed-point method.
Again, we see a very good match between approximated and actual values. As θ

decreases, that is, customers become more patient, accuracy of the approximations
improves. This makes sense, since the volume of retrials decreases, and the system
behaves more and more like a standard M/M/s queue.

In Table 4.3 we also check the asymptotic accuracy of the model with abandon-
ments and retrials and see that the approximation indeed improves as R increases.

Remark 4.3. Note that even though the fixed-point approximations come close to
the simulated values as R increases, a small gap remains, especially notable in
β = 0.5. This can be attributed to both rounding errors and the heuristic assumption
that the retrial stream is independent Poisson. The latter is obviously false, as the
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Figure 4.9: Simulated (solid) and approximated (dashed) abandonment probability
in the M/M/s + M queue with retrials and R = 100, δ = 0.01.

θ = 0.2 θ = 1 θ = 10

R s Pa
r (del)

√
R Pa

r (ab) Pa
r (del)

√
R Pa

r (ab) Pa
r (del)

√
R Pa

r (ab)

5 6 0.5703 0.1522 0.5423 0.4158 0.4766 1.0980

10 12 0.6612 0.2152 0.6277 0.5619 0.5429 1.5099

50 54 0.5521 0.1517 0.5089 0.4009 0.3920 1.0251

100 105 0.4896 0.1218 0.4456 0.3276 0.3282 0.8321

500 511 0.4877 0.1228 0.4442 0.3302 0.3132 0.8135

1000 1016 0.4992 0.1274 0.4472 0.3359 0.3148 0.8244

Approx 0.4757 0.1182 0.4254 0.3120 0.2933 0.7695

(a) β = 0.5

θ = 0.2 θ = 1 θ = 10

R s Pa
r (del)

√
R Pa

r (ab) Pa
r (del)

√
R Pa

r (ab) Pa
r (del)

√
R Pa

r (ab)

5 7 0.3130 0.0527 0.2908 0.1563 0.2382 0.4033

10 13 0.2732 0.0444 0.2503 0.1331 0.1917 0.3504

50 57 0.2344 0.0373 0.2090 0.1120 0.1442 0.2974

100 110 0.2244 0.0357 0.1999 0.1077 0.1355 0.2877

500 522 0.2232 0.0355 0.1973 0.1079 0.1282 0.2842

1000 1032 0.2210 0.0359 0.1979 0.1092 0.1287 0.2890

Approx 0.2105 0.0335 0.1842 0.1005 0.1162 0.2642

(b) β = 1

Table 4.3: Numerical results of the fixed-point method for the M/M/s + M queue
with slow retrials.
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retrial process naturally depends on the history of the external arrival and service
processes. Therefore, the fixed-point heuristic slightly underestimates congestion
levels in the actual system. However, this error is relatively small and moreover in
small to moderate-size systems negligible compared to the effects of rounding.

Remark 4.4. Our fixed-point heuristic easily extends to the case in which only a
fraction of abandoning customers returns to the system later. If each customer who
abandons decides (independent from others and his own retrial history) to return
with probability q ∈ [0, 1], then the arrival stream due to retrial becomes q · α

√
R, so

that the fixed-point becomes fa(β − qα) = α. Approximations of the performance
measures follow accordingly.

4.5 Dimensioning

The asymptotic QED expressions for the systems we considered in Sections 4.2-
4.4 without retrials together with the corrections obtained through the fixed-point
equation provide a method for dimensioning large-scale systems with retrials. For
sufficiently large arrival volumes, we can tune the QoS-levels offered by the systems
through the QoS-parameters β and γ. In this section we demonstrate how to do so
in the cloud model, using the delay probability as a vehicle. First we explore the
procedure under stationary conditions, then in a time-varying environment. The
methods we propose easily translate to the two other model settings considered in
this chapter, and the blocking probability.

4.5.1 Stationary dimensioning

We consider the dimensioning problem in the cloud model from a constraint satis-
faction perspective. That is, given the offered load R, we search for the pair (s, n)
that realizes a target delay probability ε ∈ (0, 1). Relying on the two-fold scaling in
(4.19), this under large offered loads R is tantamount to finding the pair (β, γ) that
achieves asymptotic delay probability ε. In a system without retrials, attaining this
target performance boils down to finding a pair (βε, γε) such that gc(βε, γε) = ε.
The fixed-point heuristic however tells us that the model with retrials performs
slightly worse, namely as if the QoS-parameters were (βε − α, γ − α/

√
κ) for α > 0.

Henceforth, to attain the target delay probability ε in the limit with retrials, larger
QoS parameters are required. To be precise, β∗

ε = βε + α and γ∗
ε = γε + α/

√
κ,

with α satisfying α = fc(β∗ − α, γ∗
ε − α/

√
κ) = fc(βε, γε). Finally, we substitute β∗

ε

and γ∗
ε in the scaling (4.19) to obtain capacity levels s and n. Altogether, this yields

the QED dimensioning procedure in Algorithm 1, in which [·] denotes the integer
rounding operator.

In Table 4.4 we performed this stationary dimensioning procedure for κ = 1,
0.2 and 0.02, and ε = 0.1, 0.25 and 0.4, and increasing offered loads R, and used
simulation to obtain the actual delay probabilities. We immediately see that the
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Input: Offered load R
Expected time spent in seconds stage 1/κ

Target delay probability ε ∈ (0, 1)
Output: Capacity levels s and n.

1. Compute (βε, γε) such that gc(βε, γε) = ε.

2. Set β∗
ε = βε + fc(βε, γε) and γ∗

ε = γε + fc(βε, γε)/
√

κ.

3. Return s = ⌈R + β∗
ε

√
R⌉ and n = [s + R/κ + γ∗

ε

√
R/κ].

Algorithm 1: Stationary dimensioning for cloud model with retrials.

procedure yields remarkably good results, that are very close to the target delay
probabilities.

4.5.2 Time-varying dimensioning

We next discuss how the parameters s and n can be adjusted in time-varying en-
vironments where the offered load R(t) is a function of time. For this we use the
mean-offered-load (MOL) method, which was developed in [125] to approximate
and dimension the Mt/G/s system by establishing a relation with the analytically
tractable Mt/G/∞ system. An underlying assumption of the MOL method is that
a well-capacitated multi-server queue delays only a small portion of users and only
for short periods. Therefore, the system can be approximated by an infinite-server
system. The MOL approximation [125] combines the desirable QoS properties ren-
dered by the QED regime with the analytic tractability of the M/G/∞ queue, see
[71], to establish a dynamic algorithm for choosing s(t) that stabilizes the system
behavior at some QoS-target.

To understand why the MOL approximation is likely to be accurate for the sys-
tems in this chapter, observe that under the QED scalings, the blocking probability
vanishes asymptotically and hence the main assertion on which the MOL approxi-
mation is built continues to hold. Following the line of thought in [125], we consider
the number of users in a system with s = n = ∞ to obtain R1(t) = E[R(t − S)]E[S],
where S is the service requirement per customer taken to be unit exponentially
distributed. Then,

R1(t) =
∫ ∞

0
e−uR(t − u)du. (4.28)

Note that this transformation typically shifts and levels peaks in workload ahead in
time with respect to those in R(t). As the time-varying counterparts of s in (4.19),
we then get

s(t) = R1(t) + β
√

R1(t). (4.29)
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ε = 0.10 ε = 0.25 ε = 0.40

(β∗ε , γ∗
ε ) = (1.17, 0.35) (β∗ε , γ∗

ε ) = (0.73, 0.57) (β∗ε , γ∗
ε ) = (0.48, 0.78)

R s n Pc
r(del) s n Pc

r(del) s n Pc
r(del)

10 14 25 0.1231 13 25 0.2268 12 24 0.3717

50 59 111 0.0969 56 110 0.2289 54 110 0.3844

100 112 215 0.1069 108 214 0.2426 105 213 0.4148

500 527 1035 0.0994 517 1030 0.2486 511 1028 0.3996

1000 1038 2049 0.0977 1024 2042 0.2442 1016 2041 0.3925

(a) κ = 1

ε = 0.10 ε = 0.25 ε = 0.40

(β∗ε , γ∗
ε ) = (1.34, 0.50) (β∗ε , γ∗

ε ) = (0.87, 0.65) (β∗ε , γ∗
ε ) = (0.59, 0.79)

R s n Pc
r(del) s n Pc

r(del) s n Pc
r(del)

10 15 69 0.0893 13 68 0.2628 12 68 0.4238

50 60 318 0.1007 57 317 0.2210 55 318 0.3560

100 114 625 0.0989 109 624 0.2504 106 624 0.4099

500 530 3055 0.1051 520 3053 0.2449 514 3054 0.3857

1000 1043 6078 0.0986 1028 6074 0.2459 1019 6075 0.3981

(b) κ = 0.2

ε = 0.10 ε = 0.25 ε = 0.40

(β∗ε , γ∗
ε ) = (1.41, 0.68) (β∗ε , γ∗

ε ) = (0.93, 0.74) (β∗ε , γ∗
ε ) = (0.59, 0.79)

R s n Pc
r(del) s n Pc

r(del) s n Pc
r(del)

10 15 530 0.0996 13 530 0.2814 13 531 0.2816

50 60 2594 0.1146 57 2594 0.2416 55 2595 0.3805

100 115 5163 0.0933 110 5163 0.2323 107 5163 0.3794

500 532 25640 0.1001 521 25638 0.2516 515 25641 0.3873

1000 1045 51198 0.1018 1030 51196 0.2437 1021 51199 0.3900

(c) κ = 0.02

Table 4.4: Results of the stationary dimensioning algorithm for ε = 0.1, 0.25 and 0.4.
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Secondly, the number of customers present in the system strongly depends on the
number of customers in the second phase of the system, especially since κ ≪ µ.
Therefore, we moreover need an approximation for the workload offered to the sec-
ond queue as a function of t, which we denote by R2(t). Continuing the reasoning
of MOL, we argue that R2(t) is equal to the output process of the first queue R1(t).
Then,

R2(t) = E[R1(t − S2)]E[S2] =
∫ ∞

0

∫ ∞

0
e−u−κvR(t − u − v)du dv (4.30)

and the natural shape of n(t) becomes

n(t) = s(t) + R2(t) + γ
√

R2(t). (4.31)

Combining the above ingredients then leads to Algorithm 2. Observe that if the

Input: Offered load function R(t)
Expected time spent in second stage 1/κ

Target delay probability ε ∈ (0, 1)
Output: Capacity levels s(t) and n(t) achieving Pr(delay) = ε.

1. Compute β∗
ε and γ∗

ε according to Algorithm 1.
2. Compute R1(t) and R2(t) as in (4.28) and (4.30).
3. Return

s(t) =
⌈

R1(t) + β∗
ε

√

R1(t)
⌉

,

n(t) =
[

s(t) + R2(t) + γ∗
ε

√

R2(t)
]

.

Algorithm 2: Time-varying dimensioning algorithm for cloud model with retrials.

service times at the infinite-server queue are relatively short compared with the
rate of change of the load function, we have R2(t) ≈ R1(t)/κ, so that n(t) as in
Algorithm 2 shows resemblance with 4.19.

To illustrate Algorithm 2 we consider the time-varying load

R(t) = a + b sin (2πt/T) , (4.32)

where we set a = 1000 as the mode, b = 500 as the amplitude and T = 100 as the
cycle length. This system experiences large fluctuations in load volume over the
course of one cycle. Since µ = 1, this implies that one cycle on average consists of
100 service times at the host server queue. Due to relatively short service times with
respect to the cycle length, the MOL approximation for the number of customers
at the first queue is roughly equal to the original load, i.e. R1(t) ≈ R(t). These
short services at the first queue compared to the cycle length are typical for cloud
systems, in which case the cycle is usually one day.
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(c) κ = 0.02

Figure 4.10: Arrival rate function R(t) (dashed) and staffing functions s(t) (solid)
and n(t) (o) for different values of κ. The left vertical axis refers to R(t) and s(t),
where the right axis refers to n(t).
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Figure 4.11: Simulated time-dependent delay probabilities in the cloud model with
δ = 10−2, targets ε = 0.1, ε = 0.25 and ε = 0.4, and capacity levels determined by
Algorithm 2.
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First, we examine the functions s(t) and n(t) as prescribed by Algorithm 2 for
κ = 1, 0.2, 0.02 and ε = 0.25. The resulting values are depicted in Figure 4.10 to-
gether with the arrival rate function. Note that n(t) lives on a different scale than
s(t), and has its own vertical axis at the right side of the plots. For small and hence
realistic values of κ, the function n(t) displays a shifted phase compared to the real-
time offered load, due to the relatively long service time at the second station. The
lag can be observed in (4.30). Hence, while the number of servers s(t) allocated
at time t is almost in phase with the arrival rate R(t), n(t) undergoes a shift of
its peak capacity somewhat ahead in time. Observe also that n(t) shows milder
fluctuations when κ decreases. This can be attributed to the added hedge which
is of order

√
R/κ. Remark that the overcapacity is relatively small. This illustrates

the economies-of-scale that can be achieved in these large-scale systems. Next, we
simulate the time-dependent process, given the staffing functions depicted in Fig-
ure 4.10, as well as the staffing functions designed for the target delay probabilities
ε = 0.1 and ε = 0.4 for the three values of κ. The results of the simulations are de-
picted in Figure 4.11. In all cases, the time-dependent delay probability only mildly
fluctuates around the target. As we increase ε, the stabilizing effect of the method
weakens somewhat, which for other systems was also observed in [125].

4.6 Conclusion

In this chapter, we studied the impact of retrying customers in large-scale systems
in the QED regime. The presence of retrials has a detrimental effect on congestion-
related performance, compared to systems in which customers are simply discarded
upon blockage/abandonment. On the other hand, compared to similar systems
without physical size restrictions or customer impatience, the performance gain
can be substantial, if retrial times are relatively long compared to the service times.
Namely, retrials prompt temporary release of pressure from the system by shifting
workload ahead in time.

Through our analysis, we have shown how the performance of large-scale queue-
ing systems facing slow retrials can be approximated by appropriately combining
a fixed-point technique with QED scaling. We showed the remarkable accuracy of
this approximation scheme in various retrial settings, that are otherwise intractable
to analyze. As we discussed in Section 4.5, our novel asymptotic analysis technique
is furthermore a powerful and elegant tool for dimensioning large-scale systems
with slow retrials, which is moreover amenable to deal with time-varying demand.

We illustrate a few directions for future research. As we explained before, the
fixed-point method relies heavily on the premise that the blocking (or abandon-
ment) probability vanishes at rate 1/

√
R in the QED regime, and on the availability

of expressions for its limiting behavior. Since this description likely fits a wide range
of queueing models, we henceforth believe that our fixed-point method and the re-
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lated dimensioning scheme find application beyond the three models we discussed
here.

Secondly, in the dimensioning procedure of Section 4.5 we took a constraint
satisfaction perspective in which we aimed to achieve a preset target QoS-level. As
an alternative approach, one could define a cost function to quantify the trade-off
between capacity costs and customer dissatisfaction. Specifically, suppose a cost c1

is associated with each server per unit of time, cost c2 is charged for every waiting
customer per time unit, and cost c3 is the penalty for each blocked customer. Then
in the M/M/s/n queue with retrials in the QED regime, we use that s = R +
β
√

R, the blocking probability is roughly f (β − α, γ)/
√

R and the expected waiting
time is approximately h(β − α, γ)/

√
R for some function h, see [160], yielding total

operational cost

c1

(

R + β
√

R
)

+ c2 R
f (β − α, γ)√

R
+ c3 R

h(β − α, γ)√
R

,

where α satisfies the fixed-point equation. Hence, asymptotic dimensioning of the
system boils down to finding the parameters β∗ and γ∗ that minimize

c1β∗ + c2 f (β∗ − α∗, γ∗) + c2 h(β∗ − α∗, γ∗),

with corresponding fixed point α∗. Solving this optimization problem is not straight-
forward and a detailed study of this and related asymptotic dimensioning problems
is an interesting avenue for future research.

Last, we remark that even though the fixed-point method works very well for
systems with slow retrials, i.e. δ → 0, it may also serve as an approximation to
systems with short to moderate retrial times. In these scenarios, the method is
likely to underestimate congestion levels as it ignores dependencies between the
primary and retrial stream of arrivals. In the extreme case that δ → ∞, that is,
blocked customers retry immediately, the customers in the retrial orbit basically
form a (random order) queue outside the service facility. When the inside of the
facility consists of more than one queue, our fixed-point may be used as an heuristic
approach to account for the increased workload that builds up outside the facility.
We explore this heuristic idea in a health care context in the next chapter.
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Finite-size effects in critically

dimensioned emergency departments

Motivated by health care systems with repeated services that
have both personnel (nurse/physician) and space (beds) con-
straints, we study a restricted version of the Erlang-R model.
The space restriction policies we account for are blocking or
holding in a pre-entrant queue. We develop many-server ap-
proximations for the system performance measures when ei-
ther policy applies, and explore the connection between them.
We show that capacity allocation of both resources should be
determined simultaneously, and derive the methodology to de-
termine it explicitly. We show that the system dynamics is cap-
tured by the fraction of needy time in the network, and that re-
turning patients should be accounted for both in steady-state
and time-varying conditions. We demonstrate the application
of our policies in two case-studies of resource allocation in hos-
pitals.

Based on
Finite-size effects in critically dimensioned emergency departments
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5.1 Introduction

In recent years, operations research techniques have received increased interest from
the health care community, as they are able to design and improve workflow pro-
cesses in health care facilities [17, 93, 68, 102, 103]. Because these processes are
typically stochastic in nature, it is common practice to use queueing theory for
performance analyses and workforce planning. As a first step towards understand-
ing the processes going on in health care environments, systems are commonly
modeled after a single station queue, such as the M/M/s (Erlang-C), M/M/s/s
(Erlang-B) or M/M/s + M (Erlang-A) models, and fluid and diffusion approxi-
mations are used to provide insights into the process dynamics. However, simple
single station models often fail to capture the more intricate dynamics of the settings
specific to health care contexts. Prime examples include the flows of patients in a
hospital from one medical ward to another [17], within the Emergency Department
(ED) between different stages of treatment [106], or between medical facilities [232].
Queueing networks can capture the dependency between several service stages and
several types of resources. More specifically, we are interested in the ubiquitous
feature, particularly present in health care environments, that patients during their
stay in the system might require a specific resource multiple times, e.g. physicians
and nurses who treat patients several times during their stay in the medical wards
[124] or the ED [226], while multiple resources types are limited (e.g. medical staff
and beds). In this chapter, we concentrate on the dynamics within EDs.

An often ignored yet essential feature of medical facilities concerns the restric-
tion of the number of patients that can reside in the facility simultaneously. In
Chapter 4, we already observed that finite-size restrictions can have a significant
effect on the performance of queueing systems. In this chapter, we investigate the
influence of such multiple restrictions on the network dynamics and the required
staffing policies in the context of an ED.

The restricted Erlang-R model. The canonical model for service networks with
returns is the Erlang-R model, introduced by Yom-Tov & Mandelbaum [226]. In
this open two-station model, customers arrive according to a Poisson process to an
M/M/s. After service completion, the customer with probability 1 − p leaves the
system and with probability p returns to the queue after a random delay. This delay
is modeled as an infinite-server queue. A schematic visualization of the Erlang-R
model is depicted in Figure 5.2b

in which customers, during their stay in the system receive a random number
of services from the same pool of servers. Yom-Tov & Mandelbaum [226] showed
that such a simple network model can be used to determine staffing in an ED both
in stable and time-varying conditions. Nevertheless, empirical studies report that
some countries, such as the US, use a different operational mode that applies strict
restrictions on entering the ED [196]. In typical US EDs, a patient will not enter the
ED until both a bed and a physician are available to treat her. Those restrictions can
be either physical (beds) restrictions or managerial ones — for instance by imposing
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Figure 5.1: Restricted Erlang-R models with maximally n customers in system.

a patient-to-physician ratio. In this work, we extend the Erlang-R model by enforc-
ing a constraint on the maximum number of available places inside the facility. Our
model hence incorporates two kinds of resource constraints: servers that provide
the actual service and the maximum available places inside the service system. Both
affect the system in a highly interdependent way. The model, presented in Figure
5.1, assumes s servers and a maximum capacity of n concurrent places. We assume
that patients arrive according to a Poisson process with rate λ. In case a new arrival
finds n or more patients already present, we consider two options: either she waits
outside the service facility in a holding queue until a vacant space becomes avail-
able (Figure 5.1a) or she is blocked (Figure 5.1b), such as is the case when patients
are sent to an alternative facility. Once a patient is admitted, she requires assis-
tance from one of the s servers for an exponentially distributed duration with mean
1/µ. Then, with probability 1− p, the patient leaves the system or, with probability
p, returns to service again after an exponentially distributed time with mean 1/δ.
Following Jennings & de Véricourt [124] and Yom-Tov & Mandelbaum [226], we
call patients needy when they require attention from one of the servers and content
when they are in the delayed return phase. In addition, we call patients holding
when they are waiting outside the facility for an available space. We assume that
the arrival process, the needy times and content times are mutually independent.
In the holding queue and the needy queue, we apply the First-Come-First-Served
(FCFS) discipline.

As mentioned, we consider two versions of the finite-capacity constraint. The
first version is called Erlang-R with holding, in which patients wait for an available
space in the system. The second version is called Erlang-R with blocking, in which
patients meeting a full system are blocked. Naturally, intermediate scenarios can
be constructed in which a proportion of the total arrival volume of patients indeed
leaves upon finding a full system, while the rest joins the holding queue. While this
chapter focuses on the two extreme cases, straightforward adaptations can fit these
intermediate scenarios.

Examples of restricted Erlang-R. As noted before, an ED operated in the US can
be modeled using a restricted Erlang-R model. Another health care example is
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medical units (MUs) in a hospital. Such units specialize in specific types of illnesses
(cardiology, oncology, etc.) and have limited resources such as nurses and beds.
If the unit is full, new patients are either allocated to an alternative medical unit,
i.e. blocked, or wait for an available bed. Both policies are problematic in terms
of quality-of-care, because the personnel in the alternative unit (or the ED) may be
less knowledgeable about the patient’s medical condition and waiting in the ED was
shown to increase mortality. Moreover, ED waiting may reduce available capacity
for treating ED patients [55, 35], hence endangering both the delayed patient as well
as others. Both the number of personnel (nurses and physicians) and the number
of beds impact service dynamics and quality-of-care. Research so far looked at
the capacity allocation of those resources separately. Green & Yankovic [88] and
Jennings & de Véricourt [123] looked at nurse staffing in medical units, while de
Bruin et al. [68] looked into bed allocation. The unified model we suggest enables
us to capture the dependency between those two decisions, and its impact on other
medical units in the hospital. At the same time, we capture the two most commonly
used modes of operation — blocking and holding of new patients.

Two-fold square-root staffing rule. Our main goal is to provide staffing policies
for the ED that high resource utilization, while at the same time maintain good
quality-of-care. This goal relates to the philosophy of the Quality-and-Efficiency-
Driven (QED) regime that is the recurring theme of this thesis. In this chapter,
we obtain asymptotic results for the Erlang-R model with blocking in the QED
regime (Section 5.4.2). Following [123], we employ a two-fold QED staffing policy:
s = R1 + β

√
R1 for the number of nurses and n = R1/r + γ

√
R1/r for the number

of patients in the system (beds), where β and γ are constants, R1 is the offered
load of the servers (nurses) and r is the fraction of time a patient spends in the
needy state. We establish limiting expressions for performance measures, such as
the probability of delay and blocking, in the form of explicit functions that depend
solely on β and γ. In deriving these limit results, we use the available product-form
solution for the stationary distribution.

Likewise, we pursue QED performance for the Erlang-R model with holding.
However, a direct analytic approach is obstructed by the absence of product-form
solutions. We provide two solutions for establishing QED behavior. First, we pro-
vide stochastic performance bounds that stay meaningful in the QED regime, which
demonstrate the non-degenerate behavior of the two-fold scaling in the large-system
limit. Second, we develop a heuristic method that quantifies the difference between
the holding model and the blocking model. This method is to a large extent related
to the asymptotic approximation method for retrial queues discussed in Chapter 4,
in the sense that we approximate the model with holding through the model with
blocking, yet with an increased arrival rate. The increase in arrival rate turns out
to be the solution of a fixed-point equation. Using our results on the asymptotic
behavior of the model with blocking in the QED regime, we then obtain approxi-
mative QED performance measures for the model with holding. These theoretical
findings ultimately yield algorithms for dimensioning and time-varying staffing.
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Structure of the chapter. We first review related literature on the subject of staffing
in health care environments in Section 5.2. In Section 5.3, we introduce the math-
ematical models more formally, and deduce preliminary results on their stability
conditions and relative performance. Section 5.4 describes the scaling regime we
use for our asymptotic study of the restricted Erlang-R models, and Sections 5.4.2
and 5.4.3 present our main theoretical findings. We turn to dimensioning problems
in Section 5.5, and show how our asymptotic QED results can be used to make
resource allocation decisions in realistic settings. Section 5.6 is devoted to the nu-
merical and comparative analysis of the restricted Erlang-R models, and also shows
how our method can be applied in time-varying environments through a case study.
We summarize our findings and give directions for future research in Section 5.7.

5.2 Literature review

Due to increasing demand and tightening budgets in health care, there is a growing
need for efficient workforce management [93]. Personnel (nurse and physician)
expenditure is one of the biggest factors in hospital costs [131], and inadequate
nursing levels have been mentioned as a significant factor in medical errors and
ED overcrowding. In order to establish appropriate nursing levels, a staffing policy
requires assessment of a wide range of variables, such as differing nurse expertise
and patient acuity during the day. Current methods, such as the minimum nurse-
to-patient ratios, are often too inflexible to capture those varying conditions. The
American Hospital Association (AHA) and others call for dynamic staffing policies
that can deal with the complex and evolving nature of health care [12]. Workforce
management in health care systems has been studied extensively; see [69, 102, 103]
for overviews. In recent years it has become apparent that queueing models can be
helpful in developing staffing and routing recommendations, not just for large-scale
service systems, but also for the small and complicated health care systems.

The first to try such an approach through queueing models were Green et al. [90,
93], who used the single station stationary Erlang-C model to set staffing levels in
EDs and panel sizes for clinics. Using a similar approach, Bekker & de Bruin [32]
used the Erlang-B model to determine bed allocation for medical wards. The first
to observe the significant impact of interrupted services in a health care setting
were Jennings & de Véricourt [123, 124]. Motivated by the need to set nurse-to-
patient ratios for internal wards, they considered a closed queueing system with
s nurses and n beds. This is essentially the Erlang-C model with the additional
restriction that a finite population of the n patients requires care. In their model,
all beds are always occupied, and patients alternate between two phases: the needy
phase where patients require service of a nurse and the content phase where they
do not; see Figure 5.2a. The system dynamics of the restricted Erlang-R model are
equivalent to those of the closed ward model of [123] if the holding queue would
never be empty.
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Figure 5.2: Related queueing models.

Campello et al. [54] analyzed a similar operational decision, referred to as ED
case management, which determines the maximal number of patients a physician
should handle in parallel. They also used queueing networks and analyzed the
stationary distribution. Note that in practice such a decision is not only affected
by operational measurements such as waiting times, but also by psychological con-
straints that limit physician capability to manage multiple tasks (patients) in paral-
lel. KC [70] provided empirical evidence that physicians should not treat more than
6-7 patients at the same time. Therefore, many hospitals in the US restrict entrance
to EDs even if beds are available if physicians are overloaded. We too consider such
constraints, and analyze their impact on performance. We take a different approach
than [54]; instead of analyzing numerically steady-state distributions, we develop
many-server approximations that can produce insight into the system dynamics,
and can be incorporated into time-varying staffing procedures; see Section 5.6.4.

The model in [123, 124] was developed for modeling internal dynamics within
an internal ward. However, in the ED, beds are not constantly occupied and the
utilization level depends on the flow of patients that arrive from outside the sys-
tem. Yom-Tov & Mandelbaum [226] highlight the interrupted services while ac-
counting for the transient nature of patient’s arrival process, and introduced the
Erlang-R model as a model for an ED. The Erlang-R model is an open two-station
queueing network that has the same layout as the restricted Erlang-R model, ex-
cept that all patients find a bed available upon arrival, see Figure 5.2b. In both
models patients experience the interrupted services, but the Erlang-R model has
no further restrictions on the bed capacity, hence neglecting the finite-size effects.
Yom-Tov & Mandelbaum [226] showed, using a simulator tailored to an Israeli ED,
that the complicated small ED dynamics can be captured using the relatively sim-
ple Erlang-R model, and hence, its recommendations can be implemented in ED
workforce management. Although the feature of interrupted services is present in
many systems, it is particularly important for modeling EDs, because the duration
of the interruption is typically much longer than the time patients require care from
a nurse. This explains why the Erlang-R model is considered to be the canonical
model for EDs. The restricted Erlang-R model with holding/blocking thus extends
the Erlang-R model with finite-size constraints which, like interrupted services, are
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Figure 5.3: The Erlang-R model with blocking viewed as a closed Jackson network.

expected to have a decisive impact on performance.

5.3 Models and performance measures

5.3.1 Three-dimensional Markov process

Since in the restricted Erlang-R model described above the arrival process is taken
Poisson, and all service and content times are assumed independent and exponen-
tial, the system can be characterized in terms of a Markov process. Let Q(t) =
(H(t), Q1(t), Q2(t)) represent the number of patients in the holding, needy and con-
tent state at time t, respectively. In both variants, n is the maximum number of
patients admitted to system, we have Q1(t) + Q2(t) ≤ n for all t ≥ 0. Due to
the absence of holding patients in the Erlang-R model with blocking, H(t) = 0
is enforced in this case, whereas H(t) has unbounded support in the model with
holding. This distinction requires us to explore the stationary distribution of the
two variants separately. Before doing so, we introduce some additional notation.
We define

R1 :=
λ

(1 − p)µ
, R2 :=

pλ

(1 − p)δ
, (5.1)

where R1 and R2 can be interpreted as the offered workload brought towards the
needy queue and the content (infinite-server) queue, respectively. Furthermore, we
define

r :=
δ

δ + pµ
, (5.2)

which is the fraction of time a patient spends in the needy state (in case she experi-
enced no wait during her sojourn).

Erlang-R model with blocking. In case of the blocking model, Q(t) reduces to a
finite-state Markov process Q(t) = (Q1(t), Q2(t)), where Q1(t) + Q2(t) ≤ n for all
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t ≥ 0. In fact, this is equivalent to the closed Jackson network depicted in Figure 5.3
with finite population n. Station 1 in Figure 5.3 is an M/M/s queue with service
rate µ, modeling the number of needy patients Q1(t). Station 2 models the number
of content patients Q2(t), and can therefore be represented as an infinite-server
queue with service rate δ. A patient can enter the unit only if Q1(t) + Q2(t) < n.
Station 0—a single-server queue—moderates this as it only produces output at rate
λ in case its queue length is positive, i.e. if n − Q1(t)− Q2(t) > 0.

Observe that because patients finding a full network are blocked, the number
of patients in the system cannot grow beyond n. Hence, the system is stable for
all parameter settings, and hence a steady-state distribution exists. Moreover, the
simplification of the model with blocking allows us to express the steady-state dis-
tribution of the system in explicit product-form. Let πb(j, k) denote the steady-state
probabilities of having j needy and k content patients in the system. Then,

πb(j, k) =

{

π0
1

κ(j)
1
k! · R

j
1 · Rk

2, if j + k ≤ n,

0, else,
(5.3)

where

κ(j) :=

{

j!, if j ≤ s,

s! sj−s, else,

and π−1
0 = ∑j+k≤n

1
κ(j)

1
k! · R

j
1 · Rk

2.

Erlang-R model with holding. The Erlang-R model with holding does not lead
to a Jackson network with an elegant product-form solution for the steady-state
distribution, because the holding queue cannot be modeled as a station that is in-
dependent from the other queues in the system. However, we are able to describe
the system as a two-dimensional Markov process without loss of information. To
see this, define N := {N(t)}t≥0 with N(t) := H(t) + Q1(t) + Q2(t), the total num-
ber of patients in the system (including the holding queue). Using the restriction
Q1(t) + Q2(t) ≤ n together with the fact that no bed is left vacant if a patient is
waiting in the holding queue, this yields

H(t) = (N(t)− n)+ , t ≥ 0,

where (·)+ := max{0, ·}. For the same reason, Q2(t) = N(t)− Q1(t) if H(t) = 0,
and Q2(t) = n − Q1(t) otherwise. In other words,

Q2(t) = min{N(t), n} − Q1(t), t ≥ 0.

Therefore, we can express the state of all three queues in the Erlang-R model with
holding using a two-dimensional Markov process X := {X(t)}t≥0, where

X(t) := (N(t), Q1(t)) .

The process X lives on the semi-infinite strip

X(t) ∈ { (i, j) | j ≤ min{i, n}, i ∈ N0, j ∈ {0, 1, . . . , n} } ,
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and belongs to the class of Quasi-Birth-Death (QBD) processes. The reader is re-
ferred to Appendix 5.A for a detailed description of this process, in terms of its
transition diagram and generator matrix.

Contrary to the model with blocking, the system with holding can become un-
stable in case capacity is insufficient to satisfy patient demand.

Proposition 5.1. The Erlang-R model with holding is stable if and only if

λ

(1 − p)µs
<

∑
s
i=0

i
s (

n
i )
(

δ
pµ

)i
+ ∑

n
i=s+1 (

n
i )

i!
s! s

s−i
(

δ
pµ

)i

∑
s
i=0 (

n
i )
(

δ
pµ

)i
+ ∑

n
i=s+1 (

n
i )

i!
s! s

s−i
(

δ
pµ

)i
=: ρmax(s, n). (5.4)

The proof is given in Appendix 5.A.2 and follows from the general theory for
QBD processes.

Observe that ρmax(s, n) poses an upper bound on the occupancy level of the
servers in the holding model, which is clearly smaller than 1 for all s and n. In
addition, this implies that the maximum workload Rmax(s, n) := s · ρmax(s, n) the
system is able to handle is strictly less than s. If we compare this to the open Erlang-
R model, in which the maximal attainable workload equals s, we observe the effect
of finite-size constraints on operational performance. Figure 5.4 shows the influ-
ence of both s and n on the maximum feasible workload in case r = 0.25. From
these graphs, note that if s ≪ rn, Rmax grows almost linearly with s. Furthermore,
Rmax(s, n) is increasing in n for s fixed. A logical practical consequence is that a
larger number of beds allows for a larger patient volume to enter the ED with the
same number of nurses. Moreover, Rmax(s, n) is increasing in s, but as in Figure
5.4a, adding an extra nurse does not increase the stability region in case n is too
tight. Conversely, adding extra beds does not increase Rmax(s, n) if the number of
nurses does not allow for an increase in offered load, see Figure 5.4b. Additionally,
it is easily verified that Rmax(s, n) is upper bounded by both s and Rmax(n, n) = rn.
Therefore, a careful balance is called for between servers (nurses) and beds, so that
resources will be efficiently utilized. We observe that when the ratio s/n ≈ r, the
system is better balanced. We will propose an appropriate balance between re-
sources by defining a synchronized QED capacity recommendation for both servers
and beds in Section 5.4.

Provided that the system is stable, the stationary distribution of the QBD process
X can be obtained numerically by the matrix geometric method [169]. Subsequently,
we can derive the stationary distribution of the original Q(t), denoted by πh(·, ·, ·).

5.3.2 Performance measures

In this work, we concentrate on five performance measures that are central to our
analysis. In the definitions that follow, we present expressions for these measures
in terms of a general three-dimensional measure π, which one can replace by either
πb or πh, depending on the scenario considered. In the remainder of this work,
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Figure 5.4: The maximum achievable workload in the restricted Erlang-R model
with holding for r = 0.25.

we will augment the measures related to the Erlang-R model with blocking and
holding by the superscript b and h, respectively1.

As relevant performance measures, we consider the probability of holding (cq.
blocking) at entering the system, the probability of delay at the needy queue, ex-
pected waiting time for a nurse, utilization of nurses and utilization of beds:

P(hold) =
∞

∑
i=0

n

∑
j=0

π(i, j, n − j), P(delay) ≈
∞

∑
i=0

n

∑
j=s

n−j

∑
k=0

π(i, j, k), (5.5)

E[W] ≈
∞

∑
i=0

n

∑
j=s

n−j

∑
k=0

max{0, j − s + 1}
µ

π(i, j, k), (5.6)

ρs =
1

s

∞

∑
i=0

n

∑
j=0

n−j

∑
k=0

min{j, s}π(i, j, k), ρn =
1

n

∞

∑
i=0

n

∑
j=0

n−j

∑
k=0

min{i, n}π(i, j, k). (5.7)

It should be stressed that the above expression for the delay probability and the
expected waiting time for a nurse are not exact. For the blocking model one can use
the Arrival Theorem, see e.g. [59], whereby the exact expression sums up to n − 1
instead of n. Since we consider the system as n → ∞, this discrepancy becomes
negligible. For the holding model, a similar argument holds. We will therefore use
the expressions in (5.5)-(5.7) as definitions for the performance measures.

5.3.3 Stochastic bounds

Although the two variants of the Erlang-R model differ with respect to the admis-
sion policy, and require different mathematical treatment, we would like to be able

1In line with H(t) = 0, we use πb(i, j, k) = πb(j, k) if i = 0, with πb(j, k) as in (5.3), and πb(i, j, k) = 0
otherwise, when considering the model with blocking.
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to capture their relative performance. We substantiate the intuition that the holding
room leads to more patients in the ED, in the following result.

Proposition 5.2. Let Qb
1, Qb

2, Qh
1, Qh

2 denote the nurse and content queue length processes
in the Erlang-R model with blocking and holding, respectively. Let H(0) = 0, Qb

1(0) =
Qh

1(0) and Qb
2(0) = Qh

2(0). For all t ≥ 0,

Qb
1(t) + Qb

2(t) �st Qh
1(t) + Qh

2(t) �st n, (5.8)

Qb
2(t) �st Qh

2(t), (5.9)

Qb
1(t) �st Qh

1(t) + H(t), (5.10)

where X �st Y implies P(X ≥ k) ≤ P(Y ≥ k) for all k ≥ 0.

The proof of Proposition 5.2 uses sample path coupling and can be found in Ap-
pendix 5.B. Note that as an immediate consequence, we have

P
b(block) = lim

t→∞
P
(

Qb
1(t) + Qb

2(t) ≥ n
)

≤ lim
t→∞

P
(

Qh
1(t) + Qh

2(t) ≥ n
)

= P
h(hold)

and by similar reasoning ρb
n ≤ ρh

n. In other words, under similar offered load and
capacity constraints, utilization levels for the nurses in the Erlang-R model with
blocking are lower than in the Erlang-R model with holding. Moreover, the total
number of waiting patients in the setting with holding is stochastically larger than
in the setting with blocking, and in the open Erlang-R model. We further discuss
the differences between both models in Section 5.5 and Section 5.6.

5.4 Two-fold QED regime

We do not want to waste capacity of either servers or beds without getting signifi-
cant advantage in terms of performance. We therefore take an asymptotic approach
that lets the external arrival rate λ grow to infinity, while scaling s and n accordingly.
In doing so, we intend to establish QED-type system behavior, i.e. high occupancy
levels of both nurses and beds and good quality-of-service.

5.4.1 Two-fold scaling rule

In order to identify the scaling of s and n as λ → ∞, we draw inspiration from
the two-fold scaling rule used by Jennings & de Véricourt [123] and Khudyakov et
al. [136], which follows the celebrated square-root staffing principle. This principle
suggests that, in the most general setting, capacity should be equal to the expected
offered load entering the system, let us say R, plus an additional variability hedge
that is proportional to

√
R. In the restricted Erlang-R model, we have two capacity

sources, namely s and n, which experience different relevant amounts of work.
The offered load the servers in the needy queue experience is given by Rnurse =

R1, as in the regular Erlang-R model; it does not change due to the finite-size effects,
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since all patients are served eventually. Hence, we only need to account for the
interrupted services. It follows that the appropriate staffing rule for the nurses in
the QED regime remains s = R1 + β

√
R1 for some constant β > 0.

To establish the bed capacity level, we need to reflect on the load offered to the
beds. Observe that beds remain occupied both in needy and content states. This
suggests that Rbed := R1 + R2 = R1/r, with R1 and R2 as in (5.1) and r is the
expected fraction of time a patient spends at the nurse station defined in (5.2). As a
result, the appropriate staffing rule is n = Rbed + γ

√
Rbed for some constant γ > 0.

In conclusion, the two-fold QED scaling rule is given by

s = R1 + β
√

R1 + o(
√

R1)

n = R1
r + γ

√

R1
r + o(

√
R1)

(5.11)

with β, γ > 0 constants and R1 := λ/((1 − p)µ).
Recall that we saw in Figure 5.4 that resources seem efficiently utilized if s/n ≈

r. Scaling (5.11) is in line with this reasoning since

s

n
= r

(

1 +
β − γ

√
r√

R1
+ O(1/R1)

)

.

Remark 5.1. In [123], a similar scaling regime is considered, which only relates s
and n through a square-root scaling, namely the regime s = rn + γ̂

√
n, which is

equivalent to the second relation in (5.11) if γ̂ = β
√

r − γr. Due to the absence
of external arrivals in this closed system, they let the number of beds n approach
infinity as opposed to λ in our settings. Nevertheless, this results in the same
asymptotic regime.

Before turning to asymptotic expressions for the performance measures con-
cerning the Erlang-R model with blocking or holding, we conduct a few numerical
experiments to confirm that the scaling in (5.11) indeed leads to desired QED be-
havior.

In Figure 5.5, we plotted the sample paths of the three-dimensional queue length
process of the holding model in which β and γ are fixed, and R1 is increased. Ob-
serve that the needy queue length Q1(t), plotted in orange in Figure 5.5, fluctuates
around the values s, and stabilizes for larger values of R1. This naturally implies
that the server (nurses) utilization approaches 100%, while the number of patients
waiting is O(

√
R1). Furthermore, we see that the percentage of occupied beds also

tends to 100%, while the holding queue length remains small. The holding queue is
of much smaller order than R1, which implies that the holding time of a patient be-
comes negligible as R1 → ∞. From these empirical findings we deduce that under
scaling (5.11) the restricted Erlang-R model exhibits QED behavior on two levels:
Outside the facility while waiting for an available bed, and inside the facility while
waiting for attention of a nurse.

We also check how the Erlang-R model with blocking or holding and the closed
ward model of [123] relate under scaling (5.11). In Figure 5.6, we plot the perfor-
mance measures, obtained through simulation, for the three models in which we
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Figure 5.5: Sample paths of H(t) (blue), Q1(t) (orange) and Q1(t) + Q2(t) (green)
of the Erlang-R model with holding with parameters µ = 1, δ = 0.25, p = 0.75 and
β = γ = 1. The staffing levels s and n are depicted by the dashed lines.
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Figure 5.6: Asymptotic behavior of the restricted Erlang-R model with holding and
blocking, and the closed ward model for µ = 1, δ = 0.2, p = 0.8 and β = γ = 0.5.
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fix β = γ = 0.5 and vary the arrival rate λ. First, we see that P(delay) stabilizes
as λ → ∞ in all three models under scaling (5.11), and the delay probability of the
model with holding lies in between the other two. Second, note that the expected
waiting time for a nurse in all models converges to 0 as λ increases. In fact, the
rate of decay is similar in all three models. We observe that ρs approaches unity
in all models, and the rate of convergence seems again comparable. Finally, and
most importantly, we notice an ordering between the three models. Namely, in all
performance measures considered in Figure 5.6, Erlang-R with holding appears to
be upper bounded by the closed ward and lower bounded by the Erlang-R with
blocking. In a multitude of parameter settings of (β, γ), we have seen the same
ordering, leading to the following conjecture:

Conjecture 5.1. Let Qb
1(∞), Qh

1(∞) and QJ
1(∞) denote the stationary number of needy

patients in the Erlang-R model with blocking, holding and the closed ward, respectively.
Then,

Qb
1(∞) �st Qh

1(∞) �st QJ
1(∞). (5.12)

Observe that Conjecture 5.1 poses a stronger statement than the third assertion
in Proposition 5.2. The latter does give an upper bound to Qh

1(∞) in terms of Qb
1(∞),

albeit supplemented with the stationary holding queue length.

5.4.2 QED limits for Erlang-R with blocking

We now continue our analysis by examining its limiting behavior under scaling
(5.11), and obtain QED limits for some performance measures of the Erlang-R model
with blocking. Using the explicit expressions for the blocking model in (5.3), we
derive the limiting values of the relevant performance measures defined in Section
5.3.2 in terms of β and γ.

Theorem 5.1. Let s and n scale as in (5.11) with −∞ < β < ∞, γ > 0 as λ → ∞. Then,
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if β 6= 0,

gb(β, γ) := lim
λ→∞

P
b(delay)

=



1 +
β
∫ β
−∞

Φ
(

γ−t
√

r√
1−r

)

dΦ(t)

ϕ(β)Φ(η)− ϕ(
√

β2 + η2)e
1
2 ω2

Φ(ω)





−1

, (5.13)

f b(β, γ) := lim
λ→∞

√

R1 · P
b(block)

=

√
rϕ(γ)Φ(−ω

√
r) + ϕ(

√

β2 + η2) e
1
2 ω2

Φ(ω)
∫ β
−∞

Φ
(

γ−t
√

r√
1−r

)

dΦ(t) + ϕ(β)Φ(η)
β − ϕ(

√
β2+η2)
β e

1
2 ω2

Φ(ω)
, (5.14)

hb(β, γ) := lim
λ→∞

√

R1 · E[W]

=

ϕ(β)Φ(η)
β2 +

(

β
r − γ√

r
− 1

β

)

ϕ(
√

η2+β2)
β e

1
2 ω2

Φ(ω)−
√

1−r
r

ϕ(β)ϕ(η)
β

∫ β
−∞

Φ
(

γ−t
√

r√
1−r

)

dΦ(t) + ϕ(β)Φ(η)
β − ϕ(

√
β2+η2)
β e

1
2 ω2

Φ(ω)
,

(5.15)

and if β = 0,

gb
0(γ) := lim

λ→∞
P

b(delay)

=






1 +

∫ 0
−∞

Φ
(

γ−t
√

r√
1−r

)

dΦ(t)
√

1−r
r

1√
2π

(η Φ(η) + ϕ(η))







−1

, (5.16)

f b
0 (γ) := lim

λ→∞

√

R1 · P
b(block)

=

√
r ϕ(γ)Φ(−ω

√
r) + 1√

2π
Φ(η)

∫ β
−∞

Φ
(

γ−t
√

r√
1−r

)

dΦ(t) +
√

1−r
r

1√
2π

(η Φ(η) + ϕ(η))
, (5.17)

hb
0(γ) := lim

λ→∞

√

R1 · E[W]

=
1

2µ

(

γ2/r + 1
)

Φ(η) + ηϕ(η)

r
1−r

√
2π
∫ 0
−∞

Φ
(

γ−t
√

r√
1−r

)

dΦ(t) +
√

r
1−r (ηΦ(η) + ϕ(η))

, (5.18)

where η = γ−β
√

r√
1−r

and ω := γ−β/
√

r√
1−r

.

The proof of Theorem 5.1 is given in Appendix C of [225] under a parameter
transformation.

Theorem 5.1 proves that the scaling (5.11) results in QED behavior: the proba-
bility of waiting in Equations (5.13) and (5.16) converges to a limit that is strictly
between 0 and 1. Notice that all limits in Theorem 5.1 are functions of three param-
eters: β and γ, which are decision variables, and the fraction of needy time r, which
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Figure 5.7: Asymptotic delay and scaled blocking probability for r = 0.5 based on
Theorem 5.1.

is dictated by the physics of the system. Furthermore, the theorem also shows that
the probability of blocking (Equations (5.14) and (5.17)) is of order 1/

√
R1. For

example, assume that the fraction of needy time r is 0.5 and the system is large
(100 servers). Using Figure 5.7, we observe that, by choosing the pair γ = 1 and
β = 0.245, we actually aim at a probability of getting served immediately to be
40%. At the same time, the probability of getting immediately a bed is 97%. Thus,
waiting inside the ED occurs at a reasonable level, while wait outside the facility
becomes negligible.

Theorem 5.1 further shows that the expected waiting (Equations (5.15) and
(5.18)) is of order 1/

√
R1 too and hence vanishes in the large-system limit.

We see from Theorem 5.1 that achieving target service levels is always an in-
terplay between β and γ. Figure 5.7a shows for instance that in order to keep
P(delay) ∈ (0.25, 0.75), choosing γ = −1 requires β to stay within the range
[−1.4,−0.5], while γ = 1 corresponds to values of β in [−0.4, 0.5].

While the two-fold scaling rule in (5.11) automatically captures the right dimen-
sioning ratio as the system scales up, Theorem 5.1 shows that the parameters β and
γ provide a means to fine-tune the performance. Figure 5.7b confirms how adding
nurses, i.e. increasing β, does not improve the blocking probability if the number
of beds, i.e. γ, is too tight. This is in accordance with our previous observations in
Figure 5.4 for the exact steady-state distribution.

To test the accuracy of the asymptotic results in Theorem 5.1 as approximations
in a realistic setting, we plot in Figure 5.8 the exact probability of delay and block-
ing for an Erlang-R model with R = 8 and r = 0.25, as a function of s. The exact
probabilities are given by Equation (5.5), and their respective asymptotic approxi-
mations are based on Theorem 5.1. Despite the realistic moderate size of the system
(R = 8), we see that the QED approximations are remarkably accurate for many
settings (s, n). This fast relaxation is in line with observations made earlier in the
QED literature [43, 120].
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µ δ p r

Case 1 1 0.10 0.90 0.10
Case 2 1 0.25 0.75 0.25
Case 3 1 0.50 0.50 0.50

Table 5.1: Parameter settings for numerical experiments.
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Figure 5.8: Comparison of exact performance measures (solid) against asymptotic
approximations (dashed) with β = (s − R1)/

√
R1 and γ = (n − R1/r)/

√
R1/r for

λ = 2, µ = 1, δ = 0.25 and p = 0.75.

We furthermore compare the asymptotic delay and blocking probability in the
three scenarios given in Table 5.1. In Tables 5.2–5.4 we compute the exact probabil-
ities of delay and blocking through the explicit forms in (5.5) for increasing values
of the offered load, R1.

The numerical results show that gb(β, γ), f b(β, γ) and hb(β, γ) provide accurate
approximations to P(delay),

√
R1P(block) and

√
R1 E[W] in pre-limit systems. The

quality of the approximations increases with R1. Naturally, fluctuations occur for
relatively small values of R1, because s and n need to be rounded to an integer.

5.4.3 QED limits for Erlang-R with holding

As explained in Section 5.4, the model with holding has no product-form steady-
state distribution, which makes it hard (if not impossible) to obtain QED limits.
Instead, we derive QED approximations by exploiting a connection with the block-
ing model.

We first prove that under scaling (5.11), the upper bound on the utilization level
of the nurses needed to achieve stability in the model with holding, as given in
Proposition 5.1, converges to unity as R → ∞. This facilitates high utilization levels
of both nurses and beds, a key characteristic of the QED regime.
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β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√

R1P(b)
√

R1E[W] P(d)
√

R1P(b)
√

R1E[W]

5 0.1270 0.0900 0.2283 0.1553 0.0212 0.1085
10 0.1340 0.0910 0.1919 0.1628 0.0206 0.1205
25 0.1981 0.0945 0.1614 0.2356 0.0216 0.2145
50 0.1513 0.0963 0.1588 0.1830 0.0205 0.1496

100 0.1880 0.0956 0.1532 0.2231 0.0224 0.2055
250 0.1797 0.0971 0.1399 0.2143 0.0219 0.2057

0.1767 0.0981 0.1437 0.2108 0.0217 0.1947

β = 2, γ = 1 β = 2, γ = 2

R1 P(d)
√

R1P(b)
√

R1E[W] P(d)
√

R1P(b)
√

R1E[W]

5 0.0237 0.0868 0.0282 0.0322 0.0192 0.0391
10 0.0206 0.0872 0.0188 0.0278 0.0183 0.0264
25 0.0277 0.0876 0.0123 0.0363 0.0174 0.0174
50 0.0185 0.0913 0.0116 0.0249 0.0175 0.0166

100 0.0232 0.0888 0.0103 0.0303 0.0183 0.0145
250 0.0203 0.0905 0.0079 0.0267 0.0179 0.0109

0.0188 0.0914 0.0084 0.0247 0.0177 0.0118

Table 5.2: Exact numerical results for Erlang-R model with blocking for Case 1. The
last row presents the asymptotic approximations.

Proposition 5.3. Let s and n scale with R1 → ∞ as in (5.11). Then for λ → ∞,

ρmax(s, n) → 1.

The proof can be found in Appendix 5.C. Combining Proposition 5.3 with
Proposition 5.1 shows that indeed the scaling we use results in a highly utilized
system.

As observed before, the nature of the two variants of the model is similar up
to the fact that a fraction of the patients is deferred on arrival in the setting with
blocking, whereas all the arriving patients are eventually admitted into the system
in the holding model. This implies that, given s and n, the nurses face an increased
workload in case of a holding room. In fact, Theorem 5.1 shows that the blocking
probability is of order 1/

√
R1, yielding a volume of blocked patients of order

√
R1

in setting with blocking. Accordingly, if Rb = R1 and Rh denote the nominal load
arriving to the nurses in the model with blocking and holding, respectively, we can
argue that

Rh = Rb + α
√

Rb + o(
√

Rb),

for some α > 0. Notice that this additional load is of the same order as the safety
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β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√

R1P(b)
√

R1E[W] P(d)
√

R1P(b)
√

R1E[W]

5 0.0911 0.1538 0.0479 0.1431 0.0345 0.0909
10 0.1010 0.1498 0.0560 0.1520 0.0326 0.1025
25 0.1594 0.1509 0.1058 0.2192 0.0405 0.1785
50 0.1201 0.1506 0.0726 0.1697 0.0381 0.1248

100 0.1514 0.1539 0.1001 0.2088 0.0398 0.1704
250 0.1459 0.1524 0.0957 0.2003 0.0397 0.1618

0.1429 0.1569 0.0940 0.1976 0.0391 0.1617

β = 2, γ = 1 β = 2, γ = 2

R1 P(d)
√

R1P(b)
√

R1E[W] P(d)
√

R1P(b)
√

R1E[W]

5 0.0130 0.1484 0.0044 0.0277 0.0294 0.0109
10 0.0121 0.1432 0.0042 0.0244 0.0267 0.0098
25 0.0182 0.1383 0.0070 0.0319 0.0295 0.0141
50 0.0119 0.1415 0.0043 0.0216 0.0301 0.0090

100 0.0154 0.1413 0.0059 0.0270 0.0290 0.0119
250 0.0136 0.1403 0.0051 0.0236 0.0291 0.0103

0.0126 0.1445 0.0048 0.0220 0.0284 0.0097

Table 5.3: Exact numerical results for Erlang-R model with blocking for Case 2. The
last row presents the asymptotic approximations.

staffing in the blocking model staffing rule (5.11). As s and n remain unchanged,
we rewrite (5.11) in terms of Rh,

s = Rh + (β − α)
√

Rh + o(
√

Rh),

n =
Rh

r
+
(

γ − α/
√

r
)

√

Rh

r
+ o(

√
Rh), (5.19)

where we have used Rb = O(Rh). Observe that the square-root principle prevails
also after this substitution, albeit with different hedging parameters. We therefore
heuristically argue that the holding model under scaling (5.11) with parameters β

and γ mimics the blocking model with parameters β− α and γ− α/
√

r, respectively.
Observe, however, that we have not yet specified the value of α. By definition,

α
√

Rb is the expected volume of patients that would be rejected in the model with
blocking, that is, Rh times the probability of not being admitted to the ED directly.
By the construction in (5.19), this volume asymptotically equals Rh ·Pb(block), with
parameters β − α and γ − α/

√
r, which by Theorem 5.1 is approximated by

f b
(

β − α, γ − α/
√

r
)

/
√

Rh
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β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√

R1P(b)
√

R1E[W] P(d)
√

R1P(b)
√

R1E[W]

5 0.0547 0.1945 0.0221 0.1181 0.0604 0.0617
10 0.0579 0.2158 0.0237 0.1325 0.0526 0.0746
25 0.1113 0.2086 0.0544 0.1959 0.0641 0.1311
50 0.0813 0.2050 0.0363 0.1523 0.0562 0.0933

100 0.1060 0.2146 0.0509 0.1873 0.0632 0.1250
250 0.1006 0.2179 0.0475 0.1820 0.0596 0.1214

0.1011 0.2185 0.0478 0.1792 0.0605 0.1199

β = 2, γ = 1 β = 2, γ = 2

R1 P(d)
√

R1P(b)
√

R1E[W] P(d)
√

R1P(b)
√

R1E[W]

5 0.0034 0.1888 0.0009 0.0175 0.0510 0.0057
10 0.0030 0.2093 0.0008 0.0172 0.0416 0.0058
25 0.0070 0.1937 0.0020 0.0243 0.0440 0.0089
50 0.0043 0.1946 0.0011 0.0163 0.0414 0.0056

100 0.0061 0.1999 0.0017 0.0207 0.0431 0.0076
250 0.0052 0.2037 0.0014 0.0185 0.0401 0.0067

0.0052 0.2039 0.0014 0.0173 0.0404 0.0063

Table 5.4: Exact numerical results for Erlang-R model with blocking for Case 3. .
The last row presents the asymptotic approximations.

as Rh grows large. In conclusion, α is characterized as the solution of the fixed-point
equation

α = f h
(

β − α, γ − α/
√

r
)

, (5.20)

and as a result, we are able to approximate the nurse delay probability in the Erlang-
R model with holding as

P
h(delay) ≈ gb(β − α, γ − α/

√
r) =: gh(β, γ). (5.21)

Likewise, the scaled mean waiting time for a nurse can be approximated by

√

R1 · E[W] ≈ hb(β − α, γ − α/
√

r) =: hh(β, γ). (5.22)

This also implies that the holding queue is O(
√

R1). Subsequently, we argue that
the expected holding time (pre-entering wait) under the QED policy is O(1/

√
R1)

and hence asymptotically negligible. We justify this claim numerically in Section
5.6.

Remark 5.2. Notice that in the reasoning leading to (5.20), we implicitly assumed that

the additional volume α
√

Rb is an independent Poisson process, which is obviously
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not the case. Therefore, (5.21)-(5.22) are approximations for pre-limit systems that
are not asymptotically correct as R1 → ∞. Nevertheless, the heuristic approach
seems to performs well as we confirm numerically next.

In Figure 5.9, we repeat the numerical experiments of Figure 5.8 for the model
with holding. Since the heuristic does not provide an approximation for the holding
probability, Figure 5.9b only plots the simulated holding probabilities. Those are
provided to better understand the implication of operational decisions. Recall that
the holding system is only stable (i.e. P(hold) < 1) if both s > R1 = 8 and
n > R1/r = 32. We nevertheless included the boundary case n = 32 for illustrative
purposes. The graphs in Figure 5.9 show that the heuristic captures the congestion
levels well, even for this moderate-size system.

To see how this heuristic approach performs under different settings, and par-
ticularly if R1 → ∞, we again compare the approximated delay probability in the
Erlang-R model with holding as solution of the fixed-point procedure to the out-
comes of simulation experiments for the three scenarios in Table 5.1. We performed
100 runs of length 104 for each parameter setting and all values of R, yielding the re-
sults presented in Tables 5.5–5.7, which are accurate up to a 95% confidence interval
of width 10−3.

We conclude from these tables that the approximation is good. As R increases,
the simulated values move closer to the heuristic approximation. Extensive numer-
ical experiments suggest that load is slightly underestimated in the limit. The best
results in terms of accuracy are attained for small r. This suggests that the quality
of the heuristic method improves as r gets smaller. These are exactly the parameter
settings for which this model is relevant.

Remark 5.3. The approximation technique that evolves around the fixed-point
method can be adapted to accommodate balking behavior of external arrivals. If we
assume that an arriving patient finding all beds occupied leaves the system instantly
with probability 1 − q, for some q ∈ (0, 1), independently of the rest of the arrivals,
with the same argumentation, the volume of arrivals blocked is still α

√
R1, while

the volume that will enter the ED eventually is q · α
√

R1. Therefore, we may argue
that in the QED regime, the system with holding and balking behaves as the system
with blocking but with corrected parameters (β − qα, γ − qα/

√
r), where α satisfies

α = f b(β − qα, γ − qα/
√

r). (5.23)

Note that the choice of q interpolates between the two system variants with holding
(q = 0) and blocking (q = 1).

5.5 Dimensioning

We will now use the accurate asymptotic approximations of the previous section
to define a procedure that determines resource capacity in the restricted Erlang-R
models. That is, we aim to set the number of nurses s and the number of beds n,
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β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√

R1E[W] P(d)
√

R1E[W]

5 0.1532 0.1031 0.1628 0.1216
10 0.1622 0.1272 0.1697 0.1331
25 0.2340 0.2116 0.2413 0.2342
50 0.1817 0.1468 0.1890 0.1678

100 0.2199 0.1931 0.2304 0.2269
250 0.2110 0.1852 0.2176 0.2230

0.2076 0.1777 0.2187 0.2050

β = 2, γ = 1 β = 2, γ = 1

R1 P(d)
√

R1E[W] P(d)
√

R1E[W]

5 0.0310 0.0121 0.0344 0.0148
10 0.0267 0.0123 0.0292 0.0128
25 0.0348 0.0171 0.0373 0.0184
50 0.0240 0.0108 0.0258 0.0125

100 0.0293 0.0143 0.0317 0.0163
250 0.0256 0.0120 0.0276 0.0145

0.0229 0.0104 0.0257 0.0124

Table 5.5: Simulated probability of delay and scaled expected waiting time in
Erlang-R model with holding for Case 1. The last row gives the asymptotic ap-
proximations.

such that a preset performance level is achieved. We take the probability of delay at
the needy queue and the probability of blocking/holding at the pre-entrant queue
as the target performance objectives.

5.5.1 Capacity setting for Erlang-R with blocking

In the setting with blocking, we can readily use the asymptotic results of Theorem
5.1 to (numerically) find a pair of parameters (β∗, γ∗) to meet the performance re-
quirements. For instance, given that we want the delay probability to be at most ε,
we first solve the equation gb(β∗, γ∗) = ε and then assign s = ⌈R1 + β∗√R1⌉ and
n = ⌈R1/r + γ∗√R1/r⌉. Note that there could be multiple solutions to that prob-
lem, i.e. there could be multiple combinations of number of beds and number of
nurses that can result in the same value of a single performance level. The ED man-
ager can ultimately decide which of these feasible solutions fits the environment
best, for instance taking into account space and cost constraints.

We illustrate the resource allocation decisions in an MU setting, using data orig-
inated from two articles: [149] and [88]. Green & Yankovic describe an MU that has
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β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√

R1E[W] P(d)
√

R1E[W]

5 0.1327 0.0740 0.1620 0.1096
10 0.1446 0.0894 0.1683 0.1207
25 0.2204 0.1631 0.2442 0.2203
50 0.1694 0.1122 0.1888 0.1507

100 0.2098 0.1524 0.2322 0.2111
250 0.2033 0.1534 0.2190 0.1979

0.1840 0.1277 0.2109 0.1759

β = 2, γ = 1 β = 2, γ = 1

R1 P(d)
√

R1E[W] P(d)
√

R1E[W]

5 0.0219 0.0079 0.0322 0.0137
10 0.0199 0.0073 0.0284 0.0115
25 0.0283 0.0128 0.0375 0.0163
50 0.0190 0.0078 0.0255 0.0107

100 0.0244 0.0097 0.0314 0.0151
250 0.0214 0.0083 0.0272 0.0134

0.0169 0.0066 0.0234 0.0104

Table 5.6: Simulated probability of delay and scaled expected waiting time in
Erlang-R model with holding for Case 2. The last row gives the asymptotic ap-
proximations.

42 beds, with average occupancy level 78%, and Average Length of Stay (ALOS)
4.3 days. Lundgren & Segesten studied nurses’ service times in a medical-surgical
ward. They found that the average service time in their unit was 15.3 minutes per
service, and that the average demand rate for each patient is 0.38 requests per hour.
Therefore, we take an average service time of 15 minutes and assume that there are
0.4 requests per hour from each patient. Fitting this data to our model results in the
following parameters values: λ = 0.32, µ = 4, δ = 0.4, p = 0.975 and the fraction
of needy time is then approximately r = 0.09. This yields nominal offered load
R1 = 3.2 and R1/r = 34.4.

Figure 5.10 visualizes the dimensioning procedure for this particular MU. The
hospital management can find a pair of n and s to meet certain criteria, for exam-
ple to achieve target delay probability ε = 0.5 with reasonable blocking probability.
Figure 5.10a indicates that this target can be achieved by a variety of pairs, for in-
stance (β1, γ1) = (−0.06,−1), (β2, γ2) = (0.16, 0), (β3, γ3) = (0.36, 1) or (β4, γ4) =
(0.46, 2), among infinitely many others. According to Figure 5.10b, the pairs named
above lead to blocking probabilities 0.293, 0.165, 0.071 and 0.021, respectively. If the
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β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√

R1E[W] P(d)
√

R1E[W]

5 0.0977 0.0413 0.1521 0.0851
10 0.1070 0.0469 0.1648 0.1028
25 0.1926 0.1076 0.2421 0.1874
50 0.1431 0.0727 0.1876 0.1342

100 0.1855 0.1012 0.2282 0.1714
250 0.1775 0.0963 0.2217 0.1765

0.1442 0.0711 0.1981 0.1354

β = 2, γ = 1 β = 2, γ = 2

R1 P(d)
√

R1E[W] P(d)
√

R1E[W]

5 0.0072 0.0019 0.0250 0.0081
10 0.0067 0.0018 0.0235 0.0082
25 0.0148 0.0043 0.0325 0.0133
50 0.0092 0.0025 0.0217 0.0081

100 0.0132 0.0038 0.0277 0.0105
250 0.0114 0.0033 0.0246 0.0099

0.0078 0.0022 0.0188 0.0069

Table 5.7: Simulated probability of delay and scaled expected waiting time in
Erlang-R model with holding for Case 3. The last row gives the asymptotic ap-
proximations.
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Figure 5.9: Comparison of simulated delay probability (solid) against asymptotic
approximations (dashed) with β = (s − R1)/

√
R1 and γ = (n − R1/r)/

√
R1/r for

λ = 2, µ = 1, δ = 0.25 and p = 0.75.

manager decides that probability of blocking of more than 10 percent is not accept-
able, this leaves the choices (β3, γ3) = (0.36, 1) or (β4, γ4) = (0.46, 2) as candidate
parameter pairs. Using the two-fold square-root staffing rule si = ⌈R1 + βi

√
R1⌉

and ni = [R1/r + γi

√
R1/r], this yields feasible staffing levels (s3, n3) = (4, 40) and

(s4, n4) = (5, 46). The ultimate decision to apply any of these solutions can be based
on external factors, such as operational costs or space limitations on the number of
beds.

5.5.2 Capacity setting for Erlang-R with holding

For the holding model, we need a more sophisticated approach, exploiting the
asymptotic approximation with the fixed-point equation in (5.20). We propose the
following dimensioning procedure to achieve a preset target delay probability at
the needy queue.

Remark 5.4. In Step 2 of Algorithm 3 infinitely many pairs (β∗, γ∗) satisfy the delay
probability equation. For practical purposes, it is convenient to fix either β∗ or γ∗

beforehand, and then solve gb(β∗, γ∗) = ε for the remaining unknown. The preset
value should however be chosen with care, since gb(β∗, γ∗) is upper bounded by
the Halfin-Whitt delay probability formula

gHW(β∗) =
(

1 +
β∗Φ(β∗)

ϕ(β∗)

)−1

.

Hence, if ε > gHW(β∗), then no feasible solution to gb(β∗, γ∗) = ε exists. This
should be considered when choosing β∗. Furthermore, it is evident from Step 3
that the final values (β, γ) are always larger than (β∗, γ∗).
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Figure 5.10: Approximate performance of restricted Erlang-R with blocking for r ≈
0.09 and R1 = 3.2, as functions of β.

Input: Target delay probability ε. Parameters λ, µ, δ and p.
Output: Staffing levels s and n.

1. Set R1 := λ
(1−p)µ

and r = δ
δ+pµ .

2. Determine parameters (β∗, γ∗) such that gb(β∗, γ∗) = ε.

3. Set β = β∗ + f b(β∗, γ∗) and γ = γ∗ + f b(β∗, γ∗)/
√

r.

4. Return s =
⌈

R1 + β
√

R1

⌉

and n =
⌊

R1/r + γ
√

R1/r
⌋

.

Algorithm 3: Stationary dimensioning algorithm for ED with holding.
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We now use the same example as in Section 5.5.1 to demonstrate capacity allo-
cation decisions for the model with holding. This can be viewed as the additional
capacity the medical unit needs in terms of nurses and beds, in order to account
for the fact that patients are waiting in the ED to be admitted instead of being
blocked and transferred to a less preferred unit. Observe that the holding model
leaves less flexibility for management in choosing system parameters due to stabil-
ity constraints. For example, the policy with n = 30 (γ = −0.75) is infeasible in
the holding model. For similar reasons, only nurse staffing levels with β > 0, or
s > R1 = 3.2 are feasible.

Targeting a delay probability of 0.5 with n = 40, Figure 5.11 shows that oper-
ating a MU with holding room requires β = 0.475 or s = 5. Recall that under
the blocking policy, only s = 4 nurses were needed to achieve a delay probability
of 0.5. This example hence shows how the managerial decision to have a holding
room, rather than deferring patients to less preferred medical units, requires addi-
tional workforce in that unit (as well as the ED). This example also shows that the
facility with holding room is able to treat fewer patients simultaneously than under
blocking constraints, in line with the bounds in Section 5.3.3 and Conjecture 5.1.
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Figure 5.11: Approximate delay probability of restricted Erlang-R system with hold-
ing for r ≈ 0.09 and R1 = 3.2

5.6 Model analysis and managerial implications

In this section, we use the analysis and algorithms developed in earlier sections to
gain insights into the importance of the capacity restrictions and patient returns in
a restricted Erlang-R system by drawing a comparison to related models studied in
the literature.
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Figure 5.12: Asymptotic performance measures as a function of r in the restricted
Erlang-R model with blocking for γ = 1.

5.6.1 The influence of patient returns or the role of r

Here we study how the parameter r affects the service level in the restricted Erlang-
R model with blocking, on the basis of the asymptotic expressions in Theorem 5.1.

To better understand the connection with the single-station model and the im-
portance of returns we examine the role of r. Recall the interpretation of r as the
fraction of time a patient is needy during his stay within the system in the idealized
scenario with infinite capacity, i.e. for r ∈ (0, 1). The case r = 1 corresponds to the
setting in which patients are needy all the time, in this case patients get service in
one time. When r = 1 the infinite-server queue, describing the number of content
patients, disappears from the queueing system and we end up with a standard loss
model—M/M/s/n queue—in which capacity is scaled as

s = R1 + β
√

R1, n = R1 + γ
√

R1.

This staffing rule only makes sense in case β < γ, since no delay is experienced if
n ≤ s. If indeed γ > β, then the asymptotic delay probability and scaled blocking
probability are given by [160],

gB(β, γ) =
1 − e−β(γ−β)

1 − e−β(γ−β) + βΦ(β)/ϕ(β)
,

fB(β, γ) =
βe−β(γ−β)

1 − e−β(γ−β) + βΦ(β)/ϕ(β)
.

We can see that f b(β, γ) for increasing β approaches a lower bound that is a
function of r. To understand this, observe that as β grows, delays at the nurse queue
vanish. Then the sojourn time of an admitted patient only consists of a geometric
number of needy and content periods with mean (1/µ+ p/δ)/(1− p) = 1/(rµ(1−
p)). The blocking model can in this case be modeled as an M/G/n/n queue, with
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offered load λ/(rµ(1 − p)) = R1/r, in which the scaled blocking probability is
known to be, see [25],

√

R1 P(block) =
√

R1
(R1/r)n/n!

∑
n
k=0(R1/r)k/k!

→
√

r
ϕ(γ)

Φ(γ)
,

as R1 → ∞. This function of r is plotted in Figure 5.12b as the dashed line.

We observe that in general the probability of blocking increases with r, regard-
less of the capacity constraints on the needy station. We can explain this by observ-
ing that r influences only n in the QED staffing rule. When n reduces, more patients
are blocked. Therefore, if patients spend relatively more time in needy state, which
usually indicates services that are less interrupted, blocking will increase. Delays,
on the other hand, will decrease in such situations—the minimal delay possible can
be achieved if service is given in one time (r = 1). Returns or interruptions increase
delays significantly under QED staffing.

5.6.2 Comparing restricted and unrestricted Erlang-R models

Given the expressions for the asymptotic delay probability in the open Erlang-R
model, and its restricted versions with blocking and holding, we compare the three
policies for various values of β, γ and r. Figure 5.13 plots the delay probability for
blocking (gb(β, γ)), holding (gh(β, γ)) and Erlang-R (gHW(β)) models, as functions
of γ, while keeping β fixed, for three values of r. We make a couple of observations.
Notice that

gb(β, γ) ≤ gh(β, γ) ≤ gHW(β)

for all β, γ > 0 and r. In that sense, the holding model is an interpolation between
the blocking and the open model. As expected, the delay probabilities in the re-
stricted models converge to those of the open Erlang-R model, because increasing
γ is tantamount to lifting the stringent constraints on the system size. Note that the
rate of conversion is fast—one can provide probability of waiting close to that of the
open model with small values of γ. Indeed, the fact that when using QED staffing
not much of excessive delay results from the beds restriction is important by itself.
Also, we observe that the difference between delay probabilities increases with r.

5.6.3 The impact of visit number

We next reflect on the impact of operational capacity decisions on different patient
populations. We measure patient’s complexity by the number of times she needs
to see the nurse or the physician during her stay. In the ED context, simple-to-treat
patients will need to see the physician once, while complex ones will need multiple
visits. Hence, we divide the patients into complexity groups by the number of
visits in the Needy station. Since the number of visits is geometrically distributed,
we have a higher proportion of simple patients than complex ones; that fits well the
health care environment.
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Figure 5.13: Asymptotic delay probability in open Erlang-R (dashed), restricted
Erlang-R with blocking (marked) and restricted Erlang-R with holding (solid), as
function of γ with β = 0.1 (blue), β = 0.5 (orange) and β = 1 (green) fixed.

Figure 5.14 shows the waiting time in the needy and pre-entering queues, and
the total waiting time, as a function of n (number of beds), for each complexity
group. Obviously, the expected waiting time in the pre-entering queue decreases
with n, while the needy waiting time increases. For patients who require a relative
large number of visits of the physician, in this case more than 6, the total needy
wait is the dominant part of the total waiting time. Therefore, as n grows, the
total waiting time first decreases and then increases. In fact, Figure 5.14b suggests
that there is an optimal number of beds n that minimizes the total wait for each
complexity type. Thus, size restrictions reduce the length-of-stay of patients with
complex health conditions (given that the constraint is not too tight). On the other
hand, this figure also shows that no such n exists for patients who only require little
assistance. Hence, there is no n that improves the sojourn time of all patients in the
ED simultaneously. This leaves the decision to the hospital manager to weigh the
importance of patients of different complexity levels.

Remark 5.5. From a different perspective, note that in queueing systems such as
communication systems, the partitioning of a job to sizable quantities and schedul-
ing those jobs in a similar dynamic to the Erlang-R model became a popular way
for increasing throughput. This is because this effectively schedules jobs by their
size even though the total job requirements are uncertain. This in fact creates a
shortest-job-first policy without prior knowledge of job size [39]. Considering that
perspective we note that the Erlang-R model actually prioritizes simple jobs over
complex ones. But without restrictions, when load is too high, such procedures
may lead to very long LOS of long jobs. The capacity restriction we analyze in this
chapter, in both of its versions, limits such delays. Hence, even in cases in which the
returns themselves are created by a managerial decision, imposing the additional
managerial restriction on entering the system has benefits.



5.6. Model analysis and managerial implications 157

35 40 45 50 55 60
0

2

4

6

8

10

n

(a) Expected pre-entering waiting

(red) and needy waiting times

(black)

35 40 45 50 55 60
0

2

4

6

8

10

n

N = 1

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

N = 8

N = 9

N = 10

(b) Total expected waiting times

Figure 5.14: Expected waiting times as a function of n given the number of visits N
in the Erlang-R model with holding with λ = 2 µ = 1, δ = 0.25, p = 0.75 and s = 9.

5.6.4 Case study: comparison of operational decisions

We now illustrate how the managerial decision to operate under a specific oper-
ational regime affects ED performance in terms of efficiency and quality-of-care,
through a case study. The practical environment we investigate is the ED of a
moderately-sized hospital, which faces the arrival pattern λ(t) plotted in Figure
5.15a on a typical workday. Other parameters of the model are estimated to be
µ = 6.67, δ = 2.18 and p = 0.76, so that r = 0.301. These parameters were taken
from [226]. In order to set time-varying staffing levels s(t) and n(t), we adopt the
mean-offered load (MOL) approximation of the demand process of [125]. This ap-
proach initially presumes infinite capacity to obtain the number of patients R(t) in
the queueing system as a function of time. This offered load function then replaces
the (constant) value of R in the stationary dimensioning scheme under considera-
tion, to determine the adequate number of servers at each point in time. Following
this idea in our two-dimensional queueing system, we find the offered load func-
tion for the nurses R1(t) and the offered load function for the beds R1(t) + R2(t) as
the solution of the system of ODEs,

d

dt
R1(t) = λ(t) + δR2(t)− µR1(t), (5.24)

d

dt
R2(t) = pµR1(t)− δR2(t), (5.25)

see [226, Thm. 2] for details. For this case study’s parameters, these offered load
functions are also plotted in Figure 5.15a. While the number of nurses can be ad-
justed in a relatively flexible manner, the value of n, which echoes a hard restriction
on the ED capacity, is naturally less amenable to fluctuations. The reason is that
the maximum ED capacity is to a large extent determined by its hardware, such as
beds and medical equipment. However, the ED manager might deliberately con-
sider reducing n during more quiet periods of the day, e.g. during the night, by
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Figure 5.15: Empirical arrival rate and offered load functions R1(t) and R1(t) +
R2(t) in Israeli ED and corresponding capacity functions.

imposing bed-to-physician constraints. This is done, for example, when setting a
case management constraint [196, 54]. Therefore, we consider the scenario in which
both s and n are time-dependent but we do not force a constant case management
quantity, rather let our new methodology recommend an appropriate one.

Extrapolating Algorithm 3 to the time-varying case, Step 4 is replaced by

s(t) = R1(t) + β
√

R1(t),

n(t) = R1(t) + R2(t) + γ
√

R1(t) + R2(t),

for some β, γ > 0. Since R1(t) and R2(t) are given, the QED staffing problem again
reduces to finding the pair (β, γ).

Figure 5.15b plots the capacity functions for β = 0.5 and γ = 0.5, assuming
capacity can only be adjusted every 30 minutes. In this case study, we consider
three pairs of parameters (β, γ). For each of these we investigate, using simulation,
the differences in the time-varying performance indicators between the policy with
blocking and holding.

The simulation results are presented in Figure 5.16. Figure 5.16a shows that
the MOL approach for capacity allocation roughly stabilizes the delay probability.
Figure 5.16b shows that the fraction of patients not entering the ED on arrival in
the blocking model is reasonable for all parameter pairs considered and the graphs
are ordered according to γ. We also see a significant difference with holding. Ob-
serve also that the holding probability drops in the period 8–13, which is exactly
the period when the system is experiencing peak offered load. Hence, this tem-
porary reduction is in line with our asymptotic findings that the probability of
blocking/holding is O(1/

√
R1).

Finally note that the three parameter settings lead to different nurse-to-patient
ratios. Clearly, larger β leads to small nurse-to-patient ratios (due do larger staffing).
Figure 5.16c demonstrates that for (β, γ) = (1, 1.5) and (β, γ) = (2, 1) the difference
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Figure 5.16: Simulation results for case study. Solid and dashed lines represent
time-varying performance in the blocking and holding model, respectively.
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Figure 5.17: Simulated queue length of holding model with different values of γ.

between the holding policy and the blocking policy is small. However, for (β, γ) =
(0.1, 2) we see a significant increase in the ratio during night hours. This may be due
to the tight nurse schedule, that causes the holding queue to build up just before
midnight. This queue then empties latter on, causing an increase in workload per
nurse in the period 24–7.

To see the direct effect of the size restriction on the queue lengths, we plotted
the mean holding and service queue lengths in the holding model as a function of
the parameter γ in Figure 5.17. Note that for all γ considered, the holding queue
lengtsh are, as expected, of a smaller order than the number of patients admitted.
Also, the holding queue length decreases as we increase γ. The service queue
lengths naturally approach the expected queue lengths in the Erlang-R model as γ

is increased.

5.7 Conclusion & future research

In this chapter we developed and analyzed a queueing network tailored to a health
care environment with finite-size restrictions. Using the asymptotic approxima-
tions, numerical analysis and simulation, we gained insight into staffing problems
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that arise in EDs, and proposed an efficient, flexible, and easy to implement method-
ology to dimension medical facilities through a two-fold staffing rule.

The dimensioning scheme we developed provides a powerful and elegant way
of finding adequate staffing levels in emergency departments. Nonetheless, we see
some avenues for further research.

The asymptotic approximations we developed enabled us to take the first step
towards characterizing the pre-entering queue behavior in the QED regime. We
observed how the holding queue length vanishes at rate 1/

√
R1 as R1 → ∞. Yet,

our analysis did not yield explicit characteristics on the holding queue and hold-
ing times. These performance indicators are naturally important to study if one
wants to consider the trade-off between waiting time inside the ED and waiting
time outside the ED time (pre-entering time).

Furthermore, it is worthwhile to study the robustness of our approximations
against the service and content time distributions. Since the content phase of a
patient is modeled after an infinite-server queue, we expect our approximations to
be useful for content time distributions beyond the exponential distribution as well,
due to distributional insensitivity of the service time in infinite-server queues. For
the needy phase, modeled after a multi-server queue, this insensitivity result does
not hold and hence this needs further research.

Finally, the restricted Erlang-R model obviously gives a highly simplified view
of the complex reality of the ED. In practice, distinctive features such as a triage
system (with patient priorities), patient boarding time and availability of medical
equipment may play a decisive role on ED dynamics. However, we think the anal-
ysis and dimensioning algorithms presented in this chapter can serve as a building
block for staffing procedures that do account for these case-specific factors.

Appendix

5.A Description of the QBD process

5.A.1 The QBD-process

We consider the QBD-process X(t) = (N(t), Q1(t)) in stationarity. Let ν(i) =
min{i, s}µ. To determine the (outgoing) transition rates of the process X we dis-
tinguish between the following cases:

• Transitions from (0, 0): There are no patients in the Emergency Department and
thus the only possible occurrence is when a new patient arrives. This results
in a transition to (1, 1) and occurs with rate λ.

• Transitions from (i, 0), 1 ≤ i < n: There are exactly i patients assigned to a
bed of which none are seen by a nurse. Then either one of those patients
becomes needy, or a new patient arrives at the Emergency Department that
can immediately be seen by a nurse. The first results in a transition to (i, 1)
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and occurs at rate iδ, and the second results in a transition to (i + 1, 1) and
occurs with rate λ.

• Transitions from (i, 0), i ≥ n: Again, the only possible transitions arise from
either a newly arrived patient or a patient assigned to a bed becoming needy.
However, a newly arrived patient finds all beds occupied and needs to wait.
Thus, with rate λ we have a transition to (i+ 1, 0) and with rate nδ a transition
to (i, 1).

• Transitions from (i, i), i < n: In this case all patients assigned to a bed are in
need of service. With rate λ a new patient arrives at the Emergency Depart-
ment. She joins the (possible) queue to be seen by a nurse immediately, so
this results in a transition to (i + 1, i + 1). Moreover, since there are only s < n
nurses, a service completion occurs with rate ν(i). With probability p the pa-
tient turns to the holding phase, so in total we still have i patients with one
patient less in queue for a nurse. With probability 1 − p the patient leaves the
Emergency Department, decreasing both N and Q1 by one. In other words,
with rate pν(i) we have a transition to (i, i − 1) and with rate (1 − p)ν(i) we
have a transition to (i − 1, i − 1).

• Transitions from (n, n): Similar to the previous case, we have a transition to
(n, n − 1) with rate psµ and with rate (1 − p)sµ we have a transition to (n −
1, n− 1). In this case however, a newly arrived patient finds all beds occupied,
resulting in a transition to (n + 1, n) with rate λ.

• Transitions from (i, n), i > n: We have a transition to (i + 1, n) with rate λ and
a transition to (i, n − 1) with rate psµ. In case that a patient leaves the Emer-
gency Department there are i − n > 0 patients in the holding room waiting
for an available bed. Thus, one of the i − n patients in the holding room is
assigned to the available bed in need of service. That is, with rate (1 − p)sµ

we have a transition to (i − 1, n).

• Transitions from (i, j), 1 ≤ j < i < n: There are four possible transitions. First,
with rate λ there is a new arrival which results in a transition to (i + 1, j + 1).
Second, with rate (i − j)δ a patient in one of the beds becomes needy, which
results in a transition to (i, j + 1). Third, with rate pν(j) a patient turns to the
content state after service completion, which results in a transition to (i, j− 1).
Last, with rate (1 − p)ν(j) a patient leaves the Emergency Department after
service completion, which results in a transition to (i − 1, j − 1).

• Transitions from (n, j), 1 ≤ j < n: This case is similar to the previous one. The
only difference arises when a new patient arrives, since all n beds are already
occupied. Thus, with rate λ we have a transition to (n + 1, j).

• Transitions from (i, j), i > n, 1 ≤ j ≤ n: This case is the previous one, except
when a patient leaves the Emergency Department after service completion.
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Figure 5.18: Transition diagram for the Erlang-R model with holding.

Then one of the (i − n) patients in the holding room will be assigned to a bed
in need of service. This results in a transition to (i − 1, j) with rate (1− p)ν(j).

The state space and transition rates of the Erlang-R model with holding are illus-
trated in Figure 5.18. The state space can be partitioned according to its levels,
where level i corresponds to a total queue length N = i patients. This results in
an infinite-sized matrix consisting of blocks, where each block corresponds to the
transition flow from one level to another. Since the only transitions allowed are
within the same level or between two adjacent levels in a QBD-process, we obtain a
tridiagonal block structure. Each block consists of elements representing the transi-
tion rate of one state to another, and therefore each block is a matrix of size at most
(n + 1)× (n + 1).

For the Erlang-R model with holding this gives the following result. Let P
denote the transition matrix of the process (N(t), Q1(t)). We have the boundary
levels {1, 2, ..., n} and P is of the form

P =
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where Bii ∈ R1
(i+1)×(i+1), Bi i−1 ∈ R1

(i+1)×i, Bi−1 i ∈ R1
i×(i+1), and A0, A1, A2 ∈

R1
(n+1)×(n+1). The matrices of transition rates for the boundary states are given by

B00 = (−λ), Bi−1 i =













0 λ
. . . λ

. . .
. . .

0 λ













,

Bi i−1 =

















0
(1 − p)µ 0

(1 − p)ν(2)
. . .

. . . 0
(1 − p)ν(i)

















,

and

Bii =









−(λ + iδ) iδ
pµ −(λ + µ + (i − 1)δ) (i − 1)δ

. . .
. . .

. . .

pν(i − 1) −(λ + ν(i − 1) + δ) δ
pν(i) −(λ + ν(i))









.

Moreover, the transition rates are given by

A0 =











λ

λ
. . .

λ











A2 =

























0
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2(1 − p)µ
. . .

s(1 − p)µ
. . .
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,

and

A1 =

















−(λ + nδ) nδ
pµ −(λ + µ + (n − 1)δ) (n − 1)δ

. . .
. . .

. . .

spµ −(λ + sµ + (n − s)δ) (n − s)δ

. . .
. . .

. . .

spµ −(λ + sµ + δ) δ
spµ −(λ + sµ)
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5.A.2 Stability condition

From the general theory of QBD processes [169] follows that the Markov process
(N(t), Q1(t)) is ergodic (stable) if and only if

πA0e < πA2e, (5.26)

where e is the all one column vector and π = (π0, ..., πn) is the equilibrium distri-
bution of the Markov process with generator A0 + A1 + A2. In other words, π is
such that

π(A0 + A1 + A2) = 0, πe = 1, (5.27)

and

A0 + A1 + A2 =

















−nδ nδ
pµ −(pµ + (n − 1)δ) (n − 1)δ

. . .
. . .

. . .

spµ −(psµ + (n − s)δ) (n − s)δ

. . .
. . .

. . .

psµ −(psµ + δ) δ
psµ −psµ

















.

Then π must satisfy the balance equations

−nδπ0 + pµπ1 = 0,

(n − j + 1)δπj−1 − (pν(j) + (n − j)δ)πj + pν(j + 1)πj+1 = 0,

δπn−1 − psµπn = 0,

with ν(j) = min{j, s}µ, and the normalization condition

n

∑
i=0

πi = 1.

It is readily verified that

πi =











π0(
n
i )
(

δ
pµ

)i
for 0 ≤ i ≤ s,

π0(
n
i )

i!
s! s

s−i
(

δ
pµ

)i
for s + 1 ≤ i ≤ n

(5.28)

with

π0 =

(

s

∑
i=0

(

n

i

)(

δ

pµ

)i

+
n

∑
i=s+1

(

n

i

)

i!

s!
ss−i

(

δ

pµ

)i
)−1

,

satisfies the balance equations and the normalization condition.
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Proposition 5.4. The distribution of the closed two-node Jackson network illustrated in
Figure 5.2a is given by

π̂i =











π̂0(
n
i )
(

δ
pµ

)i
for 0 ≤ i ≤ s,

π̂0(
n
i )

i!
s! s

s−i
(

δ
pµ

)i
for s + 1 ≤ i ≤ n

(5.29)

with

π̂0 =

[

s

∑
i=0

(

n

i

)(

δ

pµ

)i

+
n

∑
i=s+1

(

n

i

)

i!

s!
ss−i

(

δ

pµ

)i
]−1

.

Proof. We have a two-node closed Jackson network, with probability transition ma-
trix

P =

(

1 − p p
1 0

)

.

Let ri(m) denote the rate of service when there are m patients at queue i, so r1(m) =
min{m, s} and r2(m) = m. The throughput vector γ = (γ1, γ2) ∈ R1

2 must satisfy
γ = γP and we find that γ = (p, 1) suffices. From the general theory of Jackson
networks, see [112], it follows that the stationary distribution is given by

πi = G−1g1(i)g2(n − i)

with

g1(i) =
(γ1/µ)i

∏
i
m=1 r1(m)

, g2(n − i) = (γ2/δ)n−i

∏
n−i
m=1 r2(m)

,

and normalization constant G = ∑
n
i=0 g1(i)g2(n − i). Then,

g1(i) =

{

1
i!µi for 0 ≤ i ≤ s,

1
s!si−sµi for s + 1 ≤ i ≤ n,

g2(n − i) =
1

(n − i)!

( p

δ

)n
(

δ

p

)i

,

and rewriting the expressions yields (5.29).

5.A.3 Stationary distribution

Assuming that the stability condition is satisfied, we can determine the unique
stationary distribution of the Markov process (N(t), Q1(t)). The vector πi can be
written as πn+i = πnGi for i = 0, 1, ..., where G is the minimal nonnegative solution
of the non-linear matrix equation

A0 + GA1 + G2 A2 = 0. (5.30)
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The balance equations can be written as

πi−1 A0 + πi A1 + πi+1 A2 = 0, i = n + 1, n + 2, ...

and using πn+i = πnGi−n for i = 0, 1, ..., this find

πnGi−n−1 (A0 + GA1 + GA2) = 0, i = n + 1, n + 2, ....

Moreover, we have the boundary equations

π0B00 + π1B10 = 0

π0B01 + π1B11 + π2B21 = 0

π1B12 + π1B22 + π2B32 = 0

...

πn−2Bn−2 n−1 + πn−1Bn−1 n−1 + πnBn n−1 = 0

πn−1Bn−1 n + πnBnn + πn+1 A2 = 0,

along with the normalization equation

1 =
∞

∑
i=0

πie =
n−1

∑
i=0

πie + πn(I − G)−1e,

where we slightly abuse notation by using e as the all ones vector of appropriate
size. We note that the matrix G has a spectral radius less than one and therefore
(I − G) is invertible.

These equations provide the tools for finding the equilibrium probabilities. Al-
though it is hard to solve G analytically from Equation (5.30), it is easy to solve
numerically by using the following algorithm (matrix-geometric method). Rewrit-
ing (5.30) gives

G = −(A0 + G2 A2)A−1
1 ,

where A1 is invertible, since it is a transient generator matrix. Let

Gk+1 = −(A0 + G2
k A2)A−1

1 ,

starting with G0 = 0. We note that Gk ↑ G as k grows to infinity [169]. Once
||Gk+1 − Gk||2 is below a certain preset threshold, we approximate G by Gk+1.

5.B Proof of Proposition 5.2

First, note that by definition of the Erlang-R model with holding, in which no more
than n patients can be admitted in the ED simultaneously, that Qh

1(t) + Qh
2(t) ≤ n =

QJ
1(t) + QJ

2(t) follows directly. Therefore, we only consider the relation between the
states in the blocking and holding variants Erlang-R model.
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As noted Section 5.3.1, the model with holding can be characterized as a three-
dimensional Markov chain Xh(t) = (H(t), Qh

1(t), Qh
2(t)) in which the components

denote the number of holding, needy and content patients respectively. The Erlang-
R model with blocking similarly admits a Markov process description, but with two
dimensions, namely Xb(t) = (Qb

1(t), Qb
2(t)).

We prove the result by constructing a coupling between the Markov processes
Xh and Xb. Let Z(t) :=

(

X̂h(t), X̂b(t)
)

=
(

Ĥ(t), Q̂h
1(t), Q̂h

2(t), Q̂b
1(t), Q̂b

2(t)
)

.

We first define the transition rates of this five-dimensional Markov process,
which naturally only depend on the current state of the system. After that we
show that the transition rates relevant to X̂h(t) and X̂b(t) coincide with those of
Xh(t) and Xb(t), respectively. The latter implies that the marginal transitions of
X̂h(t) and Xh(t) (and X̂b(t) and Xb(t)) are equal, and hence so are their probability
distribution of the Markov processes.

Let Z(t) = (h, qh
1, qh

2, qb
1, qb

2). While defining the reachable states from this state
and associated transition rates, we distinguish four transition types, and further
differentiate the transition rates depending on the current state.

Arrival. Arrivals occur in both models simultaneously, but are handled differently
according to the current queue lengths.

1. If qh
1 + qh

2 < n and qb
1 + qb

2 < n,

(h, qh
1 + 1, qh

2, qb
1 + 1, qb

2) with rate λ, (5.31)

2. if qh
1 + qh

2 = n and qb
1 + qb

2 < n,

(h + 1, qh
1, qh

2, qb
1 + 1, qb

2) with rate λ, (5.32)

3. if qh
1 + qh

2 < n and qb
1 + qb

2 = n,

(h, qh
1 + 1, qh

2, qb
1, qb

2) with rate λ, (5.33)

4. if qh
1 + qh

2 = n and qb
1 + qb

2 = n,

(h + 1, qh
1 + 1, qh

2, qb
1, qb

2) with rate λ, (5.34)

Departure. Basically, we align service completions in the two models, but allow a
completion occurring solely in either of one of the two models, only if the queue
length in this model is strictly larger than in the other one.

1. If qh
1 ≥ qb

1 and h > 0

{

(h − 1, qh
1, qh

2, qb
1 − 1, qb

2) with rate (qb
1 ∧ s)(1 − p)µ,

(h − 1, qh
1, qh

2, qb
1, qb

2) with rate [(qh
1 ∧ s)− (qb

1 ∧ s)](1 − p)µ.
(5.35)
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2. If qh
1 < qb

1 and h > 0

{

(h − 1, qh
1, qh

2, qb
1 − 1, qb

2) with rate (qh
1 ∧ s)(1 − p)µ,

(h, qh
1, qh

2, qb
1 − 1, qb

2) with rate [(qb
1 ∧ s)− (qh

1 ∧ s)](1 − p)µ.
(5.36)

3. If qh
1 ≥ qb

1 and h = 0

{

(0, qh
1 − 1, qh

2, qb
1 − 1, qb

2) with rate (qb
1 ∧ s)(1 − p)µ,

(0, qh
1 − 1, qh

2, qb
1, qb

2) with rate [(qh
1 ∧ s)− (qb

1 ∧ s)](1 − p)µ.
(5.37)

4. If qh
1 < qb

1 and h = 0

{

(0, qh
1 − 1, qh

2, qb
1 − 1, qb

2) with rate (qh
1 ∧ s)(1 − p)µ,

(0, qh
1, qh

2, qb
1 − 1, qb

2) with rate [(qb
1 ∧ s)− (qh

1 ∧ s)](1 − p)µ.
(5.38)

Become content. The differentiation between transitions is similar to those in the
departure transition type.

1. If qh
1 ≥ qb

1,

{

(h, qh
1 − 1, qh

2 + 1, qb
1 − 1, qb

2 + 1) with rate (qb
1 ∧ s)pµ,

(h, qh
1 − 1, qh

2 + 1, qb
1, qb

2) with rate [(qh
1 ∧ s)− (qb

1 ∧ s)]pµ.
(5.39)

2. If qh
1 < qb

1,

{

(h, qh
1 − 1, qh

2 + 1, qb
1 − 1, qb

2 + 1) with rate (qh
1 ∧ s)pµ,

(h, qh
1, qh

2, qb
1 − 1, qb

2 + 1) with rate [(qb
1 ∧ s)− (qh

1 ∧ s)]pµ.
(5.40)

Become needy.

1. If qh
2 ≥ qb

2,

{

(h, qh
1 + 1, qh

2 − 1, qb
1 + 1, qb

2 − 1) with rate qb
2δ,

(h, qh
1 + 1, qh

2 − 1, qb
1, qb

2) with rate (qh
2 − qb

2)δ,
(5.41)

2. If qh
2 < qb

2,

{

(h, qh
1 + 1, qh

2 − 1, qb
1 + 1, qb

2 − 1) with rate qh
2δ,

(h, qh
1, qh

2, qb
1 + 1, qb

2 − 1) with rate (qb
2 − qh

2)δ,
(5.42)

This set of transitions defines the dynamics of the Markov process Z(t) =
(X̂h(t), X̂b(t)). Let us now restrict our attention to the transitions in which (at least
one of) the first three coordinates of Z(t) changes, that is, the marginal transitions
of the process X̂h. Let X̂h(t) = (h, qh

1, qh
2), then according to the transition scheme

above, X̂h moves to state
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1. If qh
1 + qh

2 < n (and hence necessarily h = 0),















(0, qh
1 + 1, qh

2) with rate λ,

(0, qh
1 − 1, qh

2) with rate (qh
1 ∧ s)(1 − p)µ,

(0, qh
1 − 1, qh

2 + 1) with rate (qh
1 ∧ s)pµ,

(0, qh
1 + 1, qh

2 − 1) with rate qh
2δ.

2. if qh
1 + qh

2 = n and h = 0,















(1, qh
1, qh

2) with rate λ,

(0, qh
1, qh

2) with rate (qh
1 ∧ s)(1 − p)µ,

(0, qh
1 − 1, qh

2 + 1) with rate (qh
1 ∧ s)pµ,

(0, qh
1 + 1, qh

2 − 1) with rate qh
2δ.

3. if h > 0 (and hence necessarily qh
1 + qh

2 = n),















(h + 1, qh
1, qh

2) with rate λ,

(h − 1, qh
1, qh

2) with rate (qh
1 ∧ s)(1 − p)µ,

(h, qh
1 − 1, qh

2 + 1) with rate (qh
1 ∧ s)pµ,

(h, qh
1 + 1, qh

2 − 1) with rate qh
2δ.

One can check that these transitions indeed coincide with the transitions in the
original holding model, hence X̂h(t)

d
= Xh(t).

Similarly, when focusing on transitions of Z(t) that are relevant for X̂b(t), we
deduce the following transition scheme. If X̂b(t) = (qb

1, qb
2), then the next move

according to the transitions of Z(t) is



















(qb
1 + ✶{qb

1+qb
2<n}, qb

2) with rate λ,

(qb
1 − 1, qb

2) with rate (qb
1 ∧ s)(1 − p)µ,

(qb
1 − 1, qb

2 + 1) with rate (qb
1 ∧ s)pµ,

(qb
1 + 1, qb

2 − 1) with rate qb
2δ.

These transition rates clearly coincide with the original Erlang-R model with block-

ing, and also hence X̂b(t)
d
= Xh(t).

Next, we show that under this coupling scheme we have that if Ĥ(0) = 0,
Q̂h

1(0) = Q̂b
1(0) and Q̂h

2(0) = Q̂b
2(0) then for all t ≥ 0, Z(t) satisfies the hypothesis:

(i) Q̂b
1(t) + Q̂b

2(t) ≤ Q̂h
1(t) + Q̂h

2(t),

(ii) Q̂b
2(t) ≤ Q̂h

2(t),

(iii) Q̂b
1(t) ≤ Q̂h

1(t) + H(t).

We do so by induction on the next state reached after a transition of the joint Markov
process Z = (X̂h, X̂b). First of all, Z(0) clearly satisfies (i)-(iii). Next, assume
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Z(t−) = (h, qh
1, qh

2, qb
1, qb

2) satisfies the hypothesis and a transition occurs at t. We
show that under the specified coupling scheme, the state reached after the next
transition, Z(t) must satisfy (i)-(iii) as well. To do so, we differentiate between the
four types of transitions that could occur: arrival, departure, become content and
become needy.

Arrival. Recall that under our coupling scheme an arrival always occurs in both the
holding and blocking model simultaneously, see (5.31)–(5.34). Furthermore, qh

2 and
qb

2 are unchanged during this transition, rendering (ii) trivial.
By hypothesis qb

1 + qb
2 ≤ qh

1 + qb
2, hence the event qh

1 + qh
2 < n and qh

1 + qb
2 = n,

with resulting state (0, qh
1 + 1, qh

2, qb
1, qb

2), can be excluded from our analysis. We
check the conditions for the remaining three cases.

1. If Z(t) = (0, qh
1 + 1, qh

2, qb
1 + 1, qb

2), then qb
1 + qb

2 < n and qh
1 + qh

2 < n.

(i) Q̂b
1(t) + Q̂b

2(t) = qb
1 + qb

2 + 1
(i)
≤ qh

1 + qh
2 + 1 = Q̂h

1(t) + Q̂h
2(t).

(iii) Q̂b
1(t) = qb

1 + 1
(iii)
≤ qh

1 + 1 = Q̂h
1(t) = Q̂h

1(t) + Ĥ(t).

2. If Z(t) = (h + 1, qh
1, qh

2, qb
1 + 1, qb

2), then qb
1 + qb

2 < n and qh
1 + qh

2 = n.

(i) Q̂b
1(t) + Q̂b

2(t) = qb
1 + qb

2 + 1 ≤ n = qh
1 + qh

2 = Q̂h
1(t) + Q̂h

2(t).

(iii) Q̂b
1(t) = qb

1 + 1
(iii)
≤ qh

1 + 1 = Q̂h
1(t) + Ĥ(t).

3. If Z(t) = (h + 1, qh
1, qh

2, qb
1, qb

2), then qb
1 + qb

2 = qh
1 + qh

2 = n.

(i) Q̂b
1(t) + Q̂b

2(t) = qb
1 + qb

2

(i)
≤ qh

1 + qh
2 = Q̂h

1(t) + Q̂h
2(t).

(iii) Q̂b
1(t) = qb

1

(iii)
≤ qh

1 + h < qh
1 + h + 1 = Ĥ(t).

Departure. By carefully examining the possible state transitions of Z(t) following
a departure, we list six reachable states. However, by (iii), we have that if h = 0,
then qb

1 ≤ qh
1, which excludes the state (0, qh

1, qh
2, qb

1, qb
2) in (5.38) from the reachability

graph. We check the remaining states for conditions (i)–(iii). Again, during a de-
parture, qb

2 and qh
2 are unchanged, so (ii) is automatically satisfied by the induction

hypothesis.

1. If Z(t) = (h − 1, qh
1, qh

2, qb
1 − 1, qb

2), then h > 0.

(i) Q̂b
1(t) + Q̂b

2(t) = qb
1 + qb

2 − 1
(i)
≤ qh

1 + qh
2 − 1 < qh

1 + qh
2 = Q̂h

1(t) + Q̂h
2(t).

(iii) Q̂b
1(t) = qb

1 − 1
(iii)
≤ qh

1 + h − 1 = Q̂h
1(t) + Ĥ(t).

2. If Z(t) = (h − 1, qh
1, qh

2, qb
1, qb

2), then h > 0 and qh
1 ≥ qb

1 (*).

(i) Q̂b
1(t) + Q̂b

2(t) = qb
1 + qb

2

(i)
≤ qh

1 + qh
2 = Q̂h

1(t) + Q̂h
2(t).

(iii) Q̂b
1(t) = qb

1

(∗)
≤ qh

1 − 1 ≤ qh
1 + h − 1 = Q̂h

1(t) + Ĥ(t).
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3. If Z(t) = (h, qh
1, qh

2, qb
1 − 1, qb

2), then h > 0 and qh
1 < qb

1.

(i) Q̂b
1(t) + Q̂b

2(t) = qb
1 + qb

2 − 1 < qb
1 + qb

2

(i)
≤ qh

1 + qh
2 = Q̂h

1(t) + Q̂h
2(t).

(iii) Q̂b
1(t) = qb

1 − 1 < qb
1

(iii)
≤ qh

1 + h = Q̂h
1(t) + Ĥ(t).

4. If Z(t) = (h, qh
1 − 1, qh

2, qb
1 − 1, qb

2), then h = 0.

(i) Q̂b
1(t) + Q̂b

2(t) = (qb
1 − 1) + qb

2 − 1 <

(i)
≤ (qh

1 − 1) + qh
2 = Q̂h

1(t) + Q̂h
2(t).

(iii) Q̂b
1(t) = qb

1 − 1
(iii)
≤ qh

1 − 1 = Q̂h
1(t) + Ĥ(t).

5. If Z(t) = (0, qh
1 − 1, qh

2, qb
1, qb

2), then h = 0 and qh
1 > qb

1 (*).

(i) Q̂b
1(t)+ Q̂b

2(t) = qb
1 + qb

2

(i)
≤ (qh

1 − 1)+ qb
2

(ii)
≤ (qh

1 − 1)+ qh
2 = Q̂h

1(t)+ Q̂h
2(t).

(iii) Q̂b
1(t) = qb

1

(∗)
≤ qh

1 − 1 = Q̂h
1(t) + Ĥ(t).

Content start. On the event of a patient becoming content, it is clear that the sums
Q̂h

1(t) + Q̂h
2(t) and Q̂b

1(t) + Q̂b
2(t) and H(t) are unaffected. This means that (i) is di-

rectly satisfied by the induction hypothesis. According to (5.39)–(5.40), three states
can be reached.

1. If Z(t) = (h, qh
1 − 1, qh

2 + 1, qb
1 − 1, qb

2 + 1),

(ii) Q̂b
2(t) = qb

2 + 1
(ii)
≤ qh

2 + 1 = Q̂h
2(t).

(iii) Q̂b
1(t) = qb

1 − 1
(iii)
≤ qh

1 + h − 1 = Q̂h
1(t) + Ĥ(t).

2. If Z(t) = (h, qh
1 − 1, qh

2 + 1, qb
1, qb

2), then qh
1 > qb

1,

(ii) Q̂b
2(t) = qb

2

(ii)
≤ qh

2 < qh
2 + 1 = Q̂h

2(t).

(iii) Q̂b
1(t) = qb

1

(iii)
≤ qh

1 + h < qh
1 + 1 + h = Q̂h

1(t) + Ĥ(t).

3. If Z(t) = (h, qh
1, qh

2, qb
1 − 1, qb

2 + 1), then qb
1 > qh

1 (*) and hence by (iii) h > 0.
The latter is only possible if qh

1 + qh
2 = n,

(ii) Q̂b
2(t) = qb

2 + 1 ≤ n − qb
1 + 1 = (qh

1 + qh
2)− qb

1 + 1
(∗)
≤ qh

2 = Q̂h
2(t).

(iii) Q̂b
1(t) = qb

1 − 1 < qh
1 + h − 1

(∗)
≤ qh

1 + h = Q̂h
1(t) + Ĥ(t).

Become needy. Just as in the event of content start, the sums Q̂h
1(t) + Q̂h

2(t) and
Q̂b

1(t) + Q̂b
2(t) and H(t) are unaffected, whereby (i) is directly satisfied by the in-

duction hypothesis. By (ii), we have qh
2 ≥ qb

2. This excludes the state (h, qh
1, qh

2, qb
1 +

1, qb
2 − 1) from being reached, see (5.42). We check the remaining two possibilities.

1. If Z(t) = (h, qh
1 + 1, qh

2 − 1, qb
1 + 1, qb

2 − 1).

(ii) Q̂b
2(t) = qb

2 − 1
(ii)
≤ qh

2 − 1 = Q̂h
2(t).
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(iii) Q̂b
1(t) = qb

1 + 1
(iii)
≤ qh

1 + h + 1 = Q̂h
1(t) + Ĥ(t).

2. If Z(t) = (h, qh
1 + 1, qh

2 − 1, qb
1, qb

2), then qh
2 > qb

2 (*).

(ii) Q̂b
2(t) = qb

2

(∗)
≤ qh

2 − 1 = Q̂h
2(t).

(iii) Q̂b
1(t) = qb

1

(iii)
≤ qh

1 + h < qh
1 + 1 + h = Q̂h

1(t) + Ĥ(t).

Hence, the state reached after any feasible transition under the coupling scheme
satisfies the conditions (i)–(iii). Thus we conclude that the joint process
(Ĥ(t), Q̂h

1(t), Q̂h
2(t), Q̂b

1(t), Q̂b
2(t)) adheres to (i)–(iii) for all t. Consequently, we have

that (i) implies

P

(

Qb
1(t) + Qb

2(t) ≥ k
)

= P

(

Q̂b
1(t) + Q̂b

2(t) ≥ k
)

=
n

∑
j=0

P

(

Q̂b
1(t) + Q̂b

2(t) ≥ k, Q̂h
1(t) + Q̂h

2(t) = j
)

=
n

∑
j=k

P

(

Q̂b
1(t) + Q̂b

2(t) ≥ k, Q̂h
1(t) + Q̂h

2(t) = j
)

≤
n

∑
j=h

P

(

Q̂h
1(t) + Q̂h

2(t) = j
)

= P

(

Qh
1(t) + Qh

2(t) ≥ k
)

= P

(

Qh
1(t) + Qh

2(t) ≥ k
)

.

The other two orderings follow similarly.

Remark 5.6. Note that under this coupling scheme we cannot get the ordering
Q̂h

1(t)(t) ≥ Q̂b
1(t)(t) for all t ≥ 0. A minimal counter example occurs for s = n = 1.

Let Z(0) = ((0, 0, 0), (0, 0)). First, two arrivals occur, such that state ((1, 1, 0), (1, 0))
is reached, followed by a departure transition, yielding ((0, 1, 0), (0, 0)). Next, the
one patient left in the model with holding system becomes content, so that we ob-
tain ((0, 0, 1), (0, 0)). At this stage, if an arrival occurs, the arriving patient will be
put in the holding queue in the model with holding, and admitted to nurse queue
in the model with blocking. Hence we end up in state ((1, 0, 1), (1, 0)), in which
Q̂h

1(t) < Q̂b
1(t).

5.C Proof of Proposition 5.3

Define

A(s, n) =
s

∑
k=0

k

s

(

n

k

)

bk, B(s, n) =
n

∑
k=s+1

k!

s!

(

n

k

)

ss−kbk, C(s, n) =
s

∑
k=0

(

n

k

)

bk,
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where b = δ/pµ = r/(1 − r). Then

ρmax(s, n) =
A(s, n) + B(s, n)

C(s, n) + B(s, n)
.

Proving that ρmax(s, n) → 1 as R1 → ∞ with s and n as in (5.11) is equivalent to
showing that

1 − ρmax(s, n) =
C(s, n)− A(s, n)

C(s, n) + B(s, n)
=

(1 + b)−n[C(s, n)− A(s, n)]

(1 + b)−n[C(s, n) + B(s, n)]
→ 0. (5.43)

First, we rewrite

(1 + b)−n A(s, n) = (1 + b)−n
s

∑
k=1

n

s

(

n − 1

k − 1

)

bk

=
n

s

(

b

1 + b

) s−1

∑
k=0

(

n − 1

k

)(

b

1 + b

)k ( 1

1 + b

)n−1−k

=
rn

s

s−1

∑
k=0

(

n − 1

k

)

rk(1 − r)n−1−k

=
rn

s
P(Bin(n − 1, r) ≤ s − 1)

=
rn

s
P

(

Bin(n − 1, r)− (n − 1)r
√

nr(1 − r)
≤ s − 1 − (n − 1)r

√

nr(1 − r)

)

→ Φ

(

β − γ
√

r√
1 − r

)

,

since nr/s = 1 + O(1/
√

R1). Also,

(1 + b)−nC(s, n) =
s

∑
k=0

(

n

k

)(

b

1 + b

)k ( 1

1 + b

)n−k

=
s

∑
k=0

(

n

k

)

rk(1 − r)n−k

= P(Bin(n, r) ≤ s) → Φ

(

β − γ
√

r√
1 − r

)

.

Therefore, we have (1 + b)−n[C(s, n)− A(s, n)] → 0 as λ → ∞. For the remaining
term,
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(1 + b)−nB(s, n) = (1 + b)−n
n

∑
k=s+1

(

n

k

)

k!

s!
ss−kbk

= (1 + b)−n n!

s!
ss

n

∑
k=s+1

1

(n − k)!

( s

b

)−k

= (1 + b)−n n!

s!
ss
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b

s

)n n

∑
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1
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( s

b
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= rn n!

s!
ss−n
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∑
m=0

1

m!

( s

b

)m

=
( r

s

)n n!

s!
ss es/b

P(Pois(s/b) ≤ n − s − 1),

in which

P(Pois(s/b) ≤ n − s − 1) = P

(

Pois(s/b)− s/b√
s/b

≤ n − s − 1 − s/b√
s/b

)

→ Φ

(

γ − β/
√

r√
1 − r

)

,

as λ → ∞. By Stirling’s approximation,

( r

s

)n n!

s!
ss es/b ∼

( r

s

)n
√

n

s

nne−n

sse−s
ss es/b

=
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s
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√
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s
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s
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γ
√
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+ O(1/R1),
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√

n/s = 1/
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r + O(1/
√

R1) and
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s
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= n log
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1 − rn

s
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=
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r − β)2

2r
+ O(1/

√

R1),

as λ → ∞ and hence,

(1 + b)−nB(s, n) → ϕ

(

γ
√

r − β√
r

)

Φ

(

γ − β/
√

r√
1 − r

)

.

Hence, we conclude that the denominator of (5.43) converges to a constant value as
R1 grows, and hence the 1 − ρmax(s, n) → 0 as λ → ∞.
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Transient error approximation in a

Lévy queue

Motivated by a capacity allocation problem within a finite
planning period, we conduct a transient analysis of a single-
server queue with Lévy input. From a cost minimization per-
spective, we investigate the error induced by using stationary
congestion measures as opposed to time-dependent measures.
Invoking recent results from fluctuation theory of Lévy pro-
cesses, we derive a refined cost function, that accounts for tran-
sient effects. This leads to a corrected capacity allocation rule
for the transient single-server queue. Extensive numerical ex-
periments indicate that the cost reductions achieved by this
correction can be significant.

Based on
Transient error approximation in a Lévy queue

Britt Mathijsen & Bert Zwart
Queueing Systems, 85(3), 269-304 (2017)
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6.1 Introduction

The issue of matching a service system’s capacity to stochastic demand induced
by its clients arises in many practical settings. Typically, the resources available to
satisfy demand are scarce and hence expensive. This forces the manager to consider
a trade-off between the system efficiency and the quality of service perceived by its
clients. In this chapter, we focus on this trade-off in the context of the M/G/1
queue, in which the variable amenable for optimization is the server speed µ.

In general, optimizing the server speed µ in a single-server queue in a time-
homogeneous environment, while trading off congestion levels against capacity
allocation costs, does not pose any technical challenges. Typically, the objective
function to be minimized, the total cost function, has the shape

Π∞(µ) = E[Qµ(∞)] + αµ =
λE[B2]

2(µ − λE[B])
+ αµ, (6.1)

where E[Qµ(∞)] denotes the expected steady-state amount of work given server
speed µ, and B describes the service requirement per arrival. The parameter α > 0
represents the relative capacity allocation costs incurred by deploying service rate
µ. This one-dimensional optimization problem yields the optimizer

µ⋆

∞ = λE[B] +

√

λE[B2]

2α
.

Despite the simplicity and tractability of the problem described above, the presence
of the steady-state measure in the cost function in (6.1) should be handled care-
fully. By employing this particular cost structure, one automatically agrees with
the underlying assumption of the system being sufficiently close to its steady state.
However, referring to practical applications of the single-server model, system pa-
rameters rarely remain constant over time. Moreover, planning periods for the
optimization problem are naturally finite. Hence, the true expected costs incurred,
which we denote by ΠT(µ), in addition depend on the length of the planning pe-
riod T. Consequently, the usage of steady-state models for decision making needs
to be justified by a more elaborate time-dependent or transient analysis for these
type of settings.

Related literature. The time-dependent behavior of the single-server queue re-
ceived much attention in queueing theory. First efforts to analyze the time-dependent
properties of the M/G/1 queue date back to the 1950s and 1960s, e.g. [34, 83, 134,
203, 204]. The analyses in these papers mostly yield implicit expressions for per-
formance characteristics through Laplace transforms, integro-differential equations
and infinite convolutions. More specifically, there is vast literature on the tran-
sient analysis of the M/M/1 queue, with the goal to derive explicit expressions for
queue length characteristics, see e.g. [5, 61, 177, 178]. These works provide a va-
riety of explicit expressions for the transient dynamics, although the complexity of
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the resulting expressions, typically involving Bessel functions, exposes the intricate
intractability of the matter. Consequently, approximation methods for insightful
quantification of the dynamics based on numerical [168] or asymptotic methods,
have become prevalent in more recent literature. The asymptotic methods either
exploit knowledge on the evolution of the queueing process as time t grows large
[5, 172, 173], or as the arrival rate λ is increased to infinity [3, 4, 84]. It is notewor-
thy that a substantial contribution to the transient literature is made by Abate and
Whitt [3, 4, 5, 7], who exploit the existence of a decomposition of the mean tran-
sient queue length and obtain expressions for the moments of the queue length and
virtual waiting through probabilistic arguments in several queueing models. More
recently, asymptotic methods have been used to justify the application of station-
ary performance measures in Markovian environments or to refine them, see e.g.
[91, 219]. Other approximative methods known as uniform acceleration expansions
[162] have been developed to reveal the asymptotic behavior of the single-server
queue as a function of t, which are moreover able to capture time-varying arrival
rates. The majority of the works mentioned above do reflect on the error imposed
by usage of steady-state performance metrics instead of the correct time-dependent
counterpart. However, no light has been shed on the accumulation of this error
over a finite period of time. To the best of our knowledge, the only work that
addresses this issue is the paper by Steckley and Henderson [199], who compute
an approximation for the error accumulated between the steady-state and transient
delay probability. Our analysis on the other hand is centered around the mean
workload, which requires a different approach. In addition, the focus in [199] is on
performance measures only, while the main goal of our work is to investigate the
quality of staffing rules.

Lévy input. Although the M/G/1 queue serves as the leading example in our
analysis, we choose to use a more general framework for the arrival process of the
queue. Namely, we let the server face a Lévy process. This gives the advantage
that once we have obtained the results, we can apply them to broader queue input
classes, such as Brownian motion and the Gamma process. To shed light on the
influence of the transience of the queueing process on traditional staffing questions,
we will study the capacity allocation problem in the context of cost minimization in
which the objective function is ΠT(µ), i.e. a function of both µ and T. We investigate
how the invalidity of the stationary assumption is echoed through the operational
cost accounting for congestion-related penalties. Furthermore, we establish a result
on the strict convexity of the function ΠT(µ), for almost all values of T (with a few
minor exceptions for certain deterministic initial states), which is an essential prop-
erty for convergence of both cost function and corresponding minimizer to their
stationary counterparts.

Corrected staffing rule. As it will appear that an exact analysis of this disparity is
intractable, we will present an explicit approximate correction to the conventional
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stationary objective function given by Ψ(µ)/T and prove that

ΠT(µ) = Π∞(µ) +
Ψ(µ)

T
+ O(1/T2),

with the help of recent results from the fluctuation theory of Lévy processes. Based
on this refinement we ultimately examine how incorporating transient effects
changes the optimal capacity level and propose a refinement to the steady-state
capacity allocation rule,

µ⋆

T = µ⋆

∞ +
µ•
T

+ o(1/T).

We moreover deduce an explicit expression for µ• in terms of the initial state and
the first three moments of the service requirement per arrival. It is noteworthy
that similar refined square-root staffing rules have been proposed for multi-server
queues in the Halfin-Whitt regime, see e.g. [118, 117, 120, 183, 230]. In those cases,
the relevant decision value is the number of servers and refinements are derived for
λ → ∞, whereas we consider the regime T → ∞.

Building upon the insights gained through the analysis of this optimality gap,
we reflect on the parameter settings of the underlying queueing process in which
our refined capacity sizing rule yields significant improvement and in which cases
it has little effect. Special emphasis is put on the relationship between the accuracy
of the standard procedure and the length of the planning period.

Structure of the chapter. The remainder of this chapter is structured as follows.
Section 6.2 is devoted to the model description and presents some preliminary re-
sults. The main result will be given in Section 6.3 and results regarding the opti-
mization problem will be discussed in Section 6.4, followed by the validation of our
novel techniques through numerical experiments in Section 6.5. We will give some
concluding remarks and topics for further research in Section 6.6. We have deferred
all proofs to the appendix.

6.2 Model description

6.2.1 A queueing model with Lévy input

The model that inspired our study is the standard M/G/1 queue starting out of
equilibrium. Customers arrive to the queue according to a Poisson process with
rate λ. All arrivals have i.i.d. service requirement Bi, stemming from a common
random variable B. Without loss of generality we will assume E[B] = 1 throughout.
The server is able to remove µ amounts of work from the system per time unit; a
variable we will refer to as the server speed. E.g. if µ = 3 and two customers are
in the system with remaining service times 4 and 2, then the queue will be empty
2 time units later, provided that no new arrivals occur in the meantime. Let Nλ(t)
denote the number of arrivals until time t. Accordingly, the total work generated
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by the customers is given by

Zλ(t) =
Nλ(t)

∑
i=1

Bi.

Furthermore, define Xλ,µ(t) := Zλ(t)− µt. We call Xλ,µ the net-input process. More
generally, we assume throughout the chapter that Xλ,µ is a Lévy process. Specif-
ically, we let Zλ be of the form Zλ(t) = U(λt), where U is a spectrally positive
Lévy process generated by the triplet (a, σ, ν) and E[U(1)] = 1. This restriction
to spectrally positive processes is equivalent to stating ν(−∞, 0) = 0 and is a vital
assumption to our analysis. Subsequently, we assume the net-input process Xλ,µ to
be

Xλ,µ(t) = U(λt)− µt, t ≥ 0. (6.2)

Note that by setting a = σ = 0 and ν = λ FB, where FB is the cumulative distribution
function of B, we retrieve the original M/G/1 queue. The stochastic process central
to our analysis is the workload process Qλ,µ(t), t ≥ 0, which describes the amount
of work the server is facing at time t. The net-input process Xλ,µ completely deter-
mines the trajectory of Qλ,µ, namely

Qλ,µ(t) = max

{

Q(0) + Xλ,µ(t), sup
s∈[0,t]

[Xλ,µ(t)− Xλ,µ(s)]

}

, t ≥ 0, (6.3)

where Q(0) is the initial workload in the system. In fact, Qλ,µ is the reflected
version of Xλ,µ with reflection barrier at zero. Careful inspection of the structure
also reveals that Xλ,µ(t) ≡ Xλ/µ,1(µt) ≡ X1,µ/λ(λt), so that

Qλ,µ(t)
d
= Qλ/µ,1(µt)

d
= Q1,µ/λ(λt) (6.4)

for all λ, µ, t > 0. This identity will prove to be convenient for the numerical analysis
in Section 6.5. For reasons of clarity, we omit the subscript λ in our expressions if
no ambiguity is possible.

The process Qµ is a natural indicator of the level of congestion in the system
and therefore a good choice for quantifying the Quality of Service (QoS) received
by a client. We remark that alternative processes characterizing congestion in the
system can be deduced directly from Qµ(t). For example, consider the virtual
waiting time process Vµ(t), which is the waiting time a customer would experience
if he arrives at time t. This, under the first-come-first-served policy, satisfies the
relation E[Vµ(t)] = E[Qµ(t)]/µ for all t ≥ 0. Likewise, the expected number of the
customers in the system Lµ(t) at time t ≥ 0 is given by Little’s law

E[Lµ(t)] = λ E[Vµ(t)] =
λ

µ
E[Qµ(t)].

To facilitate our investigation of the queueing model, we end this subsection by in-
troducing some notation regarding the net-input and workload process and by stat-
ing a useful preliminary result concerning the stationary process Qµ(∞). Through-
out the chapter we assume µ > λ to ensure ergodicity of the queue and convergence
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in distribution to the limit

Qµ(∞) := lim
t→∞

Qµ(t),

for any initial state Q(0) < ∞. The distribution of Qµ(∞) coincides with the sta-
tionary distribution of Qµ(t). By κU(·) and κµ(·) we denote the Lévy exponents of
the processes U and Xµ, respectively:

κµ(θ) = log E[eθXµ(1)] = log E[eθ(U(λ)−µ)] = λκU(θ)− µθ.

Furthermore, define uk = E[{U(1)− EU(1)}k] for k = 2, 3, .... Using this represen-
tation we obtain the following preliminary result.

Lemma 6.1. Let E|U(1)| < ∞, u2, u3 < ∞ and µ > λ. If Qµ(∞) represents the steady-
state distribution of the workload process, then

E[Qµ(∞)] =
λu2

2(µ − λ)
, E[Q2

µ(∞)] =
λ2u2

2

2(µ − λ)2
+

λu3

3(µ − λ)
.

The proof of Lemma 6.1 follows directly by differentiation of the Laplace trans-
form of Qµ(∞) and is given in Appendix 6.A.1.

6.2.2 Finite horizon

For the purpose of our research, we are interested in the dynamics of the work-
load process within a fixed time frame of length T > 0. For all 0 ≤ t ≤ T, we
assume that the parameters of the queue, λ, µ, u2, u3, remain unchanged. If at t = 0
the queue is not in steady-state corresponding to the specified parameters of the
starting period, the process {Qµ(t)}t∈[0,T] differs from its stationary counterpart
Qµ(∞). To illustrate this, Figure 6.1 depicts the expected value Qµ in a M/M/1
queue as a function of time for several initial workloads Q(0) for a particular set-
ting of λ and µ. Clearly, transient behavior of E[Qµ(t)], for Q(0) 6= Qµ(∞), differs
significantly from the steady-state mean with the same system parameters. Note
that even if Q(0) ≡ E[Qµ(∞)], the time-dependent mean does not coincide with
the steady-state mean. Moreover, E[Qµ(t)] is not even a strictly increasing nor de-
creasing function of time. This phenomenon is a consequence of the decomposition
of the transient mean into one strictly increasing, and a strictly decreasing term
for Q(0) > 0, as discussed in [5]. Nonetheless, Qµ(t) converges in distribution to
Qµ(∞) as t → ∞, if µ > λ.

Since the time horizon of our analysis is limited to t ≤ T, the process may
not approach the steady-state distribution sufficiently close to appropriately use its
steady-state properties for capacity allocation. To overcome this disparity, we pro-
pose a way to include the influence of this transient phase in the capacity allocation
problem.
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Figure 6.1: Time-dependent mean workload in a M/M/1 queue with λ = 10 and
µ = 11 for different initial states Q(0). The dashed line depicts EQµ(∞).

6.2.3 Cost structure

As mentioned before, we are interested in balancing the QoS and efficiency of the
queue by choosing the optimal server speed µ. The adjective optimal indicates that
we intend to choose the speed according to some objective function. In our case, we
conduct our analysis based on a cost function, which consists of a part accounting
for the penalty for congestion in the system and a part for staffing cost. The cost
value of both parts is governed by the variable µ. The instantaneous cost incurred
at time t equals

E[Qµ(t)] + αµ,

where α is a positive constant defining the relative staffing cost. Hence, the cost
structure we apply is a combination of the transient mean of the workload process
and a linear staffing cost. Accumulated and normalized over the period [0, T], the
cost function on which the rest of this chapter will be based equals

ΠT(µ) :=
1

T

∫ T

0

(

E[Qµ(t)] + αµ
)

dt =
1

T

∫ T

0
E[Qµ(t)]dt + αµ. (6.5)

We use shorthand notation for the normalized congestion costs:

CT(µ) :=
1

T

∫ T

0
E[Qµ(t)]dt, (6.6)

and C∞(µ) := E[Qµ(∞)]. In order to compare the actual costs incurred over the
interval [0, T] to the cost function of the queue in stationary conditions, we define

Π∞(µ) := C∞(µ) + αµ = E[Qµ(∞)] + αµ, (6.7)

which allows an explicit expression by Lemma 6.1. Under mild conditions on the
net-input process and the distribution of the initial state, the cost functions coincide
for T → ∞.
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Proposition 6.1. Let µ > λ and assume E[U(1)], E[Q(0)] < ∞. Then

lim
T→∞

ΠT(µ) = Π∞(µ).

The proof of Proposition 6.1 can be found in Appendix 6.A.2. Define

ΩT :=
1

T

∫ T

0

(

E[Qµ(t)]− E[Qµ(∞)]
)

dt

We can then rewriting (6.5) as

ΠT(µ) =
1

T

∫ T

0

(

E[Qµ(t)]− E[Qµ(∞)]
)

dt + E[Qµ(∞)] + αµ = ΩT(µ) + Π∞(µ).

(6.8)

Section 6.3 is concerned with the analysis of the correction factor ΩT(µ).
Ultimately, we are concerned with the additional costs incurred by choosing

the server speed through minimization of Π∞(µ) instead of ΠT(µ). Therefore, we
formulate the exact and approximate optimization problems as follows

µ⋆

T := arg min
µ≥0

ΠT(µ), µ⋆

∞ := arg min
µ≥0

Π∞(µ), (6.9)

Π⋆

T := ΠT(µ
⋆

T), Π⋆

∞ := ΠT(µ
⋆

∞). (6.10)

In Section 6.4 we turn to the comparison of µ⋆

T and µ⋆

∞ as well as the optimality gap
Π⋆

∞ − Π⋆

T .

6.3 Analysis of the objective function

From (6.8) it is evident that, for finding an explicit characterization of ΠT(µ), it
suffices to study the term ΩT(µ) in more detail. We start by stating the main result
of this section, which describes the leading order behavior of ΩT(µ) as T increases.

Theorem 6.1. Let Xµ(t) be of the form (6.2). If E[max(Q(0), Qµ(∞))3] < ∞ and
u2, u3 < ∞, then

ΩT(µ) =
E[Q(0)2]− E[Qµ(∞)2]

2T(µ − λ)
+ O

(

1

T2

)

=
1

2T(µ − λ)

(

E[Q(0)2]− λ2u2
2

2(µ − λ)2
− λu3

3(µ − λ)

)

+ O

(

1

T2

)

,

for µ > λ.

Note that this expression provides an approximation of the actual cost function
ΠT(µ). We elaborate on the implications of this additional information on the opti-
mization problem in Section 6.4.

In the remainder of this section we provide a detailed description of the steps
taken to obtain this outcome. We assume a fixed service rate µ throughout the
analysis in this section and therefore omit the subscript µ. Proofs of the intermediate
results can be found in Appendix 6.B.
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x

Figure 6.2: Sample path visualization of the processes Qx(t) (solid), Q0(t) (gray)
and Yx,0(t) (red).

6.3.1 Constructing a coupling

Before starting our analysis of the correction term ΩT(µ) we introduce some aux-
iliary notation. By QA(t) we denote the workload process as described in Sub-
section 6.2.1 with initial state A and EA the expectation with respect to any non-
negative random variable A, which is independent of the net-input process X. To
be able to compare E[Q(t)] and E[Q(∞)] as in ΩT(µ), we will use a coupling tech-

nique. Observe that by definition of the stationary distribution Q(∞)
d
= QQ(∞)(t)

for all t ≥ 0 and therefore E[Q(∞)] = EQ(∞)[Q
Q(∞)(t)]. Furthermore, E[Q(t)] =

EQ(0)[Q
Q(0)(t)]. Hence, quantifying the difference between the transient and sta-

tionary mean is equivalent to comparing the workload processes of two queues
starting in two different (random) states at t = 0.

We begin our analysis for two queues starting in two deterministic states x, y ≥ 0,
respectively. At the end of our analysis we will obtain the original form by replacing
x with Q(0) and y with Q(∞).

Equation (6.3) shows that all randomness in the workload process originates
from the process X(t). With this in mind, we couple the processes Qx(t) and Qy(t)
on a sample path level by feeding both queues the same net-input process X(t) for
t ≥ 0. This allows us to compare the processes in the same probability space, so
that E[Qx(t)]− E[Qy(t)] = E[Qx(t)− Qy(t)] for all t ≥ 0. Define

Yx,y(t) := Qx(t)− Qy(t)

and

Ω
x,y
T :=

1

T

∫ T

0
E [Yx,y(t)] dt.

A possible sample path triple for Qx(t), Q0(t) and Yx,0(t) is depicted in Figure
6.2. As we see from this figure, Yx,0(t) has nice structural properties which we will
exploit in the next subsection.
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6.3.2 Difference process and leading order behavior of the correc-
tion term

We further examine the difference process Yx,y(t) with x > y. Recall from (6.3),

Qz(t) = max{z + X(t), sup
0<s≤t

[X(t)− X(s)]} = X(t) + max{z,− inf
0≤s≤t

X(s)}, (6.11)

for any initial state z ≥ 0, where X(t) is a Lévy process with no negative jumps. Let
τz(w), 0 ≤ w < z denote the first passage time of level w by the process starting in
z, i.e.

τz(w) := inf {t ≥ 0 | Qz(t) ≤ w } .

Then it is easily seen that for all z ≥ 0,

Qz(t) =

{

z + X(t), if t < τz(0),
sup0<s≤t[X(t)− X(s)], if t ≥ τz(0).

Consequently,

Yx,y(t) =







x − y, if t < τy(0),
inf0<s≤t{x + X(s)}, if τy(0) ≤ t < τx(0),
0, if t ≥ τx(0).

(6.12)

Using this representation we can identify

Ω
x,y
T =

1

T
E

[

∫ τx(0)∧T

0
Yx,y(t)dt

]

,

where ∧ denotes the minimum operator, due to the fact Yx,y(t) = 0 for t ≥ τx(0).
Subsequently, we decompose Ω

x,y
T into two terms

Ψ
x,y
T :=

1

T

∫ ∞

0
E[Yx,y(t)]dt and ∆

x,y
T := Ω

x,y
T − Ψ

x,y
T . (6.13)

Note that Ψ
x,y
T is obtained by replacing T by ∞ only in the integration bound. It

is customary in the literature, particularly in the area of stochastic simulation, to
compare the truncated integral to its natural expansion of the integration range to a
semi-infinite interval, see e.g. [27, Prop. 2.1].The truncated integral connects to the
long-run average estimator of a certain performance metric, whereas the infinite
integral reflects its exact expectation. The decomposition in (6.13) is insightful,
because Ψ

x,y
T prescribes the leading order behavior of Ω

x,y
T , while ∆

x,y
T captures the

smaller order error term. In this section, we only consider Ψ
x,y
T . Subsection 6.3.3

investigates the magnitude of ∆
x,y
T . The next preliminary result presents a useful

property of Ψ
x,y
T .

Lemma 6.2. Let x > y. If E[τx(0)] < ∞, then

Ψ
x,y
T =

1

T
E[τy(0)](x − y) + Ψ

x−y,0
T . (6.14)
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The proof can be found in Appendix 6.B.1. This leaves us with two unknowns

E[τy(0)] and Ψ
x−y,0
T . The next lemma gives an equivalent form for the latter.

Lemma 6.3. If E[τz(0)] < ∞, then for all z ≥ 0

Ψ
z,0
T =

∫ z

0
E[τw(0)]dw. (6.15)

The proof can be found in Appendix 6.B.2. Since the term E[τz(0)], for several
values of z, appears in many of the preliminary results, we devote our attention to
this in the next subsection.

First passage time. When studying the first passage time of level 0 ≤ w < z,
τz(w), of the workload process starting in z, we first observe that {τz(z − w)}z

w=0
is a spectrally positive Lévy process itself, also visible through Figure 6.2. More
precisely, it is a subordinator, i.e. a Lévy process whose paths are almost surely non-
decreasing [147]. In order to calculate E[τz(z−w)] we use theory presented in [190,
Section 46], although results presented there are valid for spectrally negative Lévy
processes, as opposed to the absence of negative jumps in our case. Nonetheless,
our setting is easily transformed into this framework by observing that X̂ ≡ −X,
that is X̂(t) = −X(t) for all t ≥ 0, is spectrally negative. Furthermore, let

τ̂0(w) := inf{t ≥ 0 : X̂(t) ≥ w} = inf{t ≥ 0 : z + X(t) ≤ z − w} = τz(z − w).
(6.16)

For completeness, we cite [190, Thm. 46.3].

Theorem 6.2. Let X̂(t) be a spectrally negative Lévy process with generating triplet
(−a, σ, ν̂) and τ̂0(y) its corresponding hitting time process. Define Υ(θ) for θ ≥ 0 as

Υ(θ) = −aθ + 1
2 σ2θ2 +

∫ 0

−∞
(eθx − 1 − θx1[−1,0)(x)) ν̂(dx). (6.17)

Then Υ(θ) is strictly increasing and continuous, Υ(0) = 0, and Υ(θ) → ∞ as θ → ∞. For
w ≥ 0 and 0 ≤ u < ∞ we have

E[exp(−uτ̂0(w))] = exp(−w Υ−1(u)), (6.18)

where θ = Υ−1(u) is the inverse function of u = Υ(θ).

This immediately induces an expression for E[τw(0)] and henceforth Ψz,0.

Corollary 6.1. Let X(t) be a spectrally positive Lévy process defined as in (6.2) with µ > λ.
Let Ψ

z,0
T as in (6.15). Then

Ψ
z,0
T =

z2

2T(µ − λ)
.

Furthermore, if x, y ≥ 0, then

Ψ
x,y
T =

x2 − y2

2T(µ − λ)
. (6.19)
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→ t

E[Q(∞)]

0

x = 0

T

ΨT

∆T

Figure 6.3: Visualization of ΩT and ΨT as the area between the curves E[Q(t)],
E[Q(∞)] for Q(0) = 0.

The proof of Corollary 6.1 can be found in Appendix 6.B.3. Randomization. As
we stated before, we easily obtain the original ΩT from Ω

x,y
T through substitution of

x and y by Q(0) and Q(∞), respectively, and taking the expectation. In the previous
paragraph, we deduced an explicit expression for Ψ

x,y
T , the leading order term for

Ω
x,y
T . Therefore we equivalently get an approximation for ΩT , given by

ΨT :=
1

T

∫ ∞

0
(E[Q(t)]− E[Q(∞)]) dt,

through randomization of x and y in Ψ
x,y
T . By combining the results in Corollary

6.1, Lemma 6.1 and Proposition 6.2, which is given at the end of this section, we
directly prove the result in Theorem 6.1.

6.3.3 Truncation error

In order to get a better comprehension of the properties of ΨT , we depict the value in
terms of the (infinite) region between the curves E[Q(t)], E[Q(∞)] and the vertical
axis for the case Q(0) ≡ 0 in Figure 6.3. In this figure, ΩT is given by the area
enclosed by the two curves, the vertical axis and the line t = T. One can see that the
main contribution to the correction term ΩT is given for small t. As t increases, the
difference between transient and stationary mean decreases. Hence for moderate
values of T, the contribution to the integral in (6.13) is only minor compared to the
contribution over the interval [0, T].

Recall the definition of ∆
x,y
T as in (6.13). As we alluded to in Subsection 6.3.2 we

claim the contribution of ∆
x,y
T to Ω

x,y
T is negligible compared to Ψ

x,y
T . Also note that

∆T := ΩT − ΨT = − 1

T

∫ ∞

T

(

E[Q(t)]− E[Q(∞)]
)

dt. (6.20)

can be derived through ∆
x,y
T in a similar manner as we did for Ψ

x,y
T to obtain ΨT .

To substantiate our claim, we compute an upper bound for ∆
x,y
T of order 1/T2.
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The existence of such an upper bound poses a limit on the error this tail integral
contributed to the cost structure as a whole.

Proposition 6.2. Let x, y ≥ 0 and E[max(Q(0), Qµ(∞))3] < ∞. Then

|∆x,y
T | ≤ 1

T2

(

max(y, x)3

3(µ − λ)2
+

u2 max(y, x)2

2(µ − λ)3

)

and

|∆T | ≤
1

T2

(

E[max(Q(0), Qµ(∞))3]

3(µ − λ)2
+

u2E[max(Q(0), Qµ(∞))2]

2(µ − λ)3

)

.

The proof of Proposition 6.2 is given in Appendix 6.B.4.

Remark 6.1. In case the net-input process X is light-tailed, that is there exists u > 0
such that E[euX(1)] < ∞, it can be shown that the truncation error is of order e−βT/T
for some β > 0. See Appendix 6.B.4 for details.

6.4 Optimization

The result in Theorem 6.1, characterizing the leading order behavior of ΩT(µ), also
reveals the behavior of ΠT(µ) in leading order. Namely,

ΠT(µ) = Π∞(µ) + ΨT(µ) + O(1/T2).

In fact, this representation naturally gives rise to an approximation of the actual cost
function:

Π̂T(µ) := Π∞(µ) + ΨT(µ) (6.21)

Denote the corresponding minimizer of Π̂T by

µ̂⋆

T := arg min
µ≥0

Π̂T(µ), Π̂⋆

T := Π̂T(µ̂
⋆

T) (6.22)

in addition to the definitions in (6.9) and (6.10). This section is devoted to the
analysis of the minimizers µ⋆

T , µ̂⋆

T and µ⋆

∞, and the optimality gap for the two
approximations.

Throughout this section, we assume that u2, u3 < ∞ and E[Q(0)2] < ∞.
By its definition in (6.7) and Lemma 6.1, we have an exact expression for the

steady-state cost function:

Π∞(µ) =
λu2

2(µ − λ)
+ αµ.

It is easily verified that Π∞ is strictly convex in µ, for instance by observing that
Π′′

∞(µ) > 0 for all µ > λ. Therefore Π∞ has a unique global minimizer and

µ⋆

∞ = λ +

√

λu2

2α
, Π⋆

∞ = αλ +
√

2αλu2. (6.23)
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We are interested in the relation between µ⋆

∞ and µ⋆

T , and between µ̂⋆

T and µ⋆

T .
Since ΠT(µ) = Π∞(µ) + O(1/T) for all µ > λ, we have pointwise convergence
of the sequence ΠT , as well as Π̂T , to Π∞ for T → ∞, we also expect µ⋆

T → µ⋆

∞

and µ̂⋆

T → µ⋆

∞ for T → ∞. Before proving that this convergence indeed holds, we
present a result on the strict convexity of the function ΠT .

Lemma 6.4. Let µ ≥ 0. The function ΠT(µ) is

• convex in µ, if Q(0) ≡ x, T < x/µ and σ = 0,

• strictly convex in µ, otherwise.

Building upon strict convexity of both ΠT(µ) and Π∞(µ) for µ > λ, we derive
the following convergence result.

Proposition 6.3. Let µ⋆

T , µ̂⋆

T and µ⋆

∞ be as defined in (6.9) and (6.22). Then

µ⋆

T → µ⋆

∞ and µ̂⋆

T → µ⋆

∞,

for T → ∞.

The next result describes a refinement of µ⋆

T in terms of µ⋆

∞.

Proposition 6.4. For T sufficiently large,

µ⋆

T = µ⋆

∞ +
µ•
T

+ o(1/T),

where

µ• =
E[Q(0)2]√

8λu2α
− u3

3u2
− 3

√

αλu2

8
. (6.24)

The proofs of the three results above can be found in Appendix 6.C. Based on
Proposition 6.4 we propose a corrected staffing rule, accounting for the finite horizon

µ̃⋆

T =
[

µ⋆

∞ +
µ•
T

]+
, (6.25)

with µ• as in (6.24). Here [x]+ := max{x, 0}, which ensures the value of µ̃⋆

T is non-
negative and thus is a feasible solution of the optimization problem. This refined
capacity allocation rule is expected to reduce the costs incurred in transient settings.
However, the value of particular interest to us is the cost penalty for using either
one of the approximations rather than the actual minimum µ⋆

T , that is, the optimality
gap. As it happens, we deduce the order of the optimality gap for µ⋆

∞ with the help
of the explicit form of µ• given in (6.24), which is stated in the next proposition.
The proof is given in Appendix 6.C.4.

Proposition 6.5. Let µ⋆

∞ be as in (6.23). Then,

Π⋆

∞ − Π⋆

T = O(1/T2).



6.5. Numerical experiments 189

6.5 Numerical experiments

6.5.1 Influence of ΩT(µ)

We first assess the contribution of the correction to the cost function provided by
Theorem 1. In other words, we investigate whether Π̂T(µ) as in (6.5) yields a sig-
nificantly better fit to ΠT(µ), than Π∞(µ) does. Note that these three functions
only differ in the costs describing the congestion. Therefore, we limit our study
in this subsection to the evaluation of CT(µ) as in (6.6) with stationary equivalent
C∞(µ) = E[Qµ(∞)]. Our novel approximation hence reads

ĈT(µ) := C∞(µ) + ΩT(µ),

with ΩT(µ) given in Theorem 6.1. We conduct our numerical experiments based on
three models, namely:

1. M/M/1 queue: U(t) is a unit rate compound Poisson process with exponen-
tially distributed increments. We have u2 = 2, u3 = 3, so that

ĈT(µ) =
λ

µ − λ
+

1

T(µ − λ)

(

x2

2
− λ2

(µ − λ)2
− λ

µ − λ

)

. (6.26)

2. M/Pareto/1 queue: U(t) is a unit rate compound Poisson process with Pareto
increments. The Pareto distribution deserves special attention due to its heavy-
tailed nature, having tail probability F̄(x) = (x/k)−γ, if x ≥ k and 1 otherwise.
It is well-known that heavy-tailed service times lead to long relaxation time.
For our purposes, we fix shape parameter γ = 16/5 and scale parameter
k = 11/16, so that β = 1, u2 = 121/96, u3 = 1331/256 and uk = ∞ for all
k > 3. Hence,

ĈT(µ) =
121λ

192(µ − λ)
+

1

2T(µ − λ)

(

x2 − (121λ/96)2

2(µ − λ)2
− 1331λ/256

2(µ − λ)

)

(6.27)

3. Reflected Brownian motion: U(t) is Brownian motion with drift 1 and in-
finitesimal variance σ2. We have u2 = σ2, u3 = 0, so that

ĈT(µ) =
λσ2

2(µ − λ)
+

1

2T(µ − λ)

(

x2 − λ2σ4

2(µ − λ)2

)

. (6.28)

In light of the equivalence relations in (6.4) we only consider the case λ = 1. The
cost values for general values of λ follow by appropriate rescaling of µ and T.

For the M/M/1 and M/Pareto/1 queue, we obtained the function CT(µ) through
simulation and the results are accurate up until a 95% confidence interval of width
10−3. For reflected Brownian motion, we used the explicit distribution function
given in [104] for double numerical integration. The results for several values of
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Figure 6.4: Comparison of exact waiting cost function CT(µ) against corrected cost
function ĈT(µ) and PSA cost function C∞(µ) for T = 2, 5 and 10 for the M/M/1
queue with λ = 1.
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Figure 6.5: Comparison of exact waiting cost function CT(µ) against corrected cost
function ĈT(µ) and PSA cost function C∞(µ) for T = 2, 5 and 10 for the M/Pareto/1
queue with λ = 1.

T and two different starting states are depicted in Figures 4-6. These plots also
include the approximated functions ĈT(µ).

We name a few observations based on these figures. First, we indeed note the
pointwise convergence of ĈT(µ) to Ĉ∞(µ) as T grows, for all µ in all three cases.
However, the difference between the stationary costs and those for small values of
T can be significant. This is most clear in the plots with x = 2.5 and when µ is close
to λ, i.e. it is in heavy-traffic. In these scenarios, it is evident that refinements to the
stationary cost function are needed. ĈT(µ) does a fairly good job at providing such
correction, especially for moderate values of µ.

Furthermore, we note that CT(µ) approaches C∞(µ) from below for x = 0 for
any value of µ, while this is not strictly the case for x > 0. ĈT(µ) correctly captures
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C5(µ) Ĉ5(µ)
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Figure 6.6: Comparison of exact waiting cost function CT(µ) against corrected cost
function ĈT(µ) and PSA cost function C∞(µ) for T = 2, 5 and 10 for reflected Brow-
nian motion with σ = 1.

the sign of this correction.
Finally, observe that ĈT(µ) → −∞ as µ approaches λ from above. This diver-

gence is clear from the expressions in (6.26)-(6.28). Our correction term relies on
the premise that under the coupling scheme, the sample paths of the two queues
starting from different states have hit with high probability. This is equivalent to
stating that the ‘largest’ of the two queues has emptied at least once before time T.
However, as µ approaches λ, the system enters heavy traffic, and hence the hitting
time of the zero barrier is set to run off to infinity. Consequently, this causes our
approximation to be inaccurate for small values of µ.

6.5.2 Validation of corrected staffing rule

In this section, we examine whether the corrected staffing rule µ̃⋆

T as in (6.25) indeed
yields a significant cost reduction over the choice of µ⋆

∞ by comparing their true
costs ΠT(µ̃

⋆

T) and ΠT(µ
⋆

∞). We conduct this comparison for different values of the
parameters, α, T and starting state x through numerical experiments. The three
models on which we do our calculations are the M/M/1 queue, the M/Pareto/1
queue and the reflected Brownian motion, as introduced in the previous subsection.
We again focus on λ = 1 only.

For each of the three models, we adhere to the following set-up. The quality
of both staffing rules is assessed for α = 0.1, 1 and 2, resembling three modes of
valuation of the QoS in the system. As a benchmark, observe that the expected
workload in steady-state conditions with staffing level µ⋆

∞ equals

C∞(µ⋆

∞) =

√

αλu2

2
.

For each value of α, we consider two scenarios: one in which the system starts
empty, i.e. x = 0, and one in which the initial state is double this benchmark value,
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thus x =
√

2αλu2. The numerics are presented for each model separately. We
discuss general conclusions drawn from these results afterwards.

M/M/1 queue. As we discussed before, if U is a unit rate compound Poisson
process with exponentially distributed increments, then Qµ describes the workload
process in an M/M/1 queue. For this setting we get

µ⋆

∞ = λ +

√

λ

α
, µ̃⋆

T =

[

λ +

√

λ

α
+

1

T

(

x2

4
√

λα
− 1 − 3

2

√
λα

)

]+

.

Table 6.1 presents the actual costs corresponding to these two staffing levels for
different value of x and α.

x = 0 x = 2
√

α

α T µ⋆

∞ ΠT(µ
⋆

∞) µ̃⋆

T ΠT(µ̃
⋆

T) r.c.i. µ⋆

∞ ΠT(µ
⋆

∞) µ̃⋆

T ΠT(µ̃
⋆

T) r.c.i.

0.1

1 4.162 0.620 2.688 0.536 0.136 4.162 0.682 2.688 0.536 0.214
2 4.162 0.669 3.425 0.641 0.041 4.162 0.700 3.425 0.641 0.085
5 4.162 0.706 3.867 0.703 0.005 4.162 0.719 3.867 0.703 0.022

10 4.162 0.719 4.015 0.719 0.001 4.162 0.726 4.015 0.719 0.010

1

1 2.000 2.309 0.000 0.500 0.783 2.000 3.500 0.500 2.750 0.214
2 2.000 2.461 0.750 1.480 0.398 2.000 3.218 1.250 3.125 0.029
5 2.000 2.675 1.500 2.400 0.103 2.000 3.043 1.700 2.968 0.025

10 2.000 2.810 1.750 2.726 0.030 2.000 3.007 1.850 2.980 0.009

2

1 1.707 3.744 0.000 0.500 0.866 1.707 5.889 0.000 3.328 0.435
2 1.707 3.924 0.146 1.232 0.686 1.707 5.547 0.854 4.682 0.156
5 1.707 4.209 1.083 3.343 0.206 1.707 5.114 1.366 4.910 0.040

10 1.707 4.424 1.395 4.108 0.071 1.707 4.945 1.536 4.868 0.016

Table 6.1: Comparison of costs for the M/M/1 queue for steady-state and corrected
staffing rules and relative cost improvement (r.c.i.).

M/Pareto/1 queue. In case the service requirements follow a Pareto distribution
with shape parameter γ = 16/5, the staffing rule becomes

µ⋆

∞ = λ +
11

8

√

λ

3α
, µ̃⋆

T =

[

λ +
11

8

√

λ

3α
+

1

T

(

2x2

11
√

λα/3
− 11

8
− 11

√
3λα

16

)]+

.

The numerical results are given in Table 6.2. Just as in the results for the M/M/1
queue, we observe a higher reduction for larger value of α and T. Also, again
µ̃T < µ⋆

∞. Hence, the conclusions for the M/Pareto/1 queue are similar to those of
the M/M/1 queue.

Reflected Brownian motion. In case the input process U is Brownian motion with
drift 1 and infinitesimal variance σ2, the steady-state staffing rule and its corrected
version reduce to
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x = 0 x = 11/4 ·
√

α/3

α T µ⋆

∞ ΠT(µ
⋆

∞) µ̃⋆

T ΠT(µ̃
⋆

T) r.c.i. µ⋆

∞ ΠT(µ
⋆

∞) µ̃⋆

T ΠT(µ̃
⋆

T) r.c.i.

0.1

1 3.510 0.524 1.759 0.461 0.120 3.510 0.573 2.010 0.562 0.019
2 3.510 0.555 2.635 0.539 0.029 3.510 0.580 2.760 0.574 0.010
5 3.510 0.580 3.160 0.578 0.003 3.510 0.591 3.210 0.589 0.002

10 3.510 0.590 3.335 0.590 0.000 3.510 0.596 3.360 0.595 0.001

1

1 1.794 2.076 0.000 0.500 0.759 1.794 2.989 0.000 2.088 0.302
2 1.794 2.190 0.511 1.291 0.411 1.794 2.790 0.610 2.588 0.072
5 1.794 2.345 1.281 2.108 0.101 1.794 2.638 1.320 2.607 0.012

10 1.794 2.441 1.537 2.371 0.029 1.794 2.597 1.557 2.585 0.005

2

1 1.561 3.427 0.000 0.500 0.854 1.561 5.087 0.000 2.745 0.460
2 1.561 3.567 0.032 1.050 0.706 1.561 4.832 0.172 3.417 0.293
5 1.561 3.779 0.950 3.012 0.203 1.561 4.499 1.006 4.313 0.041

10 1.561 3.935 1.255 3.356 0.147 1.561 4.351 1.284 4.304 0.011

Table 6.2: Comparison of costs for the M/Pareto/1 queue for steady-state and
corrected staffing rules and relative cost improvement (r.c.i.).

µ⋆

∞ = λ +

√

λσ2

2α
, µ̃⋆

T =

[

λ +

√

λσ2

2α
+

1

2
√

2 T

(

x2

√
λασ

− 3σ
√

αλ

)

]+

.

In Tables 6.3 and 6.4, the costs obtained through numerical evaluation are pre-
sented for several values of x, T. We also vary σ to examine the influence of the
volatility of arrival process on the quality of the staffing rules.

The observations on the influence of α, x and T are similar to those of the
M/M/1 queue and the M/Pareto/1 queue. However, here we see little improve-
ment by the corrected staffing rule for small values of α for both values of x. The
results in Tables 6.3-6.4 also suggest that the reduction is smaller for larger values
of σ.

6.5.3 Discussion

Based upon these numerical results in Tables 6.1-6.4, we make a few remarks. The
three models roughly exhibit similar behavior as T, x and α are varied.

Non-surprisingly, we note that µ̃T approaches µ⋆

∞ with increasing T, which also
implies that the cost reduction achieved by the corrected staffing rule vanishes as
T → ∞. Also, we observe that in all scenarios examined, the cost reduction increases
with α. This can be explained through investigation of the objective function ΠT

as function of µ. Namely, for α small, the curve is relatively flat around the true
optimum µ⋆

T . Hence, in this case a moderate deviation from µ⋆

T will likely not lead
to a significant cost increase. However, as α becomes larger, i.e. server efficiency
is valued more than minimization of congestion, the curve becomes more sharp
around µ⋆

T , and hence more accurate approximations of µ⋆

T are required to achieve
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x = 0 x =
√

2α

α T µ⋆

∞ ΠT(µ
⋆

∞) µ̃⋆

T ΠT(µ̃
⋆

T) r.c.i. µ⋆

∞ ΠT(µ
⋆

∞) µ̃⋆

T ΠT(µ̃
⋆

T) r.c.i.

0.1

1 3.236 0.525 2.901 0.518 0.013 3.236 0.565 3.124 0.564 0.001
2 3.236 0.536 3.068 0.534 0.003 3.236 0.556 3.180 0.556 0.000
5 3.236 0.543 3.169 0.542 0.000 3.236 0.551 3.214 0.551 0.000

10 3.236 0.545 3.203 0.545 0.000 3.236 0.549 3.225 0.549 0.000

1

1 1.500 3.420 0.000 0.833 0.756 1.500 4.741 1.000 3.984 0.160
2 1.500 3.539 0.750 2.386 0.326 1.500 4.579 1.250 4.293 0.063
5 1.500 3.707 1.200 3.363 0.093 1.500 4.335 1.400 4.274 0.014

10 1.500 3.820 1.350 3.705 0.030 1.500 4.190 1.450 4.175 0.004

2

1 1.500 3.420 0.000 0.833 0.756 1.500 4.741 1.000 3.984 0.160
2 1.500 3.539 0.750 2.386 0.326 1.500 4.579 1.250 4.293 0.063
5 1.500 3.707 1.200 3.363 0.093 1.500 4.335 1.400 4.274 0.014

10 1.500 3.820 1.350 3.705 0.030 1.500 4.190 1.450 4.175 0.004

Table 6.3: Comparison of costs for RBM with σ = 1 for steady-state and corrected
staffing rules and relative cost improvement (r.c.i.).

x = 0 x = 2
√

2α

α T µ⋆

∞ ΠT(µ
⋆

∞) µ̃⋆

T ΠT(µ̃
⋆

T) r.c.i. µ⋆

∞ ΠT(µ
⋆

∞) µ̃⋆

T ΠT(µ̃
⋆

T) r.c.i.

0.1

1 5.472 0.950 4.801 0.936 0.015 5.472 1.030 5.249 1.029 0.001
2 5.472 0.972 5.137 0.968 0.003 5.472 1.012 5.360 1.012 0.000
5 5.472 0.985 5.338 0.985 0.000 5.472 1.002 5.427 1.002 0.000

10 5.472 0.990 5.405 0.990 0.000 5.472 0.998 5.450 0.998 0.000

1

1 2.414 3.176 0.293 1.546 0.513 2.414 4.633 1.707 4.228 0.087
2 2.414 3.356 1.354 2.690 0.199 2.414 4.375 2.061 4.247 0.029
5 2.414 3.573 1.990 3.411 0.045 2.414 4.094 2.273 4.073 0.005

10 2.414 3.689 2.202 3.646 0.012 2.414 3.966 2.344 3.962 0.001

2

1 2.000 4.839 0.000 1.339 0.723 2.000 7.481 1.000 5.967 0.202
2 2.000 5.078 0.500 2.773 0.454 2.000 7.158 1.500 6.585 0.080
5 2.000 5.414 1.400 4.726 0.127 2.000 6.670 1.800 6.549 0.018

10 2.000 5.639 1.700 5.409 0.041 2.000 6.380 1.900 6.349 0.005

Table 6.4: Comparison of costs for RBM with σ = 2 for steady-state and corrected
staffing rules and relative cost improvement (r.c.i.).
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an acceptable cost level. Hence, the corrected staffing rule (6.25) proves particularly
useful in these cases.

Another point we highlight is that the relative improvement is higher for x = 0
than for x =

√
2αλu2. Moreover, even though the initial state of the system is above

the optimal equilibrium, µ̃T is smaller than µ⋆

∞. This is somewhat counter-intuitive.
In fact, from (6.24) it follows that µ• positively contributes to the corrected staffing
function if

E[Q2(0)] > 3αλu2 +
2u2

3u3

√

2αλu2.

6.6 Conclusion & further research

Motivated by the time-varying nature of queues in practical applications, we stud-
ied the impact that the transient phase has on traditional capacity allocation ques-
tions. By defining a cost minimization problem, in which the objective function
contains a correction accounting for the transient period, we identified the leading
and second-order behavior of the cost function as a function of the interval length
T. As a by-product, this result yields an approximation for the actual cost function,
which is a refinement to its stationary counterpart. Our numerical experiments in
Section 6.5.1 demonstrate the improved accuracy achieved by this approximation
in a number of settings. By perturbation analysis of the optimization problem, this
furthermore gives rise to a correction to the steady-state optimal capacity allocation
of order 1/T. The necessity of the refined capacity allocation level is substantiated
by the numerics in Section 6.5.2, which show the cost reduction that can be achieved
in a number of settings, compared to settings in which stationary metrics are used.
Especially for small values of T and large values of α this reduction is significant.
Additionally, these results also indicate that it is relatively safe to use the stationary
cost when T is moderate, or α is small. The latter reflects the scenario in which
QoS is much more valued than service efficiency. This observation links to the flat
nature of the cost function around its optimal value for α small, a statement on the
optimality gap that we formally proved in Proposition 6.5.

Besides the validation of our theoretical results of Sections 6.3 and 6.4, the nu-
merical results also reveal some phenomena that require more investigation. As
noted, our corrected capacity allocation level µ̃⋆

T is in most studied cases less than
the steady-state optimal value µ⋆

∞. This implies that congestion levels tends to be
higher under our staffing scheme then under stationary staffing. A possible expla-
nation for this may be the fact that the planning period under consideration is finite.
Clearly, in the setting we analyzed, anything that happens after time T is neglected.
Therefore, it might be beneficial from the cost perspective to end the period with
a higher expected congestion level, as it does not need to be canceled out in the
future. Related to this observation, it would be interesting to look at the setting in
which staffing decisions need to be made in consecutive periods of equal length, in
which the arrival rate changes at the start of each period. This case requires careful
consideration of the correlation among the staffing decisions within the separate



196 Chapter 6. Transient error approximation in a Lévy queue

periods.

Another question that arises concerns the translation of our (qualitative) findings
to more general queues, in particular the M/G/s queue. Whereas in our analysis,
the central decision variable is the server speed µ, the variable of interest in multi-
server queues is typically the number of servers. It may well be that similar explicit
corrections to staffing levels can be deduced to account for transience. Since our
analysis heavily relies on the comparibility of the sample paths of two single-server
queues, which is due to the equal negative drift for the two processes, another
approach must be taken to tackle this extension.

The analysis and findings for the single-server queue with Lévy input presented
in this chapter may serve a stepping stone for investigation of these more elaborate
problems.

Appendix

6.A Proofs of Section 6.2

6.A.1 Proof of Lemma 6.1

Proof. The conditions of [20, Cor.IX3.4] are satisfied and therefore Qµ(t) ⇒ Qµ(∞)
in distribution for t → ∞. Furthermore, its Laplace transform is for Re(s) < 0

Q̃µ(s) = E

[

esQµ(∞)
]

=
sκ′µ(0)
κµ(s)

=
s(λκ′U(0)− µ)

λκU(s)− µs
=

s(µ − λ)

µs − λκU(s)
.

It can be checked that κ′U(0) = E[U(1)] = 1, κ′′U(0) = u2 and κ′′′U (0) = u3, and
κ′µ(0) = λ − µ, κ′′µ(0) = λu2 and κ′′′µ (0) = λu3. Using l’Hôpital’s rule we obtain the
first moment of Qµ(∞):

E[Qµ(∞)] = lim
s→0

d

ds
Q̃µ(s) = lim

s→0
κ′µ(0)

κµ(s)− sκ′µ(s)

κµ(s)2

= κ′µ(0) lim
s→0

−sκ′′µ(s)
2κµ(s)κ′µ(s)

= κ′µ(0) lim
s→0

−sκ′′′µ (s)− κ′′µ(s)

2κ′µ(s)2 + 2κµ(s)κ′′µ(s)

= −
κ′′µ(0)
2κ′µ(0)

=
λu2

2(µ − λ)
.

Similarly, we derive the second moment:

E[Q2
µ(∞)] = lim

s→0

d2

ds2
Q̃µ(s) = lim

s→0
κ′µ(0)

2sκ′µ(s)2 − 2κ′µ(s)κµ(s)− sκ′′µ(s)κµ(s)

κµ(s)3
,
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We apply l’Hôpital’s rule twice, to find

E[Q2
µ(∞)] = κ′µ(0) lim

s→0

3sκ′′µ(s)κ′µ(s)− 3κ′′µ(s)κµ(s)− sκ′′′µ (s)κµ(s)

3κ′µ(s)κµ(s)2

= κ′µ(0) lim
s→0

2sκ′′′µ (s)κ′µ(s) + 3sκ′′µ(s)2 − 4κ′′′µ (s)κµ(s)− sκ
(4)
µ (s)κµ(s)

6κ′µ(s)2κµ(s) + 3κ′′µ(s)κµ(s)2

= κ′µ(0) lim
s→0

s
[

2κ′′′µ (s)κ′µ(s) + 3κ′′µ(s)2 − κ
(4)
µ (s)κµ(s)

]

− 4κ′′′µ (s)κµ(s)

κµ(s)
[

6κ′µ(s)2 + 3κ′′µ(s)κµ(s)
]

= κ′µ(0) lim
s→0

s

κµ(s)

2κ′′′µ (s)κ′µ(s) + 3κ′′µ(s)2 − κ
(4)
µ (s)κµ(s)

6κ′µ(s)2 + 3κ′′µ(s)κµ(s)

− κ′µ(0) lim
s→0

4κ′′′µ (s)

6κ′µ(s)2 + 3κ′′µ(s)κµ(s)
.

Since κµ(0) = 0 and lims→0 s/κµ(s) = 1/κ′µ(0), we have

κ′µ(0) lim
s→0

s

κµ(s)

2κ′′′µ (s)κ′µ(s) + 3κ′′µ(s)2 − κ
(4)
µ (s)κµ(s)

6κ′µ(s)2 + 3κ′′µ(s)κµ(s)

=
2κ′′′µ (0)κ′µ(0) + 3κ′′µ(0)2

6κ′µ(0)2
=

κ′′′µ (0)

3κ′µ(0)
+

κ′′µ(0)2

2κ′µ(0)2
(6.29)

and

κ′µ(0) lim
s→0

4κ′′′µ (s)

6κ′µ(s)2 + 3κ′′µ(s)κµ(s)
=

2κ′′′µ (0)

3κ′µ(0)
. (6.30)

Combining (6.29) and (6.30) yields

E[Q2
µ(∞)] =

κ′′µ(0)2

2κ′µ(0)2
−

κ′′′µ (0)

3κ′µ(0)
=

λ2u2
2

2(µ − λ)2
+

λu3

3(µ − λ)
.

6.A.2 Proof of Proposition 6.1

Proof. We prove the limit by showing that the difference

ΠT(µ)− Π∞(µ) =
1

T

∫ T

0

(

E[Qµ(t)]− E[Qµ(∞)]
)

dt

converges to zero as T → ∞ for µ > λ fixed. The assumption E[U(1)], E[Q(0)] < ∞

implies by [7, Prop. 1] that E[Qµ(t)] < ∞ for all t ≥ 0. Following [7], we use the
decomposition

E[Qµ(t)] = E[Q0
µ(t)] +

{

E[Qµ(t)]− E[Q0
µ(t)]

}

,
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where Q0
µ(t) represents the workload process if the system starts empty. From this

decomposition it is revealed that E[Q0
µ(t)] and

{

E[Qµ(t)]− E[Q0
µ(t)]

}

are non-

negative monotonically increasing and decreasing functions of t, respectively, see
[7, Prop. 2,Thm. 11]. Recall E[Qµ(t)] → E[Qµ(∞)] for t → ∞ by ergodicity of the
workload process for any initial state E[Q(0)] < ∞, if µ > λ. Henceforth,

E[Qµ(t)] ≤ sup
t

E[Q0
µ(t)] + sup

t

{

E[Qµ(t)]− E[Q0
µ(t)]

}

= E[Qµ(∞)] +
{

E[Qµ(0)]− E[Q0
µ(0)]

}

= E[Qµ(∞)] + E[Q(0)],

for all t ≥ 0, which proves that the expected workload is bounded. Fix ε > 0. By
convergence of E[Qµ(t)] for t → ∞, there exists a value t∗ := t∗(ε) such that for all
t ≥ t∗

∣

∣E[Qµ(t)]− E[Qµ(∞)]
∣

∣ < ε/2. (6.31)

Next, set

T∗ := T∗(ε) =
2 t∗(ε)

ε
(2E[Qµ(∞)] + E[Q(0)]).

Then for T ≥ T̂ := max{t∗, T∗}, we have

∣

∣

∣

∣

1

T

∫ T

0

(

E[Qµ(t)]− E[Qµ(∞)]
)

dt

∣

∣

∣

∣

≤ 1

T

∫ t∗

0

∣

∣E[Qµ(t)]− E[Qµ(∞)]
∣

∣dt

+
1

T

∫ T

t∗

∣

∣E[Qµ(t)]− E[Qµ(∞)]
∣

∣ dt

≤ 1

T

∫ t∗

0

(

E[Qµ(t)] + E[Qµ(∞)]
)

dt +
1

T

∫ T

t∗

ε

2
dt

<
t∗

T
(2E[Qµ(∞)] + E[Q(0)]) +

T − t∗

T

ε

2

<
t∗

T∗ (2E[Qµ(∞)] + E[Q(0)]) +
ε

2
= ε.

Hence, for any choice of ε > 0 we can find a value T̂ such that ΠT̂(µ) approaches
Π∞(µ) within distance ε, which proves the limit.
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6.B Proofs of Section 6.3

6.B.1 Proof of Lemma 6.2

Proof. Using the representation in (6.12) we write

Ψ
x,y
T =

1

T

∫ ∞

0
E[Yx,y(t)]dt

=
1

T
E

[

∫ τy(0)

0
Yx,y(t)

]

dt +
1

T
E

[

∫ τx(0)

τy(0)
Yx,y(t)dt

]

+
1

T
E

[

∫ ∞

τy(0)
Yx,y(t)dt

]

=
1

T
E

[

∫ τy(0)

0
(x − y)dt

]

+
1

T
E

[

∫ τx(0)

τy(0)
Yx,y(t)dt

]

=
1

T
E[τy(0)](x − y) +

1

T
E

[

∫ τx(0)

τy(0)
Yx,y(t)dt

]

.

By (6.12) and the Strong Markov property holding for Lévy processes [20], observe
that
Yx−y,0(t)

d
= Yx,y(τy(0) + t), whereby

1

T
E

[

∫ τx(0)

τy(0)
Yx,y(t)dt

]

=
1

T
E

[

∫ τx−y(0)

0
Yx−y,0(t)dt

]

= Ψ
x−y,0
T ,

which completes the proof.

6.B.2 Proof of Lemma 6.3

Proof. Note that Yz,0(t) and τz(w) are intimately related. Namely, due to the fact
that X has no negative jumps

{τz(w) ≤ t} = {Yz,0(t) ≤ w}.

In fact, Yz,0(τz(w)) = w, which implies that τz is a right inverse for Yz,0(t). There-
fore, the following equality holds

∫ τz(0)

0
Yz,0(t)dt =

∫ z

0
τz(w)dw,

which implies with the help of Fubini’s theorem

Ψ
z,0
T =

1

T

∫ z

0
E[τz(w)]dw =

1

T

∫ z

0
E[τz−w(0)]dw =

1

T

∫ z

0
E[τw(0)]dw.
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6.B.3 Proof of Corollary 6.1

Proof. From (6.18),

E[τ̂0(w)] = − d
du E[exp(−u τ̂0(w))]

∣

∣

∣

u=0
= w

d

du
Υ−1(u)

∣

∣

∣

∣

u=0

. (6.32)

Since Υ(θ) is strictly increasing and Υ(0) = 0, we get Υ−1(0) = 0 and

d
du Υ−1(u)

∣

∣

∣

u=0
=

1

Υ′(Υ−1(0))
= {Υ′(0)}−1.

Furthermore,

Υ′(θ) = −a + σ2θ +
∫ 0

−∞
(x eθx − x1[−1,0)(x))ν̂(dx)

= −a + σ2θ −
∫ ∞

0
(y e−θy − y1(0,1](y))ν(dy).

Thus, Υ′(0) = −E[X(1)] = µ − λ and E[τ̂0(w)] = w/(µ − λ). By (6.15) and (6.16),
we deduce that

Ψ
z,0
T =

1

T

∫ z

0
E[τw(0)]dw =

1

T

∫ z

0
E[τ̂0(w)]dw =

z2

2T(µ − λ)
.

For x > y, we use Lemma 6.2 to conclude

Ψ
x,y
T =

y(x − y)

T(µ − λ)
+

(x − y)2

2T(µ − λ)
=

x2 − y2

2T(µ − λ)
.

The result for x < y follows directly by the observation Ψ
y,x
T = −Ψ

x,y
T .

6.B.4 Proof of Proposition 6.2

Proof. To derive the upper bound for ∆
x,y
T , we apply the same coupling argument

as described in Section 6.3. Let us assume without loss of generality x > y. In this
case,

|∆x,y
T | = 1

T

∫ ∞

T
E[Qx(t)− Qy(t)]dt ≤ 1

T

∫ ∞

T
E[Qx(t)− Q0(t)]dt.

By the decomposition in (6.12),
∫ ∞

T
E[Qx(t)− Q0(t)]dt =

∫ ∞

T
E[(x + inf

s≤t
X(s))✶{τx(0)>t}]dt

=
∫ ∞

T

∫ x

0
P(x − u + inf

s≤t
X(s) > 0)dudt

=
∫ ∞

T

∫ x

0
P(τx−u(0) > t)dudt (6.33)

≤
∫ ∞

T

∫ x

0

E[τx−u(0)2]

t2
dudt

=
∫ x

0

∫ ∞

T

E[τx−u(0)2]

t2
dtdu =

∫ x

0

E[τw(0)2]

T
dw.
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We obtain E[τw(0)2] with the help of its Laplace transform in (6.18). Namely,

E[τw(0)2] = d2

du2 E[exp(−uτw(0))]
∣

∣

∣

u=0

= w2
(

d
du Υ−1(u)

∣

∣

∣

u=0

)2
− w d2

du2 Υ−1(u)
∣

∣

∣

u=0
.

As in the previous subsection we have d
du Υ−1(u)

∣

∣

∣

u=0
= (µ − λ)−1, and

d2

du2 Υ−1(u)
∣

∣

∣

u=0
= − Υ′′(Υ−1(0))

Υ′(Υ−1(0))3
= − Υ′′(0)

Υ′(0)3
.

Since Υ′(0) = µ − λ and

Υ′′(0) = σ2 +
∫ ∞

0
x2 ν(dx) = u2,

we conclude

E[τw(0)2] =
w2

(µ − λ)2
+

u2w

(µ − λ)3
,

so that

|∆x,y
T | ≤ 1

T2

∫ x

0

(

w2

(µ − λ)2
+

u2w

(µ − λ)3

)

dw =
1

T2

(

x3

3(µ − λ)2
+

u2x2

2(µ − λ)3

)

.

(6.34)
For general x, y ≥ 0,

|∆x,y
T | ≤ 1

T2

(

max(y, x)3

3(µ − λ)2
+

u2 max(y, x)2

2(µ − λ)3

)

.

As a direct consequence,

|∆T | ≤
1

T2

(

E[max(Q(0), Qµ(∞))3]

3(µ − λ)2
+

u2E[max(Q(0), Qµ(∞))2]

2(µ − λ)3

)

.

Remark 6.2. Observe that if X is light-tailed, that is E[exp{−θX(1)}] = E[exp{κ(θ)}] <
∞ for some θ < 0, then Υ(θ) as in (6.18) has an analytic continuation in the negative
half-plane, and in this region Υ(θ) < 0. Consequently, we can replace the upper
bound on the tail probability of τx−u(0) by

P
(

τx−u(0) > t
)

= P

(

eβτx−u(0)
> eβt

)

≤ e−βt e(x−u)Υ−1(−β),

for some β > 0, so that

∫ ∞

T
E[Qx(t)− Q0(t)]dt ≤ e−βT exΥ−1(−β) − 1

β Υ−1(−β)
.



202 Chapter 6. Transient error approximation in a Lévy queue

Along similar lines we deduce

|∆x,y
T | ≤ e−βT

T

exΥ−1(−β) + eyΥ−1(−β) − 2

β Υ−1(−β)

and

|∆T | ≤
e−βT

T

E[eQ(0)Υ−1(−β)] + E[eQµ(∞)Υ−1(−β)]− 2

β Υ−1(−β)
,

assuming that E[e−yQ(0)] < ∞ for all y > 0. The condition E[eQµ(∞)Υ−1(−β)] < ∞

follows from Lemma 6.1. Hence, the error decays exponentially fast for light-tailed
input processes.

6.C Proofs of Section 6.4

6.C.1 Proof of Lemma 6.4

Proof. Since the term αµ is convex, the strictness should come from the term CT(µ).
Furthermore, observe that if a function fµ(t) is convex for all t ≥ 0, and strictly
convex for all t ≥ ε for some ε ∈ [0, T), i.e. for any µ1, µ2 > 0 and a ∈ (0, 1)

a fµ1
(t) + (1 − a) fµ2(t) > faµ1+(1−a)µ2

(t),

then,

a
∫ T

0
fµ1

(t)dt + (1 − a)
∫ T

0
fµ2(t)dt =

∫ T

0

(

a fµ1
(t) + (1 − a) fµ2(t)

)

dt

=
∫ ε

0

(

a fµ1
(t) + (1 − a) fµ2(t)

)

dt +
∫ T

ε

(

a fµ1
(t) + (1 − a) fµ2(t)

)

dt

>

∫ ε

0
faµ1+(1−a)µ2

(t)dt +
∫ T

ε
faµ1+(1−a)µ2

(t)dt.

=
∫ T

0
faµ1+(1−a)µ2

(t)dt.

Hence, it suffices to prove the convexity of E[Qµ(t)] as a function of µ for all t ≥ 0,
and strict convexity for t ≥ ε for some ε ∈ [0, T). Let τx

µ (0) denote the first passage
time of level 0 in the process Qµ with Q(0) = x. Then,

Qµ(t) = U(t)− µt + max

{

x,− inf
s≤t

[U(s)− µs]

}

(6.35)

=

{

x + U(t)− µt, if t < τx
µ (0),

U(t)− µt − infs≤t[U(s)− µs], if t ≥ τx
µ (0),

(6.36)

where
τx

µ (0) := inf{t ≥ 0 : x + U(t)− µt ≤ 0}
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and U(t) is a spectrally positive Lévy process. Fix µ1, µ2 > 0 and a ∈ (0, 1). Define
µ3 := aµ1 + (1 − a)µ2, and

D(t) := aQµ1
(t) + (1 − a)Qµ2(t)− Qµ3(t).

In order to prove strict convexity we have to show that D(t) ≥ 0 for all t ≥ 0,
thereby implying E[D(t)] ≥ 0, i.e. convexity, for all t ≥ 0, and D(t) > 0 with
positive probability for t ∈ [ε, T], for some ε ∈ [0, T). We distinguish two cases:
x > 0 and x = 0.

The case x > 0. We start by noticing that if Qµ1
, Qµ2 and Qµ3 experience the same

input process U(t), then by absence of negative jumps in U(t), it holds that

τx
µ2
(0) < τx

µ3
(0) < τx

µ1
(0). (6.37)

We use shorthand notation

Ik(t) := inf
0≤s≤t

[U(s)− µks],

for k = 1, 2, 3. Using representation (6.36) of the workload process, we obtain

D(t) =



















0, if t < τx
µ2
(0),

−(1 − a) (x + I2(t)) , if τx
µ2
(0) ≤ t < τx

µ3
(0),

ax − (1 − a)I2(t) + I3(t), if τx
µ3
(0) ≤ t < τx

µ1
(0),

−aI1(t)− (1 − a)I2(t) + I3(t), if t ≥ τx
µ1
(0).

This partition allows us to spot when strict convexity can occur. Note that by
definition t ≥ τx

µ2
(0), I2(t) = inf0≤s≤t[U(s) − µ2s] ≤ −x, so that D(t) ≥ 0 if

τx
µ2
(0) ≤ t < τx

µ3
(0). Moreover, by subadditivity of the infimum,

I3(t) = inf
0≤s≤t

[U(s)− µ3s] = inf
0≤s≤t

[a(U(s)− µ1s) + (1 − a)(U(s)− µ2s)]

≥ a inf
0≤s≤t

[U(s)− µ1s] + (1 − a) inf
0≤s≤t

[U(s)− µ2s] = aI1(t) + (1 − a)I2(t),

and hence D(t) ≥ 0 for t ≥ τx
µ1
(0). Using the same argument, we deduce

ax − (1 − a)I2(t) + I3(t) ≥ ax − (1 − a)I2(t) + aI1(t) + (1 − a)I2(t) = a(x + I1(t)).

In particular for t < τx
µ1
(0), this value is strictly positive. As a result, D(t) ≥ 0 for

all t ≥ 0. On top of that D(t) > 0 for t ∈ [τx
µ3
(0), τx

µ1
(0)). Accordingly, the latter

implies strict positivity of ED(t), and therefore strict convexity of EQµ(t), if the
event {τx

µ3
(0) ≤ t < τx

µ1
(0)} occurs with positive probability. That is,

P(D(t) > 0) ≥ P
(

a(x + I1(t))✶{τx
µ3
(0)≤t<τx

µ1
(0)} > 0

)

= P
(

x + I1(t) > 0, τx
µ3
(0) ≤ t < τx

µ1
(0)
)

= P
(

x + I1(t) > 0|τx
µ3
(0) ≤ t < τx

µ1
(0)
)

P
(

τx
µ3
(0) ≤ t < τx

µ1
(0)
)

= P
(

τx
µ3
(0) ≤ t < τx

µ1
(0)
)

= P(τx
µ3
(0) ≤ t)− P(τx

µ1
(0) ≤ t) > 0,

(6.38)
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by the stochastic dominance in (6.37). To ensure the strict inequality in (6.38) we
have to enforce the condition

P(τx
µ1
(0) < T) > 0. (6.39)

Remark 6.3. An example illustrating the need for this condition is the case in which
U(t) is a compound Poisson process and T < x/µ2 < x/µ1. Then

Qµk
(t) = x + U(t)− µkt,

for all t ∈ [0, T], since U(t) ≥ 0 and therefore τx
µ1
(0) > T. Consequently, for all

a ∈ (0, 1),
a Qµ1

+ (1 − a) Qµ2(t) = Qµ3(t),

proving only convexity of EQµ(t) and subsequently convexity of
∫ T

0 E[Qµ(t)]dt. In
case σ > 0, the probability in (6.39) is necessarily positive.

The case x = 0. By the fact that τµ(0) = 0 for all µ > 0, proving that D(t) > 0 in
the case x = 0 reduces to showing that the probability of

D(t) = aI1(t) + (1 − a)I2(t)− I3(t) > 0

happening is positive for all t > 0. Define

t0 := inf{t > 0 : U(t) > 0},

and

τ̃µ := inf{t > t0 : U(t)− µt ≤ 0}.

We note that t0 as defined above, also defines the epoch of the start of a new excur-
sion of the reflection Qµ for all µ > 0. Namely,

U(s) ≤ 0 ⇒ U(s)− µs ≤ −µs for all 0 ≤ s < t0

⇒ inf
0≤s<t0

[U(s)− µs] ≤ −µt0 ⇒ U(t0)− µt0 − inf
0≤s<t0

[U(s)− µs] ≥ U(t0) > 0.

Then Qµ(t0−) = 0 for all µ > 0. By virtue of the Strong Markov Property, note that

Qµ(t0 + t)
d
= Qµ(t). Hence we assume without loss of generality t0 = 0. Again, we

have a stochastic dominance relation similar to (6.37):

τ̃µ2 < τ̃µ3 < τ̃µ1
,

for all µ1 < µ3 < µ2. Then

D(t)
d
=















0, if t < τ̃µ2 ,
−(1 − a)I2(t), if τ̃µ2 ≤ t < τ̃µ3 ,
(1 − a)I2(t) + I3(t), if τ̃µ3 ≤ t < τ̃µ1

,
−aI1(t)− (1 − a)I2(t) + I3(t), if t ≥ τ̃µ1

.
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Clearly, D(t) ≥ 0 for all t ≥ 0 and

−(1 − a)I2(t) + I3(t) ≥ aI1(t) > 0,

for τ̃µ3 ≤ t < τ̃µ1
. Hence, in a similar manner to (6.38),

P(D(t) > 0) ≥ P
(

aI1(t)✶{τ̃µ3
≤t<τ̃µ1

} > 0
)

= P
(

I1(t) > 0, τ̃µ3 ≤ t < τ̃µ1

)

= P
(

I1(t) > 0|τ̃µ3 ≤ t < τ̃µ1

)

P
(

τ̃µ3 ≤ t < τ̃µ1

)

= P
(

τ̃µ3 ≤ t < τ̃µ1

)

= P(τ̃µ3 ≤ t)− P(τ̃µ1
≤ t) > 0. (6.40)

The last inequality is satisfied it P(τ̃µ1
< T) > 0, which is equivalent to P(U(T)−

µT ≤ 0) > 0, a condition that is clearly true for all our choices of U. In conclusion,
for x = 0, E[D(t)] > 0 and therefore E[Qµ(t)] is a strictly convex function of µ.

6.C.2 Proof of Proposition 6.3

The proof of the proposition relies on the following auxiliary lemma, of which we
include the proof for completeness.

Lemma 6.5. Consider the sequence of functions fn : [x0, ∞) → R and let f : [x0, ∞) → R

be the pointwise limit for some x0 ∈ R. Assume f and fn are strictly convex for all n.
Furthermore, let f (y) → ∞ for both y → x+0 and y → ∞. If xn and x are the minimizers
for fn and f , respectively, then xn → x for n → ∞.

Proof. We start by showing that the sequence xn is bounded. Fix ul , ur such that
x0 < ul < x < ur. We claim that there exists a N ∈ N such that xn ∈ [ul , ur] for all
n ≥ N. First, we prove the upper bound on xn. For any strictly convex function h
with minimizer xh, the following statement holds true:

xh < ur ⇔ h is strictly increasing at ur. (6.41)

The first implication follows from observing that h(xh) < h(y) for all y > x∗ and
definition of convexity:

0 <
h(ur)− h(xh)

ur − xh
≤ h(ur + δ)− h(ur)

δ
,

for all δ > 0. Hence h(ur) < h(ur + δ), i.e. h is increasing at ur. The converse
follows immediately by observing that h(ur) < h(ur + δ) for all δ > 0, so that
xh < ur. Next, we show that fn must be increasing at ur for n sufficiently large. By
pointwise convergence of fn we have

lim
n→∞

[ fn(ur + δ)− fn(ur)] = f (ur + δ)− f (ur).

Let wr := f (ur + δ)− f (ur) > 0. Then

∃Nr ∈ N : ∀n ≥ Nr : |[ fn(ur + δ)− fn(ur)]− [ f (ur + δ)− f (ur)]| < wr/2.
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Hence for n ≥ Nr,

f (ur + δ)− f (ur)− wr/2 < fn(ur + δ)− fn(ur) < f (ur + δ)− f (ur) + wr/2

⇒ 0 < wr/2 < fn(ur + δ)− fn(ur).

Hence by (6.41), xn < ur for sufficiently large n. Similarly, we argue

xh > ul ⇔ h is strictly decreasing at ul ,

for any strictly convex function h with minimizer xh. Note that xh > ul implies
h(xh)− h(ul) < 0 and for all δ > 0 we get by strict convexity

h(ul)− h(ul − δ)

δ
<

h(xh)− h(ul)

xh − ul
< 0,

by which h(ul − δ) > h(ul), i.e. h is decreasing in ul . Moreover, if h is decreasing at
ul , then it is decreasing for all y < ul , by arguments similar to the above. Therefore,
h(ul − δ) > h(ul) for all δ > 0 and it must hold that xh > ul . Define f (ul)− f (ul −
δ) := wl < 0, then again by pointwise convergence, we have that

∃Nl ∈ N : ∀n ≥ Nl : |[ fn(ul)− fn(ul − δ)]− [ f (ul)− f (ul − δ)]| < wl ,

whereupon

fn(ul)− fn(ul − δ) < f (ul)− f (ul − δ) + wl = 2wl < 0.

Hence, for sufficiently large n, we also have xn > ul . Fix N = max{Nl , Nr}, then
for n ≥ N, xn ∈ (ul , ur). That is, the sequence xn is bounded. Therefore, by the
theorem of Bolzano-Weierstrass, xn has to have a convergent subsequence. That
is, there exists a sequence nk such that nk → ∞ and xnk

→ a as k → ∞ for some
a ∈ [ul , ur]. We prove that every subsequence must converge to x by contradiction.
Suppose there exists a subsequence nk such that xnk

→ a 6= x. Since, xn ∈ [ul , ur] for

n ≥ N, we may restrict our attention to the sequence of functions f̂n : [ul , ur] → R+,
consisting of the original function fn restricted to the domain [ul , ur]. To be precise
xn = arg miny fn(y) = arg miny f̂n(y) for n ≥ N. Because f̂n and f̂ are bounded, we

furthermore have that f̂n → f̂ uniformly.
Fix ε > 0. By uniform convergence, there exists an K0 ∈ N such that

| f̂nk
(y)− f̂ (y)| < ε/2, ∀k ≥ K0, y ∈ [ul , ur].

Also, because f̂ is convex, it is continuous, so that there exists a δ := δ(ε) so that

|z − y| < δ ⇒ | f̂ (z)− f̂ (y)| < ε/2.

Let K1 be such that |xnk
− a| < δ for all k ≥ K1. Then for k ≥ K = max{K0, K1} this

implies

| fnk
(xnk

)− f (a)| = | f̂nk
(xnk

)− f̂ (a)|
≤ | f̂nk

(xnk
)− f̂ (xnk

)|+ | f̂ (xnk
)− f (a)| < ε/2 + ε/2 = ε.
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Hence we conclude limk→∞ f̂nk
(xnk

) = f (a). Therefore,

lim sup
n→∞

fn(xn) ≥ f (a) > f (x),

by minimality of x. However, fn(xn) ≤ fn(x), which implies lim supn→∞ fn(xn) ≤
limn→∞ fn(x) = f (x), contradicting the strict inequality above. Hence we deduce
x = a. Consequently, every subsequence of xn converges to x and therefore xn → x
as n → ∞. Applying Lemma 6.5 to the functions ΠT and Π∞ with x0 = λ, together
with Lemma 6.4, we obtain the result immediately.

6.C.3 Proof of Proposition 6.4

Proof. Note that Π∞ is a smooth function. By the first optimality condition Π′
∞(µ⋆

∞)
= 0. We first prove that also ΠT(µ) is differentiable with respect to µ for all µ ≥ 0.
Recall (6.5), which defines the cost function as a combination of the accumulated
expected transient queue length, and linear staffing costs. The latter term is clearly
differentiable, hence it remains to be proved that

CT(µ) =
1

T

∫ ∞

0
E[Qµ(t)]dt,

admits a derivative for all µ ≥ 0 with T fixed. This holds if and only if E[Qµ(t)] is
differentiable for all t ≥ 0. Let Q(0) = x ≥ 0. Following (6.3),

E[Qµ(t)] = E[Xµ(t)] + E

[

max{x, sup
s∈[0,t]

{−Xµ(s)}}
]

= (λ − µ)t + E

[

max{x, sup
s∈[0,t]

{−Xµ(s)}}
]

,

where the first term is differentiable. Furthermore,

E[max{x, sup
s∈[0,t]

{−Xµ(s)}}] = x +
∫ ∞

x
P( sup

s∈[0,t]

{−Xµ(s)} > u)du

= x +
∫ ∞

x
P(τ̂0(u) ≤ t)du,

with τ̂0(u) as defined in (6.16).

Since −Xµ is a process with no positive jumps, we may apply [36, Cor. VII.3],
which states that the following equivalence between measures holds:

s P(τ̂0(u) ∈ ds)du = u P(−Xµ(s) ∈ du)ds, (6.42)
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so that

∫ ∞

u=x
P(τ̂0(u) ≤ t)du =

∫ ∞

u=x

∫ t

s=0
P(τ̂0(u) ∈ ds)du

=
∫ ∞

u=x

∫ t

s=0
s−1u P(−Xµ(s) ∈ du)ds

=
∫ ∞

u=x

∫ t

s=0
s−1u P(Xµ(s) ∈ du)ds

=
∫ t

s=0
s−1

E[max{x, Xµ(s)}]ds

=
∫ t

s=0

∫ ∞

v=x/s
P(Xµ(s)/s > v)dvds

=
∫ t

s=0

∫ ∞

v=x/s
P(U(λs)/s > v + µ)dvds

=
∫ t

s=0

∫ ∞

w=x/s+µ
P(U(λs)/s > w)dwds, (6.43)

where the interchange of integrals is justified by Fubini’s theorem and this last form
is differentiable with respect to µ. Substituting Q(0) for x straightforwardly yields
differentiability of the complete cost function ΠT for all T.

Consequently we invoke the first optimality condition for µ⋆

T to find

0 = Π′
T(µ

⋆

T) = Π′
∞(µ⋆

T) + Ψ′
T(µ

⋆

T) + O(1/T2)

= Π′
∞(µ⋆

∞) + Ψ′
T(µ

⋆

∞) + (µ⋆

T − µ⋆

∞)
[

Π′′
∞(µ⋆

∞) + Ψ′′
T(µ

⋆

∞)
]

+
1

2
(µT − µ⋆

∞)2
[

Π′′′
T (ξ) + Ψ′′′

T (ξ)
]

+ O(1/T2)

= Ψ′
T(µ

⋆

∞) + (µ⋆

T − µ⋆

∞)
[

Π′′
∞(µ⋆

∞) + Ψ′′
T(µ

⋆

∞)
]

+
1

2
(µT − µ⋆

∞)2
[

Π′′′(ξ) + Ψ′′′
T (ξ)

]

+ O(1/T2),

for some ξ ∈ [µ⋆

T , µ⋆

∞]. Rearranging this gives

µ⋆

T − µ⋆

∞ =
−Ψ′

T(µ
⋆

∞)

Π′′
∞(µ⋆

∞) + Ψ′′
T(µ

⋆
∞) + 1

2 (µ
⋆

T − µ⋆
∞)(Π′′′

∞(µ⋆

T) + Ψ′′′
T (ξ))

+ O(1/T)

= − Ψ′
T(µ

⋆

∞)

Π′′
∞(µ⋆

∞)

[

1 − Ψ′′
T(µ

⋆

∞)

Π′′
∞(µ⋆

∞)
− µ⋆

T − µ∞

2

Π′′′
∞(µ⋆

∞) + Ψ′′′
T (µ⋆

∞)

Π′′
∞(µ⋆

∞)

]

+ O(1/T)

= − Ψ′
T(µ

⋆

∞)

Π′′
∞(µ⋆

∞)
[1 + o(1)]

for T → ∞, since both µT − µ∞ and Ψ′′
T(µ

⋆

∞) are o(1). Let

µ• := lim
T→∞

TΨ′
T(µ

⋆

∞)

Π′′
∞(µ⋆

∞)
.
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By (6.19) we have

TΨ′
T(µ) = − E[Q(0)2]

2(µ − λ)2
+

λu3

3(µ − λ)3
+

3λ2u2
2

4(µ − λ)4
.

Together with

Π′′
∞(µ) =

λu2

(µ − λ)3

and (6.23) we obtain the expression for µ• in (6.24).

6.C.4 Proof of Proposition 6.5

Proof. We upper bound the optimality gap by using the decomposition in (6.21).

|Π⋆

∞ − Π⋆

T | =
∣

∣Π̂T(µ∞) + ∆T(µ
⋆

∞)− Π̂T(µ
⋆

T)− ∆T(µ
⋆

T)
∣

∣

≤ |Π̂T(µ
⋆

∞)− Π̂T(µ
⋆

T)|+ |∆T(µ
⋆

∞)|+ |∆T(µ
⋆

T)|
= |Π̂T(µ

⋆

∞)− Π̂T(µ
⋆

T)|+ O(1/T2), (6.44)

since ∆T(µ) = O(1/T2) by Proposition 6.2. Next, we find an upper bound for
|Π̂T(γ)− Π̂T(β)|, with Π̂T(·) as in (6.21), in terms of the difference between γ and
β. For simplicity, denote γ̂ = γ − λ and β̂ = β − λ, implying γ̂ − β̂ = γ − β. Then,
using (6.19), we get

|Π̂T(µ
⋆

∞)− Π̂T(µ
⋆

T)| =
∣

∣

∣

∣

α(γ̂ − β̂) +

(

λu2

2
+

E[Q(0)2]

2T

)(

1

γ̂
− 1

β̂

)

−λ2u2
2

4T

(

1

γ̂3
− 1

β̂3

)

− λu3

6T

(

1

γ̂2
− 1

β̂2

)

∣

∣

∣

∣

∣

.

Furthermore, we have

1

γ̂
− 1

β̂
= − γ̂ − β̂

β̂2
+

(γ̂ − β̂)2

β̂3
+ O

(

(γ − β)3
)

,

1

γ̂2
− 1

β̂2
= −2(γ̂ − β̂)

β̂3
+

3(γ̂ − β̂)2

β̂4
+ O

(

(γ − β)3
)

,

1

γ̂3
− 1

β̂3
= −3(γ̂ − β̂)

β̂4
+

6(γ̂ − β̂)2

β̂5
+ O

(

(γ − β)3
)

.
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Substituting these yields

|Π̂T(γ)− Π̂T(β)| =
∣

∣

∣

∣

∣

(γ − β)

[

α − λu2

2β̂2
+

1

2Tβ̂2

(

E[Q(0)2] +
3λ2u2

2

2β̂2
+

2λu3

3β̂

)]

−(γ − β)2

[

λu2

2β̂3
+

1

2Tβ̂3

(

E[Q(0)2]− 3λ2u2
2

β̂2
− λu3

β̂

)]∣

∣

∣

∣

∣

+ O
(

(γ − β)3
)

.

Given that µ⋆

T = µ⋆

∞ + µ•/T + o(1/T), we find

|Π̂T(µ
⋆

∞)− Π̂T(µ
⋆

T)| =
|µ•|

T

(

α − λu2

2(µ⋆
∞ − λ)2

)

+ O(1/T2)

=
|µ•|

T

(

α − λu2

2(
√

λu2/2α)2

)

+ O(1/T2) = O(1/T2),

which concludes the proof.



7
A blood bank model

We consider a stochastic model for a blood bank, in which
amounts of blood are offered and demanded according to in-
dependent compound Poisson processes. Blood is perishable,
that is, blood can only be kept in storage for a limited amount
of time. Furthermore, demand for blood is impatient, that is, a
demand for blood may be canceled if it cannot be satisfied soon
enough. For a range of perishability functions and demand
impatience functions, we derive the steady-state distribution
of the blood inventory level. Moreover, we deduce fluid and
diffusion limits for the inventory process as the arrival rates of
of the compound Poisson processes grow indefinitely. These
scaling limits in turn provide normal approximations for the
performance of large-scale systems.

Based on
A blood bank model with perishable blood and demand impatience
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7.1 Introduction

This chapter is devoted to the study of a stochastic blood bank model in which
amounts of blood are offered and demanded according to stochastic processes, and
in which blood is perishable (that is, blood can only be kept for a limited amount
of time) and demand for blood is impatient (that is, a demand request for blood
may be canceled if it cannot be satisfied soon enough). Let us first provide some
background, and subsequently sketch the blood bank model in some more detail.

Practical background. One of the major issues in securing blood supply to patients
worldwide is to provide blood of the best achievable quality, in the needed quanti-
ties. In most countries, blood, which is collected as whole blood units from human
donors, is separated into different components which are subsequently stored un-
der different storage conditions according to their biological characteristics, func-
tions and respective expiration dates. Blood units and components are ordered by
local hospital blood banks (LBB) from the Central Blood Bank (CBB) according to
their operational needs. The CBB has to run its inventory and supply according
to these requests and to the need to keep sufficient stock for immediate release in
emergency situations. It also has to perform tests to determine the unit’s blood type
and to detect the presence of various pathogens which are able to cause transfusion-
transmitted diseases, such as Hepatitis B, Hepatitis C, Human Immunodeficiency
Virus (HIV) and Syphilis, see e.g. Steiner et al. [201].

Blood consists of several components: red blood cells, plasma and plate-lets.
In addition, there are 8 blood groups (types): O+, O−, A+, A−, B+ ,B−, AB+, AB−

(− means Rh negative) where the interrelationship between the transfusion issuing
policies among the 8 types is quite intricate. It turns out that each of the negative
types can satisfy the corresponding + type, but not vice versa. Blood components
are perishable as red blood cells can be used for only 35 to 42 days and platelets for
only 5 days (plasma, however, can be frozen and kept for one year). Accordingly, if
red blood cells and particularly platelets are not used for blood transfusion within
their expiration dates, then they perish.

In most developed countries demand requirements of about 50.000 blood dona-
tions are needed per one million persons per year. About 95% of these donations
are aggregated by CBBs and the remaining 5% by LBBs. Blood units stored at the
CBB are usually ordered by LBBs for planned elective surgeries. However, as it
happens rather frequently, elective surgeries turn out to become emergency ones
due to various conditions of the patient involved. In such cases, hospitals use their
own local blood banks to supply the demand, and they cancel the required demand
from the CBB; this is what we refer to as demand impatience. A good review on
supply chain management in blood products appears in Beliën & Forcé [33] and the
references cited therein. Other relevant studies are Ghandforoush and Sen [85] &
Stanger et al. [198].
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Inventory model. In this chapter we consider the analysis of blood perishability
and demand impatience, concentrating on only one blood type. We do this by con-
sidering the stochastic inventory processes {Xb(t)}t≥0, with Xb(t) the amount of
blood kept in storage at time t, and {Xd(t)}t≥0, with Xd(t) the amount of demand
for blood (the shortage) at time t. If Xb(t) > 0 then Xd(t) = 0, and if Xd(t) > 0
then Xb(t) = 0. We assume that amounts of blood arrive according to a Poisson
process, and that requests for blood arrive according to another, independent, Pois-
son process. The delivered and requested amounts of blood are assumed to be
random variables. We represent the perishability of blood by letting the amount
of blood, when positive, decrease in a state-dependent way: if the amount is v,
then the decrement rate is ξbv + αb. The ξb factor is motivated by the fact that a
large amount of blood suggests that some of the blood has been present for quite
a while – and hence there is a relatively high perishability rate when much blood
is in inventory. The αb factor provides additional modeling flexibility. One can in
this way represent the blood perishability more accurately; but the αb term could
also, e.g., represent a fluid demand rate of individuals or organizations, which con-
tact the CBB directly, and that is only satisfied when there is inventory. Similarly,
we represent the demand impatience by a decrement rate ξdv + αd. The ξd factor
is motivated by the following fact. When there is a large shortage (demand) of
blood, there are probably many patients waiting for blood, so many patients that
might become impatient (that is, they could recover, or die, or become in need of
emergency surgery) leading to a cancellation of the required demand from the CBB.
Again, the αd factor provides additional modeling flexibility; it not only allows us
to represent demand impatience more accurately, but it could also, e.g., represent
additional donations of individuals in times of blood shortage.

The inclusion of both the perishability factor ξbv + αb and the demand impa-
tience factor ξdv + αd makes the analysis of the ensuing model mathematically
quite challenging, but leads to a very general model that contains many well-known
models as special cases. Our two-sided stochastic process, with both upward and
downward jumps, and with the rather general slope factors ξv + α, could represent
a quite large class of stochastic phenomena. It should for example be noted that
this model is a two-sided generalization of the well-known shot-noise model that
describes certain physical phenomena, see [132]). In some of our calculations we
remove either the ξ factors or the α factors, and this results in easier calculations
and more explicit results.

Our main results are: (i) Determination of the steady-state distributions of the
amounts of blood and of demand in inventory; in particular, we present a detailed
analysis of the case in which the delivered and requested amounts of blood are both
exponentially distributed. (ii) Expressions for mean amounts of blood and demand
in storage, and for the probability of not being able to satisfy demand. (iii) We
obtain the fluid and diffusion limits of the blood inventory process, providing in
particular sufficient conditions for the limit process to be an Ornstein-Uhlenbeck
process.
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Structure of the chapter. The chapter is organized as follows: Section 7.2 presents
a detailed model description. A steady-state analysis of the densities of demand
and of blood amount in storage is contained in Section 7.3, including the special
case of exponentially distributed delivered and requested blood amounts when
αb = αd = 0 (i.e., pure proportionality). The fluid and diffusion scalings are
discussed in Section 7.4, and in Section 7.5 we present numerical results for cer-
tain performance measures like mean net amount of blood and the probability that
there is a shortage of blood. These results indicate, among other things, that the
probability that there is a shortage of blood can be accurately approximated via a
normal approximation, based on the Ornstein-Uhlenbeck process appearing in the
diffusion scaling. Section 7.6 contains some conclusions and suggestions for further
research.

7.2 Model description

We consider the following highly simplified model of a blood bank, restricting our-
selves to only one type of blood.

Blood amounts arrive according to a Poisson process with rate λb. The amounts
which successively arrive are independent, identically distributed random variables
B1, B2, . . . with distribution Fb(·); F̄b(x) = 1 − Fb(x). Demands for blood arrive ac-
cording to a Poisson process with rate λd. The successive demand amounts are
independent, identically distributed random variables D1, D2, . . . with distribution
Fd(·); F̄d(x) = 1 − Fd(x). We view these amounts as continuous quantities, mea-
sured in, for instance liters. If there is enough blood for a demand, then that de-
mand is immediately satisfied. If there is some blood, but not enough to fully satisfy
a demand, then that demand is partially satisfied, using all the available blood. The
remainder of the demand may be satisfied later.

Blood has a finite expiration date. We make the assumption that if the total
amount of blood present is v > 0, then blood is discarded – because of its finite
expiration date – at a rate ξbv + αb, so linear in v. Blood demands have a finite
patience. We make the assumption that if the total amount of demand present is
v > 0, then demand disappears – because of its finite patience – at a rate ξdv + αd,
so linear in v.

Notice that either the total amount of blood present, or the total amount of de-
mands, is zero, or both are zero; they cannot be both positive. Hence we can eas-
ily in one figure depict the two-sided process {X(t)}t≥0 = {(Xb(t), Xd(t))}t≥0 of
total blood and total demand amounts present at any time t, as we have done
in Figure 7.1. For our purposes, we are mainly interested in the characteristics
of the process described above in stationarity. Let us denote by Xd the steady-
state total amount of demand and by Xb the steady-state total amount of blood
present, with corresponding density functions f (·) and g(·), respectively. Notice
that these are defective densities; we have

∫ ∞

0+ f (v)dv = πd = P(demand > 0)

and
∫ ∞

0+ g(v)dv = πb = P(blood > 0). If αb = αd = 0, then neither Xb nor Xd has
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Xd(t)

Xb(t)

t

Figure 7.1: Sample path of net amount of blood available as a function of time.

probability mass at zero, and πb + πd = 1 (when there is only a very small amount
v present, the "decay" rate ξbv or ξdv is very small). However, if αb and/or αd is
positive, then there is a positive probability π0 of being in 0.

When ξd and ξb are positive, existence of these steady-state densities is obvious;
otherwise, the conditions for the existence of the steady-state distributions require
some discussion, see Section 7.3.3.

7.3 Steady-state analysis

In this section we present a global approach towards determining f (·) and g(·) in
the most general form of our model. Using the Level Crossing Technique (LCT),
we derive two integral equations in f (·) and g(·). Before attempting to solve these
equations, we consider a few important performance measures which can be ex-
pressed in f (·) and g(·), π0 and the mean length of time during which, uninterrupt-
edly, there is a positive amount of blood (respectively demand). The latter could be
viewed as the busy period of the Xb process (respectively of the Xd process).

First we consider the density g(·) of the amount of blood. We equate the rate at
which some positive blood level v is upcrossed and downcrossed, respectively. LCT
leads to the following integral equation: for v > 0,

λb

∫ v

0
g(y)F̄b(v − y)dy + λb

∫ ∞

0
f (y)F̄b(v + y)dy + π0λb F̄b(v)

= λd

∫ ∞

v
g(y)F̄d(y − v)dy + (ξbv + αb)g(v). (7.1)

Here the three terms in the left-hand side represent the rate of crossing level v from
below; the first term corresponds to a jump from a blood inventory level between 0
and v, whereas the second term corresponds to a jump from a shortage level, and
the third term corresponds to a jump from level 0. The two terms in the right-hand
side represent the rate of crossing level v from above; the first term corresponds to
a jump from above v, and the second term to a smooth crossing.
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Next, we consider the density f (·) of the amount of demand (shortage). We
equate the rate at which some positive demand level v is upcrossed and down-
crossed, respectively. LCT leads to the following integral equation: for v > 0,

λd

∫ v

0
f (y)F̄d(v − y)dy + λd

∫ ∞

0
g(y)F̄d(v + y)dy + π0λd F̄d(v)

= λb

∫ ∞

v
f (y)F̄b(y − v)dy + (ξdv + αd) f (v). (7.2)

It should be noted that these two, coupled, equations are symmetric (swap f and g,
and the b and d parameters).

In general, it appears to be very difficult to solve these integral equations. In
Section 7.3.1 we assume that both Fb(·) and Fd(·) are exponential. In that case, we
are able to obtain explicit expressions of f (·) and g(·), in terms of hypergeometric
functions. In Section 7.3.2 we consider the case that Fb(·) and Fd(·) are Coxian
distributions, a class of distributions that lies dense in the class of all distributions of
non-negative random variables, and that is suitable for handling the above coupled
integral equations via Laplace transforms (LT). We are able to transform (7.1) and
(7.2) into inhomogeneous first-order differential equations in the LTs of f (·) and
g(·), and thus to obtain those LTs.

A few simple performance measures. Without solving (7.1)-(7.2) explicitly, we are
able to deduce some characteristics of the steady-state inventory level.

First, we can relate π0 to the densities f (·) and g(·); see Proposition 7.1 below.
Subsequently we express the mean length of time during which there is, uninter-
ruptedly, a positive amount of blood present (we call this the non-emptiness period
of the inventory system), into f (·), g(·) and π0. We do the same for the mean
length of time during which there is, uninterruptedly, a positive demand, i.e., the
non-emptiness period of the demand process, see Proposition 7.2.

Proposition 7.1. Let π0 be the steady-state atom probability of the zero period. Then

π0 =
αd f (0) + αbg(0)

λd + λb
.

Proof. Substitute v = 0 in (7.1) and (7.2) and take the sum. The result is obtained
after several steps of elementary algebra.

The result introduced in the proposition above is very intuitive. By LCT, αd f (0)+
αbg(0) is the rate at which level 0 is reached (i.e., the process will now really stay
at 0 for a while), so that [αd f (0) + αbg(0)]−1 is the expected length of time between
two successive times level 0 is reached by the fluid. More precisely, the zero periods
and non-zero periods generate an alternating renewal process whose expected cycle
length is [αd f (0) + αbg(0)]−1. The expected length of the zero period is [λd + λb]

−1,
since the end of the zero period is terminated at the moment of the next jump. But
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the jump process is a Poisson process with rate λd + λb. Now the renewal reward
theorem simply says that

π0 =
E[zero period]

E[cycle]
.

In preparation of the next proposition, for the process {X(t)}t≥0 we define a
modified process {Xm(t)}t≥0, where Xm is constructed by deleting the zero-periods
(only the zero periods, not the emptiness periods) from X and gluing together the
non-zero periods. The modified process is Xm such that Xm(t) = Xd(t)✶{Xd(t)>0} +
Xb(t)✶{Xb(t)>0} where by definition of the model {Xd(t) > 0} ⇒ {Xb(t) = 0} and
{Xb(t) > 0} ⇒ {Xd(t) = 0}.

Proposition 7.2. Let Bb and Ib be the generic non-emptiness period and the emptiness
period, respectively, of the inventory system. Similarly, let Bd and Id be the generic non-
emptiness period and the emptiness period, respectively, of the demand process. Then

(i)







E[Bb] =
1−π0

αbg(0)+λd

∫ ∞

0 F̄d(y)g(y)dy
,

E[Bd] =
1−π0

αd f (0)+λb

∫ ∞

0 F̄b(y) f (y)dy

and

(ii)







E[Ib] =
1

λb

∫ ∞

0 F̄b(y) f (y)dy+λbπ0
− E[Bb],

E[Id] =
1

λd

∫ ∞

0 F̄d(y)g(y)dy+λdπ0
− E[Bd].

Proof. (i) Consider the non-emptiness period of the inventory system. The steady-
state densities of the inventory system and the demand process of Xm are given
by

gm(x) =
g(x)

1 − π0
, fm(x) =

f (x)

1 − π0
,

respectively. At the end of the non-emptiness period of the inventory system there
are two disjoint ways (disjoint events) to downcross level 0+. Either level 0 is
downcrossed by a negative jump or level 0+ is reached by the fluid reduction (both
in Xm). The rate of the first event is λd

∫ ∞

0 F̄d(y)gm(y)dy and by LCT the rate of the
second event is αbgm(0). Since the events are disjoint, the rate of downcrossings of
level 0+ is λd

∫ ∞

0 F̄d(y)gm(y)dy + αbgm(0). That means that the expected length of

the non-emptiness period is given by [λd

∫ ∞

0 F̄d(y)gm(y)dy + αbgm(0)]−1. Thus

E[Bb] =
1 − π0

αbg(0) + λd

∫ ∞

0 F̄d(y)g(y)dy
.

The expression for E[Bd] is obtained by symmetry.
(ii) Define a cycle in the real process X (not the modified process Xm) as the time
between two upcrossings of level 0+. By definition, the emptiness period plus
the non-emptiness period is a cycle in X. That means that the expected length
of the emptiness period is the expected length of the cycle minus the expected
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length of the non-emptiness period. The non-emptiness period in X and in Xm are
identical and the length of the expected cycle is [λb

∫ ∞

0 F̄b(y) f (y)dy+ λbπ0]
−1, since

λb

∫ ∞

0 F̄b(y) f (y)dy + λbπ0 is the rate of the upcrossings of level 0+. We obtain

E[Ib] + E[Bb] =
1

λb

∫ ∞

0 F̄b(y) f (y)dy + λbπ0
,

yielding E[Ib]. E[Id] is obtained by symmetry.

For the special case in which ξb = ξd = ξ and αb = αd = 0, we are able to deduce
that the expected steady-state inventory level E[X] has a simple form.

Proposition 7.3. If ξb = ξd = ξ and αb = αd = 0, then

E[X] = m/ξ, (7.3)

where m = λbE[B]− λdE[D].

Proof. We study the discrete-time embedding of the blood inventory process
{Xk}k≥1, where Xk denotes the blood inventory level just before the kth arrival (either
blood or demand). Suppose the process is in steady state. By the PASTA property,

we have that Xk
d
= X for all k ≥ 1. Also, the process {Xk}k≥1 constitutes a Markov

chain, of which the evolution is characterized by the recursion

Xk+1 = (Xk + ✶k,bBk − ✶k,dDk) · e−ξAk , (7.4)

where ✶k,b and ✶k,d denote the indicator function of the event that the kth arrival
is a blood or demand arrival, respectively. Remark that the relation holds for both
Xk ≥ 0 and Xk < 0. Furthermore, Bk and Dk denote the amount of blood or demand
in the kth jump, respectively, and Ak denotes the interarrival time between the kth

and (k + 1)th arrival. Note that Ak is the minimum of two exponentially distributed
random variables with rate λb and λd, so that Ak is exponentially distributed with
rate λb + λd. Next, we take the expectation on both sides of (7.4), which gives

E[Xk+1] =
(

E[Xk] + pk,bE[B]− pk,dE[D]
)

E
[

e−ξAk
]

. (7.5)

Here, we used independence between Poisson processes and their jump sizes, and
their memoriless property, and pk,b = λb/(λb + λd) and pk,d = λd/(λb + λd) denote
probability of the kth jump being either a blood delivery or demand, respectively.

Since Xk
d
= X, we have E[Xk+1] = E[Xk] = E[X], and thus we may rewrite (7.5) as

E[X] =

(

E[X] +
λbE[B]− λdE[D]

λb + λd

)

· λb + λd

λb + λd + ξ
, (7.6)

from which we easily deduce E[X] = (λbE[B]− λdE[D])/ξ = m/ξ.
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7.3.1 The exponential case

Density functions. We assume in this section that F̄b(x) = e−µbx and F̄d(x) = e−µdx.
Let ρd := λd/µd and ρb := λb/µb denote the expected amount of demand requested,
and amount of blood delivered into the system, per time unit. Moreover, we take
αb = αd = 0. Under these assumptions, we can solve (7.2) and (7.1) explicitly.

Equations (7.1) and (7.2) reduce to:

λd

∫ v

0
f (y)e−µd(v−y)dy + λde−µdv

∫ ∞

0
g(y)e−µdydy

= λb

∫ ∞

v
f (y)e−µb(y−v)dy + ξdv f (v), (7.7)

λb

∫ v

0
g(y)e−µb(v−y)dy + λbe−µbv

∫ ∞

0
f (y)e−µbydy

= λd

∫ ∞

v
g(y)e−µd(y−v)dy + ξbvg(v), (7.8)

for v > 0. In our analysis, we concentrate on the derivation of f (v). Notice that,
once f (·) has been determined, g(·) follows by swapping parameters (symmetry).

In Appendix 7.A we show how the integral equations (7.7)-(7.8) can be translated
into the following decoupled second order differential equations:

ξdv f ′′(v) + (2ξd − λd − λb + µdξdv − µbξdv) f ′(v)

+ (µdξd − µbξd − µdλb + µbλd − µbµdξdv) f (v) = 0 (7.9)

and

ξbvg′′(v) + (2ξb − λd − λb + µbξdv − µdξbv) g′(v)

+ (µbξb − µdξb − µbλd + µdλb − µdµbξbv) g(v) = 0, (7.10)

with the additional constraint (obtained by applying the level crossing identity
for level v = 0 in either (7.7) or (7.8)):

λb

∫ ∞

0
f (y)e−µbydy = λd

∫ ∞

0
g(y)e−µdydy. (7.11)

Equation (7.9) describes a known type of second order differential equation, namely
the extended confluent hypergeometric equation [195], which allows an explicit solution.
A detailed deduction of the solution to (7.9) is given in Appendix 7.B, and yields
the following result.

Proposition 7.4. The probability density functions of the amount of demand Xd and the
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amount of blood present Xb are given by

f (v) = πd

Γ
(

1 + λb
ξd

)

Γ
(

λb+λd
ξd

)

e−µdvU
(

1 − λd
ξd

, 2 − λb+λd
ξd

, (µb + µd)v
)

2F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,− µb
µd

) , (7.12)

g(v) = πb

Γ
(

1 + λd
ξb

)

Γ
(

λb+λd
ξb

)

e−µbvU
(

1 − λb
ξb

, 2 − λb+λd
ξb

, (µb + µd)v
)

2F1

(

1 − λb
ξb

, 1, 1 + λd
ξb

,− µd
µb

) , (7.13)

for v > 0, respectively.

Here, Γ(·) denotes the gamma function, 2F1(a, b, c, z) is the Gaussian hypergeomet-
ric function, defined as

2F1(a, b, c, z) =
∞

∑
n=0

(a)n(b)n

(c)n n!
zn (7.14)

and U(a, b, z) is Tricomi’s confluent hypergeometric function, see [195],

U(a, b, x) =
Γ(b − 1)

Γ(1 + a − b)

∞

∑
n=0

(a)n

(b)nn!
xn +

Γ(b − 1)

Γ(a)
x1−b

∞

∑
n=0

(1 + a − b)n

(2 − b)nn!
xn, (7.15)

in which (a)n is the Pochhammer symbol, defined as (a)n = a · (a + 1) · · · (a +
n − 1). As a direct consequence of Proposition 7.4, we obtain expressions for the
LTs φ(s) =

∫ ∞

0 e−sv f (v)dv and γ(s) =
∫ ∞

0 e−svg(v)dv for Re s ≥ 0 through [195,
Eq. (3.2.51)], which we state here for future use.

Corollary 7.1. The Laplace transforms for Xd and Xb, for Re s ≥ 0, are given by

φ(s) = πd
µd

µd + s

2F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,
s−µb
s+µd

)

2F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,− µb
µd

) , (7.16)

γ(s) = πb
µb

µb + s

2F1

(

1 − λb
ξb

, 1, 1 + λd
ξb

,
s−µd
s+µb

)

2F1

(

1 − λb
ξb

, 1, 1 + λd
ξb

,− µd
µb

) , (7.17)

respectively.

Last, we obtain expressions for πd and πb. These follow immediately by using
the normalization equation πb + πd = 1 and (7.11), or equivalently, λbφ(µb) =
λdγ(µd). By filling in s = µb in (7.16),

πd
λbµd

µb + µd
2F1

(

1 − λd

ξd
, 1, 1 +

λb

ξd
,−µb

µd

)−1

= πb
λdµb

µb + µd
2F1

(

1 − λb

ξb
, 1, 1 +

λd

ξb
,−µd

µb

)−1

, (7.18)
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where we used that 2F1(a, b, c, 0) = 1. Using the normalization equation, we obtain

πd =
ρb,2 F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,− µb
µd

)

ρd,2 F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,− µb
µd

)

+ ρb 2F1

(

1 − λb
ξb

, 1, 1 + λd
ξb

,− µd
µb

) . (7.19)

By substituting this result into both (7.12) and (7.16), we obtain the full pdf for the
blood inventory process in steady-state.

Theorem 7.1. The steady-state pdf of the net inventory level X is given by

h(v) =

{

f (−v), if v < 0,
g(v), if v ≥ 0,

(7.20)

where

f (v) = C̄−1
Γ
(

1 + λb
ξd

)

Γ
(

λb+λd
ξd

) ρd e−µdv U
(

1 − λd
ξd

, 2 − λb+λd
ξd

, (µb + µd)v
)

, (7.21)

g(v) = C̄−1
Γ
(

1 + λd
ξb

)

Γ
(

λb+λd
ξb

) ρb e−µbv U
(

1 − λb
ξb

, 2 − λb+λd
ξb

, (µb + µd)v
)

, (7.22)

with

C̄ = ρd 2F1

(

1 − λd

ξd
, 1, 1 +

λb

ξd
,−µb

µd

)

+ ρb 2F1

(

1 − λb
ξb

, 1, 1 + λd
ξb

,−µd

µb

)

. (7.23)

Remark 7.1. By applying the Pfaff transformation 2F1(a, b, c, z) =
(1 − z)−b

2F1

(

c − a, b, c, z
1−z

)

, we may reformulate

2F1

(

1 − λd

ξd
, 1, 1 +

λb

ξd
,−µb

µd

)

=
µd

µb + µd
2F1

(

λb + λd

ξd
, 1,

λb

ξd
,

µb

µb + µd

)

, (7.24)

so that

πd =
λd 2F1

(

λb+λd
ξd

, 1, λb
ξd

,
µb

µb+µd

)

λd 2F1

(

λb+λd
ξd

, 1, λb
ξd

,
µb

µb+µd

)

+ λb 2F1

(

λb+λd
ξb

, 1, λd
ξb

,
µd

µb+µd

) . (7.25)

By also transforming the hypergeometric term in the numerator of (7.12), we get an
equivalent form of (7.21), namely

f (v) = C̄−1
alt

Γ
(

1 + λb
ξd

)

Γ
(

λb+λd
ξd

) ρbµb(µb + µd) e−µdv U

(

1 − λd

ξd
, 2 − λb + λd

ξd
, (µb + µd)v

)

,

(7.26)
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with

C̄alt = λd 2F1

(

λb + λd

ξd
, 1,

λb

ξd
,

µb

µb + µd

)

+ λb 2F1

(

λb + λd

ξb
, 1,

λd

ξb
,

µd

µb + µd

)

. (7.27)

As a consequence, (7.16) is given by

φ(s) = πd

2F1

(

λb+λd
ξd

, 1, λb
ξd

,
µb−s

µb+µd

)

2F1

(

λb+λd
ξd

, 1, λb
ξd

,
µb

µb+µd

) = C̄−1
alt λd 2F1

(

λb + λd

ξd
, 1,

λb

ξd
,

µb − s

µb + µd

)

.

(7.28)

Based on the density functions in Theorem 7.1, we make some comments on its
properties, and discuss parameter settings that leads to special cases.

By close inspection of these derived density functions, we can observe the fol-
lowing on the distribution shape around z = 0. The confluent hypergeometric
function U(a, b, z) has limiting form as z → 0,

U(a, b, z) =
Γ(1 − b)

Γ(a − b + 1)
+

Γ(b − 1)

Γ(a)
z1−b + O(z2−b), b ≤ 2, (7.29)

see [174, Sub. 13.2]. Note that in our model, b = 2 − (λb + λd)/ξd < 2 for all
parameter settings. Equation (7.29) shows that U(a, b, z) has a singularity at z = 0
if Re(b) > 1, which in our case translates to f (v) and g(v) being analytic at v = 0
if λb + λd > ξd and λb + λd > ξb, respectively. Assuming λb + λd > max{ξb, ξd},
(7.29) also implies that

lim
v→0

f (v) = C̄−1
Γ
(

1 + λb
ξd

)

Γ
(

λb+λd
ξd

) λdµb ·
Γ
(

λb+λd
ξd

− 1
)

Γ
(

λb
ξd

) (7.30)

= C̄−1

λb
ξd

λb+λd
ξd

− 1
λdµb = C̄−1 λbλdµbµd

λb + λd − ξd
.

Similarly,

lim
v→0

g(v) = C̄−1 λbλdµbµd

λb + λd − ξb
. (7.31)

By equating these two expressions, we conclude that limv→0 f (v) = limv→0 g(v) <
∞, i.e. the overall density function h(v) is continuous at v = 0, if and only if ξb = ξd.
The asymptotic behavior of U as z → ∞ is given by [195, p. 60],

U(a, b, z) ∼ z−a, z → ∞, (7.32)

which implies that the density function tail decays as

f (v) ∼ C∗ e−µdv vλd/ξd−1, v → ∞, (7.33)

for some constant C∗.
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Special cases. Equation (7.33) suggests that the case λd = ξd is special. Indeed,
then (7.16) reduces to

φ(s) = C̄−1 λdµb
µd

µd + s
= πd

µd

µd + s
, (7.34)

where we used that 2F1(0, a, b, z) = 1 for all a, b, z. Hence, conditioned on being
positive, the amount of demand present is exponentially distributed with parameter
µd, regardless of the values of λd = ξd, as well as λb, ξb, and µb. If we moreover let
λb = ξb, then

πd =
λd/µd

λb/µb + λd/µd
=

ρd

ρb + ρd
,

and X has exponential distribution both above and below 0, with parameters µb

and µd, respectively.

A second special case arises when the process is symmetric, that is, λb = λd = λ,
µb = µd = µ and ξb = ξd = ξ. Obviously, we get πb = πd = 1

2 due to the symmetry.
If we define η := λ/ξ,

f (v) =
Γ(1 + η) µe−µv U (1 − η, 2(1 − η), 2µv)

2 Γ(2η)2F1

(

2η, 1, 1 + η, 1
2

) (7.35)

=
Γ(1 + η)

2 Γ(2η)2F1

(

2η, 1, 1 + η, 1
2

)

µ

2
√

π
(2µv)η− 1

2 K 1
2−η

(µv) ,

where Kα(·) is the modified Bessel function of the second kind, see [174, Eq. (13.6.10)].

Performance measures. Based on Theorem 7.1, we can directly derive a couple of
characteristics of the process. First, we consider the mean inventory level

Corollary 7.2. The expected amount of demand (blood) present, given that it is positive
equals

E[Xd|Xd > 0] =
1

ξd

[

ρd − ρb + ρb 2F1

(

1 − λd

ξd
, 1, 1 +

λb

ξd
,−µb

µd

)−1
]

, (7.36)

E[Xb|Xb > 0] =
1

ξb

[

ρb − ρd + ρd 2F1

(

1 − λb

ξb
, 1, 1 +

λd

ξb
,−µd

µb

)−1
]

. (7.37)

Accordingly, the expected net amount of blood present equals

E[X] = (ρb − ρd)

(

πb

ξb
+

πd

ξd

)

+
λbλd

C̄

(

1

ξb
− 1

ξd

)

. (7.38)

Proof. Let us use shorthand notation

F(s) =
(

1 − λd

ξd
, 1, 1 +

λb

ξd
,

s − µb

s + µd

)

,
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so that

φ(s) = πd
µb

µb + s

F(s)

F(0)
.

Through [174, Eq. (15.5.20)],

d

dz
2F1(a, 1, c, z) =

c − 1

z(1 − z)
+

1 − c + az

z(1 − z) 2F1(a, 1, c, z), (7.39)

where we also used that 2F1(a, 1, c, z) = 1. Then,

φ′(0)
πd

=

[ −µd

(µd + s)2

F(s)

F(0)
+

µd

µd + s

F′(s)
F(0)

]

s=0

= − 1

µd
+

F′(0)
F(0)

.

By (7.39), we find

F′(s) =
( λb/ξd

s−µb
s+µd

· µb+µd
s+µd

+
−λb/ξd + (1 − λd/ξd)

s−µb
s+µd

s−µb
s+µd

· µb+µd
s+µd

F(s)
) d

ds

[ s − µb

s + µd

]

=
(λb

ξd
+

[−λb

ξd
+
(

1 − λd

ξd

) s − µb

s + µd

]

F(s)
) (s + µd)

2

(s − µb)(µb + µd)
· µb + µd

(s + µd)2

=
(λb

ξd
+

[

−λb

ξd
+
(

1 − λd

ξd

) s − µb

s + µd

]

F(s)
) 1

s − µb
,

so that

F′(0) = −λd/µb

ξd
+

(

λd/µb

ξd
+

1

µd
− λd/µd

ξd

)

F(0)

= −ρb

ξd
+

(

ρb − ρd

ξd
+

1

µd

)

F(0).

Hence, we find

E[Xd|Xd > 0] = −φ′(0)
πd

=
1

µd
− 1

F(0)

[

−ρb

ξd
+

(

ρb − ρd

ξb
+

1

µd

)

F(0)

]

=
1

ξd
(ρd − ρb + ρb/F(0)) =

1

ξd
(−m + ρb/F(0)) ,

which equals (7.36). The expression for (7.37) follows by symmetry. Furthermore,

E[X] = πbE[Xb|Xb > 0] + πdE[−Xd|Xd > 0]

= m

[

πb

ξb
+

πd

ξd

]

+
λd

µd ξb

πb

2F1

(

1 − λb
ξb

, 1, 1 + λd
ξb

,− µd
µb

)

− λb

µb ξd

πd

2F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,− µb
µd

) .
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Figure 7.2: Expected mean amount of blood, demand, and net blood present.

Note that πd 2F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,− µb
µd

)−1
= λdµbC̄−1. Hence,

E[X] = m

[

πb

ξb
+

πd

ξd

]

+
λbλd

C̄

(

1

ξb
− 1

ξd

)

,

which completes the proof.

Remark 7.2. Note that if ξb = ξd = ξ, we get E[X] = m(πb + πd)/ξ = m/ξ, which
is consistent with Proposition 7.3. The expression in (7.36) contains no ξb. Indeed,
while the value of ξb influences the probability that Xd > 0, it does not influence
the mean of Xd given that Xd > 0.

In Figure 7.2, we plot the behavior of the three performance metrics in Corollary
7.2 while keeping m fixed. In Figure 7.2(a) we set λb = 1.2, λd = 1, µb = 1, µd = 1.2,
so that m = 11/30 and vary ξb = ξd = ξ between 0 and 1. In Figure 7.2b, we fix
ξb = ξd = 0.5 and take λb = 1.2θ, λd = θ, µb = θ, µd = 1.2θ, so that still m = 11/30,
and vary θ. Observe that in Figure 7.2b, E[X] is constant, since the value of m/ξ if
unaffected by the parameter θ.

Secondly, we present the probability of positive (cq. negative) inventory.

Corollary 7.3. The probability of positive (cq. negative) inventory is given by,

πb =
ρb 2F1

(

1 − λb
ξb

, 1, 1 + λd
ξb

,− µd
µb

)

ρd 2F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,− µb
µd

)

+ ρb 2F1

(

1 − λb
ξb

, 1, 1 + λd
ξb

,− µd
µb

) , (7.40)

πd =
ρd 2F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,− µb
µd

)

ρd 2F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,− µb
µd

)

+ ρb 2F1

(

1 − λb
ξb

, 1, 1 + λd
ξb

,− µd
µb

) , (7.41)

respectively.
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Proof. The expressions follow directly from (7.19) and πb = 1 − πd.

The last relevant performance indicator we consider is the fraction of demand
that is immediately satisfied from stock.

Corollary 7.4. The probability that a demand request can be fully satisfied from stock is
given by

P(demand satisfied) = C̄−1ρb

(

2F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,− µb
µd

)

− µb

µb + µd

)

. (7.42)

Proof. Using the PASTA property of the Poisson process, we get

P(demand satisfied) = P(X > D) = P(Xb > D)

=
∫ ∞

0
g(u)(1 − e−µdu)du = πb − γ(µd).

Substituting the expressions for πb as in Corollary 7.3 and γ(µb) as in (7.17) yields
the result.

7.3.2 The general case

In this section we outline how the integral equations (7.1) and (7.2) can be solved
using Laplace transforms, when we make the restriction that Fb(·) and Fd(·) are
Coxian distributions. This is not a major restriction, because the class of Coxian
distributions lies dense in the class of all distributions of non-negative random vari-
ables, see e.g. [20, Sec. III.4]. Hence, one can approximate Fb(·) arbitrarily closely
by a Coxian distribution.

If Xi, i = 1, 2, . . . , K are independent, exponentially distributed random vari-
ables, and E[Xi] = 1

βi
, i = 1, 2, . . . , K, then a Coxian amount of blood B can be

represented as:

B =
i

∑
j=1

Xj with probability pi

i−1

∏
j=1

(1 − pj), i = 1, 2, . . . , K. (7.43)

In the above case, it is easily verified that one can represent F̄b(x) as follows:

F̄b(x) = P(B > x) =
K

∑
i=1

pi

i−1

∏
h=1

(1 − ph)
i

∑
j=1

e−β jx
i

∏
l=1;l 6=j

βl

βl − β j
, (7.44)

if all β j are different. If two β j coincide, then a term with xe−β jx (Erlang-2) must
be added. We leave this to the reader, but in Remark 7.8 below we outline how
Erlang terms can be handled in solving the integral equations (7.2) and (7.1). The
counterpart of (7.44) for the case that Fd(·) is Coxian, is

F̄d(x) = P(D > x) =
L

∑
i=1

qi

i−1

∏
h=1

(1 − qh)
i

∑
j=1

e−δjx
i

∏
l=1;l 6=j

δl

δl − δj
. (7.45)
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Taking Laplace transforms φ(s) =
∫ ∞

0 e−sy f (y)dy and γ(s) =
∫ ∞

0 e−syg(y)dy in
(7.1) and (7.2) results in first-order inhomogeneous differential equations in φ(s)
and γ(s), respectively, which can be solved in a straightforward way.

φ′(s) = AH(s)φ(s) + AI(s), (7.46)

with the homogeneous term AH(s) being given by

AH(s) := − 1

ξd

[

λd

L

∑
i=1

qi

i−1

∏
h=1

(1 − qh)
i

∑
j=1

1

δj + s

i

∏
l=1;l 6=j

δl

δl − δj

− λb

K

∑
i=1

pi

i−1

∏
h=1

(1 − ph)
i

∑
j=1

1

β j − s

i

∏
l=1;l 6=j

βl

βl − β j
− αd

]

, (7.47)

and the inhomogeneous term AI(s) being given by

AI(s) := − 1

ξd

[

λd

L

∑
i=1

qi

i−1

∏
h=1

(1 − qh)
i

∑
j=1

1

δj + s
[γ(δj) + π0]

i

∏
l=1;l 6=j

δl

δl − δj

+ λb

K

∑
i=1

pi

i−1

∏
h=1

(1 − ph)
i

∑
j=1

1

β j − s
φ(β j)

i

∏
l=1;l 6=j

βl

βl − β j

]

. (7.48)

The solution of (7.46) is given by the following expression:

φ(s) = φ(0)e
∫ s

0 AH(z)dz +
∫ s

0
AI(u)e

∫ s
u AH(z)dzdu, s ≥ 0. (7.49)

γ(s) is given by a mirror expression, where φ(0) is replaced by γ(0) and where
AH(s) and AI(s) are replaced by expressions in which K and L are swapped, and p
and q, and βi and δi.

It should be noticed that φ(0), γ(0) and π0 still have to be determined. Further-
more, it should be noticed that AH(s) and AI(s) have singularities at s = β1, . . . , βK.
These singularities are removable, but handling Equation (7.49) clearly requires
some care. Instead of working out the details, we shall below return to the case of
exponentially distributed amounts of blood and demand – so K = L = 1. For that
case, we shall not only work out the solution of the differential equation for φ(s) in
detail, including the determination of the missing constants, but we also relate the
results to those obtained in Section 7.3.1 without resorting to Laplace transforms.
Taking K = 1, p1 = 1, δ1 = µd, and L = 1, q1 = 1, β1 = µb, we obtain the following
two inhomogeneous first order differential equations in the LTs φ(s) and γ(s):

φ′(s) = φ(s)

[

λb

ξd

1

µb − s
− λd

ξd

1

µd + s

]

− λb

ξd

φ(µb)

µb − s
− λd

ξd

γ(µd)

µd + s
, (7.50)

γ′(s) = γ(s)

[

λd

ξb

1

µd − s
− λb

ξb

1

µb + s

]

− λd

ξb

γ(µd)

µd − s
− λb

ξb

φ(µb)

µb + s
. (7.51)
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They are routinely solved:

φ(s) =

(

µb

µb − s

)

λb
ξd

(

µd

µd + s

)

λd
ξd
[

φ(0)

− λd

ξd
γ(µd)

∫ s

0

(

µb − z

µb

)

λb
ξd

(

µd + z

µd

)

λd
ξd

−1 dz

µd

− λb

ξd
φ(µb)

∫ s

0

(

µb − z

µb

)

λb
ξd

−1 (µd + z

µd

)

λd
ξd dz

µb

]

. (7.52)

Similarly,

γ(s) =

(

µd

µd − s

)

λd
ξb

(

µb

µb + s

)

λb
ξb
[

γ(0)

− λb

ξb
φ(µb)

∫ s

0

(

µd − z

µd

)

λd
ξb

(

µb + z

µb

)

λb
ξb

−1 dz

µb

− λd

ξb
γ(µd)

∫ s

0

(

µd − z

µd

)

λd
ξb

−1 (µb + z

µb

)

λb
ξb dz

µd

]

. (7.53)

Notice that the exponents in the above integrals have powers which are larger than

−1 (e.g., λd
ξd

− 1), so that these integrals do not lead to singularities. We still need

to determine the two constants φ(0) = πd and γ(0) = πb. Together with φ(µb) and
γ(µd), we have four unknowns. We determine these unknowns using the following
four equations: (i) From (7.11), we get λbφ(µb) = λdγ(µd), while (ii) πd + πb = 1.
Finally, we take (iii) s = µb in (7.52) and (iv) s = µd in (7.53).

Notice that the identity λbφ(µb) = λdγ(µd) allows us to reduce the two integrals
in (7.52) to one integral (and similarly in (7.53)):

φ(s) =

(

µb

µb − s

)

λb
ξd

(

µd

µd + s

)

λd
ξd
[

φ(0)

− λd

ξd
γ(µd)

µb + µd

µbµd

∫ s

0

(

µb − z

µb

)

λb
ξd

−1 (µd + z

µd

)

λd
ξd

−1

dz
]

. (7.54)

Remark 7.3. We have numerically verified that the expressions in (7.52) and (7.16)
coincide.

Remark 7.4. If λb = 0 then we have a known queueing model or shot-noise model
with state-dependent service rate, see Keilson & Mermin [132] and Bekker et al. [31]
for the so-called shot noise model.
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Remark 7.5. The case λd = ξd is special. Equation (7.52) now reduces to

φ(s) =

(

µb

µb − s

)

λb
λd µd

µd + s

[

φ(0) − γ(µd)
∫ s

0

(

µb − z

µb

)

λb
λd dz

µd

− λb

λd
φ(µb)

∫ s

0

(

µb − z

µb

)

λb
λd

−1 µd + z

µd

dz

µb

]

.

Both integrals are easily evaluated (rewrite, in the last integral, µd + z = µd + µb −
(µb − z)). We find

φ(s) =

(

µb

µb − s

)

λb
λd µd

µd + s

·
[

φ(0) +
γ(µd)

µd

λd

λb + λd
µb − φ(µb)

µd + µb

µd
− φ(µb)

µd

λb

λb + λd
µb

]

+
µd

µd + s

[

γ(µd)

µd

λd

λb + λd
(µb − s) + φ(µb)

µd + µb

µd
− φ(µb)

µd

λb

λb + λd
(µb − s)

]

.

(7.55)

Now observe through (7.11), that λbφ(µb) = λdγ(µd). Hence, in both lines of the
above formula, two terms cancel. Moreover, φ(s) should be analytic for s = µb,
yielding

φ(0) = φ(µb)
µd + µb

µd
. (7.56)

Finally we obtain, see also (7.34),

φ(s) =
µd

µd + s
φ(µb)

µd + µb

µd
= φ(0)

µd

µd + s
= πd

µd

µd + s
, (7.57)

and hence
f (x) = πdµde−µdx, x > 0; (7.58)

the shortage (amount of demand present) is exponentially distributed when λd =
ξd.
It should be noticed that, if λd = ξd, then the first and last term of (7.7) are equal
when (7.58) holds; and using (7.11) it is also readily verified that the second and
third term of (7.7) are equal. The constant πd will in general still depend on the
parameters λd = ξd, λb, µb and ξb.
We end this remark with the observation that in the one-sided shot-noise process
(so λb = 0), Bekker et al. [31] also observe that λd = ξd results in an exponential
density.

7.3.3 A variant

In this section, we assume that the expiration rate of blood and the patience rate of
demand are constant. So, we take ξb = ξd = 0. A visualization of a possible sample
path is depicted in Figure 7.3.
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Xd(t)

Xb(t)

t

Figure 7.3: Sample path of the net amount of blood present if ξb = ξd = 0.

We again restrict ourselves to the case of exponentially distributed amounts of
demand and of blood deliveries. We now need to impose stability conditions. In the
case of positive demand, the drift is towards zero if λdE[D] < αd + λbE[B], while
in the case of a positive amount of blood, the drift is towards zero if λbE[B] <

αb + λdE[D]. If these two conditions are violated, either the amount of demand or
the amount of blood present increases without bound (see also below). In this case,
(7.9) reduces to

αd f ′′(v) + (−λd − λb + µdαd − µbαd) f ′(v) + (−µdλb + µbλd − µbµdαd) f (v) = 0.
(7.59)

Hence f (·) is a mixture of two exponential terms: f (v) = R+e−x+v + R−e−x−v,
where x+ and x− are the positive and negative root of the equation

αdx2 − (µdαd − µbαd − λd − λb)x + (−µdλb + µbλd − µbµdαd) = 0. (7.60)

Notice that the last term in the left-hand side of (7.60) is negative if the stability
condition λdE[D] < αd + λbE[B] holds, that is, if µbλd < µdλb + µbµdαd, thus
guaranteeing that the product of the two roots x+ and x− is negative, and hence
that there is a positive and a negative root. One should subsequently observe that
R− must be zero to have a probability density. Hence f (v) is simply (a constant
times) an exponential; similarly for g(v). In addition, the steady-state amounts of
demand and of blood have an atom at 0 (since ξd and ξb are no longer zero, the
demand and blood processes can reach 0).

Interestingly, the model of this section is closely related to the model with work-
load removal that is considered in [44]. There an M/G/1 queue is studied with the
extra feature that, at Poisson epochs, a stochastic amount of work is removed. In
the M/M/1 case with removal of exponential amounts of work, see [44, Sec. 5.1],
one has the model of the present section when we concentrate on the amount of
demand present. One difference with the model in [44] is that, when the workload
in that model has become zero, the work becomes positive at rate λd, whereas in the
present model the amount of blood can become positive (so zero demand is present)
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and the amount of demand does not have to become positive when demands ar-
rive (because they are immediately satisfied, see Figure 7.3). So the atom at zero
is in the present model larger than in the model of [44]. In our model a positive
demand level may be reached from below zero (by a jump, i.e., a demand arriving
at an epoch that there is some, but not enough, blood present). The memoryless
property of the exponential demand requirement distribution implies that this jump
results in a demand level that is exp(µd), just as if the initial demand level had been
zero. In the case of non-exponential demand requirements, our model becomes
equivalent with an M/G/1 queue with exponential amounts of work removed, and
with the special feature that the first service requirement of a busy period has a
different distribution. Lemmas 4.1 and 4.2 of [44] present the stability condition of
that M/G/1 queue with work removal; it amounts to λdE[D] < αd + λbE[B], which
indeed is one of the two stability conditions of the present demand/blood model.

Finally we observe that Equation (5.1) of [44] coincides with (7.60) (take αd = 1,
λd = λ+, λb = λ−, µd = 1/β and µb = 1/γ).

7.4 Asymptotic analysis

We finally study the model with αb = αd = 0 from an asymptotic perspective, by
obtaining the fluid and diffusion limits of the blood inventory process. That is, we
will create a sequence of processes, indexed by n = 1, 2, ..., in which we let the rates
of blood and demand arrivals grow large. If we then scale the process in a proper
manner, we are able to deduce a non-degenerate limiting process, that provides
insight in the overall behavior of the arrival volume when the system grows large,
which only relies on the first two moments of the blood and demand distributions.

7.4.1 Identification of the limiting process

First, we introduce some additional notation. Let Xb(t) and Xd(t) denote the
amount of blood and demand, respectively, at time t > 0. Let

X(t) := Xb(t)− Xd(t), (7.61)

be the net amount of blood available at time t. Remember that Xb(t), Xd(t) ≥ 0,
and Xb(t) > 0 or Xd(t) > 0 for all t, since αd = αb = 0. Let Nb(t), Nd(t) be the
two independent Poisson processes counting the number of arrivals of blood and
demand, respectively. Then the following integral representation holds for X(t),

X(t) = X(0)− ξb

∫ t

0
Xb(s) ds + ξd

∫ t

0
Xd(s) ds +

Nb(t)

∑
i=1

Bi −
Nd(t)

∑
i=1

Di. (7.62)

For the sake of exhibition, we will concentrate on the case ξb = ξd =: ξ. Our
analysis may be extended to the general case. A sketch of this generalization is
given at the end of this section without going into the technical difficulties that
arise when rigorously proving these limits.
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Define

Z(t) =
Nb(t)

∑
i=1

Bi −
Nd(t)

∑
i=1

Di, (7.63)

that is, the difference between two compound Poisson processes, so that (7.62) re-
duces to

X(t) = X(0)− ξ

∫ t

0
X(s)ds + Z(t). (7.64)

The first step in the definition of the sequence of processes under investigation
is defining the asymptotic scheme we are interested in. As mentioned above, we
intend to let the arrival rates grow to infinity. Therefore, in the nth process Xn(t),
we replace the rates of the arrival processes by nλb and nλd. This induces Poisson

processes N
(n)
b (t) and N

(n)
d (t) with arrival rates nλb and nλd, respectively. However,

we have

N
(n)
b (t)

d
= Nb(nt) and N

(n)
d (t)

d
= Nd(nt), (7.65)

so that the term Z(t) in (7.64) in this asymptotic scheme can be replaced by

Zn(t) =
Nb(nt)

∑
i=1

Bi −
Nd(nt)

∑
i=1

Di. (7.66)

The first step in our analysis is obtaining the fluid limit of the process. Bearing in
mind application of the Functional Law of Large Numbers (FLLN), we scale the
process as X̄n(t) = Xn(t)/n, so that with (7.64)

X̄n(t) = X̄n(0)− ξ

∫ t

0
X̄n(s) ds + Z̄n(t), (7.67)

where Z̄n(t) = Zn(t)/n.

The essential step in establishing a result on the convergence of X̄n is the appli-
cation of [176, Thm. 4.1], which we cite here for completeness, slightly rewritten to
fit our setting.

Theorem 7.2 ([176, Thm. 4.1]). Let D[0, ∞) be the space of all one-dimensional real-
valued càdlàg functions defined on [0, ∞), endowed with the usual J1-Skorohod topology.
Consider the integral representation

x(t) = y(t) +
∫ t

0
u(x(s)) ds, t ≥ 0, (7.68)

where u : R → R satisfies u(0) = 0 and is Lipschitz continuous. The integral represen-
tation in (7.68) has a unique solution x, so that the integral representation constitutes a
function Hu : D[0, ∞) → D[0, ∞) mapping y into x ≡ Hu(y). In addition, the function
Hu is continuous, and if y is continuous, then so is x.
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In our case, we set u(x) = −ξx, to be able to write X̄n = Hu (X̄n(0) + Z̄n). Since
u is clearly Lipschitz continuous, the mapping Hu is indeed continuous. Let us
rewrite (7.67), by observing

EZ̄n(t) =
1

n

(

E[Nb(nt)]E[B]− E[Nd(nt)]E[D]
)

= λbE[B]t − λdE[D]t, (7.69)

where the expectation is taken with respect to the compound Poisson processes.
Since m = λbE[B]− λdE[D],

X̄n(t) = X̄n(0)− ξ

∫ t

0

(

X̄n(s)−
m

ξ

)

ds + Ȳn(t), (7.70)

where Ȳn(t) := Z̄n(t)− mt is now a centered process. This allows us to state the
next result.

Proposition 7.5 (Fluid limit). Let E[B], E[D] < ∞ and X̄n(0) = Xn(0)/n → q0 ∈ R,
as n → ∞. Then for n → ∞,

X̄n
d⇒ q, (7.71)

where

q(t) =
m

ξ
+

(

q0 −
m

ξ

)

e−ξt. (7.72)

Proof. First, we concentrate on the process Ȳn. Observe that, by the FLLN for
renewal-reward processes, which follows from [221, Thm. 7.4.1], we have

1

nt

Nb(nt)

∑
i=1

Bi
d⇒ λbE[B],

1

nt

Nd(nt)

∑
i=1

Di
d⇒ λdE[D], (7.73)

for n → ∞ and for all t > 0. Hence, Z̄n(t)
d⇒ λbE[B]t− λdE[D]t = mt. By definition

of Ȳn and the assumption of convergence of X̄n(0), this implies

Ȳn + X̄n
d⇒ q0 (7.74)

as n → ∞. Next, note X̄n = Hu (X̄n(0) + Z̄n) = Hu (X̄n(0) + Ȳn + It), where I
denotes the identity map, i.e. I(t) = t for all t ≥ 0. Due to Lipschitz continuity of
u, Hu constitutes a continuous mapping, and hence we can apply the Continuous
Mapping Theorem (CMT), to find

X̄n = Hu (X̄n(0) + Ȳn + mI) ⇒ Hu (q0 + mI) ≡ q, (7.75)

for all t ≥ 0, where q(·) is the solution of

q(t) = q0 +
∫ t

0
u(q(s))ds = q0 + mt − ξ

∫ t

0
q(s)ds

= q0 − ξ

∫ t

0

(

q(s)− m

ξ

)

ds.

The unique solution of this integral equation is given in (7.72).
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According to Proposition 7.5, the fluid limit approaches E[X] = m/ξ exponen-
tially fast. To obtain an expression for the diffusion limit of the process, we analyze
the fluctuations of the process around the fluid limit in (7.71), again by scaling the
process in a proper manner. First, we subtract q(t) on both sides of (7.70), and
multiply by

√
n:

√
n (X̄n(t)− q(t)) =

√
n (X̄n(0)− q0)− ξ

∫ t

0

√
n (X̄n(s)− q(s)) ds +

√
n Ȳn(t).

(7.76)
Let X̂n ≡ √

n (X̄n − q) and Ŷn ≡ √
n Ȳn, then this reduces to

X̂n(t) = X̂n(0)− ξ

∫ t

0
X̂n(s) ds + Ŷn(t). (7.77)

Again the process Ŷn needs special attention.

Lemma 7.1. Let E[B2], E[D2] < ∞. Then Ŷn
d⇒ σW as n → ∞, where σ2 := λbE[B2] +

λdE[D2] and W is a standard Brownian motion.

Proof. Recall that

Ŷn(t)
d
=

√
n

[

( 1

n

Nb(nt)

∑
i=1

Bi − λbE[B]t
)

−
( 1

n

Nd(nt)

∑
i=1

Di − λdE[D]t
)

]

. (7.78)

By the Functional Central Limit Theorem (FCLT) for renewal-reward processes
given in [221, Thm. 7.4.1], the process

Ŷb
n(t) =

√
n
( 1

n

Nb(nt)

∑
i=1

Bi − λbE[B]t
)

, (7.79)

converges weakly to σbWb, where Wb is a standard Brownian motion, and

σ2
b = λb Var B + λb(E[B])2 = λbE[B2]. (7.80)

Similarly, Ŷd
n ⇒ σdWd as n → ∞, with the obvious parameter switches and Wd is

standard Brownian motion. Since the processes Ŷb
n and Ŷd

n are independent, so are
their limits, and

Ŷn ⇒
√

λbE[B2]Wb +
√

λdE[D2]Wd
d
=
√

λbE[B2] + λdE[D2]W, (7.81)

for n → ∞ and W a standard Brownian motion.

Now, we are ready to prove the diffusion counterpart of Proposition 7.5.

Proposition 7.6 (Diffusion limit). Let E[B2], E[D2] < ∞. If X̂n(0) → X̂(0), then
X̂n ⇒ X̂ as n → ∞, where X̂ satisfies the integral equation

X̂(t) = X̂(0)− ξ

∫ t

0
X̂(s)ds + σW(t). (7.82)

In other words, X̂ is an Ornstein-Uhlenbeck diffusion process with infinitesimal mean ξ and
infinitesimal variance σ2 := λbE[B2] + λdE[D2].
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Proof. We again rely on the result that the mapping Hu as in the proof of Proposition
7.5 is continuous if u is Lipschitz continuous. Here, we set u(x) = −ξx which again
clearly satisfies this condition. We have X̂n ≡ Hu(X̂n(0) + Ŷn). From Lemma 7.1,
we know

X̂n(0) + Ŷn ⇒ X̂(0) + σW, (7.83)

for n → ∞. As a consequence of the CMT, we conclude

X̂n = Hu

(

X̂n(0) + Ŷn

)

⇒ Hu

(

X̂(0) + σW
)

≡ X̂, (7.84)

where X̂ solves (7.82).

7.4.2 Generalization for ξb 6= ξd

We now sketch the scaling approach towards fluid and diffusion limits for the gen-
eral case in which ξb may differ from ξd. In case ξb 6= ξd, the integral equation for
X̄n as in (7.67) becomes

X̄n(t) = X̄n(0) +
∫ t

0
(−ξbX̄+

n (s) + ξdX̄−
n (s)− m)ds + Ȳn(t) (7.85)

= X̄n(0)−
∫ t

0
(
[

ξb✶{X̄n(s)≥0} + ξd✶{X̄n(s)<0}
]

X̄n(s) + m)ds + Ȳn(t),

where Ȳn(t) is defined as before. Note that X̂n ≡ Hu(X̄n(0) + Ȳn), where we now
have

u(x) = −
[

ξb✶{x≥0} + ξd✶{x<0}
]

x + m, (7.86)

which is still Lipschitz continuous. Following the same reasoning of the proof of

Proposition 7.5, we obtain the fluid limit X̄n
d⇒ q, where q is the solution of

q(t) = q0 −
∫ t

0
(
[

ξb✶{q(s)≥0} + ξd✶{q(s)<0}
]

q(s)− m)ds. (7.87)

The solution to this integral equation is more elaborate than (7.71) and depends on
the sign of m and q0. Assuming m ≥ 0, one can check that,

q(t) =
m

ξb
+

(

q0 −
m

ξb

)

e−ξbt, if q0 ≥ 0, (7.88)

q(t) =







m
ξd

+
(

q0 − m
ξd

)

e−ξdt, if 0 ≤ t < t∗d ,

m
ξb

(

1 − e−ξb(t−t∗d)
)

, if t ≥ t∗d ,
if q0 < 0, (7.89)

where

t∗d = − 1

ξd
log

(

m/ξd

m/ξd − q0

)

. (7.90)
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If m < 0,

q(t) =
m

ξd
+

(

q0 −
m

ξd

)

e−ξdt, if q0 ≤ 0, (7.91)

q(t) =







m
ξb

+
(

q0 − m
ξb

)

e−ξbt, if 0 ≤ t < t∗b ,

m
ξd

(

1 − e−ξd(t−t∗b )
)

, if t ≥ t∗b ,
if q0 > 0, (7.92)

where

t∗b = − 1

ξb
log

(

m/ξb

m/ξb − q0

)

. (7.93)

Note that the equilibrium of the fluid limit also depends on the sign of m:

lim
t→∞

q(t) =

{

m/ξb, if m ≥ 0,
m/ξd, if m < 0.

(7.94)

In the remainder, without loss of generality m ≥ 0. Furthermore, set q0 = m/ξb so
that q ≡ m/ξb. Subtracting q(t) on both sides of (7.85) yields,

(X̄n(t)− q(t)) = (X̄n(0)− q0)−
∫ t

0

{ [

ξb✶{X̄n(s)≥0} + ξd✶{X̄n(s)<0}
]

X̄n(s)

− ξb q(s)
}

ds + Ȳn(t) (7.95)

= (X̄n(0)− q0)−
∫ t

0
ξb (X̄n(s)− q(s)) ds

+
∫ t

0
✶{X̄n(s)<0}(ξb − ξd)X̄n(s)ds. (7.96)

Let X̂n(t) =
√

n (X̄n(t)− q(t)). Then

X̂n(t) = X̂n(0)− ξb

∫ t

0
X̂n(s)ds +

∫ t

0
✶{X̄n(s)<0}(ξb − ξd)X̄n(s)ds + Ŷn(t) (7.97)

Now, we argue non-rigorously that the one-but-last term vanishes as n → ∞.
Namely, by defining the function G : D[0, ∞) → D[0, ∞) by the integration op-
erator:

G(u) =
∫ t

0
✶{u(s)<0}(ξb − ξd)u(s)ds, (7.98)

this term can be expressed as G(X̄n). Hence by the fact that X̂n
d⇒ m/ξb and the

CMT we see G(X̂n) ⇒ 0.
Under this claim, we deduce by the approach of Proposition 7.6, that if X̂n ⇒ X̂

for n → ∞, then X̂ satisfies the stochastic integral equation

X̂(t) = X̂(0)− ξb

∫ t

0
X̂(s)ds + σW(t), (7.99)

which implies that X̂ is an Ornstein-Uhlenbeck process with infinitesimal mean ξb

and variance σ2 := λbE[B2] + λdE[D2].
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The result that the scaled process converges to an Ornstein-Uhlenbeck process can
be intuitively justified by the so-called mean-reverting behavior of the original pro-
cess. That is, the further the process is away from its mean, the greater the drift
towards that equilibrium. This is the defining feature of the OU diffusion process.
The decay rates ξb and ξd are responsible for the original process being ‘forced’
towards 0 and therefore the similarities should not be surprising. However, note
that in the diffusion limit Xn has drift ξb (cq. ξd) towards nm/ξb (cq. nm/ξd), if
m > 0 (cq. < 0) at any position of the process. This implies that if Xn ∈ (0, nm/ξb),
it has an upward drift equal to ξb, which is at first sight counter-intuitive. However,
we can argue that in case Xn(t) = v ∈ (0, nm/ξb), the mean upward drift of the
process Xn equals nλbE[B], and the mean downward drift equals nλdE[D] + ξbv,
since v > 0. Rewrite v = nm/ξb − w

√
n for some w ∈ (0,

√
nm/ξb). Then, the mean

net drift equals

nλbE[B]− nλdE[D]− ξb

(

nm

ξb
− w

√
n

)

= ξbw
√

n > 0,

which explains both the sign and magnitude of the drift factor in the scaled process.

7.4.3 Related literature

The Ornstein-Uhlenbeck process is a diffusion process that often arises as the limit
of a sequence of stochastic systems, in which the system size tends to infinity. Par-
ticularly in queueing settings with mean reverting behavior, the OU process appears
in so-called heavy traffic, i.e. the arrival rate grows without bound. We mention a
couple of models that exhibit limiting behavior that is similar to ours.

First, it is well-known that the properly normalized M/M/∞ queue length pro-
cess converges weakly to a OU process as the arrival rate tends to infinity, see
e.g. [221, Sec. 10.3]. This limiting behavior continues to hold in case the queueing
process is modulated by a Markovian background process, see [13].

Another well-known queueing model in which a (piecewise) OU process ap-
pears in the limit is the multi-server queue with abandonments. For the M/M/s +
M queue, where +M denotes the exponentially distributed patience of customers,
Garnett et al. [82] showed that in the Halfin-Whitt regime, the queue length process,
centered and scaled around the number of servers s, approaches a hybrid OU pro-
cess, of which the drift parameter depends on the current state: If the queue length
is larger (cq. smaller) than zero, then the drift is governed by the abandonment rate
(cq. service rate). Dai et al. [64] find a similar piecewise diffusion process under
more general assumptions on the model primitives.

For the single-server queue with abandoning customers, Ward & Glynn [215,
216] showed that in conventional heavy traffic, the queue length process converges
to a OU process with reflecting barrier 0.

Since we in our setting assumed both demand impatience and perishability of
inventory (which can be seen as a kind of impatience as well), it should not come
as a surprise that we also find our limiting process to be a OU process. Observe
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Figure 7.4: Sample paths of the process X̄n(t) = Xn(t)/n with X̄n(0) = 5, λb = 1.2,
λd = 1, ξb = ξd = 0.5 and µb = 0.5 and µd = 1. The fluid limit is depicted by the
dashed line.

however that in our model, unless m = 0, we find a OU process with constant, rather
than piecewise, parameters, and no reflection barrier, since our (scaled) inventory
process can go both positive and negative.

Last, we mention that there is a connection between our blood inventory process
and the work of Reed & Zwart [186]. Rather than looking at the OU process as the
limit of a sequence of stochastic processes, Reed and Zwart [186] study a stochas-
tic differential equation that is closely related to Equation (7.62), in the sense that
the process has a different (constant) drift term in the upper and lower half plane.
Under the assumption that the input process is a Lévy process with only one-sided
jumps, they develop a methodology to derive the invariant distribution of the solu-
tion of the SDE. Unfortunately, the input in our scenario exhibits both positive and
negative jumps, which prevents us from applying their results directly to (7.62).

7.5 Numerical evaluation

7.5.1 Approximation scheme

The asymptotic results of the previous section regarding the fluid and diffusion
limits allude to the fact that for large arrival rates, the normalized inventory process
{X̂n(t) | t ≥ 0}, resembles that of the Ornstein-Uhlenbeck process. Indeed, the
sample paths of the scaled process X̄n for increasing values of n in Figures 7.4
and 7.5 show that the mean-reverting behavior around m/ξ∗, that is typical of OU
processes, kicks in rather quickly. Moreover, the fluid limits q(t) as presented by
Proposition 7.5 and (7.89)-(7.92) predict the mean well for both ξb = ξd and ξb 6=
ξd. Furthermore, we observe that steady state is attained fairly quickly. This is
suggestive of the claim that the steady-state distribution of the normalized process
X̂n is well-described by the steady-state distribution of the OU process X̂. Since
the OU process with mean 0, infinitesimal variance σ2 and drift ξ∗ is known to be
normally distributed with mean 0 and variance σ2/2ξ∗ in steady-state, this leads to
a simpler approximation scheme based on the first two moments of B and D only.
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Figure 7.5: Sample paths of the process X̄n(t) = Xn(t)/n with X̄n(0) = −2, λb = 2,
λd = 1, ξb = 0.5, ξd = 0.1 and µb = 1 and µd = 1. The fluid limit is depicted by the
dashed line.

In non-rigorous mathematical terms, we use the approximation that

X̂n =
Xn − nm/ξ∗√

n

d≈ Z∗, (7.100)

where Z∗ is a normally distributed random variable with mean 0 and variance
σ2/2ξ∗.

Note that justification of the conjecture that the normal approximation is in-
deed an asymptotically correct approximation for systems with large arrival rates
requires proof that the interchange-of-limits between t → ∞ and n → ∞ is indeed
valid. Rather than going into the technical details, we provide in the remainder of
this section numerical evidence that this interchange indeed holds, and that the nor-
mal approximation is able to capture characteristics of processes with exponential
jumps as well as generally distributed jumps.

7.5.2 Distribution functions

Since we obtained an explicit expression for the steady-state density function of the
net inventory process X in case B and D are exponential, see Theorem 7.1, we will
exploit this formula for numerical comparison to the normal approximation arising
from the OU process.

Let h(·) as in Theorem 7.1 be the pdf of X with parameters λb, λd, µb, µd, ξb

and ξd, and the corresponding cdf H, defined as H(v) =
∫ v
−∞

h(x)dx. We denote
by hn and Hn the pdf and cdf, respectively, of the inventory process Xn with arrival
rates nλb and nλd, and the remaining parameters unchanged. Then, the pdf and
cdf of the normalized process are given by ĥn(v) =

√
n hn(vn) and Ĥn(v) = Hn(vn),

respectively, with vn = nm/ξ∗ + v
√

n for all v ∈ R. By the normal approximation
scheme, we expect

ĥn(v) ≈
√

2ξ∗

σ
ϕ

(√
2ξ∗

σ
v

)

, and Ĥn(v) ≈ Φ

(√
2ξ∗

σ
v

)

. (7.101)
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We perform this numerical comparison of probability functions in Figure 7.6 for
three cases: ξb = ξd, ξb > ξd and ξb < ξd.

From Figure 7.6, in which m = 1, so that ξ∗ = ξb, the convergence of the pdf
and cdf is evident. For n = 10, the distribution functions of the scaled processes are
almost aligned with the normal distribution already. For ξb = ξd, the convergence
is fastest. This can be explained by observing that in cases where ξb 6= ξd, the
parameter ξd still plays a role in pre-limit systems, whereas it does not appear in
the normal limit. In the cases where ξb 6= ξd we furthermore see that the functions
are not smooth around vn = 0 or v∗ = −√

nm/ξ∗, which is the zero-inventory level
in the original (unscaled) process. As n increases, this point of irregularity goes to
−∞ and therefore disappears.

7.5.3 Approximations to performance metrics

The plots in the previous section indicate that the normal approximation gives sim-
ple yet accurate approximations to the stationary distribution of the inventory pro-
cess. We now assess if this also translates to the performance measures. Again, we
choose to fix the parameters λb and λd, and evaluate the system with arrival rates
nλb and nλd for increasing n. First, the normal approximation in (7.100) yields the
following approximation for the expected inventory level:

E[Xn] ≈
nm

ξ∗
=

n(λbE[B]− λdE[D])

ξ∗
. (7.102)

For the probability of negative inventory, we have

πd = P(Xn < 0) ≈ P
(

Z∗
< −

√
n m/ξ∗

)

= Φ
(

−
√

n/2ξ∗ m/σ
)

. (7.103)

Last, the probability of demand being satisfied immediately is approximately

P(demand satisfied) = P(Xn > D) ≈ 1 −
∫ ∞

0
Φ

(

−
√

2ξ∗

σ

x − nm/ξ∗√
n

)

dFd(x).

(7.104)

Remark 7.6. Note that if λb and λd are large themselves, the parameter n can be
eliminated from (7.102)-(7.104), so that

E[X] ≈ m

ξ∗
, πd ≈ Φ

(

−m/(σ
√

2ξ∗)
)

,

P(demand satisfied) ≈ 1 −
∫ ∞

0
Φ

(

−
√

2ξ∗
x − m/ξ∗

σ

)

dFd(x),

where m = λbE[B]− λdE[D] and σ2 = λbE[B2] + λdE[D2].

We will now test these approximations under various assumptions on the dis-
tribution of B and D. In Tables 7.1-7.3 we compare the values obtained through the
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Figure 7.6: Probability functions of X̂n for n = 1, 5 and 10 with λb = 1, λd =
0.5, µb = µd = 1, and the probability function of the OU process.
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normal approximation against the true values obtained through numerical evalu-
ation (for exponential jump sizes only) and simulation. All simulation results are
accurate up to a 95% confidence interval of width 10−4. We set λb = 1 and λd = 0.5
and let the mean jump sizes be equal to 1, i.e. E[B] = 1 and E[B] = 1 in all nu-
merical experiments. In Table 7.1, we let the jump sizes be deterministic, so that
Var B = Var D = 0. Table 7.2 shows the results in case of exponential jump sizes,
so that Var B = Var D = 1. Last, in Table 7.3 we investigate the quality of the ap-
proximation for jump sizes that follow a Gamma(0.25, 0.25) distribution, yielding
Var B = Var D = 4. With this set-up we cover jump distributions of increasing
variance, so that we are able to study the impact of increased variability on the ac-
curacy of the approximations. Moreover, we investigate the influence of the decay
parameters ξb and ξd by considering the scenarios ξb = ξd, ξb < ξd and ξb > ξd.

We make a couple of observations based on the numbers in Tables 7.1-7.3. First,
we see that the approximation for the mean blood inventory level E[Xn] is ex-
act if ξb = ξd, see Proposition 7.3. This obviously does not extend to πd and
P(demand satisfied), since these performance measures are based on the entire
distribution of Xn rather than the mean. Nonetheless, the normal approximation
appears to be very accurate in the case ξb = ξd. We may explain this by observing
that in the approximations (7.102)-(7.104), only ξ∗ appears. In our setting, we have
m = λb − λd = 0.5, so that ξ∗ = ξb. If ξb 6= ξd, then the value of ξd plays a role
in pre-limit systems, which induces inaccuracies in the approximation of perfor-
mance measures. In case ξb = ξd, we have ξ∗ = ξb = ξd, so that this discrepancy is
overcome.

Moreover, since m > 0, we see that πd → 0 and P(demand satisfied) → 1 as
n increases. This is due to the observation that as n grows large, the inventory
process concentrates around the level nm with fluctuations of order

√
n, so that

the process stays away from level zero, see Figure 7.4. The approximations (7.103)-
(7.104) adequately capture this convergence.

As expected, the accuracy of the approximations increases with n. Moreover,
increased variability in the jump distributions appears to cause a decrease in accu-
racy. However, for all cases considered in Tables 7.1-7.3, the normal approximations
(7.102)-(7.104) seem to yield relatively sharp estimates for the relevant performance
measures under various assumptions on the distributions of the jump sizes.

7.6 Conclusions & suggestions for further research

In this chapter, we studied a stochastic model for a blood bank. We have presented a
global approach to the model in its full generality, and obtained very detailed exact
expressions for the densities of amount of inventory and amount of demand (short-
age) in special cases (exponential amounts of donated and requested blood; and
either ξb = ξd = 0 or αb = αd = 0). Moreover, we have shown how an appropriate
scaling, for the model in full generality, leads to an Ornstein-Uhlenbeck diffusion
process, which can be used as a tool to obtain simple yet accurate approximations
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E[Xn] πd P(dem.sat.)

n Sim. (7.102) Sim. (7.103) Sim. (7.104)

1 0.500 0.500 0.2702 0.2819 0.2598 0.2819
2 1.000 1.000 0.2014 0.2071 0.4859 0.5000
5 2.500 2.500 0.0943 0.0984 0.7814 0.7807

10 5.000 5.000 0.0316 0.0339 0.9306 0.9279
20 10.000 10.000 0.0043 0.0049 0.9908 0.9899
50 25.000 25.000 0.0000 0.0000 1.0000 1.0000

(a) ξb = 1, ξd = 1.

E[Xn] πd P(dem.sat.)

n Sim. (7.102) Sim. (7.103) Sim. (7.104)

1 0.584 0.500 0.2522 0.2819 0.2712 0.2819
2 1.086 1.000 0.1809 0.2071 0.5020 0.5000
5 2.558 2.500 0.0837 0.0984 0.7911 0.7807

10 5.024 5.000 0.0286 0.0339 0.9335 0.9279
20 10.006 10.000 0.0040 0.0049 0.9912 0.9899
50 25.000 25.000 0.0000 0.0000 1.0000 1.0000

(b) ξb = 1, ξd = 2.

E[Xn] πd P(dem.sat.)

n Sim. (7.102) Sim. (7.103) Sim. (7.104)

1 0.158 0.250 0.3308 0.3415 0.1006 0.1103
2 0.397 0.500 0.2973 0.2819 0.2465 0.2819
5 1.164 1.250 0.1952 0.1807 0.5482 0.5724

10 2.447 2.500 0.1036 0.0984 0.7729 0.7807
20 4.980 5.000 0.0340 0.0339 0.9283 0.9279
50 12.497 12.500 0.0017 0.0019 0.9964 0.9960

(c) ξb = 2, ξd = 1.

Table 7.1: Accuracy of diffusion approximation for the blood inventory process
E[Xn], the probability of negative inventory πd and the probability of demand be-
ing fully satisfied P(dem.sat), with arrival rates nλb = n and nλd = 0.5n and
deterministic jump sizes, B ≡ 1 and D ≡ 1.
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E[Xn] πd P(dem.sat.)

n Exact (7.102) Exact (7.103) Exact (7.104)

1 0.500 0.500 0.2929 0.3415 0.3536 0.3925
2 1.000 1.000 0.2500 0.2819 0.5000 0.5135
5 2.500 2.500 0.1642 0.1807 0.7062 0.7009

10 5.000 5.000 0.0898 0.0984 0.8491 0.8418
20 10.000 10.000 0.0307 0.0339 0.9506 0.9467
50 25.000 25.000 0.0017 0.0019 0.9974 0.9970

(a) ξb = 1, ξd = 1.

E[Xn] πd P(dem.sat.)

n Exact (7.102) Exact (7.103) Exact (7.104)

1 0.621 0.500 0.2589 0.3415 0.3705 0.3925
2 1.153 1.000 0.2164 0.2819 0.5224 0.5135
5 2.656 2.500 0.1414 0.1807 0.7254 0.7009

10 5.113 5.000 0.0784 0.0984 0.8598 0.8418
20 10.050 10.000 0.0275 0.0339 0.9538 0.9467
50 25.004 25.000 0.0016 0.0019 0.9975 0.9970

(b) ξb = 1, ξd = 2.

E[Xn] πd P(dem.sat.)

n Exact (7.102) Exact (7.103) Exact (7.104)

1 0.125 0.250 0.3548 0.3864 0.2168 0.2942
2 0.333 0.500 0.3333 0.3415 0.3333 0.3925
5 1.059 1.250 0.2647 0.2593 0.5264 0.5570

10 2.333 2.500 0.1856 0.1807 0.6881 0.7009
20 4.893 5.000 0.0995 0.0984 0.8400 0.8418
50 12.475 12.500 0.0198 0.0206 0.9692 0.9678

(c) ξb = 2, ξd = 1.

Table 7.2: Accuracy of diffusion approximation for the blood inventory process
E[Xn], the probability of negative inventory πd and the probability of demand be-
ing fully satisfied P(dem.sat), with arrival rates nλb = n and nλd = 0.5n and
exponentially distributed jump sizes, B ∼ exp(1) and D ∼ exp(1).
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E[Xn] πd P(dem.sat.)

n Sim. (7.102) Sim. (7.103) Sim. (7.104)

1 0.500 0.500 0.3118 0.3981 0.4412 0.4636
2 1.000 1.000 0.2894 0.3575 0.5343 0.5288
5 2.500 2.500 0.2375 0.2819 0.6590 0.6381

10 5.000 5.000 0.1785 0.2071 0.7592 0.7385
20 10.000 10.000 0.1090 0.1241 0.8593 0.8454
50 25.000 25.000 0.0303 0.0339 0.9624 0.9583

(a) ξb = 1, ξd = 1.

E[Xn] πd P(dem.sat.)

n Sim. (7.102) Sim. (7.103) Sim. (7.104)

1 0.667 0.500 0.2695 0.3981 0.4636 0.4636
2 1.253 1.000 0.2469 0.3575 0.5632 0.5288
5 2.863 2.500 0.2009 0.2819 0.6895 0.6381

10 5.385 5.000 0.1518 0.2071 0.7834 0.7385
20 10.328 10.000 0.0938 0.1241 0.8739 0.8454
50 25.124 25.000 0.0269 0.0339 0.9658 0.9583

(b) ξb = 1, ξd = 2.

E[Xn] πd P(dem.sat.)

n Sim. (7.102) Sim. (7.103) Sim. (7.104)

1 0.081 0.250 0.3694 0.4276 0.3270 0.4104
2 0.238 0.500 0.3593 0.3981 0.4137 0.4636
5 0.857 1.250 0.3237 0.3415 0.5311 0.5528

10 2.045 2.500 0.2739 0.2819 0.6282 0.6381
20 4.568 5.000 0.2039 0.2071 0.7361 0.7385
50 12.231 12.500 0.0966 0.0984 0.8797 0.8779

(c) ξb = 2, ξd = 1.

Table 7.3: Accuracy of diffusion approximation for the blood inventory process
E[Xn], the probability of negative inventory πd and the probability of demand being
fully satisfied P(dem.sat), with arrival rates nλb = n and nλd = 0.5n and Gamma
distributed jump sizes, B ∼ Gamma(0.25, 0.25) and D ∼ Gamma(0.25, 0.25).
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for some key performance measures.

Our model is a two-sided model, in the sense that we simultaneously consider
the amount of blood in inventory and the amount of demand (shortage), one of the
two at any time being zero. Such two-sided processes arise in many different set-
tings, and thus are of considerable interest. The present setting is reminiscent of an
organ transplantation problem, where there is either a queue of persons waiting to
receive an organ, or a queue of donor organs. The perishability/impatience aspect
features there too [46]. A quite different setting is that of insurance risk. We refer to
Albrecher & Lautscham [11] who extend the classical Cramér-Lundberg insurance
risk model by allowing the capital of an insurance company to become negative –
a situation that is usually indicated by “ruin" in the insurance literature. Their pro-
cess thus becomes two-sided. The capital might become positive again; however,
at a rate ω(x) when the capital has a negative value −x, bankruptcy is declared
and the process ends. Interestingly, similar special functions (like hypergeometric
functions) play a role in [11] and in the present study.

The analyses performed in this chapter, which evolved around a simplified ver-
sion of the inventory process of a blood bank, revealed some interesting avenues
for further research. We name a couple of them.

First, we remark that our results are restricted to one type of blood. Naturally,
it would be very interesting to extend the analysis to multiple types of blood.

Another important extension would be to use our results to facilitate the decision
process that is faced by the CBB on a daily basis: Which amounts of blood, and of
which types, should today be sent to the local blood banks (hospitals)? Knowing
that, e.g., blood types O−, A−, B−, AB− can satisfy the corresponding + type (but
not vice versa), one may try to optimize the blood allocation process on the basis of
actual amounts of blood present.

Finally, we mention a significant open research question regarding the process
limits that we derived in Section 7.4, of which the steady-state distributions were
used to approximate steady-state performance measures in pre-limit systems. As
we pointed out earlier, the justification that the steady-state distribution of the
scaled inventory process indeed converges to the steady-state distribution of the
fluid (cq. diffusion) limit requires a rigorous argument why the order of limits
n → ∞ and t → ∞ may be interchanged. Proving interchange-of-limits statements
typically raises many technical challenges, see e.g. [63, 77, 96, 79] for works tackling
this issue in the context of queues in heavy traffic. The usual approach is to prove
tightness of the sequence of steady-state distributions of pre-limit, followed by ap-
plying Prokhorov’s theorem, see e.g. [37, Sec. 1.5]. For our model, such an approach
seems to be straightforward for the fluid scaling, since our inventory process can
be upper (cq. lower) bounded by a shot-noise process with only positive (cq. neg-
ative) jumps. Of the latter, the steady-state behavior is known. This allows us to
derive a uniform bound on the absolute mean of the stationary fluid-scaled process,
which gives tightness. The final step uses the deterministic nature of the differential
equation governing the dynamics of the fluid limit, by which the steady-state distri-
bution must be unique. For the diffusion-scaled process, the steps towards proving
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the interchange-of-limits are not obvious and hence this needs further investiga-
tion. Our numerical results for various jump size distributions, however, support
the conjecture that this interchange is indeed valid.

Appendix

7.A Transformation integral equation

In this appendix we show how integral equation (7.7) can be transformed into a
second-order differential equation, in the case of exponential Fb(·) and Fd(·). Dif-
ferentiate (7.7) w.r.t. v:

λd f (v)− µd

[

λd

∫ v

0
f (y)e−µd(v−y)dy + λd

∫ ∞

0
g(y)e−µd(v+y)dy

]

= −λb f (v) + λbµb

∫ ∞

v
f (y)e−µb(y−v)dy + ξd f (v) + ξdv f ′(v). (7.105)

Using (7.7) once more, now to replace the term between square brackets in (7.105),
we get:

ξdv f ′(v) = (λd + λb − ξd) f (v)

− µd

(

λb

∫ ∞

v
f (y)e−µb(y−v)dy + ξdv f (v)

)

− µbλb

∫ ∞

v
f (y)e−µb(y−v)dy, (7.106)

and once more differentiating w.r.t. v then gives:

ξdv f ′′(v) + ξd f ′(v)− (λd + λb − ξd − µdξdv) f ′(v)

= −µdξd f (v) + (µb + µd)λb f (v)− µb(µb + µd)λb

∫ ∞

v
f (y)e−µb(y−v)dy.

(7.107)

The integral that appears in (7.106) can be eliminated by using (7.107), and we thus
finally obtain the following second order homogeneous differential equation:

ξdv f ′′(v) + (2ξd − λd − λb + µdξdv − µbξdv) f ′(v)

+ (µdξd − µbξd − µdλb + µbλd − µbµdξdv) f (v) = 0. (7.108)

7.B Proof of Proposition 7.4

In the proof, we concentrate on the derivation of f (v), which is the solution to

ξdv f ′′(v) + (2ξd − λd − λb + µdξdv − µbξdv) f ′(v)

+ (µdξd − µbξd − µdλb + µbλd − µbµdξdv) f (v) = 0 (7.109)
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The expression for g(v) follows directly from exchanging λb with λd, µb with µd, ξb

with ξd, and πb with πd in f (v). We rewrite (7.109) as follows:

v f ′′(v) + (A + Bv) f ′(v) + (C + Dv) f (v) = 0, (7.110)

where

A = 2 − λb + λd

ξd
, B = µd − µb, C = µd − µb +

λdµb − λbµd

ξd
, D = −µbµd.

Note that we divided both sides of equation (7.109) by ξd here. We will try to
transform the differential equation into one for which the solution is easily derived.
In order to do so, we first guess f to be of the form f (v) = eβvh(v), where β is a
constant and h another real-valued function. Substituting this into (7.110) gives

vh′′(v) + [(2β + B)v + A] h′(v) +
[

(β2 + Bβ + D)v + Aβ + C
]

h(v) = 0. (7.111)

Next, we would like to choose β such that β2 + Bβ + D = 0, that is

β =
−B ±

√
B2 − 4D

2
,

which equals either −µd or µb. Since the solution of (7.110) we are looking for is
a density, and necessarily f (v) = eβvh(v) → 0 as v → ∞, we set β equal to the
negative root −µd. Lastly, we apply a change of variable, x = δv, and h(v) = w(x),
so that (7.111) is transformed into

xw′′(x) +
[

(2β + B)δ−1x + A
]

w′(x) + δ−1 [Aβ + C]w(x) = 0.

By choosing (2β + B)δ−1 = −1, i.e.

δ = −(2β + B) = µb + µd,

we obtain

xw′′(x) + [A − x]w′(x) + δ−1 [Aβ + C]w(x) = 0,

which is known as Kummer’s equation, xw′′(x) + (b − x)w′(x) − aw(x) = 0, see
[195], with parameters

a = −δ−1 [Aβ + C] = 1 − λd

ξd
,

b = A = 2 − λb + λd

ξd
.

Kummer’s equation has two linearly independent solutions, namely w(x) =
M(a, b, x), where M is Kummer’s hypergeometric function, also denoted by
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1F1(a, b, x), and U(a, b, x), Tricomi’s hypergeometric function. These are defined as,
see [195, Eq. (1.3.1)],

M(a, b, x) =
∞

∑
n=0

(a)n

(b)nn!
xn,

U(a, b, x) =
Γ(b − 1)

Γ(1 + a − b)
M(a, b, x) +

Γ(b − 1)

Γ(a)
x1−b M(1 + a − b, 2 − b, x),

where (.)n is the Pochhammer symbol, which is used to represent (y)n = y · (y +
1) · ... · (y + n − 1). We can therefore deduce that f (v) is of the form

eβv [c1 M(a, b, δv) + c2 U(a, b, δv)] ,

or

e−µdv
[

c1M
(

1 − λd
ξd

, 2 − λb+λd
ξd

, (µb + µd)v
)

+ c2U
(

1 − λd
ξd

, 2 − λb+λd
ξd

, (µb + µd)v
)]

,

where c1 and c2 are constants. From [195, p. 60], we have

M(a, b, x) ∼ Γ(b)

Γ(a)
exxa−b, as x → ∞.

Hence,

e−µdv M

(

1 − λd

ξd
, 2 − λb + λd

ξd
, (µb + µd)v

)

∼
Γ(2 − λb+λd

ξd
)

Γ(1 − λd
ξd
)

eµbv ((µb + µd)v)
λb/ξd−1 → ∞

for all µb > 0, which leads us to conclude c1 = 0. We deduce c2 by exploiting the
restriction that

∫ ∞

0
f (v)dv = πd,

where πd is the probability of positive demand. Hence

πdc−1
2 =

∫ ∞

0
e−µdvU

(

1 − λd
ξd

, 2 − λb+λd
ξd

, (µb + µd)v
)

dv.

By slightly transforming [195, Eq. (3.2.51)], we find

c−1
2 =

1

πd

Γ
(

λb+λd
ξd

)

Γ
(

1 + λb
ξd

) 2F1

(

1 − λd
ξd

, 1, 1 + λb
ξd

,− µb
µd

)

,

where 2F1(a1, a2, a3, x) := ∑
∞
n=0

(a1)n(a2)n

(a3)nn!
xn is the hypergeometric function of Gauss.
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7.C Laplace Transforms for Coxian jumps

We outline how the differential equation (7.46) is obtained. We take Laplace trans-
forms in (7.2), considering its five terms and calling them T1, T2, T3, T4 and T5, suc-
cessively. Equation (7.2) then translates into

T1 + T2 + T3 = T4 + T5,

where

T1 = λd

∫ ∞

v=0
e−sv

∫ v

y=0
f (y)F̄d(v − y)dydv

= λdφ(s)
1 − E[e−sD]

s
, (7.112)

T2 = λd

∫ ∞

v=0
e−sv

∫ ∞

y=0
g(y)F̄d(v + y)dydv

= λd

∫ ∞

y=0
esyg(y)

∫ ∞

z=y
e−sz F̄d(z)dzdy, (7.113)

T3 = π0λd

∫ ∞

0
e−sy F̄d(y)dy, (7.114)

T4 = λb

∫ ∞

v=0
e−sv

∫ ∞

y=v
f (y)F̄b(y − v)dydv

= λb

∫ ∞

y=0
e−sy f (y)

∫ y

z=0
esz F̄b(z)dzdy, (7.115)

T5 = ξd

∫ ∞

v=0
ve−sv f (v)dv + αdφ(s)

= −ξdφ′(s) + αdφ(s). (7.116)

We now evaluate the terms appearing in the righthand sides of (7.112)-(7.115)
for the Coxian case of (7.44) and (7.45):

∫ y

z=0
esz F̄b(z)dz =

K

∑
i=1

pi

i−1

∏
h=1

(1 − ph)
i

∑
j=1

i

∏
l=1;l 6=j

βl

βl − β j

1

β j − s
(1 − e(s−β j)y), (7.117)

∫ ∞

z=y
e−sz F̄b(z)dz =

K

∑
i=1

pi

i−1

∏
h=1

(1 − ph)
i

∑
j=1

i

∏
l=1;l 6=j

βl

βl − β j

1

β j + s
e−(s+β j)y, (7.118)

E[e−sB] =
K

∑
i=1

pi

i−1

∏
h=1

(1 − ph)
i

∑
j=1

i

∏
l=1;l 6=j

βl

βl − β j

β j

β j + s
, (7.119)

and hence

1 − E[e−sB]

s
=

K

∑
i=1

pi

i−1

∏
h=1

(1 − ph)
i

∑
j=1

i

∏
l=1;l 6=j

βl

βl − β j

1

β j + s
. (7.120)
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Combining (7.C) with (7.112)-(7.116), and using (7.117) and the counterparts of
(7.118) and (7.120) for F̄d(·), we find:

λdφ(s)
K

∑
i=1

qi

i−1

∏
h=1

(1 − qh)
i

∑
j=1

i

∏
l=1;l 6=j

δl

δl − δj

1

δj + s

+ λd

L

∑
i=1

qi

i−1

∏
h=1

(1 − qh)
i

∑
j=1

i

∏
l=1;l 6=j

δl

δl − δj

1

δj + s
[γ(δj) + π0]

= λb

K

∑
i=1

pi

i−1

∏
h=1

(1 − ph)
i

∑
j=1

i

∏
l=1;l 6=j

βl

βl − β j

1

β j − s
(φ(s)− φ(β j))

− ξdφ′(s) + αdφ(s), (7.121)

which is readily rewritten into (7.46).

Remark 7.7. If ξd = 0, then φ(s) is obtained from (7.121) in a standard manner, see
also Section 7.3.3.

Remark 7.8. We now outline how (7.118) and (7.119) change when the Bi have an
Erlang-(l + 1, β) distribution, and when the Di have an Erlang-(k + 1, δ) distribution
(see also (7.44) and the line below it); (7.117) and (7.120) do not change (but of
course E[e−sD] changes). Firstly,

∫ y

z=0
esz F̄b(z)dz =

l

∑
j=0

βj

(β − s)j+1

[

1 −
j

∑
i=0

e−(β−s)y ((β − s)y)i

i!

]

.

Term T4 now becomes:

T4 = λb

∫ ∞

v=0
e−sv

∫ ∞

y=v
f (y)F̄b(y − v)dydv

= λb

l

∑
j=0

βj

(β − s)j+1

[

φ(s)−
j

∑
i=0

(β − s)i

i!

∫ ∞

y=0
yie−βy f (y)dy

]

.

It should be noted that s = β is a removable singularity. E.g., for l = 0 one has

T4 = λb
φ(s)−φ(β)

β−s .

Secondly,

∫ ∞

z=y
e−sz F̄b(z)dz =

k

∑
j=0

δj

(s + δ)j+1

j

∑
i=0

e−(s+δ)y ((s + δ)y)i

i!
.

Term T2 now becomes:

T2 = λd

∫ ∞

v=0
e−sv

∫ ∞

y=0
g(y)F̄d(v + y)dy dv

= λd

k

∑
j=0

δj

(s + δ)j+1

j

∑
i=0

(s + δ)i

i!

∫ ∞

y=0
yie−δyg(y)dy.
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It is readily seen that the resulting counterpart of (7.121) can again be written in the
form (7.46), and hence the solution is formally still given by (7.49).
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Summary

Asymptotic dimensioning of stochastic service systems

Stochastic service systems describe situations in which customers compete for ser-
vice from scarce resources. Think of check-in lines at airports, waiting rooms in
hospitals or queues in supermarkets, where the scarce resource is human man-
power. Next to these traditional settings, resource sharing is also important in
large-scale service systems such as the internet, wireless networks and cloud com-
puting facilities. In these virtual environments, geographical conditions do not
restrict the system size, paving the way for the emergence of large-scale resource
sharing networks. This thesis investigates how to design large-scale systems in
order to achieve the dual goal of operational efficiency and quality-of-service, by
which we mean that the system is highly occupied and hence efficiently utilizes the
expensive resources, while at the same time, the level of service, experienced by
customers, remains high.

The intrinsic stochastic variability of arrival and service processes is the predom-
inant cause of delays experienced by customers. Queueing theory and stochastics
provide the tools to describe and evaluate congestion in these systems. An impor-
tant insight obtained through queueing analysis is the effect of resource pooling
for systems with many servers and corresponding economies-of-scale that can be
achieved by increasing the scale of the system. Although classical queueing theory
allows for exact evaluation of the performance of queueing systems of moderate
size, exact analysis becomes intractable as demand R and capacity s become large.
In those cases, one typically resorts to asymptotic approximation techniques, such
as heavy-traffic diffusion approximations: the analysis of a sequence of queueing
processes, scaled in space, in which the server utilization level approaches 100%.
The resulting probabilistic limiting processes are easier to analyze. Moreover, the
diffusion approximations have direct interpretations in terms of the original sys-
tems and lead to tractable characterizations of their performance.

The heavy-traffic regime that plays a central role in this thesis is the Halfin-Whitt
regime, also known as the Quality-and-Efficiency Driven (QED) regime, which dic-
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tates that capacity should be equal to the nominal demand plus an additional vari-
ability hedge which is proportional to the square-root of the nominal load, i.e.
s = R + β

√
R for some β > 0. The driving force behind this scaling regime is

the central limit theorem (CLT). The rule s = R + β
√

R, commonly known as the
square-root staffing principle, has been proved to secure both efficiency (utilization
approaches 100%) and quality-of-service, since the mean waiting time is negligible
under this scaling as the system grows large. Since the QED regime allows coexis-
tence of the two seemingly conflicting objectives in large-scale service systems, the
paradigm has been implemented in a wide variety of operational settings. How-
ever, the standard QED regime fails to acknowledge features that play a dominant
role in practice. This thesis contributes to the existing literature by identifying these
distinctive traits and showing how to account for them in a modified QED frame-
work.

In Chapters 2 & 3, we study how the limiting behavior of many-server queues
is affected when one deviates from the standard square-root staffing principle. In
Chapter 2 we investigate a novel family of scaling regimes, in which the amount
of overcapacity s − R is not necessarily of the order

√
R, which gives rise to a

novel family of heavy-traffic regimes and corresponding scaling limits. Continuing
our study of alternative scaling regimes, we investigate in Chapter 3 how to adapt
the square-root staffing paradigm in case the system faces demand patterns that
are stochastically more volatile than anticipated. This phenomenon is known as
overdispersion and can be caused by e.g. the existence of correlation between the
sources generating demand, or uncertainty about the arrival volume.

In Chapters 4 & 5, we review a family of queueing models in the QED regime in
which the total number of customers that can reside in the system simultaneously is
limited. As a result, customers may be denied access in case they find a full system
on arrival. This fraction of arrivals may either reattempt later or leave the system
directly. The impact of retrials on scaling rules in the QED regime is the focus of
Chapter 4. Since the volume of initially blocked customers is proportional to

√
R,

that is, the same order as the variability hedge in the staffing rule, retrials are prone
to have a non-negligible effect on performance. We propose a heuristic method
for the performance analysis of these types of queueing models with finite-size
restrictions, which is based on a fixed-point equation. As a by-product this yields a
two-fold square-root staffing principle, which prescribes a synchronous scaling for
both the system capacity and waiting space. Chapter 5 describes how these ideas
can be applied in the context of an emergency department.

Chapter 6 studies a cost minimization problem in a single-server queue with
non-stationary input. The bulk of the queueing literature concerns performance
analysis assuming that steady state is reached. However, the validity of this as-
sumption in practice is questionable, for the simple fact that no service system runs
infinitely long. Moreover, system parameters, such as the arrival volume, are likely
to change over time. In this chapter, we characterize the error in performance met-
rics that follows from this transient nature of queues, and present a correction to
the original staffing rule to account for the finite time horizon.
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Finally, we analyze in Chapter 7 a specific stochastic service system: an inven-
tory model of a blood bank with backlogs, perishable goods and consumer impa-
tience. We obtain the stationary distribution of the inventory level, and deduce
under appropriate scaling the stochastic process limit in terms of a diffusion pro-
cess. This process limit allows for a more tractable approximate analysis of the
model in case the number of blood deliveries and demand is large.
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