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ASYMPTOTIC DIRICHLET PROBLEMS FOR
HARMONIC FUNCTIONS ON RIEMANNIAN MANIFOLDS

BY

HYEONG IN CHOI

Abstract. We define the asymptotic Dirichlet problem and give a sufficient
condition for solving it. This proves an existence of nontrivial bounded harmonic
functions on certain classes of noncompact complete Riemannian manifolds.

0. Introduction. In this paper we will prove the existence of nonconstant bounded
harmonic functions on certain classes of noncompact Riemannian manifolds by
defining and solving an asymptotically defined Dirichlet problem for harmonic
functions. The motivation comes from the classical uniformization theorem of
Riemann surfaces which says that a simply connected Riemann surface is biholo-
morphic to the Riemann sphere S2, the complex plane C, or the unit disk D. This is
a geometric theorem, but its original proof due to Koebe relies heavily on function
theory. The function-theoretic interpretation of this theorem is the following:
Among the noncompact simply connected surfaces, C is characterized by the fact
that it admits no nonconstant bounded harmonic functions, and D by that it admits
nonconstant bounded harmonic functions.

The geometric aspect of the uniformization theorem could be roughly stated as
follows: Let M be a simply connected Riemann surface equipped with a complete
Riemannian metric with Gaussian curvature KM, if KM > c > 0, then M is biholo-
morphic to S2; if KM < — c < 0, then M is biholomorphic to D; if KM is "close" to
zero, then M is biholomorphic to C. The following precise version is due to Greene
and Wu [GW1, p. 120].

Theorem 0.1. Let M be a two-dimensional Riemannian manifold such that the
exponential map at some point p is a diffeomorphism. Let r be the geodesic distance
function from p.

(A) M has the complex structure of the disk if its curvature is nonpositive and
< — (I + e)/r2 log r outside some compact set for some e > 0.

(B) M has the complex structure of C if either one of the following conditions are
satisfied:

(Bl) Outside a disk of radius r0, curvature > — l/r2 log r.
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692 H. I. CHOI

(B2) There exist nonnegative continuous functions K, k: [0, oo] -* [0, oo] such that
K(r) > curvature at q^ —k(r) where r = dist(/>, q)for all q G M,

/   5Â:(5) < oo    and    /   57C(5) < 1.•'0 •'0

The curious fact that the constants 1 + e in (A) and 1 in (Bl) sharply distinguishes
the two cases was first observed in Milnor [Mi] assuming M is rotationally symmet-
ric. Ahlfors [Al] and Yang [Ya] have earlier proved part (A) under stronger curvature
assumptions.

As the above discussion suggests, the function theory and the geometry are closely
tied together, and there have been a lot of activities concerning the generalization of
this phenomenon to higher dimensions. Most outstanding are results by Greene and
Wu, and by Yau. The striking result of Greene and Wu [GW2] says that under an
assumption on M very similar to (B) of Theorem 0.1 and when dim M > 3 M is
actually isometric to R". Therefore, such M cannot have a nonconstant bounded
harmonic function by the Liouville theorem. In fact, Greene and Wu [GW1, p. 56]
proved earlier that under the assumption of (Bl) and regardless of the dimension of
M, the exponential map is a quasi-isometry, therefore by Moser's Harnack inequal-
ity every positive harmonic function is constant. Yau's result [Yu] is that every
positive harmonic function is constant on a complete Riemannian manifold with
nonnegative Ricci curvature. This type of Liouville theorem has many generaliza-
tions to harmonic maps. The result of Hildebrandt, Jost and Widman [HJW] could
be regarded as a generalization of Greene and Wu's result. Generalization of Yau's
result was achieved by S. Y. Cheng [Ch] and the author [Cil].

In contrast to the impressive success of the Liouville type nonexistence theorems,
basically nothing is known about the existence theorem except for dimension 2. Even
in the two-dimensional case most known results use the uniformization theorem,
which cannot be generalized to higher dimensions. There seems to be no effective
direct geometric method known so far. In this paper we shall give a partial answer to
the existence question which was conjectured by Greene and Wu [GW1, p. 3].

Philosophically, our problem is linked to the old conjecture of Wu [W] which says
roughly that a complete simply connected Kahler manifold with "sufficiently
negative" curvature is biholomorphic to a bounded domain in C", and our problem
should be understood in this perspective.

This paper is divided into five sections. In §1 we shall give the definition of the
Eberlein-O'Neill boundary, fix notations and state some well-known formulas. In §2
we define the asymptotic Dirichlet problem, and by employing the classical Perron
method we reduce the problem to the construction of barriers. The key concept is
the barrier with angle which enables us to overcome the bad angular behavior. This
is a technical change, but it turns out to play a very important role. In §3 under the
assumption of rotational symmetry, our problem becomes essentially a one-dimen-
sional one. It is studied mainly for the sake of motivation, but it also has some
interesting features such as the use of the radial curvature only, the sharpness of the
curvature decay, etc. We also give characterizations of rotationally symmetric
manifolds. (See [Ci2] for more general results.) In §4, the general concept of barrier
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with angle is utilized and we reduce the problem to the question of convexity. We
feel that this is one of our main contributions to this problem. In §5, the asymptotic
Dirichlet problem is generalized to nonsimply connected manifolds. Since the
convexity question is easy to deal with on surfaces, we will mostly consider surfaces,
even if a similar generalization is possible for higher dimensions. The asymptotic
Dirichlet problem is posed on each "expanding" end. The idea of §4 is fully
exploited in this section. Applications to classification theory of Riemann surfaces
are also given.

I would like to thank my advisor, Professor Hung-Hsi Wu, for his constant
encouragement and many helpful suggestions.

1. Preliminaries. In this section we shall first fix notation, and give some
definitions and formulas. All manifolds are assumed to be Riemannian. ( , ) denotes
the Riemannian metric, and |.Y| the length of the vector X. DXY denotes the
covariant derivative. The curvature tensor R is defined by

R( X, Y)Z = -DXDYZ + DYDXZ + D[XY]Z;

thus (R(X, Y)X, Y) has the same sign as the sectional curvature of the plane
spanned by X and Y. The sign of the Laplacian is so chosen that in terms of local
coordinates

where (g,y) is the metric tensor, g = det(g,7) and (g'J) = (g,7)_1. Let/? be a point of
M. We denote by Mp the tangent space at p. Sp denotes the set of unit tangent
vectors at/?. For a function u defined near/?, define the Hessian tensor D2uoiuaXp
by

(D2u)(X, Y) = X(Yu) - (DxY)u,
for X, Y G Mp. In the above formula X and Y are arbitrarily extended near /?, but it
is easy to check D2u is a tensor, so it is independent of the extensions of X and Y.
Let Xx,...,Xn be an O.N. basis of M , then it is easy to prove using normal
coordinates that

*u\p=i(D2u)(X!,X,).
¡■=i

The above formula can be rephrased as follows: Take unit speed geodesies v, such
that y,(0) = /? and y/(0) = X. for i=\,2,...,n. Then

¿H=2  4«(Yi(0)U-
;=1    «'

It is also well known that Am = divgrad u. Suppose/: R -> R is a C2 function. Then
the following formula will be frequently used:

A/(«)=/'(M)AM+/"(M)|gradM|2.

The distance between two points/? and q of M is denoted by d(p, q). The following
definition of convexity is very important.
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694 H. I. CHOI

Definition 1.1. A continuous function u: M -* R is called convex if the restric-
tion of u to any geodesic is a convex function of the parameter t of the geodesic. A
set S C M is called convex if any minimizing geodesic segment joining two points of
S lies entirely in S.

It is easy to see that in the case when u is C2, u is convex if and only if D2u is
positive semidefinite at every point.

The well-known Cartan-Hadamard theorem says that if M is a simply connected,
complete Riemannian manifold of nonpositive curvature (in this case M is called a
Cartan-Hadamard manifold), then the exponential map exp^: M -» M is a diffeo-
morphism at any point /? G M. This motivates the following definition.

Definition 1.2. A point /? of a Riemannian manifold M is called a pole, if the
exponential map exp : M -» M is a diffeomorphism.

In order to define a Dirichlet problem, one needs a boundary. Even though the
Cartan-Hadamard manifold has no boundary, we can define the boundary at
infinity following Eberlein and O'Neill [EO]. For the rest of this section M is
assumed to be a Cartan-Hadamard manifold of dimension n.

Definition 1.3. Two unit speed geodesies a, ß: ( — 00,00) — M are called asymp-
totic if there exists a constant c > 0 such that d(a(t), ß(t)) *£ c for all t > 0.

The following facts are easy to check.
(1) If two unit speed asymptotic geodesies have a point in common, then they are

the same.
(2) Given a geodesic a and a point p G M, there exists a unique geodesic ß such

that ß(0) = /? and ß is asymptotic to a.
(3) The asymptotic relation is an equivalence relation on the set of all geodesies in

M; the equivalence classes are called the asymptotic classes. The asymptotic class of
a is denoted by a(oo), and a(— 00) stands for the asymptotic class of the reverse
curve of a.

Definition 1.4. The boundary at infinity, or the Eberlein-O 'Neill boundary of M is
the set M(oo) of all asymptotic classes of geodesies in M. Define M — M U M(oo).

For any two points/? and q of M, let y denote the unique geodesic joining/? and
q. Let x G Af(oo). Suppose there exists the unique geodesic y passing through /? and
y(oo) = x, then we denote y by y . Let x, y E M(oo), y ¥= x. We denote by yxv the
geodesic y such that y(— 00) = x and y(cc) = y, if it exists and is unique. The
existence and uniqueness of such geodesies are proved in [EO] under much weaker
curvature assumptions than below.

Theorem 1.5. If the Cartan-Hadamard manifold M has the sectional curvature
< — c < 0, then for any x, y G M, there exists a unique geodesic y   .

The following easy proposition indicates that the Eberlein-O'Neill boundary
represents, in a sense, the set of all directions from a point.

Proposition 1.6. Let p be any point of M. Then A/(oo) and S are in one-to-one
correspondence, where Sp is the set of unit tangent vectors at p.

Proof. For any v G S , let yv be the geodesic such that y„(0) = /? and y^(0) = v. It
is easy to see that if v ¥= w, then y and yw are not asymptotic by the law of cosines.
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Conversely, let a be a geodesic in M. Let vn G S be the tangent vector of the
geodesic joining p and a(n), n an integer. Then by Proposition 1.2 of [EO], vn
converges to some v, and yv(cc) = a(oo).

Let /? be a point of M. For v, w G M , define "$p(v, w) to be the angle between v
and w in the vector space M . If x and y G M, then we define the angle ^p(x, y)
= %(y;x(0),y;y(O)).

Definition 1.7. Let /? G M, v G Sp and 8 > 0. Define the cone C(u, 8) in Mp of
opening angle 8 and axis v by

C(c,«)= {WeA/„tf„(o, *>)<«}.
The cowe C(u, ô) in M is defined to be

C(v,8)= {xGM\4p{v,y;x(0))<*}-

Let r > 0. We call r(ü, ô, r) = C(v, 8) — {q G M\d(p,q) *£ /-} the truncated cone
of radius r in M.

Eberlein-O'Neill proved the following theorem.

Theorem 1.8. Let p G M. The set of all T(v, 8, r), for all v G Sp,8 and r > 0, and
Br(q) — {x G M\d(q, x) < r), for all q G M, and r > 0, defines a local basis of
topology on M, which is called the cone topology. The cone topology does not depend on
the choice of p. Under this topology M is homeomorphic to the closed ball B C R", M to
the open ball B, and Af(oo) to the boundary sphere S"~x = dB.

2. Asymptotic Dirichlet problem. Given a Cartan-Hadamard manifold we can pose
the Dirichlet problem for harmonic functions in the following way.

Definition 2.1 (Asymptotic Dirichlet problem). Let M be a Cartan-Hada-
mard manifold. Given a continuous function <j>: M(oo) -> R, find a continuous
function u: M -» R such that u is harmonic in M and u |W(oo) = <¡>. Continuity is in
terms of the cone topology.

For technical reasons which become clear in §§3 and 5, we shall rephrase the
Dirichlet problem on a manifold with a pole. Throughout this section M is merely
assumed to be a manifold with a fixed pole/? with dim M = n.

Definition 2.2. Given v G S , the truncated cone in M, K(v, 8, r), is defined to be
T(v, 8, r) n M = {q G M\d(p, q) > r and ^(u, y¡,q(0)) < 8}. Suppose « is a
function defined only on M. We say u converges to a number A as q -» y„(oo) if given
e > 0, there exist some 8 > 0 and r > 0 such that | u(q) — A |< e for all q G
K(v,8,r).

Definition 2.3 (Asymptotic Dirichlet problem w.r.t. a pole/?). Let <¡>: Sp -» R
be a continuous function, where Sp is the set of unit tangent vectors at /?. Find a
harmonic function u: M -» R such that for every v G 5^, u(q) converges to (¡>(v) as
q -» Y„(oo) in the sense of Definition 2.2.

Even though the Eberlein-O'Neill boundary furnishes us with something tangible,
it is rather cumbersome to work with in many concrete situations. Our Definitions
2.2 and 2.3 have the merit of avoiding M(oo) altogether by enabling us to deal only
with M, because all we need is the concept of convergence in terms of truncated
cones in M. This also saves us the trouble of redefining M(cc) in the presence of
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positive curvature, even if it could be done easily. In what follows, the convergence
to the boundary values and the asymptotic Dirichlet problem itself should be
understood in the sense of Definitions 2.2 an 2.3. In case M is a Cartan-Hadamard
manifold, if the Dirichlet problem is solvable in the sense of Definition 2.3, then we
can extend u to M as a continuous function. It is trivial to see that the two
definitions are equivalent.

Our approach to this problem employs the classical Perron method of taking the
upper envelope of the family of subharmonic functions with boundary values less
than the given one.

Definition 2.4. A C2 function u: M -» R is called harmonic if Au — 0. A
continuous function u: M -» R is called subharmonic if for any ball B C M and a
harmonic function h, u\dB<h\SB implies u < h in B. We can similarly define
superharmonic functions by reversing the above inequalities. It is well known that a
C2 function u is subharmonic (resp. superharmonic) if and only if Aw > 0 (resp.
Au < 0).

From the well-known maximum principle of E. Hopf, a subharmonic function
cannot attain an interior maximum unless it is a constant function, i.e., the
maximum of a subharmonic function occurs at the boundary. We have a similar
result for the asymptotic case. In what follows, lim sup and liminf are defined in
terms of truncated cones as in Definition 2.2. Notation from Definitions 2.2 and 2.3
is used throughout this section.

Proposition 2.5 (Asymptotic maximum principle). (1) Suppose f: M -* R is a
subharmonic function such that limsup Yc(oo)/(<7) < 0 for all v G S . Then /< 0 on
M.

(2) If fis a subharmonic function in M, and g is a superharmonic function on M such
that limsupq^yAoo)f(q) < limsupi-7,(oo)g(ç)/o/- all v G Sp. Then f « g on M.

Proof of (1). Suppose there is a point x G M such that f(x) = 2e > 0. Let
I = d(p, x). By assumption, for any v G Sp, there exist 8(v) > 0 and r(v) > 21 such
that /(?)<e for all qEK(v,8,r). Let UD = {w G Sp\-$p(w, v) < 8(v)}, then
{Uv}ves is an open covering of S . By compactness we can choose finitely many
Uv ,...,UV which cover S . Let R = max{r(v¡): i — 1,..., k}. Then it is clear that
f(q) < e for q G M such that d(p, q) 3* 7?. Now x G BR(p) and f\bB < e and
f(q) = 2e. This contradicts the classical maximum principle. Applying (1) to the
subharmonic function/ — g, we get (2).

Define F={/:Ai->R|/is subharmonic and lim sup f(q) < <¡>(v) as q -* v„(oo)
for all u G Sp). Notice F ¥= 0. Define u to be the upper envelope of this family F,
i.e., u(q) = sup{/(g)|/G F). It is well known that m is a harmonic function (see
Theorems 2.12 and 6.11 of [GT]). The main problem is how to prove that u takes the
asymptotically defined boundary values. The classical tool is the concept of barrier.
Since this is the most important ingredient of our method, we would like to discuss
the subtlety concerning our definition of barrier. Classically the Dirichlet problem is
posed on the bounded domain fi C R", and the barrier at a boundary point x G 3ß
is defined to be a subharmonic function B on ß such that ]imq^x B(q) = 0 and
limsup     7?(<j) < 0 for y ¥= x, y G 9ñ (see [AS, p. 139]). This is a very general
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definition that does not require the continuity on the boundary. While this definition
is good enough for the solution of the Dirichlet problem in the rotationally
symmetric case, it is technically very difficult to construct a single function that can
serve as a barrier (see the discussion at the beginning of §4). In order to overcome
this difficulty we modify the definition of barrier slightly so that it may also depend
on a small neighborhood of x G oü. This slight change turns out to play a crucial
role in our case. Appropriate for our asymptotic Dirichlet problem is the following
definition.

Definition 2.6. Given v G Sp, 8 > 0, B: M -» R is called a barrier at v with angle
8, if B satisfies the following three conditions:

(1) B is subharmonic on M,
(2) B*a0, and lim B(q) = 0asq-> y„(oo),
(3) 3tj > 0 such that limsup7?(<7) < —tj as q ^ yw(oo) for any wES with

<$p(v,w) > 8.

Theorem 2.7. Suppose, for any v G Sp and any sufficiently small 8 > 0, there is a
barrier B at v with angle 8. Then lim u(q) = <j>(v) as q -* yv(co) for any v G S .

Proof. Fix any v G Sp. Given e > 0, there exists a sufficiently small 8 > 0 such
that | <j>(w) — (¡>(v) |< e for "$p(w, v) < 8, since </> is continuous on S . Let B be the
barrier at v with angle 8, and let 77 be the constant in Definition 2.6. Let A be the
supremum of |(p| on S. Choose k > 0 such that kr\>2A. $(v) + e — kB is
superharmonic, and we will prove that

(*) liminf {<J>(o) + e - kB(q)) > <f>(w),    for all w G 5
9—Y„(<»)

For w G Sp such that -$p(w, v) =£ 8, \<t>(w) - <f>(t3)|« £ and kB < 0; thus <l>(v) + e
- kB> <¡>(w). For w e Sp such that <*.p(w, v) > 8,

liminf {<*>(«) + e - kB(q)} = <¡>(v) + e - k hmsupTi(^)
<f~Y»(°°> <7-Y„(oo)

> <>(i?) + e + kt] > <*>(«) + e + 2A

3* </>(u) + e + <¡>(w) - <j>(v) > <j>(w).

We now claim that

(**) limsup{<i>(t?) - e + kB(q)) <<>(w),    forallivG^.
9—y»(oo)

For weS; such that -^(u, w) < S, <>(u) - e < 4>(w) and A:7i < 0, so <¡>(v) - e +
kB < <l>(w) - e « <f>(w). For wEX, such that ^(u, w) > 8,

lim sup (<i>(t?) - e + /c5(ç)} *£ <¡>(v) - e - ki\ < </>(i;) - 2^4
?-*Yw(°0)

<^(ü) + <í)(w) - <i>(l3) = ^(w).

From (*) and Proposition 2.5, we get <J>(u) + e — kB > /, for any / G T7. Thus we
have <j>(v) + e - kB > u. From (**), we have <¡>(v) - e + kB G F, so by the defini-
tion of u, we get m s* <í>(t>) - £ + kB. Combining these two inequalities, we get
\u -<>(t))|<e - kB.
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Letting q -» y^oo), we get

limsup \u(q) — 4>(v)\ < e — k    lim    B(q) = e
¡7-y^oo) ?-Y„(oo)

in the sense of Definition 2.2. Since e is arbitrary, we get lim      (oo) u(q) = <¡>(v).

Corollary 2.8. If the assumption of Theorem 2.7 is satisfied, then the asymptotic
Dirichlet problem is solvable, hence M possesses nonconstant bounded harmonic
functions by Proposition 2.5.

Example 2.9. At this point one might wonder why we insist on the convergence to
the boundary values in terms of truncated cones. Actually one may define the
convergence in terms of rays, i.e., the radial limit. But then this violates the
asymptotic maximum principle as the following example shows: Let M be the usual
upper half-plane of C equipped with the Poincaré metric. Fix a point p = (0,1).
Geodesic rays from /? are circles through p meeting with the x axis perpendicularly
or the vertical line through (0,1). Let u(x, y) — exsin y, then the limsup of the
radial limit through each ray is at most 1, but u can be as big as we wish. Or let
v(x, y) — xy, then the radial limits are all zero but v > 0 in M. Clearly u and v are
harmonic in M. The last example v(x, y) — xy is due to T. Wolff. Fatou's theorem
says that every bounded harmonic function on the open disk has a radial limit in
almost every direction, but it may not have boundary values in the usual sense. This
also shows that the radial limits do not reflect the overall behavior very well.

3. Rotationally symmetric manifolds. Liouville's theorem for harmonic functions in
R" tells us that the asymptotic Dirichlet problem is not solvable for R". Furthermore
from the recent result of Greene and Wu [GW2], if the curvature stays "close" to
zero, then the asymptotic Dirichlet problem cannot be solved, since M is again
isometric to R" when n s= 3. On the other hand Theorem 0.1 suggests that the
asymptotic Dirichlet problem may be solvable under the curvature decay condition
of Theorem 0.1(A). The purpose of this section is to show that this is the case under
the additional assumption of rotational symmetry. One should note the sharpness of
the curvature conditions distinguishing the two cases of Theorem 0.1.

Definition 3.1. Let M be a manifold with a pole /?. M is called rotationally
symmetric at p, if every linear isometry </>: M -» M is realized as the differential of an
isometry $: M -» M, i.e., $(/?) — p and $*(/?) = <f>. In other words the isotropy
subgroup at p of the isometry group of M is O(n). Greene and Wu [GW1, p. 24] call
this manifold a model.

Throughout this section M is assumed to be a Riemannian manifold with a fixed
pole/?, rotationally symmetric at/?, with dim M = n.

Definition 3.2. Let q be a point in M, p ¥= q. The two-dimensional subspace ti of
Mq is called a radial plane, if m is tangent to the geodesic ypq joining p and q. The
radial curvature is the restriction of the sectional curvature to radial planes.

Since M is rotationally symmetric at/?, it is easy to see that the Riemannian metric
ds2 on M — {0} can be written as ds2 = dr2 + f(r)2d&2 in terms of geodesic polar
coordinates, where r is the distance function from /?, and 0 and d@2 are the local
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coordinates and the metric of the standard sphere S"~x. Throughout this section r
always denotes the geodesic distance function from/?.

In view of §2 all we have to do to solve the Dirichlet problem is to construct a
barrier at fixed v E Sp at any angle. From now on v E Sp is held fixed. Define the
angle function 6 w.r.t. y,, to be

*(i)=^U,(o),y;(o))
for all q E M. The value of 6 is taken to be 0 < 6 < it. Notice that it is C00 on
M - {q\q = Y„(0» _oo < í < oo}. Furthermore, cosf? is C°° on M — {/?}, since in
terms of normal coordinates xx,...,x" atp,

cos 0 = -,
i(xx)2+---+(x»f

where the positive xx coordinate axis is the geodesic ray yv(t). Let 62,...,0n be the
spherical angles on S"~x such that S2 = 6. Then the polar coordinates and the
normal coordinates are related by the equations

xx — reos 62,

x2 = rsin02cos03,

x"~' = rsin$2 sin83 ■ ■ ■ cos 6n,

x" = rsin62 sin 03 ■ ■ • sin 6n.

By computing the metric <702 on the standard sphere in terms of spherical angles, we
get the Riemannian metric on M

ds2 = dr2 + f(rf [dd2 + (sin02¿03)2-r- ••• + (sin02 • • • sin0B_, dOn)2}.

Proposition 3.3. Let M be a Riemannian manifold with a pole p. Suppose the
Riemannian metric in terms of geodesic polar coordinates at p is of the form

ds2 = dr2 + f(r, $2,.. .,dn)2{d62 + (sm02 d03 )2 + ■ ■ ■ + (sin02 ■ • • sin0„_, d6nf}.

Then

Acos6=   - (n-3)sm0— -^ - (n - 1) — cosö   onM-{p).

and

13/, 1

In particular if M is rotationally symmetric at /?, then A0 = (n — 2) cos f?//2 sinö,
where 6 ¥= 0, w and A cos 6 = — (n — 1) cos 6/f2 on M — {/?}.

(Note that we defined 02 = 6.)
Proof. Note that 6 is not differentiable where 8 = 0 or it. But since cos 6 is C00

on M — {/?}, A cos 0 computed where 6 =£■ 0, it can be extended to M — {/?}. We
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will use the formula Au — divgrad u. Pick the orthonormal frame Xx,...,Xn, such
that

1      3r'    2     / 302'""   "     /sin02---sin0„_,   30/

Now grad (9 = grad 02 = (l//2)3/302. Then

A0 = divgrad0 = 2 \Dx,j-2W2>X.

1     3
»\/2  302'*'/       \/2   302

1     3
,DXX    =0,

7), 13     13
(i//)a/B«, /2  9Ö2 ' / 302

1
£a

1     3       3
/2 \^/^|2 3ö2' 302

1     3   / 1     3      3   \
/2  302 \ f2 302 ' 302 /     /4 \ 3ö2 ' DWi o62 j

z±JLIJLjL\     ■      /_LjL_3_\=i
2/4 3Ö2 \ 302 ' 302 / '    Smce \ /2 302 ' 302 / -

1    3 1    3/
o /4 a«, -^ /3 a«. '2/"

1
%2  302<*'/ ï\-./m(/

/3  3ö2

7>a
1     3      3

1

(/sin02 ■ • ■ sin0,_,)

1

ZlKA. ±\ + ±(D      -LA
/3   30, \ 302 ' 30,. /     /2 \   3/39' 302 ' 30,

D> 3      3
2  \ "3/M,  9Ö2 '  30,-

13/3      3

/4(sin02---sin0,_,)

_1
/4(sin e2 • • • sin 0,_ i )2    2 aö2 \ 3*/ ' 30,

1 1    3

14'"4)

/4(sin02 •••sin0,_l)
2    2  30, (/sin02 • • • sin0,_,)

J_ _3/     J_ cos02
3  30,  '   /-2  sint/2

Thus we get

A/i - ^       i\   1    9/ ,  ,       -N   1   CQS0A0 = (n - 3) —- -~ + (n - 2) —• ^—r/3  30      v ' J2  sin0
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Hence
.,2Acos0= — sin0A0 — cos0|grad0|

1    3/
/3 30 V

-(«-3)sin0—^-(n-1) —cos0.       Q.E.D.
'J     Of/ r"'!

As mentioned earlier our job here is to construct a barrier at v E S . The function
cos 0 serves as a good candidate for the barrier, except that is is not subharmonic. To
compensate for this lack of subharmonicity without hurting the asymptotic boundary
behavior we can add a function g(r) of r which goes to zero as r -* oo. To prove this
it is necessary to estimate Ar under the given curvature assumption. Fortunately we
have a very simple expression of Ar in terms of/(r), namely Ar = (n — 1) f'(r)/f(r)
(cf. [GW1, p. 30]). Since M is rotationally symmetric at p, any radial plane at any
q E M can get mapped into any other radial plane by an isometry. Also given two
points qx and q2 with the same distance from/?, we can find an isometry $ such that
^(q\) — q2. Thus it is trivial that the radial curvature depends only on the distance r
from/?, i.e., we have the radial curvature function K(r). K(r) and/(r) are related by
the equation f"(r) + K(r)f(r) = 0, /(0) = 0 and /'(0) = 1. (See [GW1, p. 30] for
relevant discussions on this.)

Proposition 3.4. Suppose f: [a, oo) -» R is a positive strictly increasing function of r
satisfying the equation f"(r) + K(r)f(r) = 0, where K(r) < —A/r2logr, for some
A > 1 on [a, oo). Then for any B, 1 < B < A, there exists some r0 3= a such that for all
r>r0,

f(r)>r(logr)B,    ¿M >! + -*_.
Jy  '       v   6   '        f(r)      r      rlogr

To prove this proposition, we need the following lemma. Part (1) is due to Milnor
[Mi] and part (2) is the well-known Sturm comparison theorem.

Lemma 3.5. Let h and k be positive strictly increasing functions on [ a, oo).
(1) If h(a) < k(a), h'(a) < k'(a) and h"/h < k"/k on [a, oo), then h < k on

[a, oo).
(2) Ifh"/h < k"/k and h'(a)/h(a) < k'(a)/k(a), then h'(r)/h(r) *z k'(r)/k(r)

for all r E [a, oo).

Proof of Proposition 3.4. Our argument is based on that of Greene and Wu
[GW1, pp. 54-55]. Choose any Bx such that B < Bx < A. Define gx(r) = Cr(log r)B\
C is a constant to be determined later. After easy computations, we get

S" _      B
S\      r2logr

, + £-'logr

Since Bx < A, there exists some r, > a such that for all r > rx,

g\      r2logr f
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Choose C small enough so that g|(r,) </(r,) and g[(rx) <f'(rx), then by (1), we
have

(*) /(r)>g,(r) = Cr(logr)Bl

for all r > rx. Let us define g(r) — r(log r)B, then since B < Bx, it is obvious that for
r 3* r,

g" =      B
g       r2\ogr

Suppose that for all r > r,,

f'(r) <1   |      B     =g'(r)
f(r)      r      rlogr      g(r) '

then by integrating the above inequality from r, to r, then taking the exponential, we
get, for some constant C, > 0, f(r) < C,r(log r)B for all r> rx. But since B < Bx,
this is a contradiction to the inequality (*). Thus there must exist some r2 > r, such
that

f'(r2) ^ 1   |       B      =g'(r2)
f(r2) " r2      r2logr2       g(r2) '

Applying (2) of Lemma 3.5, we can then conclude that

f(r) " r      rlogr

for all r > r2. Now since 7?, > B, there exists some r0 > r2 such that Cr(log r)B| >
r(log r)s.

We are now ready to prove the main theorem of this section.

Theorem 3.6. Let M be a rotationally symmetric manifold with a pole p of dimension
n > 2. Suppose the radial curvature < —A/r2logr, for some A > 1, outside a
compact set. Then the asymptotic Dirichlet problem with respect to the pole p as posed
in Definition 2.3 is solvable, hence M possesses nonconstant bounded harmonic func-
tions.

Proof. All we have to to is to construct a barrier at v E S , then since v is
arbitrary we have a barrier at every w E S . Let us define ßx = cos 0 — (log r)~E — 1,
where e is a constant to be chosen later, which depends only on A. Now

-A(logr)-E = eOogrp-' -Ur - e(e + l)(logr)-e"2 \ - e(logrP"' \.

By Proposition 2.20 of [GW1, p. 30], we have

Ar = (n - l)f'(r)/f(r) >f'(r)/f(r).
Assume B and r0 are the same as in Proposition 3.4, then by combining the above
two inequalities and Proposition 3.4, we have

. ,,       .-«     e(B- e- 1)
-A(logr)     >-^-—L

2/1 \2 + er (logr)

1 + B-l            A f"-   <-< -—
^ogr r2logr       /
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for all r > r0. On the other hand, by Propositions 3.3 and 3.4, we have

„      -(n-l)cosfl      -(«-1)
Acos0 = —*-f-->—*-£

f r2(logr)

for all r > r0. Choose e such that 0 < e < B — 1. Then it is easy to see that there
exists some 7? > r0 such that A/?, > 0 at every point q such that d(p, q) > 7?. Let
ß, = {qEM\r(q)>2R and 6(q) < it/4} and ß2 = {qEM\r(q)>3R and 8(q)
< 77/6}. Let a = sup{jS,(í7)|<¡T G ß, — ß2}. It is easy to see that a < 0. Let us now
define ß in ß, such that ß(q) = max{a, ßx(q)} for all q G ß,. Clearly ß = a on the
open set ß, — ß2, and ß is subharmonic on ß,, since the maximum of two
subharmonic functions is again subharmonic. Because ß = a on ß, — ß2, ß extends
to a constant function on M — ß,. Obviously ß is again subharmonic on M. Hence ß
is the desired barrier at v with any angle 8 < it/'6.

We will give the following characterization of rotationally symmetric manifolds.
One is referred to [Ci2] for a more general result that allows M to be compact.

Theorem 3.7. Let M be a manifold with a fixed pole p with dim M — n > 3. Then
the following are equivalent.

(1) M is rotationally symmetric at p.
(2) The exponential image of any cone of opening angle < it/2 in M with any axis

v E M is convex.
(3) The exponential image of any linear subspace of M is totally geodesic.
(A) The radial curvature w.r.t. p depends only on the distance r from p.
(5) The Riemannian metric in terms of the geodesic polar coordinates is ds2 = dr2 +

f(r)2d@2 for some function f: [0, 00) -» R, where d&2 is the metric of the standard
sphere.

Remark 3.8. The convexity condition in Theorem 3.7 cannot be improved to total
convexity (recall that a set 5 is totally convex if for any qx,q2 E S, any geodesic y
joining qx and q2 lies entirely in S) as the following examples shows: Take S2 , the
upper hemisphere of the sphere, and Sx X [0, 00), half of the infinite cylinder.
Match their boundaries, and deform it so that they form a smooth manifold M
which is rotationally symmetric at the north pole of S+ . Take a maximal geodesic y
through the north pole, then y divides M into two components, {/, and U2. We may
assume Ux n cylinder = {(eie, r) \ 0 < 0 < it, r > 0} and U2 n cylinder = {(<?'", r) |
it < 2tt, r > 0}, where e'e E Sx. Let qx and q2 be points in Ux n cylinder such that
qx = (ein/3, 1) and q2 = (ei2"/3,1). Then y: [it/3,2it/3] - M such that y(0) =
(e'e, 1) is a minimizing geodesic in Ux. But y,: [2w/3,7w/3] -» M such that y,(0) =
(e'e, 1) is another geodesic joining qx and q2, but y, meets with U2.

Appendix to §3.

Proposition 3.9. Let M be a manifold with a fixed pole p. Assume that the
Riemannian metric restricted to every geodesic sphere is conformai to that of the
standard sphere, namely, ds2 is of the form

ds2 = dr2 + f(r, 02,... ,0„)2{¿02 + (sin02 d03)2 + ■■■ + (sin02 • • • sin0„_, d0„)2}.
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Assume also that the radial curvature outside some compact set < —A/r2logr, for
some A > 1. If dim M = 3, or \ df/d021< Cr log r, for some C > 0, then the asymp-
totic Dirichlet problem w.r.t. p is solvable. We denote 02 = 0.

Proof. The proof is almost the same as that of Theorem 3.6. First we can
certainly estimate Ar using the Laplacian comparison theorem [GW1, p. 26] by
comparing with the rotationally symmetric manifold. Now 3/302 is a Jacobi field
along any geodesic ray from p such that 13/3021 = /. Then using Proposition 3.4 it is
not hard to conclude that for any B, 1 < B < A, there exists some r0 > 0 such that
for all r > r0,f> r(log r)B and

/        , J 1 B     }      1 Bàr>(n- 1     - + -¡-    >- + -j-■{ r      r log r J       r      r log r

If n = 3, then A cos 0 = -2 cos 0//2 » -2/r2(log r)2B. If 13//3021< Cr log r, then
there exists some C, such that

Acosen-c\-—l-jB-zj+ .   l   2B\.
lr2(logr) r2(logr)    J

In either case the rest of the proof is verbatim the same as in Theorem 3.6.

4. Convex conic neighborhood condition. In this section we present a new ap-
proach to the construction of barrier which is conceptually very different from that
we constructed in §3. In §3 the key point is that A cos 0 is very well behaved under
the assumption of rotational symmetry. But once the rotational symmetry assump-
tion is dropped, the behavior of A cos 0 cannot be controlled by bounding the
sectional curvature. Here we will give a simple illustration. Let M be a 2-dimensional
Cartan-Hadamard manifold, then in terms of polar coordinates the Riemannian
metric ds2 = dr2 +f(r,6)2d02. The curvature K = -d2f/dr2/f, thus K depends
on the radial behavior of/. On the other hand grad 0 = 3//230, thus by simple
computations similar to those given in the proof of Proposition 3.3 it is easy to check
that A0 = div grad 0 = -(l//3)3//30. Thus A cos 0 = sin 0(l//3)3//30 -
(l//2)cos0. Since the curvature depends only on the radial behavior of/, we can
perturb / in the angular direction to make |3//30| arbitrarily large while the
curvature of the perturbed metric remains as close as we wish to that of the original
metric. Going back to the general case, if we take a C2 function ß on Sp and extend
it to M — {/?} and try to check if ß is subharmonic we encounter a similar difficulty.
The whole point is that angular behavior cannot be controlled by bounding the
sectional curvature.

Our construction of the barrier is based on the idea of the barrier with angle
which does not depend sharply on the angular behavior. We feel that one of our
main contributions lies in reducing the question on the second derivatives of a
function depending on angles to the convexity question. This kind of idea will be
fully exploited in §5. Let us first record two basic facts concerning convex sets,
Theorem 1.1 and Theorem 4.2. Both results are more or less known to many people.
It should be noted that S. Alexander [Ax] proved Theorem 4.1. Theorems 4.1 and 4.2
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could be sharpened in terms of focal points and cut loci, but we will present them in
a simpler form which we need.

Theorem 4.1. Suppose M be a Cartan-Hadamard manifold. Let ß be a connected
open set of M with C2 boundary S = 3ß. Let N be the unit outward normal vector field
on S. Then ß C M is convex if and only if ( Bxx, N ) < 0 for any vector X tangent to
S, where B is the second fundamental form of S given by BXY~ {DXY, N)N.

Proof. Suppose ß is convex. Let p E S, and let X E Mp be a unit vector tangent
to S. Choose normal coordinates xx,... ,x" at /? such that 3/3x' = N and 3/3x2 = X
at /?. Let C(t) be the geodesic in S in terms of the induced metric on S such that
C(0) = /? and C'(0) = X. We claim xx < 0 on S. Suppose there is a point q E S such
that xx(q) > 0, then (ypq(0), N)> 0. Let a(w) be a geodesic in M such that
a(0)=p and a'(0) = N. Let l-d(p,q). We can assume y„(') í Ü for all t,
0 < t < I, since (y¡,q(0), N)> 0. Then for sufficiently small w, the geodesic ray
emanating from q to a(w) must meet with S at some point a beyond a(w). For
otherwise by letting w -» 0 it is easy to see that ypq is tangent to S at /? which
contradicts the fact (ypq(0), N)> 0. Then since a and q both lie in the convex set ß,
a(w) E ß which is absurd. Thus xx < 0 on 5. Therefore we have xx(C(t)) < 0 and
jc'(C(0)) = 0 which imply that (d2/dt2)xx(C(t)) |,=0 < 0. So the Hessian
D2xx(X, X) = (d2/dt2)xx(C(t)) - (DxX,gradxx)< ~(BXX, N) at p. On the
other hand, let ß(t) be the geodesic in M such that ß(0) — p and ß'(0) = X, then
since all the Christoffel symbols vanish at q, D2xx(X, X) = 32x'/(3x2)2 = 0 at q.
Thus we proved (Bxx, N)<0. Conversely assume (Bxx, N>< 0, then R. Bishop
[B] proved that ß is locally convex, i.e., for any point q E ß, there exists a small ball
Br(q) such that ß n Br(q) is convex. Let us show that this implies ß is convex. Let x
and y be arbitrary points in ß. Choose some /? G ß and 7? large enough so that
R > max{d(p, x), d(p, y)}. Then by the continuity argument there exists some r0
such that Br ( q ) n ß is convex for any q Gß CiBR(p). Let F be the set of piecewise
smooth curves joining x and y lying entirely in ß D BR( p ). Let / be the infimum of
the length of all such curves. Let {y„: [0, /] -> M) be a sequence of curves in F such
that limn^xL(yn) = I. Take a partition of [0, /], 0 = r0 < r, < • • • < tk = / such
that d(yn(t¡), y„(ti+l)) < r0/2 for all large n and all i = 0,1,.. .,k. Replace each
Yftb.'+il w'1^ me ëe°desic segment joining y„(i,) and y„(i,+1), then it lies still in ß
(~)BR(p) by the local convexity. Let us still call these broken geodesies {y„}. It is
clear that limn_xL(yn) — I. Since ß C\BR(p) is compact, we can extract a subse-
quence of {y„}, which we still call {y„}, such that y„(t¡) -» q¡ E ß CiBR(p) for all
i = \,2,...,k— 1. Then y„ converges to the broken geodesic y0 joining x and y with
possible breaks qx,...,qk_x. If some qi is a break, then choose points ax = yn(tt — e)
and a2 — y„(i, + e) for sufficiently small £. Then we can shorten y0 by replacing
Yi l[, -e,t +e] w'tn me geodesic segment joining a, and a2, which clearly lies in ß by
the local convexity. This is a contradiction. Thus y0 is a smooth geodesic segment.
Since M is a Cartan-Hadamard manifold, geodesies are unique. Thus the proof is
complete.
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Theorem 4.2. Let M, ß, S and N be as in Theorem 4.1. Define the positive normal
bundle N+ S — {aN\a > 0} of S. Then exp: N+ S -* M — ß is a diffeomorphism.

Proof. Notice that exp: N+ S -» M - ß is 1-1. If not, then there exist q E M - ß
and x, y G S, x ¥= y, such that the geodesies yqx and yqy meet with S perpendicu-
larly. Since ß is convex yx y lies in ß, thus the geodesic triangle formed by x, y and q
has the interior angle sum > it, which is a contradiction. It remains to show that
there are no focal points of 5. Suppose not, then there exist q E M — ß and p E S
and a Jacobi field J along ypq such that J is perpendicular to y'pq(t) and / = 0 at q.
Let I — d(p,q). Then by the usual argument which shows that geodesies stop
minimizing beyond first conjugate point, we can obtain a geodesic from some point
x E S to y (/ + e) of length < / + e for sufficiently small e > 0. But obviously
d(S, y  (I + e)) — I + e. Thus the proof is complete.

Theorem 4.3. Let M be an n-dimensional Cartan-Hadamard manifold with the
sectional curvature < — 1. Let ß, 5 and N be the same as in Theorem 4.1. By Theorem
4.2 we can define the distance function s from S on M — ß. If S is C00, then s is also
C00, and As>(n- 1) tanh s.

Proof. It is easy to see that 5 is C°° if S is C°° by using Theorem 4.2. Let q be a
point in M — D, and let b — d(q, S). Let /? be a point in S with d(p, q) — b. Also
let y: [0, b] -» M be the unit speed geodesic such that y(0) = /? and y(b) = q. Notice
that y'(0) is perpendicular to S at /?. Let Xx(t),.. .,Xn(t) be an O.N. frame parallel
along y, and Xn(t) = T(t) = y'(t). Let c be the geodesic starting from q with
c'(0) = Xx(b). Define yw to be the geodesic that realizes the distance from c(w) to S.
Let W(t) be the transversal Jacobi field along y obtained by varying this one
parameter family of geodesies. Clearly ( W, T ) = 0 along y and 1^(0) is tangent to S,
and W(b) = Xx(b). By the second variation formula

^-2L(yw)= {DWW,T%+ ¡h\W\2 - {R(T,W)T,W) dt
dw Jo

= -{Bww,T)up+ ¡b\W\2 - (R(T,W)T,W) dt

> fb\W\2 - (R(T,W)T,W) dt.

Let 77" be the simply connected space form of sectional curvature = — 1. Choose a
unit speed geodesic y in 77" of length b, and let Ex(t),.. .,En(t) be an O.N. frame
parallel along y, and y'(t) = E„(t). In M, let W(t) = 2?=/ h,(t)X,(t). Define
W(t) = l"=xhi(t)Et(t). Let / be a Jacobi field in 77" along y such that J(0) =
W(0) and J(b) = W(b). Clearly | W(t)\ = \ W(t)\ and | W(t)\=\ W'(t)\ ; thus
(R(T, W)T, W)< (R(E„, W)E„, W) where 7? is the curvature tensor of M or H"
understood in appropriate context. We get

¡b\W\2 - (R(T,W)T,W) dt> ¡b\W"\   - (R(E„,W)En,w) dt
Jo Jo

>fb\J'\2-(R(En,J)En,j)dt.
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The last inequality is true because of the minimizing property of Jacobi field [GKM,
p. 145]. Because of the symmetry of 77", J = 2"=,' J¡ where J¡ is a Jacobi field of the
form ./(f) =f(t)E¡(t) with /(0) = «,.(0) and f(b) = h¡(b). In particular hx(b) =
fx(b) — 1, and h¡(b) — 0, for 2 < i < n — 1. For convenience define the index form
I(X,Y) for the vector fields X, Y along y such that X, Y ± y ' by

1(X, Y) = fb(X', Y') - (R(En, X)E„, Y) dt.

Then

I(J,J)=   2   fb(Ji,Jj)-{R(En,Ji)En,JJ)dt.
í,7=l   "

But .7/ = /'£, and <*(£„, J¡)£n, Jj) = f¡fjRninJ = 0 for / */. Thus we obtain
n-l

i=i

^ tanh ¿?,   by the following Lemma 4.4,
= tanh5,    since 5 = b at <?.

Repeating this argument w.r.t. X2,. ..,X„_X, we obtain A5 > (n — l)tan 5, since the
second derivative of 5 in the direction of Xn is zero.

Lemma 4.4. Let y be a geodesic in 77" with length b. Suppose J is a Jacobi field along
y with |7(¿?)|= 1 and (/, y)= 0 and J = fE for some function f: [0, b] -* R, where E
is a parallel vector field along y. Let T = y. Then

fb\J\2 - (R(T,J)T,J) dt> tanh b.

Proof. / satisfies the equation /" -/= 0 with the condition f(b) = 1 and
/(0) = u for some u. Thus f(t) = cx cosh t + c2sirúit where c, = u and c2 —
(1 — «cosh¿3)/sinh ¿3.

Now

fb\J\2-(R(T,J)T,j)dt=fb\f'\2+\f\2dt.

Computing/' and/, we have
,2 . , „2

So

Now

c, +c2

l/'l   +1/1   =[<■? + c|]cosh2? + 2c,c2sinh2i

("iff+\f\2 dt = [c2 + c¡]

cosh ¿3 \2

sinh2¿3 , .       ,2
—r-h 2c,c2(sinh o) .

2       2
sinhè

— cosh b
sinh b + u

+ u

1
sinh ib '

— 2 cosh ¿3

(sinh ¿3 )
+

(sinh 6) 2 >
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Thus
fb. „.2 , . ,.2 ,      cosh/?   , 2 cosh è
/   /'    + /   dt =    ■  ,   ,u2 -   .  ,   ,u+    .,,J0 sinh b sinh ¿3 sinh b

cosh ¿3
sinh b (■

+ i
cosh e/       (cosh/,)2

2s tanh /?,    for any m.

Hence this completes the proof since the above inequality holds for any initial value
"=/(0).

We will first prove that the asymptotic Dirichlet problem is solvable if M is a
Cartan-Hadamard manifold of dimension 2. Even though this theorem is a conse-
quence of Theorem 4.7, we will present Theorem 4.5 first for the clarity of
exposition. Also this kind of barrier construction is the key idea of §5.

Theorem 4.5. Let M be a two-dimensional Cartan-Hadamard manifold with sec-
tional curvature KM < — c2, for some c > 0. Then the asymptotic Dirichlet problem is
solvable.

Proof. By multiplying the metric tensor with a suitable constant, we may assume
KM < — 1. Fix a pole /? G M. As mentioned earlier we have only to construct a
barrier at any v E Sp with any sufficiently small angle 8 > 0. Thus let us fix v E Sp
and small 8, 0 < 8 < it/4. Let w, and w2 E Sp be such that -$p(v, wx) — •$ (u, w2)
= 8. Notice any maximal geodesic y of M divides M into two components each of
which is convex. Let D be one side of y, and let 5 be a function defined on D which
is the distance function from y. We claim A tanh 5/2 s* 0, on D. For,

,   5      1 1 .1     sinh 5/2
A tanh - = ■=■ -r A5 - T-—-

2      2  (cosh 5/2) 2  (cosh 5/2)

1

2(cosh 5/2)
tanh 5 — tanh — by Theorem 4.3,

>0.
Let ß be the sector formed by two geodesic rays yw and yw . Let sx be the distance
function from yw defined on ß. Similarly define s2 to be the distance function from
yw defined also on ß. We showed that /?, = tanh(5,/2) + tanh(52/2) — 2 is sub-
harmonic on ß. Notice that ßx -» 2 as q -» yw(oo) for any w E Sp such that
<)¡ (v, w) < 8, since 5, -» 00 along any ray yH. with ^(u, w) < 8. Define ß, and ß2
as follows.

ß, = {qEÜ\d(p,q)> I, sx(q)>\ and s2(q)> 1},

Q2={qEQ\d(p,q)> 2, sx(q) > 2 and s2(q) ^ 2).

Let ß3 = ß, — ß2. Let t/ = sup{ßx(q) | q E ß3}. Clearly q E ß,, then it is clear that
ß = 17 on the open set ß3. Thus we can extend ß to the whole M — ß2 as a constant
function. Then ß is the desired barrier at v with angle 8. Since v and 8 are arbitrary,
we can solve the asymptotic Dirichlet problem by Theorem 2.7.
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To generalize this construction to the higher dimension we need the following
definition.

Definition 4.6. Let M be a Cartan-Hadamard manifold. We say M satisfies the
convex conic neighborhood condition at x G M(oo) if for any y E M(oo), y =£ x, there
exist Vx and Vy C M such that Vx and V are disjoint open sets of M in terms of the
cone topology and Vx n M is convex with C2 boundary. If this condition is satisfied
for all x E M(cc), we say M satisfies the convex conic neighborhood condition.

Theorem 4.7. Let M be an n-dimensional Cartan-Hadamard manifold with sectional
curvature < —c2, for some constant c > 0. Suppose, furthermore, M satisfies the
convex conic neighborhood condition. Then the asymptotic Dirichlet problem is solva-
ble.

Proof. As usual we could assume c — 1. To prove the theorem we have only to
construct a barrier at v with angle 8 for any v E Sp and small 8 > 0. In what follows
p, v E Sp and 8 > 0 are arbitrarily chosen, but fixed. Define S(v, 8) = {w E Sp\
~$p(v, w) = 8). For each w E S(v, 8), apply the convex conic neighborhood condi-
tion to y„,(oo) and y„(oo) to obtain disjoint Vw and Ow such that Vw is an open
neighborhood of yw(oo) and Ow an open neighborhood of y^oo) in the cone
topology, and Vw n M is convex with C2 boundary. Let Uw = {z E Sp\yz(oo) G Vw),
then the set {Uw}wtES(v S) is an open covering of the compact set S(v, 8) C Sp. Thus
there exist finite wx,...,wk E S(v, 8) such that [Uw) covers S(v, 8). We could also
assume none of Vw contains any Vw for / =£j. Let

* k

Q = M- U Vw = fi (M- Vw).
i=i i=i

Notice that the distance function s¡ defined on M — Vw from 3(A7 — Vw) is C2 and
it is easy to check A tanh s,/2 > 0 using Theorems 4.2 and 4.3 as before. The
function

* s
ßx = 2 tanh -é-k

i=i ¿
is defined on ß and is subharmonic. Let Vv = D*=, Ow. It is clear ßx -* 0 as q -» x,
for any x E Vv n M(oo). Since each Vw contains a truncated cone, we can take
sufficiently large R such that, for any q E ß and d(p, q) 3* R, •^p(y'pq(0), v) < 8.
Define ß, and ß2.

ß, - {q E íl\d(p,q) > 2R ands¡(q) >2,îori,...,k},

ß2= {q G Q\d(p,q) > R ands¡(q) >l,fori= l,...,7c}.

Then ß3 = ß, — ß2 is an open set of M and the proof now proceeds exactly as in the
proof of Theorem 4.5.

Remark 4.8. If n = 2, then M satisfies the convex conic neighborhood condition
automatically, thus Theorem 4.5 follows from Theorem 4.7. If M is rotationally
symmetric, then by Theorem 3.7 it also satisfies the convex cone neighborhood
condition. Thus Theorem 4.7 can be regarded as a generalization of Theorem 3.6,
even though the curvature assumption here is stronger.
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Remark 4.9. Recently D. Sullivan [S] showed that the asymptotic Dirichlet
problem is solvable if the sectional curvature is pinched between two negative
constants. His method is based on the probability theory. M. Anderson [An] proved
that the convex conic neighborhood condition is satisfied if the sectional curvature is
pinched between two negative constants.

5. Extension to nonsimply connected manifolds. In this section we will extend the
asymptotic Dirichlet problem to certain classes of nonsimply connnected manifolds.
We will be, however, mostly concerned with surfaces, because the special property of
dimension 2 makes it possible to construct barriers by naturally adopting the ideas
of §4, even though the problem could be formulated just as easily in higher
dimensions.

Throughout this section, M denotes a two-dimensional complete Riemannian
manifold. (In short, a complete surface.) We denote the Gaussian curvature function
by KM. M is assumed to be noncompact and finitely connected which means by
definition that the fundamental group of M is finitely generated. Topologically, M is
a compact surface with finitely many points removed. Since M is complete, a
sufficiently small neighborhood of each puncture could be visualized as an infinite
tube, which we call an end. More precisely, we introduce

Definition 5.1. An end of M is a function e that assigns to each compact subset K
oî M a connected component e(7i ) of M — K such that e(K) D e(L) if K C L. A
curve a: [0, oo) -* M is said to converge to an end e if for any compact K C M, e(K )
contains a terminal segment of a.

Let 77 be the universal covering manifold of M, then it is well known that M is
isometric to 77/7) for some subgroup D of the isometry group of 77 such that D is
isomorphic to itx(M) and D acts on 77 properly discontinuously with no fixed points.
We will describe the geometry of ends following Eberlein [El and E2]. It is easy to
see that every isometry <$> of 77 extends to 77 as a homeomorphism w.r.t. the cone
topology. Let D be as above.

Definition 5.2. The limit set L(D) is the set of accumulation points in 77(oo) of
an orbit D(p) of some point p E 77. Eberlein [El, p. 12] showed that L(D) does not
depend on the choice of/?. The set of ordinary points is defined to be 0(D) = 77(oo)
- L(D).

Definition 5.3. An isometry <i> of 77 is called parabolic if it has exactly one fixed
point in 77(oo). A geodesic y in M is called parabolic if for some lift y of y to 77 the
point y(oo) G 77(oo) is fixed by a parabolic isometry in D. A geodesic y is said to be
expanding if for any lift y of y to 77, y(oo) G 0(D). An end e is called a parabolic end
(resp. expanding end) if there exists a parabolic (resp. expanding) geodesic con-
verging to e.

The following theorem is taken from Eberlein [El, pp. 56 and 92].

Theorem 5.4. Let M = 77/7) be a noncompact, finitely connected, complete surface
withKM< -c2<0. Then:

(1) All ends are either expanding or parabolic.
(2) A parabolic end has a neighborhood with finite total curvature.
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(3) Assume that \L(D)\> 2 and M is not topologically a Moebius band, then each
expanding end has a closed neighborhood U with geodesic coordinates s, 8 where s > 0
and 0 G R/2it so that the metric is of the form ds2 + g(s,0)2 dd2 where g is a Cx
function. The s parameter curve y8: [0, oo) -» M with fixed 0 is a minimizing geodesic
ray, and the curve c0: 0 h>(0, 0) is a simple closed periodic geodesic, which we call the
separating geodesic of U. Let Ae be the geodesic distance function from the ray ye, then
lim^o/l^Yg (5)) = 00 for 0, ^ 02 mod2fl-.

In fact, part (3) of Theorem 5.4 is not surprising. We will give a heuristic argument
here. To avoid technicalities let us assume that M is topologically a nonsimply
connected compact surface minus one puncture. Take a closed curve C that cuts out
a neighborhood of the puncture. Suppose that the end corresponding to the puncture
is "expanding," then obviously the infimum of the arc lengths of all curves freely
homotopic to C must be greater than zero. By a standard argument we can take a
curve y in the same free homotopy class as C such that y realizes the infimum length,
so y must be a closed geodesic. Then cut out a neighborhood of the puncture with y,
and call this neighborhood U. U is a complete surface with compact totally geodesic
boundary y. Since KM < — c2 < 0, it is not hard to see that exp: V+ -* U is a
diffeomorphism where V+ is the set of vectors of the normal bundle of y pointing
toward U. All proofs should follow easily from the standard Jacobi field arguments.

The above theorem shows that an expanding end behaves as its name suggests.
Parabolic ends are in a sense shrinking. The following version due to Finn [F,
Theorem 17] is most suitable for our purpose.

Theorem 5.5. Let M be a complete surface with an end e. Let U be a neighborhood
of e such that KM < 0 in U and the total curvature in U is finite. Then the complex
structure of U that comes from isothermal coordinates is equivalent to that of the
punctured unit disk in C.

Definition 5.6. Let M be a complete surface. An end e is called a standard
expanding end if e has a neighborhood U such that KM < — c2 in U for some c > 0,
and the conditions on U in part (3) of Theorem 5.4 are satisfied. Thus in our
notation the standard expanding end denotes the specific neighborhood U which is
cut out by the separating geodesic. An end e is called a standard shrinking end if e
has a neighborhood U such that the complex structure of U that comes from
isothermal coordinates is equivalent to that of the punctured unit disk in C. Let u be
a (sub)harmonic function defined on a neighborhood U of a standard shrinking end
e. We say u extends to the puncture of e as a (sub)harmonic function if there exists a
(sub)harmonic function t? defined on the unit disk D such that v = u on D — {0}
whereas U is biholomorphically identified with D — {0}.

There are numerous examples of complete surfaces with finitely many standard
ends. One way of producing such an example is by attaching ends [E2]: Let
[ —2, 00) X S1 be the Riemannian manifold with coordinates 5^—2 and 0 G R/27T
with metric ds2 + (cosh s)2 dO2. Then [0, 00) X Sx is obviously a standard expand-
ing end. Let M be any complete surface. Take away a small disk from M and attach
[ — 2, 00) X Sx to the hole. One can then define a new Riemannian metric on M with
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the above end attached without changing the Riemannian metric on [ — 1, oo) X S]
by the usual partition of unity argument. One can similarly attach a standard
shrinking end. Our Dirichlet problem is defined on standard expanding ends,
whereas we have to exercise a little bit of caution on standard shrinking ends.

Definition 5.7. Let U be a standard expanding end which is diffeomorphic to
[0, oo) X Sx. We will use the notations in Theorem 5.4. Let 8 > 0 and r > 0. Fix a
point p on the separating geodesic of U. Define the truncated sector K(p, 8, r) = {q
E U\\8(q) — 6(p)\< 8 and s(q) > r). Throughout this section y denotes the s
parameter geodesic ray from /?. Thus yp meets with the separating geodesic per-
pendicularly. Let « be a real valued function defined on U. We say u converges to a
number A as q -» y^oo), if given £ > 0, there exist some 8 > 0 and r > 0 such that
\u(q) — A |< e for all q E K(p,8, r). We define lim sup and liminf similarly in
terms of truncated sectors.

Definition 5.8. Let M be a finitely connected, complete surface with k standard
expanding ends, k > 1. Let C,,..., Ck be the separating geodesies of those ends. We
also assume that all ends are either standard expanding or standard shrinking. Let
<¡>¡: C, -» R be continuous functions for all i' — l,...,k. Then the asymptotic Dirichlet
problem on standard expanding ends is to find a harmonic function w on M such that
u extends to the puncture of every standard shrinking end and for any C, and any
point/? G C,

lim    u(q)=<¡>i(p)
?—Yp(oo)

in the sense of Definition 5.7.
The proof of the solution of the above problem is very similar to that given before.

Most crucial is the following version of asymptotic maximum principle.

Proposition 5.9. We will use the same notation as in Definition 5.8.
(1) Suppose f: M -» R /5 a subharmonic function such that u extends to the puncture

of every standard shrinking end as a subharmonic function and lim sup f(q) =£ 0 as
q -* yp(oo) for any C, and any point p E C¡. Then / *s 0 on M.

(2) Let f (resp. g) be a subharmonic (resp. superharmonic) function on M which
extends to the puncture of every standard shrinking end as a subharmonic (resp.
superharmonic) function. Suppose that for any C¡and any p E C,

lim sup f(q)< liminf g(q).
<¡r-Y,(oo) <?-Yp(oc)

Then / < g on M.

Proof. Let A be the supremum of / on M. Assume A > 0. Using the same idea as
in the proof of Proposition 2.5 we can find closed curves Cx,...,Ck which cut out
neighborhoods V¡ of standard expanding ends such that/</l1 < A in each V¡. Let
M — M— U*=1 V¡. Then M is a complete manifold with compact boundaries.
Suppose there exists a sequence {q¡) EM such that f(q¡) -* A as /' -> oo and q¡
converges to some standard shrinking end £. Take a neighborhood U of £ which is
biholomorphic to the punctured unit disk D — {0}. We can then consider w as a
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subharmonic function defined on D. The above assumption says that w(0) = A. Thus
by the usual maximum principle U = A on D. Cut away a neighborhood of e from
M by the closed curve which corresponds to the circle | z | = { under the biholomor-
phism of U to D — {0}. Also cut away a neighborhood of every other standard
shrinking end from M. Thus we obtain a domain D of M with compact closure. It is
clear that / has an interior maximum in D, thus / = A on D. But / < A, < A on each
C¡. This is a contradiction. Thus we can assume that there exists some B < A such
that each standard shrinking end has a neighborhood on which f<B. Then again
cut away all these neighborhoods from M to obtain a domain D of M with compact
closure. Clearly / attains a maximum A at an interior point of D, and /<
max(7?, Ax) < A on 37J, which is again a contradiction. Thus it is easy to conclude
that A < 0. Applying (1) to the subharmonic function / — g, we obtain (2) im-
mediately.

Theorem 5.10. Let M be a finitely connected, complete surface with k standard
expanding ends, k > 1. Assume also that all ends are either standard expanding or
standard shrinking. Then the asymptotic Dirichlet problem posed in Definition 5.8 is
solvable, hence M possesses many nonconstant bounded harmonic functions.

Proof. The proof is very similar to what was done before, but there are some
subtle points because of the presence of the shrinking ends. First define F = {/: M
-> RI / is a subharmonic function which extends to the puncture of every standard
shrinking end as a subharmonic function, and lim sup f(q) < <(?,(/?) as q -» Yp(oo) for
any C, and any /? G C¡). Notice that F is nonempty, because F contains functions
identical to sufficiently negative constants. Let u(q) = sup{f(q)\ii E F}, then
u: M -» R is obviously harmonic. To prove the convergence to the asymptotic
boundary values we need barriers defined as follows. Fix some C, and a point
p E C¡. A function B: M -» R is called a barrier at p with angle 8, ti B satisfies the
following conditions:

(1) B is a subharmonic function on M which extends to the puncture of every
standard shrinking end as a subharmonic function.

(2) B < 0 and lim B(q) = 0asq-* yp(oo).
(3) 3tj > 0 such that lim sup B(q) =£ — tj as q -» ya(oo), if a G C¡,j ¥= i, or a E C¡

and|0(a)-0(/?)|>5.
In view of Proposition 5.9 it is rather easy to see that the following version of

Theorem 2.7 is true: If, for any C¡, any/? G C, and any sufficiently small 8 > 0, there
exists a barrier at /? with angle 8, then the asymptotic Dirichlet problem of
Definition 5.8 is solvable. The proof of convergence to the asymptotic boundary
values on the standard expanding end is exactly the same as in the proof of
Proposition 5.9. It remains to check if u extends to the puncture of every standard
shrinking end as a harmonic function. But u is bounded above by the maximum m0
of <¡>¡ on C, for all * = \,...,k, since by Proposition 5.9 every/ G 7ms bounded above
by m0. u is obviously bounded below by the minimum of m, of <j>¡ on C, for all
/ = l,...,k. Then by the removable singularity theorem for bounded harmonic
functions (e.g., see [Ma, Corollary of Theorem 5.9]), u extends to the puncture.
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All we have to do is to construct a barrier. This procedure is the same as that of
Theorem 4.5. Fix some C, and/? G C¡. Also fix some sufficiently small 8 > 0. Let/?,
and p2 be the points of C, such that 10(p¡) — 6(p) |= 8 for i = 1,2. Let y , yp and
y be the usual 5-parameter geodesic rays from p,, and p2 respectively. Let ß be the
sector bounded by yp¡ and y   and the geodesic segment of C, from/?, to/?2.

Define t, to be the geodesic distance function from y defined on ß. Then as in the
proof of Theorem 4.5, ß = tanh t,/2 + tanh t2/2 — 2 is a subharmonic function on
ß. Letß, = {^Gfi|5(í¡f)> 1 andT,(tf)> 1 for/= l,2}andß2= {qEÜ\s(q)^2
and T¡(q) > 2 for /' = 1,2}. Then the rest of the proof is exactly the same as in the
proof of Theorem 4.5. Notice that ß extends outside ß, as a negative constant. Thus
it is trivial to check all three conditions of barrier.

Remark 5.11. In Definition 5.8 and the subsequent solution, we implicitly
assumed that C, 's are all distinct. But there is one exception, namely, a cylinder with
both ends expanding. For example R X Sx with coordinates s E R, 0 G R/2w.
Suppose it has a Riemannian metric ds2 + (cosh s)2 dO2, then obviously both ends
are expanding and the curve c0: 0, -» (0, 0) is the separating geodesic of both ends.
Thus assume M is topologically a cylinder with both ends expanding and the
geodesic c0 is the separating geodesic of both ends. Define Sx — {v E Mq\
(v, c'o(t))= 0 where c0(t) = q and for / > 0, yv(t) has positive 5 coordinates}. Let
S2 = {v\—v E S,}. The Dirichlet data should be given on both 5, and S2, so
Definition 5.8 should be modified as follows: Let <£,: S¡ -» R be continuous func-
tions for i = 1,2. Find a harmonic function u: M -» R such that hm u(q) — <¡>¡(v) as
q -» YtXoo) in the sense of Definition 5.7. Evidently Proposition 5.9 and Theorem
5.10 are vahd in this setting.

At this point, it should be noted that M is not assumed to be orientable. That is
why we have to work with the complex structure only in a neighborhood of standard
shrinking ends. In fact if M is orientable, then M can be regarded as a Riemann
surface, thereby making it possible to genuinely compactify all standard shrinking
ends. This point can be pushed further to treat nonorientable surfaces as suggested
by Professor H. Wu: Let M be a nonorientable surface with at least one standard
expanding end. Assume also that all ends are standard. Let it: M -» M be a double
cover, thus M is an orientable surface and each end of M corresponds to two ends in
M. Let a: M -» M be an involutive deck transformation. Then the Dirichlet data on
each standard expanding end give rise to the same data on corresponding ends in M.
M becomes a Riemann surface, and we compactify all standard shrinking ends to
form a new Riemann surface M*. Note that M as a Riemann surface is M* with
finitely many points removed. Then solve the asymptotic Dirichlet problem on each
standard expanding end of M* to obtain a harmonic function ü on M*. Let
u — j(ii + a*ü), then u is again a harmonic function on M which is invariant under
the involution a. Thus u can be considered as a function defined on M. It is clear
that u takes the correct boundary values given standard expanding ends.

One important aspect of classification theory of Riemann surfaces is the dichot-
omy of Riemann surfaces into two classes: ones that admit a nonconstant bounded
harmonic function, ones that do not. As is the usual case, there are many satisfactory
geometric conditions that guarantee the nonexistence of nonconstant bounded
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harmonic functions, whereas the existence results in geometric terms are rare. For
the purpose of comparison, we quote the theorem of Huber [H, Theorem 15].

Theorem 5.12. Let M be an open Riemann surface with complete Riemannian metric
such that fMK~ > —oo, where K~ = min(7CM,0). Then every bounded harmonic
function on M is constant.

Our result that complements Huber's is the following.

Theorem 5.13. Let M be a finite connected, complete surface (not necessarily
orientable) with Km < — c2, for some constant c > 0. Assume that M is not topologi-
cally a Moebius band. If ¡MKM — — oo, then M admits infinitely many nonconstant
bounded harmonic functions.

Proof. Since jMKM = -oo, M is noncompact. Let M = 77/7). If \L(D)\> 2,
then by Theorem 5.3 all expanding ends are standard expanding, and all parabolic
ends are standard shrinking using (2) of Theorem 4.3 and Theorem 5.5. Thus all
ends are either standard expanding or standard shrinking. Since the total curvature
is —oo, there must be at least one expanding end, thus the conditions of Theorem
5.10 are satisfied. Thus by choosing nontrivial Dirichlet data <j>¡, we can obtain
uncountably many nonconstant bounded harmonic functions. It remains to take
care of two cases, i.e., |L(7))|=0 or 1. Eberlein [El, p. 27] describes them as
follows: If L(D) is empty, then M = 77, i.e., Cartan-Hadamard manifold. If
\L(D)\= 1, then M is topologically a cylinder with one parabolic end and one
expanding end. In the case where M — H, we can certainly pose an asymptotic
Dirichlet problem w.r.t. a point, and solve it. So let M be topologically a cylinder
with one expanding end and one shrinking end. M has coordinates 5, 0 where s
parameter curves are minimizing geodesic which are mutually divergent as s -» oo.
We can take a neighborhood of the parabolic end, which is a totally convex set with
boundary curve c: 0 -» (0, 0) [El, p. 95]. We can then pose an asymptotic Dirichlet
problem on the expanding end using c instead of separating geodesies. Proofs work
exactly the same way as before.

Corollary 5.14. Let M be the same as in Theorem 5.10. Assume also that M is
orientable, thus M is a Riemann surface. Then M possesses infinitely many bounded
holomorphic functions.

Proof. Let u be a nonconstant bounded harmonic function. Fix a point p E M.
Define v: M -» R to be v(q) = fß * du, where the integral is taken over some path
from/? to q. Thus v is defined up to integral multiples of 27r. Define h — exp(u + iv),
then h is a well-defined holomorphic function, and is bounded since |/|= e".
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