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Abstract

The change in AUC (ΔAUC), the IDI, and NRI are commonly used measures of risk prediction 

model performance. Some authors have reported good validity of associated methods of estimating 

their standard errors (SE) and construction of confidence intervals, whereas others have questioned 

their performance. To address these issues we unite the ΔAUC, IDI, and three versions of the NRI 

under the umbrella of the U-statistics family. We rigorously show that the asymptotic behavior of 

ΔAUC, NRIs, and IDI fits the asymptotic distribution theory developed for U-statistics. We prove 

that the ΔAUC, NRIs, and IDI are asymptotically normal, unless they compare nested models 

under the null hypothesis. In the latter case, asymptotic normality and existing SE estimates cannot 

be applied to ΔAUC, NRIs, or IDI. In the former case SE formulas proposed in the literature are 

equivalent to SE formulas obtained from U-statistics theory if we ignore adjustment for estimated 

parameters. We use Sukhatme-Randles-deWet condition to determine when adjustment for 

estimated parameters is necessary. We show that adjustment is not necessary for SEs of the ΔAUC 

and two versions of the NRI when added predictor variables are significant and normally 

distributed. The SEs of the IDI and three-category NRI should always be adjusted for estimated 

parameters. These results allow us to define when existing formulas for SE estimates can be used 

and when resampling methods such as the bootstrap should be used instead when comparing 

nested models. We also use the U-statistic theory to develop a new SE estimate of ΔAUC.
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AN INTRODUCTION AND A MOTIVATING EXAMPLE

In current medical research, risk prediction is viewed as an objective way to assess the risk 

of a patient to develop a disease and is often used by clinicians in making treatment 
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decisions. The Framingham [1] and ATP III models for 10-year risk of cardiovascular 

outcomes[2], and the Gail model for 5-year risk of breast cancer[3] are among the first 

widely used risk prediction models. Moreover, in recent years risk-prediction models have 

played an increasingly important role in medical decision making and have been directly 

incorporated into updates of existing treatment guidelines. For instance, the U.S. Preventive 

Services Task Force recently issued updated guidelines on aspirin use in prevention of 

cardiovascular events[4], based on the results of a microsimulation model, that used the 

ACC/AHA risk equations for 10-year CVD risk[5]. Therefore, the quality of the 

performance of a risk prediction model is often crucial for assigning the most beneficial 

treatment and making correct policy decisions.

Risk prediction models are often evaluated in terms of calibration and discrimination. 

Discrimination measures how well a given model separates events from non-events; 

calibration measures the closeness of the model-based and observed risks of the outcome. 

The area under the receiver operating characteristics curve (AUC of ROC)[6–7] is a widely 

used measure of discrimination. In 2008 several new intuitively-appealing measures of 

discrimination were introduced such as the Net Reclassification Index (NRI) and Integrated 

Discrimination Improvement (IDI)[8–9]. They rapidly gained popularity and at the time of 

writing this paper had been referenced more than 2800 times. Simple estimators for variance 

and asymptotic distributional behavior were proposed to allow construction of confidence 

intervals.

While some papers reported good validity of the methods for confidence intervals and 

variance estimators of ΔAUC, NRIs, and IDI[8, 10–11], others questioned their 

performance[10, 12–14]. To illustrate these conflicting views, we ran some simulations and 

summarize the results in Table 1. For two nested models with binary outcome and 

multivariate normal predictor variables, we compare observed and theoretical standard errors 

of ΔAUC, three types of NRIs (continuous (NRI>0), 2-category NRI at event rate threshold 

(NRI(r)) and 3-category NRI (3cNRI), and IDI. AUC is a measure of discrimination. It is 

equal to the probability that the risk of a randomly picked event is greater than for randomly 

picked non-event[6–7]. ΔAUC measures improvement in quality of discrimination between 

events and non-event by the new model relative to the old one[11]. NRI>0, another measure 

of discrimination, calculates the difference between fractions of correct and incorrect 

movements of predicted probabilities among events and adds to it a similar quantity 

calculated for non-events[9]. Categorical NRIs are similar to NRI>0 but consider only 

movements across categories. NRI(r) uses two categories defined by event rate 

threshold[15]. 3cNRI uses three categories defined by any thresholds[16]. IDI combines 

average change in probabilities among events and among non-events[8]. For comparison we 

included the regression coefficient (β) for the new predictor variable x2. The relative bias of 

standard error estimate is calculated as (theoretical se − obsercved se)
obsercved se 100%. Shaded areas in Table 

1 indicate scenarios in which the relative bias is 5% or more in our simulations, while white 

areas indicate when standard errors have very low bias (<5%). Asymptotic theory developed 

for three of the five statistics performed very well in most situations, while the bias of the 3-

category NRI is comparable to that of the standard error estimator of the Kaplan-Meier 
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survival probability (when sample size is small)[17], and the se estimator of the IDI has the 

strongest bias of the five statistics.

Confidence intervals for ΔAUC, NRI>0, categorical NRIs, and IDI proposed to date rely on 

asymptotic normality [8–9, 11, 18–19]. In Figure 1 we show an example in which the IDI is 

asymptotically normally distributed under the alternative hypothesis of meaningful effect 

(left panel) and right-skewed under the null hypothesis of no meaningful effect (right panel) 

[20].

This paper is a validity study of previously proposed asymptotic distribution results of 

ΔAUC, IDI and three types of NRIs (continuous (NRI>0), 2-category NRI at event rate 

threshold (NRI(r)) and 3-category NRI (3cNRI)[8–9, 11, 18–19] when comparing two 

nested models. Using U-statistics theory we explicitly specify conditions when asymptotic 

results are valid and when resampling methods such as the bootstrap should be used instead. 

These results help us disentangle several reports of the asymptotic distribution and 

performance of variance estimators of ΔAUC, IDI, and three types of the NRI. The paper is 

structured as follows: notation is introduced in Section 1; the main result is stated and 

proved in Section 2; in Section 3 we apply theoretical findings to the Framingham Heart 

Study Data; and the implications of these findings are discussed in Section 4.

1. NOTATION

Let D be an outcome of interest, with D=1 for events and D=0 for non-events. Our goal is to 

predict the event status using p predictor variables. Conditioning on the event status, 

predictor variables follow two (potentially different) distribution functions: x|D=0~F(․), y|
D=1~G(․). Assume that for each of N patients, their disease status D and vector of predictor 

variables are available. There are n0 non-events and n1 events. The prediction based on the 

full set of p predictor variables is to be compared with that based on a reduced number of 

predictor variables, p−1. We assume that the linear model is true and that one of the linear 

models for binary outcome is employed (logistic regression, linear discriminant analysis 

(LDA), etc). We use this model to estimate linear coefficients in order to combine multiple 

predictor variables into one metric, the risk score. Unless otherwise specified, we assume 

that the models are nested, so the new model adds k new predictors to the old model. The 

regression technique of choice produces coefficients estimates a ∗ ′ = (a1
∗, …, ap − k

∗ , 0, …, 0)

(reduced model) and a′ = (a1 …, ap) (full model). Corresponding risk scores are calculated 

as a′x and a*′x for non-events and a′y and a*′y for events, with the symbol * always 

denoting the reduced model. We sought to test whether the risk prediction model with p 
predictors performs better than the model with only the first p−k predictors. We will 

consider ΔAUC, three varieties of the NRI and the IDI as measures of model performance. 

They are often used in current medical research on risk prediction. Analysis of their 

performance, advantages and disadvantages is an active area of methodological research on 

risk prediction. Below we review standard formulas[8–9, 11] for ΔAUC, continuous NRI 

(NRI>0), 3cNRI, NRI(r), and IDI.
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ΔAUC

The Area under ROC curve (AUC) can be interpreted as the probability that the risk score of 

a randomly picked event is higher than a randomly picked non-event. The AUC is estimated 

by the Mann-Whitney statistic[6–7] - a non-parametric unbiased estimator, often referred to 

as the c-statistic[21–22] and can be written as: AUC = 1
n0n1

∑i = 1
n0 ∑ j = 1

n1 I[a′xi < a′y j], where 

I[․] is the indicator function.

The AUC for the reduced model is: AUC∗ = 1
n0n1

∑i = 1
n0 ∑ j = 1

n1 I[a ∗ ′xi < a ∗ ′y j]

Then ΔAUC is:

ΔAUC = 1
n0n1

∑
i = 1

n0
∑

j = 1

n1
I[a′xi < a′y j] − 1

n0n1
∑

i = 1

n0
∑

j = 1

n1
I[a ∗ ′xi < a ∗ ′y j]

ΔAUC is one of the most widely used measures of discrimination.

Continuous NRI (NRI>0)

NRI>0[9] is the difference of proportions of individuals with events and non-events whose 

predicted probabilities moved up:

NRI > 0 =
∑i = 1

n1 Sign[pnew ev − pold ev]
n1

−
∑i = 1

n0 Sign[pnew nonev − pold nonev]
n0

=

#events up
n1

− #nonevents up
n0

3-category NRI

3-category NRI[16] is very close to the original definition of categorical NRI[9] but takes 

into account the size of the jump from category to category (number of categories moved). It 

is defined as:

3cNRI = 1
n1

∑
i = 1

n1
# categories upi − # categories downi − 1

n0
∑

j = 1

n0
# categories up j − # categories down j

This definition of categorical NRI is preferable over its original 2008 version[8], due to 

several attractive properties[16], including the fact that 3cNRI=0 if marginal cells of the 

reclassification table stay the same for the two models. By using weights it treats jumps 

across one versus two categories differently, and the event rate has a limited impact on the 

magnitude of the 3cNRI. Therefore it successfully resolves several criticisms of the original 

definition of categorical NRI[23–24].
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NRI at the event rate (NRI(r))

In their 2016 paper, Pencina, Steyerberg and D’Agostino[15] investigate the properties of a 

two-category NRI with categories defined by the proportion of cases in the sample (r) and 

show that it has several advantages: like ΔAUC, it is invariant to the event rate and has 

intuitive interpretation as the proportion of correct reclassifications.

IDI

IDI[8] is defined as:

IDI =
∑i = 1

n1 pnew ev i − pold ev i
n1

−
∑i = 1

n0 [pnew nonev i − pold nonev i]
n0

IDI is related asymptotically to the rescaled Brier score and to the difference in 

discrimination slope[25]. We mentioned some criticisms of IDI above and below we address 

some of them.

Now we can formulate the following null hypotheses for the six statistics defined above:

H0
AUC: ΔAUC = 0   vs      Ha

AUC: ΔAUC ≠ 0

H0
NRI : NRI > 0 = 0   vs      Ha

NRI : NRI > 0 ≠ 0

H0
NRI :   NRI(r) = 0   vs      Ha

NRI :   NRI(r) ≠ 0 (1)

H0
3cNRI :3cNRI = 0   vs      Ha

3cNRI :3cNRI ≠ 0

H0
IDI :    IDI = 0      vs      Ha

IDI :    IDI ≠ 0

Pepe et al[26–27] showed that each of the five hypotheses in (1) are equivalent to testing the 

significance of the set of the new predictors in the new regression model (2).

H0: ap − k + 1, …, ap = 0 vs Ha: ap − k + 1, …, ap ≠ 0 (2)

Therefore when we consider data under the null we can without loss of generality assume 

that the null is formulated in terms of non-significance of the linear coefficient by the new 

predictor variable, that is the hypothesis in (2).
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2. MAIN RESULT

We formulate our main results as follows.

ΔAUC, NRI>0, NRI(r), 3cNRI and IDI:

STATEMENT 1. are generalized U statistics with estimated parameters.

STATEMENT 2. belong to non-degenerate subclass if and only if they compare any 
non-nested models or nested models under the alternative hypothesis in (2). As non-
degenerate U-statistics

a. They follow normal distribution asymptotically.

b. Available variance formulas are algebraically equal to the variance 
estimators provided by U-statistics theory if we ignore adjustment for 
estimated parameters.

c. Variance of ΔAUC, NRI>0, and NRI(r) does not need to be adjusted for 
estimated parameters if predictor variables are normally distributed.

d. Variance of IDI and 3-category NRI should always be adjusted for estimated 
parameters.

STATEMENT 3. ΔAUC, NRI>0, NRI(r), 3cNRI and IDI belong to the degenerate 
subclass if and only if they compare nested models under the null hypothesis in (2). 

As degenerate U-statistics they do not follow normal distribution and available 
variance estimators do not apply for them.

2.1 ΔAUC, NRI>0, NRI(R), 3CNRI AND IDI BELONG TO THE U-STATISTICS FAMILY

In Appendix A2 we prove Statement 1 showing that statistics considered in this paper 

belong to a U-statistics family[28]. Rigorous asymptotic distribution theory of U-statistics 

has been developed by Hoeffding[29], Lehman[30], Sukhatme[31] and others. The form of 

the U-statistics’ distribution depends on whether the U-statistics are degenerate. Non-

degenerate U-statistics are normally distributed and formulas for their standard errors are 

available. Degenerate U-statistics are distributed as an infinite sum of weighted Chi-square 

random variables and derivation of their standard error is challenging.

In Appendix A2 we show that ΔAUC, NRI>0, NRI(r), 3cNRI and IDI are degenerate if and 

only if they compare nested models under the null. In all other situations they belong to the 

non-degenerate class of U-statistics. Degeneracy and non-degeneracy conditions are listed in 

Table 2.

Degenerate and non-degenerate U-statistics form very different classes in terms of their 

asymptotic behavior. In the following sections we will consider these two situations 

separately.

2.2 NON-DEGENERATE CASE

ΔAUC, NRIs and IDI are non-degenerate if they evaluate the performance of two non-nested 

models or of nested models under the alternative. This is the most practically interesting 
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case because only in this situation we need to construct confidence intervals for ΔAUC, 

NRIs and IDI. Hoeffding[29] and Lehman[30] showed that non-degenerate U-statistics are 

asymptotically normally distributed. U-statistics theory also provides their variance 

formulas[28] but notes that variances should be adjusted for estimated parameters. 

Adjustment has been studied by Sukhatme[32], Randles[33] and de Wet[34] and is 

summarized in[28].

Available variance estimators are identical to U-statistics theory-based 
variance estimators if we ignore an adjustment for estimated parameters—In 

the Appendix we derived variances of ΔAUC, NRIs and IDI based on U-statistics theory, 

ignoring adjustment for estimated parameters and presented them in Table 3. The standard 

errors of NRI>0 and NRI(r) based on the U-statistics theory are exactly the same as the ones 

derived by Pencina et al in [10][11]. The standard error formula for ΔAUC is new. It is equal 

to the variance of the change in ranks. This representation is more intuitive but it assumes no 

tied ranks.

U-statistics theory adds one more layer to variance calculations, namely that when U-

statistic relies on estimated parameters, its variance in general should be adjusted for 

estimated parameters. In many cases ΔAUC, NRIs and IDI rely on estimated parameters 

(linear coefficients of regression models), their variances may need to be adjusted for 

estimated parameters or we need to show that such adjustment is not necessary. In the 

following section we prove that for some of the statistics under certain assumptions, 

adjustment for estimated parameters is unnecessary.

Variances of ΔAUC, NRI>0, and NRI(r) do not need to be adjusted for estimated 
parameters if predictor variables are normally distributed—Sometimes adjustment 

for estimated parameters can be avoided. Sukhatme[32], Randles[33] and de Wet[34] 

showed that adjustment for estimated parameters is unnecessary if and only if a certain 

condition is met[28]. Below we check this condition and show that under normality of 

predictor variables, standard error estimates of ΔAUC, continuous NRI and NRI(r) do not 

need to be adjusted for estimated parameters.

STATEMENT 2.C: If ΔAUC, NRI>0, and NRI(r) when comparing nested models are non-

degenerate (therefore according to Table 2 they are under the alternative) and if predictor 

variables are normally distributed, then standard errors of ΔAUC, continuous NRI and 

NRI(r) do not need to be adjusted for estimated parameters.

Proof: We restate here the condition for adjustment for estimated parameters:

Suhkatme-Randles-de Wet Condition:

Standard errors for a U-statistic with estimated parameters does not need to be 
adjusted for estimated parameters if and only if the derivative of the expected value of 
the U-statistic with respect to parameters is zero.

For example for ΔAUC this condition is written as ∂
∂a E[ΔAUC] = 0.
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In our assumptions predictors are normally distributed, therefore linear discriminant analysis 

(LDA) is the most efficient way to estimate regression coefficients[35]. Su and Liu[36] also 

showed that under these assumptions LDA coefficients maximize Mahalanobis distance[37] 

(M2) between risk scores of events and non-events. Therefore the gradient of Mahalanobis 

distance with respect to parameters is zero. For nested models ΔAUC is a function of the 

Mahalanobis distances (ΔAUC = Φ
Mp

2

2 − Φ
Mp − k

2

2 )[36], where p is the number of 

predictor variables in a model and Φ is the standard normal c.d.f. Hence the gradient of 

ΔAUC with respect to parameters is zero as well. Therefore the standard error of ΔAUC 

under the assumption of normality of predictor variables does not need to be adjusted for 

estimated parameters.

Similarly we can use a closed-form formula for NRI>0[38] for nested models: 

NRI > 0 = 4Φ
Mp

2 − Mp − k
2

2 − 2 to show that gradient of NRI>0 is also zero at the LDA 

coefficients. Therefore the standard error of NRI>0 also does not need to be adjusted for 

estimated parameters.

Pencina, Steyerberg and D’Agostino[15] showed that NRI(r) under normality assumptions 

when comparing nested models can be written as: NRI(r) = 2 · Φ
Mp

2

2 − Φ
Mp − k

2

2 . The 

same reasoning can be applied to NRI(r) to show that ∂
∂a NRI(r) = 0. Therefore NRI(r) does 

not need to be adjusted for estimated parameters under the assumptions of this statement.

q.e.d.

STATEMENT 2.D

Variances of IDI and 3-category NRI should always be adjusted for estimated parameters: 
Note that the IDI and 3cNRI also can be expressed in closed form under normality of 

predictor variables [16, 38] (please see the Appendix), but their closed form expression does 

not rely exclusively on the Mahalanobis distance. It also depends on the estimated rate of 

events r, which becomes one of the parameters. Under normality of predictor variables LDA 

solution maximizes Mahalanobis distance, and therefore the derivative of Mp
2 with respect to 

regression parameters is zero. However there is no such result for partial derivative of the 

closed form formulas of IDI and 3cNRI with respect to event rate. Derivatives of closed-

form formulas of 3cNRI and IDI with respect to event rate were calculated in the Appendix 

A4. Both derivatives are non-linear in r and both are in general non-zero. For example 

derivatives of 3cNRI and IDI are 2.02 and 1.04 correspondingly for event rate observed in 

FHS of 7.65%, when comparing models with Mahalanobis distances of 0.7 and 0.8 and 

using 5% and 7.5% cutoffs to calculate 3cNRI. Therefore the Sukhatme-Randles-deWet 

condition is not satisfied for IDI and 3cNRI, and standard errors of IDI and 3cNRI should be 

adjusted for estimated parameters.
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Our empirical results in Table 1 support the main theoretical results proven in this paper. 

Variances of ΔAUC, NRI>0, and NRI(r) calculated from unadjusted formulas have on 

average very small relative bias compared to those of the IDI and 3-category NRI whose 

variances must be adjusted for estimated parameters.

Also the top three rows of Table 1 are calculated for the degenerate case (when comparing 

two nested models under the null). All five statistics are degenerate and theoretical formulas 

for their variance estimator are not applicable: existing variance formulas have strong bias 

for all five statistics when comparing nested models under the null.

To illustrate further the main theoretical findings of this paper, we simulated a binary model 

with normally distributed predictor variables. In Figure 2 we plot histograms of ΔAUC, 

NRIs and IDI calculated for nested models under the alternative and overlay two normal 

distribution curves with empirical (dotted line) and theoretical (solid) variances. In the top 

row are ΔAUC, NRI>0, and NRI(r). They do not need to be adjusted for estimated 

parameters and the dotted and solid curves almost completely overlap. In the bottom row are 

IDI and 3cNRI. They require adjustment for estimated parameters, and the two curves do not 

overlap because the theoretical variance is an incorrect estimate of the actual variance of 

3cNRI and IDI.

Statement 2.C and 2.D for logistic regression and non-normal data—We showed 

in the proof of Statement2.C that by estimating parameters with LDA we ensured that 

Sukhatme-Randles-deWet condition holds true. What would happen if we had used logistic 

regression to estimate parameters instead of the LDA? To use theoretical variance formulas 

we need to show that adjustment for parameters estimated by logistic regression is not 

required. Therefore we need to satisfy the Sukhatme-Randles-deWet condition. Parameter 

estimates produced by logistic regression and the LDA are both consistent under assumption 

of normality[35]; therefore, when sample size is sufficiently large the two estimates are very 

close. In Table 1 we used logistic regression to estimate parameters for simulated normal 

data. Table 1 supports the theoretical findings of Statement 2.C and 2.D despite the use of 

logistic regression.

The proof of Statement 2.C and the discussion above rely on normality of predictor 

variables. An important question is how sensitive these results are to the normality 

assumption. In Section 3 we apply the results of this section to real-life non-normal data 

using logistic regression and discuss the implications.

2.3 DEGENERATE CASE

In the Appendix we show that when comparing nested models under the null ΔAUC, NRIs 

and IDI belong to a degenerate class of U-statistics. They are distributed as an infinite sum 

of weighted Chi-square distributions. Histograms in Figure 3 demonstrate why any test that 

assumes normality is invalid for ΔAUC and IDI.

Injecting random noise to remedy degeneracy—In previous sections we discussed 

problems induced by the degenerate state of ΔAUC, NRIs and IDI when they compare 

nested models under the null. Their asymptotic distribution and variance estimators become 
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practically intractable. In their non-degenerate state ΔAUC, NRIs and IDI follow a normal 

distribution asymptotically, and variance formulas are available. In this section we show how 

degeneracy is at the root of the problem. We will artificially move ΔAUC, NRIs and IDI 

away from degeneracy and show that their distribution functions shift to normal distribution. 

This will shed some light on other aspects of NRI behavior that we will discuss later in the 

section. In the Appendix the degeneracy condition is formulated in mathematical terms and 

it follows that the nested models under the null are the fundamental reason for the 

degeneracy of ΔAUC, NRI>0, IDI, and all categorical versions of the NRI. So let us consider 

two nested models under the null. ΔAUC, NRIs and IDI calculated for these two models will 

be in a degenerate state. To force them to move away from the degeneracy we need to violate 

the degeneracy condition: one way is to force the models away from the null, and an 

alternative way is to un-nest them. In practical situations we have no control over a model 

being under the null or under the alternative. However we can try to un-nest the two models 

by injecting random noise, i.e., add a weak predictor to the smaller model and another 

independent weak predictor of the same strength to the other model. Histograms of these 

statistics for the same models but with injected noise are in the right column of the Figure 4. 

Their distributions shift to asymptotic normality. Results for variance estimators hold in this 

example too: variance estimate of ΔAUC is still satisfactory and the variance of the IDI is 

underestimated by existing formulas. Our simulations indicate that de-degenerating these 

two U-statistics comes at the price of a substantial increase of variance and leads to a loss of 

power. However this exercise helps to explain why the distribution of NRI>0, NRI(r) and 

3cNRI appear more Gaussian for the degenerate state in our simulations (Figure 5). The IDI 

can be written as: IDI =
∑i = 1

n1 pnew ev − pold ev
n1

−
∑i = 1

n0 pnew nonev − pold nonev
n0

. The NRI>0 

uses the same definition as IDI but dichotomizes the change in predictive probability:

NRI > 0 =
∑i = 1

n1 Sign[pnew ev − pold ev]
n1

−
∑i = 1

n0 Sign[pnew nonev − pold nonev]
n0

Therefore we can view the NRI>0 as an IDI that adds to each summand a random component 

that complements it to the nearest of the values of 1 or −1. This random component operates 

as injected noise in the Figure 4. It adds enough noise so that NRI>0 transitions to non-

degeneracy and its histogram looks Gaussian, even though a predictor variable of interest 

(x2) does not improve the performance of the model (Figure 5). Note that NRI>0 remains 

biased. Its bias is studied in [39].

3. PRACTICAL EXAMPLE

We apply our results to Framingham Heart Study (FHS)[1, 40] data. Full information about 

this data set and the study including the enrollment criteria is reported in[40]. Briefly, 8365 

people free of cardiovascular disease at baseline examination were followed for 12 years. 

The outcome of interest was coronary heart disease (CHD), and 640 people developed CHD 

during followup (7.7%). Predictor variables in this example include age, total (TCL) and 

high-density lipoprotein (HDL) cholesterol, systolic (SBP) and diastolic blood pressure 
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(DBP), baseline diabetes status and current smoking. All continuous variables are log-

transformed. We use logistic regression to run the full model with all the predictors. We also 

ran a series of smaller nested models, which we obtained by omitting from the full model 

one of the predictor variables.

The bootstrap estimator of the standard error is consistent for a wide range of statistics under 

mild regularity conditions[41–43]. Therefore we can use the bootstrap estimate of the 

standard error of ΔAUC, NRI>0 and IDI as a proxy for the gold standard, i.e. as an estimator 

with established consistency. For this reason we define the relative bias of the formula-based 

standard error as the difference between the average of a formula-based and bootstrap-based 

variance estimates divided by the bootstrap-based variance estimate.

In this practical example all predictors are statistically significant; therefore according to 

results of this paper ΔAUC, NRI>0 and IDI are non-degenerate U-statistics, and according to 

Statement 2C we would expect low bias of the theoretical standard error formulas for 

ΔAUC, NRI>0 and NRI(r) and high bias for those that require adjustment for estimated 

parameters: 3-category NRI and IDI.

Results

Relative bias of the standard error was calculated for FHS data using bootstrap as described 

in the previous section. Results are presented in Table 4.

As we anticipate, the two statistics that require adjustment for estimated parameters (IDI and 

3cNRI) have a stable strong bias in Table 3. However contrary to our expectations, bias of 

the theoretical standard error estimates of the three statistics that should not require 

adjustment for estimated parameters (ΔAUC, NRI>0 and NRI(r)) varies greatly. For example 

the DeLong formula for standard error of ΔAUC often underestimates it by as much as 23% 

and the formula for NRI>0 by as much as 56%. Statement 2 is proved under assumption of 

normally distributed predictors and this result is consistent with empirical simulations in 

Table 1. But some of the simulations with real-life data in Table 4 still show substantial bias. 

To further explore this phenomenon, first, we check the stability of our results in Table 3. We 

replicate bootstrap analysis several times with the FHS data set but with different random 

seed. Relative bias is still present across replications. Second, we use the result obtained by 

Harrell et al[21] that is, that tests of c-index (a survival analysis version of AUC) have very 

low power. We hypothesize that ΔAUC, NRI>0 and NRI(r) experience similar loss of power. 

We observed in our simulations that transition to non-degeneracy is gradual (see Appendix 

Figure A1), so lack of power may be explained by degenerate behavior of the ΔAUC, NRIs, 

and IDI even for moderately strong predictor variables; therefore, we cannot use standard 

error formulas developed under the assumption of non-degeneracy. This reasoning implies 

that if we artificially inflate the strength of the added predictor variable, ΔAUC, NRI>0 and 

NRI(r) should move further away from the null and the relative bias of standard error 

estimates of ΔAUC, NRI>0 and NRI(r) will go down. Standard error estimates of 3-category 

NRI, and IDI have another problem: they require adjustment for estimated parameters. This 

problem cannot be solved by artificial inflation of effect size so we expect bias of their 

standard error estimates to stay strong. Table 5 shows the results of the bootstrap for the 

same data as in Table 4, but with artificially inflated effect sizes of added predictor variables.
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Since we have artificially forced predictor variables away from the null, results presented in 

Table 5 now support Statement 2. As expected, formula-based standard error estimates of 

ΔAUC, NRI>0 and NRI(r) have low bias and 3-category NRI and IDI have high bias because 

the latter group requires adjustment for estimated parameters.

In Figure 6 we illustrate the relationship between relative bias of formula-based standard 

error and effect size of the added predictor.

Results of this bootstrap analysis using real-life data suggest that Statement 2 is sensitive to 

the assumption of non-degeneracy. Statistical significance at the 0.05 level of added 

predictor variable is not sufficient to guarantee non-degeneracy and associations with 

stronger effect sizes are required for asymptotic formulas to become consistent. In our 

example when p-values of added predictor variables are weaker than 10−5, ΔAUC, NRI>0 

and NRI(r) are too close to degeneracy. Figure A1 in the Appendix illustrates very slow 

gradual transition away from degeneracy of ΔAUC as the added predictor variable gets 

stronger. I.e. the distribution of ΔAUC is still non-normal when the z-score of the added 

predictor variable is less than 4.0 (p-value≤6·10−5). Much stronger effect sizes are needed to 

achieve non-degeneracy. This observation explains why formula-based standard error 

estimators of NRI>0, NRI(r) and ΔAUC are biased in Table 4 when p-values of the added 

predictor variable are less than .05 but greater than 10−5.

Figure 6 illustrates that in FHS data as the added predictor variable gets stronger, bias of se 

estimates of ΔAUC, NRI>0, and NRI(r) decreases. With z-scores of beta coefficient ≥ 4.0 

relative bias of formula-based standard error estimates of NRI>0, NRI(r) falls below 15% 

while standard error of ΔAUC is still overestimated by the asymptotic formula and requires 

an even stronger predictor to lower its relative bias below 15%. When the z-score of the 

added predictor in nested models framework is less than 4.0 (p-value > 10−5) standard errors 

of ΔAUC, NRI>0,and NRI(r) should be estimated using resampling methods. Electronic 

Health Records, pooled genetic cohorts, social networks data, etc. can result in very large 

sample sizes and potentially very low p-values. For such large sample sizes traditional 

resampling technique can become time consuming. Our results show that in this situation 

formula-based standard error estimates of ΔAUC, NRI>0, and NRI(r) may have low bias, and 

may be estimated by using the formulas presented in Table 2. Table 5 implies that bias of 

added dichotomous predictors may remain strong in all scenarios. Standard errors of 3-

category NRI and IDI always require adjustment for estimated parameters. As illustrated in 

Figure 6, their bias stays strong. For these reasons resampling methods should be preferred 

in all situations to estimate standard errors of 3-category NRI and IDI. We recommend 

similar strategies in estimating confidence intervals for ΔAUC, NRI>0, NRI(r), 3-category 

NRI and IDI.

4. DISCUSSION

This validation study shows that the behavior of ΔAUC, NRI>0, NRI(r), 3-category NRI, and 

IDI is affected by the interplay of several factors including the shift to degeneracy (non-

normality) when comparing two nested models under the null, and the lack of adjustment for 

estimated parameters for 3-category NRI and IDI.
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Our results explicitly specify conditions under which normal distribution theory can and 

cannot be applied to ΔAUC, NRI>0, IDI and categorical versions of the NRI when 

comparing two nested models. A few tests of these statistics have been proposed and all with 

the exception of[20] rely on asymptotic normality. Our results imply that tests that rely on 

asymptotic normality are invalid for nested models and should not be used. Fortunately 

testing is unnecessary: Pepe et al[26] proved that testing of several measures of model 

performance is redundant because improvement in most of these statistics is equivalent to 

the significance of the new predictor variable. Therefore the recommended strategy is to 

establish the significance of the regression coefficient first and then evaluate improvement in 

model performance by producing confidence intervals for measures of performance such as 

ΔAUC, NRIs, and IDI.

Using U-statistics theory we proved that when the added predictor variable is significant, the 

distribution of ΔAUC, NRI>0, NRI(r), 3-category NRI, and IDI is normal, therefore 

asymptotic confidence intervals can rely on the normal distribution. We considered their 

variance estimators and showed in Statement 2 that theoretical standard error estimates of 

ΔAUC, NRI>0 and NRI(r) are valid when predictor variables are normally distributed. Our 

practical example using Framingham Heart Study data demonstrated that when the added 

predictor is significant but the p-value is not particularly low, the variance of NRI>0, NRI(r) 

is still underestimated by the formula and the variance of ΔAUC is overestimated. Our 

simulations demonstrated that a stronger added predictor variable is required to reach non-

degeneracy, a necessary condition for validity of the formulas. We offer an example in which 

the p-value of added predictor variable <10−5 is needed for ΔAUC, NRI>0, and NRI(r) to 

fully transition to non-degeneracy, and for the relative bias of the standard error of NRI>0 

and NRI(r) to drop to below 15% (Figure 6). Such high effect sizes and significance levels 

might be common in Big Data studies.

While formula-based standard errors of ΔAUC, NRI>0 and NRI(r) are valid in the situations 

described above, formula-based standard error estimators of 3-category NRI and IDI are not. 

Unless they are adjusted for estimated parameters, they underestimate actual variance. 

Therefore existing standard errors formulas for 3-category NRI and IDI should not be used 

and bootstrap or other resampling technique should be employed instead.

Additionally, using U-statistics theory we showed that the standard error estimator of ΔAUC 

can be calculated as the variance of the change in ranks of predicted probabilities (Table 3). 

In our numerical simulations the new variance estimator was identical to the one produced 

by DeLong et al[11] and the two are likely algebraically equivalent when there are no ties in 

predicted probabilities. However, rigorous proof of this result is beyond the scope of this 

paper.

In summary, when comparing two nested models after establishing the significance of the 

regression coefficient of an added predictor variable, we recommend estimating formula-

based standard errors and confidence intervals of ΔAUC, NRI>0 and NRI(r) when the 

significance of predictor variables is strong enough (p-value<10−5, z-score>4.0 in our FHS 

data example). In other situations the CIs of ΔAUC are too conservative; while CIs for all 

other statistics are too narrow therefore resampling techniques (such as bootstrap) should be 
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used to estimate these. Standard errors of IDI and 3-calegory NRI should always be 

estimated by the bootstrap or other resampling technique.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histograms of IDI when comparing nested models under the alternative (left panel), and 

under the null (right panel). x1, x2 are predictors from the full model; x1 is the predictor 

from the reduced model. Left panel: simulated nested models under the alternative x1,), x2 |

D=1~N(μ, Σ) and x1, x2 |D=0~N(0, Σ). Right panel: simulated nested models under the null 

x1 |D=1~N(μ, σ2), x1 |D=0~N(0, σ2) and x2~N(0, σ2). x2 is an uninformative predictor.
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Figure 2. 
Two normal density curves with empirical (dotted line) and theoretical from Table 2 (solid 

line) variances overlaid on the histograms of the five statistics calculated for nested models 

under the alternative (non-degenerate case). Simulated two predictor variables and binary 

outcomes: x1, x2 |D=1~N(μ, Σ) and x1, x2 |D=0~N(0, Σ). x1, x2 are predictors from the full 

model; x1 is the predictor from the reduced model.
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Figure 3. 
Histograms of ΔAUC and IDI when comparing nested models under the null. Two normal 

density curves with empirical (dotted line) and theoretical (solid line) variances overlaid on 

the histograms of ΔAUC and IDI calculated for nested models under the null (degenerate 

case). Simulated two predictor variables and binary outcome: x1 |D=1~N(μ, σ2), x1 |

D=0~N(0, σ2) and x2~N(0, σ2). x2 is an uninformative predictor. x1, x2 are predictors from 

the full model; x1 is the predictor from the reduced model.
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Figure 4. 
Left column: two nested models under the H0; right column: the two models after un-

nesting, preserving the H0. Left panel models: x1, x2 are predictors from the full model; x1 is 

predictor from the reduced model. x1 |D=1~N(μ, σ2), x1 |D=0~N(0, σ2) and x2~N(0, σ2). x2 

is an uninformative predictor.

Right panel models: x1, x2, x3 are predictors from the full model; x1, x4 are predictors from 

the reduced model. x1 |D=1~N(μ, σ2), x1 |D=0~N(0, σ2) and x2~N(0, σ2). x3,4|D=1~N(ε, 

Iσ2) and x3,4|D=0~N(0, Iσ2). x2 is an uninformative predictor, x3, x4 are added “noise” – 

simulated weak independent predictors.
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Figure 5. 
Histogram of NRI>0 under H0. Simulated two predictor variables and a binary outcome: x1|

D=1~N(μ, σ^2), x1 |D=0~N(0, σ2) and x2~N(0, σ2). x2 is an uninformative predictor. x1, x2 

are predictors from the full model; x1 is the predictor from the reduced model.
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Figure 6. 
Relative bias of standard error estimate as a function of strength of the added predictor 

variable (z-score of βDBP) using Framingham Heart Study data. Reduced model included 

predictor variables: age, HDL and total cholesterol, systolic blood pressure, smoking and 

diabetes status. Full model = reduced model+diastolic blood pressure (DBP). We artificially 

varied the strength of added DBP variable and calculated relative bias of variance estimate 

using theoretical formula relative to its bootstrapped value. zscore(βDBP) = βDBP /se(βDBP). 

rel.bias=(seformula.based−sebootstrap)/sebootstrap.
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Table 2

Non-degeneracy conditions of ΔAUC, NRI>0, NRI(r), 3cNRI, and IDI

Models are under the null Models are under the
alternative

Nested Models Degenerate* Non-degenerate

Non-nested Models Always non-degenerate

*
Null is defined as in (2) in the previous section. H0: ap−k+1, …, ap = 0
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Table 3

Variance formulas in non-degenerate case, unadjusted for estimated parameters.

σ2, ignoring the adjustment for estimated parameters

Requires Adjustment?

σΔAUC
2  no tied 

ranks

Var  ranke
∗(α ∗ Txi) − ranke(αTxi)

n0
+

Var  rankne
∗ (α ∗ T y j) − rankne(αT y j)

n1

No

σΔAUC
2  tied ranks

Use DeLong formula[11] No

σNRI > 0
2 pne

up(1 − pne
up)

n0
+

pe
up(1 − pe

up)
n1

No

σNRI(r)
2

pne
up + pne

down − (pne
up − pne

down)2

n0
+

pev
up + pev

down − (pev
up − pev

down)2

n1

No

σ3cNRI
2 4(pne

2up + pne
2down) + pne

1up + pne
1down − (2(pne

2up − pne
2down) + pne

1up − pne
1down)2

n0
+

4(pev
2up + pev

2down) + pev
1up + pev

1down − (2(pev
2up − pev

2down) + pev
1up − pev

1down)2

n1

Yes

σIDI
2 Var(Δpredp(xi))

n0
+

Var(Δpredp(y j))
n1

Yes
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