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36. Asymptotic Distribution of Eigenvalues of a Class
of Hypoelliptic Operators™

By Akira TsuTsuMIi**) and Chung-Lie WANG***)

(Communicated by Késaku YOSIDA, M. J. A., June 15, 1978)

Through the fundamental solution of a heat (or parabolic) equation,
fractional powers of the Laplacian 4 (or elliptic operator) have been
studied by many authors (e.g. see [2], [4], and [5]). However for hypo-
elliptic operators no work similar to the above has appeared yet in the
literature. This note is to announce some results of a similar treat-
ment for hypoelliptic operators. Full details will appear in a separate
publication.

1. We call a C~-function A(x, £) on B2 X R? a basic weight function
when it satisfies the following conditions:

(i) A7'A4|z[+[ED) <z, &) <A+ +|&])
(aZO’ 70207 A>0)
Q.1 (1) |23, OI<A, A, )1+ for any «, 8
: (—00<8<1,4,,>0)
(i) Ax+y, H<AA+|yDa(x, &) (t,>0,4,>0)
where @ and g are multi-indices of non-negative integers «; and g, with
|al=ant <+ oty [BI=Bit - - - +Bas AD(@, )= (2/08)(—i 3 /0w)A(x, &).

By S7,, we denote the set of all functions (or symbols) in C>
(Rr X R?) satisfying
1.2) PR @, |LC, A, H™ri«1+?1# for any «, B

(—oo<m<oo, 0<p<Ll, —0<d<1, §<p).

For any p(z, &) € ST, , the corresponding pseudo differential opera-

tor P(x, D) of p(x, &) is defined by

P(w, Dyu(@) = e=p(w, )ie)ds
§
where u belongs to the class of rapidly decreasing functions of
Schwartz,
a(e)=j eveu(z)ds and de=(2r)-de.
R}

If a polynomial p(x, &) =3, <m @ (X)€" in ST, , satisfies
(1.3) Do, §)=Re p(x, ) > Col(x, £)™,  for |z|+|¢|>R
then it can be shown that the differential operator
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P@,D)=3j41<m @(X)(—13/02)"

is hypoelliptic by means of the existence of a left parametric of P(x, D)
(see § 3 below).
2. Weconsider a equation of parabolic type with initial condition

Lu=06u/ot+ P(x, D)u=0 in (0, c0) X R%

U |30="Uo
and call E@t) a fundamental solution of (2.1) if LE(t)=0 in t>0 and
E0)=I.

Theorem 1. For any p(x, &) € ST, , satisfying (1.3), we can con-
struct o fundamental solution E(t)=e(t; x, D) (as a pseudo diff erential
operator of (2.1) such that for any N with —N(p—d)+m <0

e(t s Ly $)=Z§V=’ol é(t’ Zz, S) +fN(t y Xy &)

2.1

where
supp e(t; », ) S{& € RE: [§=>1}
&t ; x, &)=exp (—tp(x, £)
g,(t; », &) exp (—etpy(w, §)) € S5 "7
for any fixed ¢>0

|f$ (s @, )| < Caw, g)m-reiet+21fI=e-0N exp (— C(L+|x|+]ED*™).
Moreover E(t) is unique in o class of operators in L*(R%).

é;(t; x,8) (j=1) are obtained by truncating e,=e¢,(t; x,£) as zero
in {¢:|&|<1}, where e, are successively defined by
@.2)  {9/at+p(=, Oe;=—q,

- Q=202 Dt +- s PO @5 )€ a(E 5 @, §) [ ! .

Let Fy(t) be the operator, defined by its symbol ¢(F'y(t)) =

> N.08,(t; @, 8), which is a right parametrix of L in (2.1):
LEyt)=Ryt), t>0

where o(RN(t))-exp((l—-s)po(x, &) € SN for any N. Using Fu(t) we

can construct E(t) by E. E. Levi’s method by means of symbol

calculus (see [8]).

3. In what follows we assume further that P is a formally self-
adjoint strictly positive operator whose extension in L*(R7) (with
domain Co(RY) is denoted by P. Let g’;’fm be the subclass of ST, , for
which C, ,=C, () in (1.2) tends to zero as |x|—>oco. A p(w,&) of S7,,
is called slowly varying in S7, ; if p, (%, ) € g‘;’f;j,'ﬁ' for any g+0. (For
2=|¢&| see [1] and [3]).

Theorem 2. P-lisa completely continuous operator from L*(RY)
to LA RD).

The condition (1.8) assures that P possesses a right parametrix
Qy with PQy=I+Ty, where Qye¢ g';,';‘,,, and Tye So'gﬁ,’j;‘”” by (1.1).
Combining the complete continuity of Q5 and T, with the bounded-

ness of 13‘1~in L*(R?), the theorem will be proved by using the equation
P_1=QN—P_1TN.
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4, Phasa unique spectral measure y=p(4) whose support is con-
tained in [2,4+ o) with P— - dp. The uniqueness of the fundamental
solution E'(t) implies that

@1 E(t):L+°° etdu(d)  (£>0).

By Theorem 2 and the hypoellipticity of P it can be shown that
(%) has a spectral function u(2; «,y) (which is continuous in z and y
under suitable conditions, cf. [7]):

#(2 s Xy y)=21,sz ¢j(x)m’ .

where {1;}7., is a sequence of discrete eigenvalues of P and {¢,;}7.,, a
complete orthonormal system of eigenfunctions ¢, corresponding to
2; of Pin LXR7"). Thus e(t; «,y) obtained in § 2 may be written as
4.2) e(t; @, &)=e"¢ 315 e 4 (@) (&) (t>0).

We now define fractional powers of P with complex parameter 2
as follows

. I T du)
Ao
which may also be written as

P’=Z;°=o 255 9 109

Using the result of Theorem 1, we can define
4.3) D, ) =—L1 jm t--le(t; 2, 8)dt,  Re2<0
I'(—=2) Jo

where I'(—2) is the gamma function. From (4.2) and (4.8) it follows
4.4) D@, E)=e"¢ 32 226 () ,(&)
provided that > 7, 2%*<co.

Theorem 3. (1) For Re 2<0, p,(x, &) is analytic in z.

2 D2, §) ~ 2 70 D2y(@, §)
where
T(l_—z) L 518 ,(t 5 @, &)dt.

Moreover p(x, &) — > 1, 0.y, &) is analytic in z for Re 2<0.

5. We shall apply Theorem 3 to obtain an estimate of asymptotic
distribution of eigenvalues of P under the additional condition :
(5.1) py(, &) is a polynomial in (x, &) € R?,.

By a use of the integral in (4.3) we define the C-function ¢(z) of
P(z, D) as follows

(5.2) @=[_{[, v odae
rr U R
which is absolutely convergent for Re 2< —2n/am.

Adopting the idea of Smagin [6], we have

Theorem 4. (1) {(2)is analyticin the half-plane Re z< —2n/am.
(2) ¢(2) can be continuously extended to the entire complex plane as

pzj(x’ 'S) =
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a meromorphic function with poles of multiplicity not greater than
2n in o finite number of real arithmetic progressions. (8) The first
pole of the Laurent expansion of the function {(z) coincides with the
first pole of the Laurant expansion of the integral

(5.3) co(z)—_—jﬂg {j (T<1_7) (77 et @, 00t )ao)ae.
6. From (4.4) and (5.2) follows

C(z)=L? {j P, §)da|ds

5 z;j {j ¢,(x)e‘”'fdx}g£j(§)d$
R? R;’
=270 %
which implies that
c(z)=f1 #dN(#)
where N®)=3], ., 1.
Finally, let » be the first pole of £,(2) in (5.3) and K (an integer)
its degree. Then
R)(E—rE—A+0 as z2—7r.
Hence by Ikehara’s tauberian theorem we get
N@) _ (—D*4A
e tr(n )X (K—=1)! °

We thus have

Theorem 5. Giver (1.1), (1.3), and (5.1) the following asymptotic
formula for N(t) of P holds as t—oo:
N@)=0(@"(In t)¥)
where r s the first pole of {,(z) and K is its multiplicity.
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