36. Asymptotic Distribution of Eigenvalues of a Class of Hypoelliptic Operators*)

By Akira TSUTSUMI**) and Chung-Lie WANG***)
(Communicated by Kôsaku Yosida, M. J. A., June 15, 1978)

Through the fundamental solution of a heat (or parabolic) equation, fractional powers of the Laplacian Δ (or elliptic operator) have been studied by many authors (e.g. see [2], [4], and [5]). However for hypoelliptic operators no work similar to the above has appeared yet in the literature. This note is to announce some results of a similar treatment for hypoelliptic operators. Full details will appear in a separate publication.

1. We call a C^{∞} -function $\lambda(x,\xi)$ on $R_x^n \times R_{\xi}^n$ a basic weight function when it satisfies the following conditions:

$$\begin{array}{ll} \text{(i)} & A^{-1}(1+|x|+|\xi|)^{\alpha} \! \leq \! \lambda(x,\xi) \! \leq \! A(1+|x|^{r_0}+|\xi|) \\ & \qquad \qquad (\alpha \! \geq \! 0,\tau_0 \! \geq \! 0,A \! > \! 0) \\ \text{(1.1)} & \text{(ii)} & |\lambda_{(\beta)}^{(\alpha)}(x,\xi)| \! \leq \! A_{\alpha,\beta}\lambda(x,\xi)^{1-|\alpha|+\delta|\beta|} & \text{for any } \alpha,\beta \end{array}$$

$$(1.1) \quad \text{(ii)} \quad |\lambda_{(\beta)}(\omega,\zeta)| \leq 11_{\alpha,\beta}\lambda(\omega,\zeta) \qquad \qquad \text{(iii)} \quad \text{(iii)} \quad \alpha,\beta \qquad \qquad (-\infty < \delta < 1, A_{\alpha,\beta} > 0)$$

(iii) $\lambda(x+y,\xi) \leq A_1(1+|y|)^{\tau_1}\lambda(x,\xi)$ $(\tau_1 \geq 0, A_1 > 0)$ where α and β are multi-indices of non-negative integers α_j and β_j with $|\alpha| = \alpha_1 + \cdots + \alpha_n, |\beta| = \beta_1 + \cdots + \beta_n; \ \lambda_{\beta}^{(\beta)}(x,\xi) = (\partial/\partial \xi)^{\alpha}(-i\,\partial/\partial x)^{\beta}\lambda(x,\xi).$

By $S^m_{\lambda,\rho,\delta}$ we denote the set of all functions (or symbols) in C^{∞} $(R^n_x \times R^n_{\xi})$ satisfying

(1.2)
$$|p_{(\beta)}^{(\alpha)}(x,\xi)| \leq C_{\alpha,\beta} \lambda(x,\xi)^{m-\rho|\alpha|+\delta|\beta|} \quad \text{for any } \alpha,\beta \\ (-\infty < m < \infty, \ 0 \leq \rho \leq 1, \ -\infty < \delta < 1, \ \delta < \rho).$$

For any $p(x,\xi) \in S^m_{l,\rho,\delta}$ the corresponding pseudo differential operator P(x,D) of $p(x,\xi)$ is defined by

$$P(x,D)u(x) = \int_{\mathbb{R}^n_{\xi}} e^{ix\cdot\xi} p(x,\xi)\hat{u}(\xi)d\xi$$

where u belongs to the class of rapidly decreasing functions of Schwartz,

$$\hat{u}(\xi) = \int_{\mathbb{R}^n_x} e^{ix\cdot\xi} u(x) dx$$
 and $d\xi = (2\pi)^{-n} d\xi$.

If a polynomial $p(x,\xi) = \sum_{|\alpha| \le m} a_{\alpha}(x) \xi^{\alpha}$ in $S_{\lambda,\rho,\delta}^m$ satisfies (1.3) $p_0(x,\xi) = \operatorname{Re} p(x,\xi) \ge C_0 \lambda(x,\xi)^m$, for $|x| + |\xi| \ge R$ then it can be shown that the differential operator

^{*)} This work was supported (in part) by the President's N.R.C. Funds of the University of Regina and the N.R.C. of Canada (Grant No. A3116).

^{**} Okayama University.

^{***)} University of Regina.

$$P(x, D) = \sum_{|\alpha| \leq m} a_{\alpha}(x) (-i \partial/\partial x)^{\alpha}$$

is hypoelliptic by means of the existence of a left parametric of P(x, D) (see § 3 below).

2. We consider a equation of parabolic type with initial condition

(2.1)
$$Lu = \frac{\partial u}{\partial t} + P(x, D)u = 0 \quad \text{in } (0, \infty) \times R_x^n$$
$$u|_{t=0} = u_0$$

and call E(t) a fundamental solution of (2.1) if LE(t)=0 in t>0 and E(0)=I.

Theorem 1. For any $p(x, \xi) \in S_{\lambda, \rho, \delta}^m$ satisfying (1.3), we can construct a fundamental solution E(t) = e(t; x, D) (as a pseudo differential operator of (2.1) such that for any N with $-N(\rho-\delta)+m \leq 0$

$$e(t; x, \xi) = \sum_{j=0}^{N-1} \tilde{e}(t, x, \xi) + f_N(t; x, \xi)$$

where

$$\begin{aligned} & \text{supp } e(t\,;\,x,\xi) \subseteq \! \{\xi \in R^n_{\xi} \colon \! |\xi| \ge l \} \\ & \tilde{e}_0(t\,;\,x,\xi) = & \text{exp } (-tp(x,\xi)) \\ & \tilde{e}_j(t\,;\,x,\xi) \exp\left(-\varepsilon t p_0(x,\xi)\right) \in S_{\lambda,\rho,\delta}^{-(\rho-\delta)j} \end{aligned}$$

for any fixed $\varepsilon > 0$

 $|f_{N(\beta)}^{(\alpha)}(t;x,\xi)| \leq C\lambda(x,\xi)^{m-\rho|\alpha|+\delta|\beta|-(\rho-\delta)N} \exp{(-C(1+|x|+|\xi|)^{am})}.$ Moreover E(t) is unique in a class of operators in $L^2(R_x^n)$.

 $\tilde{e}_j(t; x, \xi)$ $(j \ge 1)$ are obtained by truncating $e_j = e_j(t; x, \xi)$ as zero in $\{\xi : |\xi| \le l\}$, where e_j are successively defined by

$$\begin{array}{c} \{\partial/\partial t + p(x,\xi)\}e_{j} = -q_{j} \\ q_{j} = \sum_{k=0}^{j-1} \sum_{|\alpha|+k=j} p^{(\alpha)}(x,\xi)e_{k(\alpha)}(t\,;\,x,\xi)/\alpha\,! \end{array}$$

Let $\tilde{F}_N(t)$ be the operator, defined by its symbol $\sigma(\tilde{F}_N(t)) = \sum_{j=0}^N \tilde{e}_j(t; x, \xi)$, which is a right parametrix of L in (2.1):

$$L\tilde{F}_{N}(t) = \tilde{R}_{N}(t), \qquad t > 0$$

where $\sigma(\tilde{R}_N(t)) \cdot \exp((1-\varepsilon)p_0(x,\xi)) \in S_{\lambda,\rho,\delta}^{m(\rho-\delta)N}$ for any N. Using $\tilde{F}_N(t)$ we can construct E(t) by E. E. Levi's method by means of symbol calculus (see [8]).

3. In what follows we assume further that P is a formally self-adjoint strictly positive operator whose extension in $L^2(R_x^n)$ (with domain $C_0^{\infty}(R_x^n)$) is denoted by \tilde{P} . Let $\mathring{S}_{1,\rho,\delta}^m$ be the subclass of $S_{1,\rho,\delta}^m$ for which $C_{\alpha,\beta} = C_{\alpha,\beta}(x)$ in (1.2) tends to zero as $|x| \to \infty$. A $p(x,\xi)$ of $S_{1,\rho,\delta}^m$ is called slowly varying in $S_{1,\rho,\delta}^m$ if $p_{(\beta)}(x,\xi) \in \mathring{S}_{1,\rho,\delta}^{m+\delta|\beta|}$ for any $\beta \neq 0$. (For $\lambda = |\xi|$ see [1] and [3]).

Theorem 2. \tilde{P}^{-1} is a completely continuous operator from $L^2(R_x^n)$ to $L^2(R_x^n)$.

The condition (1.3) assures that \tilde{P} possesses a right parametrix Q_N with $\tilde{P}Q_N = I + T_N$, where $Q_N \in \mathring{S}_{\lambda,\rho,\delta}^{-m}$ and $T_N \in \mathring{S}_{\lambda,\rho,\delta}^{-(\rho-\delta)N}$ by (1.1). Combining the complete continuity of Q_N and T_N with the boundedness of \tilde{P}^{-1} in $L^2(R_x^n)$, the theorem will be proved by using the equation $\tilde{P}^{-1} = Q_N - \tilde{P}^{-1}T_N$.

4. \tilde{P} has a unique spectral measure $\mu = \mu(\lambda)$ whose support is contained in $[\lambda_0 + \infty)$ with $\tilde{P} = \int_{-\infty}^{+\infty} d\mu$. The uniqueness of the fundamental solution E(t) implies that

(4.1)
$$E(t) = \int_{\lambda_0}^{+\infty} e^{-\lambda t} d\mu(\lambda) \qquad (t > 0).$$

By Theorem 2 and the hypoellipticity of \tilde{P} it can be shown that $\mu(\lambda)$ has a spectral function $\mu(\lambda; x, y)$ (which is continuous in x and y under suitable conditions, cf. [7]):

$$\mu(\lambda; x, y) = \sum_{\lambda_j \leq \lambda} \phi_j(x) \overline{\phi_j(y)},$$

where $\{\lambda_j\}_{j=0}^{\infty}$ is a sequence of discrete eigenvalues of \tilde{P} and $\{\phi_j\}_{j=0}^{\infty}$, a complete orthonormal system of eigenfunctions ϕ_j corresponding to λ_j of P in $L^2(\mathbb{R}^n_x)$. Thus e(t; x, y) obtained in § 2 may be written as $e(t; x, \xi) = e^{-ix\cdot\xi} \sum_{j=0}^{\infty} e^{-\lambda_j t} \phi_j(x) \overline{\hat{\phi}_j(\xi)}$ (4.2)

We now define fractional powers of \tilde{P} with complex parameter z as follows

$$\tilde{P}^z = \int_{\lambda_0}^{+\infty} \lambda^z \, d\mu(\lambda)$$

which may also be written as

$$\tilde{P}^z = \sum_{j=0}^{\infty} \lambda_j^z(\cdot, \phi_j)_{L^2} \phi_j$$

 $ilde{P}^z\!=\!\sum_{j=0}^\infty \lambda_j^z(\cdot\,,\phi_j)_{L^2}\!\phi_j.$ Using the result of Theorem 1, we can define

(4.3)
$$p_z(x,\xi) = \frac{1}{\Gamma(-z)} \int_0^{+\infty} t^{-z-1} e(t; x, \xi) dt, \quad \text{Re } z < 0$$

where $\Gamma(-z)$ is the gamma function. From (4.2) and (4.3) it follows $p_z(x,\xi) = e^{-ix\cdot\xi} \sum_{j=0}^{\infty} \lambda_y^z \phi_j(x) \overline{\hat{\phi}_j(\xi)}$

provided that $\sum_{j=0}^{\infty} \lambda_j^{\text{Re } z} < \infty$.

Theorem 3. (1) For Re z < 0, $p_z(x, \xi)$ is analytic in z.

$$(2) p_z(x,\xi) \sim \sum_{j=0}^{\infty} p_{zj}(x,\xi)$$

where

$$p_{zj}(x,\xi) = \frac{1}{\Gamma(-z)} \int_0^\infty t^{-z-1} \tilde{e}_j(t; x, \xi) dt.$$

Moreover $p_z(x,\xi) - \sum_{j=0}^{N} p_{zj}(x,\xi)$ is analytic in z for Re z < 0.

- 5. We shall apply Theorem 3 to obtain an estimate of asymptotic distribution of eigenvalues of \tilde{P} under the additional condition:
- (5.1) $p_0(x,\xi)$ is a polynomial in $(x,\xi) \in R_{x,\xi}^{2n}$.

By a use of the integral in (4.3) we define the ζ -function $\zeta(z)$ of P(x,D) as follows

(5.2)
$$\zeta(z) = \int_{\mathbb{R}^n_{\xi}} \left\{ \int_{\mathbb{R}^n_x} p_z(x,\xi) dx \right\} d\xi$$

which is absolutely convergent for Re z < -2n/am.

Adopting the idea of Smagin [6], we have

Theorem 4. (1) $\zeta(z)$ is analytic in the half-plane Re z < -2n/am.

(2) $\zeta(z)$ can be continuously extended to the entire complex plane as

a meromorphic function with poles of multiplicity not greater than 2n in a finite number of real arithmetic progressions. (3) The first pole of the Laurent expansion of the function $\zeta(z)$ coincides with the first pole of the Laurant expansion of the integral

(5.3)
$$\zeta_0(z) = \int_{R_x^n} \left\{ \int_{R_x^n} \left(\frac{1}{\Gamma(-z)} \int_0^{+\infty} t^{-z-1} e_0(t; x, \xi) dt \right) dx \right\} d\xi.$$

6. From (4.4) and (5.2) follows

$$egin{aligned} \zeta(z) = & \int_{R_{\xi}^n} \left\{ \int_{R_x^n} p_z(x,\xi) dx \right\} d\xi \ = & \sum_{j=0}^{\infty} \lambda_j^z \int_{R_{\xi}^n} \left\{ \int_{R_x^n} \phi_j(x) e^{-ix\cdot \xi} dx \right\} \overline{\hat{\phi_j}(\xi)} d\xi \ = & \sum_{j=0}^{\infty} \lambda_j^z \end{aligned}$$

which implies that

$$\zeta(z) = \int_{1}^{\infty} t^{z} dN(t)$$

where $N(t) = \sum_{\lambda_j \leq t} 1$.

Finally, let r be the first pole of $\zeta_0(z)$ in (5.3) and K (an integer) its degree. Then

$$\zeta(z)(z-r)^K \rightarrow A \neq 0$$
 as $z \rightarrow r$

Hence by Ikehara's tauberian theorem we get

$$\lim_{t\to\infty}\frac{N(t)}{t^r(\ln t)^K}=\frac{(-1)^{K-1}A}{(K-1)!}.$$

We thus have

Theorem 5. Given (1.1), (1.3), and (5.1) the following asymptotic formula for N(t) of \tilde{P} holds as $t \to \infty$:

$$N(t) = O(t^r(\ln t)^K)$$

where r is the first pole of $\zeta_0(z)$ and K is its multiplicity.

References

- [1] V. V. Grushin: Pseudo differential operators on Rⁿ with bounded symbols.
 Funct. Anal. i Prilo., 4, 37-50 (1970) (in Russian); Funct. Anal. Appl.,
 4, 202-212 (1970) (English translation).
- [2] T. Kotake and M. S. Narashimhan: Regularity theorems for fractional power of a linear elliptic operator. Bull. Soc. Math. France, 90, 449-471 (1962).
- [3] H. Kumanogo and K. Taniguchi: Oscillatory integrals of symbols of pseudo differential operators on \mathbb{R}^n and operators of Fredholm type. Proc. Japan Acad., 49, 397-402 (1973).
- [4] S. Minakushisundaram: A generalization of Epstein zeta functions. Canad. J. Math., 1, 320-327 (1949).
- [5] S. Mizohata and R. Arima: Properties asymptotiques des valeurs propres des operators elliptiques autoadjoints. J. Math. Kyoto Univ., 4, 245-254 (1964).
- [6] S. Smagin: Fractional powers of a hypoelliptic operators in \mathbb{R}^n . Soviet Math. Dokl., 14, 585-588 (1973).

- [7] A. Tsutsumi: On the asymptotic behavior of resolvent kernels and spectral functions for some class of hypoelliptic operators. J. Diff. Equa., 18, 366-385 (1975).
- [8] C. Tsutsumi: The fundamental solution for a parabolic pseudo differential operator and parametrices for degenerate operators. Proc. Japan Acad., 51, 103-108 (1975).