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1. Introduction

The impetus for this paper comes mainly from work done in recent years by
a number of physicists on a statistical theory of spectra. The book by M. L.
Mehta [10] and the collection of reprints edited by C. E. Porter [14] are
excellent references for this work. The discussion in Section 1.1 is an attempt to
present a rationale for such investigations. Our interpretation of linear operators
as used in quantum mechanics is based largely on the book by T. F. Jordan [8].

1.1. Statistical theory of spectra. In quantum mechanics knowledge of the
value of measurable quantities of a system is expressed in terms of probabilities.
A state of the system specifies these probabilities. Measurable quantities are
represented by self-adjoint linear operators on a separable Hilbert space. The
only possible values of the measurable quantities are those in the spectrum of
the self-adjoint operator which represents the measurable quantity.

Experience indicates that energy is represented by the Hamiltonian operator.
We are interested in the point spectrum of the Hamiltonian, which is its set of
eigenvalues. The eigenvalues E of the Hamiltonian operator H, which are real
since H is self-adjoint, are those values of energy for which some state of the
system specifies a probability of one that the energy is exactly equal to E [8].
This is expressed in the Schrodinger time independent equation,

(1.1.1) HO = E*,
where / is an eigenvector associated with E.

In ordinary statistical mechanics, renunciation of exact knowledge of the
state of a system is made and only properties of averages are considered. An
exact knowledge of the laws governing the system is assumed known; it is the
impossibility in practice of observing the state of the system in all its detail that
leads to the consideration of properties of averages.
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An analogous situation exists with respect to the Hamiltonian operator. It is
possible to choose an orthonormal basis for the separable Hilbert space in such
a way that the matrix representation of the Hamiltonian with respect to this
basis is in a form with blocks (finite dimensional square matrices) along the
diagonal and zeros elsewhere (see [10]). Each block corresponds uniquely to each
set of values of a certain set of parameters. These parameters are variables which
may be used to describe certain aspects of the system, whatever state it may be in.
We are interested in the eigenvalues of the very large blocks. There are two
difficulties. First. we do not know the Hamiltonian and, second, even if we did,
it would be far too complicated to attempt to solve it. These difficulties lead to a
renunciation of an exact knowledge of the system itself, that is, of the Hamil-
tonian. The basic statistical hypothesis is this: the statistical behavior of energy
levels in a simple sequence (a simple sequence is one whose levels all have the
same set of values of the parameters mentioned above) is identical with the
behavior of the eigenvalues of a random matrix. It is desirable, due to our
ignorance of the system. that the statistical properties of the eigenvalues be
independent of as many of the properties of the distributions of the elements
of the matrices as possible. At best the elements of these matrices are random
variables whose distributions are restricted only by the general symmetry
properties we might impose on the ensemble of operators.

1.2. Outline of contents. There are three basic parts. Section 3 contains the
combinatorial arguments which are essential for the proofs of the theorems in the
second part, Sections 4, 5, and 6. These sections all deal with the asymptotic
distribution of the empirical distribution function of the eigenvalues of a
symmetric random matrix from the points of view of weakening the conditions
placed on the distribution of the elements of the matrix and of strengthening the
mode of convergence of the empirical distribution functions. The last part,
Section 7, discusses results of the same type, that is, asymptotic distributions
of the empirical distribution function of the eigenvalues of random matrices,
for the Gaussian orthogonal ensemble [10], a Toeplitz ensemble [5], and a
Wishart ensemble.

2. Notation, definitions and preliminaries

2.1. Random matrices. Let (Q, A, P) denote a probability space, that is, Q2
is a nonempty abstract set, Y is a a-algebra of subsets of Q, and P is a probability
measure on Y; and let (R,,, f3,) be the measurable space where R, is n dimen-
sional Euclidean space and An is the Borel a-algebra of subsets of R,.
A mapping X: Q R, is called a random vector if {a) e Q: X(cw) e B} e Y

for all B e fin When n = 1, X is called a random variable.
A mapping A: Q x R, - R, is called a random operator if A (co) [x] is for

every x e R, a random vector. A random operator A is said to be linear if

A(CO)[Ox1 + PX2] = aA(CO)[x1] ±+ /A(O)[x2] for every wc Q, xl, X2ERn,
and o., P e R1.



EIGENVALUES OF RANDOM MATRICES 617

A linear random operator defined by the n x n matrix

(2.1.1) A = (aij)ij=l1
where the aij are random variables is called a random matrix. Thus, a random
matrix is a linear random operator on Q x R, to R,.
Throughout the paper all random quantities will be assumed to be defined

on some fixed probability space (Q, Y, P).
2.2. Continuity of ordered eigenvalues. It is established in this section that

ordered eigenvalues ofsymmetric random matrices are indeed random variables.
The following lemma is needed. Denote by Ai(A), i = 1, * n, the eigen-

values of any (n x n) matrix A.
LEMMA 2.2.1. Let A be an (n x n) matrix and suppose c > 0 is given. Then

there exists a 3 > 0 such that for any matrix D = (dij)1j=, such that

j =j=1 dij| < 3, and there exists a permutation a of {1, 27 n} for which

(2.2.1) Ai(A) - 40))(A + D) < e, i = 1, 7,n.

A proof of this lemma may be found in A. M. Ostrowski [13].
Denote by 21(A) . 22(A) . ... _ l"(A) the ordered eigenvalues of any

(n x n) Hermitian matrix A.
COROLLARY 2.2.1. The ordered eigenvalues 2A, A2,* ,, are continuous

functions of the elements of the Hermitian matrix A = (aij).
PROOF. The proof is by contradiction. Let A = (aj) be given. By the above

lemma it is known that for a given £ > 0 there exists a 3 > 0 such that for any
A' = (aj.) such that EiJl a -aijj. < 3 one has for a suitable permutation
rof {1, 2, n},
(2.2.2) I .(A) - A(i) (A') < e

for i = 17 *, n. Assume Ai(A) - Ai (A')I > E; to be definite assume )i (A') >
Ai(A) Then A1(A) < ... _ Ai(A) < Ai (A') . ... . 2n(A'). With each 2j(A),
j = 1, * * , i, is associated )A(j))(A') such that )Aj(A) - 2A(j)(A')I < c. But only
A1 (A'), , Ai - 1 (A') are available for this purpose since 2i (A') - Ai (A) > e,
and hence Ai(A') - Aj(A) > a, j = 1, .*. , i. Thus, one must conclude

i(A) - i(A')I < e, i = 1, * *, n. This completes the proof.
Let A = (aij)" j= 1 be a random matrix such that aij = aji a.s. (referred to as

symmetric random matrix), and denote by 21(A) . 22(A) . ... _ A(A) its
ordered eigenvalues. Then by the above corollary the ordered eigenvalues Ai(A)
are random variables since they are continuous functions of random variables.

2.3. Modes of convergence. Three types of convergence of a sequence of
random variables are considered in this paper: convergence in law, convergence
in probability, and convergence almost surely. Let X be a random variable and
let {X}' 1 be an infinite sequence of random variables; let Fn and F denote the
distribution functions of X, and X, respectively.
The sequence {X,}' , is said to converge in law to X as n -- oa, written

X, X as n -a c, if F,(x) -- F(x) as n -s o at all points of continuity ofF.
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The sequence {Xj}'. 1 is said to converge in probability to X as n -4 co,
written Xn -P X as n cc, if for any given E > 0,

(2.3.1) P(I Xn- X > c) 0 as nh cc.

The sequence {Xn}' 1 is said to converge a.s. to X as n -- o, written
Xn X a.s. as n -- cc, if

(2.3.2) P({c: "M Xn(cO) = X(O)}) = 1.
n-.o

The following implication structure exists among these modes of convergence:
Xn- X a.s. as n - cc implies Xn4 X as n -+ cc implies Xn X as n -- cc.

2.4. Empirical distribution function. Let {X1, X2, ... Xn } bea set ofrandom
variables. For any B E Y, let 'B denote the indicator function of B,

(2.4.1) B(O) = { if Bc-B,

The empirical distribution function of {X1, X2, Xn} is a mapping
Fn: R1 x . -~ [0, 1] defined by

1 n
(2.4.2) Fn(X)(CO) = - EIIXyE(-a)JX)](w)

n ijl
Let An = (aij) j=1 be a random Hermitian matrix. Let ),1(An) < A2 (An) _
*_n(An) denote the a.s. real ordered random eigenvalues of An. Denote by

Wn the empirical distribution function of {A, (A.), 22(An), ..., An(An)}. The
basic question examined in this paper is (for any x e R1): how does Wn(x)
behave as n cc ?

2.5. Some lemmas. In this section are listed some lemmas which will be
used below.

Given a random variable X and a sequence of random variables {Xn}n-= 1, let
Fn and F denote the distribution functions of Xn and X, respectively. Further-
more, let fkak= |jX dF(x),
(2.5.1) JR,

akn = f Xk dFn (X)

define the kth moment of the distribution functions F and F,, respectively, if
they exist.
LEMMA 2.5.1. If, for all k _ ko arbitrary but fixed, the sequence Xkn k

finite, then these sequences converge for every value of k, and if the sequence
{ak}k'= uniquely determines F, then Fn (x) -+ F(x) as n -- oc at all points of
continuity of F.
A proof of this lemma may be found in M. Loeve [9].
For any infinite sequence of sets, {Aj}- 1, An e A, define

(2.5.2) lim sup An = n U An.nixo m=1 n=m
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LEMMA 2.5.2. The sequence X,, -- 0 a.s. as n -- o if and only iffor all E > 0

(2.5.3) P(lim sup {W: lXn(Cw)j > £}) = 0.

A proof of this lemma may be found in K. L. Chung [3].
LEMMA 2.5.3 (Borel-Cantelli). If E' 1 P(Aj) < X, then P(lim supn-,0 An) = 0.
A proof of this may be found in Loeve [9].
Let W,, be the empirical distribution function of {X1, X2, , Xn}. Let W be

a distribution function which is uniquely determined by its sequence of moments,
{ok}k'1, Let us define

(2.5.4) Mk,nXW()= .f (x) ()

in
=- E Xi (w).n =1

LEMMA2.5.4. If Mkn - Okasn -ooforallk = 1,2, then Wn(x) -P W(x)
as n -+ o, at all points of continuity of W.

PROOF. The following result is used to establish the lemma: X,, P X as
n x-+ if and only if every subsequence {Xj} contains a subsequence which
converges a.s. to X. Let {ni} be any subsequence of the positive integers. Then

(2.5.5) R ddW,.(x) A xk dW(x)

for all k = 1, 2, - . By the diagonal procedure, it is possible to select a
subsequence {n,} of {ni} such that

(2.5.6) xk dW,,(x) f xk dW(x) a.s.

for all k = 1, 2, - Then by Lemma 2.5.1,

(2.5.7) W.;(x) W(x) a.s.

The above quoted result then gives Wn(x) P W(x) as n -- o at all points of
continuity of W. This completes the proof.

3. Combinatorial arguments

The following combinatorial lemmas are of central importance in the proofs
of the limit theorems to follow. They are slight extensions of results given by
E. P. Wigner [17].

Denote by Ak n, k > 1, n > 1, the class of all finite sequences
f: {1, 2, ... , k + 1} -+ {1, 2, ... n}. Any ordered pair of positive integers,
(i,j), will be called a step. The step (j, i) will be called the reverse step of (i,j).
With each feAkn is associated a sequence gf: {1, 2, k} -- {all steps}
defined as follows: gf(v) = (f(v),f(v + 1)), 1 _ v < k. The sequence gf will
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be called the sequence of steps associated with f. The cardinality of any set A
will be denoted by #A. Let

(3.1) Df = {f(i), 2 . i < k + 1 :f(i) ¢ {f(1), f(i- I)}},
and let df = #Df + 1. By definition, f has b different members if and only if
df = b. Let # (i, j)f denote

(3.2) #{gf(v) = (f(v),f(v + 1)), 1 . v < k :f(v) = i,f(v + 1) = j}.
For 1 . v . k, gf(v) = (f(v),f(v + 1)) is called a free step if and only if
f(v + 1) 0 {f(1), ,* f(v)} and a repetitive step if and only if f(v + 1) e

{f(I), * , f (v)}. Let

Ff = {gf (v), 1 _ v . k: gf (v) is free},
Rf = {gf (v), 1 _ v < k: gf (v) is repetitive}.

It is immediate that

#Ff, + #Rf =k,
#Ff #{gf(v), 1 < v < k: gf(v) is free}

= #{f(v + 1), 1 < v _ k: f(v + 1) {f(1), ,f(v)}}
= #{F(v), 2 . v . k + 1 :f(v) 0 {f(1), ,f(v 1)}},

and

(3.5) #Ff = #Df = df-1.
LEMMA 3.1. Let fE Ak,,, be such that if (i,j) E {gf (1), gf (2), gf (k)}, then

#(i,j)f + #(j, i)f > 2. Then df _ [1k] + 1.
PROOF. Let fe Akn satisfy the conditions of the lemma. Iff (i) e {f (v), 2 .

v . k + 1 :f(v) 0 {f(1), . . ,f(v - 1)}}, then (f(i - 1),f(i)) is a free step.
The condition of the lemma implies at least one step among gf(i), . . .* gf(k)
must equal (f (i - 1), f(i)) or (f (i),f (i - 1)) (no stepamong gf (1), . . , gf (i - 2)
equals (f(i - 1),f(i)) or (f(i),f(i - 1)) since f(i) 0 {f(i), . .* , f(i - 1)}). Any
such occurrence, say (f(t- 1),f({)), must be repetitive since f(t) E {f(1), ..,
f(t-1)}. Hence, with each free step is associated a repetitive step which is
equal to the free step or its reverse. This implies #Ff < #Rf, since all free
steps are different. This, with (3.4), implies #Ff . [1k]. Hence, by (3.5),
df-#1 Ff < [k] or df < [1k] + 1. This completes the proof of Lemma
3.1.
LEMMA 3.2. Let f e Ako, be such that:
(i) if (i, j) e {gf (1), gf (2), . .. , gf (k)}, then # (i, j)f + # (j, i)f _ 2;
(ii) f (t) =f ( + 1) for some{, 1 _ t . k.

Then df [ k].
PROOF. If f is constant one is through. Assume f is not constant. If

f (/) = f(V + 1) for some{, 1 < / < k, a new sequence of steps may be formed
from gf(l), gf(2), .* *, gf(k) by omitting all those steps equal to (f(tf),f(V + 1))
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(there will be two or more such steps, by condition (i)). The sequence of steps
thus formed is associated with a sequence h: {1, 2, **, i} {1, 2, , n},
2 . i . k - 1, (a lower bound of 2 since f is not constant) which satisfies
condition (i) and which is such that dh = df. Lemma 3.1 then gives df = dh .
[(i - 1)] + 1 _ [ (k - 2)] +- 1 = [2k]. This completesthe proof ofLemma
3.2.
LEMMA 3.3. Let k be even, say k = 2v. Let fEA2A, be such that:
(i) if (i,j) e {gf(1), gf(2), * gf(2v)}, then #(i, j)f + #(j, i)f _ 2;
(ii) f(1) =f(2v + 1),;
(iii) df = v + 1.

If (i,j) e {gf(1), gf(2), * , gf (2v)}, then #(i,3)f = 1, #(j, i)f = 1.
PROOF. Let f e A2vn satisfy conditions (i), (ii), and (iii) of the lemma.

(For n _ v + 1 such an f is easily constructed. For example, let f(l) = 1,
f(2) = 2,f(v) = vf(v + 1) = v + Lf(v + 2) = v, .f(2v) = 2.f(2v + 1) = 1.)
Lemma 3.2 shows df . v + 1. By Lemma 3.3 one must have f(v) + f(v + 1).
1 . { . 2v. Equation (3.5) holds:

(3.6) # Ff = #Df = df- 1 = v.

Consider the first step gf(l) = (f(1),f(2)). Iff(1) 0 {f(3). f(2v- 1)}. then
by condition (i) the last step must be the reverse of the first since f(I) j
{f(2), ,f(2v)}. On the other hand, if f(1) E {f(3), . ,f(2v - 1)} the
following argument applies. Let {, 3 < 1' . 2v - 1 be the least integer such
that f(t,) = f(1). Assume f(t - 1) : f(2). Condition (i) implies the repetitive
step gf (t-1) = (f(( - 1),f(1)) must be matched by at least one further
occurrence among gf(t), ,gf(2v) of a step equal to (f(( - 1), f(1)) or
(f (1), f(t - 1)), these occurrences being repetitive steps, since no free step equals
(f({ - 1),f(1)) or (f(1),f(t - 1)); which is so because: (1) the first step does
not since f({ - 1) =E f(2); (2) no step among gf(2), . .. gf (t - 2) involves an
f(1); and (3) any further free step among gf(t), * * *, gf(2v), say (f(i-- ),f w),
could not have f(i) = f(1) or f(i) = f(t - 1) because in either case f(i) e
{ f(1), .*. f(i - 1)}. For each free step there is an occurrence in the sequence
of steps of a repetitive step equal to the free step itself or its reverse, by
condition (i). Since there are v different free steps, one must have at least 2v
steps in the sequence equaling these or their reverses. This is apart from the 2
or more repetitive steps equaling (f (t - 1), f (1)) or (f(1), f({ - 1)), since no
free step equals either. Altogether one would need at least 2v + 2 steps; but
only 2v are available. Hence, one must have f((- 1) = f(2). Thus, the reverse
of the first step occurs.
Now define a sequence h: {1, 2, ... , 2v + 1} {1, 2, * n} as follows:

(3.7) h(l) = f(2), h(2) = f(3), h(i) = f(i + 1),
(3.7) h(2v) =f(2v + 1) =f(1), h(2v + 1) =f(2).

Associated with h is the sequence of steps gh(l) = (f(2), f(3)), g,(2) =
(f(3),f(4)), .., g,(2v - 1) = (f(2v),f(1)), gh(2v) = (f(1),f(2)). It is immediate
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that h satisfies conditions (i), (ii), and (iii) of the lemma. The above argument
shows that the reverse of g,(l) = (f(2),f(3)) occurs among gh(2) = (f(3),
f(4)), **... gh(2v) = (f(1),f(2)). Continuing in the same manner, one concludes
if (i,j) e {gf(1), gf(2), * * , gf (2v)}, then (j, i) e {gf(1), gf(2), * * *, gf(2v)}. Since
there are v different free steps and 2v steps altogether, one must have
# (i, j)r = 1, # (j, i)f = 1 for each (i, j) e {gf (1), gf(2), , gf(2v)}. This com-
pletes the proof of Lemma 3.3.
LEMMA 3.4. Let k be odd, say k = 2v + 1. Let fe A2,+in be such that:
(i) if (i, j) c {gf (1), gf (2), ,gf (2v + 1)}, then # (i, j)f + #(j, i)f _ 2;
(ii) f(1) = f(2v + 2).

Then df - v = [4k].
PROOF. Let f e A2V+ 1,n satisfy conditions (i) and (ii) of the lemma. Lemma

3.1 shows df < v + 1. Assume df = v + 1. Then by Lemma 3.2, f(t) #
f(t + 1), 1 < ( < 2v + 1. There are #Ff = #Df = df - 1 = v different
free steps. For each free step there is a repetitive step equal to the free step itself
or its reverse. This occupies 2v of the 2v + 1 steps associated with f. By con-
dition (i) the remaining step must equal one of the free steps or its reverse. In
other words, #(i, j)f + #(j, i)f = 2 for all (i,j) e {gf(1), g**,f (2v + 1)}
except one, say (k, 1'), for which # (k, ')f + #(V, k)f = 3.

All possibilities are now considered. First consider the case #(k, 6)f = 3.
(The case # (1, k)f = 3 is the same.) With f is associated a sequence of steps
gf(l), . , gf(r), *. *, gf(s), . *. , gf (t), *.. , gf(2v + 1), where gf(r) = gf(s) =

gf(t) = (k, t) and s - r > 2, t - s > 2. Let gf*(i) denote the reverse of gf(i).
From the sequence of steps gf(l), gf(2), * , gf(2v + 1) form a sequence of
steps associated with a sequence h: {1, 2, 2v - 1} - {1, 2, ** n} in the
following manner:

(3.8) gh(l) = gf(t + 1) = (tSf(t + 2)) = (h(1), h(2))
g#(2) = gf(t + 2) = (f(t + 2),f(t + 3)) = (h(2), h(3))

gh((2v + 1) - t) = gf(2v + 1) = (f(2v + 1),f(2v + 2))
= (h((2v + 1) -t), h((2v + 1) - (t - 1)))

gh((2v + 1) - (t - 1)) = gf(l) = (f(1),f(2))
= (h((2v + 1) - (t- 1)), h((2v + 1) - (t - 2)))

gh((2v + 1)- (t - r + 1)) = gf(r-1) = (f(r -1), k)
= (h((2v + 1) - (t - r + 1)), h((2v + 1) -(t - r)))

gh((2v + 1) - (t - r)) = gf* (s - 1) = (k, f (s - 1))
= (h((2v + 1) - (t - r)), h((2v + 1) - (t- r -1)))

gh((2v + 1)- (t - r - 1)) = g5 (s - 2) = (f(s - 1),f(s - 2))
= (h((2v + 1) - (t - r - 1)),h((2v + 1) - (t - r -2)))
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gh((2v + 1) - (t - s + 2)) = gf*(r + 1 (f(r + 2), 1
= (h((2v ± 1) - (t - s ± 2)),h((2v + 1) - (t - s ± 1)))

gh((2v +1) -(t-± 1)+ =gf(s + 1) ={f(s ± 2))
=(h((2v + 1) - t- 1 )), h((2v ± 1)-(- s)))

gh((2v + 1) - 4) =gf(t - 2) =(f(t -2),f(t - 1))
=(h((2v ± 1) - 4), h((2v ± 1) -3))

gh((2v + 1) - 3) =gf(t - 1) = (f(t - 1 ), k)
=(h((2v + 1) - 3), h((2v ± 1) -2)).

The steps associated with h aregf(1), ,gf(r - 1), gf*(r ± 1),~ ,g(-1),gf(
gf(s + 1), . , gf(t - 1), gf(t ± 1), ., gf(2v + 1), in other words, the same
as those associated with f except all steps equaling (k, f) have been dropped
and some of the steps associated with f have been reversed. It is easily seen that
if (i,j) e- {gh,(1), , gh (2v - 2)}, then # (i,J h + #(j, i),h 2, and dh = df =

v ± 1. But Lemma 3.1 shows dh, . v. One must conclude, by contradiction,
that df . v.
The other possibility is # (k, (1f = 2, # (t', k)f = 1 (or, what is the same

thing, # (k, 1of = 1, # (t, k)f = 2) for which an argument similar to the above
may be given. The details are not given here. This completes the proof of
Lemma 3.4.
WIGNER'S COMBINATORIAL THEOREM. Let B2,,, be the set of all fecA2v,n

such that:
(i) if (i,j) e {gf(1 ), gf(2), .. ,g(2v)}, then # (i,j)f ± # (j, i)f . 2;
(ii) f(1) =f(2v + 1);
(iii) df =v + 1.

Then

(3.9) #hBvn = (2v)+-nv + o(nv+l).
~2v~n v!(v ±1)!

PROOF. Let fec-B2v,n. By Lemma 3.2, f(t) ~f( + 1), 1 .0 . 2v. By
Lemma 3.3, if (i, j) e- {gf(1), - . , gf,-(2v)}, then #(i,j)f = 1, # (j, i)f = 1. A
sequence t :{1, 2, -.. , m} -+. {integers} is called a type sequence if and only if
t(t) .0 1 < tK m, t(1) = 1, t(m) = 0, and t (t + 1) - t(?) = ± 1 1 <
0' . m - 1. For each fe B2v,, define the type sequence tf : {l, 2, . ,2v} -
{ integers} as follows:

(3.10) if(t) = {gf(i), 1 < i < ': gf(i) is free}
- # {gf(i), 1 < i < t0gf(i) isrepetitive}.

For a given type sequence t : {l, 2, ... 2v} --+ {integers} one has

(3.11) #{f c-B2,n: If(t) = t(0), 1 . 0' . 2v} = n(n - 1) .. (n - v).
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This is so because: (1) there are n choices for f(1); (2) for 2 . i < 2v, if
t(i) - t(i - 1) = 1, then (f(i - 1).f(i)) is a free step and f(i) may be any
numberwhichhasnotbeenusedyet;and(3)for2 . i . 2v,if t(i) - t(i - 1) =
-1, then (f(i - 1), f (i)) is a repetitive step and must be the reverse of the step
which originally led to f(i - 1) (Lemma 3.3), and hence f(i) is completely
determined. Let S, denote the number of type sequences with domain
{1, 2, , 2v}. Then

(3.12) #B2vn = Svn(n - 1) (n - v) = Svn`~' + o(nV+l).

To find S. one argues as follows. The number of type sequences t such that
t(i) > 0. 1 . i < 2v - 1, t(2v) = 0, that is, no 0 before the last value. will be
denoted by St. From such sequences, one can obtain a type sequence with
domain {1. 2 2v - 2} by omitting t(1), t(2v) and subtracting 1 from each
t(i), 2 < i < 2v- 1. Hence,
(3.13) S=Sv1, S= SO = 1.

Given a type sequence with domain {1, 2, 2v}, let 2k be the smallest
integer such that t(2k) = 0 for the first time. Then t,: {1, 2, 2,*,2k}
{integers} forms a 0 free type sequence while t2: {2k + 1. 2v} - {integers}
forms an arbitrary type sequence. Hence,

v v

(3.14) Sv = kv-k = Svk-15v-k v = 1. 2,-.
k= 1 k= 1

These recursive equations permit the successive calculation of the S,. Formally,
one can obtain a closed formula for thern by writing t(x) = Eo tVx'. The
recursive formula (3.14) then gives

(3.15) t(x) = 1 + xt2(x).

The 1 on the right side is necessary because (3.14) is not valid for v = 0. It
follows that

1 ± (4 _- )1(3.16) t(x) = 2x

Actually, the lower sign has to be taken. It gives
1 ~~~(2v)!=12<.(3.17) ~~~S,= 2 4)v+1 = ,2(3.17) S = 2 ( 2 1) (-4) = v! (v + 1)!

And finally,

(3.18) #B2vn (2v)! nv+1 + o(nv+1).

This completes the proof of the theorem.
Let C2kfn denote the set of all f e A2kfn such that:
(i) f(1) =f(2k + 1);
(ii) f(i) f(i + 1), 1 . i . 2k:
(iii) if (i.j) e {gf (1), gf (2), gf (2v)}. then # (i. j)f + #(j. i)f is even.
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Let CJ2k n denote the set of all fE C2kn such that df = j. By Lemma 3.2, if
f E C2kn' then df < k + 1. Thus, C2kn = Ujk-+1 Ci2k n and

k + 1

(3.19) #C2kn = E # 2Ck,n.
j=1

LEMMA 3.5. The sets just defined satisfy the relation # 02kn = (nj)(#C2kC,).
PROOF. The relation - determined by f - f* if and only if fC-e 2k,.,
* C'2kf and {f(1),f(2), * ,f(2k + 1)} = {f*(1).f*(2), *.* ,f*(2k + 1)} is

an equivalence relation. The set Ck'l is split into (") equivalence classes by ',
each containing #C2kj members. Hence, #C2k n = (n)(#CJ2kj). This com-
pletes the proof of the lemma.

Using Lemma 3.5, one has
k+l1

(3.20) #C2k,n = Ej2(#C~k,j).

Thus, # C2kn is determined for all n by #02k, 1, #C2k,2, * 2kk+ . An
unsuccessful attempt to determine these numbers in a closed form was made.
In an attempt to solve the problem, the enumerations found in Table I were
made on a computer. It will be pointed out in the next section in what context
these numbers may be of interest.

TABLE I

ENUMERATIONS

The numbers in the body of the table are (1/n)(#Cikj) = (I/n)(#CCk.j).

2 3 4 5 6 7
k, n

3,2 1
3,3 2 20
3,4 3 60 30
3,5 4 120 120
3,6 5 200 300
4,2 1
4,3 2 84
4,4 3 252 390
4,5 4 504 1,560 336
4,6 5 840 3,900 1,680
5,2 1
5,3 2 340
5,4 3 1.020 3,840
5,5 4 2,040 15,360 8,544
5. 6 5 3,400 38,400 42,720 5,040
6,2 1
6,3 2 1,364
6, 4 3 4,092 34,980
6,5 4 8,184 139,920 153,600
6, 6 5 13,640 349,800 768,00 214,080
6, 7 6 20,460 699,600 2,304,000 1,284,480 95,040
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4. Random sign ensemble and Wigner's conjecture

4.1. Wigner's 1955 paper. In 1955, Wigner [16] proved the result discussed
below.

Let A,, (aij)n j= 1 be a random matrix such that:
(i) aq =a a.s.;
(ii) {aij, i _ j} is independent;
(iii) P(aij = a) = 2, i #E j, P(aij = -a) = 2, i j, P(aii = 0) = 1.
Let B,, denote the normalized matrix

1

Denote by A, (B,,) -< A2 (B,,) < ... < An (B,,) the ordered random eigenvalues of
B,, and by W,,(x) the empirical distribution function of {A, (B,,), A2(Bn ), * **, A,(Bn )},
that is,

(4.1.2) W.(X)(W) = E I[Ai(Bn)Gc(--,x)l(a)).
n il

Then one has the following theorem.
THEOREM 4.1.1 (Wigner [16]). For all xE R1, lim,,- E(W,,(x)) = W(x),

where W is the absolutely continuous distribution function with semicircle density

(4.1.3) W()( (1 - x2)2 lxi _ 1,
o, 1xl> 1.

PROOF. The distribution function W is uniquely determined by its moment
sequence since

(4.1.4) kE Ok'( = (kk 1)(J2)t

= eitx -2 ) 112 dx,

where J1 denotes the Bessel function of order 1 of the first kind and
'

0 for k odd,

(4.1.5) k = dW(x) 2k(lk)!(k + 1)! fork even.

It is immediate that EW,, (x) is a distribution function in x. Thus, if it can be
established that

(4.1.6) f Xk dEW,,(x) Vk as n -- oc

for all k = 1, 2, * * ,then Lemma 2.5.1 will yield the desired result.
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Consider the set T of all ordered (n -1 )n tuples of the numbers + a and - a.
For each (i12, i ,i23,.... 2n, in,,1) ce T, define d i
{c)oe : a,1(co) = 0, al2((C) = i12, , a,,.(c) = ill, a22(C0) = 0, a23(co) =

i23, * , a2.(c)) = a-,* , an"(co) = 0}. Then using assumptions (i),
(ii), and (iii), we have

(4.1.7) P(D(i =

for all points in T, where h = 2(" - 1)n/2 One has W, (x) = N (x)/n, where N (x)
equals the number of eigenvalues of B, less than x. On each Di, i e T, W, (x) is
constant; denote these values by W.(x)i = N"(x)Jn,i e T. Then, since Q =
(UieT Dj)u N, where (Uier Di) n N = up and P(N) = 0,

(4.1.8) EWn(X) = { Wn (x) dP

ieT (x)dP

= Ez ()d
icT Di

N,.(x)i
ieT nh

This shows that E W,, (x) is a discrete distribution function with jumps of length
1/nh or multiples thereof at the eigenvalues of the h possible (that is, occurrence
with positive probability) values of B,. Each i e T represents one of the possible
h values of B, on 0; denote these values by B,(i), ij T. Let e1, e2, * , enh be
the set of all eigenvalues of all possible values of B,. Then we have

(4.1.9) {xkdEwn(x) = 'h ej
nhj=1

= Ztr (B,(i))
1 n k

h(2)kn+k/2 r iEl EJ aj(j1 (i)

where jk +1 = j, and ajk(i) equals the value ajk assumes on Di. Interchanging the
order of summation and denoting by Ak,n the class of all sequences f:
{1,2,''',k + 1} -- {1,22,vn},onehas

1 k
(4.1.10) =Xk dEW"(X)(2(X )knl+k2 Hafk(.)f(+ )()

w (2a n' feBkfl tceT .1=1

where Bk,fn {f c-Ak, : f(1) = f(k ± 1)}, or



628 SIXTH BERKELEY SYMPOSIUM: OLSON AND UPPULURI

(4.1.11) =E"x (2aT)knl +k/2 fEZ n .I1 af(f( 1)fdP

1 k
(2y)kfl+k/2 Z E Hl af(6)f( + 1).(2U~kn +k/2

C-Bk,~ =

Since aii = 0 a.s. this becomes

1 ~~~~~~k(4.1.12) IxkdEW (x) = nE +k/2 f()f6+1l(20)k1+/2fECk,,~ 61

where

(4.1.13) Ck,. = {f Bkn f(() # f(( ± 1), 6 = 1 k}.
Two cases are now considered, k odd and k even. Note that all the random

variables aij are symmetric about 0, so that all odd moments vanish. Let
k = 2v + 1. For f e C2,+ 1,n one has n=+,1 af()f(f+ ,) = af(i)f(i+ 1) H1 ajk a.s.,
for some i, where m is odd and the product H ajk involves no af(i)f(1+ 1) or
af(i+ 1)f(i)* Then, by independence and symmetry,

2v+ 1

(4.1.14) E H af(6=)f(+ 1) Ea7(i)f1) E Hl aJk = 0

Thus,

(4.1.15) fR X2v1 dEW,.(x) = 0 = Y2v+1

Now assume k = 2v. One need only consider those f e C2V n for which if
(ij) e {gf(1), gf(2), *. , gf(2v)}, then #(ij)f + #(j, i)f is even, for otherwise
the argument of the odd case applies and the term vanishes. Thus.

1 ~~~~2v
(4.1.16) jX2vdEW,,(2()x)E Haf )f n f-I).

R fe~~(,7)Yy D2,,~6

where D2,,n = {feC-2vs if (i, j) e {gf (1). gf (2), gf (2v)}. then # (i,J)f +
#(j, i)f is even}. Forfe /2vn one has, by Lemma 3.3

2v

(4.1.17) E H af(1)f(f+1) = .2v_

Thus,

(4.1.18) X2v dEWn(x) = # 2v+l
By Lemma 3.1,f e D2V n is such that df . v + 1. Thus,

v+ 1

(4.1.19) #D2V,n= Z #Dj2vn
j=1
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where D2v,n = {fe D2vn df =i} As with Lemma 3.5, one has

(4.1.20) = ( #Di vj)

Let

(4.1.21) fl (v n) 2v,

V, (n ( # D,2sj
(4.1.22) f2(v, n) = 22vnv+

Then

(4.1.23) x2vdEWn(X) =fl(v, n) + f2(v.n).

Since (M)/nv+l 0 as n - oo forj = 1, * v, one hasf2(v, n) 0 as n cxc.
By Wigner's combinatorial theorem

(4.1.24) #Dv+1 (2v)! nv+ ±+ 0(nv`l)2v,n v!(v + 1)!

Thus,

(4.1.25) fl(v, n) = 22v( )! + 22vnV+l

and

(4.1.26) f1(v, n) 22vv!(v + 1)!
as n -x cc. Thus,

(4.1.27) J 2v 22v!(v +1)! = 72v
as n -x cc. This completes the proof of Theorem 4.1.1.

Note the equation,

(4.1.28) X2v dEWn(X) = D2_vn_J~fl\X/ - 22vnv 1'

derived during the course of the proof. A knowledge of # D2V n would give the
sequence of moments of the distribution function EW,(x). As mentioned at the
end of Section 3, these numbers are determined for all n by a knowledge of only
#M~,,, #D 2v, 2, . v. + 1
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4.2. Wigner's 1958 conjecture. In 1958 Wigner [18] conjectured the
following result. Let A,, = (aij)ij= 1 be a random matrix such that:

(i) a,1 = aji a.s.;
(ii) {aij, i < j} is independent;
(iii) the distribution function of each a,1 is absolutely continuous with

density pij;
(iv) each a%1 is symmetric;
(v) E ai. = o2 for all 1 _ i, j _ n;
(vi) E Iaijlk < Ck for all 1 _ i, j < n, where Ck is independent of n.
Let B,, = (2av".))-'A, and denote by W, (x) the empirical distribution

function of {2A(B,,), )l2(B,,), ,* A,,(B)} where)., (B,,) _ A22(B,) _ * * ,* (Bn )
are the ordered random eigenvalues of Bn.. Under the above conditions one has:
WIGNER'S CONJECTURE. For all x e R,, EW,(x) -- W(x) as n - oo, where

W(x) is the absolutely continuous distribution function with semicircle density

(4.2.1 ) w {x)-j (1 - x2)112, 1xl . 1,
Oxl> 1.

In the next section, we shall discuss work of U. Grenander [7] who sketched a
proofof convergence in probability of the empirical distribution functions to the
semicircle law. We shall also discuss the work of L. Arnold [2] in this connection.

5. The results of Grenander and Arnold

5.1. Convergence in probability. Grenander [7] sketches a proof leading to
the result given in this section.

Let A,, = (ai) j= 1 be a random matrix such that:
(i) = aji a.s.;
(ii) {aij, i _ j} is independent;
(iii) % is symmetric;
(iv) E ai~= 0.2;
(v) IE aikIj _ Ck, k = 1, 2, * , where Ck is independent of n.

Let B. = (2a0.V) - 'A. and denote by W,, (x) the empirical distribution function
of {A,(B.), A)2(B.), - * *, .,,(B.)}, where A),(B.) -< A2(B.) < ...* A),,(B,,) are the
ordered random eigenvalues of B,,
THEOREM 5.1.1 (Grenander [7]). For all x c R,, W,,(x) -P W(x) as n -oo,

where W is the absolutely continuous distribution function with semicircle density

X (1 _ X2)112, Ixi _ 1,
(5.1.1) w(x)={lt IxI > 1)

t°, l~~~xl > 1.

PROOF. Let

(5.1.2) Mk,,, = )k dW.(x)
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By Lemma 2.5.4, it will be sufficient to prove Mk,n -YVk = Jk dW(x) as
n -+ oo for all k = 1, 2, . . . This will be achieved in two steps. First it will be
shown that EMk,, -_ Yk as n - oo as for all k = 1, 2, * Then it will be shown
that E(Mkf - EMk n)2 0 as n , o for all k = 1, 2,*. Chebyshev's
inequality,

(5.1.3) P(IMkf -EMk nI > g E(Mk, - EMk, )2

then gives Mk, - EMk,"-P 0 as n oo for all k = 1, 2,*. This and

EMk,. - 7k imply Mk,. + 7k as n -. o for all k = 1, 2,*-.
It is now shown that EMk, Yk as n -c. Let Ak," denote the class of all

sequencesf: {1, 2, *, k + 1} {1, 2, * n}. Then

(5.1.4) EMkn E | W,,dw() =E AiR(B.)in

= E - tr B.n

1 k
=E (2okn+k/2 Z 11 af(e)fVe+l1)

E J)knl+k/2 E H af(,)f(+ 1),
(2en7)knk Bf eBk,, {=1

where Bk,. = {feAkn f(l) =f(k + 1)}. As in Theorem 4.1.1, two cases are

considered, k odd and k even. For exactly the reasons given in the proof of
Theorem 4.1.1 one concludes immediately that for k = 2v + 1

(5.1.5) EM2v+1.n = 0 = Y2v+1

Now let k = 2v. If feB2m, is such that there exists an (f(i),f(i + 1)) such
that #(f(i),f(i + 1))f + #(f(i + 1),f(i))f = 1, then by independence and
symmetry,

2v 2v

(5.1.6) E H af(e)f((+l) = Eaf()f(i+1)E H af(e)f(+l) = 0.

Thus,
1 ~~~~2v

(5.1.7) EM21,, = 2 1 Z E H1 af~ef~e+1),
(5.1.7)(2a) n feC2v. e=1

where C2v, = {feB2m : if(i j) e {gf(1),gf (2), . ., gf (2v)}, then #(i, j)f +
#(j,i)f > 2}. By Lemma 3. 1, df < v + 1 for all fEc C2,. Let

l 2v

(5.1.8) fl ' ) (2a)2vnvfeC+ (=Eaf(1)f(.+ ),

1 2v
f2(v, n) 2v v= E 11 af(e)f(+l),(2aj)vnv veUC e=1
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where C-2v,n = {fE C2v,n: df = j} Then

(5.1.9) EM2n =fl(v, n) + f2(v, n).

By assumption (v), one has

Dv v

(5.1.10) 1f2(v, n)I _ 2v #C
-(2.)2vlv+ 1j 2n

for some constant D2V < oo, or

D2v ( Cj2vj)
1f2(v, n)I (2I.)2vnv+l

Since (I)/nv+l 0 as n oo cforj = 1,,v, one hasf2(v,n)--a0 as n

Let feC n. Then, using Lemma 3.3, one has
2v

(5.1.12) E H1 af())f(g+1 = 2v.

Hence,
,,cv+l

(5.1.13) f1 (v, n) = 22vnv+.

By Wigner's combinatorial theorem,
(2v)! o (nv+l

(5.1.14) f1 (v, n) = 22vv!(v
(

1)! + 22vnv+

Hence,

(2v) !
(5.1.15) f1(v, n) - 22vv!(v +)! Y2v

as n x-+ o. Thus, EMk,n ykasn x forallk =1, 2,* .
ItwillnowbeshownthatE(Mk, -EMk, )2 -> Oasn -+ ooforallk = 1, 2,*.

Forfe A2k+ 1,n, let
k 2k+ 1

(5.1.16) E(f) = E H af(j)f(+l) HI af(j)f(j+l)
= 1 j=k+2

k 2k+1

-E HI af()f(j+1l)E HI af(j)f(j+1).
i=1 j=k+2

One has after some manipulation

(5.1.17) E(Mkn - EMkn) )2 [E(f)]

where B2k+l,n = {f eA2k + 1,n: (i) f (1) = f (k + 1); (ii) f (k + 2) = f(2k + 2);
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(iii) f (ij) c {gf(1)) * , gf(k), gf(k + 2). , gf(2k + 1)}, then #(i,j)f +
#(j, i)f > 2}. Condition (iii) follows from the independence and symmetry
conditions. It allows one to conclude, by arguments exactly as those of the
proof of Lemma 3.1, that df . k + 1 for allfeB2k+lfn. By assumption (v),

(5.1.18) IE(f)l _ 6k < Th

where 6k is independent of n. Thus,

(5.1.9) EMk~fl- Ei~k~f)2 < k(#B2k+ 1,n)( 5. 1 . 19 ) E (Mkn - EAlk, =) _ (2o) 2knk+2

Now
k+ 1

(5.1.20) #B2k+l,-= Z #Bik+l n
j= 1

, .:()(# B2k + 1,j),

where B2k+l,= {f c B2k+ 1,n: df = j}. Thus,

6k ( ) (#B2k+l,.)
(5.1.21) E(MkAn - EMk n))2 (2< )2knk+2

Since (M)/nk+2 - 0 as n xc forj = 1, 2, , k + 1, one has

(5.1.22) E(Mk, nEMk, )2 _ 0

as n -+ oo. This completes the proof of Theorem 5.1 .1.
5.2. Convergence almost surely. Arnold [2] sketches a proof leading to the

result given in this section.
Let An = (aij)i j= 1 be a random matrix such that:
(i) %i aji a.s.;
(ii) {aij, i _ j} is independent;
(iii) the aij, i #6 j are identically distributed with distribution function F, and

the aii are identically distributed with distribution function G;
(iv) Ea = Jx dF= 0,i7j;
(v) Ea,2 = x2 dF= 2, i =, j
(vi) (a) Ea2 = f x2dG < oo,Ea 'j = Jx4dF < oo:

(b) Ea =Jx4dG < o, Ea = Jx6dF<c.
Let Bn = (2a n) - 'An and denote by W,, (x) the empirical distribution function of
{21 (Bn), ..2 (B.), *, )n(BBn)}, where A1 (Bn) ... _ An (Bn) are the ordered
random eigenvalues of Bn. Arnold [2] then gives the following theorem.
THEOREM 5.2.1. Under conditions (i) to (v) and (vi) (a), Wn(x) P W(x) as

n -x o for all x e R, and under conditions (i) to (v) and (vi) (b), Wn(x) -+ W(x)
a.s. as n - oo for all x e R1, where W is an absolutely continuous distribution
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function with semicircle density

r2
(5.2.1) w 4x){i_(1 - x2)12, lxl < 1

Olxl 1.

6. On Wigner's 1958 conjecture

6.1. A limit theorem. We shall prove in this section the following theorem.
Let An = (ai)i j= 1 be a random matrix such that:
(i) = aji a.s.;
(ii) {aij, i < j} is independent;
(iii) Eaii = 0, 1 < i, j < n;
(iv) Eaj = a2, 1 < i j _ n;
(v) Elaijlk < Mk, 1 _ ij < n, where Mk is not dependent on n.

Let B, = (2av/n) -1A, and denote by W, (x) the empirical distribution
function of {,1 (Bn), A2(Bn), .)L* * * , (B,,)}, where A1 (B,,) _ )2(BJ) < * * * - (B.)
are the ordered random eigenvalues of B,.
THEOAEM6.1.1. For all xe R1, W(x) - W(x) a.s. as n -* oo, where W is

an absolutely continuous distribution function with semicircle density

( 2 (1 - x2)1/2, 1xl _ 1,
(6.1 .1 )w(x) = 7r

o, lxl > 1.

PROOF. It is to be proved that

(6.1.2) P(lim W"(x) = W(x))= 1.
n -*

Let

(6.1.3) Mk,. = xk dW.(x)

and

(6.1.4) Yk = f X dW(x)

t0, odd k,
=< ~k!
{2k( k)!(!k + 1)!' evenk.

By Lemma 2.5.1, it will be sufficient to prove

(6.1.5) P(lim MkAn = Yk, k _ 1) = 1.
n-o
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This will be true if

(6.1.6) P(lim Mk,n = Yk) = 1
n .o

for all k > 1. By the triangle inequality,

(6.1.7) 1Mk - YkI _ IMk,n - EMk,nI + IEMkn -Yk,

and it will be sufficient to prove:

(a) lim EMk,n =yk, k > 1;
(6.1.8) n-o

(b) P(lim (Mk, - EMkn) = 0) = 1, k _ 1.
n-x

For (b), it will be sufficient to prove
a0

(6.1.9) Y E(Mk,n - EMk, n)2 < 00, k > 1.
n= 1

This is seen as follows. T'he statement

(6.1.10) P(lim (Mk, - EMkn) = 0) = 1
n-o

is equivalent to

(6.1.11) P(lim sup {co: IMkn(co) - EMk, n > )= 0
n_.

for every E > 0, by Lemma 2.5.2. Let An = {C: IMk,n(() -EMknI > E}. It is
to be shown that P(lim supn_- An) = 0. Chebyshev's inequality gives

(6.1.12) P(IMk,n - EMkl ) < E(Mk,n -EMk,

This and E' 1 E(Mkfn - EMkf)2 < oo implies Y' 1 P(An) < xo. Then Lemma
2.5.3 (Borel-Cantelli) gives P(lim supn-,, An) = 0. Altogether, then, it will be
sufficient to prove:

(a) lim EMk,n =yk, k > 1;
(6.1.13) n10

(b) 1 E(Mkn -EMkn )2 < Do, k _ 1.
n= I

The proof of (6.1.13) (a) follows.
Letting Akfn denote the class of all sequence f: {1, 2, k + 1}

{1, 2, *.. , n}, one has
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in(6.114) ~ k"= Ej'2kdW"(x) =E li("

= E -tr Bk,n

1 k
= E (2 )k 1 +k/2 Z H af(.)f(t+ 1)

(2a n feBk,, 6= 1

k

(2a)knl+k/2 , E
H af(e)f(e+l),

(2) n +/2fc-Bk,, __1

where Bk,n = {f e Akf f(l) = f (k + 1)}. Let f e Bk,, be such that there exists
(f(i), f(i + 1)) c {gf(1), gf(2), .. gf(k)} such that # (f(i), f(i + 1))f +
# (f (i + 1), f (i))f = 1. Then, by the independence and zero mean assumptions,

k k

(6.1.15) E H1 af(.)f(g+ 1) = Eaf(i)f( + l)E H af()f(,+ 1) = 0.

Thus, one has
1 ~~~~~~k

(6.1.16) EMk, = (2a)k l +k/2 Z E H af()f(e+ 1),
fECk,, __1

where Ck,n = {feBk,,,: if (ij)e{gf(1),gf(2),- ,gf(k)}, then #(i,j)f +
# (i, j)f > 2}. Two cases are now considered, k odd and k even. Let k = 2v + 1.
By Lemma 3.1, df < v + 1 for allf c C2v+ ln Thus,

1 v+l 2v+1

(6.1.17) EM2v+1,,,n= )2v+ +3/2 ZE H af(e)f(g+ 1),

where the summation is taken over fe Cj2 + = {feC2,+1,,:df =j}- By
assumption (v),

2v+ 1

(6.1.18) E H af(.)f(t+1) _ Dv < o,

for some constant D,. Hence,
v+ 1

Dv 1 #Qj2v+1,n
(6.1.19) IEM2v++1,n,- (2)12=v+ )n(v+1)+ 1/2

Dv Q(.) 2v+ 1,j)

(2f)2v+ 1 n(v+ 1) + 1/2
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Since (j)/n(v+1)+l/2 -0 asn -0 forj = 1, 2, , v + 1,onehasEM2+1n -° 0
asn -- cc. Now considerk = 2v. By Lemma 3. 1, df _ v + 1 for allfe C2vn. Let

1 2v

fl (Vn) = (2a)2vnv+1 Z E H af(,)f((+),(6.1.20) f25 n eC2+>:' 1

(2ar)2vnv + 1 l~s e-1

where Cj n = {fe C2V,. :df = j}. Note that EM2 n, =f1(v, n) + f2(v. n). By
assumption (v),

2v

(6.1.21) E H af(,)f(+l) < v < °°

for some constant 6, Thus, v

6v #C2v,n

(6.1.22) 1f2(v. n)I _ )2 +1
(2a.)2vnv+1

Since()/nv+l O 0as n cc forj = 1, v, one has f2(v, n) O asn x .
By Lemma 3.3,

2v
(6.1.23) E H af(,)f(<+l) = a2v

f '= 1

for all f e Cv2+ n. Thus,
q2v (#cv+1)

(6.1.24) f1(v, n) = (20.)2vn)

By Wigner's combinatorial theorem.

(2v)! ° (nv+)
(6.1.25) f1(v, n) = 22vv!(v + 1)! + (2 )2vnv+l

Thus,
(6.1.26) fl (v. n) -

(2v)! =
22vv! (v + 1)!

as n a-+ c. Altogether

(2v)!
(6.1.27) EM2v n 22vv! (v + 1)! =2v

as n -- cc. This completes the proof of (i). The proof of (ii) follows.
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Consider E(Mk, - EMkf)2. ForfeA2k+l l, let E(f) denote
k 2k+1 k 2k+1

(6.1.28) E Hl af(i)f(i+ 1) H af(j)f(j+ 1) -E af(i)f(i+1) E H1 af(j)f(j+ 1).
i=1 j=k+2 i=1 j=k+2

One has

(6.1.29) E(Mk,. - EMk,)2 (2Ea)2knf+2k (l),

where B2k+1, = {f A2k+ 1,n: (i)f(1) =f(k + 1); (ii)f(k + 2) =f(2k + 2);
(iii) {gf (1), gf(2), * gf(k)} n {gf(k + 2), * *, gf(2k + 1), g (k + 2), .,
gf*(2k + 1)} # 0, where gf*(t) denotes the reverse of gf(t); (iv) E(f) = 0}.
Reasons for conditions (i) and (ii) are obvious. If condition (iii) is not met byf,
the term in the summation corresponding tof will be zero, by the independence
assumption. Condition (iv) is trivial. It will now be shown that if fe B2k+l
then df < k. Using condition (iii), suppose, for the sake of definiteness, that
gf(8) = gf(t) for some s, 1 < s < k, and some t, k + 2 < t _ 2k + 1. (The
only other case to consider is when gf(s) = g5*(t) for some s, 1 < s < k, and
some t, k + 2 < t < 2k + 1, for which the following argument also applies.)
Define a new sequence heA2k+ ,fl as follows: h(l) =f(s), h(2) =f(s + 1),
..--,h(k -s + 1) = f(k),h(k -s + 2) =f(l),h(k -s + 3) = f(2),---,h(k)=
f(s -1), h(k + 1) =f(s), h(k + 2) =f(t + 1), h(k + 3) =f(t + 2), *
h(2k - t + 2) =f(2k + 1),h(2k - t + 4) =f(k + 3), - -,h(2k + 1) =f(t - 1),
h(2k + 2) = f(t). It is immediate that dh = df. The sequence of steps associated
with h is

(6.1.30)

gh(1) = (f(s),f(s + 1)), , gh(k - 8 + 1) = (f(k),f(1)),
gh(k - s + 2) = (f(1),f(2)), * , gf(k) = (f(s -),fs),

gh(k + 1) = (f(s),f(t + 1)) = (f(s),f(s + 1)), ,
gh(2k - t + 2) = (f(2k + 1),f(k + 2)),
gh(2k - t + 3) = (f(k + 2),f(k + 3)), , gh(2k + 1)

= (f(t - l ), f t)).
It is true that:

(i) h(l) = h(2k + 2);
(ii) if (i,j) C {gh(1), gh(2), v gh(2k + 1)}, then #(ji)f _ 2.

Assertion (i) is immediate. To see (ii) one proceeds as follows. If (i, j) equals
gh(k + 1) = (f(t),f(t + 1)) or g* (k + 1) = (f(t + 1),f(t)), then #(i,j)h +
# (j, i)h _ 2 since gh (1) = gh (k + 1). On the other hand, if (i, j) equals any other
step among gh (1), * , gh (k), gh(k + 2), * * * gh(2k + 1), and # (i, j)h +
# (j, ')h = 1, then the independence assumption implies

k 2k+1 k 2k+1
(6.1.31) E 11 af(i)f(i+ 1) 11 af(j)f(j+ 1) -E rI af(i)f(i+ 1) E af(j)f(j+

i=1 j=k+2 i=1 j=k+2
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/k 2k+1\

E 1 ah(i)h(i+ 1) 2k ah(j)h(1 + 1)
i=l j=k+2

k * 2k+ 1

- E ah(i)h(i+ 1) 1
a /U)hU+1) =0

i~~l j=k+2

contrary to the assumption that for f e B2k + 1,n this term is nonzero. Hence, h
must satisfy condition (ii) above. Lemma 3.4 then applies, giving df = dh < k.
Now consider

(6.1.32) E(Mk, - Ek,) (2)n 1 feB Ef

where B2k+l1,n = {feB2k+l,n : df = j}. By assumption (v), one has IE(f )I
Gv < oo for some constant G0. Thus,

k

Gv ( #BJ2k+l
(6.1.33) IE(Mkf - EMk,f)21 < - = 1

(2a )2knk + 2

(2a)2knk
Since

(6.1.34) k+ < °°

forj = 1, 2, * , k, one has, by the comparison test for series
00

(6.1.35) EE(Mk,. - EMk,fl)21 < o°

which implies
CO

(6.1.36) Z E(Mk,. - EMk, )2 < CC

which was to be proved. This completes the proof of Theorem 6.1.1.
6.2. Comments. A little reflection will reveal that the assumption of zero

means for the diagonal elements is not necessary. For, in proving EMkfl -n Yk
as n -- oo, it was established that the only sequences of interest were those

f c Akfn for which (i) f (1) = f (k + 1) and (ii) if (i, j) e {gf(1), . *. , gf (k)}, then
#(i, j)f + (j, i)f > 2. Condition (ii) alone implies df _ [2] + 1. If one
assumes, however, that (iia) if (i,j) e {gf(1), * , gf(k)}, where i + j, then
# (i, j)f + # (j, i)f > 2, then conditions (i) and (iia) together imply df _ [4k] +
1. For odd k, say k = 2v + 1, one has EM2v+1.n °_ 0 = Y2v+1 as n -- oo

exactly as before. For even k, say k = 2v, the only sequences of interest are
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those f such that df = v + 1. If df = v + 1, then f(i) = f(i + 1) for some i is
not possible, since under conditions (i) and (iia) arguments similar to those ofthe
proof of Lemma 3.2 would give df < v. Thus, Wigner's combinatorial theorem
holds under conditions (i), (iia), and (iii) df = v + 1; application ofthis theorem
then gives EM2m, -n Y2v as n -C ol exactly as before. Note that use of the
property of zero expectation of diagonal elements has been eliminated by
substitution of condition (iia) for condition (ii). Similar arguments also hold for
the proof that E,'= 1 E(Mk,n - EMk,l )2 < °°
That the off diagonal elements all have second moments equal to a2 is not

necessary. An examination of the proof shows that it is sufficient to assume that
the ratio of the number of elements of the matrix having the same second
moment to the total number of elements of the matrix approach 1 as the
dimension becomes arbitrarily large.

It should be noted that Wigner's conjecture of 1958 is a special case of
Theorem 6.1.1. Wigner's conjecture is not a special case ofthe theorem indicated
by Arnold, for Arnold assumes the diagonal random variables are identically
distributed and the off diagonal random variables are identically distributed.
Arnold does drop the requirements, given by Wigner, of symmetric random
variables and the existence of higher order moments. Theorem 6.1.1 is not only
more general than the result conjectured by Wigner in the sense that it deals
with almost sure convergence, but it also drops Wigner's requirement of
symmetric random variables.

7. Related results

7.1. The Gaussian orthogonal ensemble. In quantum mechanics, under
certain symmetry conditions, energy is represented by a real symmetric matrix
X. If for a first observer energy is represented by X, then for a second observer
with a rotated coordinate system energy is represented by OXO', where 0 is the
orthogonal matrix relating the axes of the observers. Descriptions based on X
and OXO' are completely equivalent physically. Thus, if a statistical hypothesis
is made on X, then it is natural to make the same statistical hypothesis on OXO'.
The following makes this precise and characterizes the possible statistical
hypotheses.

Let {xj}~i5, i,j = 1, 2, * , n be an independent set of random variables
on a probability space (Q, .F, P). Let

X11 X12 ... Xln

(7.1.1) X X21 X22 X2n

Xn 1 Xn2 Xnn

where x.. = xji a.s., and let

(7.1.2) Yo = (Y°) = OXO',
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where 0 is any orthogonal matrix. Let x = (x11 * X1,. x22 . x2n Xnn)
and yo = (Y.l, - nY? Y02 2 v Y2°n . y). Let fln denote the Borel a-
algebra of subsets of the n dimensional Euclidean space Rn. We do not consider
the case where x = 0 a.s.

This theorem seems to have been first proved in this context under more
restrictive conditions than those given here by C. E. Porter and N. Rosenzweig
[15].
THEOREM 7.1.1. For all BeEn(n+1)2 and all orthogonal 0

(7.1.3) P(a E B) = P(yo c B)
if and only if xii is normal with mean pi and variance 2a2 and xij, i < j. is normal
with 0 and variance a2, for some constants pu and a2 > 0.
A proof of this may be found in Olson and Uppuluri [12].
If one assumes that X is a random matrix such that: (i) X is symmetric; (ii)

the set of diagonal and superdiagonal elements of X form an independent set of
random variables; and (iii) the distribution of X is invariant under orthogonal
similarity transforms, then Theorem 7.1.1 allows one to say that the elements of
X are normally distributed as indicated in the theorem. The physicists call this
model the Gaussian orthogonal ensemble.
For the particular Gaussian orthogonal ensemble Xii - n(O, 1) and Xjj -

n(O, -) the probability density function of the n x n symmetric random matrix
X = (Xjj) is given by

(7.1.4) const exp {-2 tr X2}.

By using standard methods of multivariate analysis. one can show that the
probability density function of the eigenvalues s, E2 * , of X is given by

1 ( n

(7.1.5) n exp i-2 E2 [lei-2n/2 n! Jl 1'(4j) i=1 i<j
j= 1

We note from this explicit form of the density function that the eigenvalues
1 , C2. , en in this case are exchangeable (for definition of exchangeability

see [6]). M. L. Mehta and M. Gaudin [11] exploit this property by using the
technique of integration over alternate variables (see N. G. de Bruijn [4]) to
obtain the density function of a single eigenvalue (for the case n = 2m) as

2m- 1

(7.1.6) U2m(8) = E pi(t) + MP2m-1() | V2rn(Y) dy,i=o J

where

(7.1.7) j(e) = (2jj! ei-1/2E2!2 (_ d ) e

/ - ~~de
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Then it is claimed by Mehta and Gaudin [11] that U2m(x) is asymptotically
equal to v(x), where

(7.1.8) o~(x) {!(4m - 2)1/2, lxi < (4m) /,
0O. otherwise.

Indications of why this holds are also outlined in an appendix to Mehta's book
[10]. For a different approach to the convergence to the semicircle law for a
Gaussian orthogonal ensemble one may refer to Wigner [17].
For a normalized Gaussian orthogonal ensemble, Theorem 6.1.1 gives the

semicircle law as the almost sure limit of the empirical distribution function of
the eigenvalues of the normalized random matrix X/\2n. This, however, does
not imply the convergence of the corresponding probability density functions
mentioned above.

7.2. A random Toeplitz ensemble. It is of interest to know whether there
exist random ensembles whose empirical distribution functions of their eigen-
values converge to limiting distributions other than Wigner's semicircle distri-
bution. Such an ensemble was recently discussed by V. M. Dubner [5]. He
considered the random Toeplitz ensemble described below.

Let {Zk, k = 0 + 1, * 2m} be a set of complex valued random variables
such that:

(i) Zk = k;
(ii) Zk = Xk + iYk, where {Xk, Yk, k = 0, 1, , 2m} is an independent set of

random variables each of which has a Gaussian distribution with mean 0 and
variance a2 (except, yo = 0).
Let -42m+1 = (aij)f2 =+ , be a random matrix such that:

(i) % = aji
(ii) For i < j,a% = Zj-. , j -j [l (2m + 1)],a% = Z(2m+ )-(j-i), for

[2(2m + 1)] + 1 j -i . 2m.
For instance, when m = 2, we have the 5 x 5 random matrix

ZO Z1 Z2 Z2 Z1

Z1 ZO Z1 Z2 Z2
(7.2.1) Z2 Z1 ZO Z1 Z2

Z2 Z2 Z1 ZO Z1

L Z1 Z2 Z2 Z1 ZO-

For this random Toeplitz ensemble, Dubner [5] has indicated that the
asymptotic distribution of the sequence of empirical distribution functions of
the set of eigenvalues is Gaussian.

7.3. A Wishart ensemble. In general, statisticians are interested in the
distribution of the eigenvalues of a sample variance-covariance type matrix, in
contrast to the physicists' interest in the distribution of the eigenvalues of a
random matrix of the most general type. Recently, C. Stein considered the
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limiting distribution of the expected value of the empirical distribution function
of the eigenvalues of random matrices of the variance-covariance type (Stein's
result appears in Technical Report No. 42, December 2, 1969, Department of
Statistics, Stanford University).

Stein's result may be stated as follows. Let X = (Xij) be a p x n random
matrix such that:

(i) {Xij, 1 < i < p, 1 < j _ n} is an independent set of random variables;
(ii) EXij = 0;
(iii) EX2. = 1;
(iv) EJXijk < Ck < cc fork = 1, 2,*.

Let B = (1/n)XX' and denote by A, . A2 _ ... _ 2Ap the ordered eigenvalues
of B. Denote the empirical distribution function of 2l, 22, * , by Wp,(x)
so that

(7.3.1) Wp, (x) = - (#Aj < x).
p

THEOREM 7.3.1. Let Ft be the absolutely continuous distribution function
with density

(.2f( i [(x - a)(b - X)]112 a _ x . b,
(7.3.2) f~)l2nx

0, elsewhere,
where a = [1 _ /3- 1/2]2 and b = [1 + A- 1/2]2 then

(7.3.3) EWp, (x) Fp (x)

asp -xoo, n oo in such a way that n/p f/ > 1.
It is interesting to note that when /3 = 1 there is a relation between this result

and Wigner's semicircle distribution. If X is a random variable with a semicircle
distribution, then Y = 4X2 has the probability density function

7 1 (4 _ y)1/2y-1/2, 0 < y _ 4,
(7.3.4) g(y) = 27,

(0O elsewhere.
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