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1. Introduction. Let A be the Laplacian in the Euclidean space R", that is,
A=Y"7_, 0%/0z}. Let V(z) be a nonnegative function defined on R". Suppose that the
set {ze R"; V(z)=0} is an unbounded subset of R". Our aim is to give an estimate
for the asymptotic distribution of eigenvalues of the Schrédinger operator —A + V{(z).
Several results on this problem are known (cf. for example, Robert [8], Simon [10]
and Solomyak [12]).

In this paper we restrict our attention to the potential of the form

4 q
(1.1) Vix,y)=C Hlff(lxl)“"' [T gy 1xP1p1%,
i= i=1
where x=(x,, """, Xp JER™, y=(py, -, Vm)€R™, |x|=Q T2, xHY?, |yl=

72, ¥ and m, +m,=n with some conditions on f;, g;, ;, 8;, 7 and 4.

Our main result is given in Section 3. Special cases of our estimates are closely
related to some results studied by Robert, Simon and others.

The case V(x,y)=C[[l-; fill x)*- 9-19{1y)¥ is a classical one and the
asymptotic distribution of eigenvalues is given by the well-known formula (cf.
Rozenbljum [9]).

The case V(x,y)=(1+|x|2)y|** is studied by Robert [8] by means of
pseudo-differential operator calculus with operator symbols. Our method is quite
different from his. The results will be given as corollaries when am, > fm, in Section 3.

The case V(x, y)=|x|% y|? is studied by Simon [10] when m, =m,=1. The case
mym,>2 is included in the results of Solomyak [12]. Our method gives another proof
of their results when am, = fm,. The result is given in Corollary 3.1.

In order to prove the main theorem we shall use classical Dirichlet-Neumann
bracketing method formulated by Edmunds and Evans [2]. We shall also apply a simple
modification of Theorem 2 of Fefferman [3; p. 1447, where he gives several estimates
for the eigenvalues of Schrodinger operators with polynomial potentials. We shall apply
Fefferman’s theorem to operators with 4_-weight potentials and use it in the proof of
Lemmas 3.2 and 3.2

In Section 2 we shall show some properties of A -weights. These properties will
be used in Sections 3 and 4. In Section 3 we shall state our main theorem and give the
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proof assuming several lemmas. In Sections 4 and S5 we shall prove these lemmas in
Section 3.

ACKNOWLEDGEMENT. The author would like to thank Professor Satoru Igari for
his constant encouragement.

2. A_-weight potentials. Let Q be an open set in R”. By L*(2) we shall denote
the Lebesgue space of all square integrable functions in Q. By H'() we shall denote
the Sobolev space

H1(9)={uEL2(Q); gE—ELZ(Q), i=1, -, n}
Xi

where d/0x; denote distributional derivatives. We put

n 2

Vu(z)|>= 3

i=1

ou

()

ax;

for ue HY(R) and z € Q. By C¥(£2) we shall denote the space of all infinitely differentiable
functions with compact support in Q. For a set S in R", | S| denotes the Lebesgue
measure of S. By cubes in R" we shall mean closed cubes whose sides are parallel to
the coordinate axes. '

Let us recall the definition of 4 -weights.

DEFINITION. A nonnegative locally integrable function w(z) on R" is called an
A -weight on R" if there exist positive constants C and é such that

w(z)dz
(2.1) L—sc('_s—')é
J w(z)dz 2l
Q

for all cubes @ in R" and for all measurable subsets S of Q. We call the pair (C, J) of
constants A4 -constants of w. We denote the space of all 4, -weights on R" by 4, (R")
or A,.

We now mention some properties of A -weights which are useful in proving that
our potential ¥ belongs to 4. For the proof we refer to [4; Chap. IV].

LemMMA 2.1. Let w(z)>0 be locally integrable on R". Then the following conditions
are equivalent.

(1) wed,.

(2) There exist 0<C,, C, <1 such that
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{zeQ; W) <y — f W(}’)d,VHSCzIQ|
o1,

Jor every cube Q.
(3) There exists C>0 such that

l—é—l L w(z)dz< C exp<é f . log w(z)dz)
for every cube Q.

(4) There exist C>0 and £>0 such that
1/(1+e¢) C
<—1— f w(z)”‘dz) <— J w(z)dz
1Q1J¢ Q1o

REMARK 2.1. By Holder’s and Jensen’s inequalities, w € A4, is equivalent to saying

R T GRS R (o I
o ~l —— € ~expl — ogwl(z)dz
|Q|LW(Z)Z 1), “ P\lal), 8

for every Q, where the bounds are independent of Q.

for every cube Q.

that

LEMMA 2.2. Let u and v be A -weights. Then we have the following:
(1) Ifa, B>0, then ou+PveA,.

2) If0<a<l, thenu®cA,,.

(3) Ifu? vieA,, then uweA,.

Lemma 2.2 is a direct consequence of Lemma 2.1 but we give a proof for
convenience.

ProOF. (1) follows from the Hardy-Littlewood maximal theorem with weights,
but follows directly from the definition of A _-weights. Let (C’, §) and (C”, 6") be
A ,-constants of u and v, respectively. Then C'| S|*'f, udz>| Q|* {5 udz for every subset
S of a cube Q and a similar inequality holds for v with constants (C”, 6”). Thus, adding
both sides, we get (2.1) for au+ fv with constants C=max(C’, C”) and é =min(§’, §").

(2) Assume O<a< 1. Fix a cube Q. By Hélder’s inequality

1 1 a
o edr<| dz ) ,
IQILu(Z) Z<(|Q1L“(Z) Z)

which, by Lemma 2.1 (3), does not exceed
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(C exp(éo| L log u(z)dz))a =C* exp(l—;l j . log u(z)“dz) .

Thus u*e 4.
(3) By Schwartz’s inequality

L AWAY s(‘ f ()Zd)m(1 f ()Zd)m
—— ul VA u ) 4 .
1011, =011, %) Nalle -

Applying Lemma 2.1 (3) to each term on the right hand side, we get

—1~ [ u(zZ(z)dz< C cxp<—1— I (log u(z)*> +log v(z)z)dz)
2101Jg

1Q1Jo
=C exp(ﬁ L log u(z)v(z)ds) ,

which proves (3). g.e.d.

LEMMA 2.3. Let P,{z) be polynomials on R" of degrees d;, where i=1, - - -, q and
Jj=1, -, r. Let o, B;; and y;; be positive numbers. Let

2= Z ay| PPy, i=1,--,q,

j_

and
wa)=I1 .

Then w(2) is an A ,-weight on R" and the A ,-constants depend only on n, d;;, B;;, y;; and q.

Proor. First we observe the following: if P(z) is a polynomial on R" and a>0,
then | P(z)|*€ 4. Indeed, we have

2.2) -l—f |P(z)|dz<max | P(z) | <——J | P(z) |dz
191Je

for every cube Q, where C is a constant depending only on » and the degree of P (cf.

[3; p. 146]). Thus Lemma 2.1 (4) holds for every ¢ >0. Thus | P(z}|*€ 4, fora=1,2, - - -

By Lemma 2.2 (2), this holds for every a>0.

Next we observe the following: if P(z), j=1, - - -, h are polynomials on R", then
]_[:;1 | P{z)|* € A,, for every a;>0. Since | P,(z)|*** € 4,, and | P,(z)|***€ 4, we have
[ Py(2) || Py(2)|*2€ A, by Lemma 2.2 (3). The case h>2 is shown similarly.

Therefore, by Lemma 2.2 (1), fi(z)’e A, for y=1,2, ---. By Lemma 2.2 (2),



EIGENVALUES OF SCHRODINGER OPERATORS 385

f{z)’ e A, for every y>0. Applying the preceding argument, we can show w(z)}e 4.
q.e.d.
COROLLARY TO LEMMA 2.3. Let w(z) be the function given in Lemma 2.3. Then

there exists a positive constant C depending only on n, d;;, Bi;, v; and q such that

L j w(z)dz <max w(z)<C — W(Z)dZ
Q] zeQ

Sfor all cubes Q in R".

Proor. It suffices to show the second inequality. By the definition of w we have

max w(z) < H ( zr: oc,-,-(max | P2) |>ﬂu>yi :
j zeQ

zeQ =1

Since | P;;| are A,-weights, by (2.2) and Lemma 2.1 (3), the last term does not exceed

! 3 Bii\ vi
il=_[ ( =Zl oc;,(cl., I Q, f IPj(Z) Idz> >
ﬁ (i J'<C1ijC2ij exp<_1_j log| Pf2) Idz>>ﬂij>yi
mrve 1Q1Jg

r 1 Bij\vi
( Z (exp< J log I Pij(z) |dz>> > s
1\j=1 Q1
where C,;; depend only on » and 4;;

L» while C3=]]7_, (max,(C,;;C,;)"*¥)". By Jensen’s
inequality the last term does not exceed

3l'l< Y Q,Zl o;;] Pifz) |f’~dz) =G ( QIJ f(Z)d2>

Note that f; are A -weights. Applying Lemma 2.1 (3) again to the last term and arguing
similarly as above, we get an estimate

=

IA

G,

It

max w(z)<C, — 1‘[ fle)dz< c4—j w(z)dz ,
zeQ | Q | Qi=
where C, depends only on n, d;;, B;;, y; and q. q.e.d.

The following Lemmas 2.4 and 2.6 are modifications of Theorems 2 and 3 in
Fefferman [3; p. 144], respectively.

LEmMa 2.4. Let U(z) be an A -weight on R". Put

a>0
e R"

Ay=inf <a_2+a—"f U(z)dz).
fz—¢&|<a/2
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Suppose that 1, >0. Then
Cllf lv(2)] zdzsf (Vu(2)|2+ U(2) |v(2) | )dz
Q ]
for all cubes Q in R" with side length 2(1,)~Y/? and for all ve H(Q), where C is a positive
constant depending only onn and the A -constants for U(z), and O denotes the interior of Q.

To prove Lemma 2.4 we use the following lemma.

LemMA 2.5 (Morimoto [6]). Let Q be a cube in R" and let U(z) be a nonnegative
measurable function on Q. Suppose that there exist positive constants C, and C, such that

(2.3) CilQ1<l{ze Q; CUQ)*<U@)} I,
where I(Q) denotes the side length of Q. Then we have

clQ)—? j [0(z) |*dz < J (V(2)1> + U @) v(z) |*)dz
0 e

for allve H 1(Q), where C is a positive constant depending only on n, C, and C,.

PrROOF OF LEMMA 2.4. Let Q be a cube in R with [(Q)=2(4,)”*/? and center z°.
Put a=247%? and é=z°. Then, by the definition of 4,, we get

1
,lls—/ll+—l— Udz.
4 1Q1Jo
Therefore
illsi Udz .
4 [Q1Jo
Thus
24 3l(Q)‘2si Ud:z.
[Q1Je

Since U is an A -weight in R", we have, by Lemma 2.1 (2),

CilQl=<

{zeQ; Czéj‘g Udz< U(z)}

where C, and C, are positive constants depending only on » and the 4 -constants of
U. Combining this with (2.4), we have

CilQ1<I{ze @; 3C,UQ) *< U@} .

Therefore U and Q satisfy the inequality (2.3). Thus Lemma 2.4 follows from Lemma
2.5. q.e.d.
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Now, in order to consider the distribution of the eigenvalues of Schrodinger
operators with 4 _-weight potentials, we introduce some notation.

Let U be an A4_-weight. Suppose that an operator —A+ U which is defined on
CZ(R™) is essentially selfadjoint in L2(R™) and L is a selfadjoint realization of —A+ U.
Assume that L has only discrete spectrum. Let 1 be a pdsitive number and let N(4, U)
be the number of eigenvalues of L less than 1. Let & be a tesselation of R" by cubes
whose side length is A~ /? and whose vertices are points in A~ /22" where Z is the set
of integers. Let N (4, U) be the number of cubes Q in & such that

1
— ) Uzddz<A.
IQIL (eMz<

LEMMA 2.6. Assume that U satisfies the above conditions. Then we have
N{(CiA, U)<N@, U)SN(C,4, U)

for every positive number A, where C; is a constant depending only on n, while C, is a
constant depending only on n and the A -constants of U. ‘

We omit the proof of Lemma 2.6. The reader may follow the arguments of the
proof of Theorem 3 in [3; p. 148] if he applies Lemma 2.5 in place of Main Lemma
in [3; p. 146].

REMARK 2.2. Lemma 2.4 shows that Theorem 2 in [3; p. 144] is also valid for
A -weight potentials. This follows easily from the proof of Theorem 2 in [3].

REMARK 2.3. Let U(z) be an 4 -weight on R". Suppose that —A + U defined on
C(R") is essentially selfadjoint in L*(R™) and L is a selfadjoint realization of —A+ U.
If Ni(4, U)< oo for all 1>0, then L has only discrete spectrum. This fact is verified in
a manner similar to the proof for Remark 4 in Simon [11; p. 215].

REMARK 2.4. Let w(z) be the function given in Lemma 2.3. Let N,(4, w) be the
number of cubes in &, such that

max w(z)<4 .
zeQ

for A>0. Then
NZ(A’ W) < Nl(jw W) < NZ(Cj'a W)
for every positive number A, where C is a constant independent of 4. The first inequality

is obvious and the second inequality follows from Corollary to Lemma 2.3.

3. Main theorem. Let p and g be positive integers. Let
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.fl(t)= zl aiktk, (l=17 ,P),
k=0

h;
gj(t)= Zobjsts 2 (.]= 15 T q) s

where d; and 4; are nonnegative integers. We assume that a,, b;,>0, (0<k<d;, 0<s<h;;
1 SiSP, 1 Sjsq) aio, b10>0 and aidi=bjhj= 1. We put

(3.1) V@)=V )=C [T T 0y 1511,

where z=(x, y)e R™ x R™=R", m; >0, m,>0, and a;, f;, y and & are nonnegative
numbers and C >0 is a constant. To avoid trivial cases, we assume ZL , od;+y#0and
$-1Bhi+8#0.

By Lemma 2.3 V'is an 4 -weight on R". The operator —A + V defined on C3(R"™)
is essentially selfadjoint in L*(R"), since V>0 and Ve L (R") (cf. Kato [5]), where
L2 (R™) denotes the set of all functions square integrable on every compact subset of
R". Let L be a selfadjoint realization of —A+ V. Then L has only discrete spectrum.
Indeed, we can show easily that N,(4, V) < oo for all 1> 0 where N,(4, V) is the quantity
defined in Remark 2.4. Thus, by Remarks 2.3 and 2.4, the assertion follows.

Now we give an asymptotic formula for N(4, V) which, by definition, is the number
of eigenvalues of L less than A and denoted simply by N(4). Our main result is the
following:

THEOREM. Let V be the potential given by (3.1). Suppose that ymzs(ijl Bih;+
O)ymy and Sm <7 adi+y)m,. Set p,=2"'Q2+8)QF_ udi+y)"' and p,=
2702+ Q- Bhy+ )7 . Then

NG~ “’f (A—VY'2dxdy as A-oo,
)" J 4

@
where w, is the volume of the unit ball in R" and the set A is defined as follows:
(1) Ify#0 and 6 #0, then
A={(x,y)e R™ x R™; V(x, y) <4, | x| S C 4%, | y| < C, A"}

where C, is a positive constant depending only on m,, C, d;, o;, bjo, B;, 7 and 8, while C,
is a positive constant depending only on m,, C, h;, B;, a;, a;, v and 6.

(2) Ify=0and 6+#0, then
A={(x,»))eR™ x R™; V(x,y) <A, |x|<C3a*"}

where Cs is a positive constant depending only on m,, C, d,, a;, b, B; and 8.
(3) Ify#0and 6=0, then
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A={(x,y))eR™ x R™; V(x, )<, | y| < C,4**}

where Cy4 is a positive constant depending only on my, C, h;, B}, aio, o; and 7.
4) Ify=0and 6=0, then

A={(x,y)eR™ x R™; V(x, y)<A} .
CoROLLARY 3.1. Let a, >0 and am, =fm,. Let
Vix, y)=|xy1?
Jor (x, yye R™ x R™. Then
N(A)~ailogh as iAo,
where 0=n/2 +m, /o and

. 2+a+ B (my/2)
2"~ 0B (my /)T (my DT (n[2 + myfo+ 1)

COROLLARY 3.2 ([8; Theorem 3.2 (i)]). Let a, >0 and om,>Pm,. Let
Vix, )= +]x1?)y|**
Jor (x, y)eR™ x R™ =R". Then
NA)~al® as i-o0,

where 8=n/2+m,/(2f) and

__ Tm/eB)
27 BBL (o)L O+1) Jm,

CoROLLARY 3.3 ([8; Theorem 3.2 (ii)]). Let a, >0 and am,=fm,. Let
V(x, y)=1+]x|>)%y|*
Jor (x, y)e R™ x R™=R". Then
N()~aillogl as A-w0,
where 0=n/2+m,/(2F) and

(14 x|2) o@Dy

__ (+BImCB)
2B (s DL (my/DTO+1T)

REMARK. Our constants in the corollaries are different from those in Robert [8].
A careful calculation will lead to our constants.

Let Q be an open set in R" and V be the function given by (3.1). Define
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flu, v]= f (Vu-Vo+ Vui)dxdy
0
and
Null? o="tlu, ul +J |u|2dxdy
o

for appropriate functions u and v. By Dy o and D, , we denote the completions with
respect to the norm || ||, o of C&(R) and the restriction of C§(R") to £, respectively. Let
ty and t, be sesquilinear extensions of ¢ to Dy o and D g, respectively. Then ¢, and
t, are closed and semibounded forms. Let T  and T, , be associated selfadjoint
operators with respect to #, and ¢, respectively (cf. [2; p. 139]). Let 45 , and 44, be
the Dirichlet and Neumann Laplacian on £, respectively. If there is no confusion, we
drop the notation £, for example, and we denote 7, instead of T .
Let T be a selfadjoint operator in L(Q). For A>0 let

i
N(@4, T, Q)=rank j dE(T),

where E (T) is the resolution of the identity corresponding to T.
In this notation we prove the theorem.

PrROOF OF THEOREM. First we prove (1). Let A be a large positive number. Let
F’, be a tesselation of R" by cubes Q whose side length is A~1/2(log 1)}/* and whose
vertices are points in 1~2(log 1)'/*Z".

Let B'={(x, y)eR™ xR™; x;,=0} (i=1, ---,m,), B;={(x,y)e R™ x R™; y;=0}
(=1, -, my) and B=(JiZ, B)u(|J2, B)- Let #, be all cubes Q in & such that
min, o V(z2)<4 and QnB=(J. Let £, be all cubes in £, such that max, o V(z)<A.
Let K; and K, be positive constants which will be determined later. Let .% be all cubes
Q in )\ 4 such that min,_, V(z)< 4 and

Q={(x, )eR™ x R™; | x| <K, A", | y| <K 2"},

where u, and u, are constants defined in the theorem.
Let K5 and K, be positive constants which will be determined later and put

F1={(x’y)ER"umez;(x7y)¢ U Q’lxi‘<K31_1/2a l=15 .”9m1}s

QeSS US;

Fz={(x,y)eR’"’ xR™; (x, )¢ U Q. ly|<K A~ j=1,--, mz} ,

QefiUS3

and
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Fy=R"\the closure of (( U Q)UF1 UF2> .

Qef1US;

Note that if 1 is sufficiently large, then F, n F,= .

Now we estimate N(1). Remark that N(A)=N(4, L, R") by definition. We have
L=Tg gn="T, g since —A+V defined on CF(R") is essentially selfadjoint in L*(R™).
Therefore

(3.2) N(A)=N(@, Ty, R")=N(4, Ty, R") .

Let Q,, Q,, 2, and Q, be open sets in R" and let Q be the interior of the closure of
Q,uQ,. Suppose that Q,nQ, =, |2\ (2,U2,)|=0 and Q;Q,. By an argument
similar to that in Edmunds and Evans [2; p. 143], we get

NA Ty, <N@A Ty, 2)+NQA, Ty, Q,),
N, Ty, > N(4, Ty, Q)+ N, Ty, 2,),
and
N4, Tg, 2;)<N(A, Ty, 2,).
'Therefore, by (3.2),

(33) 2 N(l’ TQ’ Q)SIV(A')S Z N('la T.A’a Q)+ Z N(ﬂ's T.I’ Q)+iN(As T.A”Fi)‘
Qe ss i=1

Qes, ’ _ Qes,y

We have the following three estimates for N(-, -, *).
LemMma 3.1. N(A, T,, F;)=0.
LemMma 3.2. N4, T4, F))=N(4, T,, F,)=0.
LEMMA 3.3.

Y N TsO)~ Y NAL T, O+ Y NG Ty, 0)

Qes2 Qe s, Qess

~

(;)")"f A-M"?dxdy as A-©
) Ja

where
A={(x, )eR™ x R™; V(x, y)<A, | x| <K, "', |y|< K2 .
We shall postpone the proof of these three lemmas to the following sections. By
(3.3), Lemmas 3.1, 3.2 and 3.3

W,

N~ 2ny

J(A—V)"/zdxdy as A—o0.
A
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Thus the proof of (1) is complete.
We prove (2). Let #, and .#, be the subsets of &#, defined in the proof of (1). Let
K, be a positive constant which will be determined later. Let £ be the set of all cubes

Qin F \ 4, such that min,_, V(z)<4 and
Oc{(x,y)eR™ x R™; | x| <K A*},

where u, is a constant defined in the theorem. Let K, be a positive constant which will
be determined later and put

Fy={(x,)eR™ xR™;(x,y)¢ U O |yjl<Kid ' j=1,--,m,},

QeSfuSs

and

", = R™"\ the closure of (( U Q)uF;) .

Qe s U5,

An argument similar to that in the proof of (1) shows that

34 Y. N, Te, Q)<N()

Qe s>

<Y NALT, O+ Y

3
Qesy Qes, i=2

As before we have:

Lemma 3.1

N@A, T,, F3)=0.
LEMMA 3.2

N@A, Ty, Fy)=0.
LEmMa 3.3

Y N4, Te O~ 3 NA Ty, O+ Y. NG, Ty, 0)

Qes2 Qe Qes’y

~

(;-[")& j A—V)dxdy  as A—oo
P

where

A ={(x, y)e R™ x R™%; V(x, )<, | x| <K\ "} .

We shall postpone the proof of these three lemmas again to the following sections.
By (3.4), Lemmas 3.1, 3.2 and 3.3
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N~

On J A—V)y?dxdy  as A—oo.
2m)" ) o
Thus the proof of (2) is complete.
We get the proof for (3) if we interchange x and y in the definition of V(x, y).
We now prove (4). Let £, and #, be the subsets of #, defined in the proof of
(1). Let .#5 be the set of all cubes Q in #\ #, such that min, 4 V(z)<A. Let

Fj=R"\theclosureof |J Q.

Qef usy

An argument similar to that in the proof of (1) shows that

3.5 Y N, Ty, QSN Y, NALT), O+ Y. N, Ty, 0).
QeS2 Qe sy Qess
LemMMma 3.3”.

Y NATs O~ Y N4 T,, 0+ Y N(@ Ty, Q)

Qes) QeSs, Qefs

~

(2‘”) f A=VY2dxdy  as -
n)" J 4

where

A”={(x, y)Gle x R™2; V(xa y)sl} ¢

This lemma is proved in Section 5. By (3.5) and Lemma 3.3”

Wy,

N @~ Qry’

j A—=WV"?dxdy as A—oo.
"
Thus the proof of (4) is complete. q.ed.

4. Proof of Lemmas 3.1, 3.2, 3.1’ and 3.2".
ProOF oF LEMMA 3.1. First we assume that
4.1 V(x,y)>4 for all (x, y)eF,.

Then we obviously have
j (Vul>+ W ulz)dxdy>/lj fu|2dxdy ,
Fy F3

for all ue H'(F;), u#0. This proves Lemma 3.1.
Now we prove (4.1). Suppose contrarily that there exists a point (xg, o) in F; such
that
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4.2 V(xo, Yo) < 4 .

Then there exists a cube @ in %, such that (x,, y)€Q and min, ., V(z)<A. By the
definition of F, this cube Q does not belong to .#, u.#5. Therefore, there exists a point
(x4, ¥1)€ Q such that | x, | > K;4*! or | y, | > K,4*?, where K, K,, p; and u, are constants
given in the definition of .#.

Suppose | x, | > K, A*'. Since the side length of Q is 1~ /%(log 2)*/",

inf{} x|; (x, ) e Q} =] x; | —m}?A~*(log 2)*/" .
Observe that the right hand side is not less than
K A# —mi2A~Y2(log )" > (K, [2)A*
if A is sufficiently large. Therefore
4.3) inf{| x|; (x, y)e O} = (K, /2)A** .
Thus, by (4.2) and the assumptions on f; and g;,

32 V(500 =C [T filx0 1)"*-]1:1[1 941 ¥0 D" %oy r’zglfll B xo [Z5 4] |
By (4.3) the last term is not less than
C,-ljll B (K 2y o+ ] o 9= C K Dot 11 +902 o 1o
where C; =C[ ]}, b%3-27(F=di+1_ Therefore

|y0 | < CzKl—(Znud:H)/&l— 1/2

where C,=C 17,
If we choose K, and K, so that

(4.4 CZKI—(ZaidH')')/J <K,,
then
[ Yol <K A™12.
Thus, for all components y,; (j=1, : -, m;) of y, we have |y,;|<K,A™ "2, Hence

(x0, ¥o) € F,. This contradicts (x,, yo) € F;.
If | y, | > K,4*%, then a similar argument shows that

-1/2
| X0l < K3A ™2, Xo=(Xo1> ** "> Xom,) »
under the condition

4.5) C K7 EPmi+dr < g
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where C3=(C[]?_, a%-2"EPhi+M =11 Therefore (xq, yo)€F; and this contradicts
(xg, Yo) € F5. Thus (4.1) holds under the conditions (4.4) and (4.5). We shall give exact
values of K;, K,, K5 and K, satisfying (4.4) and (4.5) later. q.e.d.

PrOOF OF LEMMA 3.2. We prove N (A,'T,, F,)=0. First we show
(4.6) inf{|x1l; (x, y)e Fp} > (K /2)A* .
Let (x, y)e F,. Choose Q in &, so that (x, y)e Q. Since
Iy I<KA™Y2, y=s s V)

by the definition of F, and since the side length of Q is 1~ Y2(log 1)'/*, we have (x, 0)e Q
if 4 is sufficiently large. Therefore 0 =min,., V(2)<A. Since Q¢ #, U.#;, there exists a
point (x,, yo) € Q such that

@.7 |30 | > K, A%t
or
(4.8) |y |> K Ak2 .

(4.8) is impossible if A is sufficiently large. Therefore (4.7) holds and
|x12]x0|—mi/?271*(log A)*" > (K, /2)A*"
if A is sufficiently large. Thus we have (4.6).
Applying arguments similar to those in the proof of Lemma 3.1, we have, by (4.6),

P q g
Vix,y)=C Hlf.-(lxl)“"' l_llg,-(lyl)”"lxlylyl"zc [1 6% 1x =ty
i= i= i=1

2 C [ 6% (K, ) Zoeier- | y P = C Kb 192y |8
j=1
for all (x, y)€ F,, where C,=C[]%_, bf§-27 =4+ Therefore

49) f (Vu|?+ V|u|2)dxdy2J (| V|2 + C K Z24 1114912 419 4| ) dxdy
. Fa Fa

ZJ (J (V| + Co KT 14902 p )3 ulz)dy)dx
G

Fax
for all ueH'(F,) where |Vu|?=Y72,|0u/oy;|?, F,,={xeR™;(x,y)eF,} and
G={yERmz; ijI<K4l—1/21j=1’ v 'amZ}'

Remark that the function C,K¥*%+7A1+%2|y|%is an 4 -weight on R™ by Lemma
2.3. Set
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Ay= inf (a'2+a‘"‘2f C4Kf—“"""+7,1“"’2ly|"dy>.
|x—&l<a/2

a>0
seR™2

Then, by elementary calculus,
4.10) Ay =CsKimj |
where
CS =2 2/(2 +6)(2 + 5)(5 =48/(2 +-§){2 —(d +"'2’C4m2(5 + mz) - lwmz}Z/(Z +4)
and w,,, is the volume of the unit ball in R™>.
By Lemma 2.4
(4.11) J. (1 V,0 12+ C KE 472192 y P p| 2)dy = Cely f [v|?dy
G’ &

for all ve H(G’), where C4 is a constant depending only on m, and &, while
G’={yERmz;lyjl<A'l_l/29j=13 te '9m2}'
Choosing K, and K, so that

(4.12) CsKim=K 2,
we get G=G’ by (4.10). Therefore we have

(4.13) f (Vu|?+ Vlu|2)dxdy2C5C6K}”“/lf lu|2dxdy
Fz Fy

for all ue HY(F,). Choose K, so that
(4.14) CsCeKim>1 .

Then we have
f (IVu|2+V|u|2)dxdy>lf | u|2dxdy
F; F»

for all ue H'(F,), u#0. Hence N(4, T, F,)=0.
Similar arguments show that N(4, T, F,)=0 if we choose K, and Kj; so that

(4.15) C,K}m=K3?
and
(4.16) C,CsKim2>1

where C, is a positive constant depending only on m,, y, C, B;, h;, a; and a;,, while Cg
is the constant given in Lemma 2.4 for the function | x|.
Now we choose K, K,, K5 and K, so that they satisfy (4.4), (4.5), (4.12), (4.14),
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(4.15) and (4.16). We may put

4.17) K, =max{(C,CL?)*1, (CsCg) "} +1,
(4.18) Ky =max{(C;C¥*)"2, (C,Cg) ™"} +1,
and define K, and K, so that they satisfy (4.12) and (4.15), respectively. Then all
conditions in the proofs of Lemmas 3.1 and 3.2 are satisfied. g.e.d.

Proor oF LEMMA 3.1. If we set y=0 and replace F,, F5, #3, K;, K, in the proof
of Lemma 3.1 by F,, F3, 45, K, K}, respectively, then we get the proof of Lemma
3.1. The different point is that the argument on the inequality |y, > K,A*?> does not
occur. The condition on K| and K is

(44)/ CQK’I_(ZGidi)/6<K’4 s

where C, is a positive constant corresponding to C,. We shall give exact values of K’
and K later. q.e.d.

Proor oF LEMMA 3.2". If we set y=0 and replace F,, .5, K,, K, in the proof of
N, T, F,)=0 in Lemma 3.2 by F3, #4, K, K}, respectively, then we get the proof
of Lemma 3.2'. The different point is that the inequality (4.8) does not occur. The
conditions on K| and K, are

4.12y CioKm=Ky2

and

4.14y CioC K11,

where C,, and C,, are positive constants corresponding to Cs and C. If we put
4.17y 1 =max{(CoCi5)*, (C1oCi) M} +1,

then all conditions (4.4)', (4.12) and (4.14)’ are satisfied. q.e.d.

5. Proof of Lemmas 3.3, 3.3 and 3.3”. First we prove Lemma 3.3. Let / be the
side length of cubes in F, that is, /=A"2(log A)'/". In order to prove Lemma 3.3, we
show the following three inequalities:

) ¥ NAT,Q)s-*

Qesy 2n)"

as A—»oo, where M, =$.4,.

j (A—VY"dxdy + O(M (log 1)* ~ /™)
A

) Y, N(, Ty, 0)<O(M,log 4)

Qess

as Ao» o0, where M= #.#,.
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©) Y N(, Ty, )z —

Qe s, Q2n)y"
—m,A"?| S, | — O(M y(log 2)* ~1/m)
as Ao o0, where M,=#.9,, S'={(x, y)ed;|x;|<!} and §;={(x, ) ed; |y, 1<} .
ProoF OF (1). Let Q be a cube in #,. Since

f (A= Vy'2dxdy—m, "% S* |
A

J‘ (| Vu|®+ Vlulz)dxdyzf (| Vu|?+min V-|u|*)dxdy
0 Q e
for all ue H(J),
NG, Ty, Q)<N(A—min¥, —A,, 0)
Q

by the min-max principle in Reed-Simon [7; p. 78]. Following Edmunds and Evans
[2; p. 143], we get

w'l
@ny

N(l—inn V, —Ap, O)<—-|Q I<l—min V)nlz +C {1 +(Q|Am2)t~2imy
]

where C, is a positive constant depending only on m, and m,. Therefore

61 Y NALT, <2 ¥ IQl(i——min V)n/2+CI{M1+M1(logl)1_”"},
Qesy (Cr)" ges, Q

since the side length of Q is I=A"Y2(log 4)!/".

Let &,, ---,&, be positive integers. Let Q be a cube in £, with center
(&, +1/2), - -+, I(E,+1/2)) and let Q' be a cube in &, with center (/(¢;—1/2), -- -,
1(¢€,—1/2)). Then

p q
Vix,y)=C H1 Sl x - l_[1 gy P -1x Py l"sm;n V<a
i= j=
for all (x, y)e Q’. Therefore Q'e.#, and
n/2
|Q(<i—min V) sf A—V)"%dxdy .
Q o

Note that @—Q’ is a one-to-one correspondence from cubes in .#, with centers in the
first orthant to cubes in #, with centers in the first orthant. Then we get, by the
symmetry property of V,

(5.2) Y 10 |<l——ngn V)W2 < ‘[ (A—V)"2dxdy ,
I

Qe sy
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where =], ,, Q- Note that

(5.3) IcA.
Indeed, by the definition of .#,,
Ic{(x,y)eR™ x R™; V(x, y)< 1} .

Furthermore, following the argument in the proof of Lemma 3.1, we get £, #,U.#,.
Thus we get (5.3). Hence

Y lQ I(A—mén V)n/2 SJ (A—V)"2dxdy .
4

Qe Sy

Applying this to (5.1), we get

Y NG Ty O)< 0 j (A—V)"?dxdy + O(M,(log 2)* ~ ') ,
Qesy (27'[)" 4

where the bound of the error term is independent of A. q.ed.
PRrROOF OF (2). Applying the argument in the proof of (1), we get

Wy

> NALT,O0< ¥ NG, —A,, 0)< Y 1Q1A"2 +C {M3+ M;(log A)' ~ 1/}
Qess Qcss (2n)" ges,

=0(M;logl). qed

ProoF oF (3). Let Q be a cube in #,. Since
J (Vul®>+ Vlulz)dxdygf <| Vu|2+mg.x V| u|?)dxdy
) Q
for all ue HY(Q),
N4, T, Q)zN(A—mgx V, —Ay, Q)

by the min-max principle. Following Edmunds and Evans [2; p. 143] as before, we get

wn
@2n)”

where C, is a positive constant depending only on m,; and m,. Therefore

N <i—max V, =4, Q)z 10 I(A—max V)nlz— C{1+( Q)=
Q Q

ni2
(54) Y N, T 0)> On )3 |Q|<l*maXV> —C{M,+ M,(log 2)' ~1/"} .
Qs (2n)" ges. Q

Applying an argument similar to that in the proof of (1), we get
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5.5 Y |Q|</1—max V>"/22 f (A—V)Y'?dxdy ,
Q J

Qe s

where J={(x, )€ R™ x R™*; (x, y)€ U p. 5, @> V(x, y)<4}. Recall the definition of .#,
and apply the argument in the proof of Lemma 3.1. Then we get

( U Q)n{(x, Y)ER™ x R™; | x|>K A* or |y|> KA} =¥ .

Qc sy
Therefore, by the definition of 4,
J={(X,y)EA, 'xi]Zla l=la T, my, |y1|219 ]=15 v '9m2}

=A\(£J'l (e eixi<tv U {(x,y)eA;|y,-|<l})

=A\(U stu Y S,-), say .
, =1 j=1
Thus by (5.5)

Y |Q|<A—m§x V)nlzzf (A— V)"/zdxdy—%j (A—V)"2dxdy —
A i=1/Jgi

Qes,

Y | (= vydxdy> J Q= VY2dxdy— 12 3. (S— 22 3 |S,|
4 i=1 j=1

j=1 S;
ZI (A= V)2dxdy—A"*my| S* |- 2"?m,| S, |,
4
where we used the symmetry property of V. Therefore, by (5.4),

wn
Q§!z N(A’ TQs Q) 2(21[)71

—m; A" S| —my 272 Sy | — O(My(log 4)' 717 .

f (A—V)Y"2dxdy
A

g.e.d.
Therefore, by (1), (2) and (3), Lemma 3.3 follows from the following three lemmas.

LEMMA 5.1.

M (log 2)* "= M,(log l)‘””":o(f (A— V)"’dedy> as A-o.
A
LeMMA 5.2.

a2 st |=o<f (A— V)”/zdxdy> as A—o,
A
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and
M2 S, |=0<J (A—V)"/zdxdy> as A—oo.
A
LEMMA 5.3.
M,(log )= o(f (A— V)"/zdxdy> as A-ow.
A

To prove Lemmas 5.1, 5.2 and 5.3, we use the following lemma, where f ()= g(4)
means that f(1)=0(g(4)) and g(1)=O(f(1)) as A— 0.

LEMMA S5.4. Let V be the function defined by (3.1). Set vi=n/2+m,().T_, ad;+
N7 va=n24myQQ 5 B+ va=m2+272+8m Q.7 oadi+y)"", and
Va=my[2+27 2+ y)my (Y5 Bi+ )1

V) Iymy<QI Bhi+Omy, dm <(Y7_ adi+y)my and v, #v,, then

J (= VY"2dxdy ~ A% 4 1 |
A
() If om >} ;- ad;+y)my, then
f = V)" 2dxdy~ 3% .
A
3 1f7mz>(zg=1ﬂjh,-+5)m1, then

J (A= VY dxdy~ 2 .
A

(4) In the other cases,

f A—M"2dxdy~ (A" +1"?) log .
4

These estimates are given by elementary calculus, so we omit the proof of Lemma
5.4.
As a consequence of Lemma 5.4, we get

(5.6) J (A— VY"2dxdy = O((A" + 1*?) log A+ A"+ 2%9) .
A

Remark that an easy calculation shows that the order of | ,(A— ¥V)"2dxdy is the same
as that of A"2| 4].

PrOOF OF LEMMA 5.1, Since the argument before (5.2) shows that M, =M,, it
suffices to estimate M,(log )1~ 1/,
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Since the side length of Qe .#, is I=A"?(log 2)*™",

U Q|=@og =" a"21|.

M,(log ) ~m=[""(log A)* 1/
: Qes

By (5.3) the term on the right hand side does not exceed (log A)~'/"2"?| A|. Since
A2 4|=0( [ (A—V)"*dxdy), the assertion of Lemma 5.1 is valid. q.ed.

ProoF OF LEMMA 5.2. First we prove
5.7 a2 st |=O<I (A- V)"/dedy).
A

If m;>1, then
A2 S| <2472 8" |=2(log M) A V2| 87|

where S’ is the set of all points (x’, y)e R™ ! x R™ such that
P 9
C-H1 S x" )y ugj(|YI)ﬁf'|X'|7|Y|6Sl ,
i= j=

|x"|<K;A# and |y|<K,i*2,

where K, K,, p; and u, are constants given in the definition of .#;. By an argument
similar to that in the note after Lemma 5.4, we can show that the order of 1@~ 12| 5|
is the same as that of [ (A—V'(x’, y))"~ V2dx'dy, where V'(x', y)=W0, x’, y). If we
replace m; by m, —1 in Lemma 5.4, we get the order of | (A— V)"~ Y2dx'dy. Thus,
replacing m, by m, —1 in (5.6), we get

(5.8) (log )/ J

h

(A= V)"~ D2gx’dy = O((A** + A"2)(log D) 1"+ (A% + A**)(log 1)) ,

where vi=(n—1)2+(m—DQ ] adi+9)7", vi=(@m—12+m,( 5., Bhi+0)71,
vy=(my—1)/2+27 12 +8)(m;, — D)o audi+7) "1, and vi=my/2+2° 12+
M5, Bih;+ ). If we compare the order of | ,(1— V)"?dxdy in Lemma 5.4 with
the one on the right hand side of (5.8), then we get

2| st |=o(f - V)"“a'xdy) as Ao,
A

If m; =1, then, by the definition of S,
A4 +mz)/2| St |< CAQ+m2)/2] amapz _ (" ym2/2 +map2 (log 2)1/" ,

where C is a constant independent of A. Therefore, by Lemma 5.4, we can show
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A2 St = 0<J (A— V)"/zdxdy> .
A

Thus we get (5.7).
Similarly, we can prove

A28 |= o(f (A~ V)"/zdxdy) .
4 q.e.d.

PROOF OF LEMMA 5.3. Let B’ and B; be the subsets of R" and 45 be the set of
cubes as defined in the proof of the Theorem. Let {i;, - - -, i;} and {j,, - - -, j,} be subsets
of {1, ---,m,} and {1, - - -, m,}, respectively. For {i,, - - -, i} and {j, - - -, j,}, denote

Qb ={0e sy ONB AP, i=i, -, i, QN B =G, i#iy, -+, i,
OnB;=,j=1, -, m,},
s i ={QEF3 QN BE D, j=j1, -1 Joo QN By=, j#]1s s o
OnB'=@,i=1, -, m}
and
Q= {0e Sy QnB D, i=iy, -, i, ONBI=0, i#iy, -, i,
OnBi# D, j=j1, = s Joo QN By=B, j#j1, """, Ji} -
Then we get a disjoint decomposition of £ 5:
(5.9) J3=<> U Q)u( U .@,,>u< U 2;;;:1:;3:).
i< <iy i< <o <<

Now we show that
(5.10) (# 91 log /l=o<f (A— V)"/dedy)
A

for any i; < ---<igin {1, - -, my}.

Fix i; < - <i, and simply denote 2 instead of 2+ "%,

First suppose s<m,. Let 2’ be the set of Q in 2 which are contained in the first
orthant. Let R be the set of all points (x, y)e R™ x R™? such that

Osxisl’ i=i15 “"is’
lei, i#il, "',is,
I<y;, Jj=1 -, m,,

[x*|<K A",  |yISKA»
y 2
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and
P q
C l_[l Sl x*—le - T1 glly—le Y- | x*—ley || y—le, I°< 4.,
i= i=1

where x*=(xn’ tr "xtml—,)’ < <Tpyy—g {tl’ T rnu—s}:{l’ T ml}\{il’ T,
ij},e;=(1, .-, )eR™ %, e;=(1, - - -, 1)e R™ and K, K,, p;, u, are constants given in
the definition of # 5. Then, by the definitions of .#, and 2,

U QcRr.

Q=2

Therefore

Y2 =0""

U o

gcs

<ITIR|ISIT"™R,

where R’ is the set of all points (x*, y) in R™ ™% x R™ such that
0—<~x?’ i=1"'.s.m1_s, x*=(xf9-”’x:1-s)9

OS}’j, j=1’“'sm2’ y=(y1a”"ymz)’
| x*|<K, ", |y|< KA

and
c IT A0 TT oy PP+ riyPsa.
Therefore, since /=4"'*(log A)!/",
(5.11) $2<I " R |=(log A)" 142 R'|.
By an argument similar to that in the proof of Lemma 5.2, we get
AT R |= O((A" + A™) log 2+ A" +A™)

where n, =(n—s)2+(m,—)Q /-, 0di+7)"Y, ny=(n—5)2+m,Q 5. Bih;+0) 71,
’13=(m1"s)/2+2—1(2+5)(m1 _s)(z:’=1aidi+v)—l and n,=m,/2+27'(2+7y)m,
x (35~ Bh;+0)~". Therefore, by (5.11), we get

(5.12)  (#92)log A=2"(%2) log A= O((A" + A™)(log A)* *5/" 4 (A" + A")(log A)*/") .

If we compare the orders in Lernma 5.4 with the one in (5.12), then we get

(¥2) log /1=o< J (A- V)"/zdxdy) .

Suppose s=m;. Then, by the definition of .#, and 2, we get
QUQQC{(x, VER™ X R™; | x,|<li=1, -+, my, |y| <KpAk) .
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Therefore, by Lemma 5.4,
($2) log A=1""2|log A< CI™"*m)mab2 Jog )

=CA™mi2tmuz(log J)y™i/n = o( J‘ (A— V)"/zdxdy) ,
A

where C is a constnt independent of 4. Therefore (5.10) holds.
Similarly, we can show that

(#2;,....;) log l=0<f (s V)"/zdxdy)
A
and
($25:70%) log A= 0< f @A-y 2dxdy) i
A

Therefore, Lemma 5.3 follows from (5.9). q.ed.

Thus we proved Lemma 3.3. If we set y=0 and replace 4, .#;, K, in the proof of
Lemma 3.3 by A4', #5, K, respectively, then we get the proof of Lemma 3.3’ after
simple modification. If we set y=5=0 and replace 4, .#, in the proof of Lemma 3.3
by A", #14, respectively, then we get the proof of Lemma 3.3”. The differences caused
by these modifications are inessential.

REMARK 5.1. The above method does not give an asymptotic estimate for N(4)
when ym,>()5_, Bjh;+0)m, or dm,>(} 7 ad;+7y)m,. Indeed, we cannot get good
estimates for error terms in that case.

REMARK 5.2. We also have the asymptotic formula for the potential
Vix, )=Ixyfly—11

where (x, ))eRx R, a, B, y>0, B<a, y<a and a<f+y. Let g, =max{(2+ B)(2x)~ !,
Q+7)(0)~1} and py=2+a)2 '(B+7)" L. Then

N~

)
| (A—V)dxdy as A—ooo,
@2ny" j A

where
A={(x, ))eRxR; V(x, )<, | x| <C A", |y| < C, 4"}

and C,, C, are positive constants depending only on a, § and y. The proof of this result
is a modification of the proof of the Theorem.
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