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1. Introduction. Beginning with the paper of Robbins and Monro [11] much
work has been done in stochastic approximation. The Robbins-Monro procedure
(see [11] or Section 3 below) for finding the root of a regression equation and the
Kiefer-Wolfowitz procedure (see [9] or Section 4 below) for finding the maximum
of a regression function have been the chief objects of investigation. The in-
vestigations that have been carried out on these procedures have been along two
lines: the first being concerned with conditions under which the procedures
(i.e., the sequence {X,} of approximating random variables) converge, in some
sense, and the second being concerned with the speed of convergence and the
asymptotic distribution of the procedures. For details concerning these investi-
gations we refer the reader to the literature; some account of them may be found
in Sections 3, 4, and 5 when they relate to the context. In particular the results
relating to conditions for convergence are all subsumed in the work of Dvoretzky
[7], Wolfowitz [12]; and Block [1].

Chung [5] was the first to give any results about the asymptotic distribution
of these procedures in his treatment of the Robbins-Monro procedure, and his
methods (see the next paragraph) have been the basis for all work done hereto-
fore in this direction. Hodges and Lehmann [8] improved some of Chung’s results.
Derman [6] used Chung’s methods to obtain some results for the Kiefer-Wolfowitz
procedure and Burkholder [4] extended Chung’s methods to obtain further re-
sults on the asymptotic distribution of the Kiefer-Wolfowitz procedure.

Chung’s method for obtaining his results on the asymptotic normality of
the appropriately normalized sequence {X,} is to compute sufficiently fine
estimates for the moments of X, — 6 (6 is the root of the regression equation)
and then to apply the method of moments. As we noted above all previous work
on the asymptotic distribution of the two procedures in question has been based
on Chung’s methods. The main feature of the present work is that we do away
with the method of moments by, instead, utilizing a central limit theorem for
dependent random variables and obtain more general and more complete results
about the asymptotic normality of {X,} for both procedures by using a different
method of proof—the method of proof we use may be seen by referring to that
portion of the proof of Theorem 1 which lies between (3.8) and (3.9¢). In ad-
dition, in Examples 1 and 2 in Section 4 we show that some of the results obtained
here are best possible in a certain sense.
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374 JEROME SACKS

One of the complications arising from use of the method of moments is that the
computations needed there are not feasible unless {a.} and {c.} (see (3.0) and
(4.0)) are of the special type a, = an™, ¢, =cn™". While we take a, = an™
in Sections 3, 4, and 5 (see Section 6 for further remarks on this choice of a.) one
of the reasons why we can obtain better results for the Kiefer-Wolfowitz pro-
cedure than heretofore obtained is that the method of proof we use permits a
wider choice for {c,}. Other desirable features of the method of proof presented
here are that restrictions are needed only on the second moments of Z(x) (the
method of moments requires restrictions on all moments) and that the method
can be used without difficulty on some multi-dimensional analogues (see Section
5) of the procedures.

In Section 3 we treat the Robbins-Monro procedure and in Section 4 we discuss
the Kiefer-Wolfowitz procedure. Section 5 is devoted to some multi-dimensional
analogues of the procedures. Section 6 discusses some further consequences and
extensions of the results of earler sections. In Section 2 we collect some lemmas
and computations which are used repeatedly in later sections.

The author would like to take this opportunity to acknowledge his debt to
Professors J. Kiefer and J. Wolfowitz for their direction and assistance during
the course of this research.

2. Preliminaries. In this section we will collect and prove several simple
results which are used repeatedly in later sections. In addition, we will state and
prove the central limit theorem which we use in succeeding sections. In what
follows D;, D,, etc., will denote constants appropriately chosen to suit the
context in which they appear.

Let {a.} be a sequence of positive real numbers such that

(2.0) A=, Dai<

Except for Lemma 1 it will always be assumed in this section that a, = an™ for
some a > 0. Let

n

ﬂmn H (1 - ai) 0
2.1) jmmtl

=1 m=n

A
3
A
S

It is well known that
22) (1 — em) exp{— > a,-} S Bon = (1 + €m) exp{— 2 aj}
JF==m+1 F=m+l

for all n = m, where em — 0 as m — co. In particular, if, fora > 0, a, = an
we have

(2.3) (1 — en)m™n™ £ Bn = (1 + e)mn™

where e, — 0 asm — .
LemMA 1. Let {W.} be a sequence of real numbers converging to W where W may
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be taken to be «. Then, for any positive integer mo ,

hm Z aman Wm = IV
n->0 m=m,
Proor. For any fixed m it follows from (2.2) that lim,,o 8n. = 0. Since
@nBmn = Bmn — Bm-1,» We have, for any fixed m, ,

n

lim Z Am Bmn = lim (1 - ﬁml—l,n) = 1.

n->0 m=m; n-»00

The conclusion of Lemma 1 now follows quite easily.
Let {em} be a sequence of positive real numbers. For each n let

ha = (Ome @cmm ™ Bra) "
Lemma 2. Let a > 1/2 and suppose that ¢, < ¢ < o for all m. Then, if mq is
some fized positive inleger ;

lim An Bmgn = 0.
Proor. If my > a — 1 let my = my ; otherwise, let m; be the smallest integer
greater than a — 1. To prove the lemma it is obviously sufficient to prove that
heBmn — 0 as n — . Using (2.2) we obtain

n -1
2 2 2 ~2a —2 —1 —2 e P
ha B S Dihan™ £ Dy “(Z am Bun Cpm’ n")

me=m)

n —1
= D, < > am B c;fm“_ln")

m>=m)

(24)

If a > 1/2 then n°m*'cn’ > ¢ *m™ ™" which goes to « as m — « and hence,

by Lemma 1, the last term in (2.4) goes to 0 as n — .
Lemma 3. Let a > 1/2 and suppose that ¢, = ¢ < « for all m. Let {W,,} be

a sequence of real numbers converging to W where W may be . Then, if my s a
Jfized positive integer

lim k% Y. dcnim 8. Wn = W.

n-»o0 m=mg

Proor. The proof is easily accomplished upon noting that, for any fixed m,

n
. 2 2 —2 —2,2
lim k% Y. a’m icniBh. = L.

N, M=y
LemMA 4. Let {d.} be a sequence of positive numbers such that
(2.5) Amdmis = 1 4+ eum™* where em — 0 as m —> o,

Let ¢ > —1. Then, for any positive integer my ,

D dmmi~ 1+ @ a0

me=mg
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Examples of sequences satisfying (2.5) are easy to obtain. For example,
= (log m)" satisfies (2.5) for all real u. Note also that if {d,} satisfies (2.5)
then {dh} also satisfies (2 5) for any real number p.
Proor. Since ) mym® ~ (1 + ¢)7'n*"' what we have to show will be ac-
complished if we show that

Z;:.=1 dn m° -1 = Zr’r‘;i (dm — m+l) Z;'Ll jq + d. Z;L-l jq -1
dn Z‘:’:=1 m? dn Z:;=1 m?
_ St dnd 7 (dm dm+1 — 1) > = A,
2im

goes to 0 as n — «. Using (2.5) we see that for n sufficiently large

(say)

n—l1

—_ -1 . .5s—1 —_en1 g1 .
dn = le djs1 djl = DyZi-iT 2 D,e FiemIT > Dymin~*
j=I

where m, is chosen so that |ej] £ ¢ < ¢ + 1 forallj = m; . Thus d.n*" — o« as
n — o« and, therefore, in order to show that A, — 0, we can start the outer sum
in the numerator of 4, at m = m; .

By use of (2.5) we have, forn > m = m,

n—1 n—1

dn d7' = H didin =1 A + &™) = Den'm™
J=—m

and
s — 1| < em™

That A, must go to 0 now follows because for all n

Den'm ‘em” - — -
Zm_—m, (] ZJ IJ < eDyn®t 1Eme—1mq+1 < eDs

Zm:-l mq

and because e is arbitrary.

LeEMMA 5. Let ¢ = dmm™ where r = 0 and where {da} satisfies (2.5). Let a be
a real number greater than 1/2. Then, for any positive snteger mo , and any postitve
number p,

(2.6) > aentm B, ~ d*(2a + rp — 1) e n™
m=mg ,

as n — . In particular, if me = 1 and p = 2 (2.6) becomes

2.7) Ry ~ a*(2a + 2r — 1)nc,

Proor. Let ¢ > 0 and let m; be large enough so that in (2.3) e, < e for m >
m, . Then, using (2.3) and Lemma 4—the conditions of Lemma 4 are satisfied
if one takes into account the conditions stated here and the remarks following the
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statement of Lemma 4—we obtain

al Z enrm Bk, < (1 + Od° Z 2m T 4 O™

m=mg

238) = (14 E)a Zd Popleter—2, 2 + O(n —2a)

é (1 + an)a (2(1 + or — 1)—ld—p 2a-+pr—1 —2a_|_ O(n—2a)
= (1 + an)d’(2a + pr — )70 + O™

where @, — € as n — . Similar calculation produces

&' 20 Ca'm e = (1 + a)d’2a + or — )70
mo
Since n'™*ch — 0 as n — « and since e is arbitrary we have achieved the de-
sired result. :

We shall now state and prove a central limit theorem which we use later in an.
essential way. The multi-dimensional version we give (see Lemma 6) is a direct
generalization of the one-dimensional result which may be found in Loeve
[10}, p. 377 C. The proof we give is likewise a direct generalization of the proof
given in [10]. In Sections 3 and 4 it will suffice to consider only the one-dimen-
sional case; we make use of the result for higher dimensions in Section 5.

With all vectors considered as elements of g-dimensional Euclidean space we
adopt the following notation. If z, y are vectors [z, y] will denote their inner
product. The norm of a vector z we denote by |z| and, of course, is equal to
[r,z]">. If Bisag X g matrix we define in the usual way,

| B|| = sup [Bz, Bz]'*
|z|=1

The obvious facts that |Bz| < ||B|| |z| and that ||BiB,|| < ||Ba|| ||B:|| will be use-
ful below. I will denote the identity ¢ X ¢ matrix. B’ and =’ will denote the
transposes of the matrix B and vector z respectively. Unless otherwise indicated
a vector is to be considered a column vector.

Let {Uis;1 =k = n,n = 1} be a family of vector random variables, the
distribution of U, being denoted by F... Let V,i = (Un, -+-, Unza) and
suppose that E(Uu | Vi) = 0 with probability one. Denote the covariance
matrix of U by st ie., s = E(UnUwm). Let 7 = E(UnUni | Var). Let
Up= D Um, s = > Sm,andr, = > 7 where all three summations are over
1 =k = n. Fore> 0define ¢nr = 11if |[Uni| > ¢, ¢ = 0 otherwise.

Lemma 6. If

(2.9) lim . E(llrme — sme|) =

n>w k=1

(2.10) sup 2 E(| Uni ") < o,
n k]l
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and, for every ¢ > 0,

(2.11) lim 3 £( Un [¢7) = 0,
and if s, — s, i.e., (s, — s8] — 0, then U, is asymptotically normal with mean
0 and covariance matriz s.

Proor. Let F and G be ¢-dimensional distribution functions with character-
istic functions f and ¢ and finite covariance matrices C and D respectively, and
let H = F — @. Let 6, , 6; denote quantities whose absolute value is less than 1.
Let A = {z| || < €} and let A’ be the complement of A. Then, for fixed ¢ and
e < 1/)Y,

150 = 00| < | [ 151 a2

+ %] [ o an)

+ | [ ot o an)

+ | fA 0t 2)* dH (2)

s|[ 2]+ | [ ar ane

(2.12)
+eltl [ ol dF + &) +3 [ laldE + @)

é”[t,x]dH(x) + [t ¢ - D

+eltf [ 12l dF + @ +3[t]2fA’|x|2d(F+G)

Let G, denote the normal distribution with mean 0 and covariance matrix
8. Let {Yor ;1 £k £ n,n = 1} be a family of independent random variables
with the distribution of Y, being G . In addition, take { Y.} to be independent
of {Un}. It is easy tosee that ¥, = Y,u + -+ + Y., is asymptotically normal
with mean 0 and covariance matrix s.

Let fax , fa, gnk , and g, denote the characteristic functions of U, Un, Yt
and Y, respectively. Let

Far(t) = B | Vo).
To prove the lemma it is clearly sufficient to prove that, for each fixed ¢,
liMpee [falt) — ga(8)] = O.

Let War = Um+ -+ + Unp1+ Yopa + -+ + Yuuforl <k <n, Wn =
Yn2+"'+Ynn:Wnn= n1+"'+Un,n—l-Then

[Fa(t) — gal®) | = | E( 10 — £f18Tal) |

— SO U Sl )
(2.13) E gl (e e e
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< ; E|f®) — gm()) |
From (2.12), (2.13), and the fact that (U, | Vi) = 0 we obtain

|fa(8) — gul®) | < |t|2§Enrnk — s || +2e|t[3k§E1U,,k|2
(2.14) ) .
+31¢] X B@w| Uns ) +3lt[2;fA,|xsznk

Asn — o the first and third terms on the right-hand side of (2.14) go to 0 because
of (2.9) and (2.11), the second term is O(e) because of (2.10), and the last term
goes to 0 because G, is normal with covariance matrix s, and ||s,.4|| goes to 0 as
n — o« uniformly in & < n. Since e is arbitrary this finishes the proof of the
lemma.

3. The Robbins-Monro Procedure. Let M be a fixed function such that the
equation M (z) = « has a unique solution z = 6. For each z let Y (z) be a random
variable with EY(z) = M(z). The Robbins-Monro procedure for “finding” 6
is defined as follows. Let {a, ,n > 0} be a sequence of positive numbers such that

(3.0) > an = w, > al < .,

Let X; be some fixed number (X; may be taken to be an arbitrary random
variable for what follows since, if EX7 < «, the same proofs will hold, while, if
EX; = o, the results are obtained by truncating X; and using the results for the
case EXi < «) and define {X,,n > 1} by the recursion

(31) Xn+1 = X, — an(Y(Xn) - a)

where Y(X,) is a random variable whose conditional distribution given X, =
Ty, , X, = z, is the same as the distribution of YV (z,). Letting Z(x) =
Y(x) — M(z) (3.1) becomes

(32) Xn+1 = Xn - an[M(Xn) -« + Z(X,,)],

EZ(z) = 0 for all z, and the conditional distribution of Z(X,) given X, =
Z1, -+, Xn = Zis the same as the distribution of Z(z.). We note for future use
that, as a consequence of this,

33) E(Z(X,) | Z2(Xy), -+, Z(Xa)) = 0

with probability one.

For Theorem 1 we make the following assumptions about M(z) and Z(x).
The connection between these assumptions and those made by previous authors
is pointed out below.

AssumpTioN (Al). M is a Borel-measurable function; M(6) = a and

z— (M) —a)>0
forall z = 6.
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AssumprioN (A2). For some positive constants K and K, , and for all =
Klz—60|=|M@x)—a SKi|z— 0]
AssumpTiON (A3). For all
M) = a+ ai(z — 0) + 8(z, 6)
where 8(z, ) = o(jz — 6|} asx — 6 — 0 and where oy > 0.
AssuMPTION (A4).
(a) sup EZ)(z) < oo; (b) lim EZ*(z) = o

x>0

AssuMPTION (A5).

Zz)dP = 0

lim Ii

lim lip sup [
When X, — @ with probability one (for example, under (A1), (A2'), and

(a) of (A4) as shown by Blum (2], and when (a) of (A4) holds, (A5) implies

(34) lim sup | Z(Xy) dP = 0
Beo k(12X I>E)

which is actually what is used in the proof below. The reason we state (A5) in

the way we have is that it appears as a more natural condition than (3.4).

Simple conditions which imply (A5) are given by

(3.5) {Z(z)} are identically distributed

or

(36) sup E|Z(x) ™" < o
l=—8f<e

for some ¢ > 0 and some v > 0.
Assumption (A2) can be weakened to
AssumpTION (A2’). For all z and some positive constant K,

M(z) — of = Ki|z — 6
and, for every 4, t; such that 0 < #; < £, < o,
inf | M(z) — a| > 0.

1S le—8l sty

In Theorem 1’ we obtain the result of Theorem 1 with (A2’) replacing (A2)—the
truncation device used in the proof there is due.to Hodges and Lehmann [8].

Under (A1), (A2), (A3), the assumption that EZ*(z) = ¢ for all z, and the
assumption that (3.6) hold for ¢ = « and all v Chung obtained the result of
Theorem 1 (this is what is referred to in {5] as the “second case’”). Hodges and
Lehmann proved the result of Theorem 1 under (A1), (A2’), (A3), (A4), and the
assumption that (3.6) hold for some ¢ > 0 and all ». Thus Theorem 1’ includes
these earlier results by virtue of the greater generality of (A5) over related con-
ditions made by previous authors.
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As before D; , D, , ete., will denote positive constants appropriately chosen for
the context in which they appear.

TueorEM 1. Suppose that Assumptions (Al) through (A5) are satisfied. Let
an = An”" for n > 0 where A is such that 2KA > 1. Then n**(X, — 6) 18 asymplot-
scally normally distributed with mean 0 and variance A’¢’ (24, — 1)

Proor. There is no loss in assuming that « = 6 = 0. Abbreviating §(X, , 0),
M(X,) and Z(X,) by 8., M., and Z, respectively, and using (A3) we rewrite
(3.2) and obtain

(3.7) Xoii= (1 — damw™ DX, — An™%, — An"'Z,

Let a = Ao and let 8mn be as in (2.1) with the a; in (2.1) replaced by aj .
Iteration of (3.7) then yields

(3.8) Xop1 = B X1 — A ; M Brn b — A D M Brn Zom

m=1
Let h, = (D mes a®m™*8%,) 7. Then, by Lemma 5,
ho ~ (2a — 1) pM?
Hence, proving that »'*X, is asymptotically normal with mean 0 and variance
A’*(2a — 1)7" is equivalent to proving
(3.9)  h,X, is asymptotically normal with mean 0 and variance A%’a%

Using (3.8) it is clear that we can show (3.9) by proving
(3.9a) hnBor — 0

(3.9b) Bn 2 @M Bpndm — O in probability

m=1
(3.9¢) hn 2 am BunZm is asymptotically normal with mean 0 and variance &°.
me=l

(3.9a) follows immediately from Lemma 2 with ¢, = 1 for all m. To prove
(3.9¢) we will invoke Lemma 6 with ¢ = 1 and Un = haak *BnZi . To see that
we can do so observe first that by (3.3)

E(Unk! Unl, R Un,k—l) = E(Unk ] Zl; R Zk—-l) = O-

Let ¢ = 1if {Unr| = € and ¢ = 0 otherwise, and observe that in order to
verify (2.11) we have to check that D pe E(¢Usk) — O or, what is the same,

(3.10) h ; &’k Bin E(puk Z3) — 0

Noticing, by Lemma 5 and (2.3) that ¢,.. = 1 implies, for some ¢ > 0, that
|Zi] = ¢én* "K' = ¢k, we apply (3.4) which is obtained from (A5) and ob-
tain

(3.11) lim E(¢rZ) = 0

k»o0
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where ¢r = 1if |Zi] = €k"* and ¢r = O otherwise. Since ¢ = ¢u:, applying
Lemma 3 with ¢,, = 1 for all m and using (3.11) shows that (3.10) is valid.
Verifying (2.9) is equivalent to showing

(3.12) lim 22 Y o’k 7?65 B | B'[Z%(Xy)] — EZ} (X)) | = 0
n>w k=1

where E’ denotes conditional expected value with the conditioning being by

V. Use again of Lemma 3 shows that it is sufficient to prove

(313) - }cimElE’[Zz(Xk)] — EZ (X)) | =0

But (3.13) follows easily by observing that the expression between the absolute
value signs is uniformly bounded ((a) of (A4)) so that Lebesgue’s theorem is
applicable, and by observing that (b) of (A4) together with the convergence of
X to 8 w.p.1 imply .
(3.14) lim E'[Z*(Xy)] = lim EZ* (X)) = o

ks

k—>o0

(3.14) and Lemma 3 also serve to show that (2.10) is satisfied with
(3.15) lim s, = o

This completes the verification that L.emma 6 is applicable and therefore estab-
lishes (3.9¢).

To prove (3.9b) we require the estimate that EX2 = O(n™"). This estimate is
obtained by Chung [5] but we obtain it here for completeness. The methods are
essentially the same.

Squaring both sides of (3.2), taking expected values, and using (A4) we get

(3.16) EXiy = EX, — An'M,) + O(n™®)
Then, by (A1) and (A2), for e sufficiently small so that 2KA — ¢ > 1, and for
n sufficiently large, say n > N,

EXi, = (1 — 2KAn™ + A’KinHEX2 + 0(n™?)

< (1 — (2K4A — en™HEX. + D"

Let p = 2KA — ¢ and let S, be defined by (2.1) with a; = pj. Choose N
large enough so that p < N; (this is to guarantee that Bn. > 0 form = N, so
that (3.18) can hold). Iteration of (3.17) yields

(3.17)

EXi\y €Dy 2 m B + Bll\’lnEXi’l+l < D;n' + Dgnr
(3,18) m=N+1

= 0n™)

which is the estimate we require.
Let ¢ > 0. Since 8(z) = o(|z]|), for ¢ > 0 we can find ¢ > 0 with the property
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that

(3.19) |8(z)| < £z for |z| < e
As was pointed out above X, — 0 w.p.1; hence, we can choose N, so that

(3.20) P{X;| £ 72 N} > 11

Let N; be larger than N; and N. and such that @ < N; + 1. Then, denoting
BnD meny @1 Bmgdm by V. and h, D ey @M Bmn |Xa| by Vi, and using
(3.20), (3.19), a Chebyshev-type jnequality, (3.18), and Lyapounov’s inequality,
and (2.3) we have for n > Nj,

(3.21) P{lVa| >t} =t 4 P{|Va] > 4 |X,] £ ¢,j = N3}
St+ P{fVE>t) <t 4+ tEV

IIA

¢ + D4thn Z m—.lﬁmn m—1/2 é Dﬁt
Nj

(3.21) together with the fact that ~.8m, — O for any fixed m (Lemma 2) estab-
lishes (3.9b) and finishes the proof of the theorem.

TueoreM 1. Suppose that Assumptions (Al), (A2'), (A3), (A4), and (A5)
are satisfied. Let a, = An~" where A is such that Aoy > 1/2. Then n" X, — 6)
is asymptotically normally distributed with mean 0 and variance A% (24ay — 1),

Proor. We assume with no loss of generality that « = = 0. Let £ > 0 be
such that A(ax — ) > 1/2. Let K = oy — ¢. Then we can find an e > 0 such that
for |z] < e
(3.22) Klz| = [M(z)| £ Kifz|.

Define M'(x) = M(x) if [z] < ¢, M'(z) = Kz if x| > e
Since under (Al), (A2'), and (A4), X, — 0 w.p.l we can find N so that for
u >0,

(3.23) P{X]]£¢j2N}>1—u
Let X7 = Xy, and define {X,,n = 1} by the recursion
(3.24) X1 = Xo — QnixM'(X2) — ansnZ(X5)

It is clear that the assumptions of Theorem 1’ together with (3.22) show that
Theorem 1 is applicable to X, , M’, {a,,x}. Hence, for all ,
(3.25) lim P{(N + n)'"*X} ., < y} = F(y)

n-—»ow

where F is the normal distribution function with mean 0 and variance
A’ (240 — 17V Using (3.23) and (3.25) we obtain
lim P{n'’X, < y} = lim P{(n 4+ N)"*X,yn < y}

n-»90 n->00

< lim P{(n + N)'*(Xpen — X3)

n-—»0
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(3.26) + 4+ NPX, <y | X S6jz N +u
lim P{(n + N)'’X, <y} + u

n->0

F(y) + u

i

i

Similarly, we obtain

(3.27) lim P{n'*X, < y} = F(y) — u
Since u and y are arbitrary putting (3.26) and ‘(3.27) together finishes the proof
of the theorem.

4. The Kiefer-Wolfowitz Procedure. Let M be a fixed function with a unique
maximum at = 6§ (by making the obvious alterations in what follows we can
replace “maximum” by “minimum”). For each z let ¥ (z) be a random variable
with EY (z) = M(z). The Kiefer-Wolfowitz procedure for locating the maximum
is defined as follows. Let {a.}, {c.} be two sequences of positive numbers such
that

(4.0) > a, = o, ¢ — 0, > aie < o

Let X be a fixed number (by the same reasoning as in Sections 3 X; can be taken
to be an arbitrary random variable for what follows) and define {X,,n = 2} by
the recursion

(4.1) Xop1 = Xo — 0.6 [V (X0 — €a) — Y (X + €4)]
where Y (X, =+ ¢.) is a random variable whose conditional distribution given
X: =z, -+, Xo = z, is the same as the distribution of Y(z, £ ¢,). It is

usually assumed that ¥ (X, — ¢,) and Y (X, 4+ ¢,) are conditionally independent
i.e., for all Borel sets A and B P{Y(X, + ¢,) ¢ A, Y(X, — ¢,) e B|X,} =
P{Y(X.+ c) e A| X,} P{Y(X, — ¢a) € B| X.}. Though this is commonly the
case in practice we do not make this assumption since it is unnecessary to do so.
Whatever assumptions we do need to make about the joint distribution of
Y (X, — c.) and Y{X, + ¢,) are contained in (B5). Letting Z(z) = Y (z) — M(z)
and writing M, for M(X, — ¢,) — M(X, + ¢,) and Z, for Z(X, — ¢,) —
Z(X, + c,), (4.1) becomes

(4.2) Xon = Xo — ancn (M, + Z,),

EZ(x) = 0 for all z, and the conditional distribution of Z, given X; = z;, -- -,
X, = z, is the same as the distribution of Z(z, — ¢,) — Z(z. + c,). We note
that, as a consequence of this,

(4.3) E(ZnIZI;"',Zn—I)=E(Z7IIX17"';X1A)=O

with probability one.
We now make the assumptions we require for Theorem 2. Other assumptions
relevant to later theorems are listed further on. The connection between these
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assumptions and those made by previous authors is pointed out below. As before
Dy, D,, etc. will denote appropriately chosen positive constants.

AssumpTioN (B1). M (x) is a Borel-measurable function, has a unique maximum
atz = 6,and, for0 < f <t < fh < =,

@—-0Me—¢ —Max+4) ,

(4.4) inf
15 |2—0]| <ty €
0<estp
In addition, for all z and suitable D, and D, ,
4.5) Mz + 1) — M@)| < Di + Dilg]

AssumprioN (B2). For all =
M) = o — a(z — 0 + 8z, 0)

where ay is some real number, « > 0, and §(z, 8) = o(jx — 6[) asz — 6 — 0.

Assumprion (B3). For some ¢y > 0 there exist positive constants K; and K,
such that, for all z and all ¢ for which 0 < ¢ = ¢,

Ki(x — 0} = (x — )Mz —c¢) — Mz + o)lc ' < Ko(z — 6)°

AssumpTioN (B4). For every ¢ > 0 there exists ¢. > 0 such that, for all ¢
satisfying 0 < ¢ = ¢. and all » satisfying |z — 6] < ¢,

|6tz — ¢, 0) — 8(x + ¢, O)|c" < ez — 6
AssumprioN (B5).
(4.6) sup EZ*(z) = s <

4.7) lirr; ElZ(x —a) — Z(z + o) = &~

a0
In case Z(X. — ¢») and Z(Xn + ¢n) are uncorrelated we can replace (4.7) by
4.8) lim EZ%(z) = /2
8

AssumpTioN (B6).

lim lim sup f ZXx) dP = 0
Re0 >0t |z|<e Y{|Z(2)|>R)}
When X, — 8 w.p.1 (for example, under (B1) and (4.6) as shown by Burk-
holder [4] and Dvoretzky [7]—Blum [2] proved convergence w.p.1l earlier but
under stronger restrictions) (B6) implies

(4.9) lim sup ZidP =0
B>k J{1Zx|>R)

The remarks made about (3.4) and (A5) pertain here to (4.9) and (B6) and, as
with (A5), (B6) is satisfied if either (3.5) or (3.6) is fulfilled.
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In Theorem 2’ we obtain the same result as in Theorem 2 with (B3) replaced
by thé weaker restriction

Assumprion (B3’). For some ¢y > 0 there exist positive constants K; and K,
such that, for all z in some neighborhood of 6 and all ¢ for which 0 < ¢ £ ¢,

Ki(x — 0 < (x — O)[M@x —¢c) — M(z + o)l £ Koz — 0)°

(B3) ((B3')) is used only for Theorem 2 (2'); it is replaced by a different con
dition for later theorems. (B4) which is also used only for Theorems 2 and 2’ is
fulfilled whenever M satisfies (B2), (B3’), and has a continuous second deriva-
tive in some neighborhood of 8 with M”(8) = — 2a (ie., §”(8) = 0). When
(B2), (B3'), and (B4) hold simultaneously it is redundant to require the lower
inequality in (B3').

It is easy to see that (B3) (also (B3’)) implies that M is symmetric in some
neighborhood of 6; in fact, M(0 — ¢) = M0 + ¢) for all ¢ < ¢;. If (B3) is
satisfied and the interval of symmetry is known, i.e., ¢, is known, Burkholder was
able to show that modifying the Kiefer-Wolfowitz procedure by taking ¢, = ¢
for all n will yield, under certain additional restrictions, the fact that n'’X,
is asymptotically normal with mean 0 and a certain variance. It is easy to check
that this result can be obtained, under Assumptions (B1) through (B6) and the
assumption that M(z — ¢) — M(z + co) is differentiable at x = 8, by using
Theorem 1, replacing the M(z) in Theorem 1 by [M(z — ¢) — M(z + ¢o)l / ¢ .
Since this modification depends on knowing ¢, it will usually be undesirable.
Theorem 2 (also 2’) gives a result using the Kiefer-Wolfowitz procedure which
has the advantage of not depending on ¢, . This gain, however, is offset, if ¢y is
known, by the fact that, in general, for the Kiefer-Wolfowitz procedure X, can
never be O,(n"?) (see Example 1). However, as noted in the remarks following
the proof of Theorem 2, {a,} and {c.} can be chosen so that X, is arbitrarily
close to being 0,(n""'*) without ever attaining it.

Under a stronger set of Assumptions than (Bl) through (B6) Derman [6]
proves a weaker result than the one we prove in Theorem 2. Using Chung’s
methods he shows that for any ¢ < 1/2 there exist sequences {a,} and {c.} such
that n!(X, — 6) is asymptotically normal with mean 0 and a certain variance.

THEOREM 2. Suppose that Assumptions (Bl) through (B6) are satisfied. Let
AK; > 1/2 and take

(4.10) an = An7!

Let {c,} be a sequence of positive numbers satisfying (4.0) with a, = An™", and
the assumptions of Lemma 5 withr = 0. Then n*’c.(X.— 6) is asymptotically
normally distributed with mean 0 and variance " A*(8ad — 1)7\,

Proor. With no loss of generality we assume o = 8 = 0. Abbreviating
(X, — ¢n) — 8(X,. + c.) by 4, and using (B2), we rewrite (4.2) and obtain

(4.11) Xon = (1 — 4aAn™ )X, — An7'c¢;'8, — An"'¢c;'Z,
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Let @ = 4aA. Using the notation of (2.1) with a;, = aj ', iteration of (4.11)
yields

(412) Xn+1 = ﬂon Xl - A Z m”IC;len 6m - ;1 Z m- c;lﬁmn Zm
m==1

m=1
Let h, = (Z,L] a2m_2c;26:',m) —e, By Lemma 5 with r = 0 and p = 2 we have
(4.13) B ~ a*(2a — Dnck .
Hence. what we wish to prove is that

a(2a — 1)™*h,X, is asymptotically normal with mean 0 and variance
(4.14) 22 -1
o (8ad — 1),

After multiplying both sides of (4.13) by (2a — 1) "’ah, it becomes clear that
(4.14) will be proved if we can prove

(4:15(1) hnﬂou - 07

(4.15b) B 2 765 B 6m — O in probability,
m=1

and

(4.15¢) ha 2, a0 Brin Zom i asymptotically normal with mean 0 and variance o°.
me=l
Lemma 2 shows that (4.15a) holds. We establish (4.15¢) by using the same
argument used to prove (3.9¢) in Theorem 1. The details being the same we omit
the argument except to note that, by Lemma 3, and (B3),

oy = Rl D d'm e B, BZL — &
m=1

Note that up to this point the only assumptions used have been (B1), (B2),
(B3), and (B6). This observation will enable us to begin the proofs of later
theorems at the point where we have to verify (4.15b).

To establish (4.15b) we require an estimate of EX% which we now obtain.

Squaring both sides of (4.2), taking expected values, and making use of (B3)
and (B5) we obtain, for n > N, where N, is large enough so that ¢y, < co,

(4.16) iX5 S (1 — 24K + A'Kin )EX? + sAcn™

Let u > 0 be such that 2AK; — u > 1 and denote 24K, —u by p. Then, for
sufficiently large =, say n = N;, (4.16) implies

(4.17) EXhy = (1 — pnYEX? 4 Dicin™

Put ¢; = pj " in (2.1) and denote the 8, thus obtained by B, . Then, iterating
(4.17) and using (2.3) and Lemma 4 with ¢,° = d, and ¢ = p — 2, we obtain,
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forn > Ny,

EX%i1 S By EXbi1 + Dy 20 m76 B

m=N+1

(4.18)

w

Den™® + Dy 2. mPIT = 0(6in Y

m=N1+41

IIA

which is the desired estimate.
For each integer m define ¢ to be 1 if | X | £ ¢m and ¢, = 0 for | X,n | >
¢m . Then, to prove (4.15b) it is sufficient to prove

(4.192) Bo D M Co Bun Om dm — 0 in probability
m=1
(4.19b) Bw D ™ Cr' B 0m(l — ¢m) — O in probability
mum] N

For ¢ > 0 it is a consequence of (B4), that, for m sufficiently large, say m > N,
| $mdmm | £ €| Xm|. Use of Lemma 2 and a Chebyshev-type inequality now
show that (4.19a) is implied by

n

(4.208) ho 2 M B BVH(X2) = 0(1)

m=Ng
Since 8n¢m = O(| X, |) (a consequence of (B3)) and
E(|Xn| (1 — ¢m) £ PP | Xn|> ci} B"(Xm)
it follows, in similar fashion, that (4.19b) is implied by

(4.20b) ha 25 M Bn BH(X) P | Xn| > cm} = o(1)
mwl

Since our assumptions on {c,} imply that ¢,n'* —  (see the proof of Lemma 4
where it is shown that d.n®™ — « for ¢ + 1 > 0) we have P{ | X, | > ¢m} <
cm: Xt = 0(cm ™) — 0 as m — «. Hence (4.20b) will follow from (4.20a) by
an argument like that in Lemma 3.

To show (4.20a) observe that by (2.3), (4.18), and Lemma 4 with dm = 5’
and ¢ = @ — 3/2 (a — 3/2 > — 1 because our assumptions imply that 4o = K,
and hence a = 4aA = AK,; > 1/2) we have, for n > N3 = max (N,, Ny),

“(4.21)  hy 2 M Bn BYHXE) < Doha 0 Y, m %0 < Dy by n Vi
N3 N3

Use of (4.13) and Lemma, 2 yields (4.20a) thus completing the proof of Theorem 2.
TaEOREM 2'. Suppose that all the conditions of Theorem 2 are satisfied except
that (B3) is replaced by (B3’). Then n'%c.(X, — 8) is asymptotically normal with
mean O and variance o"A*(8ad — 1)
We omit the proof since it follows from Theorem 2 by use of the same trunca-
tion argument used in obtaining Theorem 1’ from Theorem 1.
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It is easily checked that, for any sequence {f.} of positive numbers approach-
ing 0, there exists a sequence {c,} satisfying the conditions of Theorem 2 and
such that ¢, = f. . Thus Theorem 2 says that under its conditions we can always
find sequences {a,} and {c,} satisfying (4.0) and such that X, is arbitrarily close
to being 0,(n"*) without ever attaining it. The question then arises as to
whether it is possible to choose {a,}] and {c.} satisfying (4.0) and such that
X, = 0,(w™"). The answer to this is, in general, negative. To see this we
give the following example. ]

ExampLE 1. Let M(z) = —z°/4. For each z let Z(z) be normally distributed
with mean 0 and variance 1/2, and let Z(X,. — ¢») and Z(X,, 4+ ¢.) be inde-
pendent. Then {Z,,} is a sequence of independent normal random variables with
mean 0 and variance 1. Note also that {Z,} and X; are independent. Let {a.}
and {c,} be sequences of positive numbers satisfying (4.0). We now show that
it is impossible that, for any infinite sequence {n;} of distinct integers,

(4.22) lim }im Pini* X <y} = 1.
Y0 T
For, if it were possible, writing Xoai1 = Bon X1 = 2 mel GmCm BmnZm , We would
have
nk
lim lim P{ i 21 @ G Brn, Zm < y} =1

y-»0 k>0

which, by the normality of Z,, , implies that
nk
e 2, Gm Cm Binny, = O(1).
=]
But this is impossible by Lemma 1 and the fact that

nk L 2
(E am cm Bﬂmk) é nk
me=l

For Theorem 3 we drop (B3) and (B4) and substitute in their place
Assumprion (B7). There exist positive numbers ¢, ¢ , and K; with € > ¢ such
that, for all ¢ < ¢ and all z satisfyingec < |z — 0| < ¢

(4.23) (x — OM(z —c) — Mz + ¢)lc* > Ki(z — 6)°

(B2) and (B7) are both implied by the condition (which we refer to hereafter
as the derivative condition) that M has a continuous second derivative in a
neighborhood of 6 with M”(6) = —2a. Under (B1), the derivative condition,
(B5), and the assumption that (3.6) hold for all v > 0 and some ¢ > 0, Burk-
holder produces, for every ¢ < 1/4, sequences {a,} and {c,} for which
n'(X, — 6) is asymptotically normal with mean 0 and a certain variance. The-
orem 3 shows that under weaker restrictions the same is true for { = 1/4.

THEOREM 3. Suppose that Assumptions (B1), (B2), (B5), (B6) and (B7) are
satisfied with K1 < 4a in (B7). Let ca = n™"* and a, = An™" where A is such that

nk
2 2,2
Om Cm 6mnk
1

"=
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AK, > 1/4. Then (X, — 6) is asymptotically normal with mean 0 and vari-
ance o°A* 8ad — 1)\

Proor. Let ap = ¢ = 0. If we prove Theorem 3 when (B7) is strengthened so
that (4.23) holds for all « satisfying | x| > ¢ and, in addition, | M(z — ¢) —
M@+ c¢)| £ Ks|z|forall|z| > eand all ¢ < ¢, then, by using the truncation
device used in the proof of Theorem 1/, we will be able to establish Theorem 3
with (B7) as it stands. By the remarks made in the proof of Theorem 2 we will
be finished with this proof if we can verify (4.15b).

As previously we require an estimate of EX>, obtained as follows. Let ¢, = 1
if | X.| < coand ¢, = 0if | X,,| > c.. Let ¢ > 0. Then, it is a consequence of
(B2) that, for n sufficiently large, say n > N,

(4.24) | 8] b <t

Squaring (4.2), taking expected values, and using (B5) (B2), and the strength-
ened form of (B7) yields

EX% 1 £ Epu(X, — An7'¢0'ML) + EQL — ¢a)(X — An7'ci' ML)
+ Dsn %,k
(4.25) < E¢.(1 — 4aAn™")' X2 + Do, | 8, X, | n7'Cs"
+ DiwE¢.8in7%c;t
+ E(1 — ¢)(1 — 2K\ An~" + A’Kin~’¢;) X5 + Den”%cy’

Let u and w be positive numbers such that 2K;4 — w > 1/2 and 2K;4 —
w < 8aA — u,and let 2K;4 — w be denoted by p. Choose N, > N; so that, if
2 -2

n > Ny, A’Kon%c," < wn™" and 16’4’0 < un™". Then, for all n > N,, we
have from (4.24) and (4.25)

(4.26) EXiy = (1 — pn HEX® + Dun”’¢i’ + tDyn™'c),

= (1 — pn HEX% + Dpn™*"?
Iteration of (4.26) now shows that, forn > N,
(4.27) EX:., = 0™

which is the desired estimate.
(B2) and the fact that X, — 0 w.p.1 imply that
lim §,(X% + &)™ =

w.p.1. Hence an argument like that in Theorem 1((3.20) et seq) shows that in
order to verify (4.15b) it is sufficient to prove that, for any integer N > N

(4.28) he 3 w7 (BXE + &) = OQ1).

m=N

—1/4

Putting ¢, = m™"" in (4.28) and using (4.27) this follows quite easily, thus finish-
ing the proof of Theorem 3.
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If we make some further assumptions about M we will be able to improve on
the n'* obtained in Theorem 3. To this end note that from (B2) we have

| 8(x) | £ ez — 8)* where e, > 0 asz — 6.

Assumption (B8) which we now specify is an assumption about e, .

AssumpTioN (B8). There exist positive numbers ¢, p, and R such that, for
all¢ £ ¢,

sup e < Rc’
le—8f<e

If 8(x, ) = O( |z — 6] %) for x near 4 it is easy to see that (B8) is satisfied for
appropriate R and ¢, and p = 1; thus, the case of most interest is when p = 1.
(B8) is very closely related to Burkholder’s condition of ‘local-evenness”’—for
p = 0, M is called p-locally-even if

lim sup f(e)e 7? <
€0

where f(e) = sup {x | M(x — ¢) — M(x + ¢ = 0}. It is easy to verify that when
M is continuous in a neighborhood of 8 and (B8) is satisfied then M is p-locally-
even. In fact, when M satisfies the derivative condition, requiring M to be
p-locally-even is equivalent to requiring é(z, 6) — 8(—zx, 8) = O(|x — 6|**)
as x — 8 — 0. The disadvantage in assuming the slightly more restrictive (B8)
rather than local-evenness is allayed by the fact that (B8) appears as a more
natural condition.

Under (B1), the derivative condition, (B5), the assumption that (3.6) hold
for all » > 0 and some ¢ > 0, and the assumption that M is p-locally-even,
Burkholder proves that, for any ¢ < (1 + p)/(4 4+ 2p), there exist sequences
{as} and {c,} such that »‘(X, — 6) is asymptotically normal. Theorem 4 re-
places the condition of local-evenness by (B8), weakens the other assumptions
made by Burkholder, and gives a stronger conclusion, e.g., with p = 1 in (B8),
an = An”", and ¢, = (n"'* log n)™*, Theorem 4 shows that n'’* (log 7)™ (X, — 6)
is asymptotically normal.

TrrOREM 4. Suppose that Assumptions (B1), (B2), (B5), (B6), (B7), and (B8)
are satisfied with K; = 4a in (B7). Let a, = An"" where A is such that AK; > 1
and let ¢, = d. n with d» — O and satisfying (2.5) of Lemma 4 and with r =
(4 + 2p). Then n''? ca(X 4 — 6) is asymptotically normal with mean O and variance
I A*8ad — 1)

Proor. Let ay = 8 = 0. By the reasoning in the first paragraph of the proof
of Theorem 3 we have only to verify (4.15b). To do so we require an estimate of
EX? which is obtained in much the same way as (4.26) is obtained. In fact,
using (B8) to replace (4.24) by

(4.29) [ $a8 | = O(c5™),
a repetition of the argument given in Theorem 3 shows that

(4.30) EXin £ 4 — pn YEXS 4+ Dy 'S + Duncy”
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Tterating (4.30) and applying Lemma 4 and (2.3)—note that p = 2K;4 — w > 1
and that p > r(2 + p)—yields, for n > N where N is chosen sufficiently large
(how large can be determined by inspecting the proof of Theorem 3),

431)  EX,u = 0(™) + Dy Z 6 Bn + Dy E M Cp B

m=N

= 0(n?) + O(cL?) + O(n”'c;?)
= 0(c3"*) + O(n'ch?)

which is the desired estimate.
To prove (4.15b), it is sufficient to prove that for N sufficiently large

(4.32) Bo Do ™ ¢nBmn ¢mdm — 0 in probability
m=N
(4.33) h, Z M Bun(l — ¢m)ém — 0 in pi‘obability.
m=Ny

By (4.29), (2.7) of Lerama 5, and Lemma 4—note that 4ad > r(1 4+ p)—we
obtain, for n > Ny,

(4.34) he Z 16 Bram, S Om

— <h Z _lc:n+pﬁm ) O(n1/2c2+p
which, by the choice of {¢,.}, proves (4.32).

To show (4.33) we proceed as follows. Let um = 1if | X | = co (¢o here is the
same as in (B8)) and let 4, = 0 otherwise. Using (B8) and, from (B2}, the fact

that | 8 | = O(| X |) if | Xn| > ¢, we then have, for N; sufficiently large
so that in particular ¢,, < ¢ for m = N,

o 2o 16 Ban(1 ~ Gm) | 6|
Ny

= hn Z m_lc:n_lﬁmn(l - ¢m).um I 5m I
(4.35)

+ by Z M6 Bl — ) (L — pim) | 8|
- (h 3 e X ) +0 (h,, 3w (1 — ) | X |)
Now '
R Em o Ban E{(1 = pm) | Xm|} = hn co‘Zm e Bon EX .
and since, by (4.31) and Lemma 4 (note that 4a4d > 1),

I 32 176 o X, = O(64") + 0673,
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our choice of ¢, shows that the right hand side of (4.35) goes to 0 in probability.
This establishes (4.33) and finishes the proof of the theorem.

Focusing our attention for the present on the case p = 1 (this is by no means
necessary since all ensuing remarks can be suited to the cases where p # 1), we
can ask whether or not it is possible to find sequences {a,} and {c.} satisfying
(4.0) and a sequence {g.} such that, under Assumptions (B1), (B2), and (B5)
to (B8), guX 41 is asymptotically normal and g>' = O(n™*). Example 2, which
we now give, shows that the answer to this question is no.

ExampLE 2. Let {a,} and {c,} be sequences satisfying (4.0). For 0 < C < 1/6
let M(xz) be defined as follows.

M) = —2/4+ 2 if |z|SC
(4.36) =—2/4+C if z>C
=—2/4-C if z<—C
For each z let Z(z) be normally distributed with mean 0 and variance 1/2 and
let Z(X,, — ¢m) and Z(X, + ¢m) be independently distributed. Thus {Z.} is
a sequence of independent normal random variables with mean 0 and variance 1
and Z.. and X, are independent if m = m'. It is clear that (B1), (B2), (B5),
(B6), (B7), and (B8) with p = 1 are all satisfied. Suppose that {g.} is a sequence
of real numbers such that ¢,X,.1 converges in distribution to the normal dis-
tribution with mean 0 and variance » with » = 0. Since | g» | X1 is then also
asymptotically normal with mean 0 and variance » we can assume to begin with
that, for all n, g» = 0. We will show that lim sups.,, 2 ’g. = 0.
Let ¢1m , dam 5 -+ » $5m be random variables taking on the values 0 and 1 only,
with the value 1 being taken on as follows:
¢1m=1 if IXm—cmléolem_’_cm!éC
dm=1 U Xn—ca>C
¢3m=1 ime"'c'méC<Xm+cm
¢4m=1 if Xm+cm<—C
¢5m=1 ime_Cm<—C§Xm+cm

Let N, be such that, for all m > Ny, ¢n < C/2 and, in addition, suppose that
N is large enough so that am < 1 for all m > Ne—the latter requirement is to
guarantee that 8.» > 0 foralln = m > N, . Since forallm > N, > tidim =1,
it follows from (4.36) that m > N, implies

5
Mp=MXn — Cn) — MXm + ¢a) = 2 Mnin
g=al

il

Ome - 2613n¢1m - 6CmX12n¢1m + ((Xm - cm)3_03)¢3m
- (Cs + (Xm + cm)3)¢5m .
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Observe that none of the last three terms is positive. Abbreviating —a./c» times
their sum by G we obtain from (4.2)

(4:37) Xn+1 = (1 - am)Xm -+ chnam¢lm + Gm - amc;lzm
Iterating (4.37) we obtain, forn > N = Ny,

Xn+l = 61\/" XN+1 + 2 E Am cfn an ¢’lm + Z ﬁmn Gm - Z amcr_nlﬂmn Zm
(4.38) N+1 N+1 N+1

= BwnXnt1 + Guv + Gony + Gann

where Gy , Gany , and G,y are abbreviations for the terms in the corresponding
positions in the previous line and we note that G is never negative and that
G3an 18 normally distributed with mean 0 and variance E{G+1 B
We will show that im sup,.., 7%, = 0 by contradicting the assumption
that there exists a positive constant Di; and a subsequence {n:} such that
Nk °gn, = Dis for all k. We may assume that {n,} consists of all the positive
1ntegers since the-argument below remains valid if we begin by restricting our-

selves to the subsequence {ne} for which nz"’g,, = Dis. Let

N = (ZN+1 amc 6mn) - and Gnﬂ =2 ZN+1 amcmﬂmn .

We will arrive at the contradlctlon by showing first that the asymptotic nor-
mality of g,X .1 implies that g.Hay, = O(1) as n — © and lim Supa.., gnGay =
o(1) as N — o, and then showing (see (4.45) et seq) the impossibility of having
simultaneously HZ}V,, = 0(n™* and lim sup,.., 2@y = o(1) as N — .

Let Enbetheset { | X;| < C/2,5 > m}.SinceX,, >0 w.p.1l,1 — P {E,} =
emn— 0 asm — . Since ¢, < C/2 for all m > N, we have, for all such m,

(4.39) EnC gy =1,7 > m}.

Forv = 0 let F, denote the normal distribution with mean 0 and variance v. We
consider two cases according asv = O orv > 0.

Case 1: v = 0. To begin with we obtain from (4.38), the fact that Gi.y + Ganw
is never negative, and the independence of Xy,y and Geay that, for all n > Ny,

P{Xui1 > 0} = P{BrynXnot1 + Ginny + Gaary + Ganro > 0}
P{BypnX o1 + Gaan, > 0}

P{Xyy1 > 0, Gsan, > 0}

3P {Xwy1 > 0}

We will show that for some N hm,H,, g,.G,.N =. 0. Since Gy is decreasing in N
this will imply limy.., lim supa.., g,.G' ¥y = 0.

Suppose that for all N lim sup,.., g«Gax > 0. Then, for each N, there exists
a positive constant Dy and a sequence {n;} such thdt, for all &, g., G w > Dig .
Let Gay = §4Gsnv . Then, since g, X1 — 0 in probability we have, by (4.38),

v

(4.40)

%
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(4.39) and (4.40),

0 = 1 - FO(DIG) g }cim P{gnkBNnkthH + G:;,N + gm‘GlnkN
+ gm,G2nm > Dle; EN}

(441) g }:’m P{gnl,BNnkXN+1 '+' G:)‘N > 0, EN}

(4%

lim P{Xys > 0,Gax > 0] — en

k>0

%

PP{Xnp1 > 0} — e

Since N can be chosen large enough so that the right-hand side of (4.41) is
strictly positive we have a contradiction, thus proving that g,.G':,N = o(1) for
some N.

To show that g.Hny, = O(1) assume, to the contrary, that gu,Hnx, — © for
some sequence {n}. Since H,x, Ga.x, is normally distributed with mean 0 and
variance 1 we would have, for any y,

lim P{Gr,y, > y} = %

kw00
Hence

O = 1 - FO(y) g. }pl_)m P{gnkﬁNonkXN0+l + G:;;No > y}

= lim P{Gr.x, > ¥} P{Xnys1 > 0}

k-»00
2 3P{Xwpr1 > 0}

which is a contradiction, thus proving that g.H7y, = O(1).
Case 2: v > 0. The argument used in Case 1 to show that g,Hny, = O(1) can
be used here with (4.42) becoming

1 — Fo(y) 2 1P{Xno11 > 0}

Let y — « and we obtain a contradiction to the assumption that g,H7x, is not
0Q1).

To show that lim supn.,, g» Gay = o(1) suppose, to the contrary, there exists
a sequence ,{N i1, & positive number D, , and a sequence {nx;} such that, for all
Js ky gn; Garsn; > Dir. Let T be a random variable independent of

{Gaw ,n > N, N > 0}
and having F, as its distribution function. Then

v
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where f, — 0 as n — «. Then, letting u;; = Gnkj BN ini; g}i , we have

1 - Fv(DH) = lilil_'sup P{ukjgzv,- XN,-+1 + G:k,-zv,- > 0 EN,-}

%

(4:44) lim sup P{us; g, Xy + @hiyw; > 0} = e,

%

lim Sup P{ukJT + Gnk,N, > 0} — EN; th

1
=3 ey; — ly;

For j large enough it is clear that ex; + tv, < F,(Dy;) — 1 which gives the desired
contradiction.

To conclude the argument we have to show that it is impossible to have
limy,,, lim sup,., 7"* Gay = 0 and n'* H7} wvy = O(1). If it were possible we
would have, for N = N,, -

n 2
( Z arsnlz 3»/:) ( E amcmﬁmn)( arzn C;:zlsmn)
m=N+1 m=N+1 m=N-+1
(4:45) <Z O Cm Bm,.> ( Om G ﬁm,.)

-1
é €

where limy.,, lim sups.,, e.v = 0. Hence, using Holder’s inequality,

(4.46) ( N}; amﬁm"> ( >l fn’ﬁ) — N) £ euvln — N)n™?

Applying Lemma 1 with W,, = W = 1 we conclude that, for each N > N,,

1 = lim sup e,x
which is impossible.

The reason that we cannot have n'°X, asymptotically normal in Example 2
is clearly the upsettmg character of G,y . The following example shows how we
can obtain n'°, and even better, by considering the asymptotic behavior of
{X,.+1 — G} instead of {X »}. What this indicates is that the “bias” term,
Gno , around which X, becomes rapidly concentrated, is the dominant error. Of
course, the improvement in the order of convergence is of little practical use
since it is X,, — # which matters.

ExampLE 3. Let M be as in Example 2 and let Z (x) satisfy (B5) and (B6).
Note that M satisfies (B8) with p = 1. Let a, = An*for 4 > 1 and let Cn =

n d, Where dn satlsﬁes the conditions of Lemma 4 and d, — 0. We will show
that n'%,(X,p1 — Guo) is asymptotically normal with mean 0 and variance
FA'24 — 3/4)7L By (4.36) and the kind of argument used several times be-
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fore we will succeed in doing so if we can show

(4.41) Bu 2 GmCnBmn(l — dm) = 0,(1)
N+1
(4.42) ha 2 GmBmn Xm = 0,(1)
N+1
where ¢, is 1 or O according as | X.| =< C — ¢ or not, and where

Bma = J[7=m+1 (1 — a;). By use of Chebyshev’s inequality (4.41) and (4.42) will
be proved if we show

(443) hn Z amﬁmnEan = 0(1)
N+1
Using (4.31) and Lemma 4 (note that A > 1) we obtain

. i M B EX% = O. (h }: m e, 5m> +0 (h E m 2c;2ﬁm,.)

h
(4.44) N¥1
= 0(n'""c%) + 0(n™c7") = o(1)

which proves (4.43). Note that we can do better than »n'/® and, in fact, we can get
arbitrarily close to n*’®.

Blum in [3] has suggested a procedure which replaces (4.1) by
Xyt = Xo — aaca [Y(Xa) — Y(Xa + e

This was suggested mainly for the multi-dimensional case which we consider in
the next section but we point out here, in Example 4, that this procedure can be
rather inefficient.

ExampLE 4. Let M(z) = —2°/2 and let Z be as in Example 1. Then, using the
Blum procedure,

X-n+1 = Bﬂn Xl - % zl: Am cmﬁmn - IZ QAm C;lﬁmn Zm
We show that if 2,X, = 0,(1) then ' cannot be o(n™*). Theorem 2 shows,
of course, that, for the Kiefer-Wolfowitz procedure, k' can be almost O(n™"/%).

If B = o(n™*) and X; < 0 we would have

n
; Qm Cm an = O(n—IM)

A Cr B = o(n™%)
1

Hence

n /3 n 1/3
; ar4n/3 :n/: = (E Am Cm an) (Z afn szﬂmn) - O(n_lls)
1
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But then

n n 3/4
2 Gnfun S (Z an’ i’f) ' = o(1)
1 1
which is impossible by Lemma 1.
Again it is the “bias” term Z @mCm Bmn Which is the dominant error, i.e., the
Blum procedure becomes rapidly concentrated about the wrong value just as
in Example 3.

b. Multi-Dimensional Procedures. In this section we consider multi-dimen-
sional analogues of the Robbins-Monro and Kiefer-Wolfowitz procedures. Since
the theorems and proofs for the multi-dimensional case are quite similar to those
for the one dimensional case considered in Sections 3 and 4 we will not go into
great detail in this section. We first consider a ¢g-dimensional analogue of the
Robbins-Monro procedure identical with the one considered by Blum [3]. The
g-dimensional analogue of the Kiefer-Wolfowitz procedure considered next differs
somewhat from the procedure given by Blum—the differences are pointed out
below. At the end of the section we remark on some more general ¢g-dimensional
analogues.

Let z be a g-vector and let M be a vector-valued function of x with M (z) also
being a g-vector. Let a be a vector and let 8 be a solution of the equation M (z) =
a. Let Y(z) be a vector random variable with EY (z) = M(z). The Robbins-
Monro procedure for ‘“locating” 6 is given as follows.

Let {a.} be a sequence of positive real numbers such that

(5.0) >, = oo, Sah < w

Let X; be an arbitrary vector (as in Section 3 X; can actually be taken to be a
random variable) and define {X,, n = 2} by the recursion

(5.1) Xop1 = Xo — an(Y(Xn) — a)

where V(X,) is a random variable whose conditional distribution given X; =
Z1, -+ , Xu = Z, is the same as Y (z,). Writing Y(z) = M(z) + Z(z) we obtain
from (5.1)

(5.2) Xoy = Xo — a.(M(X,) — @) — a.Z(X,).

where, as before, the conditional distribution of Z(X,) given X1 = 2y, -+ -,
X, = z, is the same as the distribution of Z(z,) and

(5.3) B(Z(X) | X1, -+, X) =0

w.p.1l.

The assumptions we make now are easily seen to correspond to the assump-
tions made in Section 3—(A2*) corresponding, of course to (A2'). The notation
we use is the same as that adopted in Section 2 for Lemma 6.

AssumprioN (A1*). M is Borel-measurable, M (8) = «, and, for every ¢ > 0

inf [x—86 M@ —a >0

1/e>]z—0]>¢
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(A1*) is satisfied, for example, if (A3*) is satisfied with § = O which is, of
course, much stronger than needed.
AssumpTiON (A2%*). There exists a positive constant K, such that, for all z,

| M(z) —a| £ Ki|z — 6|
AssumpTION (A3*). For all
M(z) = a + B(z — 6) + 8(z, 6)

where B is a positive definite ¢ X ¢ matrix and | 6(z, 8) | = o(|z — 6]|) as
z—0—-0.
AssumpTION (A4*).

(5.4) sup E| Z(x) | <
(5.5) liIIol EZ(x)Z'(z) = =

where = is a non-negative definite matrix and where the limit is in the sense of
the norm we have defined.
AssumpTIiON (A5*).

lim lim sup f | Z(z)|"dP = 0
{lz (=) |>R}

Row e+0tF |z-8] <
The remarks concerning Assumption (A5) in Section 3 also pertain here—we
use (A5*) in conjunction with the convergence of X, to 8 w.p.1 (a consequence of
(A1%), (A2*) and (5.4)) and (5.4) only to obtain

(5.6) lim sup / |Z(X)PdP = 0
Rew £ Y{(ZXR)I>R)
As before, with Z(z) considered as a vector, (3.5) and (3.6) imply (A5*).
Let by, -- -, by denote the eigenvalues of B in decreasing order. Write B =
PDP™" where P is orthogonal and D is the diagonal matrix whose diagonal ele-
mentsareb, , --- , b, . Observe that inf;j; [Bz, 2} = b,, inf|;j-; [Bz, Bz = b2,

and || B|| = b;. Let =, be the (4, )th element of = and let #3; be the (3, j)th
element of #* = P7'xP.

TueoreM 5. Suppose that Assumptions (A1*) through (A5*) are satisfied. Let
an = An"" where A is such that Ab, > i. Then n'*(X, — 6) is asymptotically
normal with mean 0 and covariance matriz PQP™" where Q is the matriz whose
(4, 7)th element is A*(Ab; + Ab; — 1) x¥; .

Proor. Let « = § = 0. Let w = Pz, M*(u) = P'M(Pu), §*u) =
P7'8(Pu), and Z*(u) = P~'Z(Pu). Then, with =, M, 5, and Z being replaced
by u, M*, §* and Z* respectively, it is easy to see that (A1*) through (A5*) are
satisfied with B replaced by D and = replaced by =* and that (5.2) is trans-
formed into another Robbins-Monro procedure with « replaced by P'a. Thus,
in order to prove the theorem it is sufficient to prove that, when B is diagonal,
n'?X, is asymptotically normal with mean 0 and covariance matrix

((A%(4bs + 4b; — 1)),
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(A1*), (A2¥%), and (5.4) imply that X, converges to 0 w.p.1 (this follows from
Dvoretzky’s theorem—Blum’s earlier proof of convergence w.p.l is under
stronger assumptions) and, hence, using (A3*), an argument like that in Theorem
1’ shows that we can add the additional restriction that there exists a positive
constant K such that AK > 1, K < b,, and, for all z,

(5.7) M), 2] = K|z|®

The proof proceeds now just as in Theorem 1. Iterating (5.2) and using (A3*)
we obtain

(5.8) Xoi1 = BonX1 — A 2, 0 Bundm — A 2 M Bup Zm

mm=1 m=21

where
” n —1/2
Bm =11 (I — A57°B). Let h, = (E A'm™" || Bun ”2)
m+1 1

Since || Bmn || = (1 4+ en) (mn™)** where €, — 0 as m — «, we have h, ~
(24b, — 1)"?A7'n'%. Making use of (5.7) and the same argument as used to
obtain (3.18) in Theorem 1 we obtain E | X,. | = O(m™). It then follows just
as in Theorem 1 that

P (B[,,, X,— 4 Z} M By am) -0
in probability.

To conclude the proof we will apply Lemma 6 with U, = Ah, K 'Bin Zi .
Just as in Theorem 1 we obtain quite readily that (2.19) and (2.20) are satisfied
with this choice of U,y . Since | By, z | = (1 + &) (kn™)*" | 2| it follows from
(A5*) in the same way as in Theorem 1 that (2.21) is satisfied. We have only to
compute lim,,,, s, to be finished. Let the (¢, j)th elements of EZ; Zi and s, be
denoted by ={f and s respectively. Let an = [ Lm: (1 — Ab; ;). Then

n
7 2,2 s »
s = A’h% 2 K7 Bikn Biin 5

Fooml
Since 7Y — m;; and b} ~ (24b, — 1) A7 it follows that
v — (24b, — 1) (4b; + Ab; — 1)7'ry;

Thus, when B is diagonal, n'*X, is asymptotically normal with mean 0 and
covariance matrix ((A’(4b; + Ab; — 1)7'xy;)), and this finishes the proof of
the theorem.

We will now take up the multi-dimensional Kiefer-Wolfowitz procedure.
Let x be a g-vector and let f be a real valued function of z. Let y(z) be a real
random variable with Ey(z) = f(z). We will consider the following ¢-dimen-
sional version of the Kiefer-Wolfowitz procedure for finding the point at which
f has a maximum.
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Let {a,} and {c.} be two sequences of positive real numbers satisfying
(5.9) > a, = =, S ahen < o, lime, =0

For 1 £ ¢ £ ¢ let ¢; be the g-vector whose sth coordinate is 1 and whose other
coordinates are 0. Let Y(z, a) = (y(z + ae), -+, y(x + ae)). Let X; be an
arbitrary ¢-vector and define {X,, n = 2} by the recursion

(5.10) Xon1 = Xn — @uCn (Y(Xn, —cn) — Y(X,,ca)

where the conditional distribution of Y (X, , =% ¢,) given X; = 21, -+- , X, =
2, is the same as Y(x,, & c,). Writing y(z) = f(z) + 2(z), and letting

M(z, a) = (flx + aar), -+, flz + aer)),
Z(z,a) = (2(z + aer), -+, (2(z + aey)),
we rewrite (5.10) and obtain
(5.11) Xup1 = Xn — @€ (M(Xn, —cn) — M(Xa, ca))
— nCa (Z(Xn, —Ca) — Z(Xa, Cn))

Wé will denote M(X,, —¢n) — M(X,, ¢a) by M, and Z(X,, —¢a) — Z(Xa, €n)
by Z, . It is clear that just as in Section 4

(512) E(Zn+1 l Zl, Tty Zﬂ) = E’(Zﬂ-H | Xl y "% Xﬂ+1) =0

w.p.l.

The procedure we have defined by (5.10) differs from the one considered by
Blum [3] in that Blum uses Y (X, , 0) — Y(X,, ¢,) rather than Y (X,, — ¢.) —
Y(X., cs). The advantage of the Blum procedure is that it requires at each
stage ¢ -+ 1 observations whereas the number of observations required by (5.10)
at each stage is 2¢. However, as noted in Example 4, the Blum procedure is
quite inefficient with respect to the rate at which it converges to 6.

We now list the assumptions we require. The correspondence between these
assumptions and those of Section 4 is easy to see.

Assumprion (B1%). f is Borel-measurable, has a unique maximum at z = 6,
| fx + 1) — f(z) | £ D1 + Dy |z | for some positive constants D; and D;, and,
for0< e <a<e< o,

inf M, —¢) — Mz, e,z —6 >0

1= |a—0]Zep
0<e<eg

(B1*) is satisfied, for example, if (B2*) is satisfied with 8 = 0; of course, this
is much stronger than is needed.
Assumprion (B2*). For all z
flx) = a0 — [B(x — 6), z — 6] + &(x, 6)

where aq is real, B is a positive definite ¢ X g matrix, and §(z, 6) = o( |z — 0| o)
asz — 6 —0.
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AssumprioN (B3*). There exist positive numbers K;, K;, and ¢ such that,
for all z in some neighborhood of § and all ¢ with 0 < ¢ =< ¢,
Kilz—0|"<[z— 90, (M, —c) — M(z,¢))/c] < K;]z — 0]’
and, for all z,

Mz, —¢) — M(z, c)
c

AssumpTiON (B4*). If ¢o > O then, for all z and ¢ such that | z | <¢ < ¢
(8(1:, —¢, 0) - 8(1?, +C, 0))/0 = 0( | z— 0 l )
AssumprioN (B5*).

(5.13) sup E|Z(z,0)|’ < «

(5.14) lim B(2(z, ~¢) — Z(, 0)) (Z(&, —¢) — Z(z,0) ==

0

where 7 is & non-negative definite matrix.
AssumpTiON (B6*).

lim lim sup f | Z(z,0)*dP =0
{1z(z.0) >R}

Rawo e20t |zl<e

As before we use (B6*) to obtain

(5.15) lim sup [ |Z.[?dP = 0
Rk J{1Z4I>R)
and, as before, (B6*) is implied by (3.5) or (3.6) with Z(z) considered as a vector
of course.
AssumprioN (B7*). There exist positive numbers ¢, ¢y, and K; such that, for
all ¢ £ co and all z satisfyinge < |z — 0] < ¢,

[z -6, Mz, —c) — M(z,c))/el > Ky|z—6]|°
Let 5(z, 6) = e |z — 0|°

Assumprion (B8*). There exist positive numbers ¢y, p, and B such that for

alle = o
sup ‘e < R¢’
|=—6l se

As in the paragraph preceding Theorem 5 let B = PDP™ and let ((s77)) =
x* = P 'zP.

TaeorEM 6. Suppose Assumptions (B1*) through (B6*) are safisfied. Let-
AK, > 1/2 and choose a, = An~". Let {c.} be a sequence of positive numbers satisfy-
ing (5.9) with a, = An~" and the assumptions of Lemma 5 with r = 0. Then
1%, (X, — 6) is asymptotically normal with mean O and covariance matriz PQP™
where Q = ((A*(44b; + 44b; — 1) x%)).
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Proor. Let ap = 8 = 0. (B1*) and (5.13) imply that X, converges to 0 w.p.1
(this is a consequence of Dvoretzky’s theorem [7]). Hence, an argument like that
in Theorem 1’ shows that (B3*) can be strengthened so that it holds for all z.
Rewriting (5.11) by using (B2*) and letting a = 44 we obtain

(5.16) X = (I — an'B)X, — An7'¢3'%, — An"'¢7'Z,
Let Bmn = [[ms1 (I — aj'B). Then, iteration of (5,16) yields

(65.17)  Xp1 = B X1 — A ; M Cp' Bn 0 — A ; M Cr Bn Zom
It is easy to verify that
618 [ Bl =178 Pl = | IT 1 = a7D) |~ men~e
Also, letting 7m = EZnZm, Dpn = [[onn (I — aj—i D), and
Qn = ((Azncf. ”4; m cpm’ (b‘+b")n_°(b‘+b")1r?})),
and using (5.14), an argument like that in Lemma 3, and Lemma 4, observe that

A2nci E m_zc;zan Tm an - PQP_I

me=]

lim

n—->o0

= lim
(5.19) e

= lim

n-»00

Aznci E m_2C;2Dmn P—lﬂ'm PDmn - Q “

me=1

n

A’ D M6 Dy 7* D — Q“

m=1

= lim Q. ~ Q]| = 0
To prove Theorem 6 we now proceed as in the proof of Theorem 2 and show

(5.20a) 1%, Bon — 0

(5.20b) 1'%y 2 M ¢ Bmn 8w — 0 in probability

me=1

(5.20¢)  An'’c, D M Cn'Bumn Zm is asymptotically normal with mean 0 and

me=l
covariance matrix PQP ™.

(6.20a) and (5.20b) are proved in the same way that (4.15a) and (4.15b) in
Theorem 2 are proved; the only way that B... need enter in this parallel proof
is through its norm which we have calculated in (5.18). To show (5.20¢) let
Une = An'%c,k7%¢" Bi.Z, and observe that by (B5*), (B6*), and (5.18) all the
conditions of Lemma 6 are satisfied with s = PQP™. This completes the proof
of Theorem 6.
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TueoreM 7. Suppose (B1*), (B2*), (B5*), (B6*), and (B7*) are satisfied with
K; < 4b,in (BT*). Let ¢, = n "* and a, = An~" where A is such that AK, > 1/4.
Then 111,”4(X,. — 0) 1s asymptotically normal with mean 0 and covariance matriz
PQP™,

We omit the proofs of Theorem 7 and Theorem 8 below since they proceed
from the proofs of Theorems 3 and 4 in the same fashion that the proof of Theo-
rem 6 did from that of Theorem 2.

TuaeoreM 8. Suppose that (B1*), (B2*%), and (B5*) through (B8*) are satisfied
with Ky £ 4bg in (B7%). Let a, = An™" where AK, > 1 and let {c.} satisfy the
conditions of Lemma 5 with d, — 0 and with r = (4 4 2p)™". Then n'"’c,(X, — 6)
is asymptotically normal with mean 0 and covariance matriz PQP™.

The procedures given by (5.1) and (5.10) can be generalized if we replace {a,}
by a sequence {T,} of matrices. When {7T,} is a sequence of positive definite
matrices such that, for all n, B and T, are diagonalized by the same orthogonal
matrix P, and when the smallest and largest eigenvalues of 7', , denoted by #x
and £ respectively, satisfy (5.0) and (5.9) with a,. replaced by 5 and 1%*,
methods like those used in the earlier part of this section and in earlier sections
can be used to study the asymptotic behavior of these procedures. Indeed, if
T+ = n~ T where T is a positive definite matrix which is diagonalized by P,
results like those proved in the earlier part of this section can be obtained by
using the same methods as used in obtaining these results. When, for A > 0,
T = AI, we are in the situation covered by those theorems. In studying (5.10)
(the Kiefer-Wolfowitz procedure) we can, in addition, replace {c.} by a sequence
{Cn} of matrices; the remarks about {T,} are also relevant to {C,}.

Since Examples 1 and 2 of Section 4 can be extended to their g-dimensional
analogues we cannot hope to improve materially the results of Theorems 5, 6, 7,
and 8 by using sequences {T,} which satisfy the second sentence of the preceding
paragraph and which are more general than {a.l}. However, if we knew B and
m, then, by suitable choice of such {T,} we can, in general, obtain a limiting
covariance matrix of smaller size than is obtainable by using merely {a.l}. As
an indication of this suppose that we are concerned with a two-dimensional
Robbins-Monro procedure satisfying Assumptions (A1*) through (A5*) with

{10 _{br ©
re(b0) ma B=(2 D)

gy aft O
T, = T=n (0 t2)

where both #b; and &b, are larger than 1/2, we compute the limiting covariance
maftrix to be

Letting

2

t
n n —_— O
G21) X w7 [[ (I — 7 'TBYw =| @b — 1 .
m=1 j=mt1 0 2t;

(2t b; — 1)
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Choosing 4 = 1/b; and £ = '1/b, will minimize the entries in the matrix in
(5.21). Thus, if b, ¥ by we can do better by using {n T} than by using {An ™"}
since using {An""} would correspond to the case where £, = /.

6. Concluding Remarks. In Sections 3, 4, and 5 we have restricted ourselves
to sequences {a,} of the type a, = An™". It is clear that arguments like the ones
presented above can be given for cases where a, is chosen to be something other
than An"" e.g., . = An""". Due to Examples 1 and 2 however, the results of the
previous sections are not likely to be improved very much by using these dif-
ferent sequences. Indeed, for the Robbins-Monro procedure it was shown in [5],
Section 7 that under some restrictions, the Robbins-Monro procedure with
a, = An™" for a certain choice of A is optimal in the sense that it is asymptot-
ically minimax for many weight functions. We may remark that this optimum
property can be extended with no difficulty to the multi-dimensional Robbins-
Monro procedure. )

In [4] Burkholder considers somewhat more general processes than considered
here in the sense that he permits M(X,) and Z(X,) to depend on n as well as
X. . With some modifications of the assumptions we have made this situation can
be treated using the methods of Sections 3 and 4. Procedures given by Burk-
holder for locating points of inflection of a regression function and for finding
the maximum of a density function can also be treated using our methods.

It is sometimes of interest to study the asymptotic behavior of M(X,) — «
for the Robbins-Monro procedure and of M(X,) — ao for the Kiefer-Wolfowitz
procedure. It is easy to see that results about the asymptotic distribution of these
quantities can be obtained from the results about the asymptotic distribution of
X, — 6.
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