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Econometrica, Vol. 72, No. 6 (November, 2004), 1899-1925 

ASYMPTOTIC DISTRIBUTIONS OF QUASI-MAXIMUM LIKELIHOOD 
ESTIMATORS FOR SPATIAL AUTOREGRESSIVE MODELS 

BY LUNG-FEI LEE1 

This paper investigates asymptotic properties of the maximum likelihood estimator 
and the quasi-maximum likelihood estimator for the spatial autoregressive model. The 
rates of convergence of those estimators may depend on some general features of the 
spatial weights matrix of the model. It is important to make the distinction with dif- 
ferent spatial scenarios. Under the scenario that each unit will be influenced by only a 
few neighboring units, the estimators may have >/n-rate of convergence and be asymp- 
totically normal. When each unit can be influenced by many neighbors, irregularity of 
the information matrix may occur and various components of the estimators may have 
different rates of convergence. 

KEYWORDS: Spatial autoregression, maximum likelihood estimation, quasi- 
maximum likelihood estimator, rates of convergence, increasing-domain asymptotics, 
infill asymptotics. 

1. INTRODUCTION 

SPATIAL ECONOMETRICS CONSISTS of econometric techniques dealing with empirical 
economic problems caused by spatial autocorrelation in cross-sectional and/or panel 
data; see, e.g., the survey by Anselin and Bera (1998), and the books by Cliff and Ord 
(1973), Anselin (1988), and Cressie (1993). Possible dependence across spatial units 
is a relevant issue in urban, real estate, regional, public, agricultural, environmental 
economics, and industrial organization. To capture spatial dependence, the approaches 
in spatial econometrics are to impose structures on a model. One is in the domain of 
geostatistics where the spatial index is continuous (Conley (1999)). Another is where 
spatial sites form a countable lattice. In this paper, we are concerned about spatial 
models on lattices. 

Among the lattice models, the class of spatial autoregressive (SAR) models by Cliff 
and Ord (1973) extends autocorrelation in time series to spatial dimensions. The spa- 
tial aspect of a SAR model has the distinguishing feature of simultaneity in economet- 
ric equilibrium models. Earlier development in testing and estimation of SAR models 
has been summarized in Anselin (1988), Cressie (1993), and Anselin and Bera (1998), 
among others. Recent empirical applications of the SAR model in the main stream 
economics journals include Case (1991), Case, Rosen, and Hines (1993), Besley and 
Case (1995), Brueckner (1998), Bell and Bockstael (2000), Bertrand, Luttmer, and 
Mullainathan (2000), and Topa (2001), among others. The SAR models can be esti- 
mated by the method of maximum likelihood (ML) (Ord (1975), Smirnov and Anselin 
(2001)) as well as methods of moments (Kelejian and Prucha (1999)). In this paper, we 
investigate asymptotic properties of the maximum likelihood estimator (MLE) and the 
quasi-maximum likelihood estimator (QMLE) for the SAR model under the normal 

1I am grateful to the National Science Foundation, Economics Program for financial support 
under Grant SES-0111380. An earlier version of the paper was presented in seminars at HKUST, 
NWU, OSU, Princeton U., PSU, U. of Florida, U. of Illinois, and USC. I appreciate comments 
from participants of those seminars, referees, and the coeditor. 
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distributional specification. The QMLE is appropriate when the estimator is derived 
from a normal likelihood but the disturbances in the model are not truly normally dis- 
tributed. In the existing literature, the MLE of such a model is implicitly regarded as 
having the familiar >/n-rate of convergence as a usual MLE for a parametric statis- 
tical model with sample size n (see, e.g., the reviews by Anselin (1988) and Anselin 
and Bera (1998)). Manski (1993) has criticized the literature on the SAR model on the 
grounds that the equation of a SAR model does not specify how the spatial weights 
matrix should change as the sample size changes.2 

Our investigation below provides a broader view of the asymptotic property of the 
MLE and the QMLE. It shows that the rates of convergence of the MLE and QMLE 
may depend on some general features of the spatial weights matrix of the model. The 
MLE and QMLE may indeed have a f/-rate of convergence and their limiting dis- 
tributions are normal. But, under some circumstances, the estimators may have a low 
rate of convergence for some parameter components of the model and may even be 
inconsistent. 

These results have some counterparts in spatial statistics. An asymptotic is called 
increasing-domain asymptotic when it is based on a growing observation region. It 
is called fixed-domain asymptotic (or infill asymptotic) when it is based on increas- 
ingly dense observations in a fixed and bounded region (Cressie (1993) and Stein 
(1999)). Mardia and Marshall (1984) and Cressie and Lahiri (1993) give consistency 
and asymptotic normality results for the MLE and related likelihood estimators under 
increasing-domain asymptotic for regression models with spatially correlated distur- 
bances.3 Ripley (1988) pointed out that for fixed-domain asymptotic, as interactions 
will increase with observations, there is no theoretical basis for the usual behavior of 
an MLE. No general results are available for the MLE under infill asymptotic (Cressie 
(1993, p. 101), Stein (1999)). 

This paper is organized as follows. In Section 2, the spatial autoregressive model is 
presented and regularity conditions are specified. We make the important distinction 
between models with and without the presence of regressors. In Section 3, we show that 
when spatial varying regressors are really relevant, identification of parameters can be 
assured if there is no multicollinearity among the regressors and a spatially generated 
regressor. The MLE and QMLE can be vn-consistent and asymptotically normal un- 
der some regularity conditions on the spatial weights matrix. Section 4 considers the 
event of multicollinearity where the spatially generated regressor is collinear with the 
original regressors. Examples are given. Under such a circumstance, model parame- 
ters can be identified only through spatial correlation of outcomes. It is important to 
make the distinction with different spatial scenarios. Under the scenario that each unit 
will be influenced by only a few neighboring units, the MLE and QMLE may still have 
V/--rate of convergence and be asymptotic normal. Section 5 considers the spatial sce- 
nario that each unit can be influenced by many neighbors. In this situation, irregularity 
of the information matrix may occur and various components of the QMLEs may have 
different rates of convergence. This includes the MLE and QMLE for the (pure) SAR 
process. In Section 6, examples on the inconsistency of the QMLE are presented and 
this phenomena is related to the notion of infill asymptotic (Cressie (1993)). Section 7 

2See footnote 7 in Manski (1993). 
3Section 7.3.1 of Cressie (1993) provides a review of some related results under increasing 

domain asymptotic on the Markov random field. 
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SPATIAL AUTOREGRESSIVE MODELS 

provides the conclusions. Some useful lemmas and brief proofs are collected in the 
Appendix.4 

2. SPATIAL AUTOREGRESSIVE MODELS AND QMLE 

The SAR model is 

(2.1) Yn = Xn, + AWnY, + Vn, 

where n is the total number of spatial units, Xn is an n x k matrix of constant regressors, 
Wn is a specified constant spatial weights matrix, and Vn is an n-dimensional vector of 
i.i.d. disturbances with zero mean and finite variance oa2. The weights may be based 
on physical distance, social networks, or "economic" distance (Case, Rosen, and Hines 
(1993)). This spatial model is an equilibrium model.5 Let 00 = (b', Ao, o02)' be the true 
parameter vector. Denote Sn (A) = I, - AWn for any value of A.6 The equilibrium vector 
Yn is 

(2.2) Yn = Sn(Xn,3o + V), 

where Sn = Sn(Ao) is nonsingular. When there are no regressors Xn in the model, it 
becomes a pure SAR process: 

(2.3) Yn = AWnY + Vn 

and Y, is simply derived from Vn. To emphasize the distinction of (2.1) and (2.3), the 
model with X, in (2.1) is termed the mixed regressive, spatial autoregression model 
in Ord (1975) and Anselin (1988). Whether spatial varying regressors Xn in (2.1) are 
relevant or not plays a distinctive role in estimation. In the presence of spatial varying 
regressors Xn, in addition to the ML method, the method of instrumental variables 
(IV) can be used (Anselin (1988), Kelejian and Prucha (1998), and Lee (2002, 2003)). 
However, the IV estimation method will break down when all the spatial regressors 
are really irrelevant, and one cannot test the joint significance of the regressors in the 
IV framework (Kelejian and Prucha (1998)). These are so, because there are no valid 
IV's available when existing regressors are irrelevant. The ML method is still applic- 
able. These features have interesting implications on model identification and asymp- 
totic distribution of the MLE and QMLE. 

Let Vn(6) = Yn - Xn,f - AWnYY, where 6 = (,3', A)'. Thus, Vn = Vn(80). The log- 
likelihood function of (2.1) is 

1 2 1 
(2.4) lnL(0) =- ln(2rT)- lna2+ lnlSn(A)l 2--- V(8)Vn(), 2 2 20- 

4Detailed proofs can be found in the long version of this paper, which is available from the 
author's web site: http://economics.sbs. ohio-state. edu/lee/. 

5Manski (1993) has introduced an endogenous social effect model where the expected values 
of spatial neighbors are used in place of Wn Y, in (2.1). The expected values satisfy social equilib- 
rium equations and can be derived from them. Manski's model can be a competitive alternative 
to the SAR model. It is of interest to investigate model discrimination issues of these two models 
in future research. 

6A list of frequently used notations in the text is summarized in the Appendix for reference. 
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where 0 = (,3', A, 0(2)'. The QMLE or MLE 0, is the extremum estimator derived from 
the maximization of (2.4). The estimation of the pure SAR process in (2.3) can be re- 
garded as a constrained estimation of (2.1) by imposing j = 0. Computationally and 
analytically, it is convenient to work with the concentrated log-likelihood by concen- 
trating out the 3 and o2. From the log-likelihood function (2.4), given A, the QMLE 
of 3 is 

(2.5) /3,(A) = (XX,,) -'XnS,(A)Y,, 

and the QMLE of 0-2 is 

2 1 
(2.6) ,(A) = [Sn,(A)Y,,- Xn3,,(A)]'[S,(A)Yn,- X,n,3n(A)] 

n 

1 
= YS'n(A)Mn,,S,(A)Y,, 

where M, = I, - X,(X,Xn)-X,,. The concentrated log-likelihood function of A is 

2 2 
(2.7) InLn(A) =-2 (ln(2~r) + 1)-2 ln 0-,2(A) + ln }Sn(A)[. 

The QMLE An of A maximizes the concentrated likelihood (2.7). The QMLEs of 
/3 and a2 are, respectively, 3n(An) and 2(A,n) 

To provide a rigorous analysis of the QMLE, basic regularity conditions are assumed 
below. Additional regularity conditions will be subsequently listed. 

ASSUMPTION 1: The {v}i, i = 1, ... , n, in Vn = (1, ..., V)'1 are i.i.d. with mean zero 
and variance 0.2. Its moment E( v14+,y) for some y > 0 exits. 

ASSUMPTION 2: The elements w,,ij of Wn are at most of order h~', denoted by 0(1/ hn), 
uniformly in all i, j,7 where the rate sequence {h,} can be bounded or divergent. As a 
normalization, w,ii = 0 for all i. 

ASSUMPTION 3: The ratio h,/n -> 0 as n goes to infinity. 

ASSUMPTION 4: The matrix S, is nonsingular. 

ASSUMPTION 5: The sequences of matrices {Wn,} and {S- } are uniformly bounded in 
both row and column sums (Horn and Jonhson (1985)). 

ASSUMPTION 6: The elements of Xn are uniformly bounded constants for all n. The 
lim,n,o X'X,n/n exists and is nonsingular. 

ASSUMPTION 7: {Sn, (A)} are uniformly bounded in either row or column sums, uni- 
formly in A in a compact parameter space A. The true Ao is in the interior of A. 

7That is, for some real constant c, there exists a finite integer N such that, for all n > N, 
\h,Wn,ij < C for all i, j. See, e.g., White (1984, p. 14). 
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Assumptions 1-3 are the assumptions that provide the essential features of the dis- 
turbances and the weights matrix for the model. Assumptions 2 and 3 link directly 
the expression of Wn to the sample size n. Assumption 2 is always satisfied if {hn} is 
a bounded sequence. In some empirical applications, it is a practice to have Wn be 
row-normalized (Anselin (1988)) such that its ith row wi,n (dil, di2, .. , din)/ =l dj , 
where dii > 0, represents a function of the spatial distance of the ith and jth units in 
some (characteristic) space. The weighting operation can be interpreted as an average 
of neighboring values. For a row-normalized weights matrix, as di j are nonnegative 
constants and uniformly bounded, if the j1 di;, i = 1, ..., n, are uniformly bounded 
away from zero at the rate hn in the sense that J, 

= di = O(hn) uniformly in i and 
lim infnoo h~ En = 

dij > c, where c is a positive constant independent of i and n, the 
implied normalized weights matrix will have the property ascribed in Assumption 2. As- 
sumption 3 excludes the cases where the EJ = dij, i = 1, ..., n, diverge to infinity at a 
rate equal to or faster than the rate of the sample size n, because the MLE would likely 
be inconsistent for those cases. Examples will be provided later. Bell and Bockstael 
(2000) argue that row-normalization for the weights matrix may not be meaningful for 
real estate problems with microlevel data. Assumptions 2 and 3 are general in that 
they cover spatial weights matrices where elements are not restricted to be nonnega- 
tive and those that might not be row-normalized. Empirical examples that satisfy the 
above assumptions include conventional spatial weights matrices where neighboring 
units are defined by only a few adjacent ones, and models of Case (1991) where all 
spatial units in a district are neighbors of each other. For models with a few neighbor- 
ing units, {hn} would be bounded. An important case that hn might diverge to infinity 
and satisfies Assumptions 2 and 3 is that of Case (1991). In Case's model, "neighbors" 
refer to farmers who live in the same district. Suppose that there are R districts and 
there are m farmers in each district (for simplicity). The sample size is n = mR. Case 
assumed that in a district, each neighbor of a farmer is given equal weight. In that 
case, Wn = IR 0 Bm, where Bm = (lmlI - Im)/(m - 1), 0 is the Kronecker product, 
and lm is an m-dimensional column vector of ones. For this example, hn = (m - 1) 
and hn/n = (m - 1)/(mR) = O(1/R). If sample size n increases by increasing both 
R and m, then hn goes to infinity and hn/n goes to zero as n tends to infinity.8 

Assumption 4 guarantees that the system (2.1) has an equilibrium and Yn has mean 
Sn XnPo and variance o-2S, S'n , where or2 is the true variance of vi. Assumption 5 is 
originated by Kelejian and Prucha (1998, 1999, 2001).9 The uniform boundedness of 
{Wn} and {Sn } is a condition to limit the spatial correlation to a manageable degree. It 
plays an important role in the asymptotic properties of estimators for spatial economet- 
ric models. For example, it guarantees that the variances of Yn are bounded as n goes 
to infinity. Some discussions on uniform boundedness are in Appendix A. 

When the mixed regressive model is used for analyzing cross-sectional units, it is 
meaningful to assume that the regressors are bounded as in Assumption 6.10 Multi- 
collinearity among the regressors of Xn are ruled out. Without regressors, it is a pure 
spatial autoregressive process and Assumption 6 is irrelevant. 

8Whether {hn} is a bounded or divergent sequence has interesting implications on the least 
square approach. The least squares estimators of 3 and A are inconsistent when {hn } is bounded, 
but they can be consistent when {hn} is divergent. 

9Related conditions have also been adopted in Pinkse (1999) in a different context. 
10If not, it can be replaced by stochastic regressors with certain finite moment conditions. 
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The uniform boundedness condition of Sj at Ao in Assumption 5 implies that S-n (A) 
are uniformly bounded in both row and column sums uniformly in a neighborhood of Ao 
(see Appendix A). Assumption 7 is needed to deal with the nonlinearity of ln[Sn(A)I as 
a function of A in (2.4). As in Appendix A, if 11 W, 11 < 1 for all n, where 11 11 is a matrix 
norm, then {( lSnl(A) 1} are uniformly bounded in any subset of (-1, 1) bounded away 
from the boundary. In particular, if Wn is a row-normalized matrix, Sn (A) is uniformly 
bounded in row sums norm uniformly in any closed subset of (-1, 1). For this case, A in 
Assumption 7 can be taken as a single closed set contained in (-1, 1) for all n." For 
the case in which W, is not normalized but its eigenvalues are real, since the Jacobian 
ISn(A)I in (2.4) will be positive if -l/l/un,minl < A < l//n,max, where /]dn,min and 1un,max 
are the minimum and maximum eigenvalues of Wn (Anselin (1988)), A can be a closed 
interval contained in (-l/l,/n,minl, l//tn,max) for all n. It is clear from (2.5) and (2.6) 
that Po and o-a will be identifiable once Ao is identified, and the parameter space of 
3o and o-0 do not need to be specified. 

3. MIXED REGRESSIVE, SPATIAL AUTOREGRESSIVE MODELS: 
THE REGULAR CASE 

The presence of Xn in (2.1) is a distinctive feature of the mixed regressive SAR 
model. From (2.1) and (2.2), the reduced form equation of Yn can be represented as 

(3.1) Yn = Xn,o3 + AoGnXn3o + S,'Vn 

because In + AoGn = Sn', where Gn = WnSn-. 

ASSUMPTION 8: The limnoo(Xn, GnXn3)0'(Xn, GnXnf3o)/n exists and is nonsingu- 
lar. 

This assumption requires that the generated regressors GnXn3o in (3.1) and X, are 
not asymptotically multicollinear. It is a sufficient condition for global identification 
of 00. Define Qn(A) = maxp, 2 E(lnLn(0)). The optimal solutions of this maximization 
problem are /3 (A) = (XnXn)- X'Sn(A)Sn'Xn,o and 

1 
(3.2) n2(A) = -E[[Sn(A)Yn - X,n 3 (A)]'[Sn(A)Yn - Xn j3(A)]} 

_ 
I(Ao- A)2(GnXn,0)'Mn(GnXn3 ) + o2 tr[S1 S'(A)Sn(A)S1]} . 

Hence, 
n n 

(3.3) Qn(A) = - (ln(27r) + 1) - ln o2(A) + ln ISn(A). 2 2 

Identification of Ao can be based on the maximum values of {(Qn(A)/n)). With identi- 
fication and uniform convergence of [ln L (A) - Qn (A)]/n to zero on A, consistency of 
the QMLE On follows. 

"On the other hand, Assumption 7 rules out implicitly the consideration of models where the 
true Ao is close to 1 or -1. 
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THEOREM 3.1: UnderAssumptions 1-8, o0 is globally identifiable and On is a consistent 
estimator of 00. 

The asymptotic distribution of the QMLE On can be derived from the Taylor expan- 
sion of 

?lnLn(0n) 
= nL( t 0 at 0. 

86 

The first-order derivatives of the log-likelihood function at 00 are 

1 dlnLn(0o) 1 

V ad3 a-702Vn 
n 

1 dlnLn(o0) 1 ('V-n), 

1n do-2 2ao4 n/ 
n 

and 

1 dlnLn(6o) 1 1 
(3.4) .r dA = (GnXno)'Vn + (.2(VGnn -2 tr(Gn)). ,Tn dA o.02n o2y 0n^ 

n 

These are linear and quadratic functions of Vn. The asymptotic distribution of (3.4) 
may be derived from central limit theorems for linear-quadratic functions. For the case 
{hn} being a bounded sequence, the central limit theorem for linear-quadratic forms in 
Kelejian and Prucha (2001) is applicable (see, also, Giraitis and Taqqu (1998)). For the 
case in which lim,,, h_ = oo, (1/(o02/ ))(G,Xn,3o)'V will dominate the quadratic 
term of (1/V ) (l n L (00))/IA under Assumption 8. This occurs because 

var ( V.'GnV =O ( v(n n V h 

and hence, 

(VnGn - o-2 tr(Gn)) = op(l) 

while 

-(GnXn 3o)'V = Op(1). 

Under this situation, Kolmogorov's central limit theorem can be applied. 
The variance matrix of (1/ /n) d ln L(0o)/A O is 

(1 nLn(0o) 
1 dlnL,(0o) _(1 d2 n Ln(00)) 

\fn dQ d86' ) n 8O 6' 
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where 

(3.5)n - Ln( ''n 9dOd' J 

= 2-n(GnXn8o)'Xn o--(G,Xna,o)'(G,Xn,30) + tr(GSG,) a tr(G,) _ o- n n ni o-2n 

O tr(Gn) 2 4 / 

with Gs = Gn + G', is the average Hessian matrix (information matrix when v's are 

normal), and 

0 

(3.6)n Gn,iiXi, 
13' S X 

2(r() Xn 

23 E =l Gn iiGinXnPo + (4( E= iI *G ,() G) 

26 [C3 In o GnX nO + (4-34) tr(G ] (4 4-3) 

is a symmetric matrix with gj = E(vj), j = 2, 3, 4, being, respectively, the second, third, 
and fourth moments of v, where Gin is the ith row of G,, Gn,ij is the (i, j)th entry of G,, 
and xi,, is the ith row of X,. Assumption 8 is sufficient to guarantee that the average 
Hessian matrix is nonsingular for large enough n. If Vn is normally distributed, Qo,, = 0. 

THEOREM 3.2: Under Assumptions 1-8, i/n(0 - 00) 
D 

N(0, o + So:oZ 1), 
where 1o = lim,,o ^, nf and 

1 dllnLn,(0o0) 
0 = - lim E- d 

--, oo n 80o' 

D 
which are assumed to exist. If the vi's are normally distributed, then V/n( 0n - 0o) 
N(O, ol).- 

The asymptotic results in Theorems 3.1 and 3.2 are valid regardedless of whether 
{hn} is a bounded or divergent sequence. For the case in which lim,,o hn = oc, because 
Gn,ij = 0(1/ hn), the matrices (3.5) and (3.6) can be simplified to 

0 0 

0 = lim 0 0 * 

noo^-? o 6 2 ao'6n 
n (GnXn~0) y4s) 

'2The estimation of the asymptotic variance of 0, is trivial. The XS can be estimated by (3.5) 
evaluated at n,. The 20 can be estimated with (3.6). For the QMLE, the extra moments tu3 and p4 
in f2o,, can be estimated by the third and fourth order empirical moments based on estimated 
residuals of the v's. 
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and 

/ -tX XX(G,Xn/3o) 0 
.2- on 

n 
o0 

S=- lim |-(G,Xn/oo)'Xn +-(GnXna3o)'(GnXni3o) 0 . 
n- . 

0 |0 1 
2-u 

The presence of Xn and the linear independence of GnXno3 and Xn are the crucial 
conditions for the asymptotic results in Theorem 3.2, in particular, the /-n-rate of con- 
vergence of n,. 

When v's are normally distributed, 0n is the MLE. When {hn} is bounded, the MLE's 
An and r,2 will be asymptotically dependent because limn,o tr(Gn)/n is finite and may 
not be zero. Anselin and Bera (1998) discussed the implication of this dependence on 
statistical inference problems. We note, however, that for the case in which {hn, is a 
divergent sequence, limn,o tr(G,)/n = 0 and the MLE's An and o2 are asymptotically 
independent. 

4. MIXED REGRESSIVE, SPATIAL AUTOREGRESSIVE MODELS: 
MULTICOLLINEARITY OF GnXnPo AND Xn 

The set of the vectors GnXn3o and Xn can be linearly dependent under some cir- 
cumstances. If 3o = 0, GnXn,o = 0 and, hence, the set of GnXnfo and Xn is linearly 
dependent. This case corresponds to the pure spatial autoregressive process in (2.3). 
Another case is when Wn is row-normalized and the relevant regressor is only a con- 
stant term. Let X, = (n,, X2n) and, conformably, 3o = (I0oi, 02), where P02 = 0. Con- 
sequently, as Xn, 3 = In8o1, GnXno0 = (/3o/(l - Ao))1n because Wnl, = In implies that 
Snln = (1 - Ao)ln and Gnln = ln/(1 - A). The multicollinearity of GnXno3 and Xn is 
equivalent to the columns of G,Xnfo lying in the space spanned by the columns of Xn, 
i.e., MnGnX o30 = 0. It is also possible that even though GnXnfgo and X, are linear in- 
dependent for finite n, they become asympototically multicollinear as n goes to infinity. 
This may happen for the spatial scenario in Case (1991) where the regressor vector x 
has a common mean across all districts with large group interactions. Quantitatively, 
this corresponds to lim,oo (1/n)(GnXn,o)'Mn(GnXn,30) = 0.13 For subsequent analy- 
ses, Assumption 8 will be replaced by the following: 

ASSUMPTION 8': limn,,(GnXn,3o)'Mn (GnXno30)/n = 0. 

Denote 

(4.1) 2(A) = o 
' 

tr[S'-1S'(A)Sn(A)S-1]. 

Under the situation of Assumption 8', limn - cn*2(A) = limn oorn2(A) and Qn(A) 
in (3.3) can be approximated by Q,,(A) = -(n/2)(ln(27r) + 1) - (n/2) lna2(A) + 
In ISn(A)l, which does not involve Xn. The identification condition of Ao can be stated 
in terms of the concentrated log-likelihood function of A when {hn) is bounded. 

13From the partition matrix formula, the limn,, (l/n)(Xn, GnXno0)'(Xn, GnXnP3o) is nonsin- 
gular if and only if limn,, (1/n)X'Xn and limno, (l/n)(GnXn03o)'Mn(GnX,f8o) are nonsingu- 
lar. 
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ASSUMPTION 9: The {h, is a bounded sequence and, for any A 7 Ao, 

(4.2) lim (--ln o2-1S -1 - In (A)Sn, (A/)S() 0. 
n-ooc n n 

(A 

For the SAR model, as Y = S IXn3o + S- Vn, the variance matrix of Yn is oS,-'S- 1. 
Assumption 9 is a global identification condition related to the uniqueness of the vari- 
ance matrix of Yn. 

THEOREM 4.1: For the situation of Assumption 8', the QMLE On is a consistent esti- 
mator of 0o underAssumptions 1-7 and 9. 

For the situation of Assumption 8', Y0 can be nonsingular if 

(4.3) lim - tr(CCns) # 0, 
1-oo n 

where Cn = Gn - (tr(Gn)/n)In and Cn = Cn + C,. This property is implied by Assump- 
tion 9. We note that tr(CsCn) = 2[tr(G,G') + tr(G2) - (2/n) tr2(G,)], which is the 
square of the Euclidean norm of Cn, so in general (1/n) tr(CnCn) > 0. The global iden- 
tification condition in Assumption 9 guarantees that the limit in (4.3) does not vanish. 
As it shall be noted later, Assumption 9 and (4.3) can be valid only under the scenario 
that {hn} is a bounded sequence because tr(CsC;) = O(n/hn). The asymptotic distri- 
bution of the QMLE on is >/--consistent and asymptotically normal when {hn, is a 
bounded sequence. 

THEOREM 4.2: Under Assumptions 1-7, 8', and 9, /i(0,n - 0)o) -_ N(O, 1 + 
D 

Y1'Q1Zo1). Furthermore, if the vi's are normally distributed, then n/i(On - 0o) 
N(0, o1). 

When {hn} is a bounded sequence, all the QMLE's of Ao, 3o and o-2 have the usual 
J/n-rate of convergence from Theorem 4.2. This includes the QMLE for the pure SAR 
process in (2.3). For the pure SAR process, its concentrated log-likelihood function 
of A is similar to that in (2.7) with Xn being zero in (2.6). These conclusions will subse- 
quently be changed when {h, is a divergence sequence. 

5. MIXED REGRESSIVE MODELS WITH SINGULAR INFORMATION MATRICES 

When limnO, hn = oo, 

1 d2 In L, (00) 
-0=- lim E - 

noo n d dO' 

can be nonsingular only if GnXn/o and X, are not asymptotically multicollinear as in 
Assumption 8. For the situation under Assumption 8', when lim,no h,, = oo, -S will 
become singular because 

(1/n) tr[(C, + C,)(Cn + Cn)'] = O(1/hn) = o(1). 
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SPATIAL AUTOREGRESSIVE MODELS 

For the pure SAR process with 0 = (A, o-2), as limnoo hn = 0o, 

L =O 1/(2Ar4) J 

There are other cases in which the irregularity occurs. If Wn is row-normalized and 
Xn = In, WnX = In and GnXn = n1/(1 - Ao). In this case, when limno, hn = oo, Lo is 
singular because (1/n) tr(Gn) and (l/n)[tr(G'Gn) + tr(Gn)] are 0(1/ hn), which goes 
to zero, and the submatrix 

-(Xn, GnXn0)'(Xn, GnXn0o) = ( 2) n1 Po g) )2 n ., r;.x.p,).ix^_ r;.xB, (I-ko) (l-Ao)- 

o 

is singular. When all spatially varying regressors X2n in Xn = (In, X2n) are irrelevant but 
are included in estimation, the coefficient 302 of X2n in Po = (Joi, P02)' is zero. Conse- 
quently, Xn,3o = Inl3o and GnXn,o = (3oi/(l - Ao))ln, when Wn is row-normalized. It 
follows that 

( G XnX, (nXn(GnXnf3o0) nXnX i ,. - 

V (GnXnlo)'Xn I(GnXn03o)'(GnXn80) t3o 1-r n Xn (1o) * 2 n in 

is singular because the last column is proportional to the first one. The irregularity also 
occurs under Case's spatial scenario when x has a common mean across all districts 
(see footnote 15). 

The singularity of the information matrix has implications on the rate of convergence 
of the estimators. When lim,,, hn = oo, (1/n) In Ln( 0) is rather flat in A and the con- 
vergence of (1/n)(lnLn(A) - Qn(A)) to zero is too fast to be useful. However, with a 
properly adjusted rate, 

(hn/n)[(lnLn(A) - lnLn(Ao)) 
- (Qn(A) - Qn(Ao))] 

- 0 uniformly in A in A, 

which shall be the useful one. We consider the situation in which 

lim (hn/n)(GnXnP0o)'Mn(GnXn,o3) = c, where 0 < c < oo. 
n-+oo 

In this situation, it is natural that elements of MnGnXn3po are of uniform order 
0(1/ lhn ). In the event that c = 0, Assumption 9 shall be modified with a proper nor- 
malization. 

ASSUMPTION 10: The {hnl is a divergent sequence, elements of Mn(GnXn1Po) have 
the uniform order O(1/V7n ), and limnoo (hn/n)(GnXn13o)'Mn(GnXn po) = c with 0 < 
c < oo. Under this situation, either (a) c > 0, or (b) if c = 0, 

lim lnl^ 1^,-1! )- lim h(-ln In Sn n'S I--- ln lcrn(A)Sn (A)S'n - l(A)l 70, 
n-ooY n n / 

whenever A #= Ao. 

Assumption 10(b) modifies Assumption 9 with the factor hn to account for the 
proper rate of convergence. 
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THEOREM 5.1: For the situation of Assumption 10, the QMLE A, derived from the 
maximization of In L,(A) in (2.7) is a consistent estimator, underAssumptions 1-7. 

Asymptotic distribution of the QMLE An can be derived from the concentrated log- 
likelihood function. Once the asymptotic distribution of A, is available, those of the 
QMLE's ,n and &,n from (2.5) and (2.6) can be derived. The limiting distribution of 
d In L, (Ao)/dA depends on the quadratic form of V,. The original central limit theorem 
in Kelejian and Prucha (2001) is not directly applicable to the case with {h,} being a 
divergent sequence. But their theorem and its proof can be generalized to cover the 
divergent case (see Appendix A). Assumption 3 needs to be slightly strengthened. 

ASSUMPTION 3': h+ /n - 0 for some ir > 0 as n goes to infinity. 

The central limit theorem for a linear-quadratic form implies that (v/h,/n) x 
l n L, (Ao)/dA is asymptotically normal. The asymptotic distribution of A,, follows from 

r-(A A0- ) (h,n d2 In L (An,) d h,lnnL, (Ao) 

V hn )n- 8AA 2 1 n dA 

Assumption 10(b) implies the local identification condition that limn,, (h,/n) x 
tr(C,C,n) % 0. Let vecD(A) be the vector formed by the diagonal elements of a square 
matrix A. 

THEOREM 5.2: UnderAssumptions 1, 2, 3', 4-7, and 10, 

n (A -Ao) _ N(0, (A), 

where 

2 lim( {)h,o o 
n, r n o2 

nx ni (GnXn,3o)'Mn(GnXno) + tr(C,nC) 
n LoJ2 

+2,, F + 2 (Gn Xn o)'Mn veCD (CMn) . 

In the special case with c = 0 in Assumption 10, r = lim,,(hn/n) tr(CnC)} 

The possible slower rate of convergence of An in Theorem 5.2 implies that, for sta- 
tistical inference, one shall take into account the factor hn in addition to the sample 
size n. Some practical formulas for classical inference statistics can be valid. In general, 
the t statistic for testing A as a specific constant, say Ac, is asymptotically valid when the 
proper asymptotic standard deviation of A, is used. Suppose that the disturbances are 
normally distributed. Let 

^2 (2nL())' ^2 In nL,n(An)- = 
-A, n 2 A 
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This (n/ hn)2,n is a consistent estimate of o-2. The conventional test statistic for testing 
Ho: Ao = Ac is (An - AC)/lA,n. This statistic is asymptotically standard normal, because 

An-Ao ( hn2lnLn(An) -1/2 /hdlnLn (AO) +() DN( =j~~n -- 
dh2 V-? 

+ +p(l) A N(O, 1) 
(^A,k,n 8 A2 n/ n dA 

under the null hypothesis. In addition to the Wald-type statistic, the conventional like- 
lihood ratio and efficient score test statistics are also valid for testing Ao = Ac under 
normal disturbances. This is so because, under the null hypothesis, 

2[lnLn(An)- lnLn(Ac)] 

2 lnL,(A ,) 
=- 82nLn(A (An -A)2 

= 
A/ (A - A)A1 (A - A) + Op(l) X(1). 

h ,n V hlnn 

The efficient score statistic 

InLLn(Ac) d 2lnLn(Ac)8 d InLn(Ac) 
dA A2 8A 

is asymptotically chi-square distributed because -(hn /n) 2 nLn (Ac)/8A2 is a consis- 
tent estimate of the limiting variance of (V/hn/n ) d In Ln (Ac)/dA under the null hypoth- 
esis. From our results, we note that, even when the {vi} are not normally distributed, 
these classical statistics based on the concentrated likelihood can be asymptotically 
valid as long as limn, hn = oo and 13 = 0. 

With A,, the QMLE's of Bo and o-2 are /3 = (XX X)-'XS(A)Yn and -,2 = 

Yn YSn(An)MnSn(An) Yn. 

THEOREM 5.3: UnderAssumptions 1, 2, 3', 4-7, and 10, 

(5.1) (13n - 0) 

= V(XnX )x; Xn 
n -n 

- (A - ,A) (X'Xn) -'XnGnXn3o0 + Op( 
I-,V , 

X)V^n 

- N (0, o lim (X'Xn) 
- 

X(G nXno)(G no)'Xn (XnXn) 

and 

1 n 

(2 - o2) = (v - o2) + op(1) N(0, t4- o4)- 
i=1 
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However, when /o = 0, 

/lHn4N(O, N 2 1im (XnXn) l). 
n-oo\ n 

The asymptotic distribution of An has the vn/hn-rate of convergence in Theo- 
rem 5.2. As hn is divergent, this rate of convergence is lower than ,/n. For the Case 

spatial scenario, this corresponds to VR, where R is the number of districts in the sam- 

ple. The asymptotic distribution of the QMLE 3n and its low rate of convergence in 
Theorem 5.3 are determined by the asymptotic distribution of An that forms the lead- 
ing term in the asymptotic expansion (5.1). When /3o = 0, this leading term vanishes 
and 3n converges to 30 with the usual V/n-rate. The asymptotic distribution of &n2 has 
the usual >/n-rate of convergence. 

The rate of convergence of 3n can be improved in the event that (1/n)XnGnXn,13 
may vanish asymptotically. However, the exact rate of convergence will depend on 
how fast (l/n)XnGnXn3o will vanish in the limit. When GnXn13o and Xn are mul- 
ticollinear for finite n, the implications of Theorem 5.3 on the various components 
of 1n can be spelled out more explicitly. Suppose there exists a column vector Cn such 
that GnXn13 = XnCn; then the asymptotic distribution of fn in (5.1) can be rewritten 

as /(n/hn)(18n - 30) -D N(0, o-2 limno CnC'n). If some components of cn are zero, the 

corresponding limiting variances will be zero. These components of 3n will have degen- 
erate distributions and may converge at a rate faster than /n/hn, while the estimates 
of the remaining components will converge at the v/n/hn-rate. From (5.1), 

Bn - /0 = (XnXn) nn - (An -Ao)Cn + Op( n/n). 

If Cln 0 but C2n = 0, where cn = (cln, C2)', 3nl may be affected by the limiting distrib- 

ution of An but /n2 will not. This is because the dominated term for 3nl is (An - A0)Cln. 
For 3n2, as the corresponding component (An - Ao)c2n vanishes, 13n2 has the usual 

V/-rate of convergence regardless if {hn} is divergent or not. 

THEOREM 5.4: UnderAssumptions 1, 2, 3', 4-7, and 10(b), and GnXn/o = Xlncln for 
some cln, where Xn = (Xln, X2n), 

-(/nl - /0oi) - N(0, -2clcl), where cl = lim cln, 
V hn nfo0 

but 

Vn(13n2 - 302) __ N (O , oi -X2n (n X ln Xn n) X2nX 1) 

In summary, consider the SAR model where all the included spatial varying regres- 
sors are irrelevant, i.e., Xn = (In, X2n) and 3 = (/i, /3)' with o02 = 0. Because 302 = 0 
is an unknown event, one estimates both /3i and 32. Because GnXn1o = P1oiGnln, 
GnXn 3o and ln can be distinguished regressors if Gnln is not linearly dependent on In. In 
that case, Theorems 3.1 and 3.2 are applicable and the QMLE On can be v/-consistent. 
In the event that Gnln and In are multicollinear but {hn} is a bounded sequence, Theo- 
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rems 4.1 and 4.2 are applicable and 0n is still >/h-consistent. The irregular case occurs 
when limn,, hn = oo and Gnln and In are multicollinear. If /oi were zero, it would cor- 
respond to /3 = 0 covered by the last part of Theorem 5.3. For the model with /3o0 7 0 
but 8o02 = 0 and the weights matrix row-normalized, as GnXno3 = (/oi/(l - A0))/n, 
C1n = 3oi/(1 - Ao) :7 0 and C2n = O. For this case, Theorem 5.4 implies that, when 
limnoo hn = oo, /3n has the same low rate of convergence as that of An, but 13n2 will 

converge to zero in probability at the usual V/n-rate. 
When the constraint /02 = 0 is correctly imposed, the model for estimation becomes 

a spatial autoregressive model with an unknown intercept: Yn = 3l11n + AWnYn + Vn. 
The unknown parameters are O/3, A, and o2. Given a A, the QMLE's of 3i and o-2 are, 
respectively, 3nl(A) = (l/n)l1Sn(A)Yn and n2(A) = (l/n)YnS'(A)MnS,n(A)Y,, where 
Mln = In - Inl'/n. The concentrated log-likelihood function of A is in (2.7) with Mn re- 

placed by Mln. Because Mln is a special case for Mn (with Xn = In), Theorems 5.1-5.4 
hold also for the restricted parameter estimates An, 3ni, and n2. For the pure SAR 
process (2.3), the estimation corresponds to imposing Po = (P0o, /302) = 0. The con- 
centrated log-likelihood of A corresponds to the one in (2.7) with Mn = In. Theorems 
5.1 and 5.2 hold also for the SAR process. 

6. INCONSISTENCY WHEN limn,, (hn/n) > 0 

The preceding results are derived with limn,o(hn/n) = 0 under Assumption 3. That 
is, either {hn} is a bounded sequence or {hn} diverges to infinity at a rate slower than n. 
In this section, we provide an example in which the QMLE 0n may not be consistent if 
hn has the rate n. 

Consider Wn = (1/(n - 1))(lnln - In) in Case (1991) when sample data are collected 

only from a single district. In this case, hn = (n - 1) is O(n). For simplicity, consider 
o2 = 1 as known. With this Wn, 

n ( n-1)A 1- -An-1 
WnSnm(A)-= 1+A(1-A n) 

As Xn includes an intercept term, 

GnXn 30 = n ( - i 1 A)n XnA)n 

is multicollinear with Xn. 
The log-likelihood function is 

n2 1 
lnLn(8) = - ln(27r) + In ISn (A) - V()Vn(5), 

2 2 

where 8 = (13', A)'. Given A, the QMLE of /o is ,n(A) = (XXn)- X'SnS(A)Yn and the 
concentrated log-likelihood function of A is 

nn 
(6.1) lnLn(A) = -ln(2rr) + In ISn(A)I - YnSn(A)MnSn(A) Yn. 

2 2 
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Because MnGnX,o = 0, 

din L,,(A) 
= - tr(W,S-l( (h)) + 7VM,G,n,V + VnG'M,G,nVn(Ao - A). d\ 

Because tr(G,) = (n/(n - 1 + Ao))Ao/(l - Ao) and MG,n = -Mn/(n - 1 + Ao), 

dlnL,(Ao) n Ao _ M,nV 
A n - 1 +Ao 1 - Ao n- 1 + Ao 

The second-order derivative of (6.1) is 

82 lnL,,(A) 
dA2n = -tr[(W,nS, (A)2] - VG',M,G,nV, 

n2 1-2(1-A)/n 1_ Vn'MnVn 

(n I-+A)2 (1-A)2 n- (n - +Ao)2 

By the mean value theorem, 

A 
Ao- dA2 dA 

where An lies between An and Ao. Suppose An were consistent, we shall show that there 
would be a contradiction. If An were consistent, it would imply that An, - Ao and, 
hence, d2lnLn(A,)/dA2 - -1/(1 - Ao)2. As (l/n)Vn'M,nV = (1/n)Vn'Vn + op(l) 4 1, 
dlnLn(Ao)/OA P 1 - Ao/(1 - Ao). Consequently, An -4 Ao + (1 - Ao)(1 - 2Ao) A Ao in 

general, a contradiction. 
For the pure SAR process, it corresponds to po = 0 imposed in estimation. As 

dlnLn(Ao) 
dA 

Ao I1-Ao- 1 ( lnl'n 
1- Ao n ) 1 + Ao - 

l _ A 

and 

1 'n -I)VA- Ao 
-Vn' ( 1-A o-n 1-Ao 

1-i A0[(Lv ) -1 + ( 1 L_ 
v 

)= 1- Ao' 

where e is a X'(1) variable, d ln Ln(Ao)/dA 4 (- 1)/(1- Ao). The second-order 
derivative is 

d2 InLn(A) _ n 21 -2(1 - A)/n 1\ 

dA2 n- 1+AJ (1-A)2 n/ 

1 ( /n-2(1-A) ) 
(n-1+A)2 

Vn (1 - A)2 
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By the mean value theorem, 

In L(An) d In L, (Ao) 
A -n (2 lnL (An) - L(A) 

dA2 dA 

where An lies between An and Ao. If A, were a consistent estimator, A, -4 Ao and 

d2lnLn(An) D _ +1 
dA2 (1-A0)2' 

Thus, if An were a consistent estimator, it would imply An - Ao0 (1- Ao)( - 1)/( + 1). 
This would be a contradiction as (1 - Ao)(S - 1)/( + 1) would not have a degenerate 
distribution (at zero). So An could not be a consistent estimator of Ao. 

7. MONTE CARLO RESULTS 

To investigate finite sample properties of the QMLE by a Monte Carlo study, we 
focus on the spatial scenario in Case (1991) with an R number of districts, m members 
in each district, and with each neighbor of a member in a district given equal weight, 
i.e., Wn = IR 0 Bm, where Bm = (1/(m - 1))(lm1, - Im) as in Section 2. We consider 
models with and without regressors.14 

The first model (SAR) in the study is a spatial process Yn = AW,Yn + V, where 
Vn - N(0, 0r2In). The sample data are generated with A = .5 and o-2 = 1. The second 
model (MRSAR-1) extends the first model to Yn = AWnYn + Xn,3 + Vn by including a 
regressor, where Xn - N(0, In) and /3 = 1. The regressors are i.i.d. across districts as 
well as members in a district. The third model (MRSAR-2) specifies a regressor where 
its values for members in a single district can be correlated. Let Zr, r = 1, ..., R, be gen- 
erated by N(0, 1). The regressor xir of the ith member in the district r is generated as 
Xir = (Zr + Zir)/V/2, where Zir are i.i.d. N(0, 1) for all i and r and are independent of Zr. 
This specification implies that the average value of xir of the district r will converge 
in probability to Zr as m goes to infinity in MRSAR-2. On the other hand, the average 
value for each district in MRSAR-1 will go to zero, which is their mean by design.'5 

We have experimented with different values of R from 30 to 120 and m from 3 to 100. 
For each case, there are 400 repetitions.'6 The optimization is performed with the Brent 

14Monte Carlo studies for the MLE under spatial scenarios for which each unit has a few 
neighbors can be found in Anselin (1988). 

15If the mean uLr of xir conditional on a district is the same across districts, i.e., Jr -/ for all r, 
then, when either pL = 0 or Xn includes an intercept term, 

MnGnXn = Mn{(m/(l - A o)(m -1 + Ao))((X.i - P).. (X.R - L) 

-Xn/(m- 1 + Ao) 

and its elements are O(1/./m), where x.r is the mean of x in the rth district. This case corre- 
sponds to the situation in Assumption 10. If ILr's are different across different districts, 

MnGnXn = Mn{(m/(1- A0)(m - 1 + Ao))(X. ... x l)' - Xn/(m - 1 + Ao)} 

and its elements will, in general, have O(1). 
16The regressor matrix is randomly generated in each Monte Carlo trial. 
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TABLE I 

ML ESTIMATION OF SPATIAL AUTOREGRESSIVE MODELS 

m 

R SAR 3 5 10 20 50 100 

30 A .3896 .4290 .4552 .4741 .4834 .4849 
(.0734) (.0778) (.0764) (.0681) (.0692) (.0722) 

ra .9533 .9852 .9975 1.0008 .9992 .9998 
(.0769) (.0582) (.0407) (.0282) (.0183) (.0131) 

60 A .3930 .4365 .4679 .4830 .4906 .4917 
(.0520) (.0519) (.0504) (.0480) (.0471) (.0493) 

a .9586 .9879 .9985 .9986 .9997 1.0005 
(.0504) (.0409) (.0282) (.0202) (.0132) (.0094) 

120 A .3978 .4430 .4725 .4858 .4927 .4939 
(.0373) (.0372) (.0351) (.0351) (.0332) (.0350) 

rr .9613 .9886 .9964 .9989 1.0004 1.0002 
(.0362) (.0280) (.0203) (.0148) (.0095) (.0067) 

R MRSAR-1 

30 A .3992 .4367 .4624 .4775 .4827 .4881 
(.0676) (.0600) (.0595) (.0577) (.0562) (.0507) 

P .9512 .9831 .9946 .9981 .9970 .9997 
(.1041) (.0820) (.0568) (.0410) (.0264) (.0191) 

ra .9403 .9792 .9950 .9998 1.0001 .9997 
(.0718) (.0572) (.0396) (.0284) (.0174) (.0123) 

60 A .3990 .4403 .4672 .4846 .4876 .4937 
(.0469) (.0427) (.0423) (.0385) (.0373) (.0365) 

/3 .9526 .9848 .9960 .9972 .9997 .9995 
(.0769) (.0562) (.0411) (.0300) (.0191) (.0128) 

a .9520 .9852 .9978 .9994 .9996 .9997 
(.0513) (.0391) (.0283) (.0198) (.0123) (.0090) 

120 A .4000 .4421 .4718 .4854 .4907 .4949 
(.0320) (.0303) (.0290) (.0264) (.0265) (.0265) 

P .9573 .9861 .9950 .9989 .9995 .9997 
(.0527) (.0412) (.0300) (.0221) (.0127) (.0089) 

a .9580 .9881 .9973 .9994 .9996 .9999 
(.0373) (.0277) (.0198) (.0141) (.0090) (.0063) 

Remarks: (1) SAR: Yn = AW Yn + Vn, Vn - N(0, r2In); (2) MRSAR-1: Yn = AWnYn + Xnt + Vn, where 

Vn ~ N(0, cr2In) and Xn ~ N(0, In); (3) the R is the number of districts and m is the number of members in a district. 

method in one-dimensional search with first derivatives (Press et al. (1992, Ch. 10)). 
The empirical mean and standard deviation (in bracket) for each parameter estimator 
are reported in Tables I and II. The effects of m on An are of interest. There are biases 
in An in all three models. The biases of An decrease as m becomes larger. The biases 
of o-n and On are rather small. The empirical standard errors of /n and &n decrease 
as either R or m increases. For a fixed R, the empirical standard errors of An do not 
change much as m becomes large for both the SAR process and the MRSAR-1 model. 
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TABLE II 

ML ESTIMATION OF SPATIAL AUTOREGRESSIVE MODELS 

m 

R MRSAR-2 3 5 10 20 50 100 

30 A .3912 .4358 .4661 .4829 .4915 .4964 
(.0635) (.0550) (.0428) (.0366) (.0248) (.0184) 

/3 .9684 .9880 1.0006 1.0039 .9983 1.0023 
(.1151) (.1026) (.0727) (.0526) (.0362) (.0248) 

Ja .9524 .9808 .9955 .9990 1.0009 1.0002 
(.0728) (.0612) (.0420) (.0275) (.0184) (.0132) 

60 A .3985 .4415 .4689 .4846 .4930 .4974 
(.0462) (.0364) (.0332) (.0259) (.0158) (.0117) 

/f .9614 .9863 1.0023 1.0011 .9999 1.0008 
(.0852) (.0696) (.0527) (.0388) (.0258) (.0166) 

o- .9537 .9865 .9974 .9987 1.0005 .9995 
(.0513) (.0431) (.0288) (.0193) (.0136) (.0090) 

120 A .3986 .4424 .4717 .4860 .4940 .4973 
(.0324) (.0253) (.0227) (.0178) (.0113) (.0091) 

/3 .9625 .9871 .9994 .9995 .9991 1.0007 
(.0597) (.0474) (.0380) (.0281) (.0175) (.0123) 

'a .9580 .9878 .9973 1.0001 1.0001 .9997 
(.0381) (.0297) (.0204) (.0143) (.0091) (.0062) 

Remarks: MRSAR-2: Yn = AWnYn + Xn(S + Vn, where the elements xir of Xn are 

Zir's and zr's are i.i.d. N(0, 1). 
Xir = (Zr + Zir)/v/2. The 

They decrease as m increases for the MRSAR-2 model. This behavior of An confirms 
the implication of our theoretical analysis as vnn/hn = aR here.17 

8. CONCLUSION 

The examples of inconsistent QMLE have samples from a single district. By increas- 

ing n, it increases spatial units in the (same) district. That corresponds to the notion 
of 'infill asymptotics' (Cressie (1993, p. 101)). This example shows that the QMLE 
under infill asymptotics alone may not be consistent. If there are many separate dis- 
tricts from which samples are obtained, the QMLE's can be consistent if the number 
of districts R increases to infinity. The latter scenario corresponds to the notion of 

"increasing-domain asymptotics" (Cressie (1993, p. 100)). Consistency of the QMLE 
can be achieved with increasing-domain asymptotics. From our results, the QMLE un- 
der the increasing-domain asymptotics alone can have the usual /n/-rate of conver- 

'7For the MRSAR-1 model, the standard error of /n decreases with increasing m. This is 
a special result of Theorem 5.3. As Xri are i.i.d. with zero mean, XnGnXn = Op(l/m) for the 
MRSAR-1 model. In this case, 

n(mn - /o) = (XnXn/n) /l (l/ )XnVn + Op(l) 

from (5.1). 
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gence. But, when both infill and increasing-domain asymptotics are operating, the rates 
of convergence of the QMLE's for various parameters can be different and some may 
have slower rates than the usual rIn one. 

Dept. of Economics, The Ohio State University, Columbus, OH 43210-1172, U.S.A.; 
Iflee@econ. ohio-state. edu; http://economics. sbs. ohio-state. edu/lee/. 

Manuscript received July, 2003; final revision received February, 2004. 

APPENDIX A 

Notations 

The following list summarizes some frequently used notations in the text: 
Sn(A) = In - AW, for any possible A. 
Sn =In - Wn. 
Gn = WnSn 
Cn= Gn -(tr(Gn)/n)In. 
lnLn(0) is the log-likelihood of 0 = (,', A, a(2)'. 
InLn (A) is the concentrated log-likelihood function of A. 
Q, (A) = maxp,,2 E(ln L,(0)). 

n2(A) = (o//n)tr[S'n-lS(A)Sn(A)S-1]. 
Mn =In-XnX, (Xn ) Xn 

Some Basic Properties 
The following statements summarize some basic properties on spatial weight matrices and 

some laws of large numbers and central limit theorems on linear and quadratic forms. The el- 
ements, the vi's, of Vn = (v, ..., vn)' are assumed to be i.i.d. with zero mean and a finite vari- 
ance o-2. For quadratic forms involving V,, the fourth moment /4 of the v's is assumed to exist. 
* Suppose that the spatial weights matrix Wn is a row-normalized matrix with its (i, j)th element 

being wn,i = dij/ EI= di, and d,i > 0 for all i, j. If di = dji for all i and j and ,JI d, are O(hn) 
and are bounded away from zero at the rate hn uniformly in i, then {Wn } are uniformly bounded 
in column sums. 

* Suppose that {I W II} and {I1 S)- 1}, where II ?I is a matrix norm, are bounded. Then {I Sn(A)-l } 
are uniformly bounded in a neighborhood of Ao. 

* Suppose that 11 Wn II < 1 for all n, where ? II is a matrix norm; then { Sn(A)- i11 are uniformly 
bounded in any closed subset of (-1, 1). 

* Suppose that elements of the n x k matrices Xn are uniformly bounded for all n, and 
limn,ooXXn/n exists and is nonsingular; then the projectors Xn(XnX,,)-X'n and I - 
Xn(X'Xn)- X' are uniformly bounded in both row and column sums. 

* Suppose that An is a square matrix with its column sums being uniformly bounded and ele- 
ments of the n x k matrix Zn are uniformly bounded. Then, (1//n)Z'AnVn = Op(l). Fur- 
thermore, if the limit of Z'AnA'Zn/n exists and is positive definite, then (1/Jln)Z'AnVn > 
N(0, o-2 lim,,, Z' An A'Zn/n). 

* Let An = [aij] be an n-dimensional square matrix. Then, E(Vn'A,V) = ar-tr(An) and 
var(VnAnV) = (4 - 3cr4) En=, a2 + o04[tr(An A') + tr(An)]. 

* Suppose the elements an,ij of the n x n matrices An are (1/ hn) uniformly for all i, j. If 
n x n matrices {Bn} are uniformly bounded in column sums (respectively, row sums), then 
the elements of AnBn (respectively, BnAn) have the uniform order 0(1/hn). For these cases, 
tr(AnBn) = tr(BAn) = O(n/ hn). 

* Suppose that {An are uniformly bounded either in row or column sums and their elements an,i 
have O(1/h,) uniformly in i and j. Then E(VJAnVn) = O(n/hn) and var(VA,nVK) = O(n/hn). 
If lim,n,(hn/n) = 0, then (hn/n)[V'AnVn - E(VnAnVn)] = op(l). 

1918 
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* Suppose that {AJ} is a sequence of symmetric matrices with row and column sums uni- 
formly bounded in absolute value and {bj} is a sequence of constant vectors with its ele- 
ments uniformly bounded. The moment E(Iv14+2b) for some 8 > 0 of v exists. Let 2 be 
the variance of Q,, where Q, = b' + V,A,IV - o-2 tr(A,). Assume that the variance Ub, is 

O(n/ h,) with {(h,/n)o-n } bounded away from zero, the elements of A, are of uniform order 

0(1/h,) and the elements of b, are of uniform order O(1/1Th7). If lim(,,,(h 2/1/n) = 0, 
then Q/oy,, -_- N(0, 1). 

* Suppose that A, is a constant n x n matrix uniformly bounded in both row and column sums. 
Let cn be a column vector of constants. If (h,/n)c'cn = o(M), then (Nha/n )c'A A, = Op(l). 
On the other hand. (ha/n )cnAASn = Op(lM if (h,/n)c'cn = 0(1). 

APPENDIX B 

PROOF OF THEOREM 3.1 AND THEOREM 4.1: The consistency of O, will follow from the uni- 
form convergence of (1/n)(lnLn(A) - Qn(A)) to zero on A and the uniqueness identification 
condition that, for any E > 0, lim supn,,, maxkEN;(A0)(l/n)[Qf (A) - Qn (AO) ] <0, where N,(Ao) is 
the complement of an open neighborhood of AO in A of diameter E (White (1994, Theorem 3.4)). 

Note that (1/n)(ln L,(A) - Q, (A)) = -(1/2)(ln -2(A) - In o-n2(A)). The o,*2(A) and &-n(A) can 
be written as O-*2(A) - (AO - A)2(GnX,0OYMn(GnXnPo)1n + on2(A), where 

2 

a-2(A) = - tr(S 
' 

S~(A)Sn(A)S-) and 

&n2 (A)= YnS' () Mn S (A) Y 
n n 

= (AO - A)2 G o)>Mn(GnXnJ8) + 2(A0 - A)H1n(A) + H2n (A), n 

where Hln(A) = (11n)(G,Xj1)'MnS,(A)S-1V, and 

H2I(A)= -VS /'S'(A)MnSn(A)S- Va. 

It can be shown that Hin(A) = Op(l) and H2n(A) - aTn2(A) = Op(l) uniformly on A. There- 
fore, &n,2(A) - a-Z2(A) = Op(l) uniformly on A. Consequently, supAEA j(1/n)(lnL,(A) - Q,(A))I 
op (1). The identification uniqueness condition can be established by a counter argument. First, 

1 1 1[1.*2 
-[Qn(A) - Qn(AO)] = - (Q,n(A) - Qp,n(Ao)) - -[In (A) - In an2 (Afl 
n n 2 

where 

n n 
Qp,,(A)= 2 (In(2w )+ 1)- 2lna,2(A)+lnISn(A)I. 2 2 

The Qn(A)ln is uniformly equicontinuous on A. By Jensen's inequality, (1/n)(Qp,n(A) - 

Qp,n(Ao)) < 0 for all A. Furthermore, a-*2(A) > o-2(A). If the identification uniqueness condi- 
tion were not satisfied, without loss of generality, there would exist a sequence A, E A that would 
converge to a point A+ :A AO such that lim1,,,(1n)[Qn(An) - Qn(A0)] = 0. This would be possi- 
ble only if limn,,, (a-2(A+) - ao-2(A)) = 0 and limi1,,,/n)[Qp,n(A?)- Qp,n(Ao)] = 0. The latter 
would generate a contradiction to either liMn ,,,(lln)(GnXn,80'Mn(GnX, o) : 0 or Assump- 
tion 9. Q.E.D. 
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PROOF OF THEOREM 3.2: Except A, 3 and 1/o-2 appear either linearly or in quadratic form 
in d2 lnLn, ()/(08do0'). The second derivative with A is 

2 In L, () tr([WS,(A)]2) _ Y'- WWIY, 
dA2 _tr S 2- 

Denote G,(A) = WSn(,(). By the mean value theorem, tr(G2(An)) = tr(G2) + 2tr(G3(A,)) x 

(An - ,A). Assumption 5 implies that G,(A,) is uniformly bounded in row and column sums 
uniformly in a neighborhood of Ao. Hence, 

1 [d2lnL,(0n) d2 In L(0 o)] 

n ?A2 A2 

tr(G (A,)), A ]Y;rW , = -2 ( (n ))(An - Ao) + - - - 
n 2 n 

= op(1), 

because tr(G3(A)) = 0(n/hn) and YWnWn Yn = Op(n/hn). As other terms of the second order 
derivatives can be easily analyzed, 

1 d2 IlnLn(0n) d2 lnL,(0o) p 

n dO d0' dO d0' 

The convergence of 

1 82 nL,n (00) dE 2 lnLn(0o) 1 E 
n dO d' 8 O' /' 

to zero in probability is straightforward by showing that linear functions and quadratic functions 
of V,, deviated from their means, e.g., XnG,nVn/n and (l/n)(Vn'G,V, - o-2 tr(G,)), are all op(l). 

The components of (1//'n) dlnLn(0o)/d0 are linear or quadratic functions of Vn. With the 
existence of high-order moments of v in Assumption 1, the central limit theorem for linear- 
quadratic forms of Kelejian and Prucha (2001) can be applied and 

1 L,n(0o) D 
d= n N(0, 0o + Do). 'h ao 

Assumption 8 guarantees that 2e is nonsingular. The asymptotic distribution of on follows from 
the expansion 

,/A- ( 1 00) In Ln ( nL() )-1 Id ln L (00o) 
n dQ do ' o 0n d 

where 6n converges to 00 in probability. Q.E.D. 

PROOF OF THEOREM 4.2: The nonsingularity of -S is now guaranteed by Assumption 9. The 

remaining arguments are the same as in the proof of Theorem 3.2. Q.E.D. 

PROOF OF THEOREM 5.1: By the mean value theorem, 

[lnL,(A) - lnL,(Ao) - (Qn(A) - Qn(Ao))] 
n 

h. [In ;-r2(iJ - In r2(i,~)] h [n 2A 
n (An (A- A0) 2 ( (, 

(An)2 n O-n2(An) 
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where 

An(A) = (Ao - A)(Gn,X,no)'Mn,(GnXno) + o2 tr(G'nS(A)Sn~1) 

and Bn(A) = YnWnMnSn(A)Y - An(A). We have (hn/n)(FMnGnVn - o02tr(Gn)) = op(l) and 
(hn/n)(VnG'nMnGnVn - o02 tr(G'nGn)) = Op(l) by the law of large numbers for quadratic forms; 
(hn/n)(GnXnfo)'MnVn = op(l) and (hn/n)(GnXn0o)'MnGnVn = Op(l) under Assumption 10. 
Therefore, 

nBn(A) = 
h 

(GnXn,o)/MnVn + 2(Ao- A)(GnXnj0)'MMnGnn + V,G'nMn, n n n 

+ (Ao - A)VnG'M, GnVn - 02 tr(G,) - O2(Ao - A) tr(G'Gn)} 

= op(l), 

uniformly on A. (h,/n)An(A) has 0(1) uniformly on A. With expressions in the proof of The- 
orem 3.1, &,2(A) - crn2(A) = Op(l) uniformly on A. On2(An) and &,2(An) are bounded away from 
zero in probability. Hence, (hn/n)[lnLn(A) - lnLn(Ao) - (Qn(A) - Qn(Ao))] converges in prob- 
ability uniformly on A. 

n (Qn(A)- Qne(Ao)) n 

h - hn = -_-(ln o*2(A) -ln or2)+ 
n (ln ISn(A)l- In IS,(Ao)l) 

nI n 

is uniformly equicontinuous on A. Firstly, (hn/n)(lnSn(A2)l - lnlSn(Ai)l) = (hn/n) x 
tr(WnSnl(A))(A2 - A1) by the mean value theorem, and it is uniformly equicontinuous on A 
because (hn/n)tr(WnSn (An)) = 0(1). Also, hn(ln on2(A) - n oo2) = hn(a*2(A) - o2)/a*2(A) is 

uniformly continuous because <n*2(A) is uniformly bounded away from zero and 

hn(o2(A) - 02) = (A - Ao)2 
hn 

(GnXn,3)'Mn(GnXn30) n 

+ o0242 n tr(Gn) + (Ao- A)hn tr(GGn)](Ao -A) 

is uniformly equicontinuous. The latter follows because (hn/n)(GnXnf3o)'M,(G,Xf30o), (hn/n) x 
tr(Gn), and (hn/n)tr(GQGn) are of 0(1). For identification, let 

Dn(A) =-- (n (n,(A) - ln (2) + -(ln IS(A)l- In ISn(Ao)l). ~2 ~n 

Then, (hn/n)(Qn(A) - Qn(Ao)) = Dn(A) - (hn/2)(lno*2(A) - ln n2(A)). Assumption 10(a) im- 
plies that limn,, hn(ln on2(A) - In o2(A)) > 0 for any A % Ao. Also, Dn(A) < 0 whenever A # Ao 
under Assumption 10(b). Overall, limno,(hnln)(Qn(A) - Qn(Ao)) < 0 whenever A - Ao. To- 

gether, these imply that Ao is uniquely identifiable. The consistency of An follows. Q.E.D. 

PROOF OF THEOREM 5.2: The first- and second-order derivatives of the concentrated log- 
likelihood are 

81nLn(A) 1 n Ln = Y W'MnSn(A)Yn -tr(WnS1 (A)) and 
dA\ n n- (A) 

d2In L, (A) 2 1 
=2 : , (Y,'MnSn(A)Yn)2 Y'W'MnWnYn -tr([WnS -(A)]2), A n (y, MnSn(A) &2(A) 
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where &n2(A) = (l/n)Y,S(A)MS()Yn. For the pure SAR process, 3o = 0 and the correspond- 
ing derivatives are similar with Mn replaced by the identity I,. 

Under Assumption 10, 

n Y, WMnWnYn = n VGMn Gn Vn + Op (1) hY, W'M W.Yn = (G,X, 8o)'M (G,Xngo) + VGM,G,V + op() n n n 

and 

h,, , _, . .[ hnh 

nyn - n"nn Y (A)y 

= VnG' nMnV + (Ao - A) n (GnXnao)'M(GnXna0) + nV'GMnGnVn 

+ Op(l). 

When limnoo h = oo, (1/n)YY,W'MnS,,(A)Yn = op(l) and &(2(A) = o-2 + op(l) uniformly on A. 
Hence, 

h, d2 ln Ln (A) (GFXho0) + n h GM 

n 8A2 T -0+ | n n 

ntr([WnS-1(A)]2) + op(l), 

uniformly on A. Under Assumption 7, (hn/n) tr(G3(A)) = 0(1) uniformly on A. Therefore, by 
the Taylor expansion, 

hn d2lnn(An)_ d2 ln Ln(AO) h,, hn-"(d?2lnLn(An) _dlnLn(Ao) ) = _-h- {tr([WnS1'(Xn )]2)- tr(G2)} + op(l) 

= -2- tr(G(A,))(A - Ao) + O(l) 

= op(l) 

for any An which converges in probability to Ao. 
Define 

Pn(AO) = - [(GnXno)'Mn(GnXnao) + V'G'MnGn,Vn - tr(G2). 
01 

Then 

hn d2lnLn(Ao) h, 
hn dn = -Pn(Ao) + op(l) and 

E(Pn(AO)) - 
(GnXn30)'Mn(Gn Xn30) _ 

[tr(GnG') + tr(G2)] + O(1). 

Because (hn/n)[Pn(Ao) - E(Pn(Ao))] = -(l/(2)A + o(1), where 

-A = [VFnG'M,G, V - 2tr(G'Mn G) = op(l), 

[Pn(Ao) - E(Pn(A))] = op(l). 
n 
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One has 

h dlnL9A 0 (Ao) n 

where qn = VnCMnMnV. The mean and variance of qn are E(qn) = a0o2tr(MnCn) = 0(1) and 

n 
2 = (t4 - 30-4) C ,ii + ao[tr(C,Cn) + tr(C2)] + 0(1). 

i=I 

The variance of ((GnXn30o)'M,Vn + qn) is 

a2, = o.+2(G,XnP/3)Mn(GnX, o) + q2n + 2(GnXn,o)'M,vecD(C ,nMn) 3. 

Since (qn - E(qn))/o'iqn - N(O, 1) by the central limit theorem for linear-quadratic functions 
(Appendix A), it follows that 

h dln Ln(Ao) n 7ilqn [(GnXnf3o)MnVn, + (qn 
- E(qn))] p( 

Vn A - 
q(Ao) Wlqn 

N(O lmhn ? 
n--(oc n 0- ) Q.E.D. 

PROOF OF THEOREM 5.3: Note that 

3n(An) - 3o = (XnXn) 1Xnn - (An - Ao)(XnX)- X nXn + Op(/hn/n). 

Therefore, 

Vrn/hn(Pn(An) 
- 

Po) = 
-nlhn(An 

- 
Ao0) (XnXn)- XnGnXnP3o + Op(l/v/n), 

and its limited distribution is a linear function of that of An. If /o is zero, 

ln/(n((n) 
- 30) = (XnXnln)-lXn/Vnl + Op(hntn) 

N 
0(, o0 lim (XnXn/n)- ). 

For n2, 

H(- - uo2) 

nn 

V2 Vn -(JO ) 

-2 n(An - Ao) n Yn'Wn'MnSnYn + 4(2n - Ao)2 YnWnMnWnYn. 

Under Assumption 10, (V/Jh/n)YnWnMnSnYn = O(1/V-) and (fh/n)YnWnM,nWnY = 

0(1/V/n). Hence, as limn,,hn = 00, i-n(n2 - ao2) = (1/V)(VnVn - nao2)+ p(1) - 

N(0,A4 - 0-4). Q.E.D. 
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PROOF OF THEOREM 5.4: Let Xn = (X1,, X2n), Mn = In - X1n(Xl'nXln) Xl', and M2n = 
In - X2n(XnX2n)-IX2. Using a matrix partition for (XnXXn)-, 

1A (IBn-i - i) 

= (-XI ;lnM2nXln ) XlnM2nVn- Cln M (An 
- A) + Op( 

lh-n\n) n n hn 1^i 

= -Cln ' (A 
- Ao) + 

Op( ) 
V hn \lh-n 

and ni(n2 -/320) = (X2nMlnX2n/n)-1 (1l//n)X2MlnV + Op(h/n). The asymptotic distri- 
butions of 3nl and pn2 follow. Q.E.D. 
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