
J
H
E
P
0
2
(
2
0
2
1
)
0
0
7

Published for SISSA by Springer

Received: September 28, 2020
Revised: November 23, 2020

Accepted: December 11, 2020
Published: February 1, 2021

Asymptotic dynamics on the worldline for spinning
particles

Domenico Bonocore
Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster,
Wilhelm-Klemm-Straße 9, D-48149 Münster, Germany

E-mail: domenico.bonocore@uni-muenster.de

Abstract: There has been a renewed interest in the description of dressed asymptotic
states à la Faddeev-Kulish. In this regard, a worldline representation for asymptotic states
dressed by radiation at subleading power in the soft expansion, known as the Generalized
Wilson Line (GWL) in the literature, has been available for some time, and it recently
found applications in the derivation of factorization theorems for scattering processes of
phenomenological relevance. In this paper we revisit the derivation of the GWL in the light
of the well-known supersymmetric wordline formalism for the relativistic spinning particle.
In particular, we discuss the importance of wordline supersymmetry to understand the
contribution of the soft background field to the asymptotic dynamics. We also provide
a derivation of the GWL for the gluon case, which was not previously available in the
literature, thus extending the exponentiation of next-to-soft gauge boson corrections to
Yang-Mills theory. Finally, we comment about possible applications in the current research
about asymptotic states in scattering amplitudes for gauge and gravity theories and their
classical limit.

Keywords: Perturbative QCD, Resummation, Scattering Amplitudes

ArXiv ePrint: 2009.07863

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2021)007

mailto:domenico.bonocore@uni-muenster.de
https://arxiv.org/abs/2009.07863
https://doi.org/10.1007/JHEP02(2021)007


J
H
E
P
0
2
(
2
0
2
1
)
0
0
7

Contents

1 Introduction 1

2 Spin zero 5
2.1 Dressed propagators and conserved charges 5
2.2 Asymptotic propagators in a gauge boson background 8

3 Spin one-half 10
3.1 Worldline representation 10
3.2 Numerator contribution 12
3.3 Denominator contribution 15

4 Spin one 16
4.1 Generalized Wilson Line for gluons 16
4.2 The supersymmetric model 19

5 Discussion 22

1 Introduction

The use of first-quantized techniques in quantum field theories has a long history. The
origin can be traced back to the early days of quantum electrodynamics, when Schwinger [1]
proposed to use the distribution identity

lim
ε→0+

i

H + iε
= lim

ε→0+

∫ ∞
0

dT ei(H+iε)T (1.1)

to interpret the inverse propagator of a scalar field as the matrix elements of a Hamilto-
nian H(x̂µ, p̂µ) governing the evolution in proper time T of a first-quantized model with
canonical variables x̂µ and p̂µ. By writing a path integral representation for the matrix
elements of the evolution operator eiHT , the dynamics of the relativistic particle then is
described by a classical action for the fields xµ(t) and pµ(t) leaving in a one dimensional
space of length T . The worldline formalism [2, 3] is based on the observation that such
actions can be derived from first principles, starting from the constrained quantization of
the relativistic particle rather than the field theory propagator.

A major obstacle for the program is given by the presence of matrices in the exponent,
which occur e.g. for spinning or colored particles. This in general requires either a path
ordering prescription or the introduction of Grassman variables ψµ(t). With the latter
option, the action for a free massless particle of spin N/2 reads [4–7]

S =
∫
dt

(
pµẋ

µ + i

2ψ
µ
i ψ̇

i
µ −

1
2epµp

µ − iχiψiµpµ −
i

2aijψ
µ
i ψ

j
µ

)
, (1.2)
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with i = 1, . . . , N . The symmetry structure of this action is quite rich, since it involves
reparametrization invariance, N -extended local supersymmetry and O(N) gauge invari-
ance, with the corresponding gauge fields e(t), χi(t) and aij(t). As is evident from eq. (1.2),
these fields play the role of Lagrange multipliers which are typically gauged away for prac-
tical calculations.

Most of the early work (see e.g. [8–11]) focused on quantization issues of the supersym-
metric model and on attempts to formulate it on curved spacetime. However, an application
showing the practical advantages of this formulation for actual calculations remained some-
what elusive. In this regard, a major advance was put forward by Strassler [12]. The idea
stems from the fact that a one-loop effective action in the background of some gauge boson
field can be described as a dressed propagator whose extrema have been closed to form a
loop. Using a worldline representation for such a propagator, Strassler verified that upon
solving the path integral order by order in the coupling constant g, one is left at order
gN with the amplitude for N external gauge bosons in terms of integrals over Feynman
parameters only, thus bypassing the construction of the Feynman amplitude via standard
Feynman rules. In this way he recovered the Bern-Kosower rules [13] previously derived
from string theory insights.

Motivated by this success, most of the applications of the worldline approach have
aimed at the computation of effective actions (see e.g. [14, 15]). On the other hand, the
worldline representation of an open dressed propagator has received less attention, with
intermittent progress [16–25], although it has a richer structure that might reveal new
methods for the efficient calculation of scattering amplitudes.1

A situation which is somewhat intermediate between the open and the closed dressed
propagators is given by asymptotic dressed propagators. This is what was considered by
Laenen, White and Stavenga [28], who combined the aferomentioned body of work and
the long-standing problem of infrared exponentiation beyond the leading power in the soft
expansion (there dubbed next-to-eikonal) [29–32]. Such exponentiation emerges neatly in
this picture by solving the path integral representation of the dressed propagator order by
order in the soft expansion (but to all-orders in the coupling constant). More specifically,
in the abelian case it corresponds to the familiar exponentiation of connected diagrams,
while for non-abelian theories one has to invoke the so-called “replica trick” from statistical
physics. This bypasses highly non-trivial combinatorics that one should use in a purely
diagrammatic approach [33], showing the power of the worldline formulation. The approach
has also been implemented for soft gravitons in [34].

Building on this work, and motivated by the rising interest in the field of next-to-
leading power (NLP) corrections to the soft and collinear limits both in phenomenol-
ogy [35–53] and in more formal contexts [54–70], the worldline description of [28] has
proved to be a valuable tool to derive factorization theorems at NLP [71, 72]. The asymp-
totic dressed propagator defined in this way at NLP has been dubbed Generalized Wilson
Line (GWL), and it is defined for a semi-infinite straight line starting from the origin in the

1For recent progress in this direction see [26, 27].

– 2 –



J
H
E
P
0
2
(
2
0
2
1
)
0
0
7

direction nµ as

W̃n(0,∞) = P exp
[
g

∫
ddk

(2π)d Ãµ(k)
(
− nµ

n · k
+ kµ

2n · k − k
2 nµ

2(n · k)2 −
ikνJνµ

n · k

)

+ g2
∫

ddk

(2π)d
∫

ddl

(2π)d Ãµ(k)Ãν(l)
(

ηµν

2n · (k + l) −
nν lµn · k + nµkνn · l

2(n · l)(n · k) [n · (k + l)]

+ (k · l)nµnν

2(n · l)(n · k) [n · (k + l)] −
iJµν

n · (k + l)

)]
, (1.3)

where P is the path-ordering symbol and Ãµ(k) = Ãaµ(k)T a is the Fourier transform of
the non-abelian gauge field corresponding to a soft gluon emission of momentum kµ. The
term of order k−1 in the first line of eq. (1.3) corresponds to the usual Wilson line for a
semi-infinite straight path, while the remaining terms correspond to NLP corrections. Two
of these subleading terms contain the total angular momentum Jµν , which for an emitting
particle in the representation specified by the indices i and j is given by the sum of the
Lorentz generators for spin (Sµν)ij and angular momentum Lµνδij .2

The validity of eq. (1.3) for generic spin has been motivated by the result one would
expect for the closed propagator of the one-loop effective action [12, 21], where the coupling
between the spin and the background field is contained exclusively in the chromo-magnetic
interaction SµνF

µν . In fact, after replacing the external lines of a scattering amplitude
with the straight and semi-infinite GWLs, these close at infinity at the cross-section level,
by unitarity. Therefore, one should expect the one-loop effective action description to be
equivalent when the formalism is implemented in physical processes. Moreover, this picture
has been corroborated for tree-level amplitudes with a single soft emission by the recently
discovered next-to-soft theorems [55], and a comparison has been provided in [73].

However, one would like a less heuristic argument that could put eq. (1.3) on a solid
ground for a generic scattering amplitude. In fact, a derivation of eq. (1.3) from the
worldline representation of an open propagator of generic spin is still missing. Even for
the Dirac case, which was analyzed in [28], some issues still remain to be clarified. For
instance, in that case eq. (1.3) has been obtained by first decomposing the dressed Dirac
propagator in terms of the covariant derivative Dµ = ∂µ −Aµ as3

1
i /D −m

= i /D +m

− /D2 −m2
= i /D +m

−D2 −m2 + SµνFµν
, (1.4)

with Sµν = i
4 [γµ, γν ], and then writing a worldline representation for the denominator only.

In fact, the numerator does not contribute for the one-loop effective action [12]. On the
other hand, as remarked in [28], for an asymptotic dressed propagator the numerator does

2The angular momentum Lµν was not included in the definition provided in [28, 71, 72], since the
corresponding internal emissions from Low’s theorem give rise to contributions that do not exponentiate
to all-orders, unlike the other terms which are due to external emissions. However, as observed in [72],
the separation between internal and external emissions is not gauge invariant. Hence, in order for the
Generalized Wilson Line to transform better under gauge tranformations, it might be convenient to include
the angular momentum in the definition.

3Unlike [28], we use the (+, −, −, −) metric throughout.
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contribute but it is supposed to cancel à la LSZ with the numerator of the free inverse
propagator. However, this is obviously correct only if the gauge field contribution in the
numerator vanishes. What is the mechanism behind that?

Things get even more subtle for spin-one (which was not discussed in [28]), where in
the massless case one has to deal with the gauge dependence of the emitting particle. In
Feynman gauge, the numerator of the dressed propagator is unity and thus one expects the
argument to mimic what done in the case of the one-loop effective action. However, a more
precise derivation would be desirable. Moreover, one would like to extend the validity of
eq. (1.3) also to massive vector particles, and possibly to higher spin.

Quite generally, what is missing is a clear relation between the supersymmetric formu-
lation of the relativistic spinning particle (i.e. the equivalent of eq. (1.2) with a background
field) and the generalized Wilson line of eq. (1.3). This is the main goal of this paper
and in fact it will turn out that a clear relation between the two descriptions will an-
swer the previous questions, putting the derivation of the GWL on a firm basis also for
spinning particles.

As we have remarked, the need for a clear derivation of the GWL for the case of spinning
particle is mainly of phenomenological origin, since QCD scattering processes involve quarks
and gluons in the initial and final states. In this regard, the GWL turned out to be useful
in the recent attempts to extend the traditional soft-gluon resummation program to NLP.
In particular, the GWL has been already implemented in the Leading-Logarithmic NLP
soft-gluon resummation for the inclusive production of color-singlet states, such as Higgs
production via gluon-fusion [72], although a formal proof from first principles for the spin-
one case has been lacking. This last point makes a derivation of the spinning GWL from
first principles even more desirable.

However, the GWL have a much broader scope, which offers other motivations for
the present study. One arises from a revived interest in asymptotic states à la Faddeev-
Kulish [74–87]. Most of these methods revolve around the existence of an asymptotic Hamil-
tonian governing the evolution of the asymptotic states. In particular, reference [88, 89],
building on insights from soft-collinear effective theories, provides a systematic calculation
of such Hamiltonians that makes the S-matrix infrared finite. The use of GWLs in this con-
text would easily extend such description beyond the leading power in the soft expansion.
Indeed, this could provide more efficient definitions of infrared-finite S-matrices, allowing
to move effects from the asymptotic to the S-matrix. To this end, it is therefore desirable
to have a firm derivation of the GWL also for spinning particles.

More generally, there has been recently a great deal of interest in the classical limits of
scattering amplitudes [90–92], mainly motivated by the growing interest in precision calcu-
lations in gravitational physics. In particular, there is evidence that the high-energy-limit
and the corresponding eikonal approximation are key to extract the classical limit [93–97].
In this context, the semiclassical picture of the GWL extends the eikonal approximation
to subleading power, and thus provides a new tool to study the classical limit of scattering
amplitudes. Work in this direction has been done in the scalar case in [98, 99]. Besides,
the GWL might provide an efficient way to extend the classical limit of soft theorems to
subleading power [68, 69, 100]. Therefore, given the importance of spin in gravitational
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physics [101–111], it would be desirable to extend the derivation of the GWL to particles
of arbitrary spin.

The structure of the paper is the following. We begin in section 2 by revisiting the
scalar case originally presented in [28]. The goal here is to highlight the relation with
the worldline formalism and its symmetries, stressing the distinctive features that arise
for asymptotic propagators dressed by soft radiation. Then, in section 3 we will move to
the Dirac case, where the supersymmetry of the model will allow us to write the dressed
propagator in terms of conserved charges and subsequently to observe that the soft field
in the numerator does not contribute in the asymptotic limit. Finally, in section 4 we will
discuss the spin-one case, where we will first justify the definition of the GWL for gluons
without wordline fermions. Then we will discuss the corresponding supersymmetric model,
paving the way for a generalization to particles of higher spin. We conclude in section 5
with a short discussion.

2 Spin zero

Although the generalized Wilson line for a scalar particle has been already discussed in [28],
it is useful to revisit the derivation in a different approach, i.e. starting from the constrained
quantization of the relativistic particle, which is more standard in the worldline literature,
highlighting the distinctive features that appear in the case of an asymptotic propagator
dressed by soft radiation.

2.1 Dressed propagators and conserved charges

We start from the well-known4 phase space action for a free relativistic scalar particle

S =
∫
dt

(
p · ẋ− e1

2(p2 −m2)
)
. (2.1)

The system is invariant under the following gauge transformations

δxµ = ξpµ , δpµ = 0 , δe = ξ̇ , (2.2)

generated by the first-class constraint

Q0 ≡
1
2
(
p2 −m2

)
. (2.3)

Following the Dirac procedure, and equipped with the Hamiltonian H = eQ0, the quanti-
zation consists in defining the Hilbert space as the linear space spanned by |x〉 or |p〉 where
the physical states |ψ〉 satisfy Q0|ψ〉 = 0.

In this language, the free Feynman propagator 〈φ(xf )φ(xi)〉 of the corresponding scalar
field φ(x) can be defined by the matrix elements of the first-quantized operator (2Q0+iε)−1,
with the following path integral representation

〈φ(xf )φ(xi)〉 ≡ 〈xf |(2Q0 + iε)−1|xi〉 = 1
2

∫ x(1)=xf

x(0)=xi
DeDxDp e−i

∫ 1
0 dt (p·ẋ−e(Q0+iε)) , (2.4)

4See e.g. [112] for a pedagogical review.
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p
f

xiH

Figure 1. Schematic depiction of a propagator dressed by soft radiation, from an initial state
localized at position xi in the Hard function H to a final state of momentum pf .

where the integration measures have been normalized to unity. The validity of eq. (2.4)
is perhaps clearer after gauge fixing e(t) = T . Thanks to δe/δξ in eq. (2.2) being field-
independent, this choice yields a trivial Faddeev-Popov determinant. Then, the path inte-
gral over the einbein e(t) reduces to an integration over gauge-non-equivalent parametriza-
tions labeled by the Schwinger proper time T . After rescaling t → Tt in the action, the
r.h.s. of eq. (2.4) becomes

1
2

∫ ∞
0

dT

∫ x(T )=xf

x(0)=xi
DxDp e−i

∫ T
0 dt (p·ẋ−Q0−iε) = 1

2

∫ ∞
0

dT 〈xf |ei(Q0+iε)T |xi〉 , (2.5)

which matches 〈xf |(2Q0 + iε)−1|xi〉 by virtue of eq. (1.1).
The procedure above can be easily generalized to a scalar particle propagating in a

classical background B(x). In that case one has to isolate the quadratic part in the field
theory Lagrangian L(2) = φ∗(x)∆(xµ, ∂µ)φ(x). Then, the corresponding first-quantized
system exhibits again a gauge symmetry generated by the Noether charge

QB0 (x̂, p̂) ≡ 1
2∆(x̂µ,−ip̂µ) . (2.6)

Thus, the definition in eq. (2.4) is still valid, after replacing Q0 → QB0 in Weyl-ordered form.
So far we have considered a dressed propagator between an initial and a final spacetime

points xi and xf , since this corresponds to the two-point function 〈φ(xf )φ(xi)〉 in the
common second-quantized approach. On the other hand, in the first-quantized approach
nothing prevents us from working in a mixed position-momentum representation. For
instance, we can consider

〈pf |(2QB0 + iε)−1|xi〉 = 1
2

∫ ∞
0

dT 〈pf |e−i(Q
B
0 (x̂,p̂)+iε)T |xi〉

= 1
2

∫ ∞
0

dT

∫ p(T )=pf

x(0)=xi
DxDp eip(T )·x(T )−i

∫ T
0 dt (p·ẋ−QB0 (x,p)−iε) , (2.7)

where the uncommon term p(T ) · x(T ) is due to these mixed boundary conditions. This
is the representation used in [28] for asymptotic propagators of a scattering amplitude.
Indeed, as depicted in figure 1, in this case one typically considers a dressed propagator
emitted from the hard function at a spacetime point xµi , which will be integrated over,
to a final state of momentum pµf . The reason for having a final state with well-defined
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momentum is that eventually we would like to perform the path integral over xµ order by
order in the soft expansion w.r.t. the hard momentum pµf .

The previous arguments become clear after expanding around the classical solutions

pµ(t) = pµf + p̃µ(t) , xµ(t) = xµi + pµf t+ x̃µ(t) . (2.8)

Then, the dressed propagator reads

〈pf |(2QB0 + iε)−1|xi〉
〈pf |xi〉

= 1
2

∫ ∞
0

dT

∫ p̃(T )=0

x̃(0)=0
Dx̃Dp̃ e−i

∫ T
0 dt (p̃·pf+p̃· ˙̃x−QB0 (x(x̃),p(p̃))−iε) , (2.9)

where we have included the normalization factor 〈pf |xi〉 = eipf ·xi . The need for such a
factor is evident by considering the free case that should return i(p2

f −m2)−1.
Before continuing with the calculation of eq. (2.9), we discuss a point that will become

central for the spinning case in the next sections. Looking at eq. (2.9), one is tempted to
pull QB0 out of the integration over t, since it is a conserved charge. Of course, this is true
only on the equations of motion, therefore the correct statement is formulated in terms of
its expectation value, i.e.∫ T

0
dt〈QB0 (x(t), p(t))〉 = 〈QB0 (x(t0), p(t0))〉T , (2.10)

where t0 is arbitrary. However, this is different from 〈(QB0 )−1〉 which appears on the l.h.s.
of eq. (2.9). Therefore, the only thing we could do on the same line of reasoning is to
note that

d

dt
〈(QB0 )−1〉 = −〈Q̇B0 (QB0 )−2〉 . (2.11)

Then, a simple calculation from Noether’s theorem reveals that a generic correlator of some
operator F [qi] with the time derivative of a Noether charge Q̇[qi] can be expressed in terms
of the transformed canonical variables δqi(t) as5

〈Q̇[qi]F [qi]〉 = −i
∑
i

〈δqi(t)
δF [qi]
δqi(t)

〉 . (2.12)

Therefore,

d

dt
〈(QB0 )−1〉 = −i〈δxµ(t)δ(Q

B
0 )−2

δxµ(t) 〉 − i〈δpµ(t)δ(Q
B
0 )−2

δpµ(t) 〉 . (2.13)

In the free case, the Noether charge Q0 = 1
2(p2 − m2) does not depend on x and the

momentum is gauge invariant, i.e. δp = 0. Hence, the r.h.s. of eq. (2.13) vanishes and one
can effectively evaluate Q0(x(t), p(t)) in the exponent of eq. (2.9) at an arbitrary time,
say T . Then, the remaining integrations over p̃µ and x̃µ are trivial, and one gets the free
Feynman propagator with momentum pµf .

However, for a generic dressed propagator, the charge QB0 does depend on xµ and the
momentum pµ is not gauge invariant. This makes eq. (2.13) more involved, so that it is
actually more convenient to keep QB0 inside the integral over t. To see how to proceed, we
consider in the next section a specific case for the background field B(x).

5We are assuming that the symmetry is non-anomalous.
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2.2 Asymptotic propagators in a gauge boson background

We consider a background gauge boson field Aµ that for simplicity we assume to be abelian.
In this case, we define QA0 from the quadratic part of the scalar QED Lagrangian as

QA0 (x̂, p̂) ≡ 1
2
(
(p̂µ −Aµ(x̂))2 −m2

)
= 1

2 p̂
2 − p̂ ·A(x̂)− i12(∂ ·A(x̂)) + 1

2A
2(x̂) , (2.14)

where in the second equality we took into account that the path integral representation in
eq. (2.7) requires a Weyl-ordered Hamiltonian.

Then, we can plug eq. (2.14) into eq. (2.9) and perform the Gaussian integration over
p̃. We get

〈pf |(2QA0 + iε)−1|xi〉
〈pf |xi〉

= 1
2

∫ ∞
0

dT ei
1
2 (p2

f−m
2+iε)T f(xi, pf , T ) , (2.15)

where we have defined

f(xi, pf , T ) =
∫
x̃(0)=0

Dx̃P exp
[
i

∫ T

0
dt

1
2

˙̃x2 + (pf + ˙̃x) ·A(xi + pf t+ x̃(t))

+ i

2∂ ·A(xi + pf t+ x(t))
]
. (2.16)

We see that eq. (2.15) represents a dressed propagator in terms of a radiative factor f , equal
to unity in the free case, which takes into account the interactions with the background
field via four one-dimensional fields xµ(t) living on the worldline of proper time T .

Now we define the asymptotic dressed propagator as the dressed propagator truncated
of the external free propagator of momentum pf . This means that we should consider

i(p2
f −m2)〈pf |(2Q

A
0 + iε)−1|xi〉
〈pf |xi〉

=
∫ ∞

0
dT

(
d

dT
ei

1
2 (p2

f−m
2+iε)T

)
f(xi, pf , T ) . (2.17)

Assuming that the dressed propagator in eq. (2.15) develops a simple pole for p2
f → m2 with

residue one and that the factor f(xi, pf , T ) remains finite in this limit, we can integrate by
parts to get

lim
p2
f
→m2

i(p2
f −m2)〈pf |(2Q

A
0 + iε)−1|xi〉
〈pf |xi〉

= lim
p2
f
→m2

f(xi, pf ,∞) . (2.18)

Therefore, the asymptotic dressed propagator equals eq. (2.16) in the limit T → ∞. We
are now ready to perform the remaining path integration in the soft expansion.

Following [28], we introduce a book-keeping parameter λ and rescale pµf → λnµ, such
that the soft expansion corresponds to an expansion in 1/λ. Accordingly, it is convenient
to re-define the integration variable in eq. (2.16) as t→ t/λ. Then, we get

f(xi, nλ,∞) =
∫
x̃(0)=0

Dx̃ ei
∫∞

0 dt (λ2 ˙̃x2+(n+ ˙̃x)·A(xi+nt+x̃(t))+ i
2λ∂·A(xi+nt+x̃(t))) . (2.19)

– 8 –
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The crucial observation is that all two-point correlators of x̃µ and ˙̃xµ are of order 1/λ and
thus at a given order in 1/λ we need to include a finite number of diagrams. Therefore,
by Taylor expanding Aµ in powers of x̃µ we can solve this one-dimensional QFT order by
order in 1/λ and to all-orders in the coupling constant. More specifically, up to order 1/λm

we need the diagrams with at most m propagators, hence with vertices with at most 2m
powers of x̃µ. Then, the sum of all diagrams can be rearranged in the exponential of the
sum of connected diagrams. The calculation has been already carried out in detail in [28].
For the sake of completeness, here we review the most important steps, as these will be
invoked in the derivation of the spinning cases in the following sections.

Let us start at leading power (LP) in 1/λ. In this case we set x̃µ = 0, which means
that we ignore the fluctuations around the classical straight path (see eq. (2.8)) and we
evaluate the path integral on its stationary point. Thus eq. (2.19) becomes

f(xi, nλ,∞) = exp
(
i

∫ ∞
0

dt nµAµ(xi + nt)
)

+O
( 1
λ

)
= exp

(
−
∫

ddk

(2π)d
nµ

n · k
Ãµ(k) eixi·k

)
+O

( 1
λ

)
. (2.20)

The term eixi·k gives subleading corrections in the soft momentum k, so at LP we can safely
set xµi = 0. Therefore, at LP the asymptotic dressed propagator f(xi, nλ,∞) reduces to
the well-known straight Wilson line.

At NLP there are two sources of corrections: the first one comes from having xµi 6= 0 in
eq. (2.20). This combines with the contribution from Low’s theorem [28], to give the orbital
angular momentum Lµν . Although this contribution does not exponentiate, the separation
between the orbital and the spin contributions is not gauge invariant, as observed in [72].
Thus, it is convenient to put also Lµν into the exponent, albeit regarding the expression as
valid up to NNLP corrections.

The second source of corrections comes from including quantum fluctuations in the
path integral. Up to order 1/λ we need diagrams with only one propagator, which means
that we need to expand the action up to second order in x̃µ and ˙̃xµ. This yields

f(0, nλ,∞) = e−
1

2λ

∫∞
0 dt ∂·A(nt)

∫
x̃(0)=0

Dx̃ exp
(
i

∫ ∞
0

dt
(λ

2
˙̃x2 + ˙̃xµAµ(nt)

+ (nµ + ˙̃xµ)x̃ν∂νAµ(nt) + nµx̃ν x̃ρ∂ν∂ρAµ(nt)
))

+O
( 1
λ2

)
. (2.21)

The exponential with no power of x̃µ yields

exp
[∫

ddk

(2π)d Ãµ(k) kµ

2λn · k

]
. (2.22)

Then, there are two class of connected diagrams with one propagator, as shown in figure 2:
a loop-diagram with a single x̃2 vertex, which yields

−
∫

ddk

(2π)d Ãµ(k) nµk2

2λ(n · k)2 , (2.23)
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Figure 2. Connected diagrams needed up to order 1/λ for the evaluation of the path integral in
eq. (2.21). The diagram on the left corresponds to eq. (2.24), while the loop on the right corresponds
to eq. (2.23).

and a diagram where a propagator connects two x̃1 vertices, which reads

1
λ

∫
ddk

(2π)d
∫

ddl

(2π)d Ãµ(k)Ãν(l)
(

ηµν

2n · (k + l) −
nν lµn · k + nµkνn · l

2(n · l)(n · k) [n · (k + l)]

+ (k · l)nµnν

2(n · l)(n · k) [n · (k + l)]

)
. (2.24)

It is noteworthy that eq. (2.24) contains two gauge fields, which means that NLP soft
emissions at different times are correlated pairwise along the worldline. More generally, at
NnLP we expect correlations among n+ 1 gauge bosons.

Exponentiating the sum of the connected diagrams in eq. (2.23) and eq. (2.24), and
combining the result with eq. (2.20) and eq. (2.22), we conclude that the asymptotic dressed
propagator f(xi, pf ,∞) for a scalar particle reduces at NLP to the Generalized Wilson line
defined in eq. (1.3) with Jµν = Lµν .

The derivation we have reviewed in this section can be generalized to the case of a non-
abelian gauge field. In this case the dressed propagator becomes matrix-valued, hence we
have two routes: either we introduce additional Grassmann variables on the worldline (as
discussed in [24]) or we stick with matrices in the exponent after introducing a path ordering
prescription. Although the former approach is more elegant and the quantization of the
model is derived from first principles, the latter is often preferred in practical calculations
involving soft gluons and it is the choice adopted in [28]. Therefore, also in this work
we stick with the second option. Then, the definition of eq. (1.3) is essentially the same,
although the exponentiation is not derived in terms of connected diagrams but the so-called
webs [28, 31, 32, 113].

3 Spin one-half

Having reviewed the generalized Wilson line in the scalar case, we are going to present the
Dirac case following the same procedure i.e. starting from the classical single-particle model
and its symmetries. This will bring us to identify the distinctive features of asymptotic
propagators and subsequently to justify eq. (1.3) for spin 1/2.

3.1 Worldline representation

We start with the phase space action for a free massless spin 1/2 particle, which reads

S =
∫
dt

(
pµẋ

µ + i

2ψ
µψ̇µ −H

)
, (3.1)
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where the Hamiltonian H is

H = 1
2epµp

µ + iχψµp
µ . (3.2)

Here ψµ are classical Grassmann variables, which after quantization satisfy the Clifford
algebra {ψ̂µ, ψ̂ν} = ηµν . Unlike the scalar case, this action enjoys two gauge symmetries:
local supersymmetry and reparametrization invariance, with the respective gauge bosons
e(t) and χ(t). The transformations are

δxµ = ξpµ + iζψµ , δpµ = 0 , δψµ = −ζpµ , δe = ξ̇ , δχ = ζ̇ , (3.3)

while the relative Noether charges are

Q0 ≡
1
2p

2 , Q1 ≡ ψ · p , (3.4)

whose kernels define the physical Hilbert space. More specifically, the Dirac equation
Q1|ψ〉 = 0 generates the other constraint Q0|ψ〉 = 0 thanks to the N = 1 supersymmetry
algebra {Q1, Q1} = −2iQ0.

Consequently, the Feynman propagator for the field ψ(x) admits the following first-
quantized representation

〈pf |
Q1

2Q0 + iε
|xi〉

=
∫
DeDχ

∫
ψ(1)=Γ

Dψ
∫ p(1)=pf

x(0)=xi
DxDp eip(1)·x(1)−i

∫ 1
0 dt (p·ẋ+ i

2ψ·ψ̇−eQ0−χQ1−iε) . (3.5)

A few comments about the boundary conditions are in order. First, we note that as for
the scalar case we are considering a mixed representation from an initial state of position
xµi (which eventually is integrated over) to a final state with momentum pµf . Then, we
note that the propagator is open and thus we do not set antiperiodic boundary conditions
ψµµ(0) + ψµµ(1) = 0, as typically done for the computation of the effective action. In
fact, it is known (see e.g. [22, 26]) that an open propagator requires the inhomogeneous
conditions ψµµ(0) + ψµµ(1) = Γµ, where Γµ is a set of constant Grassmann variables that
should generate the spin structure of the propagator. Given that the external states of a
scattering amplitude must have a well-defined spin, while we sum over the spin values of the
initial state attached to the hard function, we set only the final value of the spin variable by
requiring ψµ(1) = Γµ, where Γµ will eventually be set proportional to the gamma matrices.

Then we can proceed as in the scalar case and gauge-fix the Lagrange multipliers, by
setting (e(t), χ(t)) = (T, θ). The corresponding path integrations become regular integrals
over the proper time T and the “supertime” θ, respectively. In this way, eq. (3.5) reads

〈pf |
Q1

2Q0 + iε
|xi〉 = 1

2

∫ ∞
0

dT

∫
dθ

∫
ψ(T )=Γ

Dψ∫ p(T )=pf

x(0)=xi
DxDp eip(T )·x(T )−i

∫ T
0 dt (p·ẋ+ i

2ψ·ψ̇−Q0− θ
T
Q1−iε) . (3.6)
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Once again, the role of the Lagrange multipliers is to exponentiate the constraints Q0 and
Q1. In particular, the Grassmann nature of the supertime θ allows the exponentiation of
the numerator of the propagator, while the proper time T exponentiates the denominator
as for the scalar case.

The generalization to the presence of an abelian gauge boson background field is
straightforward. This can be achieved by replacing pµ → pµ − Aµ ≡ Πµ in the charge
Q1, while the charge Q0 is obtained by the supersymmetry algebra {Q1, Q1} = −2iQ0.
The new transformations read

δxµ = ξΠµ+ iζψµ , δpµ = −ξ2
δΠ2

δxµ
− iζψν

δΠν

δxµ
, δψµ = −ζΠµ ,

δe = ξ̇ + 2iχζ , δχ = ζ̇ , (3.7)

and are generated by the new charges

QA0 ≡ Π2 + ψµψνF
µν , QA1 ≡ ψ ·Π . (3.8)

Then, the structure of eq. (3.6) remains the same.
At this point, we note that unlike the scalar case where the dressed propagator is

represented by the expectation values of the inverse of a conserved charge, here we have an
additional charge in the numerator. Therefore, we can directly apply eq. (2.10) and evaluate
QA1 in the exponent of eq. (3.6) at an arbitrary time and pull it out of the integral. Given
the boundary conditions that fix ψ(T ), we choose this arbitrary time to be T . Therefore
we consider ∫ T

0
dt〈QA1 (x(t), p(t))〉 = 〈QA1 (x(T ), pf )〉T , (3.9)

and eq. (3.6) becomes

〈pf |
QA1

2QA0 + iε
|xi〉 = 1

2

∫ ∞
0

dT

∫
dθ

∫
ψ(T )=Γ

Dψ (3.10)∫ p(T )=pf

x(0)=xi
DxDp eip(T )·x(T )+iθQA1 (x(T ),pf )−i

∫ T
0 dt (p·ẋ+ i

2ψ·ψ̇−Q
A
0 −iε) .

This is the worldline representation for a Dirac propagator in the presence of an abelian
background field with boundary conditions suitably chosen to handle the asymptotic states
of a scattering amplitudes. In the following sections we are going to discuss how such
representation is related to the numerator and the denominator of a dressed propagator,
respectively.

3.2 Numerator contribution

The presence of x(T ) in the argument of the numerator contribution QA1 in eq. (3.10) seems
to suggest that the procedure outlined above is pointless, since x(T ) is not fixed by the
boundary conditions. However, there are at least two cases where this can be handled: the
free case and, most importantly, the asymptotic case. We start with the former.
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In the free case the gauge field vanishes so the Noether charges Q0 and Q1 do not
depend on xµ. Making use of the boundary conditions on pµ and ψµ we get

Q1(x(T ), p(T )) = Γ · pf . (3.11)

This gives

〈pf |
Q1

2Q0 + iε
|xi〉 = eipf ·xi

1
2

∫ ∞
0

dT e
i
2 (p2

f+iε)T
∫
dθ eiθ Γ·pf

∫
ψ(T )=Γ

Dψ e
∫ T

0 dt 1
2ψ·ψ̇

∫ p̃(T )=0

x̃(0)=0
Dx̃Dp̃ e

i
∫ T

0 dt

(
p̃2
2 +p̃· ˙̃x

)
. (3.12)

The remaining path integrals are Gaussian and can be absorbed together with eipf ·xi into
the normalization factor 〈pf |xi〉. Then, assuming that the constant Γµ can be represented
by the Dirac gamma matrices γµ, one is left with

〈pf |xi〉−1〈pf |
Q1

2Q0 + iε
|xi〉 = 1

2

∫ ∞
0

dT e
i
2 (p2

f+iε)T
∫
dθ e

i/pf θ =
i/pf

p2
f + iε

, (3.13)

as expected.
Coming back to the interacting case in eq. (3.10), we first note that the Noether charge

with the given boundary conditions reads

QA1 (x(T ), p(T )) = Γ · (pf −A(x(T ))) . (3.14)

Then, it is convenient to get rid of the Gaussian integration over pµ, to get

〈pf |xi〉−1〈pf |
QA1

2QA0 + iε
|xi〉 = 1

2

∫ ∞
0

dT e
i
2 (p2

f+iε)T
∫
dθ eiΓ·pf θf(xi, pf ,Γ, T, θ) , (3.15)

where, in analogy with eq. (2.16), we have defined

f(xi, pf ,Γ, T, θ) =
∫
ψ(T )=Γ

Dψ
∫
x̃(0)=0

Dx̃ e−iθψ·A(xi+pfT+x̃(T ))

exp
(
i

∫ T

0
dt

(
− i

2ψ · ψ̇ + 1
2

˙̃x2 + (pf + ˙̃x) ·A(xi + pf t+ x̃(t))

+ i

2∂ ·A(xi + pf t+ x̃(t)) + 1
2ψµψνF

µν
))

. (3.16)

Now, for asymptotic propagators we should truncate the external line by multiplying
by a free inverse propagator, similarly to eq. (2.17). Hence, we should consider

ū(pf ) i
/pf
p2
f 〈pf |xi〉−1〈pf |

QA1
2QA0 + iε

|xi〉

= ū(pf )
∫ ∞

0
dT

d

dT

(
e
i
2 (p2

f+iε)T
) ∫

dθ eiΓ·pf θf(xi, pf ,Γ, T, θ) . (3.17)
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With similar assumptions leading to eq. (2.18), we can integrate eq. (3.17) by parts to get

ū(pf ) i
/pf
p2
f 〈pf |xi〉−1〈pf |

QA1
2QA0 + iε

|xi〉 = lim
p2
f
→0

ū(pf ) 1
/pf

∫
dθ eiΓ·pf θf(xi, pf ,Γ,∞, θ) . (3.18)

Therefore, also in the Dirac case, the asymptotic propagator is obtained by taking the
T →∞ limit of the dressed propagator, in this case of eq. (3.16).

The practical consequence is that the gauge field Aµ(x(T )) in eq. (3.14) is evaluated at
infinity. Let us assume for a moment that it vanishes. Then, we can drop the θ-dependence
in f(xi, pf ,Γ,∞, θ) and the θ-integral in eq. (3.18) cancels with /pf in the denominator.
Therefore, the asymptotic dressed propagator in the presence of an asymptotically vanish-
ing background field reads

lim
p2
f
→0

ū(pf )f(xi, pf ,Γ,∞) . (3.19)

In other words, the numerator QA1 of the dressed propagator has been taken effectively
free, leaving the entire dependence on the background field in the denominator QA0 . This
is very reminiscent of the closed loop topology of the one-loop effective action, as pointed
out in the introduction.

At this point we should examine more carefully the assumption of the vanishing
Aµ(x(T )). In fact, what we should consider is the asymptotic limit in the soft expansion.
We have seen in the scalar case that such expansion is achieved by rescaling pµf → λnµ

and then expanding in 1/λ. Looking at eq. (3.14) we can immediately see that Aµ(x(T ))
is subleading w.r.t. pµf . This is reassuring, since it is well-known that one should get a
regular Wilson line in the strict soft limit, which is insensitive to the spin of the emit-
ter. The question is whether Aµ(x(T )) can also be neglected at subleading power in the
soft expansion.

The answer is yes. This can be seen by mimicking what done in section 2 for the scalar
case: after expanding the gauge field in powers of x̃µ, the only relevant vertex up to order
1/λ is

Γ ·A(pfT ) = Γµ
∫

ddk

(2π)d e
ik·pfT Ãµ(k) . (3.20)

This contains no power of x̃µ and can thus be pulled out of the path integral. Vertices
with higher powers of x̃µ would be needed in diagrams with x̃-propagators, which are thus
subleading in 1/λ.

The integral in eq. (3.20) is suppressed if the integrand oscillates very rapidly, as
happens in the asymptotic limit T → ∞, assuming an integrable Ãµ(k). An obvious
counter-example is given by the limiting case of a constant field, where the integrand has
support only at k = 0. One might wonder whether the soft limit is dangerous here since it
corresponds to a long-wavelength background field with Ãµ(k) concentrated around k → 0.
However, the soft limit on the worldline has been defined by rescaling pf → λn and letting
λ→∞ so that pf ·k does not tend to zero. In other words, while it is legitimate to assume
a constant field strength tensor Fµν in this limit, the field Aµ is not exactly constant and it
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vanishes for T →∞. Therefore, eq. (3.20) vanishes and we conclude that for an asymptotic
propagator dressed by (next-to-)soft radiation the numerator contribution QA1 reduces to
the free numerator Q1.

3.3 Denominator contribution

Now that we have established that eq. (3.19) holds for asymptotic propagators dressed of
soft radiation, we can perform the remaining path integrations in eq. (3.16) in the limit T →
∞. In principle we could integrate out ψ exactly, since it appears quadratically. However,
this will bring an intricate dependence on the background field.6 For our purposes it is
actually more convenient to perform the integration order by order in the soft expansion,
where we can use the same rescaling implemented in the x-integration, i.e. pf → λn and
t→ t/λ, to get ∫

ψ(∞)=Γ
Dψ ei

∫∞
0 dt (− i

2ψ·ψ̇+ 1
2λψµψνF

µν) . (3.21)

It is convenient to expand the field ψµ(t) around the boundary condition with the
replacement ψ(t) = ψ(T ) + ψ̃(t). In this way eq. (3.21) becomes

e
i

2λΓµΓν
∫∞

0 dt Fµν(xi+nt+x̃(t))
∫
ψ̃(∞)=0

Dψ̃ e
i
∫∞

0 dt

(
− i

2 ψ̃·
˙̃
ψ+ 1

2λ ψ̃µψ̃νF
µν(xi+nt+x̃(t))

)
. (3.22)

We note that the propagator 〈ψ̃(t)ψ̃(t′)〉 is of order λ0 and is proportional to the step
function θ(t− t′). The interaction term is of order λ−1 and generates vertices with various
powers of x̃ by expanding Aµ(x(t)) = Aµ(xi + nt + x̃(t)) around x̃ = 0. As already
observed in the scalar case, the effect from xi 6= 0 is subleading in 1/λ. Moreover, here this
is multiplied by an additional 1/λ coming from the vertex, hence it is a 1/λ2 effect that
we can neglect. Now we recall that the propagator of the x̃(t) field (and more generally
all correlators with two powers of x̃ or ˙̃x) are of order 1/λ. Therefore, vertices with higher
powers of x̃ are needed only for diagrams that are subleading in the soft expansion. Thus
we can expand the gauge field in Fµν at leading order in x̃ so that no dependence over x̃
is left and the path integral over ψ̃ in eq. (3.16) decouples from the one over x̃.

In analogy with the free case of eq. (3.13), we can absorb such remaining Gaussian
integration over ψ̃ in the normalization factor 〈pf |xi〉, so that one is left with the factor

exp
(
i

2λΓµΓν
∫ ∞

0
dt Fµν(nt)

)
= exp

(
i

λ
Sµν

∫
ddk

(2π)d
kν
n · k

Ãµ(k)
)
, (3.23)

where we used the representation Γµ = 1√
2γµ and we introduced the spin 1/2 generator

Sµν = i
4 [γµ, γν ]. Also, we set xi = 0 since it is a subleading effect, as discussed in section 2.

As we can see, eq. (3.23) equals the fourth term in the first line of eq. (1.3).
The remaining path integral over x̃ matches exactly the scalar case and therefore we

conclude that the only difference between the Dirac and the scalar case is given by the
result in eq. (3.23), in agreement with [28]. As we have remarked in the introduction

6The result significantly simplifies for a constant background field [21].
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with eq. (1.4), it is a pure “denominator” effect, which is present also in the effective
action [12]. It represents a chromo-magnetic interaction between the emitter and the next-
to-soft radiated particles by the coupling of Fµν with the Lorentz generator Sµν . This is
precisely the spin term in the generalized Wilson line of eq. (1.3).

So far we assumed an abelian background field. A similar derivation can be presented
in the non-abelian case, by assuming that the exponentials are path-ordered. One still ends
up with eq. (3.21). However, in this case Fµν contains the commutator [Aµ, Aν ] which gives
rise to the following spin-dependent term

ig2

2λ

∫ ∞
0

dtΓµΓν [Aµ(nt), Aν(nt)] = ig2

λ
Sµν

∫
ddk

(2π)d
∫

ddl

(2π)d
1

n · (k + l)Ãµ(k)Ãν(l) , (3.24)

where we exploited the anti-symmetry of the Lorentz generator. As we can see, eq. (3.24)
reproduces the spin-dependent term with two gauge fields in eq. (1.3).

We conclude this section with a small remark about the introduction of a mass term,
which is notoriously subtle for Dirac particles. Traditionally, this requires an additional
spin variable ψ5 [6, 17, 20, 26, 114]. This is a necessary choice if one wants to incorporate
the mass term in the extended Hamiltonian of eq. (3.2), since the additional variable would
make the term Grassmann-even. Alternatively, it is sufficient to leave it out of the path
integral as a Grassmann-odd projector, as already proposed in [16, 22]. However, for the
purpose of this paper one is forced to include this extra dimensional variable in order
to justify the vanishing contribution of the gauge field in the numerator for asymptotic
propagators. This can be achieved with the conserved charges

QA0 ≡ Π2 + ψµψνF
µν −m2 , QA1 ≡ ψ ·Π +mψ5 . (3.25)

The derivation then is analogous: both the mass term in the numerator and in the denom-
inator can be factored out and cancel with the free inverse propagator.

4 Spin one

4.1 Generalized Wilson Line for gluons

Before discussing the details of the supersymmetric worldline model for higher spin parti-
cles, it is instructive to derive the GWL for gluons starting from the dressed propagator of
the corresponding field-theory, rather than the quantization of the relativistic particle. In
fact, as we have seen in the Dirac case, the model with worldline fermions is introduced in
this context to explain the role of the background field in the numerator of dressed propa-
gators. However, for spin-one we can use gauge invariance as a shortcut. Indeed, recalling
that the GWLs are meant to represent the external states of a scattering amplitude, the
dressed propagator can be computed in a gauge where the numerator is unity and thus
does not depend on the background gauge field. Let us discuss this in more detail.

We start from the quadratic part of the field-theory Lagrangian. In order to preserve
the gauge invariance w.r.t. the (soft) background field, it is convenient to work in the class
of background-field-gauges. This is a well-known procedure (see e.g. [115]), which consists
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of replacing Aµ → Ãµ+Aµ in the Yang-Mills Lagrangian L = −1
4

(
F aµν

)2
, and subsequently

fix the gauge by adding the term

Lgf = − 1
2ξ (D̃µA

µ)2 , (4.1)

with the corresponding ghost term

Lghost = (D̃µω̄)a(D̃µω)a + gfabc(D̃µω̄)aAbµωc . (4.2)

Here, we defined

D̃ab
µ = ∂µδ

ab − gfabcÃcµ , (4.3)

where we chose Ãµ to be the background field. Importantly, this gauge-fixing term breaks
the invariance only w.r.t. the propagating Aµ field, while the gauge symmetry of Ãµ is
preserved. Then, after some algebra, the quadratic part reads

LA2 = 1
2A

a
µ

[
ηµν(D̃ab)2 −

(
1− 1

ξ

)
(D̃µD̃ν)ab + igfabcF̃ cρσ(Sµν)ρσ

]
Abν , (4.4)

where we introduced the spin-one Lorentz generator

(Sµν)ρσ = i(δρµδσν − δρνδσµ) . (4.5)

Therefore, setting ξ = 1 and taking the inverse of the expression in brackets in eq. (4.4),
we see that the numerator of the dressed propagator is unity. The denominator on the other
hand has the same structure that we found in the spinor case, i.e. a scalar term D2 and
a spin-dependent term FµνS

µν representing a chromo-magnetic interaction between the
magnetic moment of the emitting particle and the background field. This leads us to
define the following Hamiltonian

Hµν,ab = 1
2
(
ηµν(Dab)2 + igfabcF cρσ(Sµν)ρσ

)
, (4.6)

where we have dropped the tilde over the background field. Thus, by replacing ∂µ → −ip̂µ
the covariant derivative can be written as an operator in the Hilbert space generated by x̂
and p̂, i.e.

Dab
µ (x̂, p̂) = −ip̂µδab + igAabµ (x̂) , (4.7)

where we defined as usual

Aabµ = AcµT
ab
c = −ifabcAcµ , F abµν = F cµνT

ab
c = −ifabcF cµν . (4.8)

Then, we can proceed as in the scalar case and consider the following path integral represen-
tation for the dressed propagator with a mixed position-momentum boundary conditions:

〈pf |(Hµν + iε)−1|xi〉 = 1
2

∫ ∞
0

dT 〈pf |e−i(Hµν(x̂,p̂)+iε)T |xi〉 (4.9)

= 1
2

∫ ∞
0

dT

∫ p(T )=pf

x(0)=xi
DxDpPeip(T )·x(T ) ηµν−i

∫ T
0 dt (p·ẋ ηµν−Hµν(x̂,p̂)−iε) ,
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where for notation purposes color indices have not been explicitly shown. Performing the
Gaussian integration over the momentum and factorizing the normalization factor 〈pf |xi〉,
we get

〈pf |(Hµν + iε)−1|xi〉
〈pf |xi〉

= 1
2

∫ ∞
0

dT ei
1
2 (p2

f+iε)T fµν(xi, pf , T ) . (4.10)

This expression can be compared with the corresponding representations in eq. (2.15) and
eq. (3.15). Here, in analogy with eq. (2.16) and eq. (3.16), we defined

fµν(xi, pf , T ) =
∫
x̃(0)=0

Dx̃P exp
[
i

∫ T

0
dt

(1
2

˙̃x2 + (pf + ˙̃x) ·A(xi + pf t+ x̃(t))

+ i

2∂ ·A(xi + pf t+ x̃(t))
)
ηµν + g(Sµν)ρσFρσ(xi + pf t+ x̃(t))

]
, (4.11)

where once again we have expanded around the classical solutions given by eq. (2.8).
Since the numerator of the dressed propagator is proportional to ηµν , the truncation

of the external propagator is harmless. Indeed, we get

ε∗µ(pf ) (i ηµρ p2
f )〈pf |(Hρν + iε)−1|xi〉

〈pf |xi〉
= ε∗µ(pf )

∫ ∞
0

dT

(
d

dT
ei

1
2 (p2

f+iε)T
)
fµν(xi, pf , T ) .

(4.12)

Integrating by parts and taking the on-shell limit p2
f → 0, eq. (4.12) reduces to

lim
p2
f
→0

ε∗µ(pf ) fµν(xi, pf ,∞) . (4.13)

Therefore, in analogy with the scalar and the Dirac cases, the dressed asymptotic propa-
gator for a gluon is given by eq. (4.11) in the limit T →∞.

Finally, the path integral can be solved order by order in the soft expansion after
replacing pµf → λnµ and considering only diagrams up to order 1/λ, as discussed in section 2
for the scalar case. Here, the only difference is given by the presence of the Fµν(Sµν)ρσ

term. By expanding the gauge field in Fµν at leading order in x̃µ we get two additional
terms of order 1/λ. The first involves one power of Aµ:

ig

λ

∫ ∞
0

dt (Sµν)ρσ∂ρAσ(nt) = ig

λ
(Sµν)ρσ

∫
ddk

(2π)d
kσ
n · k

Ãρ(k) . (4.14)

The second one contains the non-abelian term [Aµ, Aν ]. Exploiting the anti-symmetry of
(Sµν)ρσ yields

g2

λ

∫ ∞
0

dt (Sµν)ρσAρ(nt)Aσ(nt) = g2

λ
(Sµν)ρσ

∫
ddk

(2π)d
∫

ddl

(2π)d
1

n · (k + l)Ãρ(k)Ãσ(l) .

(4.15)

Neither term contains a power of x̃µ. Hence, the path integral can be performed precisely
as in the scalar case, thus showing that soft gluon emissions naturally exponentiate at NLP
also for spin-one emitters. Finally, including the angular momomentum generator Lµν into
the exponent for gauge transformation purposes (as remarked in footnote 2) leads to the
generalized Wilson line defined in eq. (1.3).
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4.2 The supersymmetric model

At this point we have achieved our goal, since we have shown that eq. (1.3) is a suitable
representation for the asymptotic states of a scattering amplitude also in the spin-one case.
However, it would be desirable to explore the connection of eq. (1.3) with the supersym-
metric worldline model, for several reasons. The first one is that this analysis would make
a better parallel with the method presented in section 2 and section 3. More importantly,
one would like to investigate whether there exists a wordline representation that is suitable
for a propagator whose numerator is not unity, such as for massive vector bosons or gluons
in generic gauges, and more generally for particles of higher spin. A complete and detailed
solution to this problem is beyond the scope of this paper. Here, we limit our analysis to
the N = 2 model in four dimensions,7 following the same strategy adopted in section 3
and highlighting the typical features and difficulties that one encounters in the study of
the asymptotic dynamics for spin higher than 1/2.

We consider eq. (1.2) for N = 2. Following [9] and [116], we first redefine our vari-
ables via

ψµ = 1√
2

(ψµ1 + iψµ2 ) , ψ̄µ = 1√
2

(ψµ1 − iψ
µ
2 ) ,

χµ = 1√
2

(χµ1 + iχµ2 ) , χ̄µ = 1√
2

(χµ1 − iχ
µ
2 ) . (4.16)

Then, the action reads

S =
∫
dt
(
pµẋ

µ + iψ̄µψ̇µ −H
)
, (4.17)

where the Hamiltonian H is

H = 1
2epµp

µ + iχ̄ψµp
µ + iχψ̄µp

µ − aψ̄µψµ . (4.18)

The tranformations for reparametrization invariance, N = 2 local supersymmetry and O(2)
symmetry are respectively generated by

Q0 ≡
1
2p

2 , Q1 ≡ ψ · p , Q2 ≡ ψ̄ · p , J ≡ ψ̄ · ψ . (4.19)

The O(N) symmetry, with gauge field a, is a distinctive feature of particles with spin N ≥ 1.
The quantization of this model on the closed line topology has been carried in detail

in [116–118] while the free open propagator has been discussed in [18]. Here, in analogy
with section 2 and section 3, we must consider a path integral representation for the
open line compatible with the less common boundary conditions of asymptotic dressed
propagators, i.e.∫

DeDχDχ̄Da
∫ ψ̄(1)=Γ̄

ψ(1)=Γ
DψDψ̄∫ p(1)=pf

x(0)=xi
DxDp eip(1)·x(1)−i

∫ 1
0 dt (p·ẋ+iψ̄·ψ̇−eQ0−χ̄Q1−χQ2+aJ−iε) . (4.20)

7The quantization in d-dimension is more subtle (see e.g. [116]).
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Now we fix the gauge multiplet. The einbein e can be set equal to the proper time T , as
usual. Unlike the close topology of [116], the Grassmann variables χ and χ̄ cannot be set
to zero, since they must generate the spin structure of the propagator, in analogy with the
Dirac case of section 3. The gauge field a deserves special attention, since its role is to set
the degrees of freedom that one wish to propagate on the worldline. From this point of view,
the choice a = 0 is not the best one, since the corresponding propagator carries undesired
remainder terms [18]. However, it provides a great simplification since the corresponding
Faddeev-Popov determinant is trivial. Therefore, we set (e, χ, χ̄, a) = (T, θ, θ̄, 0) to get∫ ∞

0
dT

∫
dθdθ̄

∫ ψ̄(T )=Γ̄

ψ(T )=Γ
DψDψ̄∫ p(T )=pf

x(0)=xi
DxDp eip(T )·x(T )−i

∫ T
0 dt

(
p·ẋ+iψ̄·ψ̇−Q0− θ̄

T
Q1− θ

T
Q2−iε

)
, (4.21)

which can be compared with the analogous expression for the Dirac case of eq. (3.10).
At this point, a simple dimensional analysis reveals that eq. (4.21) cannot yield the

propagator for a vector boson field Aµ(x), since the Grassmann integrals yield Q1Q2/Q0,
which behaves as ∼ pµpν/p2. In fact, the worldline representation of the N = 2 model
returns the propagator for the field strength tensor Fµν , rather than the fundamental
field Aµ. This property, which is well-known [8, 9, 18, 19, 118] and shared by all models
with N -extended supersymmetry with N ≥ 2, should come as no surprise. It could have
been guessed by the fact that the physical states corresponding to the quantization of the
N -extended model in eq. (1.2) are constructed by taking the tensor product of the spin
variables ψiµ, which correspond to the reducible Dirac representation (1

2 , 0) ⊕ (0, 1
2) of the

Lorentz group. However, one could argue that for our purposes this is not a huge problem,
since the underlying idea behind the representation of a dressed propagator for spin 1/2 is
that what matters for the asymptotic dynamics is the denominator contribution, and not
the numerator.

In fact, the main obstacles appear when introducing a background gauge field [12, 21,
119]. One might be tempted to do so by proceeding as we did for the spin 0 and spin 1/2
cases, and replace the free charges Qi with the corresponding QAi , where pµ → pµ + gÃµ.
However, the equations of motion become inconsistent unless the field strength F̃µν of
the background field is constant [120]. Moreover, a simple calculation reveals that the
corresponding supersymmetry would require a vanishing F̃µν . Once again, this problem is
shared by all models with N ≥ 2, and is related to the consistency problems of theories
with charged fields of spin higher than 1/2 [9, 11]. However, we can assume that for
a soft background field the above conditions are approximately fulfilled. In fact, if Ãµ
is dominated by long wavelength components, the field strength is of order kµÃµ and
thus is subleading w.r.t. the hard momentum pf in the Lagrangian of eq. (4.21). Hence,
supersymmetry is “softly” broken, and we can repeat the previous analysis carried in
section 3. Let us discuss this in more detail.

The fact that the background field strength vanishes in the soft limit implies that
eq. (4.21) can be regarded as the expectation value of the (approximately conserved)
Noether charges QA1 and QA2 , which can be evaluated at an arbitrary time. Again, for
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the given boundary conditions, the proper time T is a convenient choice which yields

QA1 (x(T ), p(T )) = Γ · (pf −A(x(T ))) , QA2 (x(T ), p(T )) = Γ̄ · (pf −A(x(T ))) . (4.22)

Plugging this into eq. (4.21) and performing the momentum integration around the classical
solutions of eq. (2.8), we get

〈pf |xi〉−1〈pf |
QA1 Q

A
2

2QA0 + iε
|xi〉 =

1
2

∫ ∞
0

dT e
i
2 (p2

f+iε)T
∫
dθ dθ̄ei(Γ·pf θ+Γ̄·pf θ)f(xi, pf ,Γ, Γ̄, T, θ, θ̄) , (4.23)

where, in analogy with eq. (2.16) and eq. (3.16), we have defined

f(xi, pf ,Γ, Γ̄, T, θ, θ̄) =
∫
ψ(T )=Γ,ψ̄(T )=Γ̄

DψDψ̄∫
x̃(0)=0

Dx̃ e−iθψ·A(xi+pfT+x̃(T ))−iθ̄ψ̄·A(xi+pfT+x̃(T ))

exp
(
i

∫ T

0
dt

(
− iψ̄ · ψ̇ + 1

2
˙̃x2 + (pf + ˙̃x) ·A(xi + pf t+ x̃(t))

+ i

2∂ ·A(xi + pf t+ x̃(t)) + ψ̄µψνF
µν
))

. (4.24)

At this point we should implement the same manipulations that we performed in the
scalar and the Dirac cases, and truncate the external free propagator. However, in this
case it means that we have to divide by the free correlator 〈FµνFρσ〉. Then, in analogy
with eq. (3.17) and eq. (3.18), we consider the asymptotic limit T →∞ of eq. (4.24). The
effect of this limit is that the background field in the first line of eq. (4.24) is evaluated for
asymptotic times and thus it can be set to zero, so that the dependence of radiative factor
f(xi, pf ,Γ, Γ̄, T, θ, θ̄) on θ and θ̄ can be dropped. Subsequently, the Grassmann integration
over θ and θ̄ in eq. (4.23) becomes trivial and yields the prefactor Γ · pf Γ̄ · pf . This can be
related to the numerator of the free correlator 〈FµνFρσ〉, once a suitable representation for
the constant Γ and Γ̄ in terms of the gamma matrices is provided [9, 18].

To summarize, by studying the worldline N = 2 model with the boundary condi-
tions suitably chosen to describe the asymptotic dynamics, we obtained that the correlator
〈FµνFρσ〉 in the presence of a an asymptotic soft background field can be expressed in terms
of the radiative factor

f(xi, pf ,Γ, Γ̄,∞) =
∫
ψ(∞)=Γ,ψ̄(∞)=Γ̄

DψDψ̄
∫
x̃(0)=0

Dx̃ (4.25)

exp
(
i

∫ T

0
dt

(
− iψ̄ · ψ̇ + 1

2
˙̃x2 + (pf + ˙̃x) ·A(xi + pf t+ x̃(t))

+ i

2∂ ·A(xi + pf t+ x̃(t)) + ψ̄µψνF
µν(xi + pf t+ x̃(t))

))
.

– 21 –



J
H
E
P
0
2
(
2
0
2
1
)
0
0
7

Now we can solve the path integral order by order in the soft expansion by performing the
usual rescaling pµf → λnµ and t → t/λ. We start with the Grassmann integrations, and
expand around the boundary conditions

ψµ(t) = ψµ(T ) + χµ(t) , ψ̄µ(t) = ψ̄µ(T ) + χ̄µ(t) . (4.26)

Then, the path integral becomes

e
i
λ

∫∞
0 dt Γ̄µΓνFµν(xi+pf t+x̃(t))

∫ χ̄(∞)=0

χ(∞)=0
DχDχ̄ ei

∫∞
0 dt (−iχ̄·χ̇+ 1

λ
χ̄µχνFµν(xi+pf t+x̃(t))) . (4.27)

Once again, the argument of Fµν significantly simplifies by noting that xµi 6= 0 is a sub-
leading effect, and that vertices with powers of x̃µ and χµ would require additional x̃-
propagators, which are suppressed in 1/λ. This means that we can expand Fµν at leading
order in x̃µ, to get

e
i
λ

∫∞
0 dt Γ̄µΓνFµν(nt)

∫
χ(∞)=χ̄(∞)=0

DχDχ̄ ei
∫∞

0 dt (−iχ̄·χ̇+ 1
λ
χ̄µχνFµν(nt)) . (4.28)

In analogy with section 3.3, the path integral is Gaussian and can be reabsorbed in the
overall normalization with the factor 〈pf |xi〉 of eq. (4.23). The prefactor, on the other
hand, contains boundary information in the term [Γ̄µ,Γν ]. With a suitable representation
in terms of gamma matrices [9, 12, 18], this returns once again the Lorentz generator
(Sµν)ρσ, in agreement with eq. (4.14) and eq. (4.15).

Therefore, we recover the same structure of the previous section where the GWL has
been derived without worldline fermions. Thus, despite the fact that the N = 2 model
corresponds to the propagation of the field strength Fµν rather than the potential Aµ,
the denominator contribution is still given by a scalar term and a spin dependent term
that involves the Lorentz generator (Sµν)ρσ. This is in agreement with the analogous
result obtained with a one-loop effective action [12], thus confirming that the GWL is an
equivalent description where only the denominator of a dressed propagator contributes to
the asymptotics.

It is clear that the arguments presented in this section can be generalized to the case
of a (massive) particle of arbitrary spin, thanks to the fact that the background field
for N > 2 is introduced in analogy with the N = 2 case with a term proportional to
ψµi ψ

ν
i F

µν [11, 120]. Although this is not investigated further in this work, the term ψµi ψ
ν
i

gives rise to the corresponding Lorentz generator, once a proper representation in terms
of gamma matrices is provided [8]. Therefore, the derivation is similar to the spin-one
case, where the numerator is composed of quasi-conserved and effectively free Noether
charges, while the contribution of the background field in the denominator is coupled to
the corresponding Lorentz generator.

5 Discussion

The Generalized Wilson Line, originally proposed in [28] to extend the exponentiation of
infrared radiation to next-to-leading power (NLP) and subsequently applied in [71, 72] to
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derive factorization theorems, is a powerful tool to describe asymptotic states dressed by
soft radiation at subleading orders in the soft expansion. The derivation proposed in [28]
concerned essentially the case of a scalar particle dressed by next-to-soft radiation, both
in the abelian and in the non-abelian case. Although an argument for an extension to the
case of spin 1/2 particles was presented there, some issue remained to be clarified, while
no proof was given for spin 1 or higher.

In this work, building on the well-known supersymmetric model for a spinning particle
on the worldline, we have revisited the derivation for spin 1/2. In particular, we have shown
that the contribution of the soft background field to the numerator of an asymptotic dressed
propagator vanishes. This fact, which was tacitly assumed in [28], is crucial to prove the
truncation of the external free propagators in a scattering amplitude and was proven here
by exploiting the supersymmetry of the corresponding worldline model.

Then, we considered the spin 1 case. Thanks to the gauge invariance of a scattering
amplitude, a shortcut can be used in Feynman gauge, where the numerator is unity: since
no background field appears in the numerator, no supersymmetric model is necessary and
the derivation closely follows the scalar case. This implies that the next-to-eikonal expo-
nentiation presented in [28, 33] and the related diagrammatic analysis of webs [31, 32] can
be naturally applied to Yang-Mills theory.

Finally, we discussed how the GWL can be derived for particles of higher spin, by
studying the N = 2 wordline supersymmetric model. The obstacle here is that this model
naturally describes the propagation of Fµν rather than the fundamental field Aµ. Moreover,
a general background field is not compatible with wordline supersymmetry. However,
although the derivation of the GWL is more challenging in this case, we presented an
argument based on the observation that the field strength for the background field vanishes
in the soft limit and that worldline supersymmetry is only softly broken.

For both the spin 1/2 and spin 1 cases, the denominator contribution to the dressed
propagator matches the one corresponding to the one-loop effective action [12], where the
first-quantized Hamiltonian is given by the squared coviariant derivative D2 plus a spin
dependent term SµνF

µν representing the interaction between the magnetic moment of the
emitting particle and the background soft field. For a single soft emission, this result was
shown in [73] to be in agreement with the so-called tree-level next-to-soft theorems [55].
Although the GWL extends this statement to an arbitrary number of emissions, one must
be careful in applying these technique in a scattering amplitude beyond the tree-level when
massless particles are present or when the mass of the emitters is much smaller than the
energy scale of the process, since it is well-known that collinear effects are not captured by
this description alone and must be compensated by radiative jets [40, 52, 53, 71].

The analogy with the one-loop effective action is not surprising: as remarked in the
introduction, at the cross-section level the external lines close at infinity, so it is natural
to expect that the denominators, which do contribute to the asymptotic dynamics, must
be the same for the closed and open dressed propagators. What we have shown in this
work is that the GWL makes this picture valid at the amplitude level. This corroborates
the intuitive idea that asymptotic propagators are a somewhat intermediate case between
the closed and the open topologies. In fact, although the worldine formalism has been
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known for some time, the quantization of supersymmetric actions for spinning particles
on the open topology is a relatively unexplored area, which might offer new insights into
the structure of scattering amplitudes. The GWL offers a complementary point of view in
this direction.

Although this paper has focused on the description of asymptotic states of a scattering
amplitude dressed by soft photons or soft gluons, most of the ideas carries over to gravity
theories. In fact, the gravitational GWL for scalar emitters has been already presented
in [34], where the exponentiation of next-to-soft gravitons propagating in flat spacetime
is discussed. In particular, defining the graviton hµν via √ggµν = ηµν + κhµν , where
κ2 = 32πG, one can treat hµν as a classical background and derive a consistent next-to-
soft representation of the dressed scalar propagator with an expansion up to κ2. This leads
to a single-particle Hamiltonian of the form

H = 1
2(p2 −m2) + κF(pµ, hµν) , (5.1)

where the presence of the background graviton field has been collected into a functional
F(pµ, hµν). As we can see, eq. (5.1) is the generalization of eq. (2.3) to gravitational
interactions. The subsequent derivation is essentially the same of the one outlined in
section 2, even though the algebra is more involved, and it leads to the following structure
for the gravitational GWL:

W̃n(0,∞) = exp
[
κ

∫
ddk

(2π)d h̃µν(k)V µν(p, k)

+ κ2
∫

ddk

(2π)d
∫

ddl

(2π)d h̃µν(k)h̃ρσ(l)V µνρσ(p, k, l)
]
, (5.2)

where h̃µν is the Fourier transform of the graviton field, while V µν(p, k) and V µνρσ(p, k, l)
are respectively a single-graviton and a double-graviton vertices, whose expressions can be
found in [34]. In particular, the single graviton vertex is in agreement with the tree-level
soft theorems [73].

At this point one might wonder whether the gravitational GWL can be defined also for
spinning emitters. Although a complete derivation is beyond the scope of this paper, a naive
guess is that one has to modify eq. (5.1) by adding a spin-dependent term that includes
the Riemann curvature tensor, in analogy with the gauge theory case where one adds
the term SµνF

µν . In fact, the consistency of the equations of motion with a gravitational
background field can be obtained from the gauge theory ones by replacing the field strength
Fµν with [∇µ,∇ν ], where ∇µ is the gravitational covariant derivative [120]. Therefore,
leaving out the discussion of potential algebraic complications, the derivation does not
seem to pose huge obstacles, at least for the contributions to the denominator of the
dressed propagator. The main difficulties arise when considering numerators, where the
contribution of worldline fermions is more delicate than the gauge theory case. This can be
seen e.g. in the spin 1/2 case, where the presence of gamma matrices in curved spacetime
requires a careful treatment of the weak field expansion in terms of the graviton field.
Moreover, one has to cope with the same issues encountered in section 4 of this paper, i.e.
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the corresponding worldline supersymmetric theory with a background gravitational field
becomes inconsistent for N > 2 (see e.g. [120]), which prevents a naive application of the
method to pure gravity theories. The softness of the background field presumably restores
the consistency of such representation. Work in this direction is ongoing.

For both gauge theories and gravity, the use of worldline techniques in the study
of asymptotic dynamics can be also analyzed in the light of the revived interest in the
Faddeev-Kulish coherent states [77–87], where the GWL offers a natural way to extend the
analysis at subleading power in the soft expansion. In particular, the recently proposed
prescription to define an infrared-finite S-matrix [89] provides a modern derivation of the
asymptotic Hamiltonian in terms of Wilson lines and effective field theory techniques.
In this regard, it is noteworthy that the asymptotic Hamiltonian of the Faddeev-Kulish
construction corresponds to the single-particle Hamiltonian of the worldline formalism,
i.e. the inverse propagator dressed by soft radiation. Therefore, the GWL offers a nice
semiclassical interpretation of the asymptotic dressed state and also a natural extension
of this picture at subleading power that bypasses the long derivation of the subleading
Lagrangian in the effective field theory. In fact, although at the amplitude level infrared
divergences are controlled by the well-known LP Wilson line operators, the situation is
different for individual gauge-dependent diagrams, where in dimensional regularization
poles might correspond to NLP effects that are controlled by the GWL. Moreover, the
emergence of the spin-dependence at NLP has a very clear origin in the GWL description
and it shows how it affects the asymptotics dynamics. Besides, the quantization of the
asymptotic states emerges quite neatly in this picture, since the Hamiltonian is derived
form the standard Dirac procedure to deal with constraints.

The semiclassical description of the GWL can shed light also on the logarithmic cor-
rections to classical next-to-soft theorems in gauge and gravity theories, recently discussed
in [68, 69, 100]. At the quantum level, the origin of such corrections is clear e.g. in dimen-
sional regularization: loop corrections contains infrared poles which generate logarithms of
the various scales involved the process. For particular configurations of the virtual particles,
these scales contain the soft momentum k and generate log(k), in contrast with the tree-
level soft theorems [37, 38]. At the classical level one can trace back these logarithms to the
long range forces that in four dimensions produce a logarithmic dependence on the proper
time T in the trajectory of the scattered particles. It is then argued that the corresponding
contribution to soft theorems can be obtained by replacing log(T ) with log(k). The GWL
of this paper offers a nice bridge between the classical and the quantum description, being
a tool to describe soft radiation of a quantum scattering amplitude as a perturbation of
the classical path of the hard emitters. In particular, we have seen that the gauge field Aµ
in eq. (2.16) (and similarly the gravitational field hµν in eq. (5.2)) acts as a source term
on the worldline, generating fluctuations around the classical path of eq. (2.8). Assuming
that the radiated field drops as 1/t in the asymptotic limit, one could imagine to modify
the classical trajectory by including a term ∼ xµf log(t) due to the long range gravitational
or electromagnetic force. In eq. (2.4) we have seen that a NLP contribution comes from
having xµi 6= 0 in eq. (2.20) (from Low’s theorem), which in turn gives the orbital angular
momentum Lµν dependence of the next-to-soft emission. Therefore, a log(t) term in the
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classical trajectory will give a logarithmic dependence in Lµν , in analogy with [68], hence
in the exponent of the GWL, which corresponds to log(n · k) in Fourier space.

The results presented in this work can be extended in many directions. The most
obvious one is the generalization of the spin-one case to gluons in arbitrary gauges and to
massive vector bosons. This problem would presumably need a worldline model where the
spin variables take into account the different degrees of freedom that one wish to propagate,
in analogy with the massive Dirac propagator that requires a fifth Grassmann variable. A
second direction for future work is the generalization of the GWL to soft gravitons for
spinning emitters, as already observed. The growing demand for precision calculations in
gravitational physics, and the crucial role that spin effects might have to this aim [101–
111], make it natural to pursue this direction. Another aspect which is left for future work
is a derivation of the GWL where the non-abelian nature of the soft background field is
incorporated with additional Grassmann variables, on the line of the results obtained in
the scalar case [24, 121]. In this regard, it would be interesting to investigate what is the
role of such variables in the soft expansion. Finally, there is growing evidence that the
eikonal approximation underlies the classical limit of quantum scattering amplitudes [90–
96]. Hence, a comparison of the GWL for gauge bosons and gravitons might shed light
on the worldline realization of the classical double copy [122], which has been recently
investigated in [123–128].
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