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Abstract In medical statistics, the survival function is a relationship be-
tween proportion and time. Proportion is the proportion of subjects which
are still surviving at time, t. The term is also used in other fields and is
known as “units still operating” instead of subjects still alive. In this paper,
an estimator of the survival time, Xi, for the ith patient on a clinical trial
with censoring time, Ti (dropping out of the trial) and its properties, when
both survival and censoring time are exponentially distributed, considered.
A simulation is carried out to determine the performance of the estimators
for different combinations of parameters related to the survival and censoring
times.
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1. Introduction

Let X1, X2, · · · , Xn be i.i.d. positive random variables with unknown sur-
vival function S1(x) = PΘ(X1 > x). Also, let T1, T2, · · · , Tn be i.i.d. random
variables with unknown survival function S2(t) = PΘ(T1 > t). Assume that
all the Xi’s and Ti’s are independent variables. A randomly censored data set
consists of n i.i.d pairs (Yi, Di), where Yi = min(Xi, Ti) and Di = I(Xi ≤ Ti)
for i = 1, 2, 3, · · · , n. In the context of survival analysis and reliability, Xi

refers to the survival time and Ti refers to the censoring time.
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Several statistical approaches and scenarios for this problem can generally
be used according to the model and type of information available, Collett [3].
Turnbull [6] provided a nonparametric estimation of a survival function with
doubly censored data, i.e., some of the data are censored on the left and some
on the right. Suzuki[4,5] studied the right censored case and in these papers
both parametric and nonparametric estimates of survival are proposed. Bravo
et al. [2] presented a semi-nonparametric estimation of a survival function
when analyzing incomplete and doubly data. Abu-Taleb [1] provided a para-
metric estimation of the survival function when the follow ups are random.

In this paper, an estimator of the survival time, Xi, for the ith patient
on a clinical trial with censoring time, Ti, (dropping out of the trial) and it
asymptotic properties, assuming exponential distribution for both variables
are considered.

In Section 2 we give a full description of the problem, while in Section 3 we
use the method of maximum likelihood to estimate the parameters. An esti-
mator of the survival function along with a study of its asymptotic properties
is given in section 4. A simulation study for the performance of the estimators
for different combinations of parameters related to the survival and censoring
times is finally given in Section 5.

2. Description Of The Problem

Let X1, X2, · · · , Xn be i.i.d. positive random variables with unknown sur-
vival function S1(x) = PΘ(X1 > x). Also, let T1, T2, · · · , Tn be i.i.d. random
variables with unknown survival function S2(t) = PΘ(T1 > t). Assume that all
the Xi’s and Ti’s are independent variables.

A randomly censored data set consists of n i.i.d pairs (Yi, Di), where Yi =
min(Xi, Ti) and Di = I(Xi ≤ Ti) for i = 1, 2, 3, · · · , n. In the context of
survival analysis and reliability, Xi refers to the survival time and Ti refers
to the censoring time. Assume that Xi, the survival time, i = 1, · · · , n, and
Ti, censoring time, are independent exponentially distributed with probability
density functions given by:

fXi(xi, θ) =
1

θ
e−

xi
θ xi > 0, θ > 0,

and

fTi(ti, λ) =
1

λ
e−

ti
λ ti > 0, λ > 0,
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respectively, and suppose we observe [(Y, D); i = 1, · · · , n], then the pdf of Di

is:

P (Di = 1) = P (Xi ≤ Ti) =

∫ ∞

0

∫ ∞

xi

1

θ
e−

xi
θ

1

λ
e−

ti
λ dtidxi

=
λ

λ + θ
.

And, hence,

P (Di = 0) =
θ

λ + θ
.

It can be shown that the joint probability density function of (Yi, Di) is:

fYi,Di(yi, di, θ, λ) =

(
1

θ
+

1

λ

)
e−( 1

θ
+ 1

λ)yi

(
λ

λ + θ

)di
(

θ

λ + θ

)1−di

, yi > 0; θ, λ > 0.

Recalling that Di and Yi are independent, which also clear the joint probability
density function, based on the joint probability density function of (Y i, Di),
we see that (

∑n
i=1 Yi,

∑n
i=1 Di) are joint sufficient statistics for Θ = (θ, λ).

Also Yi is exponentially distributed with parameter 1
1
θ
+ 1

λ

, we have
∑n

i=1 Yi has

a Gamma distribution with parameters n and 1
1
θ
+ 1

λ

. Also, Di has a Bernoulli

distribution with parameter λ
λ+θ

, therefore
∑n

i=1 Di has a Binomial distribution

with parameters n and λ
λ+θ

.

The joint probability density function of (
∑n

i=1 Yi,
∑n

i=1 Di) can be written
as

f�n
i=1 Yi,

�n
i=1 Di

(s, u) =
sn−1e

−s( 1
θ
+ 1

λ)

n!

(
1

θ
+

1

λ

)n(
n
u

)(
λ

λ + θ

)u(
θ

λ + θ

)n−u

.

The logarithm of the joint probability density function of (
∑n

i=1 Yi,
∑n

i=1 Di)
is equal to

ln f�n
i=1 Yi,

�n
i=1 Di

(s, u) = (n − 1) ln s − s

(
1

θ
+

1

λ

)
−n ln λ + u ln

(
λ

θ

)

+ ln

(
n
u

)
− lnn!

which constitutes an exponential family form. Therefore, (
∑n

i=1 Yi,
∑n

i=1 Di)
are complete statistics for Θ = (θ, λ).
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3. Estimation Of The Parameters

Based on the notations and assumptions listed in Section 1, the likelihood
function, and log-likelihood functions are given by

L(θ, λ) =

(
1

θ
+

1

λ

)
e−( 1

θ
+ 1

λ)
�n

i=1 yi

(
λ

θ

)�n
i=1 di

(
θ

θ + λ

)n

,

and

L∗(Θ) = ln L(Θ) = −n ln λ −
(

1

θ
+

1

λ

) n∑
i=1

yi +

(
n∑

i=1

di

)
ln λ −

(
n∑

i=1

di

)
ln θ,

respectively. Therefore the ML equations:

∂

∂θ
ln L(θ, λ) =

1

θ2

n∑
i=1

yi − 1

θ

n∑
i=1

di = 0

∂

∂λ
ln L(θ, λ) = −n

λ
+

1

λ2

n∑
i=1

yi − 1

λ

n∑
i=1

di = 0.

Solving the above equations for θ̂ and λ̂, one obtains:

θ̂ =

∑n
i=1 Yi∑n
i=1 Di

and λ̂ =

∑n
i=1 Yi

n −∑n
i=1 Di

,

which are the maximum likelihood estimators of θ and λ.
The information matrix, whose entries are found from the second derivatives

of the log-likelihood function can be written as:

I(Θ) =

[
λ

θ2(λ+θ)
0

0 θ
λ2(λ+θ)

]
.

Therefore, the asymptotic variance-covariance matrix of the parameters, i.e.
the inverse of the information matrix, can be expressed as:

Σ = I−1(Θ) =

[
θ2(λ+θ)

λ
0

0 λ2(λ+θ)
θ

]
.

4. Estimation Of The Survival Functions And Their Asymptotic
Properties

The maximum likelihood estimators of the survival functions, S1(x) and
S2(y), which are defined as the probability that the survival time is greater
than or equal to x and the censoring time which is greater than or equals to
y, respectively. For fixed x and y, let

H(Θ) = [S1(x), S2(y)] = [PΘ(X1 > x), PΘ(Y1 > y)] .
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By the invariance property of the ML, the ML estimators of S1(x) and S2(y)
are:

P̂Θ(X1 > x) =

∫ ∞

x

1

θ
e−

z
θ dz = e−

x
θ ,

and

P̂Θ(Y1 > y) =

∫ ∞

y

(
1

θ
+

1

λ

)
e−z( 1

θ
+ 1

λ)dz = e−y( 1
θ
+ 1

λ).

Thus the ML maximum likelihood estimator of H(Θ) can be expressed as:

Ĥ(Θ) =
[
e−

x
θ̂ , e−( 1

θ̂
+ 1

λ̂
)y
]
.

Now, we derive the asymptotic distribution of the estimator H(Θ). Under the
regularity conditions, we have (Zaks [7]):

√
n
[
H
(
Θ̂
)
− H(Θ)

]
→ N

(
0,

∂HT (Θ)

∂Θ
Σ

∂H(Θ)

∂ΘT

)
.

A partial derivation of H(Θ) with respect to θ and λ, respectively, gives:

∂

∂θ
Ĥ(Θ) =

[ x

θ2
e−

x
θ ,

y

θ2
e−( 1

θ
+ 1

λ)y
]

∂

∂λ
Ĥ(Θ) =

[
0,

y

λ2
e−( 1

θ
+ 1

λ)y
]
,

so,

∂

∂Θ
Ĥ(Θ) =

[
x
θ2 e

−x
θ

y
θ2 e

−( 1
θ
+ 1

λ)y

0 y
λ2 e

−( 1
θ
+ 1

λ)y

]
.

Thus, the asymptotic variance-covariance matrix of H(Θ) is given by:[
x2

θ

(
1
θ

+ 1
λ

)
e−

2x
θ

xy
θ

(
1
θ

+ 1
λ

)
e

x
θ
−( 1

θ
+ 1

λ)y

xy
θ

(
1
θ

+ 1
λ

)
e

x
θ
−( 1

θ
+ 1

λ)y y4
(

1
θ

+ 1
λ

)2
e−2( 1

θ
+ 1

λ)y

]
.

Based on the asymptotic distribution of the survival functions estimators fur-
ther statistical inference such as confidence intervals and hypothesis testing
could be performed for the survival functions and their parameters.

5. Simulation Study

In order to study the performance of the estimators of θ, λ, PΘ(X1 > xs),
and PΘ(Y1 > ys) discussed in this paper, a simulation was carried out. Differ-
ent sample sizes are considered for each of different combinations of parameter
values (θ, λ). The means and root mean square errors (RMSE) of the maxi-

mum likelihood estimates θ̂ and λ̂ of θ and λ are calculated. The results are
shown in Tables (1)-(3). The probabilities PΘ(X1 > xs) and PΘ(Y1 > ys) are

estimated by P̂Θ(X1 > xs) and P̂Θ(Y1 > ys) respectively . The values of xs
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and ys are taken respectively, xs = θ, and ys = θ+λ
θλ

(i.e. xs = the means of
survival time, Xi and ys = the mean of Yi = min(Xi, Ti)). The RMSE of the
maximum likelihood estimates PΘ(X1 > xs) and PΘ(Y1 > ys) of PΘ(X1 > xs)
and PΘ(Y1 > ys) are calculated. The results are shown in Tables (4)-(6). The
simulation results are based on 1000 replicates. Also sample sizes of 50, 150,
and 300 are considered for different combinations of parameter.

As one expects the performance of the maximum likelihood estimators de-
pends on the two intensity rates θ and λ, which are the means of the survival
and censoring times. We note as the mean of the survival and censoring times
increases, the corresponding MSE increases. On the other hand we note that
if the mean of survival time increases and the mean of the censoring time de-
creases, the MSE of the MLE of the survival time increases and the MSE of
the MLE of the censoring time decreases and visa versa.

Concerning the survival functions S1(x) = PΘ(X1 > x) and S2(t) = PΘ(T1 >
t) for different parameters values, we note that the MSE of the MLE of the
survival function for the survival time S1(x) = PΘ(X1 > x) is smaller than
the MLE of the survival function for the censoring time S2(t) = PΘ(T1 > t).
Finally, as we expect the MSE of the maximum likelihood estimators of survival
times and survival functions decreases as the sample size increases values (θ, λ).

Table 1. Means and RMSE of MLE’s of θ and λ, n = 50.

θ θ̂ RMSE λ λ̂ RMSE
0.1 0.10111 0.015542 0.5 0.567478 0.264757
0.5 0.562456 0.297004 0.1 0.100449 0.015444
0.5 0.511913 0.109627 0.5 0.511484 0.106877
1 1.002304 0.148033 4 4.399987 1.729204
4 4.414233 1.787153 1 1.007165 0.16433
4 4.048353 0.8549 4 4.070881 0.827237
4 4.090776 0.862862 4 4.049434 0.826238
4 4.045578 0.661026 10 10.40202 3.011581
10 10.55578 3.300795 4 4.003439 0.669263
10 10.19181 2.178379 10 10.10456 2.123669
10 10.15783 1.63826 40 43.46129 17.31276
40 43.56587 17.06 10 10.16452 1.582584
40 40.7813 8.063063 40 41.03706 8.585889
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Table 2. Means and RMSE of MLE’s of θ and λ, n = 150.

θ θ̂ RMSE λ λ̂ RMSE
0.1 0.100542 0.008815 0.5 0.515962 0.1061
0.5 0.51845 0.11821 0.1 0.10021 0.009341
0.5 0.503781 0.060934 0.5 0.503526 0.056763
1 1.002878 0.093249 4 4.062795 0.744112
4 4.111007 0.811753 1 0.999543 0.089084
4 4.01707 0.460751 4 4.021614 0.458327
4 4.020148 0.466896 4 4.028791 0.490258
4 4.002785 0.373985 10 10.1524 1.638401
10 10.2323 1.639423 4 4.001404 0.400689
10 10.09034 1.231656 10 10.01969 1.157952
10 10.06355 0.935365 40 40.84993 7.74527
40 40.92254 7.871092 10 10.00206 0.927289
40 40.3951 4.764727 40 40.55375 4.888066

Table 3. Means and RMSE of MLE’s of θ and λ, n = 300.

θ θ̂ RMSE λ λ̂ RMSE
0.1 0.100065 0.006409 0.5 0.507198 0.073456
0.5 0.510063 0.076157 0.1 0.100095 0.006371
0.5 0.500872 0.041033 0.5 0.500238 0.041417
1 1.001582 0.066177 4 4.041907 0.533885
4 4.061445 0.533951 1 1.000656 0.066544
4 4.010444 0.320553 4 4.01876 0.33547
4 4.000656 0.333633 4 4.031202 0.33439
4 4.000358 0.284218 10 10.09713 1.109816
10 10.07806 1.113677 4 4.009069 0.267618
10 10.01877 0.810227 10 10.01472 0.81808
10 10.0058 0.663954 40 40.73375 5.522239
40 40.4094 5.33873 10 10.01759 0.624763
40 40.09864 3.329273 40 40.08545 3.295385
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Table 4. Means and RMSE of MLE’s of PΘ(X1 > xs) and
PΘ(Y1 > ys) of different θ and λ values, n = 50.

θ λ PΘ(X1 > xs) P̂Θ(X1 > xs) RMSE PΘ(Y1 > ys) P̂Θ(Y1 > ys) RMSE
0.1 0.5 0.36788 0.367507 0.057217 0.0000000 0.0000000 0.0000000
0.5 0.1 0.36788 0.382223 0.133084 0.0000000 0.0000000 0.0000000
0.5 0.5 0.36788 0.365734 0.074618 0.0000001 0.0000007 0.0000039
1 4 0.36788 0.366515 0.054966 0.2096114 0.2087356 0.0432931
4 1 0.36788 0.383007 0.121161 0.2096114 0.2076473 0.0447864
4 4 0.36788 0.366895 0.071317 0.7788008 0.7749553 0.0290675
4 4 0.36788 0.365567 0.073083 0.7788008 0.7741493 0.0284945
4 10 0.36788 0.364418 0.061914 0.8847059 0.8822215 0.0158969
10 4 0.36788 0.374988 0.098438 0.8847059 0.8826497 0.0157815
10 10 0.36788 0.369659 0.072198 0.9607894 0.9603564 0.005624
10 40 0.36788 0.364759 0.054973 0.9844964 0.9842027 0.0021299
40 10 0.36788 0.38283 0.12082 0.9844964 0.9841439 0.0022181

Table 5. Means and RMSE of MLE’s of PΘ(X1 > xs) and
PΘ(Y1 > ys) of different θ and λ values, n = 150.

θ λ PΘ(X1 > xs) P̂Θ(X1 > xs) RMSE PΘ(Y1 > ys) P̂Θ(Y1 > ys) RMSE
0.1 0.5 0.36788 0.367262 0.033405 0.0000000 0.0000000 0.0000000
0.5 0.1 0.36788 0.379396 0.075424 0.0000000 0.0000000 0.0000000
0.5 0.5 0.36788 0.368011 0.044049 0.0000001 0.0000002 0.0000004
1 4 0.36788 0.367295 0.033488 0.2096114 0.2095786 0.0269176
4 1 0.36788 0.374325 0.06891 0.2096114 0.2094073 0.0266363
4 4 0.36788 0.36847 0.041586 0.7788008 0.7779495 0.0159655
4 4 0.36788 0.367072 0.042497 0.7788008 0.7774342 0.0162354
4 10 0.36788 0.366867 0.03489 0.8847059 0.8842716 0.0086566
10 4 0.36788 0.367446 0.056532 0.8847059 0.8834462 0.0094427
10 10 0.36788 0.368676 0.043685 0.9607894 0.9606651 0.0032383
10 40 0.36788 0.366243 0.033075 0.9844964 0.9843694 0.0012701
40 10 0.36788 0.369692 0.067789 0.9844964 0.9843791 0.0012982
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