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FOREWORD

This report is a preprint of a paper with the same title which is 

scheduled to appear in the January 1983 issue of the IEEE Transactions 

on Information Theory (vol. IT-29).
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I* INTRODUCTION

Let be observations of independent and identically distributed

(i. i.d.) random variables ,X2 >•• • • Consider testing an hypothesis Hq , under which 

X^ has a probability density function f(x-0Q), against a shifted alternative 

; that is, consider the hypothesis pair

Hq : X ~  f(x-9), 9 » 9 
versus u

H x: X. -  f (x-9 ), 9 * 9 x > 90 .
(1)

The Neyman-Pearson fixed sample size (FSS) test for (1) is obtained by 

taking M samples and testing [1]

M

E
i=l

z .
l

^ T =» H,

< T => H,
(2)

wh^re z^ is the observed realization of the random variable (f (X.̂ -9 /f (X.-9Q)) ,

and the sample size M and the threshold t are pre-chosen so that the test has 

error probabilities P(choosing H^JHQ true) and P(choosing Hq | true) of a and 

1-9, respectively. (Since we are mainly interested in asymptotic properties here, 

randomization of the test is not included in (2).) Alternate­

ly, Wald's [2] sequential probability ratio test (SPRT) is obtained by 

testing, at the n-th sample,

n

E
i=l

z .
l

^ a =>

| *  b *  H0

€(b,a) => take another sample,

(3)

where the boundaries a and b are chosen so that the error probabilities
n

are a and 1-9. The sample size N = min{n : E Z. £ (b,a)} is now a random
i=l 1

variable, and the average sample number (ASN) (i.e., the expected value of N)
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depends on the actual distribution of X^, i.e., on the actual value of 0.

It is well-known that the SPRT (3) has the smallest ASN under Hq and 

among all tests with error probabilities no larger than a and 1-3.

However, because the test is not truncated an occasional long test can 

result, which is undesirable. Moreover, if the parameter 9 is not the 

assumed value 0Q or 0^, the ASN of the SPRT can be very large. In parti­

cular, if the density f(x) is symmetric and if a = 1-3 > then max E(N|0)
0

occurs when 9 = (0^ + 0^)/2, where E(N|0) denotes the expected value of N 

given that each X^ has the density function f(x-0). This maximum value 

becomes worse when a and 1-3 are smaller [3]. For example, if a = 1-3 <

0.008, which is the case in many signal detection problems, then max E(N|9) 

is larger than the sample size M of an FSS test with the same a and 1-3.

Truncation of the SPRT can be used to prevent this problem; however, one or 

both of the error probabilities will be made larger as a result of such 

truncation. Quantitative analysis is needed to study the effect of trunca­

tion on the error probabilities and to find a simple design scheme for a 

truncated SPRT which gives error probabilities as required. A preliminary study 

of such effects is given in [4] where a bound for the probability of terminat­

ing before the truncation point and a bound for the resulting ASN have been ob­

tained. Also, Anderson [5] has studied a truncated test with two converging boun­

daries so that the maximum ASN is reduced. However, the converging boundaries
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are difficult to design and must be chosen from the results of simulation.

Read [6] has studied a related test in which a fixed number of samples is 

taken first, and then, after this fixed number, one additional sample is 

taken at a time and the test statistic is tested sequentially with two 

constant boundaries. It is shown in [6] that the maximum (over 0€[8q ,9^])

ASN is reduced by this•technique. However, such a scheme still has occasional 

undesirably large sample sizes since the test is not truncated. In [7], the 

idea of converging boundaries has been applied to the test of [6]; namely, the 

test has two converging boundaries from the start up to a fixed number and 

then the boundaries become constant after this fixed number. Similar, reduc­

tion in maximum ASN as in [6] is observed in [7], but the test still retains 

the disadvantage of occasional long sample sizes.

In this paper, we study further the truncated SPRT by extending the 

analysis given in [4]. It is observed here that the truncated test can be 

viewed as a mixture of an SPRT and an FSS test. Depending on the chosen 

degree of mixture, the truncation point and the constant boundaries can be 

easily designed such that the resulting test has approximate error proba­

bilities no larger than given nominal values a and 1-g. In Section II 

we describe the procedure for choosing the boundaries and the truncation 

point when the required error probabilities are a and l-p and when Gaussian 

statistics are assumed. Approximate expressions (which are asymptotically 

correct as 8  ̂approaches 0^) for the ASN and operating characteristic (OC)

1
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functions and for the sample-size variance of the truncated test are 

given in the same section. These expressions are evaluated in Sec­

tion III, and the advantages of the truncated sequential test become 

obvious. Regularity conditions under which the results of Sections II 

and III hold for non-Gaussian data are given in Section IV. These 

regularity conditions are fairly mild and are satisfied by a large class 

of commonly used densities. In Section V, truncated sequential testing 

with quantized data is considered, and similar results are found to hold 

in this case as well. Further, exact results are computed for the 

particular case of two-level quantization, and these are seen to agree 

closely with results computed using the approximations of Section II. 

Notation:

At this point, we define the following notation which will be used

throughout the paper:

He = E(Z.|0) = J’in[f(x-ei)/f(x-9o)]f(x-0)dx,

£ E (Z?| 0 ) = J{ta[f (x-0 1)/f (x-0Q)]]2f (x-0)dx,

2 i 2
ae ~ Hfe “ >

and

A A
> M-t

0 ~1
^0 ^9„’ ^1 0̂ ,* °0 ~ °0 al “ •

2 A 2 2 A 2

' ' 790

(4a)

(4b)

(4c)

(4d)

Thus, p,Q and ox are the mean and variance of the random variable Z
i

from (2) and (3) when the randcm variables X have density function f(x-9).
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II. TRUNCATED SEQUENTIAL TESTING FOR THE GAUSSIAN CASE

In this section we assume that the density of the data is Gaussian,

JjL 2 2
namely f (x)-(l/(2tt)2K) exp(-x /2K ) where K is known, and we will describe 

how to choose the boundaries and the truncation point of a truncated se­

quential test correspondingly. Then expressions for the resulting ASN 

and OC functions and for the sample-size variance will be given.

For the Gaussian case, the log-likelihood ratio, its mean, second moment,

and variance as defined in (4) are given by

' Zi " ^ l * 60)(xi' O 1+ 0 o)/2)/K2 . (5a)

M*g = - (ei + 9 o)/2)/K2= O 1 -0o)2(r-|)/K2 ) (5b)

H0 “ -03x -eQ)2/2K2 = u ,1 , (5c)

“b = « W 2/*2 + <?i-0o)4<r 'i>2/K4. <5d>

and

CTe = (9x ‘9o )2/k2 “ > ■ (5e)

where r = (9 -9 q )/(9^-9q ) t îe rati° of the difference between the actual 

parameter 9 and 9^ and the difference between 9^ and 9 q . In subsequent 

analysis, we will often use this parameter r instead of 9 so that, when we 

consider limits as 9^ approaches 9 we allow 9 to approach 0^ in a way such 

that r is constant.

The FSS test (2) with error probabilities a and l-(3 has a sample size 

M and threshold t given by

M =  [ ^ ( a )  + $*1(l-e)]2(a2/(ji1 -H q )2) (6a)

and

* N2 L(a) + 1(l-9)] (ct/ 0io " M-i)) >T (6b)
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where <&(•) is the standard normal distribution function and is its

inverse. The ASN function and the operating characteristic (OC) function, 

L(0) = P (choosing Hq | 0), of the SPRT (3) are given by [2]

E (N| 0 )

f.f t * P » a + LP)b + o(1) , o

i

-ab/ffg + 0(1) , Mç = 0

(7)

and

eah<3>-l

ah (9 ) bh(9 ) + o(1)’ h(^  * 0
e ' ' -e

L(9) = {

where lim o(l) = 0,

9f 9 0

+ °<1) , h(9) = 0 ,

and h(0) satisfies

00

J [f(x-01)/f(x-0o)]h(9) f (x - 0 )dx = 1

(8)

(9)

which gives Ii(0q ) = 1 and h(0^) = -1. For the Gaussian case we have h(0) = 

1-2(0 -0 q )/(9^-0q ). The o(l) terms in above expressions arise from the 

excess over a boundary when the SPRT terminates. That this excess diminishes 

as 0 j**0q follows from [2, Appendices A2 and A3].

We now describe a truncated sequential test with constant boundaries

* * * 
a and b and truncation performed at n = M , as follows: At each observa-

•k
tion n < M test
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f k 
^ a

n
S 2 /
i=l L

H,

H, (10a)

€ (b ,a ) => take another sample,

and at n = M , test

M 2* t =* H,

2 i  (

(10b)
<  t H,

y -  5̂*

where t* is a fixed threshold. Let a and l-j3 be the error probabilities

under H q and of the test (10). Although Oi and 1-3 can be approximated,

the expressions are complicated as we shall see later in this section.

k k * *
Therefore, designing.a , b , M , and t from these expressions is prohibitive

* k

However, we can turn to simple bounds for ot and 1-p and use them for design 

ing the truncated test (10). It was shown in [4] that

k

cy £ <y + <y
SPRT “FSS (11a)

and

l-g £ ^ ‘^SPRT^ + ^"^FSS^* (lib)

where ^SpRT and (l“3gpRT) are the error probabilities of an SPRT with thres'

k k

holds a and b , namely

a
1 - exp (b )

SPRT . *.
exp(a ) - exp (b )

(12a)

1-3SPRT
exp(-a ) - 1

exp (-a ) - exp (-b )
(12b)

and where a _ and (l-(3 ) are the error probabilities of an FSS test with
FSS FSS

A

sample size M and threshold t , namely
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aFSS = 1 - 4((t* - n0H*)/a(M*)1/2> (13a)

l-eFSS = §((t* - |i fM*)/ct(M*)2/2). (13b)

Again, the approximations in (12) arise from neglecting the excess over the 

threshold boundary at termination of the test.

The bounds of (11) can be viewed as mixtures of the error probabilities 

of an.SPRT and those of an FSS test. In order to design a truncated test with 

error probabilities less than a and 1-3, we then can set the bounds in (11) 

to be oi and 1-3, namely

^SPRT + aFSS “ (14a)

^*^SPRT^ + ^"^FSS^ =
(14b)

Thus, we have freedom to choose the degree of mixture between the SPRT error

probabilities and the FSS error probabilities. The choice of the mixture

will determine the truncation point M*, the threshold t*, and the constant

boundaries a* and b*. It will also reflect whether the performance (ASN and

OC functions) of the resulting test will be closer to that of an SPRT or

closer to that of an FSS test or intermediate to these two, as we shall see later.

Note that the values Oi and 1-g are used as nominal values in designing a*,

b*, M*, and t* so that a* £ and 1-g* £ 1-3. It is very unlikely that either

equality, a* » a or 1-g* - 1-g, will result and no attempt is made in the

design to achieve the equalities. Therefore, as numerical results in Sec-

*  *

tion III will indicate, the resulting error probabilities a and 1-3 will 

usually be smaller than the nominal values c* and l-g used in the design.

Now let c^ and c^ be two constants between 0 and 1 that determine the 

mixture implied by (1̂ -); i.e., let
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and

Oi
FSS

(l-PFSS

= cl0f and aspRT = (1 - c jc t 

) -c2(l-0) and (l-PspRT) = (l-c2)(l-P),

(15a)

(15b)

Note that,if and are both zero, then the resulting test (10) is the 

SPRT. This is equivalent to saying that the truncation is at M ® «. On 

the other hand if c^ * c2 * 1, then the test (10) is reduced to the FSS test

•jif ^
or, equivalently, the boundaries a and b are » and respectively. If

c^ and c  ̂ are both 0.5, then the test (10) can be thought of as being half

mixed between an SPRT and an FSS test. Using (12) and (15), we set

a = in
1- (l-c2)(l-P)

(1 -C^Of
and b = in

(1 -c2)(l-p)

1 - (1 -c^cr
(16)

and using (13) and (15), we set

M* - [$'1(c1a) + >̂'1(c2(l-p))]2(a/(M.1-M.0))2 (17a)

and

t" = [M*]8 [p. 1 (c 1a) + m.0̂ "'L(c2(1-P))] (a/(M-0 -p^)) . (17b)

Since a, p.̂ , and p.̂  are known, once c^ and c are chosen the test (10) can 

be determined by calculating a , b , M , and t" from (16) and (17). Good 

choices for c^ and c^ will be discussed in Section III where numerical 

results are presented.

Denote the ASN and OC functions of the truncated test (10) by E (N |9) 

and L 0 ), respectively. It is then obvious from the design that
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*  ^  *

l  <e p  = i-e * i-p,

* -k
1-L (P Q) = Oi £ Qi ,

(18a)

(18b)

and

E(N*|9) i min{M*,E (n | 9 ) } , (19)

where E(n |9) is the ASN function of an SPRT with boundaries a* and b*, and

is given by (7)-(9) with a and b replaced by a and b , respectively.

In addition to the upper bounds of (18) and (19), approximate expres- 

. *
sions for L (9) and E (N |0) can also be obtained by

using a Brownian motion approximation to the relevant test statistic.

In particular, the random process BQ (t) = (Z. + ... + Z - p, [M*t] )/crfl (M*)1^2 ,
[M t]

0 £ t £ T, converges weakly to a standard Brownian motion

as il goes to infinity [8, p. 137] for each finite T > 0. (Here, [Mt] denotes 

the largest integer less than or equal to Mt.) Therefore, for large M , 

approximations using Brownian motion results are justified.

From [9], the distribution of the first passage time T = inf{M t:

(<Jq (M )*B0 (t) + |j,g [M t]) # (b ,a )] is given by

F0 (u) = P(T" ss u|9 )

o  22 CJQ TT oo
= 1 ̂ ---------  y

(a -b ) j-1

j ( - D J

M*i
_ 9 _ \

V  Va*-b*V

(20)
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Using this expression the ASN of the test (10), E(N*|q ), can be approxi 

mated by

E(n ’V|9 ) » E(T*|0)

M
*

= J udF (u) + M (1 - F0 (M ))

-2tt

^ ( a - f c - b * ) '

00 r%

s C(j)(V(j))' (l-exp(-TKJ)))

where

Y(j) <r-&)2 + ( i f e )  *

C(j) - j(-D ’ 1< A )

■ " i f  2
H(J) - i  [ ^ ( c ^ )  + * ' 1(c2(l-g))j2 j^(r-l)2 + ( j ^ * )

and r=(9-90)/(91-e0).

(21)

(22a)

(22b)

(22c)

The ASN of (21) can also be evaluated using a result of Anderson's 

[5, (5.7)], which yields

E(N*|9 ) «  — [ [£ (a * ,b* , r -| )  + £ ( -b * , -a  , 4 -r ) ] + J [$  (c .or) + $ (c (1 -9 ) ) ]
L

[1-G(a*,b*,r-i) - G(-b*,-a*,|-r)]3 (2 ^

where, with d = -($_1 (c.a) + 4 "1 (c2(l-P)), <P(X ) = (1/(2tt)4 )exp (-x2/2) (i.e

cp is the unit normal density), £(•) is defined by
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i  2 { [ * ( - c d + ^ p ± i l E ).e-2c[jb-(j+l)a] 

j = 0  d

- <3>(cd + 2jb~j2J+1)a).e~2Jc <a~b) ] (2 jb- (2 j+l)a)

. [-W ed I 2(j+Db-(2 j+l)a -2c(j+1)(b-a) 
d '

. $(cd + ?-U±l)b- (2j+l)a) .e-2c (ja- <J+l)b] j2 a+1)b.(2J+l)a) },

e(a,b,c) = < c  *  0  ( 2 4 a )

Z  { ( ( 2  ( j + l ) b -  (2 j + l ) a ) $ ( - -̂ - + 1 ^ b '  <2 -i + 1 ) a ) 
1=0 d

+ dcp (?-ilt1)b-(2J+1-)a) ] (2 (j+1)b -(2j+l)a)

- [(2jb-(2j+l)a)^ b' ^ j +l^a) +dCp(?j— ^j'l~1^a)]

• (2jb-(2j+l)a)} , c = 0 ,

and G is defined by

G(a,b,c) =4>(cd - f) + 2 { c & ( 2  (2.]-l)a _ ed>.g-2c ((j-l)b-ja)

j-1 d

. ,̂(?jb-(2j-l)a . -2cj(b-a)
d

. $(2jb-(2j-l)a + cd).e-2c((j-l)a-jb)

+ d,(2jb-(2j+l)a + cd).e-2jc(a-b)} _
( 2 4 b )

Expressions (21) and (23) give the same result. However, (23) is preferable

for numerical evaluation since (21) normally converges much more slowly than does {23) .

Usually, only the first few terms of £(•) and G(*) are needed for numerical

evaluations.
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The second moment of N* can be approximated by calculating

„  2 i

E((T*) 0) using (20), and thereby we obtain

E ( ( N * ) 2 ] 9 )  «  E ( ( T * ) 2 | 9 )

H
%

0

J*. U2 dFe (u) + (M*)2 (1-F (M*))

-4rr .N v-3

2(a*-b*)2 j-l C(j)(V(J)) (1-tl-rtl (j)] exp (-Tl(j)). (25)

where £. Y» and T| are as defined above. The variance of N* is given by 

Var. (N*) - E((N*)2 |9 ) - E2(N*|e ) ( 2 6 )

and can be calculated using (21) or (23) and (25).

To find an approximate expression for the OC function L*(9) o f  the 

truncated test, we again use Anderson's result [5, (4.68)] and obtain

L*(9) « B (a ' ,b ' ,r ) (27a)

where, with r and d as previously defined and with A = -rd - <3? the

function B(*) is given by

B (a ,b, r) - *(A) - I - $(A + ̂ ^ - ) ] < b~a) <r^>
j  =  l

+ [$ (2 1 ^2 5 1 . A) - $ ( 1 0 I b r a ) + a i . A)>e2 a ( r - i ) ] . e - 2 j ( a -b ) ( r 4 ) 5> (27b)
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Under Hq and we have a » 1-B(a ,b ,0) and 1-0 » B(a ,b ,1), respectively.-

If we consider limiting values of the ASN functions by letting 9 ̂  approach

2 2
9 q , the ASN values approach infinity. However, if we consider ((9^-8^) /2K ) 

times the ASN (i.e,, p,^*ASN) instead, we find that limiting values exist. Therefore,

we will subsequently evaluate and compare the limits of ( (©^-0^ ^ /2 ) times the

2
ASN or sample size. With jj-q , (î , and Oq given by (5c) and (5e), we have, 

from (6a),

l i m

9 9
[ ( 9 1 - 0 o ) 2M /2 K 2 ] =  i [ * _ 1 (or) + 0_1(1-P)]2 (28)

From (7) and (8), with h(9) = 1 - 2 ( 9 - 9 q )/(9^-9q ) = l-2r, it follows 

that, for the SPRT,

eji“ t <e1-e0)2E(N|e)/2K2] =  <

2r-l

- a b / 2

a + (b-a)
a(l-2r) ,

e K - 1

ea(l-2r) _ eb(l-2r) > r ̂  J

r »i 
y r 2

( 2 9 )

Since approximation by Brownian motion is asymptotically correct as M 

approaches infinity (which is the case when 9^ approaches 9^),we can argue 

that (21) and (23) lead to
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[(91-90)2E(N*l9)/2K2] - --^ v ; '2'

00

s C ( j ) ( Y ( j ) ) “ 2 [ 1-exp (-71 ( J ) ) ]
(a -b )" j=l

(30a)

or

£(a*,b*,r-|) + £(-b*,-a*,4-r)

+ i[*'1(c1a)-t4‘1((l-P)c2)]2 [l -G(a*,b*,r-i)

* Vv 4

-G(-b ,-a ,|-r)] (30b)

where r = (9 -9 q )/(B^-9q ) aS Prev:*-ously defined, and £(•) and G(«) are 

given by (23) and (24). Similarly, from (25)we can write the asymptotic 

second moment of N* as

4 "ft 21 4 -4tt • 3
11a [(01-0 0) E((N ) | 9 )/4K ] = V S C (j ) (Y (j ) ) (1- [ 1+7] (j) ] exp (-71 (j ) ) ).

0 i - 0 O (a -b ) j=l
(31)

lim [(01"9O)2E(N*|0)/2K2] =

The power function of the FSS test (2) is given by
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« (r) - x .* (izLK±)f\°Of\i-?)A , (32)

where t = ^ [ ($ '’(a))2 - (€> 2 (l-(3))2],which is obtained from (6b). The

SPRT has a limiting power function

lim B (r) = lim [1 - L (9 )]

9 r eo 9 r 3o

f l - e b(1-2r) 
ea(l-2r) _ eb(l-2r) ’ r a

(33)

a/ (a-b) , r ■ i  .

We can also obtain a limiting power function for the truncated sequential 

test as

lim
0 , - 0

0T (r) = lim
9 — 9

[1 - L (9)] = 1 - B(a ,b*,r) (34)

where B(«) is given by (27b).

In the next section we will evaluate numerically the expressions given 

by (28) through (34) in order to compare the three tests, the FSS, the SPRT, 

and the truncated sequential test.
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III. NUMERICAL RESULTS

In this section we evaluate the performance of the truncated test in order 

to compare it with the SPRT and the FSS test» We wish to compare average sample 

sizes when each test is designed to have g|.ven a and 1-p . As noted in the pre­

vious section, the ASN is a function of 9^-9q and it goes to infinity as 

9^ approaches 0Q . In order to avoid the parameter (9^-Qq ), we defined 

r = m ®(P^®1 " an<* °^ta^ne^ asymptotic expressions for (0^-0 ) / 2& 

times the ASN (i.e., ^»ASN), namely expressions (28), (29) and (30). Since 

each ASN is multiplied by the same factor, (0^ - 9^) /2K , ratios of two quantities 

among (28), (29), and (30) are the limiting ratios of ASN functions as 

9^-*9q . For example, the quantity

lim
9 . ,  - 9 ,

[(91 -0 o )2E(N*|9)/2K2]

[(91 -9 q )2M/2K2] 0

lim E (N* 1 9 ) 
M

is a measure of the asymptotic efficiency of the FSS test relative to the 

truncated sequential test.

Instead of plotting asymptotic relative efficiencies lim [E(N |9)/M]

ei - eo

and lim [E(N |9)/E(N|9)], we will plot expressions (28), (29), and (30) on

the same graph. In Fig. 1, (28), (29) and (30) are plotted for a = 1-P =

0.01 with the mixture constants c^ and c^ for the truncated sequential test 

both equal to 0.9. It can be seen that the SPRT has uniformly smaller ASN 

than the FSS test and that the truncated test has larger ASN than the SPRT ex­

cept when r is near 0.5. As one would expect, the truncated test has performance 

between that of the SPRT and the FSS test. Under HQ where r = 0 and where 

r = 1, the truncated test exhibits significant savings over the FSS test 

(about 40%). The upper bound for the truncated test given by (19) is also 

plotted in Fig. 1. It should be noted that the absolute maximum sample size for
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the truncated test is only about 3% more than the sample size of the FSS test, 

while the average sample size is uniformly smaller than the sample size of the 

FSS test. Figure 2 shows the same quantities for the alternate case 

at * 1-0 = 0.001. For these smaller values of error probabilities, the nice 

features of the truncated test become more apparent. Now a disadvantage of the 

SPRT shows, namely the ASN becomes larger than the FSS sample size for r 

between 0.4 and 0.6. However, the truncated test retains uniformly smaller 

ASN than the FSS test while significant savings (close to that of the SPRT) near 

r = 0 and r = 1 are still observed and while the truncation point can be kept at 

a sample size only a few percent larger than the FSS sample size. Two trun­

cated sequential tests' results are shown in Fig. 2, namely tests with c^ = 

c^ = 0.5 and c^ = c^ = 0.9. Note that the ASN for c-̂  = c^ = 0.5 is smaller 

than that for c^ = c  ̂ = 0.9 but the truncation point is larger. Therefore, 

there is a trade-off between the truncation point and the ASN. Choices of 

c^ and c^ which result in larger truncation points seem to result in (not 

necessarily uniformly over 8) smaller ASN*s. Figure 3 shows similar behavior 

for the case at = 0.0001 and 1-0 = 0.0005. In this case, we note that

max E(n |8) of the SPRT becomes worse. Further, two truncated tests, with
9
c^ = 0.83, c^ = 0.1 and c^ = = 0.9, still show ASN's uniformly smaller

than the FSS sample size. However, more savings in ASN than in previous cases 

are observed under Hq and H^. Note that the graphs are skewed in this case 

because at ^ 1-0. Note also that the truncated test with c^ = 0.83 and 

c^ = 0.1 has a larger truncation point than the truncated test with c^ = 

c^ = 0.9. However, its ASN is not uniformly smaller than that of the other 

case. From these numerical results, we conclude that a truncated test can 

be designed (with error probabilities less than at and 1-0) by suitable 

choices of c^ and c^ so that it retains the advantage of savings in sample
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sizes near r = 0 and r = l while the ASN is uniformly smaller than the sample

size of a corresponding FSS test and while the truncation point is only

slightly larger than the sample size of the FSS test.

In order to see how the choices of c^ and c^ affect the truncation point

and the ASN function, we now evaluate m-^'ASN under Hq , |J.̂ »ASN under H^,

m|x[(J-^E(N | 9)], and the truncation point of a truncated test, and plot their

values versus c^ = The values of the FSS test and ^ E ( n |9q ) and

M*-̂ E (N| © j.) t*ie SPRT are a^so plotted in Fig. 4(b) for a = 0.05, 1-0 = 0.01,

in Fig. 5(b) for a = 1-0 = 0.001, and in Fig. 6 (b) for a = 1-0 = 0.0001. Ratios

of (average) sample sizes are plotted in Figs. 4(a), 5(a) and 6 (a). These re-

suits indicate that as c^ and c^ approach zero, E (N | ®q ) and E(N |9^) approach

E(n |9q ) and E(n |9^) of the SPRT, respectively, as expected. On the other hand,

as c^ and c^ approach unity, E (N |9) approaches M of the FSS test for each value

of 9. From these graphs, we can choose c ^ ^  between 0 and 1 so that M /M is

not too large, {max E(N*|0)}/M is near its minimum value, and E(N<'|0n) and E(N*|9.)
0 U JL

are as close to E(n |9q ) and E(n |9^) as needed. Of course, the actual choices of 

c^ and c^ depend on the designer's judgment as to what is more important to 

minimize, M /M, {m^x E(N*|0)}/M, or E (n “| 0q)/E (n | 9q) and E (N*| 91)/E(n | 9 L).

* 1  A
Since max E(N 9) seems to be less sensitive to c, and c« for c, and c„ between 

0 1 1 2  1 2

0.3 and 0.7, the primary tradeoff is between M* and E(N*|9q ) or E(N*|9^).

Figures 5 and 6 indicate that good c^ and c^ choices seem to be between 0.3 and 

0.6 for these two cases.

Further numerical investigation shows that the boundary a is more sensi- 

tive than the boundary b to changes in c^. A result is that changing c^ will 

cause more change in E(N~|9) for 9 near 9^ than change in E(n |9) for

^ i
9 near 9q . With c^ fixed, increasing c^ will also increase E(N |9.). On 

the other hand, b is more sensitive to change in c^, and increasing c^
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with fixed results in an increase in E(N |0q )« Both and c2 have

I

the same effect on max E(N |9). Of course, c, and c can be chosen to have
0 1 Z

different values. Optimum choices of c^ and c^ depend on a given criterion.

For example, M can be set to a maximum allowable value and then c^ and c^ 

can be chosen to minimize E(N |0q ), E(N |9), or a weighted average of these 

three. Since there are many possible criteria, we will not pursue the 

search for optimum choices of c^ and c^ here.

The behavior of the variance of N* is also informative. Thus, we now compare

9 2
lim ( ^  VarQ (N*)) of the truncated test with lim (jĵ  VarQ (N)) of the SPRT , where

the limits are taken as approaches 9q . The first limit can be calculated

from (30) and (31) since Var (N*) = E((N*) |q ) -E (N*|©). The second limit,

that for the SPRT, can be evaluated using Wald's results [2, Appendix A.5]

which give approximate formulas for moments of N (the sample size). As-with

the approximate formulas in Section II, these values are asymptotically

correct as With these formulas, we obtain Table I, correspond-
1  0

ing to those cases of Figures 1, 2, and 3, namely = = 0*1» & = =

0.001, and & - 0.0001 and 1-p = 0.0005, respectively. Results show that 

the untruncated SPRT has large sample size variance when r * (B-Qq ) / (9^-9^) 

is near 0.5. This is due to the fact that the test terminates with very 

large sample size most of the time under this condition. In contrast, the 

truncated test has very small sample size variance when r is near 0.5.

This is so because the truncated test terminates most of the time near or

at the truncation point M* for r near 0.5. Note further that, under Hq and

2 2 
H^, Var^ (N*) of the truncated test and ^  Varg (N) of the SPRT are only

slightly different from one another. These phenomena indicate an additional

favorable property of the truncated test as compared to the SPRT.
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It is also of interest to investigate numerical results for the power 

functions of (32)-(34)A typical comparison is shown in Fig. 7, where 

a = l-{3 = 0.1. The SFRT and FSS power functions coincide at r = 0, 0.5, 

and 1.0. Between r = 0 and 0.5, the power function of the SPRT is smaller 

than that of the FSS while it is larger between r = 0.5 and 1.0. How­

ever, the difference between these two power functions is not significant.

The power function for a truncated sequential test with c^ = 0.4 and 

c2 = 0.6 (from (34)) is plotted in the same figure. We see that this

function is smaller than the other two for r •< 0.5 and larger for r > 0.5.

•¡5*

At r - 0 we have = 1-g « 0.067, which is smaller than 0.1; this is due

to the fact that a = l-{3 = 0.1 are nominal values used for the design and 

they serve only as upper bounds for the actual error probabilities a and l-f3 .

•k

To see how close a and l-g* are to a and (l-g), we evaluate these using 

(27) for various values of a, 1-P , c^ and c^. These values are 

tabulated in Table II, from which it can be seen that ot and 1-p are 

between 887» to 967» of & and I-3 for the cases considered.
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IV. THE CASE OF NON-GAUSSIAN DATA

Although we have concentrated thus far on the case where f(x) is a 

Gaussian density, the asymptotic results of Sections II and III hold for 

non-Gaussian densities as well. In this section, we define a class of 

non-Gaussian density functions and show that the previous results apply 

when the observation statistics are described by a member of this class.

We use the same notation as in Section II.

Assume the following conditions on f(x):

Al: f(x) is continuous with finite Fisher's information number 1(f) =

2

J(f’/f) f » and f' (x) exists and is continuous with a possible 

exception at x = 0, where f'(x) denotes the derivative of f(x).

A2: The mean and second moment of the log-likelihood ratio, and ,

exist.

A3: There exists a A > 0 such that, for t 6 [-A,A],

f(x + £), f'<x + t>. + and ( y § ^ J f’(x + t)

are uniformly integrable. (A function f(x,t) is uniformly integrable 

for t € [-A,A] if there exists an integrable function g(x) such that 

|f(x,t)| £ g(x) for all t € [-A,A].)

Within these assumptions, it can be shown that

and

M-0 = (91 -90)2(r-0.5)I(f) + ü((B1 -90)2) 

a9 = (P1 “e 0)2l(f) + 0(^1 ■0O)2) ’

(35)

(36)

where lim o((9^-9q )2)/(9^-Qq)2 = 0 as 9 ̂  9^. To prove (35) and (36),

arguments parallel to those of the Appendix in [3] can be used. From 

(35) and (36), it follows that
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9 r 9o

2
lim (M*e/cTe) = r -£

lim = lim -*q U i U  A -*A l U
= 1

(37a)

(37b)

9 r 9o ” * ~ 9 r 90

To maintain constant error probabilities under Hq and as Q - ^ Q q, the sample

*
size M and the truncation point m ' must approach infinity. Since p,Q and 

2
Oq are finite by Assumption A2, we have, by the Central Limit Theorem [10],

•fg 4? 3+ MM * v- m. *
that ( Z - M p-g (M ) CTq and ( I Z. - MjjLq )/MTOq converge in distribution

i=1 i=l 1 *
to standard normal random variables as M and M go to infinity. Therefore, 

(6) and (17) hold asymptotically; i.e.,

lim (M(p1 -M-q )2/^) = [$_1 (a) + $ l (1-P)]2 ,

9r e°

lim (t/M2 oft) = - i  [$ 1(0i) - <E> 1(l-3)] ,

9r e0
= --i

s

2 / 2V _ - l , «.-1......... 2

and

lim (M (p, -pn) /cr ) = [<l> (c a) + $  (c (l-g))j ,
9 - 0  i u d  i z
1 0

lim (t*/(M*)%)=-i[$_1(c a) - >̂“1(cc> (1-3))] .

e r 9o 2

[M t ]

(38a)

(38b)

(38c)

(38d)

As in Section II we let BQ (t) = ( Z Z^Pg [M*t] )/ (M*)saQ ,0 £ t * T,for finite 

2
T > 0. Since Pq and Oq are finite, the random process Bq (t) converges weakly to 

a standard Brownian motion. As noted above, the operating characteristic 

function and the expected stopping time for this random process were found 

in [9]. In particular, with T* = inf {M*t: (M^'crgB^ (t) + p Q[M"t] £ (b,a)}, 

we have

[a(1-L(0 )) + bL(B)]/Pg, P̂q ^ 0

E(T | 0) =< (39)

-ab/cTr , M.a = ° ,
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and the corresponding operating characteristic is

f 2
e'2 < a ^ / < V  - i

L<6) = /

“2 (a|iQ /<j0 ) _ -2 (b(i8 /ctq )
2 * ^9 * 0

(40)

a
a-b , n9 = °

Now with (37), (39), (40) and the fact that Bg (t) converges weakly to a Brownian 

motion, we have for the SPRT (3),

e-a(2r-l) .

lim ((91-90)2I(f)E(N|e)/2] = <

3 r 8o

2r-l
a+ (b-a)

e-a(2r-l) _ e-b(2r-l) > r * i

-ab/2 r  _  i .  
r  “  a  »

(41)

which is the same as (29), By similar arguments for the test (10), 

lim [ (9 -9 )^I(f)E(N |9)/2] is given by the right-hand side of (30a) or

9 r 9o

2

(30b). We note that 1(f) = l/K for the normal density with zero mean and

variance K?. Similarly, the asymptotic power functions (32)-(34) carry 

over to non-Gaussian densities satisfying assumptions Al through A3.
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V. THE EFFECTS OF DATA QUANTIZATION

In this section we will show that the ASN functions of truncated sequential 

tests based on k-level quantized data have the same asymptotic behavior as 

those just studied provided that the pre-quantized data density f(x) satisfies mild 

regularity conditions. Consider a k-level quantizer with finite output levels 

an<* <luantization points - » < s ^ < S 2 < ...< < « as

shown in Fig. 8. For convenience let s^ = -00 and s^ = and denote i.i.d. 

random variables Q(X^) ,Q ̂ )  ,... by Y^,Y2>«.* where

Q(x) = i if s x < x ^ s., j = 1,2 
J

» •  •  • » k. (42)

Pj<8) = P(Yi = XjJe) = F(Sj-8 ) - F i a ^ - S ) ,  j = 1,2 k. (43)

where F(x) is the distribution function corresponding to f (x)

We now consider truncation of a sequential test for (1) based on the

*

quantized data with boundaries a and b and truncation point at3 •  •  •

M , namely, for n < M , we test

(  *
^ a =* H

(44a)

€ (b ,a ) => take another sample,

and, for n = M , we test
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M

E m (n)£. = £ y. < 
=1 J J i=l

2s t => H]

*

< t => H,
(44b)

where m^ (n) is the number of y ^ s  taking the value X., with £ m.(n) * n at

3 j=l J

each stage. To obtain a truncated sequential probability ratio test on

we set ^  = ^ ( p j (e1)/Pj(90))> for j=i, k.

Define

and

Hg - E(Y |0) - Z i p  

j = l J J
(9)

"fe = E ^il6 ) = S ( i J2 P.(0) .
j = l J J

(45)

(46)

It is shown in the Appendix that, if f(x) is continuous for all x, then

Pq “ (S1 -60)2(r-0.5)e(k) + ( X ^ - B q )2)

and

= p i ‘9o)2 a(k) + «c<e! -90)2) ,

where

k (f(Si-9o)-f(s,.l -90))2

S( A F ( S . - 9 o ) - F ( s . . i - 9 o )

(47a)

(47b)

(48)

We note that e(k) given by (48) is the detection efficacy of a k-level quan­

tizer-detector [11] and can be thought of as a discrete equivalent to the 

Fischer information number 1(f).
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2 *i
Once we have established (47), we can argue that lim e OOE (NjJ 9)/2]

*  e r eo
is given by expression (30a) or (30b), where is the sample size of the 

truncated test (44). Thus by this result and that of Section IV, if f 

satisfies assumptions Al through A3, we have

11*1 
e(k) •

(48)

Therefore the truncated sequential test (44) using quantized data has the 

same asymptotic efficiency relative to the truncated sequential test (10) 

using unquantized data, as does an FSS test based on the same quantized 

data compared to an FSS test based on unquantized data. In other words, 

the percentage of (asymptotic) savings in sample size of a truncated 

sequential test over an FSS test with both using quantized data is the same 

as the (asymptotic) saving of a truncated sequential test over an FSS test 

with both using unquantized data. As in Section IV, the asymptotic power 

functions of (32)-(34) also hold for tests with k-level quantized data 

as well. Therefore, the conclusions of Section III carry over for FSS, SPRT, 

and truncated sequential tests based on quantized data, as do results in 

earlier works which compare quantized FSS tests to unquantized FSS tests 

[ 11] .

To assess the accuracy of the approximate expressions for ASN and OC 

functions derived in Section II, it is interesting to consider the case in
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which k = 2 and = (9^ + 0q )/2. Assuming the density f(x) is symmetric 

about x - 0, we then have (from (43)) that P^(q ) = l-p^iG) and P2(0g) = 

^”P2 ^ P *  F°r t*lis case> exact values of E(N*|g ), Var^N*), and 0T (G) can 

be computed using results from [12,13]. Table III compares these exact 

values with the approximations based on Brownian motion for the case 

P2(01) = 0.7 and a* = -b* = 10 Jin ((l-p2(0^))/P2(0-̂ )) with truncation 

points M = 25 and M =41. Note that 9 appears here only through the 

value of p 2(9). It can be seen from this table that the approximations 

are all reasonably good in this case, especially that for the ASN.
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VI. CONCLUSIONS

In this paper we have considered truncated sequential location testing 

with constant boundaries and abrupt truncation. Design procedures for the 

two constant boundaries, the truncation point, and the threshold have been 

given for nominal error probabilities under Hq and H^. These procedures 

are based on treating a truncated sequential test as a mixture of a sequen­

tial probability ratio test and a fixed sample size test. Formulae for the 

operating-characteristic function and the average-sample-number function of 

the proposed tests have been given; and, although these results hold in an 

asymptotic sense, they may be used as approximations for the nonasymptotic 

case. An example comparing exact and approximate values was given in Sec­

tion V. In this example the approximations were good; however, the general 

accuracy of these approximations is a topic for further study. If the test 

statistic converges rapidly to a Brownian motion, then the approximations 

should be good for moderate parameter values. Note for example that, if in

the example of Section V f(x) is a Gaussian density with variance K?, then

2 2
f^C®^) =0.7 corresponds to a signal-to-noise ratio, (8^-0q ) 9

approximately 1.1, which is moderate.

The numerical results pf Section III demonstrate that a properly designed 

truncated sequential«test can retain the advantage of sample savings of the 

SPRT under the hypothesis and the alternative while it eliminates the dis­

advantages of the SPRT of possible large sample size when the true location 

parameter is different from those assumed for the hypothesis and the alterna­

tive. For given error probabilities, the truncated sequential test has a 

uniformly smaller ASN function than a corresponding FSS test while the ASN's 

under Hq and are close to those optimum values of the SPRT. Therefore, 

the truncated sequential test should be preferred to the SPRT if long runs
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cannot be tolerated and if parameter mismatching is possible, and it should 

be preferred to the FSS test if the small amount of additional complexity 

required for the truncated sequential test can be tolerated.

Before concluding, we remark that performance comparisons between 

SPRT's and FSS tests have been investigated in several studies including 

[3] and [14]-[16]. Also, the relative performance of two non-truncated 

sequential tests with the same constant boundaries has been investigated 

by Lai [17]. It was shown there that the relevant asymptotic relative 

efficiency is given by the ratio of the efficacies of the two test statis­

tics, as is the case when comparing two FSS tests [18]. Note that in [17] 

the tests under comparison have the same decision boundaries and only the 

test statistics are different. However, in our study, we have compared 

tests with the same test statistic, namely the probability ratio, but with 

different decision boundaries: an FSS test with a fixed number of samples,

an SPRT with two fixed boundaries, and a truncated sequential test with two 

fixed boundaries (different from those of the SPRT) and a truncated sample 

size. Asymptotic (in the sense that the alternative approaches the hypo­

thesis) comparison between a truncated sequential test and an FSS test or 

an SPRT has not been previously investigated. This work is, therefore, com­

plementary to the previous works mentioned above. Finally, we note that Berk 

[19] has studied asymptotic efficiencies of sequential tests in a different 

sense; in particular, the asymptotics in [19] are as the error probabilities 

approach zero.
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APPENDIX: DERIVATION OF EQ. (47)

To show (47a) we write

M.e - 2 ( P j ( V  + Aj9)to (1 + ¿j/Pj^o)) rA. l)

where Aj0 = (F(s . -  9 ) - F (s . - 9 Q)) - (F (Sj ̂  - 0 ) - F (s - 0 Q) ) and 

Aj = (F(Sj "9 p  - F(Sj-S q )) ' (F (sj-i *®i) " F (sj-l *0o>)* We expand

^(l + ij/p^Q)) = (Aj/Pj ÎBq))-0.5(Aj/pj (e0))2 + 0(ij), where 

2 2
lim o(Aj)/4̂  = 0 as Aj 0. Using this expansion, we can write

k A .0 A .

S A . +  S _ /p \  ”  ^  ^  n /n \  "  8 ^  o 2  0 ( A . ) »
j=i J j « i pj < v  j=i Pj<^0> j=! (p.(e 0))2 j=i J

JQ-.1. _ i
„ k A.A.q

i  Z — ^

Since S P ^ )  = Z P j O 0) - 1. 
J=1 J J=1

(A.  2)

we must have S A. = 0. Now, using a Taylor

j-1
Series expansion of F(x-9^), we have

A. = F(.j -01).F(.J - 0 o)-F(.J.1 . 0 1)+ï(.j.1 -io)

■ F <sj - V  - -9 *) -F(s. -e0) -F(sj_l -0o>+ <B x -9 0)f (sJ_1 -e**) +

(e 1 ■ 0 0> (f (s j -9 ) -iCSj.!'9""))

+ F (3j.1 -9 o)

(A. 3)

•k . kk
where 9 ,9 € (9^,9^), and, similarly.

Aj0 = -(9 -90)(f(Sj -9*) * £(sj_x '0 **)) • (A. 4)

where 9^, 9 AA € (9^,9). With these values we have
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p j < V

r(B 0 ,2 ^ y ^ ) - ^ H - e r t ) ) ( f ( s r e ) ~ f ( s 1- 1 ~9 »

0> »( . j - v - F C j ^ - V

(A. 5)

A2
J.

pj (80)

and

(f(s -9 )-f(s -0

= (?1 ‘9 0) F(sj '9 0) ‘ F (3j-1 ' 0O)

•k* ?
))

(A. 6)

A .,A?
_ A _ ± .

:k* 2

(Pj(90))'

r(9i-e0)

3 (f(s.-8A) - f(si-1-9^))(f(s.-8 ) - f ( s i.1 -9 »

(F(sj -80)-F(s..1 -80))'

= o O P ^ - S q ) ) (A. 7)

where r = (9 - 9 ̂ ) / (9  ̂- 0 q ) . In addition, we have o(A2) = o ( ( 9 ^ -9 q ) ) 2;

therefore

lim

9 r eo < v v 2 ( *. J-X F(sj “V  ' F(sj - l ' V
(A. 8)

since f(x) is continuous, and (47a) follows. 

For (47b), we write

n£ - E (p (80) + A  0 ) [An(l + A /p (8))]: 
j=l J J J J

( A .  9 )

With [4n(l + A (9 q ))]2 = (A^/p^(90))2 + o(A2), we have

. k A2 
k _L

“ 2 1' la s + 2
j - l ' j V  J-l

k a .a A . 9

J J 2 +  o ( A j ) .

<Pj<?0»'

With (A. 6) and (A* 7) for A?/p.(8.) and A .a At/(p. @ „))*■, (47b) follows.
J J  U Jo  J J U

(A.10)
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0 - 0 o 

r '  0r 0o

a = l- /3 = .0 1 a = l- /3 = .0 0 1 a =.0001 1-/3= .0005

/ifV a re(N)
;ifV a re (N *)

c i =c 2 =.9
/xfVai^flM)

/x|Vore (N *)
/¿*Varfl(N)

/xfVarfl(N*)

c 1=c 2=.9 - Cg “ .5 c i= c 2 =.9 Cj^.83, c2= .l

0.0 8.2 7.5 13.6 15.5 14.2 15.2 18.6 15.2

0.25 32.1 7.6 81.0 24.9 • 36.4 106.2 43 .4 61.6

0.45 71.3 4.9 345.5 14.7 34.6 717.0 25.8 70.9

0.55 71.3 4.9 345.5 14.7 34.6 733.7 20.9 57.4

0.75 32.1 7.6 81.0 24.9 36.4 121.1 37.0 57.8

1.0 8.2 7.5 13.6 15.5 14.2 18.3 20.9 21.2

F P - 7 3 7 0

Table I (Tantaratana and Poor)



Design Values
Cl c2

Error Probabilities Percentage of 
a and 1-/3a 1-/ 3 a* 1-/ 3*

0.01 0.01 0.9 0.9 0.0093 0.0093 93%

0.001 0.001 0.9 0.9 0.00095 0.00095 95%

0.001 0.001 0.5 0.5 0.00090 0.00090 90%

0.0001 0.0005 0.9 0.9 0.000096 0.00048 96%

0.0001 0.0005 0.83 0.1 0.000088 0.00048 88%, 96%

FP-7379

y

Table II (Tantaratana and Poor)



P2(0}
Exact Values Approximation by Brownian Motion

E(N* I0) Var^N* ) P r i e ) E(N* I0) VarfliN* ) (3t (B)

M*=25

0.3 20.7 22.5 0.0175 20.6 24.7 0.0145

0.4 23.6 10.2 0.1538 23.5 11.9 0.1537

05 24.5 4.0 0.5000 24.4 5.0 0.5000

0.6 23.6 10.2 0.8462 23.5 11.9 0.8463

07 20.7 22.5 0.9825 20.6 24.7 0.9855

M*=41

0.3 24.1 81.6 0.0036 24.1 85.1 0.0026

04 33.5 85.6 0.0968 33.5 89.7 0.0956

0.5 37.9 45.7 0.5000 37.8 49.2 0.5000

0.6 33.5 85.6 0.9032 33.5 89.7 0.9044

0.7 24.1 81.6 0.9964 24.1 85.1 0.9974

FP-7380

Table III (Tantaratana and Poor)
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a = 1-/3 = IO-3
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Ci= c2= 0.9
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SPRT
Bound for 
Truncated Test

--------------Approximate Value
for Truncated Test
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0 0.2 0.4 0.6 0.8 1.0
r

FP-7194

Figure 2 (Tantaratana and Poor)
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a  = I O - 4  

1-/3 = 5 x IO-4
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F FP - 7195

Figure 3 (Tantaratana and Poor)
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