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FOREWORD

This report is a preprint of a paper with the same title which is

scheduled to appear in the January 1983 issue of the IEEE Transactions

on Information Theory (vol. IT-29).




I.  INTRODUCTION

let X,,X,,... be observations o ndependent an entica stribute
1°% b b i f ind d d id ically di ib d

(i.i.d.) random variables xl’XZ”” + Consider testingan hypothesis H., under which

0!
Xi has a probability density function f(x-0 0), against a shifted alternative

Hl; that is, consider the hypothesis pair

Hy: X, ~ £(x-0),06 =0_,
versus 0 1 0 (1)

Hy: X~ £(x9),0 =0, >0,.

The Neyman-Pearson fixed sample size (FSS) test for (1) is obtained by

taking M samples and testing [1]

M =T =H

T z, (2)

i=1 <rt=H |
0 |

;

whére z; is the observed realization of the random variable Zi=.€.n (f(Xi-Gl)/f(xi-Go)) ,(

|
|
|

and the sample size M and the threshold r are pre-chosen so that the test has
error probabilities P(choosing Hll Ho true) and P(choosing HOI H1 true) of o and
1-8, respectively. (Since we are mainly interested in asymptotic properties here,
randomization of the test is not included in (2).) Alternate-
ly, Wald's [2] sequential probability ratio test (SPRT) is obtained by
testing, at the n-th sample,

= a= Hl

n 3)
z z, (= b= Ho
€ (b,a) = take another sample,
where the boundaries a and b are chosen so that the error probabilities
n

are @ and 1-B. The sample size N = min{n: % Zi ¢ (b,a)} is now a random

i=1
variable , and the average sample number (ASN) (i.e., the expected value of N)




depends on the actual distribution of Xi, i.e., on the actual value of ©.

It is well-known that the SPRT (3) has the smallest ASN under HO and
H1 among all tests with error probabilities no larger than o« and 1-8.
However, because the test is not truncated an occasional long test can
result, which is undesirable. Moreover, if the parameter © is not the
assumed value 90 or 91, the ASN of the SPRT can be very large. In parti-
cular, if the density f£(x) is symmetric and if o = 1-B, then max E(N|®)
occurs when 6 = (90 + elyz. where E(NIG) denotes the expected 3alue of N
given that each Xi has the density function £(x-0). This maximum value
becomes worse when @ and 1-B are smaller [3]. For example, if o = 1-B <
0.008, which is the case in many signal detection problems, then mgx E(N|9)
is larger than the sample size M of an FSS test with the same o and 1-B.
Truncation of the SPRT can be used to prevent this problem; however, one or
both of the error probabilities will be made larger as a result of such
truncation. Quantitative analysis is needed to study the effect of trunca-
tion on the error probabilities and to find a simple design scheme for a
truncated SPRT which gives error probabilities as required. A preliminary study

of such effects is given in [4] where a bound for the probability of terminat-

ing before the truncation point and a bound for the resulting ASN have been ob-

tained. Also, Anderson [5] has studied a truncated test with two converging boun-

daries so that the maximum ASN is reduced. However, the converging boundaries



are difficult to design and must be chosen from the results of simulation.
Read [6] has studied a related test in which a fixed number of samples is
taken first, and then, after this fixed number, one additional sample is
taken at a time and the test statistic is tested sequentially with two
constant boundaries. It is shown in [6] that the maximum (over 6€ [90,91])
ASN is reduced by this.technique. However, such a scheme still has occasional
undesirably large sample sizes since the test is not truncated. In [7], the
idea of converging boundaries has been applied to the test of [6]; namely, the
test has two converging boundaries from the start up to a fixed number and
then the boundaries become constant after this fixed number. Similar reduc-
tion in maximum ASN as in [6] is observed in [7], but the test still retains
the disadvantage of occasional long sample sizes.

In this paper, we study further the truncated SPRT by extending the
analysis given in [4]. .It is observed here that the fruncated test can be
viewed as a mixture of an SPRT and an FSS test. Depending on the chosen
degree of mixture, the truncation point and the constant boundaries can be
easily designed such that the resulting test has approximate error proba=-
bilities no larger than given nominal values o and 1-8. In Section II
we describe the procedure for choosing the boundaries and the truncation
point when the required error probabilities are @ and 1-8 and when Gaussian
statistics are assumed. Approximate expressions (which are asymptotically

correct as 81 approaches 80) for the ASN and operating characteristic (0C)



functions and for the sample-size variance of the truncated test are
given in the same section. These expressions are evaluated in Sec-
tion III, and the advantages of the truncated sequential test become
obvious. Regularity conditions under which the results of Sections II
and III hold for non-Gaussian data are given in Section IV. These
regularity conditions are fairly mild and are satisfied by a large class
of commonly used densities. 1In Section V, truncated sequential testing
with quantized data is considered, and similar results are found to hold
in this case as well. Further, exact results are computed for the
particular case of two-level quantization, and these are seen to agree
closely with results computed using the approximations of Section II.

Notation:

At this point, we define the following notation which will be used

throughout the paper:

A
Mg = E(24]8) = [4n[f(x-8)/E(x-0)]f (x-8)dx, (4a)
Aige o2 2
my = E@2;|8) = [{4nlfx-6 )/ x-0,)1} ¢ x-0)dx, (4b)
2 A 2
gy = oy = Mg : (4c)
and
A A 28 2 24 02
g Sy s By T, , 0q =0y , 07 =05 o (44d)
ol P S RIS R R
Thus, By and cg are the mean and variance of the random variable Zi

from (2) and (3) when the ¥ondc= variables Xi have density functien f£(x-6).



II. TRUNCATED SEQUENTIAL TESTING FOR THE GAUSSIAN CASE

In this section we assume that the density of the data is Gaussian,
namely £(x)=(1/ (Zn)%K) exp (-x2/2K2) where K is known, and we will describe
how to choose the boundaries and the truncation point of a truncated se-
quential test correspondingly. Then expressions for the resulting ASN
and OC functions and for the sample-size variance will be given.

For the Gaussian case, the log-likelihood ratio, its mean, second moment,

and variance as defined in (4) are given by

Z, = @8, - @, +00)/2)/K, (5a)

by = 0,806 - @, +8)/2)/K=6, -8 ) (-} /&, (5b)

wo = @, 8% /2= 4, (5¢)

m = €,-0)%/K + @, -0) -/, (5d)
and .

cg = (9]_-90)2/I<2 4 cz, 4 (5e)

where r = @ -60)/(61 -90) is the ratio of the difference between the actual

parameter 6 and ©_, and the difference between 91 and 6 .. In subsequent

0 0

analysis, we will often use this parameter r instead of 8 so that, when we

consider limitsas 6., approaches 6,6 we allow 6 to approach 90 in a way such

1 0’

that r is constant.
The FSS test (2) with error probabilities o and 1-B has a sample size

M and threshold T given by

=
I

(@ @ + @ )12 0 @y ) 62)
and

= Mé[ulfl(cx) + uoé.l(l-B)](c/G.Lo -81)) (6b)

I
[}



where ®(+) is the standard normal distribution function and Q-l(-) is its
inverse. The ASN function and the operating characteristic (0C) function,

L(S) P (choosing HO|9), of the SPRT (3) are given by [2]

(1-L@))a + LE)D

+ o(1l), l-l'e #0

Hg
E(N6) = )
-ab/cre2 + o(l) s My = 0
and
o2h @) _
IR bh(e) +0(1), h@) # 0
L@) = ¢ ®)
a
'aTb'+0(1) , h®) =0 »
where lim o(1) = 0, and h(®) satisfies
670
1:°0
[ [f(x-el)/f(x-eo)]h(e) £(x-0)dx = 1 , 9)

which gives h(@® 1 and h@® ) = -1, For the Gaussian case we have h(8) =

o)
1-2¢@ -90)/(91 -90). The o(l) terms in above expressions arise from the
excess over a boundary when the SPRT terminates. That this excess diminishes

as 61"90 follows from [2, Appendices A2 and A3].

We now describe a truncated sequential test with constant boundaries

% * *
a and b and truncation performed at n=M , as follows: At each observa-

%
tion n < M test



=2a =H

5 1
=

121 2, brileon (10a)
G(b*,a*) = take another sample,

%
and at n=M , test
% %*

M 2t = Hl

z z, = (10b)

i=1 <t = Ho

* *
where t* is a fixed threshold. Let o and 1-8 be the error probabilities

% *
under HO and Hl of the test (10). Although @ and 1-B can be approximated,

the expressions are complicated as we shall see later in this section.
* Kk _* * '
Therefore, designing.a , b , M, and t from these expressions is prohibitive.
* *
However, we can turn to simple bounds for ¢ and 1-8 and use them for design-

ing the truncated test (10). It was shown in [4] that

%
o = Yo pRT + Upsg (11la)
and
1-8¥ < 1 1
B (1-Bgppp? + (1-Bpgg)s (11b)
where ¢ and (1-8 ) are the error probabilities of an SPRT with thres-

SPRT SPRT

% %
holds a and b , namely

%
1-exp(b )
aSPRT ™ %* %* (12a)
exp(a ) -exp(b )
exp(-a’) - 1
p(-a ) -
1-Bgpp ® - =0 (12b)
exp(-a ) -~exp(-b )
and where Upgg and (l-BFSS) are the error probabilities of an FSS test with

% %
sample size M and threshold t , namely



/2

R
|

=1 - <I><(t* - qu*)/c(M*)l ) (13a)

FSS

1-Bpeg = ™ - ulM*)/c(M*)llz). (13b)

Again, the approximations in (12) arise from neglecting the excess over the
threshold boundary at termination of the test.

fhe bounds of (11) can be viewed as mixtures of the error probabilities
of an.SPRT and those ofan FSS test., In order to design a truncated test with
error probabilities less than o and 1-8, we then can set the bounds in (11)

to be o and 1-8, namely

¥sprr * ¥pgs < ¢ (14a)

(1-Bgppp) + (1-Bpgg) = 1-8 (14b)

Thus, we have freedom to choose the degree of mixture between the SPRT error
probabilities and the FSS error probabilities. The choice of the mixture
will determine the truncation point M*, the threshold t*, and the.constant
boundaries a* and b*. It will also reflect whether the performance (ASN and
ocC fuﬁctions) of the resulting test will be closer to that of an SPRT or
closer to that of an FSS test or intermediate to these two, as we shall see later.
Note that the values @ and 1-B are used as nominal values in designing a¥*,
b*, M*, and t* so that g* < ¢ and 1-B* = 1-B. It is very unlikely that either
equality, %% = & or 1-g% = 1-8, will result and no attempt is made in the
design to achieve the equalities. Therefore, as numerical results in Sec-
tion III will indicate, the resulting error probabilities “* and I-B* will
usually be smaller than the nominal values @ and 1-8 used in the design.

Now let ¢ and c, be two constants between 0 and 1 that determine the

mixture implied by (1l4); 1.e., let



o' = c.0 and « = (1-c1)a (15a)

FSs 1 SPRT s

and

(1-Bpgg) =€, (1-B) and (1-Bgpp) = (1-c,) (1-B), (15b)

Note that, if ¢y and c, are both zero, then the resulting test (10) is the
SPRT. This is equivalent to saying that the truncation is at M* =, On

the other hand if c1 - c, = 1, then the test (10) is reduced to the FSS test
or, equivalently, the boundaries a* and b* are ® and -®, respectively. If

1 and ¢, are both 0.5, then the test (10) can be thought of as being half

mixed between an SPRT and an FSS test. Using (12) and (15), we set

x|t @-epa-p) x| G-epa-p)
a = /n a -cl)a and b = /4n T -cl)a > (16)
and using (13) and (15), we set
M= 187 eqe) + @ (e, (1-80)17 0/ 1)) (172)
and
% * & -1 -1 \
£ = 1R, (@) + 1@ (e, (BN @/ (g -ky)) . (17b)

Since o, Ko and W, are known, once 1 and c2 are chosen the test (10) can

* % % %
be determined by calculating a , b , M, and t from (16) and (17). Good
choices for c1 and c2 will be discussed in Section III where numerical

results are presented.

%
Denote the ASN and OC functions of the truncated test (10) by E(N |9)

*
and L @), respectively. It ies then obvious from the design that



10
L6,) = 18" < 1-8, (18a)
* e
L@ =a za, (18b)
and
EQN'|8) = min{M",EN|0)], (19)

where E(Nle) is the ASN function of an SPRT with boundaries a* and b*, and
is given by (7)-(9) with a and b replaced by a* and b*, respectively.

In addition to the upper bounds of (18) and (19), approximate expres-
sions for t*@) and E(N*]e) can also be obtained by ;
using a Brownian motion approximation to the relevant test statistic.
In particular, the random process Be(t) = (Z1 SRR At o o e ue[M*t])/oe(Mf)l/Z’
0=t <T, converges weakly to a standard Brownian motgght]
as M* goes to infinity [8, p. 137] for each finite T > 0. (Here, [Mt] denotes
the largest integer less than or equal to Mt.) Therefore, for large M*,
approximations using Brownian motion results are justified.

%* *
From [9], the distribution of the first passage time T = inf{M t:

%
(ce(M*)sz(t) + ue[M*t]) ¢ (b*,a*)} is given by

F, () = B(I < ul9)

b * h.a * 2 2 ]
0 . /jma 0 /i uzf Mo g™
ex Sl -2 exp( ) * 8S1n ) * exp - —( ———— ) <
I( cg ) r(a*-b*> 2 a*-b* 2 g a*-b* ) » 0fu= 1,

(20)



Using this expression the ASN of the test (10), E(N*le), can be approxi-

mated by

EQ|8) ~ E(r7]e)

%
M

%* %
= udf, (u) + M (1 - Fg (1))
0

-2 = cGUN™? (L-exp(-NGN) @1)
ul(a*-b*) j=1
where
s
v({i) = (r-—?;)2 + (;;,]:T_T—b;) ’ (22a)
N P AL *
Q) = j(-l)j [e(r £)b sin(i—%)- e(r z)a Si"(&:—t:b—* ] : (22b)
r 2
NG = & [4>‘1<c1°f> +<I>’1<c2<1-s>>]2 |0+ ] i T@e)

and r=(9-60)/(91-90).

The ASN of (21) can also be evaluated using a result of Anderson's

[5, (5.7)], which yields

ea’le) m 2@ b+ (0% -a ] 438 @) + 8 (, 181
1

[1-G(a" b ,rd) - G(-b -2 »3-1)]) @)

%

where, with d = -Cb-l(clg)-kﬁrl (cz(l-ﬂ)), ox) = (1/(2m) )exp(-x2/2) (i.e.,

¢ is the unit normal density), € (.) is defined by




12

5 [ [8(-ca +2L=QitDlay 2c(jb- (S+1)al
§=0

- ®(cd +3-731-dQ-jf—93) e238@ D)y o 5h- 2441)a)

=
2c

o (Ot=bas -2 (3+1) (b-a)

2 (j+1)b- 2j+1)a
d /A

- Bleds y-e~2e13a= Gl 511yb- 2541y 3,

2 (j+1)b-(2§+1)a
d
€ (a,b,c) =¢ c #0 (24a)

-Zo{ [(2(+1)b-(25+1)a)®(
J=

2 (j+1)b-(2j+1)a
o )

+ dp AL 5 (541)b- 2941)a)

- [ (Zjb- (2j+1)a)q>(gib_'_(§j+_l)_a_) ST d(P (gjb_'%jllla_)]

«(2jb-(2j+l)a)} , ¢ =0-,

\

and G is defined by

G(ab,c) =®(cd -3y + g (pAIzbbo@izla_ g, 2¢ ((3-1)b-Ja)
j=1

= @(ZJP;%J"_IE = cd)-e-zcj (b-a)

+ @(3-1—";1?*’—123 % ed)sai2dctazbingd (24b)

Expressions (21) and (23) give the same result. However, (23) is preferable
for numerical evaluation since (21) normally converges much more slowly than does (23),
Usually, only the first few terms of €(*) and €(*) are needed for numerical

evaluations.

|
|
5 q)(zib-%j_lza + cd)-e-2¢((3-1)a-3b)



The second moment of N* can be approximated by calculating

E((T*)ZIG) using (20), and thereby we obtain
E(Q%)|8) ~ E((T%)7]0)
%
" 2 2
[ o arg + a0 a-F 00

& =417

w \ -3
2 (ambny 2 EC@QOOT a-nam) ex (1G)

where (. ¥, and T are as defined above. The variance of N* is given by

var, av) = E(0%)%[g) - EZ(¥|g)

and can be calculated using (21) or (23) and (25).

To find an approximate expression for the OC function L*(g) of the
truncated test, we again use Anderson's result [5, (4.68)] and obtain

* * %
L ) = B(a ,b ,r)

. (25)

(26)

(27a)

where, with r and d as previously defined and with A = -rd - irlazcl), the

function B(*) is given by

® - 9 : . <
B(a,b,r) = &(A) - .E {[Q(A.,_gﬂ.%a_);tll),eZb (xr-2) _@(A_'_.Z_.L(?)_)] ,e'zJ (b-a) (r'%;'/

j=1

+ (0382 ) _pdllloa)ta) 28 E) ) ~21@D) )y 27



we have o:* ~ 1-B (a*,b*,O) and l-B* ~ B(a*,b*,l), respectively.-

Under H. and H

0 1

If we consider limiting values of the ASN functions by lettingel approach
60, the ASN values approach infinity. However, if we consider ((81-90)2/2K2)
times the ASN (i.e., |.|.1°ASN) instead, we find that limiting values exist. Therefore,
we will subsequently evaluate and compare the limits of ((61-60)2/21(2) times the

ASN or sample size. With Bos Hqs and 092 given by (5¢) and (5e¢), we have,

from (62),
eiimec [(8,-8) " W/2K%] = 2187 @) + &7 (1) 1%, 28)

From (7) and (8), with h®) = 1-2@ -90)/(61-60) = 1-2r, it follows

that, for the SPRT,

1 ea(l-Zr) -1 %
7r-1 a(l-2r) b(l-2r)|*F7%

Un (e,-0)2Em|0)/2k%] = ; X '

8,48 " 1770 ; (29)

a+ (b-a)

-ab/2 , L=

wjH

3 s . 2 3 ] *
Since approximation by Brownian motion is asymptotically correct as M

approaches infinity (which is the case when 81 approaches 90),we can argue

that (21) and (23) lead to




T

1im 2095 2. o g i a2 ral :
[(®,=8 ) EM |8)/2k°]1 = ——5= T CQ)G) ~ [Ll-exp(-N(iN]
e \ Gruh? 4oy i s (30a)

or

1im [(el-eo)zg(u*le)/zxz] = e(a*,b*,x4) + E(-b ,-a s3-r)

%5

+ 318 ey ((1-B)e,) 1% 11 - 6(a” b " rB)

-6(-b",-a"3-1)] (30b)

where r = @ -eo)/(el-eo) as previously defined, and €(+) and G(+) are
given by (23) and (24). Similarly, from (25)we can write the asymptotic

second moment of N* as

Lin [ 0,8 E()70)/4K"1 = —— £ 0 () 7 A-1141 (D) lexp (N (1)) -
8,78, (a"-b")° §=1
31

The power function of the FSS test (2) is given by
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r) = 1-& -5 87 @0 1-))°
-1 @+ a8

where 7 = % 1@ 1@)? - @ 1-p))?1,which 1s obtained from (6b). The

SPRT has a limiting power function

1 - b (1-21)

La(l-2r) __b(l-2r) ° R T8
lim B (x) = 1lim [1-L@)] = (33)
L o i

a/ (a-b) , T =% .

We can also obtain a limiting power function for the truncated sequential

test as
*
lin B.(@) = lm [1-17@)] =1 - Ba,b",r) (34)
8,79, 9,79,

where B(+) is given by (27b).
In the next section we will evaluate numerically the expressions given

by (28) through (34) in order to compare the three tests, the FSS, the SPRT,

and the truncated sequential test.



III. NUMERICAL RESULTS

In this section we evaluate the performance of the truncated test in order
to compare it with the SPRT and the FSS test. We wish to compare average sample
sizes when each test is designed to have given o and 1-B. As noted in the pre-
vious section, the ASN is a function of 91-90 and it goes to infinity as
91 approaches 60. In order to avoid the parameter (81-90), we defined
r = (8 -60)/(61'-90) and obtained asymptotic expressions for (61 -60)2/21(2
times the ASN (i.e., ul'ASN), namely expressions (28), (29) and (30). Since
each ASN is multiplied by the same factor,(el-eo)z/ZKZ, ratios of twe quantities
among (28), (29), and (30) are the limiting ratios of ASN functions as

91-*60. For example, the quantity

2.k 2
(@, -8.,)E |8)/2K"] o™ [o)
lim 1 2 5 3 = 1lim E NM :
6,8y [(8) =85)"M/2K"] 8,8,
is a measure of the asymptotic efficiency of the FSS test relative to the

truncated sequential test.

*
Instead of plotting asymptotic relative efficiencies 1lim [E(N \e)/M]
6,86
1% 0

and 1lim [E(N*le)/E(Nle)], we will plot expressions (28), (29), and (30) on

el~eo

the same graph. In Fig. 1, (28), (29) and (30) are plotted for o = 1-8 =

0.01 with the mixture constants ¢y and <, for the truncated sequential test

both equal to 0.9. It can be seen that the SPRT has uniformly smalier ASN

than the FSS test and that the truncated test has larger ASN than the SPRT ex-
cept when r is near 0.5. As one would expect, the truncated test has performance
between that of the SPRT and the FSS test. Under HO where r = 0 and H1 where

r = 1, the truncated test exhibits significant savings over the FSS test

(about 40%). The upper bound for the truncated test given by (19) is also

plotted in Fig. 1. It should be noted that the absolute maximum sample size for




18

the truncated test is only about 3% more than the sample size of the FSS test,
while the average sample size is uniformly smaller than the sample size of the
FSS test. Figure 2 shows the same quantities for the alternate case

o = 1-B = 0.001. For these smaller values of error probabilities, the nice
features of the truncated test become more apparent. Now a disadvantage of the
SPRT shows, namely the ASN becomes larger than the FSS sample size for r
between 0.4 and 0.6. However, the truncated test retains uniformly smaller
ASN than the FSS test while significant savings (close to that of the SPRT) near
r=0 and r=1are still observed and while the truncation point can be kept at
a sample size only a few percent larger than the FSS sample size. Two trun-
cated sequential tests' results are shown in Fig. 2, namely tests with ¢, =

1

c, = 0.5 and ¢, = = 0.9. Note that the ASN for ¢ = ¢, = 0.5 is smaller

2 g e
than that for c1 = c2

there is a trade-off between the truncation point and the ASN. Choices of

= 0.9 but the truncation point is larger. Therefore,

¢y and <, which result in larger truncation points seem to result in (not

necessarily uniformly over 8) smaller ASN'S. Figure 3 shows similar behavior
for the case o = 0.0001 and 1-B = 0.0005. 1In this case, we note that

max E(Nle) of the SPRT becomes worse. Further, two truncated tests, with
¢y = 0.83, c, = 0.1 and ¢, =c

than the FSS sample size. However, more savings in ASN than in previous cases

= 0.9, still show ASN's uniformly smaller

are observed under HO and Hl. Note that the graphs are skewed in this case

because @ # 1-8. Note also that the truncated test with ¢, = 0.83 and

e 0.1 has a larger truncation point than the truncated test with £

= 0.9. However, its ASN is not uniformly smaller than that of the other

c
c
2
case. From these numerical results, we conclude that a truncated test can

be designed (with error probabilities less than o and 1-8) by suitable

choices of 1 and ¢, s that it retains the advantage of savings in sample
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sizes near r=0 and r=1 while the ASN is uniformly smaller than the sample
size of a corresponding FSS test and while the truncation point is only
slightly larger than the sample size of the FSS test.

In order to see how the choices of ¢y and c, affect the truncation point

2

and the ASN function, we now evaluate ul-ASN under H +ASN under H

0’ p‘l 1’
%
mgx[ulE(N IG)], and the truncation point of a truncated test, and plot their

values versus €y = Cye The values My

plE(Nlel) of the SPRT are also plotted in Fig. 4(b) for @ = 0.05, 1-B = 0.01,

M of the FSS test and ulE(Nleo) and

in Fig. 5(b) for @ = 1-f = 0,001, and in Fig. 6(b) for o =1-B =0.0001. Ratios

of (average) sample sizes are plotted in Figs. 4(a), 5(a) and 6(a). These re-
sults indicate that as ¢y and <, approach zero, E(N*Ieo) and E(N*Iel) approach
E(N|90) and E(Nlel) of the SPRT, respectively, as expected. On the other hand,

as ¢, and <, approach unity, E(N*|B) approaches M of the FSS test for each value
of 8. From these graphs, we can choose ¢, =¢, between 0 and 1 so that M*/M is

not too large, {mgx E(N*le)}/M is near its minimum value, and E(N*IGO) and E(N*|91)
are as close to E(N|90) and E(N|91) as needed. Of course, the actual choices of
¢y and <, depend on the designer's judgment as to what is more important to
minimize, M /M, {mgx EQV'|)}/M, or E('|0)/E|8,) and EQ|0 ) /EqN 6 ,).

*
Since mgx E(N IG) seems to be less sensitive to 2 and <, for <y and <, between

0.3 and 0.7, the primary tradeoff is between M* and E(N*IGO) or E(N*|Sl).

Figures 5 and 6 indicate that good ¢y and c, choices seem to be between 0.3 and

0.6 for these two cases.
%
Further numerical investigation shows that the boundary a is more sensi-

*
tive than the boundary b to changes in Cqe A result is that changing ¢, will

1

* %
cause more change in E(N |9) for € near 6. than change in E(N Ie) for

1

ey
® near .. With ¢, fixed, increasing c, will also increase E(N |91). On

0 2 1

%
the other hand, b 1is more sensitive to change in cz, and increasing c2
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%
with ¢, fixed results in an increase in E(N ‘60)' Both q and c, have

1
%
the same effect on max E(N le). Of course, ¢y and c, can be chosen to have

different values. Optimum choices of 1 and c, depend on a given criterion.

2

For example, M? can be set to a maximum allowable value and then q and <,
% *

can be chosen to minimize E(N |eo), E(N Ie), or a weighted average of these

three. Since there are many possible criteria, we will not pursue the

search for optimum choices of 1 and <, here.

The behavior of the variance of N* is also informative.Thus, we now compare
lim (ui Var, (¥)) of the truncated test with lim (ui Var, (N)) of the SPRT, where
the limits are taken as el approaches eo. The first limit can be calculated
from (30) and (31) since Vare(N*) = E((N*)zle) -EZ(N*|e). The second limit,
that for the SPRT, can be evaluated using Wald's results [2, Appendix A.5]
which give approximate formulas for moments of N (the sample size). As with
the ;pproximate formulas in Section II, these values are asymptotically
correct as ei-oeo. with these formulas, we obtain Table I, correspond-
ing to those cases of Figures 1, 2, and 3, namely @ = 1-8 = 0.1, @ = 1-§ =
0.001, and @ = 0.0001 and 1-g = 0.0005, respectively. Results show that
the untruncated SPRT has large sample size variance when r = (9-90)/(91-90)
is near 0.5. This is due to the fact that the test terminates with very
large sample size most of the time under this condition. In contrast, the
truncated test has very small sample size variance when r is near 0.5.
This is so because the truncated test terminates most of the time near or

at the truncation point M* for r near 0.5. Note further that, under H, and

0
Hl’ ui Vare(N*) of the truncated test and u% Vare(N) of the SPRT are only
slightly different from one another. These phenomena indicate an additional

favorable property of the truncated test as compared to the SPRT.
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It is also of interest to investigate numerical results for the power
functions of (32)-(34)A typical comparison is shown in Fig. 7, where
@ = 1-8 = 0.1. The SPRT and FSS power functions coincide at r = 0, 0.5,
and 1.0. Between r = 0 and 0.5, the power function of the SPRT is smaller
than that of the FSS while it is larger between r = 0.5 and 1.0. How-
ever, the difference between these two power functions is not significant.
The power function for a truncated sequential test with ¢ = 0.4 and
c, = 0.6 (from (34)) is plotted in the same figure. We see that this
function is smaller than the other two for r-< 0.5 and lérger for r > 0.5.

%* %
At r = O we have @ = 1-p =~ 0.067, which is smaller than 0.1; this is due

to the fact that = 1-8 = 0.1 are nominal values used for the design and

* %*
they serve only as upper bounds for the actual error probabilities o and 1-§ .

*
To see how close @ and 1-B* are to @ and (1-8), we evaluate these using
(27) for various values of o, 1-8, 1 and.cz. These values are

* *
tabulated in Table II, from which it can be seen that @ and 1-§ are

between 887 to 967 of @ and 1-g for the cases considered.
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IV. THE CASE OF NON-GAUSSIAN DATA

Although we have concentrated thus far on the case where f(x) is a
Gaussian density, the asymptotic results of Sections II and III hold for
non-Gaussian densities as well. In this section, we define a class of
non-Gaussian density functions and show that the previous results apply
when the observation statistics are described by a member of this class.

We use the same notation as in Section II.

Assume the following conditions on £(x):

Al: f£(x) is continuous with finite Fisher's information number I(f) =
I(f'/f)zf , and f'(x) exists and is continuous with a possible
exception at x = 0, where f'(x) denotes the derivative of f(x).

A2: The mean and second moment of the log-likelihood ratio, Ko and My s
exist.

A3: There exists a A > 0 such that, for t € [-A,A],

1 ' ' 2 t 2
ff—(g-:i)lf(xn), ff—(g?f'(x+t), f?(%l £(x+t), and %}:‘)l ' (x+t)

are uniformly integrable. (A function f(x,t) is uniformly integrable
for t € [-A,A] if there exists an integrable function g(x) such that
| £(x,t)| = g(x) for all t € [-A,A].)

Within these assumptions, it can be shown that

by = @1 -80)2(@=0.5)1(E) + 0(6,-8)") (35)
and
F = @,-0)°1(E) + (@, 97> 36)

where lim 0((91-90)2)/(91-90)2 =0 as 81-' 8 To prove (35) and (36),

0-
arguments »arallel to those of the Appendix in [3] can be used. From

(35) and (36), it follows that
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lim (“'e/"e) -5 _ (37a)
8,78,

lim @5/ @ 4) = lim @ /@) =1. (37b)
17 % 9%

To maintain constant error probabilities under HO and H1 as 61-'60, the sample
size M and the truncation point M* must  approach infinity. Since Hg and
cez are finite by Assumpt:lon A2, we have, by the Central Limit Theorem [10],
that (151 VA -M (A (M ) @y and (1512 'M}*g)/“&"e converge in distribution

to standard normal random variables as M and M go to infinity. Therefore,

(6) and (17) hold asymptotically; i.e.,

lim (MG, ~up)/op) = @ @ +37 (1-p)12 (38a)
B~ =8
10
11 & S el s |
im  (t/M og) =~ % [® "@) -® "(1-8)] , (38b)
0,8
£90
o 0@y -ug)?/oh) = B e + 8, a1, @80
and 0 * 3 -1 %
lim (&7 00 P0p)=- £ 18 () - &1, -] . (384)
b
390
['e]

As in Section II we let Be ()= % 7 '“‘e[M t])/ (M )* ce,O‘t‘T for finite
i=1

T > 0. Since Hg and crez are finite, the random process Be (t) converges weakly to

a standard Brownian motion. As noted above, the operating characteristic

function and the expected stopping time for this random process were found
% * % & %

in [9]. In particular, with T = inf {M t:(M )"’aeBe (t) +uolMt] € (b,a)},

we have

[a(l-L@)) + bL(B)]/p'e) H‘e # 0
E(T]8) = (39)

- =
'ab/ce ’ p'e =0
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and the corresponding operating characteristic is

[ 2
e"2 (ag /0'9) -1

> by #0
2(aug/0d) _ 2®uglad)  °

LE) = ﬁ (40)

ab s g

Now with (37), (39), (40) and the fact that Be (t) converges weakly to a Brownian

motion, we have for the SPRT (3),

1l A e-a(Zr-l) 2 ] £
a+ (b-a T
lim [(91'90)21(f)E(N|e)/2] a b2y o-a(2r-1) _ -bQr-1)
8,78, -ab/2 xR,

which is the same as (29). By similar arguments for the test (10),

%
lim [(el-eo)zl(f)E(N |6)/2] is given by the right-hand side of (30a) or

91-'60

(30b). We note that I(f) = l/K2 for the normal density with zero mean and

variance Ig Similarly, the asymptotic power functions (32)-(34) carry

over to non-Gaussian densities satisfying assumptions Al through A3.
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V. THE EFFECTS OF DATA QUANTIZATION

In this section we will show that the ASN functions of truncated sequential

tests based on k-level quantized data have the same asymptotic behavior as

those just studied provided that the pre-quantized data demnsity f(x) satisfies mild
regularity conditions. Consider a k-level quantizer with finite output levels

21,22,...,2k and with quantization points - < s, < s, < ,,, < S1-1 < ® as

1 2
shown in Fig. 8. For convenience let 8y & &% and 8. = », and denote i.i.d.
random variables Q(xl),Q(Xz),... by Yl’YZ"°' where
Q(x) = zj if s5-1 <xs 555 L e T S 42)

The probability that Yi takes the value zj when Xi has a density £(x-0) is
Py®) = B(Y; = 4,]8) = F(s,90) ~F(s,_10), § = L,2,000 ke (43)

where F(x) is the distribution function corresponding to £ (x)
We now consider truncation of a sequential test for (1) based on the
* *
quantized data Vs¥gsees with boundaries a and b and truncation point at

* *
M , namely, for n < M , We test

2 a = Hl
k n . |
2 m(n)g, =T y,(sb =H (4ba) |
j=1 J J {=1 i 0 |

* %
€( ,a ) = take another sample,

%
and, for n = M , we test
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i %
k M 2t =H
z mj(n)Zj = § Yy = (44b)
j=1 , i=1 < L Ho
k
where m, (n) is the number of yi's taking the value I.j, with Z mj (n) = n at
b fo

each stage. To obtain a truncated sequential probability ratio test on

ylsyzaﬂ"s we set ﬂj = zn(pj(el)/p_](eo))’ for =1, i.as ke

Define
k k
5 B = T @ 5)
and
m = E(¥]8) = . o p.@) . 46)
* j=1 3 |

It is shown in the Appendix that, if £(x) is continuous for all x, then

by = @107 (- 0.5)e0) + 0(@, -8 (47a)
and
m o= 6,87 2@ + 06, 0% , @7b)
where
2
(E(s,-0,) -£(s -8.))
ek) = T i 0 -1 0 48)

j=1 F(sj -60) -F(sj_l-eo)

We note that e(k) given by (48) is the detection efficacy of a k-level quan-
tizer-detector [ll] and can be thought of as a discrete equivalent to the

Fischer infornation number I(f).
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2 %
Once we have established (47), we can argue that lim [(91-60) e(k)E(Nk|6)/2]

ei*eo
* .
is given by expression (30a) or (30b), where Nk is the sample size of the
truncated test (44). Thus by this result and that of Section 1V, if f

satisfies assumptions Al through A3, we have

*
9.~8 | EQN]9) & (k)

i+0

fherefore the truncated sequential test (44) using quantized data has the
same asymptotic efficiency relative to the truncated sequential test (10)
using unquantized data, as does an FSS test based on the same quantized
data compared to an FSS test based on unquantized daté. In other words,
the percentage of (asymptotic) savings in sample size of a truncated
sequential test over an FSS test with both using quantized data is the same
as the (asymptotic) saving of a truncated sequential test over an FSS test
with both using unquantized data. As in Section IV, the asymptotic power

functions of (32)-(34) also hold for tests with k-level quantized data

as well. Therefore, the conclusions of Section III carry over for FSS, SPRT,

and truncated sequential tests based on quantized data, as do results in
earlier works which compare quantized FSS tests to unquantized FSS tests
1311

To assess the accuracy of the approximate expressions for ASN and OC

functions derived in Section 1II, it is interesting to consider the case in



which k = 2 and s, = (8, + eo)/z. Assuming the density f(x) is symmetric
about x = 0, we then have (fron} (43)) that pl(e) = l-p2 (6) and p2 (90) =
l-pz(el). For this case, exacé values of E(N*le), Vare(N*), and BT(G) can
be computed using results from [12,13]. Table III compares these exact
values with the approximations based on Brownian motion for the case
P,(®;) = 0.7 and a =-b" =10 4n ((1-p2(91))/P2(91)) with truncation
points M% = 25 and M% = 41. Note that § appears here only through the
value of pz(e). It can be seen from this table that the approximations

are all reasonably good in this case, especially that for the ASN.
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VI. CONCLUSIONS

In this paper we have considered truncated sequential location testing
with constant boundaries and abrupt truncation. Design procedures for the
two constant boundaries, the truncation point, and the threshold have been
given for nominal error probabilities under HO and Hl' These procedures
are based on treating a truncated sequential test as a mixture of a sequen-
tial probability ratio test and a fixed sample size test. Formulae for the
operating-characteristic function and the average-sample-number function of
the proposed tests have been given; and, although these results hold in an
asymptotic sense, they may be used as approximations for the nonasymptotic
case. An example comparing exact and approximate values was given in Sec-
tion V. In this example the approximations were good; however, the general
accuracy of these approximations is a topic for fdrther study. If the test
statistic converges rapidly to a Brownian motion, then the approximations
should be good for moderate parameter values. Note for example that, if in
the example of Section V f(x) is a Gaussian density with variance K?, then
f2(91) = 0.7 corresponds to a signal-to-noise ratio, (GI-GO)Z/KZ, of
approximately 1.1, which is moderate.

The numerical results of Section III demonstrate that a properly designed
truncated sequential £est can retain the advantage of sample savings of the
SPRT under the hypothesis and the alternative while it eliminates the dis-
advantages of the SPRT of possible large sample size when the true location
parameter is different from those assumed for the hypothesis and the alterna-
tive. For given error probabilities, the truncated sequential test has a
uniformly smaller ASN function than a corresponding FSS test while the ASN's
under H0 and H1 are close to those optimum values of the SPRT. Therefore,

the truncated sequential test should be preferred to the SPRT if long runs
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cannot be tolerated and if parameter mismatching is possible, and it should
be preferred to the FSS test if the small amount of additional complexity
required for the truncated sequential test can be tolerated.

Before concluding, we remark that performahce comparisons between
SPRT's and FSS tests have been investigated in several studies including
[3] and [14]-[16]. Also, the relative performance of gwo non-truncated
sequential tests with ghe same constant boundaries has been investigated
by Lai [17]. It was shown there that the relevapt asymptotic relative
efficiency is given by the ratio of the efficacies of the two test statis-
tics, as is the case when comparing two FSS tests [18]. Note that in [17]
the tests under comparison have the same decision boundaries and only the
test statistics are different. However, in our study, we have compared
tests with the same test statistic, namely the probabiiity ratio, but with
different decision boundaries: an FSS test with a fixed number of samples,
an SPRT with two fixed boundaries, and a truncated sequential test with two
fixed boundaries (different from those of the SPRT) and a truncated sample
size. Asymptotic (in the sense that the alternmative approaches the hypo-

thesis) comparison between a truncated sequential test and an FSS test or

an SPRT has not been previously investigated. This work is, therefore, com-
plementary to the previous works mentioned above. Finally, we note that Berk
[19] has studied asymptotic efficiencies of sequential tests in a different

sense; in particular, the asymptotics in [19] are as the error probabilities

approach zero.



31
APPENDIX: DERIVATION OF EQ. (47)
To show (47a) we write
Kk k
My = J_El (Py@p) + 84)4m (1 +8,/p,®)) (A. 1)

Niexe g = (g =0)RT 8, =) ) P (8, 1y ~O Y r WLE, 4 ~00)) and

j-1
Aj = (F(sj -91) -F(sJ -60)) - (F(sj-l -81) -F(sj_l -90)). We expand

2 2
Ln(1+Aj/Pj(90)) - (Aj/PJ-(GO)) -0-5(Aj/Pj(90)) i o(Aj
lim o(A?)/A? = 0 as Aj - 0. Using this expansion, we can write

), where

2

Ay k A A, ke AP AZ.A.G k "
Bgne BUAL N mees B Dibmdbe dLa stk el o)),

j=1 %1 =4 50 J=1l &350 J=1 (Pj(eo)) J=1

(A.2)

k k k
Since ¥ p,@,) = £ p.@,) =1, we must have & A, = 0. Now, using a Taylor

j=1 1 j=1 0 j=1 3

Series expansion of F(x -61), we have

>
[

5 F(sj -91) -F(sj -30) -F(Sj_l -8 1) +F(sj-l -90)

F(s;~84) - 61 -0 )% (s, -0 -F(s;=0) ~Fla,_; -0) + O, -eo)f(sj_l-e**)+

+ F(sj_l-eo)
* *%
= -(91-60)(f(sj-9 )-f(sj_1-9 )) (A, 3)
% k%
where 6 , 8 € (90,6 1), and, similarly,
Big = =B -0 (£(s;-8) - £(s;_; -8,)) » (A. 4)

where 8, 9** € (80,9 ). With these values we have




32
* sk
A.QA. B )2 (f(sj -9*)-f(sj_l-6**))(f(sj-e )-f(sj_l-e )) ’
pj(eo) 1. 0 F(sj-eo)-F(sj_l-eo)
4, 3
2 %* %% 2
__Ai_= @1_90)2 (;(SJ. :: ):;(Sj-l:: )) : T
P, 6 (5, 0g) ~F(&;_; -8
and
2 * %% 2
A}BA' o r(el-e )3 (f(sj-6*)-f(sj_1-6**))(f(sj-6 )-f(sj_l-e ))
(pj(eo)) Rl (F(sj-eo)-F(sj_l-eo))Z
2
= 0(6,-99)7), (6. 140
where r = (8 -80)/(91-90). In addition, we have o(A?) = o((al-eo))z;
therefore
k 2
" k (£(8,-0,)-£f(s, .~98.))
A : 7= @-& = F(sJ.-eo)-F(sj.-l-eo) (a. 8)
61*90 (81-60) ] j=1 .50 j=1 70
since f(x) is continuous, and (47a) follows.
For (47b), we write
¥ 2
= 1+A . (®
Ty j§1 (Py®p) +849) [4n(l + A,/p,®))] 4. 9)
2 2 2
with [zn(1+Aj/pJ.(eo))] = (Aj/pj(eo)) + 0 (83), we have
2 2
kAL )
mé‘=gp(e)+z—-1—1——e 5+ 0(0Y) (A. 10)
=1 %3%0  g=1 @000
With (A. 6) and (A. 7) for A?/pj(eo) and AjeAg/(Pj(eo))Z’ (47b) follows.
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