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Asymptotic Entropy-Constrained 
Performance of Tessellating and Universal 

Randomized Lattice Quantization 

Tamas Linder and Kenneth Zeger 

Abstract-TWO resuhs are given. First, using a result of Csiszlr, the 
asymptotic (i.e., high-resolution/Iow distortion) performance for entropy- 
constrained tessellating vector quantization, heuristically derived by Ger- 
sho, is proven for all sources with finite differential entropy. This implies, 
using Gersho’s conjecture and Zador’s formula, that tessellating vector 
quantizers are asymptotically optimal for this broad class of sources, and 
generalizes a rigorous result of Gish and Pierce from the scalar to the 
vector case. Second, the asymptotic performance is established for Zamir 
and Feder’s randomized lattice quantization. With the only assumption 
that the source has finite differential entropy, it is proven that the low- 
distortion performance of the Zamir-Feder universal vector quantizer is 
asympotically the same as that of the deterministic lattice quantizer. 

I. INTRODUCTION 

Let Qk denote an N-level &dimensional vector quantizer, and let 
Xk be the L-dimensional random vector to be quantized. Let the rth 
power quantization distortion be defined in the usual way, 

where ]I . I] denotes the Euclidean norm, and r > 0. Denote the 
Shannon entropy of Qh by H( Qk), and for H > 0 let 

the distortion of an optimal &dimensional vector quantizer with 
entropy H. More precisely, D,(H, K, r) is the smallest distortion 
approachable arbitrarily by quantizers with finitely many levels with 
entropy-constraint H. It is not hard to see that we can allow quantizers 
with infinitely many levels if E I( X I]?< co, in which case the value 
of De( H, k, r) remains the same. 

The quantity D,(H, k, r) was first investigated by Zador in two 
unpublished works [l l] and [ 121. His results later appeared in [13]. 
Zador found that for an Xk with a density f, 

l im D,(H, k, r)2(““jH = ck, T2(“k)h(f) 
H-CC 

where h(f) = - j” f log f is the differential entropy of f, and ck, ,. is 
a constant that depends only on k and r . Unfortunately, the conditions 
needed for the validity of (2) are not precisely given in [ 131. For this 
reason let us denote by C the class of densities for which (2) holds. 
A fundamental property of Zador’s result is that once the precise 
asymptotic behavior of D,(H, k, r) is determined for any density 
in C, (e.g., constant density over a convex bounded set) the constant 
ck, T is determined. 

Gish and Pierce [5] investigated the low distortion behavior of 
entropy and resolution constrained quantizers for a certain class of 
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difference distortion measures. They outlined a rigorous proof of the 
claim that if the quantized random variable has a uniformly contin- 
uous density and finite differential entropy, then the infinite-level 
uniform step size entropy-constrained quantizer is asymptotically 
optimal for mean squared distortion. Let us denote the A step size 
infinite level uniform scalar quantizer by &a. Gish and Pierce also 
proved that if the density f of X is continuous except at finitely many 
points, and in the neighborhood of a discontinuity point the density 
behaves regularly enough, and its tail decreases fast enough, then 

izo H(QA) + f log IzD,(QA)] = h(f). (3) 

These two results immediately give cl, 2 = & in Zador’s formula 
(2). A straightforward extension of this argument gives cl, ,. = 
l/(r + 1)2’. 

For k 2 2 the value of ch, p is unknown. Gersho [4] conjectured 
that for a uniform distribution over a convex bounded set in I?” 
the optimal entropy constrained vector quantizer will asymptotically 
have a partition whose regions are congruent with some tessellating 
convex polytope P. (Recall that a polytope P is tessellating if there 
exists a partition of R” consisting of translated and/or rotated copies 
of P.) A quantizer of this type is called a tessellating quantizer. To 
present Gersho’s conjecture more precisely let P be a k-dimensional 
convex polytope (a closed and bounded convex set in R”, which is 
the finite intersection of k-dimensional half-spaces) and let 6 be its 
centroid, i.e., 

J P 
11 x - D 11’ dx = ;gx$ p II x - y IJT dx. J 

The normalized rth moment of P is defined by 

I Jp II z -D llr dx 
‘(‘) = x [A(p)]@+‘)/‘” (4) 

where X(.) denotes the k-dimensional volume (Lebesgue measure). 
The polytope P is admissible if: a) P is tessellating, and b) The 
Voronoi partition induced by the centroids of the copies coincides 
with the above partition. Gersho’s conjecture (on entropy constrained 
asymptotic quantization) is, that in Zador’s formula (2), 

ck,r = infZ(P)dgfC(k, r) (-9 

where the infimum is taken over all k-dimensional admissible poly- 
topes. A polytope for which the infimum is achieved is called optimu2. 
The optimal polytope for k = 1 is the interval, this being the only 
convex polytope in one-dimension, giving C(l, T) = l/(r $ 1)2’. 
Thus Gersho’s conjecture is in fact true in one dimension by the 
Gish-Pierce result. 

A special case is when the admissible polytope is the basic 
Voronoi cell of a k-dimensional lattice. Thus, every lattice quantizer 
is a tessellating quantizer. On the other hand (as one can see by 
considering regular triangles) not all tessellating quantizers are lattice 
quantizers, so the validity of Gersho’s conjecture would not imply that 
lattice quantizers are asymptotically optimal. 

Since a resealed admissible polytope is also admissible, the quan- 
tizer with quantization regions P, = {CEZ: x E P}. o > 0, is a 
tessellating quantizer if P is admissible. Denote this quantizer by 
Q&P. In [4] Gersho gave a heuristic derivation of the asymptotic 
performance of these quantizers. He found that if Q;, p denotes the 
tessellating quantizer with rth power distortion d, then 

lim d2(‘Ik)H(Q~, P) = z(p)2(‘l”)‘(f). 
d-0 (6) 

Yamada et al. in [lo] took the same heuristic approach to extend 
Gersho’s results to seminorm based distortion measures, i.e., distor- 
tion measures of the form d(z, y) = L(ll x - y 11) where 1) . 1) is 

a seminorm and L is a “nice” function. To date however, no precise 
conditions for the validity of (6) have been determined. 

In Section II, using a result of Csiszar, we prove (6) in great 
generality. Our Theorem 1 says that (6) holds whenever the quantized 
random vector has a density with finite differential entropy, and there 
exists at least one partition of Rk into regions of finite volume 
such that its entropy is finite. In particular, this theorem establishes 
the asymptotic entropy constrained performance of lattice quantizers 
without any smoothness or compact support condition on the density. 
Thus the often quoted formula (3) on the asymptotics of uniform 
quantizers is proved for all densities such that &A has finite Shannon 
entropy for some step size A and h(f) < co, strengthening Gish and 
Pierce’s result. Assume now that Gersho’s conjecture is true. Then 
the tessellating quantizer with the optimal polytope is asymptotically 
optimal for all source densities for which Zador’s formula (2) holds 
and which satisfy the conditions of Theorem 1. Since our conditions 
are extremely general, this asymptotic optimality mostly depends on 
the validity of Zador’s formula. In a similar vein, Na and Neuhoff 
[7] have recently strengthened Gersho’s heuristic development of 
resolution constrained asymptotic vector quantization. 

Section III deals with randomized lattice quantization. This quanti- 
zation scheme was introduced by Ziv [15], who gave an upper bound 
on the difference between the rate of such a quantizer of dimension 
k and the rate of the optimal k-dimensional entropy constrained 
quantizer of the same mean squared distortion. This bound is valid 
for all source statistics and distortion levels, and gives 0.754 bits 
for cubic lattices. Zamir and Feder in [14] strengthened this result 
by showing the validity of the same upper bound on the difference 
between the rate of the randomized lattice quantizer and the kth order 
rate distortion function for any source having a density. Zamir and 
Feder considered the lattice quantizer Qk, v. This is a tessellating 
quantizer based on the admissible polytope V, the basic Voronoi 
cell of a lattice A. Their dithered lattice quantizer estimates the 
k-dimensional random vector Xk as 

2” = Q;, “(Xk + 2:) - 2: (7) 

where the dither signal 2: is uniformly distributed over the resealed 
basic lattice cell aV, and is independent of Xk. The per.sample 
rth power distortion of this quantizer is independent of the source 
statistics [14] and is seen to be 

fE\IQk, v(Xk + 2:) - 2: - X”(I’ 

= cyp &J, II t llr dtgfddor. (8) 

In fact, in [14] more general distortion measures are considered, 
but the developed bounds are explicitly evaluated for rth power 
distortions. The scheme assumes that the decoder knows the values 
of the dither signal. Accordingly, the per sample average rate of the 
quantizer is given by the conditional entropy 

+(Q:; VW’” + 2:) I 22,. (9) 
Zamir and Feder defined the redundancy of this randomized quantizer 
by 

fk(dm) = $f(Q;, v I 2:) - Rk(d,) (10) 

where & (d) is the rate-distortion function of X”. They showed in 
[14] that if Xk has a density, then for mean squared error 

pk(d,) 1. i lOg4TeGk (11) 

where Gk is the usual notation for the normalized second moment of 
the lattice. They also observed that for high rates this bound can be 
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improved. A derivation is given for the result 

hmSupPk(d,) = i log27reGk 
a-0 

(12) 

which improves the bound (11) by l/2 bit. In [14] the derivation 
of (12) assumes that the density f of Xk satisfies the following 
conditions: a) f is bounded, and b) f is smooth enough in the sense 
that for all E > 0 there exists a S > 0 such that for all x E Rk 

I.f(~> - f(Y)1 < E 
f(x) 

whenever ]I z - y ]I < 5. The boundedness condition excludes a large 
class of densities, and b) unfortunately is even more restrictive. Many 
continuous densities often used in modeling real data fail to satisfy 
(13). For example, it is easy to check that (13) is violated by Gaussian, 
Rayleigh, gamma, and beta one-dimensional source densities. 

In Section III we prove that (12) holds for a large class of densities 
including all of the above listed cases. In Theorem 2 we show that if 
XL has finite differential entropy, then for rth power distortion, the 
asymptotic performance of the randomized lattice quantizer (given by 
Theorem 1) and the asymptotic performance of the ordinary lattice 
quantizer (i.e., the lattice quantizer without randomization) are the 
same. Then Shannon’s lower bound on the rate distortion function 
implies (12) for all the source distributions which satisfy this general 
condition. 

II. ASYMITOTIC ENTROPY-CONSTRAINED 
PERFORMANCEOF TESSELLATING QUANTIZERS 

Our first lemma in this section determines the asymptotic rth power 
distortion of the tessellating vector quantizer Qi, p defined in the 
Introduction. 

Lemma I: If the input random vector X” has a density, then 

lim WQ:,p(X?) _ 1 
a” J WP) P 

11 x - 6 IIT dx. (14) m-0 

Proof It is not hard to see that the theorem holds when Xk has 
a uniform distribution over a compact set. We might proceed using 
uniformly continuous densities, which are approximately constant 
over the quantization regions, and then approximate an arbitrary 
density this way. However, there is a shorter and more elegant way 
to prove (14). 

Let P;,, andy;,,,i = 1, 2,... be enumerations of the polytopal 
quantization regions and the corresponding levels. Define the density 
fa by 

1 
fa(x) = ?(E, a) pi, a J f(y) dy ifx E P;,, 

fori= 1, 2,... . Let Xt be a random variable with density fu. Then 

%Q:,P (~3) = ;z J II x - Y;, a r fa(z) dx 
z pi, a 

= ic 
Pr{X” E P,,,} 

* 
x(p; a) s, a II ix - Y% 01 llr dx* 

(15) 

Now the fact that X( Pi, a) = a’X(P) and a simple change of 
variables show that 

J, a 11 x - y;, a IIp da: = Lctr+k II x - G llr dx, 

hence 
P 

~~(Q~,PF~)) = kXO;Pj p Ilx- D IT dx. J (16) 

On the other hand, 

-$lWQ:,~(xk)) - WQ:,r(x"))~ 

s&J 11 x - YG o1 11’. If (XI - fc&)l dx 
E pi, a 

5 $am(p)l’ JRk If(x) - fdz)I dx (17) 

where diam (P) denotes the diameter of P. From Lebesgue’s differ- 
entiation theorem [9], fa + f as cy + 0 almost everywhere, from 
which via Scheffe’s theorem [2], (17) tends to zero. From this and 
(16) we obtain 

;Fo$D(Q:,p(Xk))= ~~o-$WQk,~(X:)) 

1 =- 11x-jjll’dx, J WP) P 

and the lemma is proved. 0 
When k = 1 and a random variable X is quantized with a A step 

size uniform quantizer, then Lemma 1 gives the well-known formula 

lirn ~T(QA(X)) = 
A-0 Ar (T :1)2’ ’ 

for all source densities. Note that we don’t require that the density 
f behave “sufficiently well” as is usually the case in the asymptotic 
theory. 

To determine the asymptotic entropy of the quantizers Qb, p, we 
will use a result by Csiszar [3]. Following the work by Renyi [8], 
Csiszar investigated the entropy of partitions of abstract measure 
spaces. The following theorem is a special case of his general result. 

Lemma 2: (Csiszdr [3]) Let 2 = (21, . . . , zk) be an Rk valued 
random vector with density fz. Suppose that there exists some Bore1 
measurable partition B. = {Br , Ba, . . .} of Rk into sets of finite 
Lebesgue measure such that 

-CP+ E B,jiogPr{z E EL} < m. 
n 

Suppose furthermore, that for some p > 0, some positive integers 
s, and for all k, the distance of Bk from any other & is greater 
than p for all but at most s indexes 2. Let d = {Ao, AI,. + .} be a 
measurable partition with equal Lebesgue measure, i.e., X(A;) = E, 
i = 1, 2,..., and let us denote the supremum of the diameters of 
the sets A; by b(d). Then we have 

where 

Ad(z) = -cPr{z E A,}logPr{Z E A,}, 
n 

and 

h(fz) = - J Rkfz(410gfz(+k 

the differential entropy of 2. Moreover, if Z has no density, then 
the above limit is --co. It should be mentioned that with the above 
conditions h(fz) is always well-defined and h(fz) < 00. 

Taking 2 = X”, A = {PI,~, Pz,~,-..} and E = X(Pa) in 
Lemma 2, it follows that 

~_mo[[H(Q~,~)+logX(P,)I= h(f), (18) 

whenever I h(f) I< co and H(Qk,p(X)) < co for some (Y > 0. 
Since (14) can be rewritten in the form 

lim D($‘p) = Z(P)[X(P)]““, 
a+0 

(19) 
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from (18) and (19) we obtain 

lim m-0 [ 
H(Q:, P) + F logD(Q:,p) = h(f) + t logI( 

I 
(20) 

It can be easily checked that for d small enough there exists at least 
one Q%, p with D(Qk, p) = d. This follows from the continuity of 
D(QL,,), which can be shown by a standard argument, and from 
the fact that Dr(QL, p) + 0 as Q + 0. Denote such a quantizer 
by Qf,,. 

Theorem 1: If ) h(f) I< co and H(Qb,p(Xk)) < 00 for some 
a > 0, then 

Frno d2 (rlk)ff(Q;, .D) = ~(p)2WMf). (21) 

Furthermore, if Zador’s formula holds for f, Z(P) = C(k, T) (the 
optimal admissible polytope is used), and Gersho’s conjecture (5) 
holds, then 

lim D@(Qdk,d, “7 T> = l 
d-0 d > (22) 

i.e., the quantizer Q$, p is asymptotically optimal. 
Proof By the condition that there exists a tessellating quantizer 

Qk,P whose output entropy is finite, Csiszar’s lemma applies and 
therefore (18) holds. Noticing the obvious fact that as d + 0 the 
scaling factor cy for the corresponding Qi, p goes to zero, (21) 
follows directly from (20). We get the second statement upon simply 
substituting (5) and (21) into (2). 0 

Remark: When Xk has no density (21) is no longer valid. In this 
case, by Lemma 2, H(Qk, p) + log X(P,) + -co as (Y + 0. Since 
0.(&k, p) < cJ diam (P), it follows that 

2_mo D(Q& p)2(T’k)H(Qks P) = 0. (23) 

We can say more than (23) when the distribution of X k is known to be 
the mixture of a distribution with a density and a discrete distribution. 
Specifically, let the distribution of X” be given by ,0 PI + (1 - p) P2 
where 0 < p < 1, PI is a probability measure with a density f, 
and Pz is a discrete probability measure. Assume that f satisfies the 
conditions of Theorem 1, and P2 is concentrated on a finite set of 
vectors { xr , . . . , xn} with probabilities (~1,. . . ,p,}. With a slight 
modification of Lemma 2 it can be proved that 

;yoWQk,,) +Pb W’a)l 
= ph(f) + (I- /3)H(P2) + H(P) (24) 

where H(P2) is the Shannon entropy of {pr,... ,p,} and H(P) = 
-0 log p - (1 - p) log (1 - 0). From this we have 

lim ~(~~,,piff~(Qb, P) 
CZ+0 

< c(p)2(p)2f(/3h(f)+(1-P)H(P2)+H(P)) (25) - 

where C(P) is a constant depending on the ratio of the diameter and 
the volume of P. 

A standard technique using the vector Shannon lower bound on 
the rate-distortion function (see Gray [6]) can be used to compare 
the performance of the quantizers Qk, p to the rate-distortion bound. 
For r = 2 the Shannon lower bound on the kth-order rate-distortion 
function for random vectors with a density f is 

&(d) 2 ih(f) - ilog2rred. (26) 

This, in combination with (21), gives 

lim sup iH(Q$,p) -&(d) 1 5 :logZxeGt (27) 
d-0 

where Gk denotes the normalized second moment of P. The con- 
dition for (27) to hold is that E II X” j12< 03, I h(f) I< co, 
and H(Qz,p(Xk)) < 00 for some a > 0. For “sufficiently nice” 
densities there is equality in (27), since in this case the difference 
between Rk (d) and Shannon’s lower bound vanishes as d does to zero 
(c.f., Theorem 4.3.5 in [l]). However, the authors are not aware of 
any result general enough asserting this convergence for all densities 
satisfying the above conditions. This result generalizes statements 
by Gish and Pierce [5], Gersho [4], and Yamada et al. [lo] (since 
any nonnegative continuous function of a seminorm would work in 
(14)-(17)). 

III. Asv~p~onc ENTROPY-CONSTRAINED 
PERFORMANCE OF RANDOMIZED LATTICE QUANTIZERS 

As was mentioned in the Introduction, the rth power distortion 
Dr(Qk, “) of the randomized lattice quantizer is given by (8). The 
bar above D indicates the randomized distortion as opposed to the 
distortion of the deterministic lattice quantizer. In fact, the uniformly 
distributed dither signal makes the derivation of (8) straightforward 
and the formula is true for arbitrary source statistics. Comparing 
(8) and Lemma 1 shows that the randomized and nonrandomized 
distortion of the lattice quantizer Qt, v are asymptotically the same 
whenever the source has a density. 

The next lemma shows that the randomized lattice quantizer has 
the same asymptotic entropy as the deterministic one. 

Lemma 3: Suppose that Xk has a density, I h(f) I< cc, and 
H(Qk, “(X”)) < CXJ for some Q! ‘> 0. Then 

2~~ [W&k, vFk + 2:) I 2:) + logW’J1 = h(f). (28) 

Proof Let the density of 2: be denoted by fz, . Then we have 

H(Qt, v(Xk + 2:) I 2:) + log We) 
= J P(Q:, 14x” + 2)) + log Wa)lfz, (2) dz. (2% 

VCY 
Now Qt, v(Xk + z) clearly has the same entropy as the shifted 
lattice quantizer with tessellating partition aA - r. Then by (18), for 
any fixed z we have 

!io WQ:, v(Xk + ~1) + logWJ1 = h(f). 

But Lemma 2 readily implies that this convergence is uniform in z, 
i.e., I H(Q%,,,(X’“+z))+logX(V,)-h(f) I< E(Q) for all z E ‘R’, 
for some c(o) -+ 0 as CE + 0. This and (29) prove the lemma. Cl 

Remark: Zamir and Feder [14] showed that 

H(Q:, v(Xk + 2:) I 2:) + 1ogW’k) = h(fx-z,) 

for all cy > 0 where fx-z, is the density of XL - 2:. In view of 
Lemma 3 we can conclude that 

;zo h(fx-z,) = h(f) 

whenever the conditions of Lemma 3 hold. 
Now we are in a position to relate the asymptotic performance of 

the randomized lattice quantizer to that of the deterministic lattice 
quantizer. By (8) for any d > 0 if cy = dl”Z(V)-l”X(V)-l’k, 
then n,(Qi, V) = d. Denote this quantizer by Q$ r,, and its rate 
by z(Qi, VI. 

Theorem 2: Suppose that XL has a density, I h(f) I< 00, and 
H(Qk,v(Xk)) < 00 for some cy > 0. Then the rate of the 
randomized lattice quantizer with rth power distortion d satisfies 

Jim0 d2fg(Q$, V) = l(V)2fh(f), (30) 
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i.e., the asymptotic performance of the randomized lattice quantizer 
is the same as the asymptotic performance of the ordinary (non- 
randomized) lattice quantizer given by (21). Note that I(V) is defined 
by (4). 

Proof The substitution of expressions for the distortion (8) into 
(28), using expression (4), readily gives (30). 0 

Corollary I: For r = 2, with the conditions of Theorem 2, we 
have 

lim sup fZ(Qi, v) - l&(d) 
I 

< i lOg%eGk. (31) 
d-0 

IV. CONCLUSION 

We have established the asymptotic equivalence between entropy- 
constrained lattice quantization and a universal quantization scheme 
based on dithering. Very unrestricted assumptions on the source 
density are imposed. Although our derivations assumed an rth power 
distortion measure, the proofs can easily be extended to more general 
distortions such as continuous functions of seminorms. 
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Lower Bounds for the Complexity of 
Reliable Boolean Circuits with Noisy Gates 

Peter G&s and Anna Gal 

Abstract- We prove that the reliable computation of any Boolean 
function with sensitivity s requires L?(s logs) gates if the gates fail 
independently with a fixed positive probability. This theorem was stated 
by Dobrushin and Ortyukov in 1977, but their proof was found by 
Pippenger, Stamoulis, and Tsitsiklis to contain some errors. 

Index Terms-Reliable computation, noisy gates, Boolean functions. 

I. INTRODUCTION 

In this paper, we prove lower bounds on the number of gates 
needed to compute Boolean functions by circuits with noisy gates. 
We say that a gate fails if its output is incorrect. Let us fix a bound 
E E (0, l/2) on the failure probability of the gates and a bound 
p E (0, l/2) on the probability that the value computed by the circuit 
is incorrect. These parameters will be held constant throughout the 
paper, and dependence on them will not be explicitly indicated either 
in the defined concepts like redundancy, or in the O( ) and R( ) 
notation. 

A noisy gate fails with a probability bounded by E. A noisy circuit 
has noisy gates that fail independently. 

A noisy circuit is reliable if the value computed by the circuit 
on any given input is correct with probability 2 1 - p. The size 
of a reliable noisy circuit has to be larger than the size needed for 
circuits using only correct gates. By the noisy complexity of a function 
we mean the minimum number of gates needed for the reliable 
computation of the function. Note that in this model the circuit cannot 
be more reliable than its last gate. For a given function, the ratio of 
its noisy and noiseless complexities is called the redundancy of the 
noisy computation of the function. 

The following upper bounds are known for the noisy computation 
of Boolean functions. The results of von Neumann [9], Dobrushin 
and Ortyukov [3], and Pippenger [ 1 l] prove that if a function can be 
computed by a noiseless circuit of size L, then O(Llog L) noisy 
gates are sufficient for the reliable computation of the function. 
Pippenger [ 1 I] proved that any function depending on n variables 
can be computed by O(212/n) noisy gates. Since the noiseless 
computation of almost all Boolean functions requires 0(2n /n) gates 
(Shannon [15], Muller [8]), this means that for almost all functions the 
redundancy of their noisy computation is just a constant. Pippenger 
[l l] also exhibited specific functions with constant redundancy. 
For the noisy computation of any function of n variables over a 
complete basis @., Uhlig [16] proved upper bounds arbitrarily close 
to p(@)P”/n as E + 0 where p(a) is a constant depending on @., 
and p(@)2”/n is the asymptotic bound for the noiseless complexity 
of almost all Boolean functions of n variables (Lupanov [7]). 
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