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Abstract

Let s, t,m, n be positive integers such that sm = tn. Let B(m, s;n, t) be the
number of m×n matrices over {0, 1} with each row summing to s and each column
summing to t. Equivalently, B(m, s;n, t) is the number of semiregular bipartite
graphs with m vertices of degree s and n vertices of degree t. Define the density
λ = s/n = t/m. The asymptotic value of B(m, s;n, t) has been much studied
but the results are incomplete. McKay and Wang (2003) solved the sparse case
λ(1−λ) = o

(
(mn)−1/2

)
using combinatorial methods. In this paper, we use analytic

methods to solve the problem for two additional ranges. In one range the matrix is
relatively square and the density is not too close to 0 or 1. In the other range, the
matrix is far from square and the density is arbitrary. Interestingly, the asymptotic
value of B(m, s;n, t) can be expressed by the same formula in all cases where it is
known. Based on computation of the exact values for all m,n ≤ 30, we conjecture
that the same formula holds whenever m + n→∞ regardless of the density.

1 Introduction

Let s, t, m, n be positive integers such that sm = tn. Let B(m, s; n, t) be the number of
m× n matrices over {0, 1} with each row summing to s and each column summing to t.
Equivalently, B(m, s; n, t) is the number of semiregular bipartite graphs with m vertices
of degree s and n vertices of degree t. The density λ = s/n = t/m is the fraction of
entries in the matrix which are 1.
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We are concerned in this paper with the asymptotic value of B(m, s; n, t). Historically,
the first significant result was that of Read [20], who obtained the asymptotic behavior
for s = t = 3. This was extended by Everett and Stein [8] to the case where s and
t are arbitrary constants, not necessarily equal. The first result to allow s and t to
increase was that of O’Neil [18], who permitted s, t = O

(
(log n)1/4−ε

)
. This was improved

by Mineev and Pavlov [17] to permit s = t ≤ γ(log n)1/2 for fixed γ < 1 and also for
1 < s ≤ (t− 1)−1γ(log n)1/4.

McKay [13] obtained B(m, s; n, t) asymptotically whenever s, t = o
(
(sm)1/4

)
. This

was improved by McKay and Wang [14] to the case st = o
(
(mn)1/2

)
.

All the prior work so far mentioned considers matrices for which the density is quite
small. Obviously B(m, n − s; n, m − t) = B(m, s; n, t) by complementation, so the very
dense case is also handled. The intermediate range of densities, such as constant density,
is considerably harder to deal with and until the present paper no exact asymptotics had
been determined. Ordentlich and Roth [19] proved that, without any conditions except
ms = nt,

B(m, s; n, t) ≥
(

m

t

)n(
n

s

)m(
λλ(1− λ)1−λ

)mn
,

and that this bound is low by at most exp
(
O(n + log m)

)
uniformly over λ if λ(1− λ)m

exceeds some absolute constant. More recently, Litsyn and Shpunt [11] determined an
upper bound on B(m, s; n, t) when m = Θ(n) and λ = t/m = s/n is constant that,
together with Ordentlich and Roth’s lower bound, gives that

B(m, s; n, t) =
(
λλ(1− λ)1−λ

)−mn(
2πλ(1− λ)

)−m/2−n/2
m−n/2n−m/2eO(nε)

for any ε > 0.
Without giving more than a heuristic justification, Good and Crook [9] suggested the

approximation

B(m, s; n, t) ≈

(
n

s

)m(
m

t

)n

(
mn

λmn

) .

We will see below that this is remarkably accurate, being within a constant of the correct
value over a wide range and perhaps always.

In the present paper, we will focus on two quite different cases, using analytic methods
inspired by [15]. In one case, the matrix is relatively square and the density is not too
close to 0 or 1. (This includes the range considered by Litsyn and Shpunt.) In the other
case, the matrix is much wider than high (or vice-versa) but the density is arbitrary. In
both cases, we obtain precise asymptotics.

Remarkably, both the results we establish in this paper and the earlier results in the
sparse case can be expressed using the same formula.

Theorem 1. Consider a sequence of 4-tuples of positive integers m, s, n, t such that ms =
nt and 1 ≤ t ≤ m − 1. Define λ = s/n = t/m and A = 1

2
λ(1 − λ). Suppose that ε > 0
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is sufficiently small and that one of the following conditions holds (perhaps with m, n and
s, t interchanged):

(a) m, n→∞ and st = o
(
(mn)1/2

)
;

(b) m, n→∞ with n ≤ m = o(A2n1+ε) and, for some constant γ < 3
2
,

(1− 2λ)2m ≤ γAn log n;

(c) n→∞ with 2 ≤ m = O
((

t(m− t)n
)1/4−ε)

.

Then

B(m, s; n, t) =

(
n

s

)m(
m

t

)n

(
mn

λmn

) (m− 1

m

)(m−1)/2(n− 1

n

)(n−1)/2

exp
(

1
2

+ o(1)
)
. (1.1)

Proof. Part (a) was established by McKay and Wang [14]. Part (b) will be proved in
Sections 2–4; specifically, it follows from (2.2) and Theorems 2 and 3. Part (c) follows
from Theorem 4 in Section 5.

Note that (N − 1

N

)(N−1)/2

= exp
(−1

2
+ O(N−1)

)
as N → ∞, so one or both such terms in (1.1) can be simplified depending on which of
m, n tend to ∞.

In Section 6 we show how B(m, s; n, t) can be computed exactly for small m, n and
show how the values for m, n ≤ 30 suggest the following conjecture.

Conjecture 1. Consider a sequence of 4-tuples of positive integers m, s, n, t such that
ms = nt. Then (1.1) holds uniformly over 1 ≤ t ≤ m− 1 whenever m + n→∞.

Calculations of the exact values for all m, n ≤ 30 show excellent agreement with Con-
jecture 1. There is less than 10% discrepancy between the exact value and the conjectured
asymptotic value in all cases computed and less than 1% discrepancy whenever m+n ≥ 35.
More precisely, write the quantity indicated by “o(1)” in (1.1) as ∆(m, s; n, t)/(Amn).
Our experiments, including the exact values mentioned above and many numerical esti-
mates described in Section 6, suggest that ∆(m, s; n, t) always lies in the interval (− 1

12
, 0).

From [14], (see [10, Corollary 5.1]), we know that ∆(m, s; n, t)→ − 1
12

as m, n→∞ with
st = o

(
(mn)1/5

)
. At the upper end, the greatest value we know is ∆(4, 2; 4, 2) ≈ −0.0171.

In a future paper we will allow the row sums, and similarly the column sums, to be
unequal within limits. For the case of sparse matrices, the best result is by Greenhill,
McKay and Wang [10]. We also plan to address the issue of matrices over {0, 1, 2, . . .}
with equal row sums and equal column sums.
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2 An integral for B(m, s; n, t)

Our proof of Theorem 1(b) occupies this section and the following two. We express
B(m, s; n, t) as an integral in (m+n)-dimensional complex space then estimate its value
by the saddle-point method.

It is clear that B = B(m, s; n, t) is the coefficient of xs
1 · · ·xs

m yt
1 · · · yt

n in

m∏
j=1

n∏
k=1

(
1 + xjyk

)
.

Applying Cauchy’s Theorem we have

B =
1

(2πi)m+n

∮
· · ·

∮ ∏
j,k(1 + xjyk)

xs+1
1 · · ·xs+1

m yt+1
1 · · · yt+1

n

dx1 · · · dxm dy1 · · · dyn, (2.1)

where each contour circles the origin once in the anticlockwise direction.
It will suffice to take the contours to be circles; specifically, we will put xj = reiθj and

yk = reiφk for each j, k, where

r =

√
λ

1− λ
.

This gives

B =
1

(2π)m+n
(
λλ(1− λ)1−λ

)mn I(m, n), (2.2)

where

I(m, n) =

∫ π

−π

· · ·
∫ π

−π

∏
j,k

(
1 + λ(ei(θj+φk) − 1)

)
eis
P

j θj+it
P

k φk
dθ dφ, (2.3)

where θ = (θ1, . . . , θm) and φ = (φ1, . . . , φn).

In equation (2.3) it is to be noted that the integrand is invariant under the two
substitutions θj ← θj+2π and φk ← φk+2π. In analyzing the magnitude of this integrand,
it is often necessary to consider what might be called the “wrap-around” neighborhood of
a point θ ∈ [−π, +π]. This neighborhood consists of the union of two half-open intervals
[−π,−π + δ) and (π − δ, π]. To avoid numerous awkward expressions such as this, we
find it convenient to think of θj and φk as points on the unit circle. To this end, we let
C be the real numbers modulo 2π, which we can interpret as points on a circle in the
usual fashion. Let z be the canonical mapping from C to the real interval (−π, π]; that
is, if x lies on the unit circle, then z(x) is its signed arc length from the point 1. An open
half-circle is Ct = (t − π/2, t + π/2) ⊆ C for some t. With this notion of half-circle, we
may define an important subset of the Cartesian product CN ; namely, define ĈN to be
the subset of vectors x = (x1, . . . , xN ) ∈ CN such that x1, . . . , xN all lie in a single open
half-circle (where that open half-circle can depend on x).
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If x = (x1, . . . , xN ) ∈ CN
0 then define

x̄ = z−1
( 1

N

N∑
j=1

z(xj)
)
.

More generally, if x ∈ CN
t then define x̄ = t + (x1 − t, . . . , xN − t). It is easy to see that

the function x 7→ x̄ is well-defined and continuous for x ∈ ĈN .

3 The principal part of the integral

To estimate the integral I(m, n), we show that it is concentrated in a rather small region,
then we expand the integrand inside that region.

For some sufficiently small ε > 0, let R denote the set of vector pairs θ, φ ∈ Ĉm× Ĉn

such that

|θ̄ + φ̄| ≤ (mn)−1/2+2ε

|θ̂j | ≤ n−1/2+ε, 1 ≤ j ≤ m

|φ̂k| ≤ m−1/2+ε, 1 ≤ k ≤ n,

where θ̂j = θj − θ̄ and φ̂k = φk − φ̄. In this definition, values are considered in C.
Let IR(m, n) denote the integral I(m, n) restricted to the region R. In the following

section, we will show that I(m, n) ∼ IR(m, n). In the present section, we will estimate
IR(m, n).

Our calculations are guided by the similar problem solved in [15]. In particular, we
will use the following result which can be proved from a special case of [15, Lemma 3].
Let Im(z) denote the imaginary part of z.

Lemma 1. Let ε and ε′ be such that 0 < ε′ < 2ε < 1
12

. Let Â = Â(N) be a real-

valued function such that N−ε′ ≤ Â(N) ≤ N ε′ for sufficiently large N . Let B̂ = B̂(N),
Ĉ = Ĉ(N), Ê = Ê(N), F̂ = F̂ (N) be complex-valued functions such that the ratios
B̂/Â, Ĉ/Â, Ê/Â, F̂ /Â are bounded. Suppose that, for some δ > 0,

f(z) = exp
(−ÂNξ2 + B̂Nξ3 + Ĉξ1ξ2 + ÊNξ4 + F̂ ξ2

2 + O(N−δ)
)

is integrable for z = (z1, z2, . . . , zN) ∈ UN , where ξt =
∑N

j=1 zt
j for t = 1, 2, 3, 4 and

UN =
{
z

∣∣ |zj| ≤ N−1/2+ε for 1 ≤ j ≤ N
}
.

Then, provided the O( ) term in the following converges to zero,

∫
UN

f(z) dz =

(
π

ÂN

)N/2

exp

(
3Ê + F̂

4Â2
+

15B̂2 + 6B̂Ĉ + Ĉ2

16Â3

+ O
(
(N−1/2+12ε + N−δ)Ẑ + Â−1N− 1

4
+3ε

))
,
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where

Ẑ = exp
(15 Im(B̂)2 + 6 Im(B̂) Im(Ĉ) + Im(Ĉ)2

16Â3

)
.

Proof. Lemma 3 of [15] implies a result that is the same except that the condition N−ε′ ≤
Â(N) ≤ N ε′ is replaced by the stronger condition N−ε′ ≤ Â(N) = O(1) and the condition
ε < 1

24
is is replaced by the weaker condition ε < 1

12
. Moreover, the error term is

O
(
(N−1/2+6ε + N−δ)Ẑ + N−1+12ε + Â−1N−∆

)

for any ∆ satisfying 0 < ∆ < 1
4
− 1

2
ε. Clearly this covers the case N−ε′ ≤ Â(N) ≤ 1 of

the present lemma, on taking ∆ = 1
4
− ε.

For the remaining case, where 1 ≤ Â(N) < N ε′ , apply the transformation zj 7→
N−ε′/2zj , then invoke Lemma 3 of [15] again, using ∆ = 1

4
− ε as before.

In the following, we assume that m, n→∞. A word of explanation about the symbol
ε as used in the paper is in order. It represents a definite positive constant. Whenever
an assertion is made which the reader can confirm only by knowing the value of ε, s/he
should note that the assertion is correct as long as ε is small enough. There being only
finitely many statements in the paper, there is some positive value for ε small enough for
all of them. In short, all equations and inequalities should be read with an understood
“for m, n sufficiently large and ε sufficiently small”.

The following lemma will be needed soon. We use the notation Rc for the complement of
a region R. Recall that A = 1

2
λ(1− λ).

Lemma 2. Let m, n → ∞ be integers, x1, . . . , xm variables, M2 =
∑m

j=1 x2
j , and K the

region of m-space defined by

K =
{
x

∣∣∣ m

2An
(1−m−1/4) ≤M2 ≤ m

2An
(1 + m−1/4)

}
.

Then, ∫
Kc

exp(−AnM2) dx = O(1)
( π

An

)m/2

exp
(−1

5
m1/2

)
.

Proof. We’ll be brief, because the idea is very much the same as found in the proof of
Lemma 1, which can be consulted for details in [15]. Recalling the formula for the surface
area of the ball of radius ρ in m-space, we have

∫
M2∈[a,b]

exp(−AnM2) =
2πm/2

Γ(m/2)

∫ b1/2

a1/2

e−Anρ2

ρm−1dρ.

Case (i): a = 0, b = (m/(2An))(1−m−1/4). Using

e−An(b−x)2(b− x)m−1 ≤ e−Anb2−Anx2

bm−1, 0 ≤ x ≤ b,
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and Stirling’s formula for the Gamma function,

∫
M2∈[0,b]

exp(−AnM2) = O(1)
( π

An

)m/2

exp
(−1

5
m1/2

)
.

Case (ii): a = (m/(2An))(1 + m−1/4), b =∞. Using

e−An(a+x)2(a + x)m−1 ≤ e−Ana2−Anx2

am−1, x ≥ 0,

we find the same bound for the integral over M2 ∈ [a,∞) as in Case (i). Combining the
two cases completes the proof of the Lemma.

Let T1 be the transformation which expresses the original m + n variables θj , φk (see

(2.3)) in terms of µ = θ̄ + φ̄, δ = θ̄ − φ̄, θ̂j (1 ≤ j ≤ m − 1), and φ̂k (1 ≤ k ≤ n − 1).
Explicitly,

θj = 1
2
(µ + δ) + θ̂j , φk = 1

2
(µ− δ) + φ̂k,

where here and hereafter we use the abbreviations

θ̂m = −
m−1∑
j=1

θ̂j , φ̂n = −
n−1∑
k=1

φ̂k.

We have
IR(m, n) = 2πmn J(m, n),

where

J(m, n) =

∫
S

G(µ, θ̂, φ̂) dθ̂ dφ̂ dµ.

Here, the function G is the composition F ◦ T1, which is easily seen to be independent of
the difference δ = θ̄ − φ̄. The region of integration S = T−1

1 (R) is defined by virtually
the same inequalities as was R with these two notes: we now write the first inequality
as |µ| ≤ (mn)−1/2+2ε; and, second, neither θ̂m nor φ̂n is a variable of integration, but the
definition of S includes the inequalities

∣∣∣
m−1∑
j=1

θ̂j

∣∣∣ ≤ n−1/2+ε,
∣∣∣

n−1∑
k=1

φ̂k

∣∣∣ ≤ m−1/2+ε

arising from the R-inequalities |θ̂m| ≤ n−1/2+ε and |φ̂n| ≤ m−1/2+ε. The factor of 2πmn
comes from the integration over δ (which has a range of 4π) and the Jacobian mn/2 of
transformation T1.

In this section we prove
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Theorem 2. Suppose m, n→∞ with λ = λ(m, n), such that m ≥ n and

m = o(A2n1+ε). (3.1)

Suppose further that, for some constant γ < 3
2
− 45

2
ε− 6ε2,

(1− 2λ)2m ≤ γAn log n. (3.2)

Then,

J(m, n) = (mn)−1/2 exp
{
−1

2
− 1− 2A

24A

(m

n
+

n

m

)
+ O(D)

}

×
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

,

where
D = n−1/4+γ/24+4ε+o(1) + n−1/2+γ/3+15ε/2+2ε2 .

Proof. The assumption m ≥ n has been made only to avoid frequent use of the expressions
max(m, n) and min(m, n). Two easy consequences of (3.1) will be used without repeatedly
citing that equation:

A−1 ≤ A−1 m

n
= o(Anε), m = o(An1+ε).

For future reference we establish:

log n = o(Anε), log m = o(Amε). (3.3)

Indeed, for the first, log2 n = o(A−1 · Anε), and A−1 = O(Anε). The second then follows
since log m = O(log n) and m ≥ n. In particular, both Amε, Anε become infinite.

For |x| small, see [15],

1 + λ(eix − 1) = exp
(
λix−Ax2 − iA3x

3 + A4x
4 + O(A|x|5))

with

A = 1
2
λ(1− λ), A3 = 1

6
λ(1− λ)(1− 2λ), A4 = 1

24
λ(1− λ)(1− 6λ + 6λ2).

Uniformly in the region S, where all |µ + θ̂j + φ̂k| are small,

G = exp
{
−A

∑
j,k

(µ + θ̂j + φ̂k)
2 − iA3

∑
j,k

(µ + θ̂j + φ̂k)
3

+ A4

∑
j,k

(µ + θ̂j + φ̂k)
4 + O

(
A

∑
j,k
|µ + θ̂j + φ̂k|5

)}
.

Here and below, the undelimited summation over j, k runs over 1 ≤ j ≤ m, 1 ≤ k ≤ n,
and we continue to use the abbreviations θ̂m = −∑m−1

j=1 θ̂j , φ̂n = −∑n−1
k=1 φ̂k.
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We now proceed to a second change of variables, (θ̂, φ̂) = T2(σ, τ ) given by

θ̂j = σj + cµ1, φ̂k = τk + dν1,

where, for 1 ≤ h ≤ 4, µh and νh denote the power sums
∑m−1

j=1 σh
j and

∑n−1
k=1 τh

k , respec-
tively. The scalars c and d are chosen to eliminate the second-degree cross-terms σj1σj2

and τk1τk2, and thus diagonalize the quadratic in σ, τ . Suitable choices for c, d are

c = − 1

m + m1/2
, d = − 1

n + n1/2
,

and we find the following:∑
j,k

(µ + θ̂j + φ̂k)
2 = mnµ2 + nµ2 + mν2

∑
j,k

(µ + θ̂j + φ̂k)
3 = mnµ3 + 3µ(nµ2 + mν2) + n(µ3 + 3cµ2µ1 − c2µ

3
1)

+ m(ν3 + 3dν2ν1 − d2ν
3
1)∑

j,k
(µ + θ̂j + φ̂k)

4 = mnµ4 + 6µ2ν2 + n(µ4 + 4cµ3µ1 + 6c2µ2µ
2
1 + c3µ

4
1)

+ m(ν4 + 4dν3ν1 + 6d2ν2ν
2
1 + d3ν

4
1) + 6µ2(nµ2 + mν2)

+ 4µ
(
n(µ3 + 3cµ2µ1 − c2µ

3
1) + m(ν3 + 3dν2ν1 − d2ν

3
1)

)
∑

j,k
|µ + θ̂j + φ̂k|5 = O(mn−3/2+5ε + nm−3/2+5ε),

in which we have introduced the additional abbreviations

c2 =
1

m1/2(m1/2 + 1)2
, c3 =

m1/2 + 3

m(m1/2 + 1)3
,

d2 =
1

n1/2(n1/2 + 1)2
, d3 =

n1/2 + 3

n(n1/2 + 1)3
.

The determinant of the matrix T2 is (mn)−1/2, and so

J(m, n) = (mn)−1/2

∫
T−1
2 (S)

E1,

where E1 = exp(L1), and

L1 = µ4(A4mn) + µ3(−iA3mn) + µ2(−Amn + 6A4nµ2 + 6A4mν2)

+ µ
(−3iA3nµ2 − 3iA3mν2 + 4A4n(µ3 + 3cµ2µ1 − c2µ

3
1)

+ 4A4m(ν3 + 3dν2ν1 − d2ν
3
1)

)
−Anµ2 − Amν2 + 6A4µ2ν2

− iA3n(µ3 + 3cµ2µ1 − c2µ
3
1)− iA3m(ν3 + 3dν2ν1 − d2ν

3
1)

+ A4n(µ4 + 4cµ3µ1 + 6c2µ2µ
2
1 + c3µ

4
1) + A4m(ν4 + 4dν3ν1 + 6d2ν2ν

2
1 + d3ν

4
1)

+ O(Amn−3/2+5ε + Am−3/2+5εn).
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To complete the evaluation of the integral, we need to consider a number of differ-
ent regions within the space of the variables µ, σj, τk, as well as a number of different
integrands. Let us introduce all of these at the outset. Define ρσ, ρτ > 0 by

ρ2
σ =

m

2An
, ρ2

τ =
n

2Am
.

The regions we shall use, in addition to T−1
2 (S), are these:

Q =
{ |σj| ≤ n−1/2+ε, j = 1, . . . , m−1

} ∩ { |τk| ≤ m−1/2+ε, k = 1, . . . , n−1
}

∩ { |µ| ≤ (mn)−1/2+2ε
}

M =
{ |µ1| ≤ m1/2n−1/2+ε

} ∩ { |ν1| ≤ n1/2m−1/2+ε
}

B =
{

(1−m−1/4)ρ2
σ ≤ µ2 ≤ (1 + m−1/4)ρ2

σ

}
∩ {

(1− n−1/4)ρ2
τ ≤ ν2 ≤ (1 + n−1/4)ρ2

τ

}
.

As integrands we will use three functions Eh = exp(Lh), h = 1, 2, 3. The definition of L1

has appeared already. The function L2 consists of some of the summands found in L1:

L2 = −Amnµ2 + 6A4µ2ν2 + A4nµ4 + A4mν4 − 3iA3nµµ2 − 3iA3mµν2

− Anµ2 − Amν2 − iA3nµ3 − iA3mν3 − 3iA3cnµ2µ1 − 3iA3dmν2ν1.

The third function L3 equals Re(L2), the real part of L2:

L3 = −Amnµ2 + 6A4µ2ν2 + A4nµ4 + A4mν4 −Anµ2 − Amν2.

For convenience we define two expressions in m, n that recur in our big-oh expressions,

H1 = Am1/2+2εn−1+5ε + An1/2+2εm−1+5ε

H2 = A(mn)2ε + Amn−1+4ε + Am−1+4εn.

Having made all the necessary definitions, the next step is to establish a few relationships
among the regions and functions just defined. Summing for 1 ≤ j ≤ m− 1 the equation
θ̂j = σj + cµ1, and inserting the value of c, we find

m−1/2 µ1 =
m−1∑
j=1

θ̂j .

In the region S we have |∑m−1
j=1 θ̂j | ≤ n−1/2+ε, and so in T−1

2 (S) we have

|µ1| ≤ m1/2n−1/2+ε.

Similarly, |ν1| ≤ n1/2m−1/2+ε; using these, the reader can check that

1
2
Q∩M ⊆ T−1

2 (S) ⊆ 3
2
Q∩M.
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We also have the following bounds in 3
2
Q:

σj = O(n−1/2+ε)

µ2 = O(mn−1+2ε)

µ3 = O(mn−3/2+3ε)

µ4 = O(mn−2+4ε).

Similar bounds, but with m and n interchanged, hold in 3
2
Q for τk, ν2, ν3, and ν4. These

estimates, along with A3, A4 = O(A), c = O(m−1), µ = O
(
(mn)−1/2+2ε

)
, bounds for

c2, c3, d, d2, d3, and the definition ofM, allow us to conclude

L1 = L2 + O
(
H1

)
, (µ, σ, τ ) ∈ 3

2
Q ∩M.

We also record

|E2| = E3, and

L3 = −Amnµ2 − Anµ2 −Amν2 + O(H2), (µ, σ, τ ) ∈ 3
2
Q.

Our strategy for evaluating the integral is presented in the next four equations, and
summarized in equation (3.4) below. The principles underlying these equations are fa-
miliar: (1) Split an integrand into a principal part and a negligible part; (2) Integrate a
positive integrand over a larger region if it helps and only an upper bound is needed; (3)
Split a region into two subregions, on one of which the integrand simplifies, and the other
of which is negligible; (4) Strive towards integrals which can be evaluated by separating
the variables. ∫

T−1
2 (S)

E1 =

∫
T−1
2 (S)

E2 + O(H1)

∫
3
2
Q

E3

∫
T−1
2 (S)

E2 =

∫
1
2
Q∩M

E2 + O(1)

∫
3
2
Q− 1

2
Q

E3

∫
1
2
Q∩M

E2 =

∫
1
2
Q∩M∩B

E2 + O(1)

∫
Bc∩Q

E3

∫
1
2
Q∩M∩B

E2 =

∫
1
2
Q

E2 + O(1)

∫
Bc∩Q

E3 + O(1)

∫
Mc∩B∩ 1

2
Q

E3.

Altogether,

∫
T−1
2 (S)

E1 =

∫
1
2
Q

E2 + O(H1)

∫
3
2
Q

E3

+ O(1)

(∫
3
2
Q− 1

2
Q

E3 +

∫
Bc∩Q

E3 +

∫
Mc∩B∩ 1

2
Q

E3

)
. (3.4)
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Let us now analyze each of the four integrals of E3 arising in (3.4): over 3
2
Q, 3

2
Q− 1

2
Q,

Bc ∩ Q, and Mc ∩ B ∩ 1
2
Q. We can integrate E3 over Q because the variables almost

completely split. Using

( ∫
|x|≤n−1/2+ε

e−Anx2(
1 + 6A4ν2x

2 + A4nx4 + O(A2
4n

2m−2+4εx4 + A2
4n

2x8)
)
dx

)m−1

for integration with respect to the σ’s, and a similar formula for integration with respect
to the τ ’s, we find

∫
Q

E3 = exp
{ 3A4

2A2
+

3A4

4A2

(m

n
+

n

m

)
+ O

(
m−1+4ε + n−1+4ε

)}

×
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

.

It is immediate that the same result is obtained for integration over either 1
2
Q or 3

2
Q.

Reviewing the previous derivation, we see that if one of the σj were restricted to the
range

1
2
n−1/2+ε ≤ |σj| ≤ 3

2
n−1/2+ε,

then the exponent (m − 1)/2 above would be replaced by (m − 2)/2, and a new factor
would be introduced. To see what this new factor is, we use the inequality

∫ 3
2
n−1/2+ε

1
2
n−1/2+ε

e−Anx2

dx ≤ (An1/2+ε)−1 exp
(−1

4
An2ε

)
,

and note that in the latter interval of integration

−Anx2 + 6A4ν2x
2 + A4nx4 = −Anx2

(
1 + O(m−1+2ε + n−1+4ε)

)
.

It follows (using a similar argument if one of the |τk| exceeds 1
2
m−1/2+ε or if |µ| exceeds

(mn)−1/2+2ε/2), that

∫
3
2
Q− 1

2
Q

E3 = O(1)
(
e−An2ε/4 + e−Am2ε/4

)

×
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

.

To bound the integral of E3 over Bc ∩ Q, we apply Lemma 2. Recalling that H2 is the
bound for how much L3 differs from −Amnµ2 − Anµ2 − Amν2 in Q, and noting that
H2 = o(m1/2) and H2 = o(n1/2), we find

∫
Bc∩Q

E3 = O(1)
(
e−m1/2/6 + e−n1/2/6

)

×
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

.
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We now turn to the integral of E3 over Mc ∩ B ∩ 1
2
Q. Define κ by

κ2 = n−ε.

We wish to replace 1
2
Q with the smaller κQ, which can be justified in the same manner

that we treated the region 3
2
Q− 1

2
Q a few lines earlier. Because A4nx4 is uniformly o(1)

in the interval of integration, and because Aκn1/2+ε →∞, we have

∫ 1
2
n−1/2+ε

κn−1/2+ε

exp
(−Anx2 + A4nx4

)
dx = o(1)e−Aκ2n2ε

.

In B we have A4µ2ν2 = O(A−1); moreover,

exp
(
O(A−1)

m

n

)
(An)1/2 ≤ eAκ2n2ε/2,

since log(n) = o(Aκ2n2ε) by (3.3), and A−1m/n = o(Anε). This clears the way to proceed
as we did in bounding

∫
3
2
Q−1

2
Q E3 to find

∫
Mc∩B∩ 1

2
Q

E3 =

∫
Mc∩B∩κQ

E3 + O(1)
(
e−Aκ2n2ε/2 + e−Aκ2m2ε/2

)

×
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

. (3.5)

In B ∩ κQ we have, in addition to A4µ2ν2 = O(A−1),

A4nµ4 = O(A)nµ2(κn−1/2+ε)2 = O(Aµ2κ
2n2ε) = O(κ2mn−1+2ε)

and a similar bound for A4mν4; thus,
∫
Mc∩B∩κQ

E3 ≤ exp
(
O(A−1 + κ2mn−1+2ε + κ2m−1+2εn)

)

×
∫
Mc∩B

exp
(−Amnµ2 −Anµ2 −Amν2

)
. (3.6)

The complement ofM is the union of

{ |µ1| ≥ m1/2n−1/2+ε
}

and { |ν1| ≥ n1/2m−1/2+ε
}
.

Let’s assume the first condition holds; the argument is entirely similar if it is the second.
The region described by the assumed condition is contained in the region

∣∣∣
m−1∑
j=1

σj

(m− 1)1/2

∣∣∣ ≥ n−1/2+ε.
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The summation on the left side of the previous is of the form |~ζ · σ|, where ~ζ is a unit
vector. Since the region B is spherically symmetric, the integral of exp(−Anµ2) over

B ∩ {|~ζ · σ| ≥ · · · } is independent of the unit vector ~ζ. If we replace ~ζ by the vector
(1, 0, . . . , 0), then we may integrate over B ∩ {|σ1| ≥ n−1/2+ε}. Throughout the latter
region, the integrand on the right of (3.6) is bounded above by

exp(−An2ε) exp
(−Amnµ2 − An

m−1∑
j=2

σ2
j − Amν2

)
.

Since, in B, σ2
1 ≤ µ2 = O(m/An), we have B ⊆ { |σ1| = O((m/An)1/2)

}
, and so

∫
B

exp
(
−Amnµ2 − An

m−1∑
j=2

σ2
j − Amν2

)

= O(1)
( m

An

)1/2( π

Amn

)1/2( π

An

)(m−2)/2( π

Am

)(n−1)/2

.

Summarizing, with H3 an abbreviation for A−1 + κ2mn−1+2ε + κ2m−1+2εn, and noting
H3 = o(An2ε) and H3 = o(Am2ε) (because A−1m/n = o(Anε)),

∫
Mc∩B∩κQ

E3

≤ exp
(
O(H3)

) ∫
Mc∩B

exp
(−Amnµ2 − Anµ2 − Amν2

)

≤ exp
(
O(H3)

) ∫
{|σ1|≥n1/2+ε}∩B

exp
(−Amnµ2 − Anµ2 −Amν2

)

+ exp
(
O(H3)

) ∫
{|τ1|≥m1/2+ε}∩B

exp
(−Amnµ2 − Anµ2 −Amν2

)

≤ exp
(−An2ε/2

) ∫
B

exp
(
−Amnµ2 −An

m−1∑
j=2

σ2
j − Amν2

)

+ exp
(−Am2ε/2

) ∫
B

exp
(
−Amnµ2 − Anµ2 − Am

n−1∑
k=2

τ 2
k

)

= O(1)
(
e−An2ε/3 + e−Am2ε/3

) ( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

.

Combining this with (3.5), we have altogether

∫
Mc∩B∩ 1

2
Q

E3 = O(1)
(
e−Aκ2n2ε/2 + e−Aκ2m2ε/2

)

×
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

.
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Looking back at equation (3.4), we have now bounded all four of the error terms – the
four integrals of E3 over various regions – appearing on the right side of that equation.
We have

3A4

2A2
+

3A4

4A2

(m

n
+

n

m

)
+ O

(
m−1+4ε + n−1+4ε

)
= −1

2
+ 1

8
A−1(1− 2λ)2 + 1

16
A−1(1− 6λ + 6λ2)

(m

n
+

n

m

)
+ o(1)

= o(Anε).

Also, by (3.3),
log H−1

1 = O(1)
(
log A−1 + log m

)
= o(Aκ2n2ε).

It follows, recalling Anε = Aκ2n2ε, that the last three error terms in (3.4) are all little-oh
of the first, O(H1)

∫
3
2
Q E3. This allows us to conclude

∫
T−1
2 (S)

E1 =

∫
1
2
Q

E2

+ O(H1) exp
{
−1

2
+ 1

8
A−1(1− 2λ)2 + 1

16
A−1(1− 6λ + 6λ2)

(m

n
+

n

m

)}

×
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

. (3.7)

It remains to compute the integral of E2 over 1
2
Q. We proceed in three stages, starting

with integration with respect to µ. For the latter, the first step is to replace the limits of
integration with ±∞:

∫
|µ|≤(mn)−1/2+2ε

exp
(−Amnµ2 − 3iA3(nµ2 + mν2)µ

)
dµ

=

∫ +∞

−∞
〈same〉+ O(1)

∫
|µ|≥(mn)−1/2+2ε

e−Amnµ2

dµ

=

∫ +∞

−∞
〈same〉+ O(1)

(
A(mn)1/2+2ε

)−1
exp

(−A(mn)4ε
)
.

To integrate over the real line, we use the formula (for β real)

∫ +∞

−∞
exp

(−Amnµ2 − iβµ
)
dµ =

√
π

Amn
exp

(
− β2

4Amn

)
.

Since (
A3(nµ2 + mν2)

)2

4Amn
= O

(
Amn−1+4ε + Anm−1+4ε

)
= o

(
A(mn)4ε

)
,

integration with respect to µ of E2 equals

( π

Amn

)1/2

exp
(−9A2

3(nµ2 + mν2)
2

4Amn
+ o

(
e−A(mn)4ε/2

))
.
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The second step is to integrate with respect to σ the integrand

exp
(
−Anµ2 +

(
6A4 − 9A2

3

2A

)
ν2µ2 −

(9A2
3n

4Am

)
µ2

2

+ A4nµ4 − iA3nµ3 − 3iA3cnµ2µ1 + o
(
e−A(mn)4ε/2

))
.

This is accomplished by an appeal to Lemma 1. We apply the latter with N = m − 1,
δ = 3

4
, say, and

Â = A
n

m− 1

(
1− 6A4ν2

An
+

9A2
3ν2

2A2n

)
= A

n

m
(1 + O(m−1+2ε))

B̂ = − iA3n

m− 1
= −iA3

n

m
(1 + O(m−1))

Ĉ = −3iA3cn = 3iA3
n

m
(1 + O(m−1/2))

Ê =
A4n

m− 1
= A4

n

m
(1 + O(m−1))

F̂ = −9A2
3n

4Am
= −9A2

3

4A

n

m
.

We need

3Ê + F̂

4Â2
=

m

n

(3A4

4A2
− 9A2

3

16A3

)
+ O(A−1n−1 + m2εn−1)

and

15B̂2 + 6B̂Ĉ + Ĉ2

16Â3
= −3A2

3m

8A3n
+ O(A−1m1/2n−1).

Then, integration with respect to the σj contributes a τ -free factor

( π

An

)(m−1)/2

exp
{ m

n

(3A4

4A2
− 15A2

3

16A3

)}

and for the final integrand we are left with

exp
{
−Amν2 +

(3A4m

An
− 9A2

3m

4A2n

)
ν2 − 9A2

3m

4An
ν2

2 + A4mν4

− iA3mν3 − 3iA3dmν2ν1 + O
(
m−1/2+12εẐ + A−1m3/4+3εn−1

)}
,

where

Ẑ = exp
{ (1 + o(1))(1− 2λ)2

24
A−1m

n

}
.

Again, we make use of Lemma 1. This time we take N = n− 1 and we claim that we
may take δ = 1

4
− 4ε. To justify this claim, we must check that both A−1m3/4+3εn−1 and

m−1/2+12εẐ are O(n−1/4+4ε). The first follows from A−1m/n = O(Anε). For the second,

m−1/2+12εẐ ≤ n−1/2+12ε+γ/24+o(1),
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and the latter is O(n−1/4+4ε) by our condition on γ. This justifies the claim that δ may
be taken to be 1/4− 4ε.

After calculations similar to the previous, we find the third and final factor, from
integration with respect to the τk’s, is equal to

( π

Am

)(n−1)/2

exp
{ n

m

(3A4

4A2
− 15A2

3

16A3

)
+

3A4

2A2
− 9A2

3

8A3

+ O
(
n−δZfinal + A−1n3/4+3εm−1

)}
,

where

Zfinal = exp
{ (1 + o(1))(1− 2λ)2

24
A−1 n

m

}
.

We calculate this time that

n−δZfinal ≤ n−1/4+4ε+γ/24+o(1),

and that A−1n3/4+3εm−1 is negligible in comparison. When we multiply the three factors,
and perform the algebra

3A4

2A2
− 9A2

3

8A3
= −1

2

3A4

4A2
− 15A2

3

16A3
= −1− 2A

24A
,

we find ∫
1
2
Q

E2 = exp
{
−1

2
− 1− 2A

24A

(m

n
+

n

m

)
+ O(n−1/4+4ε+γ/24+o(1))

}

×
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

.

To obtain the formula for J(m, n) stated in the theorem, we combine the previous equation
with (3.7). Start with the algebraic calculation

1
24

(1− 2A) + 1
16

(1− 6λ + 6λ2)s = 5
48

(1− 2λ)2,

and the estimate

1
8
A−1(1− 2λ)2 + 5

48
A−1(1− 2λ)2

(m

n
+

n

m

)

= A−1(1− 2λ)2 m

n

( 5

48
+

n

8m
+

5n2

48m2

)
≤ 1

3
γ log n.

Then,

H1 exp
{

1
8
A−1(1− 2λ)2 + 5

48
A−1(1− 2λ)2

(m

n
+

n

m

)}
≤ 2Am1/2+2εn−1+5εnγ/3

= O(n−1/2+γ/3+15ε/2+2ε2).
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Thus, the sum of
∫

1
2
Q E2 and

O(H1) exp
{
−1

2
+ 1

8
A−1(1− 2λ)2 + 1

16
A−1(1− 6λ + 6λ2)

(m

n
+

n

m

)}

×
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

is

exp
{
−1

2
− 1− 2A

24A

(m

n
+

n

m

)}(
1 + O(n−1/4+γ/24+4ε+o(1)) + O(n−1/2+γ/3+15ε/2+2ε2)

)

×
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

,

which equals

exp
{
−1

2
− 1− 2A

24A

(m

n
+

n

m

)
+ O(n−1/4+γ/24+4ε+o(1) + n−1/2+γ/3+15ε/2+2ε2)

}

×
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

.

This completes the proof of Theorem 2.

4 Concentration of the integral

In this section we will complete the estimation of I(m, n) by establishing the following.

Theorem 3. Define I0 by

I0 = (mn)1/2
( π

Amn

)1/2( π

An

)(m−1)/2( π

Am

)(n−1)/2

exp
{
−1− 2A

24A

(m

n
+

n

m

)}
. (4.1)

For sufficiently small ε > 0, if m = o(A2n1+2ε), and n = o(A2m1+2ε), then

I(m, n) = IR(m, n) + O(n−1)I0.

To motivate the definition of I0, recall that it was shown in the previous section to be
within a constant of IR(m, n) under stronger conditions than we wish to assume in the
present section.

We begin with two technical lemmas whose proofs are omitted.

Lemma 3. The absolute value of the integrand of I(m, n) is

F (θ, φ) =
∏
j,k

f(θj + φk),

where
f(z) =

√
1− 4A(1− cos z).

Moreover, for all real z,

0 ≤ f(z) ≤ exp
(−Az2 + 1

12
Az4

)
.
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Lemma 4. For all c > 0,∫ π/10

−π/10

exp
(
c(−x2 + 9

4
x4)

)
dx ≤

√
π/c exp(2/c).

Proof of Theorem 3. Our approach will be to bound
∫

F (θ, φ) over a variety of regions
whose union covers Cm+n \ R.

Take any small δ > 0. By the pigeon hole principle, there is some interval [x, x+δ] that
contains at least δm/2π values of θj . Let S1(x) be the set of (θ, φ) such that θj ∈ [x, x+δ]
for at least δm/2π values of j and φk /∈ [−x − 2δ,−x + δ] for at least nε values of k. By
Lemma 3, F (θ, φ) ≤ exp(−c1Amnε) for some c1 > 0 and so the contribution from S1 is
at most ∫

S1(x)

F (θ, φ) ≤ (2π)m+n exp(−c1Amnε).

Next define S2(x) to be the set of (θ, φ) such θj /∈ [x − 2δ, x + 3δ] for at least mε values
of j. By the same argument as before with the roles of θ and φ reversed,∫

S1(x)∩S2(x)

F (θ, φ) ≤ (2π)m+n exp(−c2Amεn) (4.2)

for some c2 > 0.
If we subtract x from each θj and add x to each φk the integrand F (θ, φ) is unchanged.

Thus we can assume that x = 0 from now on, after multiplying (4.2) by 2π to cover all
possible x. We will also fix δ = π/300. Define R1 to be the set of (θ, φ) such that
|θj | > π/100 for at most mε values of j, and |φk| > π/100 for at most nε values of k.
Under our just-made assumption, we have proved that∫

Cn\R1

F (θ, φ) ≤ (2π)m+n
(
exp(−c3Amnε) + exp(−c3Amεn)

)
(4.3)

for some c3 > 0.

Assume (θ, φ) ∈ R1. Define S0 = S0(θ), S1 = S1(θ) and S2 = S2(θ) to be the indices
j such that |θj | ≤ 1

100
π, 1

100
π < |θj | ≤ 1

20
π, and |θj | > 1

20
π, respectively. Similarly define

T0 = T0(φ), T1 = T1(φ) and T2 = T2(φ).
The value of F (θ, φ) can now be bounded using

f(θj + φk) ≤




exp
(−A(θj + φk)

2 + 1
12

A(θj + φk)
4
)

if (j, k) ∈ (S0 ∪ S1)× (T0 ∪ T1)√
1− 4A(1− cos( 1

25
π)) ≤ e−A/6 if (j, k) ∈ (S0 × T2) ∪ (S2 × T0)

1 otherwise.

Let I2(m2, n2) be the contribution to
∫
R1

F (θ, φ) of those (θ, φ) with |S2| = m2 and
|T2| = n2. Recall that |S0| ≥ m−mε and |T0| ≥ n− nε. We have

|I2(m2, n2)| ≤
(

m

m2

)(
n

n2

)
(2π)m2+n2 exp

(−1
6
A(n− nε)m2 − 1

6
A(m−mε)n2

)
I ′
2(m2, n2),
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where

I ′
2(m2, n2) =

∫ π/20

−π/20

· · ·
∫ π/20

−π/20

exp
(−A

∑′′
(θj + φk)

2 + 1
12

A
∑′′

(θj + φk)
4
)
dθ′′dφ′′,

and the double-primes denote restriction to j ∈ S0∪S1 and k ∈ T0∪T1. Write m′ = m−m2

and n′ = n−n2 and define θ̄ = 1
m′

∑′′ θj , θ̂j = θj− θ̄ for all j, φ̄ = 1
n′

∑′′ φk, φ̂k = φk− φ̄,

µ = φ̄ + θ̄ and ν = φ̄ − θ̄. Change variables from (θ′′, φ′′) to {θ̂j | j ∈ S3} ∪ {φ̂k | k ∈
T3} ∪ {µ, ν}, where S3 is some subset of m′− 1 elements of S0 ∪ S1 and T3 is some subset
of n′− 1 elements of T0 ∪ T1. From the previous section we know that the determinant of
this transformation is 2/(m′n′). The integrand of I ′

2 can now be bounded using

∑′′
(θj + φk)

2 = m′n′µ2 + n′ ∑′′
j
θ̂2

j + m′ ∑′′
k
φ̂2

k

and ∑′′
(θj + φk)

4 ≤ 27m′n′µ4 + 27n′ ∑′′
j
θ̂4

j + 27m′ ∑′′
k
φ̂4

k.

For an upper bound we can restrict the sums to j ∈ S3 and k ∈ T3, since −x2 + 9
4
x4 < 0

for |x| ≤ 1
10

π. The integral now separates over the new variables and Lemma 4 gives that

I ′
2(m2, n2) = O(1)

π(m′+n′)/2

A(m′+n′−1)/2(m′)n′/2−1(n′)m′/2−1
exp

(
O(m′/(An′) + n′/(Am′))

)
.

Applying (4.1), we find that

mε∑
m2=0

nε∑
n2=0

m2+n2≥1

|I2(m2, n2)| ≤ O
(
e−c4Am + e−c4An

)
IR(m, n)

for some c4 > 0.

Finally we consider the case where m2 = n2 = 0 in the previous calculation. That is,
we have that |θj | ≤ π/20 and |φk| ≤ π/20 for all j and k. Apply the same transformation
as before and bound it by a separable integral as before. The total value of the separable
bound is

π(m+n)/2

A(m+n−1)/2mn/2−1nm/2−1
exp

(
O(m/(An) + n/(Am))

)
.

Since −x2 + 9
4
x4 is unimodal in [−π/10, π/10], we easily see that the value is multiplied

by a factor of O(e−A(mn)4ε/2) by the restriction µ > (mn)−1/2+2ε. Similarly, restricting
any θj to |θ̂j | > m−1/2+ε multiplies the value by a factor of O(e−Am2ε/2) (Choose the

transformation such that θ̂j is one of those integrated over.), and restricting any φk to

|φ̂k| > m−1/2+ε multiplies the value by a factor of O(e−An2ε/2).
In summary, the integral of F (θ, φ) over [−π, π]m+n \ R is

O
(
e−c5Am2ε

+ e−c5An2ε)
I0

for some c5 > 0. This completes the proof.
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5 Highly oblong matrices

In the case that m is much smaller than n, or vice-versa, we can use a similar but much
simpler calculation to estimate B(m, s; n, t).

To be precise, we will assume that for some sufficiently small ε > 0 we have that
1 ≤ t ≤ m− 1 and

m = O
(
(t(m− t)n)1/4−ε

)
. (5.1)

Unlike in the previous calculation, all values of λ except 0 and 1 are permitted.
For a vector x = (x1, x2, . . . , xm), define the scaled elementary symmetric function

ϕt(x) =

(
m

t

)−1 ∑
1≤j1<j2<···<jt≤m

xj1xj2 · · ·xjt .

Then B(m, s; n, t) is clearly the coefficient of xs
1 · · ·xs

m in
(

m
t

)n
ϕt(x)n.

Applying Cauchy’s Theorem with xj = eiθj for all j, we have

B(m, s; n, t) =

(
m

t

)n

(2π)−mK(m, n), (5.2)

where

K(m, n) =

∫ π

−π

· · ·
∫ π

−π

ϕt

(
eiθ1 , eiθ2, . . . , eiθm

)n

eis
P

j θj
dθ, (5.3)

where θ = (θ1, . . . , θm).
In Lemma 6 we will estimate KU(m, n), which is the contribution to K(m, n) of those

θ inside a small region U , then in Lemma 7 we will show that the contributions from the
other regions are negligible in comparison.

First we will prove a technical lemma that will be needed soon. For k ≥ 1, and vector
x = (x1, x2, . . . , xm), define the symmetric functions

%t,k(x) =

(
m

t

)−1 ∑
1≤j1<j2<···<jt≤m

(xj1 + xj2 + · · ·+ xjt)
k

πk(x) =

m∑
j=1

xk
j .

Lemma 5. For m ≥ 4 and 1 ≤ t ≤ m−1, let the real vector x = (x1, x2, . . . , xm) be such
that

∑
j xj = 0 and maxj |xj | = 1. Then the following hold.

(a)

%t,2(x) =
t(m− t)

m(m− 1)
π2(x)

%t,3(x) =
t(m− t)(m− 2t)

m(m− 1)(m− 2)
π3(x)

%t,4(x) =
t(m− t)(m2 + m− 6tm + 6t2)

m(m− 1)(m− 2)(m− 3)
π4(x) +

3t(t− 1)(m− t)(m− t− 1)

m(m− 1)(m− 2)(m− 3)
π2(x)2
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(b)
t(m− t)

(m− 1)2
≤ %t,2(x) ≤ t(m− t)

m− 1

|%t,3(x)| ≤ t(m− t)|m− 2t|
4(m− 1)(m− 2)

%t,4(x) ≤ t(m− t)
(
3t(m− t)− 2m

)
(m− 1)(m− 3)

%t,2(x)2 ≤ %t,4(x) ≤ m2

t(m− t)
%t,2(x)2

Proof. Since %t,k(x) is a symmetric polynomial of total degree k, the fundamental theorem
of symmetric functions tells us that identities of the form given in (a) must exist, recalling
that π1(x) = 0. The coefficients can be determined by choosing one or two values of x.

In light of part (a), the first line of (b) requires maximum and minimum values of
π2(x). If xj 6= xk, then

(
∂/∂xj − ∂/∂xk

)
π2(x) has the same sign as xj − xk. Thus, π2(x)

is decreased if xj and xk are moved slightly towards each other, which can be done within
the constraints on x unless |x`| = 1 for exactly one value of `, and the other entries of x
are equal. This therefore locates the minimum of π2(x). The location of the maximum
can be similarly identified, but it is easier to just note that π2(x) ≤ m trivially.

For the second line of (b), we work similarly with π3(x). If xj 6= xk, then
(
∂/∂xj −

∂/∂xk

)
π3(x) has the same sign as x2

j − x2
k. This shows that the maximum occurs when

` of the entries equal 1 and the other m− ` are equal, for some `. The value of π3(x) in
this case is maximized when ` = bm/3c or ` = dm/3e.

The same method also works for the third line of (b). If j 6= k, then

(
∂/∂xj − ∂/∂xk

)
%t,4

= 4(xj − xk)
(
(m2 −m− 6tm + 6t2)(x2

j + xjxk + x2
k) + 3t(m− t− 1)π2(x)

)
.

The quadratic form multiplying xj − xk has non-negative eigenvalues, so we have that(
∂/∂xj − ∂/∂xk

)
%t,4 is zero or has the same sign as xj − xk. Thus, the maximum occurs

if the entries of x are evenly divided between −1 and 1, with one zero value for odd m.
This gives the desired bound.

The left side of the last line of (b) is just Cauchy’s inequality. For the right side,
from (a) we know that it suffices to bound π4(x)/π2(x)2. Either maximum or minimum
is required, depending on the sign of the coefficient of π4(x). Also, we can ignore the
constraint maxj |xj| = 1 because π4(x)/π2(x)2 is independent of scale. For distinct i, j, k,
the operator ∇ijk = (xk−xj)∂/∂xi +(xi−xk)∂/∂xj +(xj−xi)∂/∂xk gives 0 when applied
to π1(x) or π2(x). Applying it to π4(x) gives −4(xk−xj)(xi−xk)(xj−xi)(xi +xj +xk). If
x has four or more distinct entries, we can choose three of them that don’t sum to 0 and
choose to either increase or decrease π4(x) by slight movements. Thus, the maximum and
minimum both occur with at most three distinct values, and if there are three they must
sum to 0. In the latter case, we can move one xj of each value without changing π4(x)
then increase or decrease π4(x) as before. Therefore, both the minimum and maximum
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occur when there are only two distinct values. By direct computation, we now find that
π4(x)/π2(x)2 is minimized when half the entries are equal and positive while half are
equal and negative, and minimized when one entry is positive and the rest are equal and
negative (or vice-versa). This gives

1

m
≤ π4(x)

π2(x)2
≤ m2 − 3m + 3

m(m− 1)
.

The required inequality now follows.

Define U to be the set of vectors θ ∈ Ĉm such that

|θ̂j | ≤ (An)−1/2+ε/4, 1 ≤ j ≤ m,

where θ̂j = θj − θ̄ and A = 1
2
λ(1− λ) as before.

Lemma 6. If m ≥ 4 and condition (5.1) holds, then

KU(m, n) =
(
1 + O(n−ε)

)
(2π)(m+1)/2mm/2

(
m− 1

t(m− t)n

)(m−1)/2

.

Proof. In the integral (5.3), change variables from θ to (θ̄, θ̂1, . . . , θ̂m−1). This transforma-
tion, which has Jacobian m, produces an integrand independent of θ̄, so we can integrate
over θ̄ by multiplying by 2π the integral over (θ̂1, . . . , θ̂m−1) with θ̄ = 0.

As before, we use θ̂m as an abbreviation for −∑m−1
j=1 θ̂j even though it is not one of

the variables of integration. For θ ∈ U , we find that the integrand of K(m, n) has value

exp
(
n log

(
1− 1

2
%t,2(θ̂)− 1

6
i%t,3(θ̂) + O(1)%t,4(θ̂)

))
= exp

(−Q(θ̂) + O(n−ε)
)

by Lemma 5(b), where

Q(θ̂) =
t(m− t)n

m(m− 1)

( m−1∑
j=1

θ̂2
j + 1

2

m−1∑
j,k=1
j 6=k

θ̂j θ̂k

)
. (5.4)

Since the quadratic form Q(θ̂) is real, we have
∫
U

exp
(−Q(θ̂) + O(n−ε)

)
=

(
1 + O(n−ε)

) ∫
U

exp
(−Q(θ̂)

)
.

To complete the proof of the lemma, we only need to note that the integral on the right
differs from the same integral over R

m by a negligible amount. Apart from normalization,
exp

(−Q(θ̂)
)

is the density of an (m−1)-dimensional Gaussian whose covariance matrix
Σ is the inverse of twice the matrix defining Q; that is,

Σ =
m(m− 1)

2t(m− t)n

(
2Im−1 − 2

m
Jm−1

)
,

the electronic journal of combinatorics 12 (2005), #R29 23



where Im−1 and Jm−1 are the identity matrix and the matrix of all ones, respectively. The
variance of θ̂j for 1 ≤ j ≤ m− 1 is the j-th diagonal element of Σ, while the variance of

θ̂m = −∑m−1
j=1 θ̂j is (1, 1, . . . , 1)Σ(1, 1 . . . , 1)T . These turn out to be the same, namely

Var(θ̂j) =
(m− 1)2

t(m− t)n
, 1 ≤ j ≤ m.

Using the assumption (5.1), we find that the constraints defining U occur at more than nε/3

standard deviations, so far more than the necessary fraction of exp
(−Q(θ̂)

)
lies inside U .

Finally, we note that the determinant of Q is

m

(
t(m− t)n

2m(m− 1)

)m−1

.

The lemma now follows.

Lemma 7. If m ≥ 4 and (5.1) holds, then

K(m, n) = KU(m, n)
(
1 + O(n−4ε)

)
.

Proof. Define

z1 = (An)−1/2+ε/4, z2 = m3/2
(
t(m− t)n

)−1/2+ε
.

We wish to concentrate the integral in a box of size z1, but first we will achieve the box
V ⊆ Ĉm defined by |θ̂j| ≤ z2 for 1 ≤ j ≤ m. Note that z2 = o(1).

The absolute value of the integrand in (5.3) is

F (θ) =

(
m

t

)−n(∑
S,S′

cos
(
ΣS − ΣS′

))n/2

, (5.5)

where the sum is over all subsets S, S ′ of {1, 2, . . . , m} of cardinality t, and ΣS =
∑

j∈S θj .
If θ /∈ V, then two of the θj differ by at least z2. Without loss of generality, suppose

|θ2−θ1| > z2 where the difference is measured mod 2π. Let T be a subset of {3, 4, . . . , m}
of cardinality t− 1. Then

cos
(
ΣT∪{1} − ΣS′

)
+ cos

(
ΣT∪{2} − ΣS′

)
is maximized over S ′ when ΣS′ = ΣT + 1

2
(θ1 + θ2) or ΣS′ = ΣT + 1

2
(θ1 + θ2) + π. There

are
(

m−2
t−1

)
choices for T , so we have that

F (θ) <

(
1− 2t(m− t)

m(m− 1)

(
1− cos(1

2
z2)

))n/2

< exp
(
−1

9

(
t(m− t)n

)2ε
m

)

for n sufficiently large. Multiplying by the total volume, which is less than (2π)m, we find
that such θ contribute O(en−ε

)KU(m, n) to K(m, n).

the electronic journal of combinatorics 12 (2005), #R29 24



Since V ⊆ Ĉm, and the value of F (θ) is independent of θ̄ in that case, we continue
the investigation in (θ̄, θ̂)-space with the assumption that θ̄ = 0. Choose an arbitrary
fixed θ̂ such that θ̄ = 0 and maxj |θ̂j| = 1, and define f(r) = F (rθ̂). Using cos(α) ≤
1− α2/2 + α4/4, which is valid for all real α, we find

(
m

t

)−2 ∑
S,S′

cos(ΣS − ΣS′) ≤ 1− 2ar2 + 2br4

≤ exp
(−2ar2 + 2br4

)
,

where

a = a(θ̂) = 1
2
%t,2(θ̂)

0 ≤ b = b(θ̂) = 1
4
%t,4(θ̂) ≤ a2m2

t(m− t)
, (5.6)

and the last inequality comes from Lemma 5(b). Referring to (5.5), after raising both
sides to the n/2 power we conclude that

f(r) ≤ exp
(−anr2 + bnr4

)
.

Now consider an infinitesimally small piece of solid angle dΘ in the direction of θ̂. The
contribution this makes to

∫
F (θ̂) is

dΘ

∫ z

0

rm−2f(r) dr,

where z = z1 for U and z = z2 for V. (The power of r is m − 2 due to the constraint
θ̄ = 0.)

Define f0(r) = exp(−anr2). Then
∫ ∞

0

rm−2f0(r) dr = Θ(1)
a1/2n1/2

m− 1

( m

2aen

)m/2

,

and rm−2f0(r) has its maximum at

r0 =

√
m− 2

2an
.

We will bound
∫ z2

0
rm−2

(
f(r)− f0(r)

)
dr by breaking it into two parts at r = r1 = nε/2r0.

From (5.6) we find that bnr4 = o(1) , and so exp(bnr4) ≤ 1 + 2bnr4, for r ≤ r1. Thus∫ r1

0

rm−2
(
f(r)− f0(r)

)
dr ≤ 2bn

∫ ∞

0

rm+2f0(r) dr

= O(1)
bm2

a2n

∫ ∞

0

rm−2f0(r) dr

= O(n−4ε)

∫ ∞

0

rm−2f0(r) dr. (5.7)
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For r1 ≤ r ≤ z2 we find that rm−2f(r) is decreasing, so∫ z2

r1

rm−2f(r) dr ≤ z2r
m−2
1 f(r1)

= exp
(−1

2
mnε + O(m logn)

) ∫ ∞

0

rm−2f0(r) dr. (5.8)

At this point we can notice that f0(r) is in fact the same quadratic form that was
called exp

(−Q(θ̂)
)

in Lemma 6. Bounds (5.7) and (5.8) thus imply that∫
V

F (θ̂) ≤ (
1 + O(n−4ε)

) ∫
Rm−1

exp
(−Q(θ̂)

)

Since bnr4 = O(n−1/3) for 0 ≤ r ≤ z1, we also have∫
U

F (θ̂) =
(
1 + O(n−1/3)

) ∫
U

exp
(−Q(θ̂)

)

=
(
1 + O(n−1/3)

) ∫
Rm−1

exp
(−Q(θ̂)

)
,

where the last step is proved in the proof of Lemma 6. It follows that∫
V−U

F (θ̂) = O(n−4ε)

∫
Rm−1

exp
(−Q(θ̂)

)
,

and the lemma now follows from Lemma 6.

Theorem 4. Under condition (5.1), for sufficiently small ε > 0,

B(m, s; n, t) =

(
m

t

)n(
m− 1

2πt(m− t)n

)(m−1)/2

mm/2
(
1 + O(n−ε)

)
.

Proof. For m ≤ 3, we can verify the claim directly using the exact value
B(m, n/m; n, 1) = n!/(n/m)!m. For m ≥ 4, it follows from (5.3) and the two lemmas just
proved.

Theorem 4 can be seen as a particular Central Limit Theorem result, and this can be
taken further. Define X1, X2, . . . , Xn to be iid random values taking values in {0, 1}m−1.

The common distribution is that Xj = (x1, x2, . . . , xm−1) with probability
(

m
t

)−1
if

∑
xi ∈

{t−1, t} and with probability 0 otherwise. The values taken by Xj can be interpretted
as the first m − 1 entries in the j-th column of an m × n 0-1 matrix with each column
having sum t. From this is is clear that

B(m, s; n, t) =

(
m

t

)n

Prob
( n∑

j=1

Xj = (s, s, . . . , s)
)
. (5.9)

Theorem 4 now follows in the case of constant m, t from the CLT. In, fact, under the
same conditions, there is an asymptotic expansion for B(m, s; n, t).
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Theorem 5. Let m, t be fixed integers with 1 ≤ t ≤ m − 1. Then there are values
h1(m, t), h2(m, t), . . . depending only on m, t such that

B(m, s; n, t) =

(
m

t

)n(
m− 1

2πt(m− t)n

)(m−1)/2

mm/2
(
1 +

q∑
i=1

hi(m, t)n−i + o(n−q)
)
.

for any integer q > 0, as n→∞ through integer multiples of m/t.

Proof. The theorem is an example of an Edgeworth expansion. We need the case of
multivariable lattice distributions, such as Corollary 22.3 of [3]. Our theorem follows
from that Corollary by calculation. The only additional observation required is that (in
the notation of [3]) the functions Pr(−φ0,V : {χν}) are odd in the case that r is odd,
implying that we don’t have terms of order n−1/2, n−3/2, . . . .

Computation of the values hj(m, t) is quite tedious, but we have established that

h1(m, t) =
m− 1

12(m− 2)

(
m + 2 +

(m− 1)m2

t(m− t)

)
. (5.10)

This implies that the value ∆(m, s; n, t) defined in the Introduction converges to

− m− 1

12(m− 2)
+

t(m− t)(5m− 2)

24(m− 2)m2
∈ (− 1

12
,− 1

32
]

as n→∞ with bounded m, in accordance with our conjecture.
Unfortunately, it does not appear that the existing theory of Edgeworth expansions

includes error bounds explicit enough that we can increase m as n increases.

6 Exact values and estimates

In this section, we will explain how we computed the exact values of B(m, s; n, t) for many
values of the parameters.

It is clear that B(m, s; n, t) is the constant term in

G(x, y) = x−s
1 · · ·x−s

m y−t
1 · · · y−t

n

m∏
j=1

n∏
k=1

(
1 + xjyk

)
.

For small values of m and n, we can extract the constant term of G by using a method
of summing over roots of unity. A technique of this nature was given by Good and
Crook [9] and improved by McKay [12]. We will further improve it in this paper.

Let q1 and q2 be integers such that q1 ≥ m− t + 1 and q2 ≥ s + 1. Consider any field
F which contains elements α, β of multiplicative order q1 and q2, respectively. Let 〈α〉
be the multiplicative subgroup of F generated by α and define 〈α〉n = 〈α〉 × · · · × 〈α〉
(n factors). Similarly define 〈β〉 and 〈β〉m. As explained in [12], if we sum G(x, y) over
x ∈ 〈β〉m and y ∈ 〈α〉n, the contributions of the terms of the expansion of G(x, y) are
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zero except for those terms where each xj has degree divisible by q2 and each yk has degree
divisible by q1. This includes the constant term of G, but otherwise no terms with any xj

of negative degree or any yk of positive degree (by the constraints on q1 and q2). However,
the total x-degree of each term equals the total y-degree, so the only term giving non-zero
contribution is the constant term. Since the constant term is independent of x, y, we have
that

B(m, s; n, t) = q−m
2 q−n

1

∑
x∈〈β〉m

∑
y∈〈α〉n

G(x, y)

= q−m
2 q−n

1

∑
x∈〈β〉m

m∏
j=1

x−s
j

( ∑
y∈〈α〉

y−t
m∏

j=1

(1 + xjy)

)n

.

The outside sum, which has qm
2 terms, can be computed more quickly by noting that

the summand is a symmetric function in x. Using mi to denote the number of xj ’s equal
to βi for 0 ≤ i ≤ q2 − 1, we have

B(m, s; n, t) = q−m
2 q−n

1

×
∑

m0+m1+···+mq2−1=m

(
m

m0, m1, . . . , mq2−1

) q2−1∏
i=1

β−imis

( ∑
y∈〈α〉

y−t

q2−1∏
i=1

(1 + βiy)mi

)n

.

(6.1)

Note that (6.1) is evaluated in the field F and the left side is whatever the constant term
of G(x, y) is when it is expanded in that field. In principle we could take F to be the
field of complex numbers, and so obtain the normal integer value of B(m, s; n, t) directly,
but this poses numerical difficulties. In practice it is better to take F = GF(p) for various
primes p, then the normal integer value of B(m, s; n, t) can be recovered using the Chinese
Remainder Theorem. The roots α and β exist so long as p − 1 is divisible by both q1

and q2.

By this means we computed all values of B(m, s; n, t) for m, n ≤ 30. As an example,

B(30, 15; 30, 15) = 75 51081 53829 51405 59732 48475 93800 76934 94252 92103

89151 81695 05028 07370 84462 72734 38430 42892 52001

35264 46320 41706 98298 25720 80514 93000 44864 24346

92361 36642 96667 59160 41398 51347 38588 32514 94564

17934 76366 44171 38875 08829 26548 61238 27200.

All the values we computed are available to interested researchers on the Internet [5].
For these parameters, the accuracy of the estimates derived in this paper is excellent, as
explained earlier with the statement of Conjecture 1.

Beyond the point to which exact values are readily computed, they can nevertheless
be estimated to good accuracy using sampling methods. The best approach of which we
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are aware is due to Chen, Diaconis, Holmes and Liu [6]. We will describe the method
here, since it admits of some streamlining in the case of constant column sums.

Let p = (p1, p2, . . . , pm) be a vector of real numbers in [0, 1]. Let X1, X2, . . . , Xm

be independent Bernoulli random variables, with Prob(Xi = 1) = pi and Prob(Xi =
0) = qi = 1 − pi for each i. For an integer t, 0 ≤ t ≤ m, the conditional random
variable (X1, X2, . . . , Xm |

∑
i Xi = t) has a conditional-Poisson distribution Z(p, t). If

u = (u1, u2, . . . , um) ∈ {0, 1}m has
∑

i ui = t, and ui = pi whenever pi ∈ {0, 1}, then the
probability Probp,t(u) of u in this distribution satisfies

1

Probp,t(u)
= [xt]

∏
i|ui=0

(
1 +

pi

qi
x
) ∏

i|ui=1

(qi

pi
+ x

)
, (6.2)

where [xt] denotes extraction of the coefficient of xt. This is easily proved using the
probability generating function of

∑
Xi.

We can now describe Chen et al.’s method for estimating B(m, s; n, t). Define p(n) =
(s/n, s/n, . . . , s/n), then, for k = n, n− 1, . . . , 2, compute

u(k) := a uniformly random vector in Z(p(k), t);

N (k) := 1/ Probp(k),t(u
(k));

p(k−1) := (kp(k) − u(k))/(k − 1).

Theorem 6. [6] The expected value of N (n)N (n−1) · · ·N (2) is B(m, s; n, t).

Chen et al. note that Theorem 6 does not depend on the particular distribution Z(p, t)
being used, and is in fact true for any distribution having the same support. However,
Z(p, t) is suggested on the grounds of statistical efficiency, since Z(p, t) is the distribution
of the first column of a randomly chosen m×n matrix with row sums npi and first column
sum t. Hopefully this is similar to the distribution Z ′(p, t) of the first column subject
to all the column sums being t, which would be the ideal choice. In our application,
with

∑
pi = t and constant column sums, we have additional point of similarity that the

marginal distributions of Xi for Z(p, t) and Z ′(p, t) are the same, which is not always
true if the column sums vary.

Note that, contrary to the more general case considered by Chen et al., the algorithm
cannot get stuck in our case due to u(k) not existing. We can also simplify and accelerate
the implementation using the property that

∑m
i=1 p(k) = t for all k. This means that

it is efficient to generate u(k) by repeatedly generating X1, X2, . . . , Xm until their sum
is t. The expected number of repetitions is O(t1/2), giving an overall expected time less
than any of the sampling methods described by Chen and Liu [7]. Clearly (6.2) can be
evaluated in time O(tm), so the total expected time for one estimate of B(m, s; n, t) is
O

(
mnt

)
. Of course we can combine many estimates to obtain a more accurate estimate.

As an example, a million trials gave a 99% confidence interval for B(30, 15; 30, 15) of
(7.5525± 0.0042)× 10221 in about 5 minutes, comfortably enclosing the exact value given
above.
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If we define u(1) = p(1), then the matrix with columns u(1), u(2), . . . , u(n) has all
column sums t and row sums s. It is not a uniform sample from this class of matrices, but
nevertheless the method can be extended to estimate any statistic on the class. See [6]
for details.

To further test Conjecture 1, we used this method to obtain accurate estimates of
B(m, s; n, t) for all cases with max{m, n} ∈ {50, 100}. In every instance, we obtained
99% confidence intervals for ∆(m, s; t, n) lying inside the interval (− 1

12
, 0) mentioned at

the end of the Introduction.
We also estimated a variety of values with max{m, n} = 1000 to approximately 4

digits accuracy, in each case obtaining an answer consistent with the conjecture.
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