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1. Introduction. In wave motion the term “equipartition of energy” is used to
denote the equality of kinetic and potential energy. Equipartition can be attained in finite
or in infinite time (asymptotic equipartition).

The first result on equipartition of energy, due to Lax and Phillips [8], is actually an
asymptotic result. Duffin [5] has proved that equipartition is attained in finite time as
long as the Cauchy data have compact support. One of the authors [2] has extended
these results to electromagnetic waves, proving that if the Cauchy data are in I?(R?) then
asymptotic equipartition of the electric and the magnetic energy results, and that this
equipartition is attained in finite time, whenever the initial disturbance is confined to a
compact set. The same author [3] has proved that for linear elastic wave propagation in
homogeneous and isotropic media there is no transfer of energy from the longitudinal to
shear wave and vice versa. Hence the energy that is stored initially in each type of wave
yields a constant of the motion. Combining this result with that of Duffin, it follows that
for initial data with compact support the kinetic and strain energy of the fast (P) wave is
equipartitioned first and the same thing happens to the slow (S) wave at a later time. The
asymptotic form of this result also remains true. Partition of energy for uniformly propa-
gative systems was shown by Costa [1]. Results on equipartition of energy for abstract
wave equations were established by Goldstein [6, 7], Levine [9], and others.

In this paper we investigate the problem of equipartition of energy for elastic waves
that propagate in a homogeneous but anisotropic medium. As is well known, in this case
there are three waves propagating in any direction which are arbitrarily polarized. By
generalizing the Riemann-Lebesgue lemma of harmonic analysis we are able to show
asymptotic equipartition of kinetic and strain energy for each one of the three types of
elastic waves that exist in an anisotropic medium. For general information on wave
propagation in linear elastic homogeneous and anisotropic media, see Duff [4], Musgrave
[10], and Synge [11, 12].

2. The elastic wave equation. We consider a homogeneous linear hyperelastic mater-
ial filling up the space R* with constitutive equation

Tij = Cijki€r (1)
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where 7;; is the stress tensor, ¢;;, are the elasticities and ey, is the strain tensor. Here and
throughout summation from 1 to 3 is understood whenever a repeated index appears. We
have the symmetry conditions

Cijki = Cjikt = Criij )

which reduce the number of different elasticities to 21. The strain-energy density function
is given by

W = icijueien- (3)
In the absence of body forces the equations of motion take the form
pi; = 1;; 4, i=1273 (4)
or
u; — %ciik,u,‘, i =0, i=1273, (5)

where p is the mass density and u = (u,, u,, u3) the displacement field.
It is well known that if the initial data satisfy the conditions

u(x, 0)=wo € [H'(R)],  u(x, 0) = w, e [(R*)],

where H' is the Sobolev space W' ? (the space of square-integrable functions whose
gradient is also square-integrable), then there exists a unique solution u(x, ¢) such that for
any t > 0,

u(x, t) e [HY(R?*)]® and 1(x, t) e [Z(R)]?

and

E(t) = E(0), t>0 (6)
where E(t), the energy at time ¢, is the sum of the kinetic energy

1 .

K(t)= 3 fmpuiui dx (7)

and the strain energy
1
P(t) = 3 fmcijk,u,-‘juk‘, dx. (8)

Moreover, if the initial data are C®-functions with compact support in R3, then the
solution is also a C®-function and has, for each t > 0, compact support in R3.

3. Spatial harmonic decomposition. Consider the Fourier transform of the displace-
ment vector u in space:

(&, £) = (1) [ e u(x, ¢) dr. 9)

B3

Since

U 1E 1) = —i&(E, t), (10)
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the system of equations (5) becomes

a . .
prC; [Pi(E, )] = —rcima;oinE, t) (11)
where
E=ro=r(o, ay,03), r=|§|, |a| = 1. (12)
The system of ordinary differential equations (11) is written in dyadic form as
d2
Wﬁ(l) +r’B-a(t)=0 (13)

where the acoustic tensor B is given by
By = ¢ijuajoy. (14)

The positive definiteness of the strain energy density function implies that all three
eigenvalues of B are positive and therefore their positive square roots are real and
nonnegative. The dyadic B takes the following normal form:

3
Bla) = ). vf(x)e(x) ® ei() (15)
i=1
where v?(a) is the eigenvalue that corresponds to the eigenvector e;(@) associated with the
particular direction . Without loss of generality we assume that
Uy > Uy > 3. (16)

For each direction a the unit vectors e;, i =1, 2, 3, form an orthogonal set. In the
particular direction a three different waves propagate with phase velocities v;(a) and
polarization vectors e;(«). In general, no polarization vector is parallel to the direction of
propagation. Obviously

B(a) = A%(a) (17)

where
AB) = 3 vl ) © efa) (13)

We next prove the following lemma.

Lemma 1. The solution of the equation

j—; i(t) + (rA)%a() =0 (19)

that satisfies the initial conditions
2(0) = [u(x, 0)]" = &,(8), (20)
0| = [Saten| | -a e
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is given by
. 3 . . sin(tr v;)
u(t)= Y e, e - [0, cos(tr v;) + o, o (22)
i=1 i
Proof. Solving (19) formally, we obtain
() = cos(tr A) - iy + % sin(tr A) - [A"1 - @] (23)

Using standard identities of the calculus of dyadics one obtains

cos(tr A) = "2)(— 1y g’z; A2
_ ¥ e ®e cos(tr v). (24)
Similarly -
sin(tr A) = i e; ® e; sin(tr v;). (25)
Also -
ATT= Y lege. (26)

i=1 Yi
Substituting (24), (25) and (26) into (23) and performing the indicated contractions of the
dyadics, one arrives at the form (22) for the solution of (19). This completes the proof.
We next discuss the properties of the solution t(t) as given by (22). Each one of the
time-independent constants in (22), i.e. 0y, @y, v; and e;, are functions of the direction a.
For a fixed direction a, i(t) describes the propagation of three plane waves. These are

. sin(tr v;)

w,=e ®e,  |i, cos(tr v;) + b, 27N

for i =1, 2, 3. Each one of the w;s propagates in the direction a with different phase
velocity and polarization vector. The three polarization vectors are mutually orthogonal
but in general, none of them points in the direction of propagation. According to our
assumption (16), in each direction a the first wave w, is the fastest and the third wave w,
is the slowest. The displacement field u(x, t), is not, in general, a plane wave; therefore
the three polarization vectors corresponding to the three phase velocities associated with
the direction x are no longer orthogonal.

The space-time characteristic cone (see [4] for details) emanating from a point (x, t)
has three noncircular conical sheets corresponding to the three phase velocities. For their
geometric properties see [10]-[12]. The wave surface, defined as the intersection of the
wave cone with the t-constant plane, consists of three nonspherical sheets. The geometry
of the wave surface can be very complicated. Any half-line from x will meet the wave
surface at most 75 times. The wave surface is symmetric with respect to the source

point x.




ASYMPTOTIC EQUIPARTITION OF KINETIC AND STRAIN ENERGY 125

It was shown by Duff [4] that if the initial data are restricted in a neighborhood of the
origin of diameter J, then there will be three “sharp waves” traveling with velocities v,
v, and v; along the three wave sheets. Each sharp wave shell will have a thickness 6. In
addition to the sharp wave, there will also be a “continuous wave ” that is supported in
the region defined by the intersection of the convex hull of the outermost (fastest) wave
sheet and the exterior of the innermost (slowest) wave sheet. Therefore an observer
outside the initial support of the disturbance will first feel either the first sharp wave or
the continuous wave, depending on whether the outermost wave sheet is convex or not.
Then he will experience a finite succession of sharp and continuous waves and finally the
disturbance will terminate with the last sharp wave. The interior of the innermost wave
sheet is a lacuna.

4. Asymptotic equipartition of energy. We begin with a generalization of the
Riemann-Lebesgue lemma.

LEMMA 2. Assume that the function f: R3>—- R is an absolutely integrable function
and that v:S;—> R is a continuous function defined on the wunit sphere
Sy ={x e R*| |a| = 1} satisfying the relation

0 < vy < v(a) (28)
for each a € S;5. Then
lim I(f)= lim | |f(x)]e"""=d* =0, (29)
t=++ t—=+o0 "R3

(Note that if v(e) = constant then the above lemma reduces to the Riemann-Lebesgue
lemma of harmonic analysis.)
Proof. Introduce polar coordinates

r=|x|, o =x/|x|. (30)
Then in the light of Fubini’s theorem the integral can be written as
10=] | |4 a)]ee dr da, (31)
S3 "0
where f,(r, &) = f(x) and da represents the differential solid angle. Define
F(t,a)= f | fo(r, o) | €'t >r? dr; (32)
0
then
I()= [ Flt, o) d%. (33)
S3

Take any sequence {t,}:°, such that t, » + o0 as n —» + 00. Then for each n

|F(t,, @) < f: | £,(r, )| r? dr = g(at) (34)
and
L gla) d*a = J[rea | f(x)] d*x < +o00. (35)



126 GEORGE DASSIOS AND EFSTRATIOS GALANIS

The ordinary Riemann-Lebesgue lemma gives

lim F(t,, @)= lim | | fy{r, a)| e dr =0, (36)

n—w n—aw 0

and by hypothesis (28), this is true for every a € S;. By (34), (35), (36) and the Lebesgue
dominated convergence theorem one obtains

lim I(t,)= [ lim F(t,, a) d’x=0 (37)
n—+w *Sy a4+
which in turn implies that
lim I(t) = 0. (38)
=+ oo

This completes the proof of the lemma.

Our assumption (16) implies that the three wave sheets may touch but not cross one
other, i.e. the wave sheet that corresponds to the second phase velocity lies always
between the outermost and the innermost wave sheet.

Define the n-wave u" by

u'(x, £) = [w,(5, 1)]"(x, 1) (39)

for each n=1, 2, 3, where w, is given by (27) and v indicates the inverse Fourier
transform operator. Then

3
u(x, t)= Y u'(x, t). (40)
n=1
We also define the n-kinetic energy by
K"(t) = % [ ol a3 (41)
s
and the n-strain energy by
1 .
8"(t) = EJ CijiaUy, jUi, 1 d*x (42)
R3

for each n = 1, 2, 3. The n-energy is defined by
E"(t) = K*(t) + S"(t) (43)

forn=1,2 3.
We state now and prove the basic equipartition theorem.

THEOREM. Let u(x, t) be a solution of the system

1
u — ;Cijkluk. i =0, i=123 (44)

in C3(R? x [0, + o)), satisfying the initial conditions
u(x, 0) = uo(x),  u(x, 0) = u,(x) (45)
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where u, € [HY(R?)]?, u, € [Z(R?)]?. Let v(a), i = 1, 2, 3, be the eigenvalues of the tensor

By = ¢y (46)
relative to the direction o, and assume that
inf{v;(a)|i= 1,23, 0 €83} >v,>0. (47)
Then for each n =1, 2, 3 we have
lim K"(t) = lim $"(t) = $E™(0) (48)
ta t~w

and therefore

lim K(t) = lim S(t)

= t—aw

2E(0), (49)

where K", §", E" are the kinetic, the strain and the total energy of the n-wave respectively,
and K, S, E are the corresponding energies of the elastic wave.
Proof. By Parseval’s theorem we have

1 ) 1 R
K@) =3[ plaf @x=3] plif ¢ (50)
and
S(t) = J Cijuathi, jUy, 1 d>x
2 3 ijkl%i, j¥k, 1
1 A
= ‘j Cojal — 1E;10:)(i, ) d¢
2/Rs
_1 2(a) - B - (f)* 43
_zjmr(u) B - (i)* d°¢
3
= % n;1 Juurzv’% len af daé
1 : 2,2 2 33
=3 % fmr v2|w,|? d3¢. (51)
Similarly,
1
K'(t) =3 jmplwnﬁ P n=1,273 (52)
and
S"(t)=% [ Polwd  n=123 (53)
R3
Clearly
3
K(t)= Y K(t) (54)
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and
S(t)= 2 5(e). (55)
Using the forms (27) we obtain for eachn=1,2, 3

1 . N
K"(t) = Z-'Ra[le" 0y 7+ rog e, - 0[] 4%¢

1 .
+Z ’ [|e, -y |> — riv}|e, - iig|*]cos(2 tr v,) d3¢
s

1 N

-3 | Re[rv,(e, - fo)(e, - @,)*]sin(2 tr v,) d*¢ (56)
s

and
S0 =5 [ [lew- i + roZle, - o] d%
s

—% | [len- @y | — r?v?|e, - @p]*Jcos(2 tr v,) d*¢
s

+ % ’ Re[rv,(e, - Gip)(e, - 1,)*]sin(2 tr v,) d3¢&. (57)
s

The first integral in the right side of (56) and (57) does not depend on ¢. The second and
third integral in (56) and (57) do deperd on t through the cosine and the sine factors
respectively. Since u, € [H'(R*)]?, u, € [I2(R?)]? it follows that |e, -, | r*|e, - i [?,
and r(e, - Uy)(e, - li,)* are absolutely integrable functions.

By taking the limit of (56) and (57) and applying the generalized Riemann-Lebesgue
Lemma 2 we obtain (48) and from these (49). This completes the proof of the theorem.

We remark that Eq. (48) establishes the asymptotic equipartition of kinetic and strain
energy for each wave separately and Eq. (49) establishes the same result for the corre-
sponding total energies.
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