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ASYMPTOTIC EQUIVALENCE FOR NONPARAMETRIC
REGRESSION WITH MULTIVARIATE AND RANDOM DESIGN

BY MARKUS REIß

University of Heidelberg

We show that nonparametric regression is asymptotically equivalent, in
Le Cam’s sense, to a sequence of Gaussian white noise experiments as the
number of observations tends to infinity. We propose a general constructive
framework, based on approximation spaces, which allows asymptotic equiv-
alence to be achieved, even in the cases of multivariate and random design.

1. Introduction. Nonparametric regression is the model most often encoun-
tered in nonparametric statistics because of its widespread applications. However,
for theoretical investigations, the Gaussian white noise (or sequence space) model
is often preferred since it exhibits nice mathematical properties. The common wis-
dom that statistical decisions in the two models show the same asymptotic behav-
ior was formalized and proven for the first time by Brown and Low (1996) in the
one-dimensional case, using Le Cam’s concept of equivalence of statistical exper-
iments.

In this paper, we propose a unifying framework for establishing global asymp-
totic equivalence between Gaussian nonparametric regression and white noise ex-
periments, based on constructive transitions with only minimal randomizations.
This framework not only allows concise proofs of known results, but extends the
asymptotic equivalence to the multivariate and random design situations. The mul-
tivariate result has often been alluded to, though it has never been proven; see, for
example, Hoffmann and Lepski (2002). While Brown and Zhang (1998) remark
that the regression and white noise experiments are not asymptotically equivalent
for equidistant design on [0,1]d and Sobolev classes of regularity s ≤ d/2, the
only positive result thus far, due to Carter (2006), ensures asymptotic equivalence
for equidistant design in dimensions d = 2 and d = 3 when s > d/2. The difficulty
in extending results to higher dimensions is that we have to go beyond piecewise
constant or linear approximations. For the dynamic model of ergodic diffusions,
Dalalyan and Reiß (2007) have established multidimensional asymptotic equiva-
lence with a white noise model. For the case of univariate nonparametric regres-
sion, but with non-Gaussian errors, we refer to Grama and Nussbaum (1998).
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To obtain a first insight into the problem of asymptotic equivalence for nonpara-
metric regression, let us consider the regression model

Yi = f (xi) + σεi, i = 1, . . . , n,

with an unknown function f :D ⊆ R
d → R, x1, . . . , xn ∈ D and εi ∼ N (0,1)

i.i.d. Then, using some orthonormal basis (ϕj ) of L2(D) and writing vj =
(ϕj (x1), . . . , ϕj (xn))

�, Y = (Y1, . . . , Yn)
�, the observations can be transformed

to

yj := n−1v�
j Y = n−1

n∑
i=1

f (xi)ϕj (xi) + n−1v�
j ε, j = 1, . . . , n.

The covariance matrix of (yj ) is given by σ 2�n, with �n = (v�
j vk/n)jk . On the

other hand, the model of observing the function f in Gaussian white noise of level
σ/

√
n can be written as a sequence space model with respect to the basis (ϕj ) as

follows:

zj =
∫
D

f (x)ϕj (x) dx + σ√
n
ε̃j , j = 1,2, . . . ,

with (ε̃j ) ∼ N (0,1) i.i.d. In the so-called isometric case, where we can choose
(ϕj ) such that �n is the identity matrix, we can realize the two experiments on the
same probability space, setting εj = ε̃j for j ≥ 1 and yj = σ√

n
εj for j > n, and

the total variation distance between the observation laws tends to zero for n → ∞
if and only if

lim
n→∞

n

σ 2

(
n∑

j=1

(E[yj ] − E[zj ])2 +
∞∑

j=n+1

(E[zj ])2

)
= 0.

The second term is a classical approximation error and the first term can be re-
garded as an interpolation error due to the discretization of the integral. If the con-
vergence can be shown uniformly over the class F of functions f under consider-
ation, then we shall have established asymptotic equivalence in Le Cam’s sense. In
Section 2, this isometric case is presented in a slightly more general manner, using
operator terminology. It is applied to the Haar and Fourier basis for equidistant
observations, which is the framework for the results of Brown and Low (1996) and
Rohde (2004) and which, more importantly, shows asymptotic equivalence in any
dimension d for periodic Sobolev classes of regularity s > d/2.

If �n is not the identity, we further transform to observing �
−1/2
n Y and �−1

n Y ,
respectively. The first transformation “whitens” the covariance structure such that
only the observation means have to be matched asymptotically, whereas the second
transformation better matches the mean at the cost of a heteroskedastic covariance
structure. In Section 3, this isomorphic framework is presented. The spline ap-
proach of Carter (2006) emerges as an application of the second transformation.
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The first transformation is applied to obtain a constructive asymptotic equivalence
result on the basis of wavelet multiresolution analyses, which provides equivalence
results also for nonperiodic function classes. Connections to asymptotic studies by
Donoho and Johnstone (1999) and Johnstone and Silverman (2004) for wavelet
estimators are discussed.

The case of a random design, uniform on a d-dimensional cube, is treated in
Section 4. This setting is much more involved, but can also be cast in the isomor-
phic framework. The construction is based on a two-level procedure, generalizing
an idea of Brown et al. (2002) and Brown et al. (2004). The general idea is to em-
ploy the Fourier basis and to match the means for low frequencies and the covari-
ance structure for high frequencies. The high-frequency transformation, however,
uses the Cholesky decomposition of the covariance matrix. Fine approximation
and symmetry properties of the Fourier basis then yield that also in the case of
random design asymptotic equivalence holds for Sobolev regularities s > d/2 and
any dimension d ≥ 1.

2. Isometric approximation.

2.1. General theory. We write L 2(D) := {f :D → K | ‖f ‖2
L2 := ∫ |f |2 <

∞} with K = R or K = C and L2(D) for the Hilbert space of equivalence classes
with respect to ‖ • ‖L2 . Although the observations are real-valued, we shall use
complex-valued functions for simplicity when treating Fourier approximations.

DEFINITION 2.1. Let E
d
n be the regression experiment obtained from observ-

ing

Yi = f (xi) + σεi, i = 1, . . . , n,

for n ∈ N, f :D → R in some class F d ⊆ L 2(D), where D ⊆ R
d , for fixed

design points xi ∈ D and for independent random variables εi ∼ N (0,1).

Suppose we are given an n-dimensional space Sn ⊆ L 2(D) and a linear map-
ping Dn :L 2(D) → K

n with the following isometric property on Sn:

∀gn ∈ Sn :‖gn‖L2 = ‖gn‖n := n−1/2|Dngn|Kn .(2.1)

By 〈•,•〉n, we denote the scalar product associated with ‖ • ‖n. Usually, Dng =
(g(xi))1≤i≤n will be the point evaluation at the n design points, in which case
‖g‖2

n = 1
n

∑n
i=1 |g(xi)|2 is just the empirical norm. Let us further introduce the

linear operator

In :L 2(D) → Sn, Ing := (Dn|Sn)
−1(g(x1), . . . , g(xn))

�.

For Dng = (g(x1), . . . , g(xn))
�, we also have DnIng = (g(x1), . . . , g(xn))

� and
therefore In = (Dn|Sn)

−1Dn. Consequently, in this case, In is the ‖•‖n-orthogo-
nal projection onto Sn such that Ing is the unique element of Sn interpolating g

at the design points (xi).
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To state the first results, we refer to Le Cam and Yang (2000) for the notion of
equivalence between experiments and of the Le Cam distance between two exper-
iments E and G, which, for the parameter class F , will be denoted by �F (E,G).
The Gaussian law on a Hilbert space H with mean vector μ ∈ H and covariance
operator Q :H → H will be denoted by N (μ,Q).

The regression experiment E
d
n can be transformed to a functional Gaussian shift

experiment by applying the isometry (Dn|Sn)
−1 to Y = (Yi) ∈ R

n as follows:

Z := (Dn|Sn)
−1Y = Inf + σ√

n
ζ ∈ Sn,(2.2)

where ζ := √
n(Dn|Sn)

−1ε ∼ N (0, IdSn) is a Gaussian white noise in Sn because,
for gn,hn ∈ Sn,

E[〈ζ, gn〉L2〈ζ,hn〉L2] = n−1E[〈ε,Dngn〉Kn〈ε,Dnhn〉Kn]
= 〈gn,hn〉n = 〈gn,hn〉L2 .

By adding completely uninformative observations on the orthogonal comple-
ment of Sn in L2(D), the observation of Z in (2.2) is equivalent to observing

〈ϕ,Z〉L2 = 〈ϕ,Inf 〉L2 + σ√
n
〈ϕ, ζ̄ 〉L2 ∀ϕ ∈ L2(D),

with 〈ϕ, ζ̄ 〉L2 ∼ N (0,‖ϕ‖2
L2). Here, we understand the scalar product with the

white noise ζ̄ in a weak sense, for example, realized by a Brownian motion B

(a Brownian sheet in dimension d > 1) via 〈ϕ, ζ̄ 〉L2 = ∫
D ϕ(x)dB(x). In differen-

tial notation, we have thus established the following equivalence.

PROPOSITION 2.2. Let F
d
n be the Gaussian white noise experiment in L2(D)

given by observing

dY (x) = Inf (x) dx + σ√
n

dB(x), x ∈ D,

where f ∈ F d and dB is a Gaussian white noise in L2(D). Then, the regression
experiment E

d
n is statistically equivalent to F

d
n for any functional class F d .

We are nearing the first main result.

DEFINITION 2.3. Let G
d
n be the Gaussian white noise experiment given by

observing

dY (x) = f (x) dx + σ√
n

dB(x), x ∈ D,

where f ∈ F d and dB is a Gaussian white noise in L2(D).
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THEOREM 2.4. The Le Cam distance between E
d
n and G

d
n for the class F d is

bounded by

�F d (E
d
n,G

d
n) ≤ 1 − 2�

(
−

√
n

2σ
sup

f ∈F d

‖f − Inf ‖L2

)
,

where � denotes the standard Gaussian cumulative distribution function.

REMARK 2.5. Note that ‖f − Inf ‖2
L2 = ‖f − Pnf ‖2

L2 + ‖Pnf − Inf ‖2
L2 ,

where Pn is the L2-orthogonal projection onto Sn. This means that the bound on
the Le Cam distance is always larger than the same expression involving the classi-
cal bias estimate supf ∈F d ‖f − Pnf ‖L2 . Because of �(0) = 1/2, Proposition 2.4
yields the rate estimate

�F d (E
d
n,G

d
n) � σ−1n1/2 sup

f ∈F d

‖f − Inf ‖L2 .

Here and in the sequel, A � B means A ≤ cB with a constant c > 0, independent
of the other parameters involved, and A ∼ B is an abbreviation for A � B and
B � A.

PROOF OF THEOREM 2.4. Since E
d
n and F

d
n are equivalent, it suffices to

establish the bound for �F d (Fd
n,G

d
n). The two latter experiments are realized

on the same sample space. Therefore, the Le Cam distance is bounded by the
maximal total variation distance over the class F d [Nussbaum (1996), Propo-
sition 2.2]. For Gaussian white noise, the total variation distance is given by

1 − 2�(−
√

n
2σ

‖f − Inf ‖L2) [Carter (2006), Section 3.2] and the result follows.
�

2.2. Piecewise constant approximation. The original results of Brown and
Low (1996) for equidistant design on D = (0,1] fit into the proposed isomet-
ric framework. For design points xi = i/n, i = 1, . . . , n, we consider the n-
dimensional space Sn of piecewise constant, left-continuous functions on (0,1]
with possible jumps at i/n, i = 1, . . . , n − 1. Using Dng = (g(i/n))1≤i≤n, we
obtain, for gn ∈ Sn,

‖gn‖2
n = 1

n

n∑
i=1

|gn(i/n)|2 =
n∑

i=1

∫ n

(i−1)/n
|gn(u)|2 du = ‖gn‖2

L2,

such that Dn has the isometric property. To infer asymptotic equivalence by Propo-
sition 2.4, we have to ensure that ‖f − Inf ‖L2 = o(n−1/2) uniformly over all f

in some functional class F d . Considering the Hölder class of regularity α ∈ (0,1],

FH(α,R) :=
{
f ∈ Cα([0,1])

∣∣∣ sup
x �=y

|f (x) − f (y)|/|x − y|α ≤ R

}
,
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we obtain, for f ∈ FH (α,R),

‖f − Inf ‖2
L2 =

n∑
i=1

∫ i/n

(i−1)/n
|f (x) − f (i/n)|2 dx ≤ R2(2α + 1)−1n−2α.

Consequently, asymptotic equivalence between E
1
n and G

1
n holds for any Hölder

class FH (α,R) with α > 1/2 and R > 0 arbitrary. The approximation property
of the Haar wavelet even yields asymptotic regularity for L2-Sobolev classes of
regularity α > 1/2.

For nonuniform design 0 ≤ x1 < · · · < xn ≤ 1, consider the same setting as
before, in particular, Dng = (g(i/n))i �= (g(xi))i . We obtain, for f ∈ FH(α,R),

‖f − Inf ‖2
L2 =

n∑
i=1

∫ i/n

(i−1)/n
|f (x) − f (xi)|2 dx

≤ R2
n∑

i=1

∫ i/n

(i−1)/n
|x − xi |2α dx

≤ R2n−1
n∑

i=1

(n−1 + |xi − i/n|)2α

≤ 2R2n−2α + 2R2n−1
n∑

i=1

|xi − i/n|2α.

By Theorem 2.4, we have obtained the following result.

THEOREM 2.6. On the Hölder class FH(α,R), the Le Cam distance between
nonparametric regression with design 0 < x

(n)
1 < · · · < x

(n)
n ≤ 1 and the white

noise experiment satisfies

�FH (α,R)(E
1
n,G

1
n) � σ−1R

(
n1−2α +

n∑
i=1

∣∣x(n)
i − i/n

∣∣2α

)1/2

.

Consequently, asymptotic equivalence holds whenever α ∈ (1/2,1] and the de-
sign satisfies limn→∞

∑n
i=1 |x(n)

i − i/n|2α = 0, for example, if maxi |x(n)
i − i/n| =

o(n−1/(2α)).

REMARK 2.7. This approach does not permit the establishment of global
equivalence for the random design case in Section 4 because the standard devi-
ations of the order statistics X(j) only decrease with rate n−1/2. Treating the ran-
dom design as if equidistant nevertheless yields, for estimation purposes, nearly
optimal asymptotic L2-risk when α > 1/2 [Cai and Brown (1999)].
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2.3. Fourier series approximation. In the case of D = [0,1]d , d ≥ 1, and of
an equidistant design (k/m)k∈{1,...,m}d with m = n1/d ∈ N and odd, the Fourier
system (ι := √−1)

ϕ�(x) := exp(2πι〈x, �〉), � = (�1, . . . , �d), |�|∞ := max
i

|�i | ≤ m − 1

2
,

is not only L2-orthonormal, but also orthonormal with respect to 〈•,•〉n for
Dng := (g(k/m))k :

〈ϕ�,ϕ�′ 〉n = 1

n

∑
k∈{1,...,m}d

ϕ�(k/m)ϕ�′(k/m)

= m−d
m∑

k1,...,kd=1

d∏
i=1

exp
(
2πιki(�i − �′

i )/m
)

(2.3)

=
d∏

i=1

(
1

m

m∑
κ=1

exp
(
2πικ(�i − �′

i )/m
))

=
{

1, if m|(�i − �′
i ) for all i,

0, otherwise.

Consequently, the space of trigonometric polynomials Sn := span(ϕ�, |�|∞ ≤
m−1

2 ) satisfies the isometric property (2.1).
The periodic Sobolev class of regularity s and radius R on [0,1]d is given by

F d
S,per(s,R) :=

{
f ∈ L2([0,1]d)

∣∣∣∣∣
∑
�∈Zd

|�|2s∞

∣∣∣∣∣〈f,ϕ�〉|2L2 ≤ R2

}
.

Due to the strong cancellation property (2.3) of the scalar product 〈•,•〉n, we ex-
plicitly derive (Inf )(x) = ∑

|�|∞≤(m−1)/2(
∑

k∈Zd 〈f,ϕ�+km〉L2)ϕ�(x). In view of
Remark 2.5, we first bound the classical bias:

sup
f ∈F d

S,per(s,R)

‖f − Pnf ‖2
L2 = sup

f ∈F d
S,per(s,R)

∑
|�|∞≥(m+1)/2

|〈f,ϕ�〉L2 |2

= R2
(

m + 1

2

)−2s

.

For s > d/2, we obtain, using the Cauchy–Schwarz inequality,

sup
f ∈F d

S,per(s,R)

‖Pnf − Inf ‖2
L2

= sup
f ∈F d

S,per(s,R)

∑
|�|∞≤(m−1)/2

( ∑
k∈Zd\{0}

〈f,ϕ�+km〉L2

)2
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≤
(

sup
f ∈F d (s,R)

∑
|�|∞≤(m−1)/2

∑
k∈Zd\{0}

|� + km|2s∞〈f,ϕ�+km〉2
L2

)

×
(

sup
|�|∞≤(m−1)/2

∑
k∈Zd\{0}

|� + km|−2s∞

)

= R2 sup
|�|∞≤(m−1)/2

∑
k∈Zd\{0}

|� + km|−2s∞ .

Noting that the grid points �+km do not overlap and that m−1|�+km|∞ ≥ |k|∞ −
1/2 for the values of � and k considered, we arrive at

sup
f ∈F d

S,per(s,R)

‖Pnf − Inf ‖2
L2

≤ R2m−2s
∑

k∈Zd\{0}
|k − 1/2|−2s∞

= R2m−2s
∞∑

k=1

(
(2k + 1)d − (2k − 1)d

)
(k − 1/2)−2s .

Hence, using Theorem 2.4, we have proven the following result, which extends the
scalar results of Brown and Low (1996) and, more specifically, Rohde (2004) to
any dimension d ≥ 1.

THEOREM 2.8. For d-dimensional periodic Sobolev classes F d
S,per(s,R) with

regularity s > d/2 and equidistant design on the cube [0,1]d , the nonparametric
regression experiment E

d
n and the Gaussian shift experiment G

d
n are asymptotically

equivalent as n → ∞. The Le Cam distance satisfies

�F d
S,per(s,R)(E

d
n,G

d
n) � σ−1Rn1/2−s/d .

3. Isomorphic approximation.

3.1. General theory. We extend the preceding framework by merely requir-
ing an isomorphic property. Since it will suffice for the subsequent applications,
we immediately specialize here to Dng = (g(x1), . . . , g(xn)). Let Sn ⊆ L 2(D),
dimSn = n, have the property

∀gn ∈ Sn :gn(x1) = · · · = gn(xn) = 0 �⇒ gn = 0.(3.1)

Let

〈f,g〉n := 1

n

n∑
i=1

f (xi)g(xi) and 〈v, g〉n := 1

n

n∑
i=1

vig(xi),

f, g ∈ L 2, v ∈ R
n
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and ‖g‖2
n = 〈g,g〉n. In this notation, equation (3.1) is equivalent to the isomorphy

of the norms ‖ • ‖n and ‖ • ‖L2 on Sn:

∃An,Bn > 0 ∀gn ∈ Sn :An‖gn‖L2 ≤ ‖gn‖n ≤ Bn‖gn‖L2 .(3.2)

We choose any L2-orthonormal basis (ϕj )1≤j≤n of Sn and introduce the linear
mappings �n,In :L 2(D) → Sn, �n :Sn → Sn:

�ng :=
n∑

j=1

〈g,ϕj 〉nϕj , �n := �n|Sn :Sn → Sn, Ing := �−1
n �ng.

Observe the following properties: 〈�ngn,hn〉L2 = 〈gn,hn〉n holds for gn,hn ∈ Sn;
‖�n‖L2→L2 ≤ Bn and ‖�−1

n ‖L2→L2 ≤ A−1
n ; In is a projection onto Sn (i.e.,

InIng = Ing, but it is not an L2-orthogonal projection) and Ing interpolates
g at the points (xi); �n and In are independent of the choice of basis (ϕj ).

The regression experiment E
d
n can be transformed to a functional Gaussian shift

by expanding the observations (Yi) in the basis (ϕj ),

Z1 :=
n∑

j=1

〈Y,ϕj 〉nϕj = �nf + σ√
n
�1/2

n ζ ∈ Sn,(3.3)

with Gaussian white noise ζ := �
−1/2
n (

√
n

∑n
j=1〈εj , ϕj 〉nϕj ) ∼ N (0, IdSn) be-

cause

E[〈ζ, gn〉L2〈ζ,hn〉L2] = 〈�−1/2
n gn,�

−1/2
n hn〉n = 〈gn,hn〉L2, gn, hn ∈ Sn.

By applying �
−1/2
n and �−1

n , respectively, we conclude that the regression exper-
iment E

d
n is also equivalent to observing with ζ ∼ N (0, IdSn)

Z2 = �−1/2
n Z1 = �1/2

n Inf + σ√
n
ζ ∈ Sn,(3.4)

Z3 = �−1
n Z1 = Inf + σ√

n
�−1/2

n ζ ∈ Sn.(3.5)

THEOREM 3.1. The regression experiment E
d
n is equivalent to each of the ex-

periments given by observing Z1 in (3.3), Z2 in (3.4) and Z3 in (3.5), respectively.
The Le Cam distance between E

d
n and G

d
n for the class F d satisfies the bounds

�F d (E
d
n,G

d
n) ≤ 1 − 2�

(
−

√
n

2σ
sup

f ∈F d

‖f − �1/2
n Inf ‖L2

)
,(3.6)

�F d (E
d
n,G

d
n) ≤ 1 − 2�

(
−

√
n

2σ
sup

f ∈F d

‖f − Inf ‖L2

)
(3.7)

+ √
2‖�−1

n − IdSn‖HS,

where ‖ • ‖HS denotes the Hilbert–Schmidt norm of an operator.
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PROOF. It remains to prove the second part. The first bound (3.6) follows from
the equivalence with observing Z2, by the same arguments as for Theorem 2.4. To
establish (3.7), we use the fact that the Hellinger distance between two multivariate
normal distributions with the same mean satisfies

H 2(N(μ,αQ),N(μ,α IdRn)) ≤ 2‖Q − IdRn ‖2
HS, Q ∈ R

n×n,α > 0,(3.8)

which follows from, for example, Lemma 3 of Brown, Cai, Low and Zhang
(2002) via the diagonalization Q = O� diag(λ1, . . . , λn)O and the property ‖Q −
IdRn ‖2

HS = ‖O(Q − IdRn)O�‖2
HS = ∑n

i=1 λ2
i . Therefore, the total variation dis-

tance between the laws of Z3 and Z4 := Inf + σ√
n
ζ is bounded by

‖L (Z3) − L (Z4)‖TV ≤ H(L (Z3),L (Z4)) ≤ √
2‖�−1

n − IdSn‖HS.

The by now standard arguments yield, with obvious notation,

�F d (E
d
n,G

d
n) = �F d (Z3,G

d
n) ≤ �F d (Z4,G

d
n) + �F d (Z4,Z3)

≤ 1 − 2�

(
−

√
n

2σ
sup

f ∈F d

‖f − Inf ‖L2

)
+ √

2‖�−1
n − IdSn‖HS,

as asserted. �

3.2. Linear spline approximation. Let us briefly explain how the approach of
Carter (2006) fits into the isomorphic framework. As in Section 2.3, we consider
equidistant design points (k/m)k∈{1,...,m}d with m = n1/d ∈ N and periodic func-
tions on the unit cube D = [0,1]d . The space Sn is spanned by the periodized and
tensorized linear B-splines

bk(x) = bk(x1, . . . , xd) =
d∏

r=1

b̄(mxr − kr mod 1),

b̄ := 1[−1/2,1/2] ∗ 1[−1/2,1/2],

indexed by k ∈ {1, . . . ,m}d . For α ∈ (1,2], it is well known [cf. De Boor (2001)]
that interpolation on Sn for the periodic Hölder class

F d
H,per(α,R) :=

{
f ∈ Cα(Rd) | f Z

d -periodic,

sup
x �=y

|∇f (x) − ∇f (y)|/|x − y|α−1 ≤ R

}

satisfies the estimate

sup
f ∈F d

H,per(α,R)

‖f − Inf ‖L2([0,1]d ) � Rn−α/d .(3.9)
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On the other hand, we have, for gn ∈ Sn,

‖gn‖2
L2 =

∥∥∥∥∥
∑

k∈{1,...,m}d
gn(k/m)bk

∥∥∥∥∥
2

L2

= ∑
k,�∈{1,...,m}d

〈bk, b�〉L2gn(k/m)gn(�/m)

with 〈bk, b�〉L2 = 0 for |k − �|∞ > 1 and 〈bk, b�〉L2 = 4#{r:kr=�r }/(6dn) for
|k−�|∞ ≤ 1. Since

∑
�〈bk, b�〉L2 = 〈bk,1〉L2 = n−1, a weighted Cauchy–Schwarz

inequality yields

‖gn‖2
L2 ≤ n−1

∑
k∈{1,...,m}d

gn(k/m)2 = 〈gn, gn〉n = 〈�ngn, gn〉L2

and we conclude, using the ordering of symmetric operators, that �−1
n ≤ IdSn .

Adding independent Gaussian noise η ∼ N (0, σ 2

n
(IdSn −�−1

n )) to the observa-
tion Z3 in (3.5), we infer that the regression experiment E

d
n is more informative

than observing

Z5 := Z3 + η = Inf + σ√
n
ζ̃ ∈ Sn(3.10)

with Gaussian white noise ζ̃ := �
−1/2
n ζ + n1/2σ−1η ∼ N (0, IdSn). This random-

ization, together with estimate (3.9), shows that the regression experiment E
d
n is

asymptotically at least as informative as the Gaussian experiment G
d
n on Hölder

classes F d
per(α,R) with α > d/2 and d ∈ {1,2,3}. Together with an (easier) ran-

domization in the other direction and a more sophisticated boundary treatment for
nonperiodic function classes, this reproduces the proof in Carter (2006) for as-
ymptotic equivalence of regression and white noise experiments in dimensions 2
and 3. For B-splines of higher order, the interpolation property bk(i/m) = δk,i gets
lost and �−1

n ≤ IdSn cannot be shown, so a more refined analysis is needed. This
will be accomplished in the next section for a similar approach using compactly
supported wavelets.

3.3. Wavelet multiresolution analysis.

The construction. Let us assume an equidistant dyadic design (k2−j )k∈{1,...,2j }d
with n = 2dj points for some j ∈ N and D = [0,1]d . We consider a wavelet
multiresolution analysis (Vj )j≥0 on L2([0,1]d) obtained by means of periodiza-
tion and tensor products. Let ϕ̄ be a standard orthonormal scaling function of an
r-regular multiresolution analysis for L2(R), that is, (ϕ̄(•+k))k∈Z forms an ortho-
normal system in L2(R) and satisfies

∫
ϕ̄ = 1, as well as the polynomial exactness

condition that
∑

k∈Z kqϕ̄(x − k)− xq is a polynomial of maximal degree q − 1 for
all q = 0, . . . ,R − 1 [Cohen (2000), Theorem 16.1]. We suppose that ϕ̄ has com-
pact support in [−S + 1, S], as in Daubechies’ construction, so that the functions
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ϕjk : [0,1]d → R, j ≥ 1, k ∈ {1, . . . ,2j }d , with

ϕjk(x1, . . . , xd) := ∑
m∈Zd

2jd/2
d∏

i=1

ϕ̄(2j xi − ki + 2jmi),

are well defined and form an orthonormal system in L2([0,1]d) [Wojtaszczyk
(1997), Proposition 2.21]. We set S2jd := Vj := span{ϕjk | k ∈ {1, . . . ,2j }d}.

Periodic approximation. Polynomial exactness and continuity of ϕ̄ imply, for
q = 0, . . . ,R − 1 and any x ∈ R [Sweldens and Piessens (1993)]∑

m∈Z

(x + m)qϕ̄(x + m) =
∫ ∞
−∞

xqϕ̄(x) dx.

This identity is fundamental for our purposes because it implies the following fact:
for Z

d -periodic functions h : Rd → R that coincide with a polynomial p of maxi-
mal degree R − 1 on

∏d
i=1[2−j (ki − S − 1),2−j (ki + S)], we have

〈h,ϕjk〉L2 = ∑
m∈Zd

2jd/2
∫
[0,1]d

h(x)

d∏
i=1

ϕ̄
(
2j (xi + mi) − ki

)
dx

= 2jd/2
∫

Rd
h(x)

d∏
i=1

ϕ̄(2j xi − ki) dx

= 2−jd/2
∫
[−S−1,S]d

p
(
2−j (x + k)

) d∏
i=1

ϕ̄(xi) dx

= 2−jd/2
∑

m∈Zd

p
(
2−j (m + k)

) d∏
i=1

ϕ̄(mi)

= 2−jd/2
∑

m∈{1,...,2j }d
h(2−jm)ϕjk(2

−jm).

Hence, 〈h,ϕjk〉L2 = n1/2〈h,ϕjk〉n, with n = 2jd . For any Z
d -periodic function

g ∈ Hs
S,per([0,1]d) with s ∈ (d/2,R), this local polynomial reproduction property

implies by standard, but sophisticated, arguments [Cohen (2000), Theorem 30.6]
that

‖g − �ng‖L2 � 2−js‖g‖Hs = n−s/d‖g‖Hs ,(3.11)

where ‖•‖Hs denotes the standard L2-Sobolev norm of regularity s on [0,1]d . We
split the bias term in (3.6) and obtain, by functional calculus,

‖f − �−1/2
n �nf ‖L2 ≤ ‖f − �nf ‖L2 + ‖�nf − �−1/2

n �nf ‖L2

= ‖f − �nf ‖L2 + ‖H(�n)(Id−�n)�nf ‖L2,
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with H : R+ → R, H(x) := 1/(x + x1/2) = (x−1/2 − 1)/(1 − x). Since H de-
creases monotonically and H(x) ≤ x−1/2, we have ‖H(�n)‖L2→L2 ≤ λ

−1/2
min , λmin

being the smallest eigenvalue of �n.
For n = 2jd ≥ 2S − 1, the operator �n satisfies the following scaling property:

〈�nϕjk, ϕj�〉L2 = 1

n

∑
ν∈{1,...,2j }d

ϕjk(ν2−j )ϕj�(ν2−j )

= ∑
m∈Zd

∑
ν∈{1,...,2j }d

d∏
a=1

(
ϕ̄

(
(ν − k + 2jm)a

)
ϕ̄

(
(ν − � + 2jm)a

))

=
d∏

a=1

(∑
b∈Z

ϕ̄(b − ka)ϕ̄(b − �a)

)
.

Since ϕ̄ has compact support, the series is just a finite sum and �n has
a bounded Toeplitz matrix representation in terms of (ϕjk). Using Fourier
multipliers, it follows that 〈�ngn, gn〉L2 ≥ A2

ϕ̄‖gn‖2
L2 , gn ∈ Sn, with Aϕ̄ :=

infu∈[0,2π ] |∑k∈Z ϕ̄(k)eιku|d , independently of n. Due to the compact support of
ϕ̄, we have Aϕ̄ > 0 if and only if the trigonometric polynomial

∑
k∈Z ϕ̄(k)eιku,

u ∈ [0,2π ], does not vanish. It is well known [Sweldens and Piessens (1993),
Lemma 3] that this is exactly the condition needed to ensure that the multires-
olution analysis is also generated by an interpolating scaling function. It can
be checked for standard Daubechies scaling functions, for example, by showing
|ϕ̄(k0)| >

∑
k′ �=k0

|ϕ̄(k′)| for some k0 ∈ Z. Moreover, gaining more flexibility by
considering the shifted spaces based on ϕ̄τ = ϕ̄(• − τ), τ ∈ (0,1), a wavelet mul-
tiresolution analysis will almost always satisfy Aϕ̄τ > 0 for some value of τ [cf.
Sweldens and Piessens (1993) and the references therein].

We arrive at

‖f − �−1/2
n �nf ‖L2 ≤ ‖f − �nf ‖L2 + A

−1/2
ϕ̄ ‖(Id−�n)�nf ‖L2 .

Because of ‖�nf ‖Hs → ‖f ‖Hs [Cohen (2000), Theorem 30.7], we derive
from (3.11) the uniform estimate over f ∈ F d

S,per(s,R),

‖f − �−1/2
n �nf ‖L2 ≤ ‖f − �nf ‖L2 + A

−1/2
ϕ̄ ‖(Id−�n)�nf ‖L2 � Rn−s/d .

Hence, the estimate in (3.6) yields asymptotic equivalence between the regression
and the white noise experiment for any class F d

S,per(s,R) with s > d/2.
This result provides another way to construct explicitly the transformation be-

tween the regression and the white noise setting. It has no more theoretical implica-
tions than the Fourier basis approach, but it paves the way for proving asymptotic
equivalence for nonperiodic function classes.
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Nonperiodic approximation. Since every ϕjk has support of length 2−j (2S −
1), only those functions ϕjk with kr ∈ {1, . . . , S − 2} ∪ {2j − S + 1, . . . ,2j } for
some r = 1, . . . , d cross the boundary and are periodized at all. Therefore, the
same derivation using only interior scaling functions shows that the regression
experiment E

d
n for the general Sobolev function class

F d
S (s,R) := {f ∈ Hs([0,1]d) | ‖f ‖Hs ≤ R}

is asymptotically more informative than the restricted white noise experiment Ḡ
d
n

given by observing

dY (x) = f (x) dx + σ√
n

dB(x),

(3.12)
x ∈ [δn,1 − δn]d with δn := (2S − 1)n−1/d .

Although Ḡ
d
n is a priori less informative than G

d
n , we may use classical extrapola-

tion, for example, the Taylor polynomial T
y
f of order �s� around y ∈ [δn,1 − δn]d .

At the points x ∈ [0,1]d \ [δn,1− δn]d , we define the extrapolation f̃ (x) = T
yx

f (x)

for a point yx ∈ [δn,1 − δn]d with |yx − x|∞ ≤ 2δn, selected in a measurable way,
and f̃ (x) = f (x) otherwise. We thereby achieve(∫

[0,1]d
|f̃ (x) − f (x)|2 dx

)1/2

� Rn−s/d

such that �F d
S (s,R)(Ḡ

d
n,G

d
n) � σ−1Rn1/2−s/d . This means that Ḡ

d
n and G

d
n are

asymptotically equivalent for s > d/2 and we have obtained a result for function
classes without a periodicity condition.

THEOREM 3.2. For general d-dimensional Sobolev classes F d
S (s,R) with

regularity s > d/2 and equidistant design on the cube [0,1]d , the nonparametric
regression experiment E

d
n and the Gaussian white noise experiment G

d
n are asymp-

totically equivalent as n → ∞. The Le Cam distance satisfies

�F d
S (s,R)(E

d
n,G

d
n) � σ−1Rn1/2−s/d .

Discussion. The property that a wavelet estimator based on an equidistant re-
gression model and a corresponding estimator based on a white noise model are
asymptotically close is well known [see, e.g., Donoho and Johnstone (1999) and
Johnstone and Silverman (2004)]. Interestingly, both papers show identical as-
ymptotics of the L2-risk for standard estimators uniformly over balls in Besov
spaces Bs

p,q([0,1]) with s > 1/p or s = p = 1. Since Bs
p,q embeds in the Sobolev

space Hσ for s > σ and s − 1/p > σ − 1/2, Theorem 3.2 provides, more gen-
erally, asymptotic equivalence for Besov classes with s > 1/p and p < 2. The
counterexample in Brown and Low (1996) shows, however, that for s ≤ 1/2 and
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all p ∈ [1,∞], asymptotic equivalence breaks down. Similarly, if ψ ∈ B1
1,1 is a

function with support in (0,1) and ‖ψ‖L2 = 1, then ψn(x) := ψ(nx) has sup-
port in (0,1/n), L2-norm ‖ψn‖L2 = n−1/2 and Besov norm ‖ψn‖B1

1,1
∼ 1. Hence,

testing the signal f = 0 versus f = ψn has nontrivial power in the white noise
model G

1
n, while both signals generate exactly the same observations in the re-

gression model E
1
n. We conclude that G

1
n and E

1
n are not asymptotically equivalent

on Besov classes with s = 1, p = 1. An intriguing example for the important class
of bounded variation functions is given by ψn(x) = √

21[1/4n,3/4n](x). Asymptotic
equivalence between Gaussian regression and white noise is indeed an L2-theory
and we cannot gain by measuring smoothness in an Lp-sense, p �= 2.

Let us also mention that the (asymptotically negligible) loss in information due
to neglecting boundary coefficients in the construction seems unavoidable. The
wavelets on an interval [Cohen, Daubechies and Vial (1993)] use nonorthogonal
boundary corrections and can therefore not be used, while the Coiflet approach of
Johnstone and Silverman (2004) also involves some information loss at the bound-
ary (cf. their remark on dimensions before Proposition 2).

4. Random design.

4.1. The general idea. Denote by U([0,1]d) the uniform distribution on the
cube D = [0,1]d .

DEFINITION 4.1. Let E
d
n,r be the compound experiment obtained by observ-

ing independent random design points Xi ∼ U([0,1]d), i = 1, . . . , n, and the re-
gression

Yi = f (Xi) + σεi, i = 1, . . . , n,

for n ∈ N and f : [0,1]d → R in some class F d ⊆ L 2([0,1]d) and with i.i.d.
random variables εi ∼ N (0,1), independent of the design.

We place ourselves in the isomorphic setting, that is, we are given an
L2([0,1]d)-orthonormal basis (ϕj )j≥1 and we set Sn = span(ϕ1, . . . , ϕn). For the
moment, we merely assume that Sn is chosen to satisfy the isomorphic condi-
tion (3.1), given the random design points (Xi)1≤i≤n. Later, certain parts will rely
on fine properties of the Fourier basis. Conditionally on the design, the regression
experiment is equivalent to observing

Z1 :=
n∑

j=1

〈Y,ϕj 〉nϕj = �nf + σ√
n
�1/2

n ζ ∈ Sn,

with white noise ζ ∼ N(0, IdSn). Let us briefly comment on why the forego-
ing approaches using Z2 in (3.4) or Z3 in (3.5) will not succeed here. For
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Z2 = �
−1/2
n Z1, we need to have ‖(�1/2

n − Id)Inf ‖L2 and ‖Inf − f ‖L2 of
smaller order than n−1/2. The second property can be ensured for Sobolev classes
of regularity s > d/2 as before. The first property, however, will not hold. By
empirical process theory, we have, for g1, g2 ∈ Sn, approximately 〈�ng1, g2〉L2 =
〈g1, g2〉n ≈ 〈g1, g2〉L2 + n−1/2 ∫

g1g2dB0 with a Brownian bridge B0. By the lin-
earization (1 + h)1/2 − 1 ≈ h/2 and taking expectation with respect to the random
design, we find

E[‖(�1/2
n − Id)Inf ‖2

L2] ∼ E

[
n∑

j=1

∣∣∣∣n−1/2
∫

(Inf )ϕj dB0
∣∣∣∣
2
]

∼ n−1
n∑

j=1

∫
|ϕj |2|Inf |2.

Hence, in the mean over the random design, this term does not tend to zero. When
considering Z3 = �−1

n Z1, we would need ‖�−1
n − IdSn ‖HS → 0 [cf. (3.7)], but the

mean over this term is, by the same approximations, of order n. The main defect
in these approaches is that we do not take advantage of the regularity of f .

The new idea generalizes the two-level procedure of Brown et al. (2002)
and Brown et al. (2004) and can be interpreted as a localization approach, as
in Nussbaum (1996). We choose an intermediate level n0 < n and split Sn =
Sn0 + Un

n0
with the ‖ • ‖n-orthogonal complement Un

n0
of Sn0 in Sn. On the low-

frequency space Sn0 , we use the empirical orthogonal projection P n
n0

Y of the data
onto Sn0 . This construction is analogous to Z3 in (3.5), and the heteroskedasticity
in the noise term will become asymptotically negligible provided n0 = o(n1/2).

On the high-frequency part Un
n0

of Sn, we transform to a Gaussian shift with
white noise, which is independent of the noise in Sn0 , in the spirit of Z2 in (3.4).
In order to take advantage of the regularity of f , however, we do not use the
standard square root operator �

−1/2
n to whiten the noise, but the adjoint T ∗ of an

operator T :Sn → Sn which has an upper triangular matrix representation in the
basis (ϕj ) and satisfies T T ∗ = �−1

n (as in the Cholesky decomposition). Since

T ∗ is a unitary transformation of �
−1/2
n , the noise part remains white. Due to

the triangular structure, the signal coefficients 〈T ∗�nf,ϕj 〉L2 = 〈T −1Inf,ϕj 〉L2

do not involve the (usually large) coefficients 〈Inf,ϕk〉L2 for indices k smaller
than j . Moreover, for the Fourier basis, the other off-diagonal matrix entries of
T −1 are centred and uncorrelated. The deviations in the diagonal entries grow
with the frequencies, but are exactly counterbalanced by the decay of the Fourier
coefficients for Sobolev function classes. Provided n0 → ∞, this high-frequency
transformation will imply asymptotic equivalence.

4.2. The main result. Let us specify the transformation T concretely based
on the Gram–Schmidt procedure for orthonormalization with respect to ‖ • ‖n.
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For j ≤ n, denote by Pj , P n
j :Sn → Sn the L2-orthogonal and ‖ • ‖n-orthogonal

projections onto Sj , respectively, and set P n
0 := 0. We obtain an ‖•‖n-orthonormal

basis (ϕn
j ) of Sn via

ϕn
j := ϕj − P n

j−1ϕj

‖ϕj − P n
j−1ϕj‖n

, j = 1, . . . , n.

ϕn
j is then in Sj and the ‖ • ‖n-orthogonality ϕn

j ⊥n Sj−1 holds. Defining T :Sn →
Sn via T ϕj := ϕn

j , we see that T satisfies 〈T ϕj ′, ϕj 〉L2 = 0 for j > j ′ and is an

isometry between (Sn,‖ • ‖L2) and (Sn,‖ • ‖n) such that �n = (T T ∗)−1. The
noise terms (〈ε,ϕn

j 〉n)1≤j≤n ∼ N (0, n−1) are therefore independent and

P n
n0

ε :=
n0∑

j=1

〈ε,ϕn
j 〉nϕn

j =
n0∑

j=1

〈ε,ϕn
j 〉nT ϕj ∼ N (0, n−1T |Sn0

T |∗Sn0
).

Using T |Sn0
T |∗Sn0

= �−1
n0

, we introduce the rescaled covariance operator �n :Sn →
Sn via

�ngn := �−1
n0

Pn0gn + (IdSn −Pn0)gn, gn ∈ Sn.

The regression experiment is then transformed to observing

Zr :=
n0∑

j=1

〈Y,ϕn
j 〉nϕn

j +
n∑

j=n0+1

〈Y,ϕn
j 〉nϕj ∈ Sn

(4.1)
= P n

n0
f + T −1(P n

n − P n
n0

)f + n−1/2σ�
1/2
n ζ ∈ Sn

with Gaussian white noise ζ ∼ N(0, IdSn), conditional on the random design.

EXAMPLE 4.2. Let us consider the Haar basis. Write Ijk = [2−j k,

2−j (k + 1)), Njk = #{i :Xi ∈ Ijk} and ψjk = 2j/2(1Ij+1,2k
− 1Ij+1,2k+1) for j ≥ 0,

k = 0, . . . ,2j −1. By construction, the transformed basis function ψn
jk has support

Ijk , is constant on Ij+1,2k , Ij+1,2k+1 and satisfies 〈ψn
jk,1Ijk

〉n = 0, ‖ψn
jk‖n = 1.

We infer that

ψn
jk = Cjk(N

−1
j,2k1Ij,2k

− N−1
j,2k+11Ij,2k+1), C2

jk = nNj+1,2kNj+1,2k+1/Njk.

This application of our framework has been used previously in one-dimensional
constructions [Brown et al. (2002), equation (2.8)]. Because here Sn is not isomor-
phic for most design realizations, additional randomizations are needed.

For the following general d-dimensional theorem, we consider the construc-
tion (4.1) in terms of the Fourier basis functions ϕj (x) = exp(2πι〈�(j), x〉), with
an enumeration � : N → Z

d of Z
d satisfying |�(j)|�2 ≤ |�(j ′)|�2 for j ≤ j ′ (i.e.,

sorted in the order of magnitudes of the frequencies).
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THEOREM 4.3. For d-dimensional periodic Sobolev classes F d
S,per(s,R) with

regularity s > d/2, the nonparametric regression experiment E
d
n,r with random

design and the Gaussian shift experiment G
d
n are asymptotically equivalent as

n0, n → ∞ and n0 = o(n1/2). The Le Cam distance satisfies

�F d
S,per(s,R)(E

d
n,r ,G

d
n) � n−1/2n0 + σ−1Rn

1/2−s/d
0 .

REMARK 4.4. The asymptotically optimal choice of n0 is given by n0 ∼

nd/(2s+d), which yields a bound on the Le Cam distance of order n(d−2s)/(2d+4s).
Note that this choice n0 ∼ nd/(2s+d) corresponds exactly to the optimal dimen-
sion of the approximation spaces in nonparametric regression and is also used by
Gaiffas (2007) for his two-level construction of optimal confidence bands. It can
be shown that even for parametric linear regression, the Le Cam distance between
equidistant and random design is of order n−1/2 and not smaller.

PROOF OF THEOREM 4.3. In order to bound the Le Cam distance for com-
pound experiments, we use the fact that for distributions K ⊗ P and K ′ ⊗ P ,
defined on (� × �′,F ⊗ F ′) by the measure P on F and the Markov kernels
K,K ′ from � to F ′, the total variation distance can be calculated by conditioning:

‖K ⊗ P − K ′ ⊗ P‖TV(F⊗F ′) =
∫

‖K(ω,•) − K ′(ω,•)‖TV(F ′)P (dω).

Therefore, we can first work conditionally on the design and then take expectations
for (Xi). Moreover, the white noise experiment G

d
n is equivalent to the compound

experiment of G
d
n and the observation of the random design points because the

latter is a trivial randomization of G
d
n .

It is a remarkable property of the Fourier basis that Sn is almost surely isomor-
phic [cf. Theorem 1.1 of Bass and Gröchenig (2004)]. In Proposition 4.8 below,
we prove that the event

�n
j := {∀g ∈ Sj : 1

2‖g‖L2 ≤ ‖g‖n ≤ 2‖g‖L2
}

(4.2)

for j log(j) = o(n) even satisfies P((�n
j )

�) → 0 with a convergence rate faster
than any polynomial in n. This is much tighter with respect to the subspace di-
mension than what can be derived from Bass and Gröchenig (2004). In order to
establish asymptotic equivalence, it therefore suffices to estimate the total varia-
tion distances on the event �n

n0
.

By (4.1), the regression experiment E
d
n,r is equivalent to observing Zr together

with the design. Introducing

Z̄r := Pnf + σn−1/2ζ ∈ Sn,(4.3)

we shall prove in a moment that (with obvious notation)

�F d
S,per(s,R)(Zr, Z̄r) � n−1/2n0 + σ−1Rn

1/2−s/d
0 ,(4.4)
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but then it follows that observing Z̄r is equivalent to observing

dY (x) = Pnf (x) + σn−1/2 dB(x), x ∈ [0,1]d,

which has a total variation distance to the Gaussian shift G
d
n of order σ−1n1/2‖f −

Pnf ‖L2 � σ−1n1/2−s/d‖f ‖Hs . Using the triangle inequality for the Le Cam
distance between the intermediate experiments, we arrive at the bound for
�F d

S,per(s,R)(E
d
n,r ,G

d
n).

To obtain (4.4), we take expectations over the design and split

E[‖L (Zr) − L (Z′
r )‖2

TV1�n
n0

] � I + II + III,

with the terms

I := nσ−2E[‖(P n
n0

− Pn0)f ‖2
L21�n

n0
] (difference in mean on Sn0),

II := E[‖�−1
n0

− IdSn0
‖2

HS1�n
n0

] (heteroskedasticity on Sn0),

III := nσ−2E
[∥∥(

T −1(P n
n − P n

n0
) − (Pn − Pn0)

)
f

∥∥2
L21�n

n0

]
(difference in mean on S

⊥
L2

n0 ).

Term I. Using the projection properties, we obtain, on �n
n0

, that

‖(P n
n0

− Pn0)f ‖2
L2 = ‖P n

n0
(Id−Pn0)f ‖2

L2 ≤ 4‖P n
n0

(Id−Pn0)f ‖2
n.

Because of E[〈ϕk,ϕ
n
j 〉n〈ϕk′, ϕn

j 〉n] = 0 for k �= k′, k, k′ > j by Proposition 4.5
below, an expansion in the basis (ϕn

j ) yields

E[‖P n
n0

(Id−Pn0)f ‖2
n] =

n0∑
j=1

∞∑
k=n0+1

|〈f,ϕk〉L2 |2E[|〈ϕk,ϕ
n
j 〉n|2]

=
∞∑

k=n0+1

|〈f,ϕk〉L2 |2E[‖P n
n0

ϕk‖2
n].

Proposition 4.9 below yields E[‖P n
n0

ϕk‖2
n] � k/n and hence

I � σ−2
∞∑

k=n0+1

|〈f,ϕk〉L2 |2k � σ−2n
1−2s/d
0 ‖f ‖2

Hs .

Term II. Using ‖�−1
n0

‖L2→L2 ≤ 4 on �n
n0

, we find that

E[‖�−1
n0

− IdSn0
‖2

HS1�n
n0

] ≤ E[‖�−1
n0

‖L2→L2‖�n0 − IdSn0
‖2

HS1�n
n0

]
≤ 4E[‖�n0 − IdSn0

‖2
HS]
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= 4
n0∑

j,j ′=1

E[|〈ϕj ,ϕj ′ 〉n − δj,j ′ |2]

≤ 4n−1
n0∑

j,j ′=1

∫
|ϕj |2|ϕj ′ |2.

For the Fourier basis, we obtain II ≤ 4n−1n2
0.

Term III. Let us write f = f0 + f1 + f2 with f0 = Pn0f , f1 = (Pn − Pn0)f ,
f2 = (Id−Pn)f . The projection properties then imply that

E
[∥∥(

T −1(P n
n − P n

n0
) − (Pn − Pn0)

)
f

∥∥2
L21�n

n0

]
= E[‖T −1f1 + T −1P n

n f2 − T −1P n
n0

(f1 + f2) − f1‖2
L21�n

n0
]

≤ 3E[‖(T −1 − Id)f1‖2
L2 + ‖(P n

n − P n
n0

)f2‖2
n + ‖P n

n0
f1‖2

n1�n
n0

]
≤ 3E[‖f1‖2

n + ‖f1‖2
L2 − 2 Re(〈T −1f1, f1〉L2)]

+ 3E[‖f2‖2
n] + 3E[‖P n

n0
f1‖2

n1�n
n0

]
= 6E[Re(〈f1 − T −1f1, f1〉L2)] + 3‖f2‖2

L2 + 3E[‖P n
n0

f1‖2
n1�n

n0
]

=: III1 + III2 + III3.

The term III2 is easily bounded by ‖f2‖2
L2 � n−2s/d‖f ‖2

Hs . As in the estimate

for term I, we obtain III3 � n−1n
1−2s/d
0 ‖f ‖2

Hs . For III1, we use
E[〈T −1ϕj ,ϕk〉L2] = 0, j �= k, by Proposition 4.5 below to conclude that

E[Re(〈f1 − T −1f1, f1〉L2)] =
n∑

j=n0+1

|〈f,ϕj 〉L2 |2E[〈(Id−T −1)ϕj , ϕj 〉L2].

Because of ‖ϕj‖n = 1 for the Fourier basis, we find that

〈T −1ϕj ,ϕj 〉L2 = 〈‖ϕj − P n
j−1ϕj‖nϕ

n
j + P n

j−1ϕj ,ϕ
n
j 〉n

= ‖ϕj − P n
j−1ϕj‖n ≥ 1 − ‖P n

j−1ϕj‖2
n.

By Proposition 4.9 below, the bound

E[Re(〈f1 − T −1f1, f1〉L2)] ≤
n∑

j=n0+1

|〈f,ϕj 〉L2 |2E[‖P n
j−1ϕj‖2

n]

�
n∑

j=n0+1

j

n
|〈f,ϕj 〉L2 |2
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follows, which is of order n−1n
1−2s/d
0 ‖f ‖2

Hs . Putting the estimates together, we
have

III � σ−2(n
1−2s/d
0 ‖f ‖2

Hs + n1−2s/d‖f ‖2
Hs + n

1−2s/d
0 ‖f ‖2

Hs )

� σ−2n
1−2s/d
0 ‖f ‖2

Hs

and, summing, I + II + III � σ−2n
1−2s/d
0 R2 + n−1n2

0 uniformly over f ∈
F d

S,per(s,R), which gives the asserted bound (4.4). �

4.3. Technical results. We now gather results on fine properties of the Fourier
basis (ϕj ) and its generated approximation spaces Sn. The setting is as in the proof
of Theorem 4.3. For the value of the next proposition, notice that 〈ϕk′, ϕn

k 〉n =
〈T −1ϕk′, ϕk〉L2 .

PROPOSITION 4.5. We have, for indices k′′, k′ > k ≥ 1, k′′ �= k′,

E[〈ϕk′, ϕn
k 〉n] = 0 and E[〈ϕk′, ϕn

k 〉n〈ϕk′′, ϕn
k 〉

n
] = 0.

PROOF. Since the randomness enters via P n
k−1 in a very intricate way, we

use a symmetry argument. Define Xi := (Yi + ϑ)mod 1, i = 1, . . . , n, with Yi ∼
U([0,1]d), ϑ ∼ U([0,1]d) all independent such that Xi ∼ U([0,1]d) are i.i.d.
Working conditionally on ϑ , we shall keep track on the dependence on ϑ using
brackets. We claim that for k′ > k,

〈ϕk′, ϕn
k 〉n[ϑ] = e2πι〈�(k′)−�(k),ϑ〉〈ϕk′, ϕn

k 〉n[0],(4.5)

which implies the result due to∫
[0,1]d

e2πι〈�(k′)−�(k),ϑ〉 dϑ = 0 and

∫
[0,1]d

e2πι(〈�(k′)−�(k),ϑ〉−〈�(k′′)−�(k),ϑ〉) dϑ = 0.

For m ∈ Z
d , put

Am[ϑ] := 1

n

n∑
j=1

e2πι〈m,Xj [ϑ]〉 = 1

n

n∑
j=1

e2πι〈m,Yj+ϑ〉 = e2πι〈m,ϑ〉Am[0].

The proof of (4.5) will be performed by induction from κ < k to k, considering
tuples (κ ′, κ), κ ′ > κ and (k′, k), k′ > k. Since �(1) = 0 and ϕn

1 = ϕ1 = 1, we
have, for k′ > 1 and k = 1,

〈ϕk′, ϕn
k 〉n[ϑ] = 1

n

n∑
j=1

e2πι〈�(k′),Yj+ϑ〉 = e2πι〈�(k′)−�(1),ϑ〉〈ϕk′, ϕn
k 〉n[0].
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Writing ck := ‖ϕk − P n
k−1ϕk‖−1

n , the induction hypothesis implies that

c−2
k [ϑ] = 1 −

k−1∑
j=1

|〈ϕk,ϕ
n
j 〉n|2[ϑ] = c−2

k [0]

and thus the induction step is achieved by calculating

〈ϕk′, ϕn
k 〉n[ϑ]

=
〈
ϕk′, ck

(
ϕk −

k−1∑
r=1

〈ϕk,ϕ
n
r 〉ϕn

r

)〉
n

[ϑ]

= ck

(
〈ϕk′, ϕk〉n −

k−1∑
r=1

〈ϕk′, ϕn
r 〉n〈ϕk,ϕn

r 〉n
)
[ϑ]

= ck[ϑ]
(
A�(k′)−�(k)[ϑ] −

k−1∑
r=1

e2πι〈�(k′)−�(k),ϑ〉〈ϕk′, ϕn
r 〉n[0]〈ϕk,ϕn

r 〉n[0]
)

= e2πι〈�(k′)−�(k),ϑ〉〈ϕk′, ϕn
k 〉n[0]. �

PROPOSITION 4.6. Suppose g = ∑
|�|

�2≤L γ�e
2πι〈�,•〉 is a d-dimensional

trigonometric polynomial of degree L. Let � ∈ (0,L−1] with 1/� ∈ N be given
and define the cubes Cm := ∏d

i=1[(mi − 1)�,mi�). Then

�d
∑

m∈{1,...,�−1}d
sup

xm∈Cm

∣∣|g(xm)|2 − |g(m�)|2∣∣ ≤ ‖g‖2
L2(e

2d�L − 1).

PROOF. We need multi-indices α,β ∈ N
d
0 with α! := α1! · · ·αd !, xα :=

x
α1
1 · · ·xαd

d ,
(α
β

) := α!
β!(α−β)! and differential operators Dα := ∂α1

∂x
α1
1

· · · ∂αd

∂x
α1
d

. Since

|g|2 is real-analytic, a power series expansion gives, for any xm ∈ Cm,∣∣|g|2(xm) − |g|2(m�)
∣∣

=
∣∣∣∣∣

∑
α∈N

d
0 ,α �=0

Dα|g|2(m�)
(xm − m�)α

α!
∣∣∣∣∣

≤ ∑
α∈N

d
0 ,α �=0

�|α|
�1

α!
∑

β∈N
d
0 ,β≤α

(
α

β

)
|Dβg(m�)||Dα−βḡ(m�)|.

Together with g, any derivative is again a trigonometric polynomial of degree L

and by the isometry (2.3) and Bernstein’s inequality [cf. Meyer (1995), page 32],
we obtain

�d
∑

m∈{1,...,�−1}d
|Dαg|2(m�) = ‖Dαg‖2

L2 ≤ L2|α|
�1 ‖g‖2

L2 .
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This implies, by the Cauchy–Schwarz inequality, that

�d
∑

m∈{1,...,�−1}d
sup

xm∈Cm

∣∣|g|2(xm) − |g|2(m�)
∣∣

≤ �d
∑

α∈Nd ,α �=0

�|α|
�1

α!
∑

β∈Nd ,β≤α

(
α

β

)(∑
m

|Dβg(m�)|2
)1/2

×
(∑

m

|Dα−βḡ(m�)|2
)1/2

≤ ‖g‖2
L2

∑
α∈Nd ,α �=0

�|α|
�1

α!
∑

β∈Nd ,β≤α

(
α

β

)
L|β|

�1 L|α−β|
�1

= ‖g‖2
L2(e

2d�L − 1). �

LEMMA 4.7. Let Y ∈ R
r follow the multinomial distribution with parameters

n and p1 = · · · = pr = 1/r . Then, for n → ∞ and r = r(n) with r log(r)/n → 0,

∀C > 0 : lim sup
n→∞

1
4r(n)C

2/4−1

× P

(
max

1≤i≤r(n)
|Yi − n/r(n)| > C

√
n log(r(n))/r(n)

)
≤ 1.

PROOF. If X1, . . . ,Xr are independently Poisson(n/r)-distributed, then it is
well known that the law of (X1, . . . ,Xr) given

∑r
i=1 Xi = n is multinomial with

parameters n and p1 = · · · = pr = 1/r . Set Anr := C
√

n log(r)/r . Since

k �→ P

(
max

1≤i≤r
Xi − n/r > Anr

∣∣∣ r∑
i=1

Xi = k

)

is obviously increasing in k ∈ N, we obtain

P

(
max

1≤i≤r
Xi − n/r > Anr

∣∣∣ r∑
i=1

Xi = n

)
≤ P(max1≤i≤r Xi − n/r > Anr)

P (
∑r

i=1 Xi ≥ n)
.

As
∑r

i=1 Xi is Poisson(n)-distributed, P(
∑r

i=1 Xi ≥ n) → 1/2 follows, so

lim sup
n→∞

(
P

(
max

1≤i≤r
Yi − n/r > Anr

)
− 2P

(
max

1≤i≤r
Xi − n/r > Anr

))
≤ 0.(4.6)

By the exponential moment estimate E[ea(Xi−n/r)] = en(ea−a−1)/r ≤ e3na2/4r for
a := rAnr/n → 0 and n large, the generalized Markov inequality yields

P

(
max

1≤i≤r
Xi − n/r > Anr

)
≤ rP (Xi − n/r > Anr) ≤ re3na2/4r−aAnr = r1−C2/4.
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By use of (4.6) and a completely symmetric argument for P(max1≤i≤r (n/r −
Xi) > Anr), the result follows. �

PROPOSITION 4.8. For j = j (n) such that j log(j) = o(n) and the event �n
j

in (4.2), we have limn→∞ npP ((�n
j (n))

�) = 0 for any power p > 0.

PROOF. From Proposition 4.6, we derive, with � ≤ L := |�(j)|�2 , 1/� ∈ N,
the cubes Cm := ∏d

i=1[(mi − 1)�,mi�) and the occupations Nm := #{i :Xi ∈
Cm}, ∣∣∣∣∣‖g‖2

L2 − 1

n

n∑
i=1

|g(Xi)|2
∣∣∣∣∣

= 1

n

∣∣∣∣∣
∑

m∈{1,...,�−1}d

(
�dn|g(m�)|2 − ∑

i:Xi∈Cm

|g(Xi)|2
)∣∣∣∣∣

≤ 1

n

∑
m∈{1,...,�−1}d

(|�dn − Nm||g(m�)|2

+ Nm sup
xm∈Cm

∣∣|g(m�)|2 − |g(xm)|2∣∣)

≤ ‖g‖2
L2

�dn
max

m∈{1,...,�−1}d
(|�dn − Nm| + Nm(e2d�L − 1)

)

≤ ‖g‖2
L2

(
e2d�L max

m∈{1,...,�−1}d
|1 − Nm/n�d | + (e2d�L − 1)

)
.

By Lemma 4.7, maxm |1 − Nm/n�d |2 ≥ C(n�d)−1 log(1/�) has probability
tending to zero with any given polynomial rate when C is chosen sufficiently
large. Since Ld log(L) � j log(j) = o(n), we can choose � = o(L−1) such that
�−d log2(1/�) = o(n) still holds. This gives

|‖g‖2
L2 − ‖g‖2

n| ≤
(
Ce2d�L(n�d)−1 log(1/�) + (e2d�L − 1)

)‖g‖2
L2 ≤ 3

4‖g‖2
L2

for large n with probability larger than 1 − n−p . �

PROPOSITION 4.9. For j ∈ N with j log(j) = o(n), we have

E[‖P n
j−1ϕj‖2

n] � j/n.

PROOF. By construction, ‖P n
j−1ϕj‖2

n ≤ ‖ϕj‖2
n = 1 holds so that by Proposi-

tion 4.8, it suffices to find the bound for the expectation on the event �n
j .
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Setting Am := 1
n

∑m
k=1 exp(2πι〈m,Xk〉), m ∈ Z

d , we use Parseval’s identity and
E[|Am|2] = 1/n for m �= 0 to obtain

E[‖P n
j−1ϕj‖2

n1�n
j
]

= E

[
sup

g∈Vj−1

|〈ϕj , g〉n|2
‖g‖2

n

1�n
j

]

≤ E

[
sup

‖(cr )‖�2=1

∣∣∣∣∣1

n

n∑
k=1

j−1∑
r=1

c̄r e
2πι〈�(j)−�(r),Xk〉

∣∣∣∣∣
2

sup
g∈Vj−1

‖g‖2
L2

‖g‖2
n

1�n
j

]

≤ 4E

[j−1∑
r=1

∣∣A�(j)−�(r)

∣∣2]
= 4(j − 1)

n
.

�
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