
540 Proc. Japan Acad., 5.1 (1975) [Vol. 51,

114. Asymptotic Equivalence in a Dynamical System

By Shigeo KONO
Department of Mathematics, Josai University

(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 12, 1975)

1. Introduction. Let X be a metric space with its metric d. A
dynamical system on X [1, p. 5] is defined to be an ordered triple
(X, R, ) consisting of X, the real lin.e R and a map :X R-.X such
that:

(a) (x, O)-x or any x e X,
(b) ((x, s), t)-(x, s-t- t) for any x e X and all s, t e R,
(c) is continuous on X R.

Given a dynamical system on X, the space X is called the phase space
of the dynamical system.

An equivalence relation J on (X,R, ) is said to be invariant if
(x, y) e J implies ((x, t), (y, t)) e J for any t e R.

A large amount of research of the invariant equivalence relations
in the phase space of dynamical systems has been done (e.g., see [2],
[3], or [4]). However, the main concern of these is either the case in
which the invariant equivalence relation is closed, or the case in which
the phase space is compact.

In this paper we introduce an invariant equivalence relation, i.e.,
"asymptotic equivalence", which is neither closed nor the phase space
compact, and then investigate the possibility o the construction of the
quotient dynamical system induced by the equivalence relation. Main
results obtained are Theorem 3.3 (a necessary and sufficient condition
for the canonical surjection to be open) and Theorem 3.5 which gives
a necessary and sufficient condition or the phase space o the quotient
dynamical system to be Hausdorff.

2. Asymptotic equivalence.
Definition 2.1. If

d((x, t), (y, t))-.O (t-- + c),
then x is said to be asymptotically equivalent to y, which is denoted
xAy.

Remark 2.2. It is clear that the asymptotic equivalence A on
(X, R, ) is an invariant equivalence relation.

Remark 2.3. The asymptotic equivalence A on (X, R, ) is not a
closed relation, since we have a counterexample [1, p. 68, 2.4]: a dy-
namical system defined on R by the differential equations
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where

dx f(x, y), dy g(x, y)
dt dt

g(x, y)=--y for all (x, y) e R, and

f(x, y)= (x if xy>= 1
2xy-x if xy 1.

It is easily verified that for any a>0 the point ((a,a-9, (--a, a-)) is an
accumulation point of A which does not belong to A. Thus A is not
closed.

). uotient dynamical system. Let X/A be the quotient set
obtained by partitioning the phase space X of (X, R, =) by A. We as-
sign to X/A the quotient topology relative to the canonical surjection
p:XX/A, so that X/A becomes the quotient space relative to p.
Each point of X/A can be represented by p(x), where x is some point
in X. We define a map

p: (X/A) R--X/A
by the equality

p((x), t)=((x, t)).
If p satisfies the axioms (a), (b) and (c) mentioned in the Introduction,
then (X/A, R, p) will become a dynamical system on X/A, which we
call the quotient dynamical system induced by (X, R, ).

Theorem 3.1. If the canonical sur]ection p of X onto X/A is
open, then (X/A,R,p) is the quotient dynamical system induced by
(X, R, ).

Proof. Since A is invariant, the validity o the theorem is a
direct consequence o [3, p. 4, item 3 in article 1.5].

Notation :.2. B(x) denotes the set of y e X such that yAx.
The ollowing theorem determines the class o dynamical systems

for which the canonical surjections are open.
Theorem :.:. The canonical sur]ection p of X onto X/A is open

if and only if any open subset S of X satisfies the following conditions:
(a) if x e S, then B(x) is open or a border set in X,
(b) if B(x) is a border set in X such that B(x) ( S:, then

B(x) Int t5 {B(y) y e S}),
where Int (D) denotes the interior of a set D.

To prove the theorem we use the ollowing lemma, which is well
known [5, p. 97, Theorem 10]:

Lemma .4. The canonical sur]ection p of X onto X/A is open

if and only if U {B(x) x e S} is open for any S which is open in X.
The proof of Theorem 3.3. Assume that p is open. Take any

point x e S. If Int (B(x)) is empty, then B(x) is a border set. If
Int (B(x)) is not empty, then
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B(x)-- U {B(y) y e Int (B(x))}
is open in X by Lemma 3.4. Thus we have proved (a). Now we shall
prove (b). Let B(x) be a border set such that B(x)Sa. There
exists y e S such that B(x)=B(y). Hence

B(x) {B(z) Z e S},
where U {B(z) z e S} is open by Lemma 3.4. Thus we have proved (b).
Now ssume (a) and (b). Let S be any open subset of X. The set
U {B(z);z e S} is denoted T for convenience’s sake. Clearly B(y)T
or any y e T, where B(y) is open or a border set ia X. Let B(y) be a
border set in X. There exists u e S such that B(u)=B(y), so that B(y)
Int (T)by the assumption (b). Here we define two sets T and To
as follows:

T U {B(x) x e S and B(x) is a border set in X},
To U {B(x) x e S and B(x) is open in X}.

Then
T T U To Int (T) U Int (T) Int (T),

so that T is open in X. Thus p is open by Lemma 3.4. Q.E.D.
The phase space of the quotient dynamical system is not necessarily

Hausdorff, although X is a metric space. We give here a necessary
and sufficient condition for the phase space of the quotient dynamical
system to be Hausdorff.

Theorem 3.5. Let X be a connected metric space, and let p be
the open canonical sur]ection of X onto X/A. Then, X/A is Hausdorff
if and only if

(a) X/A {X}
or

(b) Bd(G)cG
holds. Here

G U {B(x) x B(x) x e X},
G U {B(x) B(x); x e X and B(x) is a border set in X},

and Bd(G) is the boundary of G.
Proof. Assume that X/A is Hausdorff. Then G is closed in

X X [5, Theorem 11, p. 98]. Since p is open by the assumption, B(x)
is open or a border set for any x e X by Theorem 3.3. If B(x) is open
for any x e X, then G is open in X X, so that G--X X by the con-
nectedness of X X. Hence X/A is the singleton {X}. Now we assume
that there exists a B(x) which is a border set in X. The set

Go= D {B(x) B(x) x e X and B(x) is open in X}
is open in X X, so that GocInt (G). On the other hand,

G--G U Go=Bd(G) U Int (G),
since G is closed. Moreover, G G0=, and Int (G) Bd(G)=. Hence
Bd(G)c G. Conversely, assume that (a) or (b) holds. If (a) is valid,
then
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G= t {B(x) B(x) x e X}=X X,
so that G is closed. This fact and openness of p imply that X/A is
Hausdorff [5, Theorem 11, p. 98]. Now assume that (b) holds. Then

G Bd(G) [J Int (G) G t2 Int (G) G,
which implies that G is closed in XX. Consequently X/A is
Hausdorff [5, Theorem 11, p. 98]. Q.E.D.

In connection with the Theorem 3.5 we can establish a necessary
condition or X/A to be Hausdorff.

Theorem :.6. Let X be a connected metric space. Let the ca-
nonical sur]ection p of X onto X/A be open. If X/A is Hausdorff
but is not a singleton, then every B(x) is a border set in X.

To prove Theorem 3.6 we need the following lemma"
Lemma :}.7. Let B(x) be open in X. If u e Bd(B(x)), then

(u, y) e Bd(B(x) B(x))
for any y e B(x).

Proof. Let y be any point in B(x), and let u be any point in
Bd(B(x)). Clearly

(u, y) -g B(x) B(x),
so that (u, y) is not an interior point of B(x) B(x). Now assume that
(u, y) is an exterior point of B(x) B(x). Then, there exist neighbor-
hoods U and U. of u and y respectively such that

(U U) ((x) B(x))= (,)
Hence

(U B(x)) (U B(x))=(U U) (B(x) B(x)) .
Here U B(x) #- and U B(x) #- , since u e Bd(B(x)) and y e B(x).
Consequently

(U U) (B(x) B(x))#-, which contradicts (.), so that (u, y) is
not an exterior point of B(x) B(x). Thus

(u, y) e Bd(B(x) B(x)).
Q.E.D.

Proof of Theorem :}.6. Since p is open, every B(x) is a border
set or open in X. Assume that there exists x e X such that B(x) is
open. Then, Bd(B(x)) is not empty, since X is connected and B(x) is
a proper subset of X for which X/A #-{X}. Let u be any point in
Bd(B(x)). Lemma 3.7 tells us that

(u, y) e Bd(B(x) B(x))
or any y e B(x). On the other hand

Bd(B(x) B(x)) B(x) B(x) S-S, ( 1
where

S U {B(x) B(x) x e X},
which is closed, since X/A is Hausdorff. Consequently (u, y) e S for
any y e B(x). However, it is clear that for any z e X and for any
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y e B(x) the point (u, y) does not belong to B(z)B(z), so that (u, y)
does not belong to S or all y e B(x). This contradicts (1). Hence
there exists no x e X such that B(x) is open in X, i,e., every B(x) is a
border set. Q.E.D.
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