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Abstract: We consider the problem of discriminating between two different states of
a finite quantum system in the setting of large numbers of copies, and find a closed
form expression for the asymptotic exponential rate at which the error probability tends
to zero. This leads to the identification of the quantum generalisation of the classical
Chernoff distance, which is the corresponding quantity in classical symmetric hypothesis
testing.

The proof relies on two new techniques introduced by the authors, which are also well
suited to tackle the corresponding problem in asymmetric hypothesis testing, yielding
the quantum generalisation of the classical Hoeffding bound. This has been done by
Hayashi and Nagaoka for the special case where the states have full support.

The goal of this paper is to present the proofs of these results in a unified way and
in full generality, allowing hypothesis states with different supports. From the quan-
tum Hoeffding bound, we then easily derive quantum Stein’s Lemma and quantum
Sanov’s theorem. We give an in-depth treatment of the properties of the quantum Cher-
noff distance, and argue that it is a natural distance measure on the set of density operators,
with a clear operational meaning.

1. Introduction

One of the basic tasks in information theory is discriminating between two different
information sources, modelled by (time-discrete) stochastic processes. Given a source
that generates independent, identically distributed (i.i.d.) random variables, according
to one out of two possible probability distributions, the task is to determine which
distribution is the true one, and to do so with minimal error, whatever error criterion one
chooses.

This basic decision problem has an equally basic quantum-informational incarnation.
Given an information source that emits quantum systems (particles) independently and
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identically prepared in one out of two possible quantum states, figure out which state is
the true one, with minimal error probability.

In both settings, we’re dealing with two hypotheses, each one pertaining to one
law represented by a probability distribution or a quantum state, respectively, and the
discrimination problem is thus a particular instance of a hypothesis testing problem.

In hypothesis testing, one considers a null hypothesis and an alternative hypothesis.
The alternative hypothesis is the one of interest and states that “something significant is
happening”, for example, a cell culture under investigation is coming from a malignant
tumor, or some case of flu is the avian one, or an e-mail attachment is a computer virus. In
contrast, the null hypothesis corresponds to this not being the case; the cells are normal
ones, the flu can be treated with an aspirin, and the attachment is just a nice picture. This
is inherently an asymmetric situation, and Neyman and Pearson introduced the idea of
similarly making a distinction between type I and type II errors.

– The type I error or “false positive”, denoted by α, is the error of accepting the
alternative hypothesis when in reality the null hypothesis holds and the results can
be attributed merely to chance.

– The type II error or “false negative”, denoted by β, is the error of accepting the null
hypothesis when the alternative hypothesis is the true state of nature.

The costs associated to the two types of error can be widely different, or even incom-
mensurate. For example, in medical diagnosis, the type I error corresponds to diagnosing
a healthy patient with a certain affliction, which can be an expensive mistake, causing
a lot of grievance. On the other hand, the type II error may correspond to declaring a
patient healthy while in reality (s)he has a life-threatening condition, which can be a
fatal mistake.

To treat the state discrimination problem as a hypothesis test, we assign the null
hypothesis to one of the two states and the alternative hypothesis to the other one. If all we
want to know is which one of the two possible states we are observing, the mathematical
treatment is completely symmetric under the interchange of these two states. It therefore
fits most naturally in the setting of symmetric hypothesis testing, where no essential
distinction is made between the two kinds of errors. To wit, in symmetric hypothesis
testing, one considers the average, or Bayesian, error probability Pe, defined as the
average of α and β weighted by the prior probabilities of the null and the alternative
hypothesis, respectively.

This paper will be concerned with symmetric as well as with asymmetric quantum
hypothesis testing. Since we have developed the main techniques in the symmetric setting
we will start with this case and address the asymmetric setting at the end.

The optimal solution to the symmetric classical hypothesis test is given by the
maximum-likelihood (ML) test. Starting from the outcomes of an experiment invol-
ving n independent draws from the unknown distribution, one calculates the conditional
probabilities (likelihoods) that these outcomes can be obtained when the distribution is
the one of the null hypothesis and the one of the alternative hypothesis, respectively.
One decides then on the hypothesis for which the conditional probability is the highest.
I.e. if the likelihood ratio is higher than 1, the null hypothesis is rejected, otherwise it is
accepted.

In the quantum setting, the experiment consists of preparing n independent copies of
a quantum system in an unknown state, which is either ρ or σ , and performing an optimal
measurement on them. We assume that the quantum systems are finite, implying that
the states are associated to density operators on a finite-dimensional complex Hilbert
space. Under the null hypothesis, the combined n copies correspond to an n-fold tensor
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product density operator ρ⊗n , while under the alternative hypothesis, the associated
density operator is σ⊗n . The null hypothesis is then accepted or rejected according to
the outcome of the measurement and the specified decision rule. The task of finding this
optimal measurement is so fundamental that it was one of the first problems considered
in the field of quantum information theory; it was solved in the one-copy case more than
30 years ago by Helstrom and Holevo [14,17]. We refer to the generalised ML-tests
as Holevo-Helstrom tests. In the special case of equal priors, the associated minimal
probability of error achieved by the optimal measurement can be calculated from the
trace norm distance between the two states:

P∗
e,n(ρ, σ ) = 1

2
(1 − ‖ρ⊗n − σ⊗n‖1/2), (1)

where ‖A‖1 := Tr |A| denotes the trace norm.
Going back to the classical case again, in a seminal paper, H. Chernoff [8] investigated

the so-called asymptotical efficiency of a class of statistical tests, which includes the
likelihood ratio test mentioned before. The probability of error Pe,n in discriminating
two probability distributions decreases exponentially in n, the number of draws from
the distribution: Pe,n ∼ exp(−ξn). For finite n this is a rather crude approximation.
However, as n grows larger one finds better and better agreement, and the exponent ξ
becomes meaningful in the asymptotic limit. The asymptotical efficiency is exactly the
asymptotic limit of this exponent.

Chernoff was able to derive an (almost) closed expression for this asymptotic effi-
ciency, which was later named eponymously in his honour. For two discrete probability
distributions p and q, this expression is given by

ξC B(p, q) := − log

(
inf

0≤s≤1

∑
i

p(i)1−sq(i)s
)
, (2)

which is of closed form but for a single variable minimisation. This quantity goes under
the alternative names of Chernoff distance, Chernoff divergence and Chernoff informa-
tion.

While Chernoff’s main purpose was to use this asymptotic efficiency measure to
compare the power of different tests – the mathematically optimal test need not always
be the most practical one – it can also be used as a distinguishability measure between
the distributions (states) of the two hypotheses. Indeed, fixing the test, its efficiency
for a particular pair of distributions gives a meaningful indication of how well these
two distributions can be distinguished by that test. This is especially meaningful if the
applied test is the optimal one.

A quantum generalisation of Chernoff’s result is highly desirable. Given the large
amount of experimental effort in the context of quantum information processing to pre-
pare and measure quantum states, it is of fundamental importance to have a theory that
allows to discriminate different quantum states in a meaningful way. Despite consi-
derable effort, however, the quantum generalisation of the Chernoff distance has until
recently remained unsolved.

In the previous papers, [21] and [1], this issue was finaly settled and the asymptotic
error exponent was identified, when the optimal Holevo-Helstrom strategy for discri-
minating between the two states is used, by proving that the following version of the
Chernoff distance

ξQC B(ρ, σ ) := − log

(
inf

0≤s≤1
Tr[ρ1−sσ s]

)
, (3)
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has the same operational meaning as its classical counterpart: It specifies the asymptotic
rate exponent of the minimal error probability P∗

e,n (recall definition (1)). Remarkably,
it looks like an almost naïve generalisation of the classical expression (2).

We remark that in the literature different extensions of the classical expression have
been considered. Indeed, when insisting only on the compatibility with the classical
Chernoff distance, there is in principle an infinitude of possiblities. Among those, three
especially promising candidate expressions had been put forward by Ogawa and Hayashi
[23], who studied their relations and found that there exists an increasing ordering
between them. Incidentally, the second candidate coincides with (3) and thus turns out
to be the correct one.

Kargin [18] gave lower and upper bounds on the optimal error exponent ξ in terms
of the fidelity between the two density operators and found that Ogawa and Hayashi’s
third candidate (in their increasing arrangement) is a lower bound on the optimal error
exponent for faithful states, i.e. it is an achievable rate. Hayashi [11] made progress
regarding (3), by showing that for s = 1/2, − log Tr[ρ1−sσ s] is also an achievable error
exponent.

The proof of our main result consists of two parts. In the optimality part, which was
first presented in [21], we show that for any test the (Bayesian) error rate − 1

n log Pe,n
cannot be made arbitrary large but is asymptotically bounded above by ξQC B . In the
achievability part, first put forward in [1], we prove that under the Holevo-Helstrom
strategy the bound is actually attained in the asymptotic limit, i.e.

lim sup
n→∞

(
−1

n
log P∗

e,n

)
≥ ξQC B .

It is the purpose of this paper to give a complete, detailed, and unified account of these
results. We will present the complete proof in Sect. 3. Moreover, we give an in-depth
treatment of the properties of the quantum Chernoff distance in Sect. 4. More precisely,
we show that it defines a distance measure between quantum states.

Distinguishability measures between quantum states have been used in a wide variety
of applications in quantum information theory. The most popular of such measures seems
to be Uhlmann’s fidelity [28], which happens to coincide with the quantum Chernoff
distance when one of the states is pure. The trace norm distance ‖ρ − σ‖1 = Tr |ρ − σ |
has a more natural operational meaning than the fidelity, but lacks monotonicity under
taking tensor powers of its arguments. The problem is that one can easily find states
ρ, σ, ρ′, σ ′ such that ‖ρ − σ‖1 < ‖ρ′ − σ ′‖1 but ‖ρ⊗2 − σ⊗2‖1 > ‖ρ′⊗2 − σ ′⊗2‖1.
This already happens in the classical setting: take the following 2-dimensional diagonal
states

ρ =
(

1/4 0
0 3/4

)
, σ =

(
3/4 0
0 1/4

)
, ρ′ =

(
0 0
0 1

)
, σ ′ =

(
b 0
0 1 − b

)
,

where 1 − 1/
√

2 < b < 1/2. Then ‖ρ − σ‖1 = 1 > 2b = ‖ρ′ − σ ′‖1, while
‖ρ⊗2 − σ⊗2‖1 = 1 < 2b(2 − b) = ‖ρ′⊗2 − σ ′⊗2‖1. The quantum Chernoff distance
characterises the exponent arising in the asymptotic behaviour of the trace norm distance,
in the case of many identical copies, and therefore by construction does not suffer from
this problem. As such, the quantum Chernoff distance can be considered as a kind of
regularisation of the trace norm distance. For the above-mentioned states, ξQC B(ρ, σ ) =
− log(

√
3/2) (optimal s = 1/2) and ξQC B(ρ

′, σ ′) = − log(1 − b) (optimal s = 1).
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A related problem that attracted a lot of attention in the field of quantum information
theory was to identify the relative entropy between two quantum states. An information-
theoretical way of looking at the classical relative entropy between two probability
distributions, or Kullback-Leibler distance, is that it characterises the inefficiency of
compressing messages from a source p using an algorithm that is optimal for a source
p′ (i.e. yields the Shannon information bound for that source). Phrased differently, it
quantifies the way one could cheat by telling that the given probability distribution is p
while the real one is p′. By proving a quantum version of Stein’s lemma [15,24], it has
been shown that the quantum relative entropy, as introduced by Umegaki, has exactly
the same operational meaning.

When using the relative entropy to distinguish between states, one faces the problem
that it is not continuous and is asymmetric under exchange of its arguments, and therefore
it does not represent a distance measure in a mathematically strict manner. Furthermore,
for pure states, the quantum relative entropy is not very useful, since it is either 0 (when
the two states are identical) or infinite (when they are not). In contrast, the quantum
Chernoff distance seems to be much more natural in many situations.

On the other hand, (quantum) relative entropy is a crucial notion in asymmetric hypo-
thesis testing. There it obtains an operational meaning as the best achievable asymptotic
rate of type II errors. Its properties, which are problematic for a candidate for a distance
measure, reflect the asymmetry between the null and alternative hypothesis arising from
treating the type-I and type-II errors in a different way. As exemplified by the medical
diagnosis case mentioned above, the type II error is the one that should be avoided at
all costs. Hence, one puts a constraint α < ε on the type I error, and minimises the
β-rate. One obtains that the optimal β-rate is the relative entropy of the null hypothesis
w.r.t. the alternative, independent of the constrained ε. The mathematical derivation of
this statement goes under the name of Stein’s Lemma. When the constraint consists of
a lower bound on the asymptotic exponential rate of the type II error, one obtains what
is called the Hoeffding bound.

Asymmetric hypothesis testing has been subject to a quantum theoretical treatment
much earlier, although it is a much less natural setting for the basic state discrimination
problem. The quantum generalisation of Stein’s Lemma was first obtained by Hiai and
Petz [15]. Its optimality part was then strengthened by Ogawa and Nagaoka in [24].
In the last few years there has been a lot of progress extending the statement of the
lemma in different directions. In [4] the minimal relative entropy distance from a set of
quantum states, the null hypothesis, w.r.t. a reference quantum state, the alternative, has
been fixed as the best achievable asymptotic rate of the type II errors, see also [13]. This
may be seen as a quantum generalisation of Sanov’s theorem. In a recent paper [5] an
extension of this result to the case where the hypotheses correspond to sources emitting
correlated (not necessarily i.i.d.) classical or quantum data has been given. Additionally,
an equivalence relation between the achievability part in (quantum) Stein’s Lemma and
(quantum) Sanov’s Theorem has been derived.

Just a few months after the appearance of [21,1], the techniques pioneered in those
two papers were used to find a quantum generalisation of the Hoeffding bound under the
implicit assumption of equivalent hypotheses, i.e. for states with coinciding supports,
thereby (partially) solving another long-standing open problem in quantum hypothe-
sis testing. Just as in the case of the Chernoff distance, the Hoeffding bound contains∑

i p(i)1−sq(i)s as a sub-expression, and the quantum generalisation of the Hoeffding
bound is obtained by replacing this sub-expression by Tr[ρ1−sσ s]. The optimality of
the bound (also called the “converse part”) was proven by Nagaoka [20], while its
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achievability (the “direct part”) was found by Hayashi [12]. Using the same techniques,
Hayashi also gave a simple proof of the achievability part of the quantum Stein’s Lemma,
in that same paper. In Sect. 5 we first formulate and prove an extended version of the
classical Hoeffding bound, which allows nonequivalent hypotheses. Secondly, we pre-
sent a complete proof of the quantum Hoeffding bound in a unified way. Moreover, we
derive quantum Stein’s Lemma as well as quantum Sanov’s Theorem from the quantum
Hoeffding bound combined with the mentioned equivalence relation proved in [5].

2. Mathematical Setting and Problem Formulation

We consider the two hypotheses H0 (null) and H1 (alternative) that a device prepares
finite quantum systems either in the state ρ or in the state σ , respectively. Everywhere
in this paper, we identify a state with a density operator, i.e. a positive trace 1 linear
operator on a finite-dimensional Hilbert space H associated to the type of the finite
quantum system in question. Since the (quantum) Chernoff distance arises naturally
in a Bayesian setting, we supply the prior probabilities π0 and π1, which are positive
quantities summing up to 1; we exclude the degenerate casesπ0 = 0 andπ1 = 0 because
these are trivial.

Physically discriminating between the two hypotheses corresponds to performing a
generalised (POVM) measurement on the quantum system. In analogy to the classical
proceeding one accepts H0 or H1 according to a decision rule based on the outcome
of the measurement. There is no loss of generality assuming that the POVM consists
of only two elements, which we denote by {11 − Π,Π}, where Π may be any linear
operator on H with 0 ≤ Π ≤ 11. We will mostly make reference to this POVM by its
Π element, the one corresponding to the alternative hypothesis. The type-I and type-II
error probabilities α and β are the probabilities of mistaking σ for ρ, and vice-versa,
and are given by

α := Tr[Πρ],
β := Tr[(11 −Π)σ ].

The average error probability Pe is given by

Pe = π0α + π1β = π0 Tr[Πρ] + π1 Tr[(11 −Π)σ ]. (4)

The Bayesian distinguishability problem consists in finding theΠ that minimises Pe. A
special case is the symmetric one where the prior probabilities π0, π1 are equal.

Before we proceed, let us first introduce some basic notations. Abusing terminology,
we will use the term ‘positive’ for ‘positive semi-definite’ (denoted A ≥ 0). We employ
the positive semi-definite ordering on the linear operators on H throughout, i.e. A ≥ B
iff A − B ≥ 0. For each linear operator A ∈ B(H) the absolute value |A| is defined
as |A| := (A∗ A)1/2. The Jordan decomposition of a self-adjoint operator A is given by
A = A+ − A−, where

A+ := (|A| + A)/2, A− := (|A| − A)/2 (5)

are the positive part and negative part of A, respectively. Both parts are positive by
definition, and A+ A− = 0.

There is a very useful variational characterisation of the trace of the positive part of
a self-adjoint operator A:

Tr[A+] = max
X

{Tr[AX ] : 0 ≤ X ≤ 11}. (6)
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In other words, the maximum is taken over all positive contractive operators. Since the
extremal points of the set of positive contractive operators are exactly the orthogonal
projectors, we also have

Tr[A+] = max
P

{Tr[AP] : P ≥ 0, P = P2}. (7)

The maximiser on the right-hand side is the orthogonal projector onto the range of A+.
We can now easily prove the quantum version of the Neyman-Pearson Lemma.

Lemma 1 (Quantum Neyman-Pearson). Let ρ and σ be density operators associated
to hypotheses H0 and H1, respectively. Let T be a fixed positive number. Consider
the POVM with elements {11 − Π∗,Π∗}, where Π∗ is the projector onto the range
of (Tσ − ρ)+, and let α∗ = Tr[Π∗ρ] and β∗ = Tr[(11 − Π∗)σ ] be the associated
errors. For any other POVM {11 − Π,Π}, with associated errors α = Tr[Πρ] and
β = Tr[(11 −Π)σ ], we have

α + Tβ ≥ α∗ + Tβ∗ = T − Tr[(Tσ − ρ)+].
Thus if α ≤ α∗, then β ≥ β∗.

Proof. By formulae (6) and (7), for all 0 ≤ Π ≤ 11 we have Tr[Π(Tσ − ρ)] ≤
Tr(Tσ − ρ)+ = Tr[Π∗(Tσ − ρ)]. In terms of α, β, α∗, β∗, this reads T (1 − β)− α ≤
T (1 − β∗)− α∗, which is equivalent to the statement of the lemma. �

The upshot of this lemma is that the POVM {11−Π∗,Π∗}, whereΠ∗ is the projector
on the range of (Tσ − ρ)+, is the optimal one when the goal is to minimise the quantity
α + Tβ. In symmetric hypothesis testing the positive number T is taken to be the ratio
π1/π0 of the prior probabilities.

We emphasize that we have started with the assumption that the physical systems in
question are finite systems with an algebra of observables B(H), i.e. the algebra of linear
operators on a finite-dimensional Hilbert space H. This is a purely quantum situation. In
the general setting (of statistical mechanics) one associates to a finite physical system,
classical or quantum, a finite-dimensional ∗-algebra A. Such an algebra has a block
representation

⊕k
i=1 B(Hi ), i.e. it is a subalgebra of B(H), where H := ⊕k

i=1 Hi . If
the Hilbert spaces Hi are one-dimensional for all i = 1, . . . , k, then A is ∗-isomorphic
to the commutative algebra of diagonal (k × k)-matrices. This covers the classical case.
Now, in view of Lemma 1 it becomes clear that in the context of hypothesis testing there
is no restriction assuming that the algebra of observables of the systems in question is
B(H); indeed, the optimally discriminating projectorsΠ∗ are always in the ∗-subalgebra
generated by the two involved density operators ρ and σ . This implies that they are auto-
matically elements of the algebra A characterising the physical systems. In particular, if
the hypotheses correspond to mutually commuting density operators then the problem
reduces to a classical one in the sense that the best test Π∗ commutes with the density
operators as well. Hence it coincides with the classical ML-test, although there are many
more possible tests in B(H) than in the commutative subalgebra of observables of the
classical subsystem.

The basic problem we focus on in this paper is to identify how the error probability Pe
behaves in the asymptotic limit, i.e. when one has to discriminate between the hypotheses
H0 and H1 on the basis of a large number n of copies of the quantum systems. This means
that we have to distinguish between the n-fold tensor product density operators ρ⊗n and
σ⊗n by means of POVMs {11 −Πn,Πn} on H⊗n .
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We define the rate limit sR for any positive sequence (sn) as

sR := lim
n→∞

(
−1

n
log sn

)
,

if the limit exists. Otherwise we have to deal with the lower and upper rate limits s R
and s R , which are the limit inferior and the limit superior of the sequence (− 1

n log sn),
respectively. In particular, we define the type-I error rate limit and the type-II error rate
limit for a sequence Π := (Πn) of quantum measurements (where, as mentioned, each
orthogonal projection Πn corresponds to the alternative hypothesis) as

αR(Π) := lim
n→∞

(
−1

n
logαn

)
= lim

n→∞

(
−1

n
log Tr[ρ⊗nΠn]

)
, (8)

βR(Π) := lim
n→∞

(
−1

n
logβn

)
= lim

n→∞

(
−1

n
log Tr[σ⊗n(11 −Πn)]

)
, (9)

if the limits exist. Otherwise we consider the limit inferior and the limit superior αR(Π)

and αR(Π), respectively. Similar definitions hold in the classical case.

3. Bayesian Quantum Hypothesis Testing: Quantum Chernoff Bound

In this section we consider the Bayesian distinguishability problem. This means the
goal is to minimise the average error probability Pe, which is defined in (4) and can
be rewritten as Pe = π1 − Tr[Π(π1σ − π0ρ)]. By the Neyman-Pearson Lemma, the
optimal test is given by the projector Π∗ onto the range of (π1σ − π0ρ)+, and the
obtained minimal error probability is given by

P∗
e = π1 − Tr[(π1σ − π0ρ)+]

= π1 − (π1 − π0)/2 − Tr[|π1σ − π0ρ|/2]
= 1

2
(1 − ‖π1σ − π0ρ‖1) ,

where ‖A‖1 = Tr |A| is the trace norm. We will callΠ∗ the Holevo-Helstrom projector.
Next, note that the optimal test to discriminate ρ and σ in the case of n copies enforces

the use of joint measurements. However, the particular permutational symmetry of
n-copy states guarantees that the optimal collective measurement can be implemented
efficiently (with a polynomial-size circuit) [2], and hence that the minimum probability
of error is achievable with a reasonable amount of resources.

We need to consider the quantity

P∗
e,n := (1 − ‖π1σ

⊗n − π0ρ
⊗n‖1)/2. (10)

It turns out that P∗
e,n vanishes exponentially fast as n tends to infinity. The theorem below

provides the asymptotic value of the exponent − 1
n log P∗

e,n , i.e. the rate limit of P∗
e,n ,

which turns out to be given by the quantum Chernoff distance. This is our main result.

Theorem 1. For any two states ρ and σ on a finite-dimensional Hilbert space, occurring
with prior probabilities π0 and π1, respectively, the rate limit of P∗

e,n, as defined by (10),
exists and is equal to the quantum Chernoff distance ξQC B,

lim
n→∞

(
−1

n
log P∗

e,n

)
= ξQC B := − log

(
inf

0≤s≤1
Tr

(
ρ1−sσ s

))
. (11)
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Because the product of two positive operators always has positive spectrum, the quantity
Tr[ρ1−sσ s] is well defined (in the mathematical sense) and guaranteed to be real and
non-negative for every 0 ≤ s ≤ 1. As should be, the expression for ξQC B reduces to the
classical Chernoff distance ξC B defined by (2) when ρ and σ commute.

3.1. Proof of Theorem 1: Optimality Part. In this section, we will show that the best
discrimination is specified by the quantum Chernoff distance; that is, ξQC B is an upper
bound on

lim sup
n→∞

(
−1

n
log Pe,n

)

for any sequence of tests (Πn) and Pe,n := π1 − Tr [π1σ
⊗n − π0ρ

⊗n].
The proof, which first appeared in [21], is essentially based on relating the quantum

to the classical case by using a special mapping from a pair of d × d density matrices
(ρ, σ ) to a pair of probability distributions (p, q) on a set of cardinality d2.

Let the spectral decompositions of ρ and σ be given by

ρ =
d∑

i=1

λi |xi 〉〈xi |, σ =
d∑

j=1

µ j |y j 〉〈y j |,

where (|xi 〉) and (|y j 〉) are two orthonormal bases of eigenvectors and (λi ) and (µ j )

are the corresponding sets of eigenvalues of ρ and σ , respectively. Then we map these
density operators to the d2-dimensional vectors

pi, j = λi |〈xi |y j 〉|2, qi, j = µ j |〈xi |y j 〉|2, (12)

with 1 ≤ i, j ≤ d. This mapping preserves a number of important properties:

Proposition 1. With pi, j and qi, j as defined in (12), and s ∈ R,

Tr[ρ1−sσ s] =
∑
i, j

p1−s
i, j qs

i, j , (13)

S(ρ‖σ) = H(p‖q). (14)

Here, S(ρ‖σ) is the quantum relative entropy defined as

S(ρ‖σ) :=
{

Tr[ρ(log ρ − log σ)], if Supp ρ ≤ Supp σ

+∞, otherwise,
(15)

where Supp ρ denotes the support projection of an operatorρ, and H(p‖q) is the classical
relative entropy, or Kullback-Leibler distance,

H(p‖q) :=
{∑

i, j pi, j (log pi, j − log qi, j ), ifp � q

+∞, otherwise.
(16)
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Proof. The proof proceeds by direct calculation. For example:

Tr[ρ1−sσ s] =
∑
i, j

λ1−s
i µs

j |〈xi |y j 〉|2

=
∑
i, j

λ1−s
i µs

j |〈xi |y j 〉|2(1−s)|〈xi |y j 〉|2s

=
∑
i, j

p1−s
i, j qs

i, j .

�
A direct consequence of identity (13) is that p and q are normalised if ρ and σ are.

Furthermore, tensor powers are preserved by the mapping; that is, if ρ and σ are mapped
to p and q, then ρ⊗n is mapped to p⊗n and σ⊗n to q⊗n .

Now define the classical and quantum average (Bayesian) error probabilities Pe,c and
Pe,q as

Pe,c(φ, p, π0, q, π1) :=
∑

i

[π0φ(i)pi + π1(1 − φ(i))qi ], (17)

Pe,q(Π, ρ, π0, σ, π1) := Tr[π0Πρ + π1(11 −Π)σ ], (18)

where p, q are probability distributions, ρ, σ are density matrices, and π0, π1 are the
respective prior probabilities of the two hypotheses. Furthermore, φ is a non-negative
test function 0 ≤ φ ≤ 1, and Π is a positive semi-definite contraction, 0 ≤ Π ≤ 11, so
that {11 −Π,Π} forms a POVM.

The main property of the mapping that allows to establish optimality of the quantum
Chernoff distance is presented in the following proposition.

Proposition 2. For all orthogonal projectors Π and all positive scalars η0, η1 (not
necessarily adding up to 1), and for p and q associated to ρ and σ by the mapping (12),

Pe,q(Π, ρ, η0, σ, η1) ≥ 1

2
inf
φ

Pe,c(φ, p, η0, q, η1),

where the infimum is taken over all test functions 0 ≤ φ ≤ 1.

Note that we have replaced the priors by general positive scalars; this will be useful later
on, in proving the optimality of the Hoeffding bound.

Proof. SinceΠ is a projector, one hasΠ = ΠΠ = ∑
j Π |y j 〉〈y j |Π , where the second

equality is obtained by inserting a resolution of the identity 11 = ∑
j |y j 〉〈y j |. Likewise,

11 −Π is also a projector, and using another resolution of the identity, 11 = ∑
i |xi 〉〈xi |,

we similarly get 11 −Π = ∑
i (11 −Π)|xi 〉〈xi |(11 −Π). This yields

Tr[Πρ] =
∑

i

λi Tr[Π |xi 〉〈xi |]

=
∑
i, j

λi Tr[Π |y j 〉〈y j |Π |xi 〉〈xi |]

=
∑
i, j

λi |〈xi |Π |y j 〉|2,
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and, similarly,

Tr[(11 −Π)σ ] =
∑
i, j

µ j |〈xi |11 −Π |y j 〉|2.

Then the quantum error probability is given by

Pe,q = η0 Tr[Πρ] + η1 Tr[(11 −Π)σ ]
=

∑
i, j

η0λi |〈xi |Π |y j 〉|2 + η1µ j |〈xi |11 −Π |y j 〉|2.

The infimum of the classical error probability Pe,c is obtained when the test function φ
equals the indicator function φ = χ{η1q>η0 p} (corresponding to the maximum likelihood
decision rule); hence, the value of this infimum is given by

inf
φ

Pe,c =
∑
i, j

min(η0 pi, j , η1qi, j )

=
∑
i, j

min(η0λi , η1µ j )|〈xi |y j 〉|2.

For a fixed choice of i, j , let a be the 2 × 2 non-negative diagonal matrix

a :=
(
η0λi 0

0 η1µ j

)
,

and let b be the 2-vector

b := (〈xi |Π |y j 〉, 〈xi |11 −Π |y j 〉).
The i, j-term in the sum for Pe,q can then be written as the inner product 〈b|a|b〉.
Similarly, the factor |〈xi |y j 〉|2 occurring in the i, j-term in the sum for Pe,c can then be
written as |b1 + b2|2.

Now we note that 〈b|b〉 = ‖b‖2
2, while |b1 +b2|2 ≤ ‖b‖2

1. For d-dimensional vectors,
the inequality ‖b‖2 ≥ ‖b‖1/

√
d holds; in our case, d = 2. Together with the inequality

a ≥ min(η0λi , η1µ j )112 this yields

〈b|a|b〉 ≥ min(η0λi , η1µ j )〈b|b〉 ≥ min(η0λi , η1µ j )
1

2
|b1 + b2|2. (19)

Therefore, we obtain, for any i, j ,

η0λi |〈xi |Π |y j 〉|2 + η1µ j |〈xi |11 −Π |y j 〉|2 ≥ 1

2
min(η0λi , η1µ j )|〈xi |y j 〉|2.

As this holds for any i, j , it holds for the sum over i, j , so that a lower bound for the
quantum error probability is given by

Pe,q ≥ 1

2

∑
i, j

min(η0 pi, j , η1qi, j ) = 1

2
inf
φ

Pe,c,

which proves the proposition. �
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Using these properties of the mapping, the proof of optimality of the quantum
Chernoff bound is easy.

Proof of optimality of the quantum Chernoff bound. Let hypotheses H0 and H1, with
priors π0 and π1, correspond to the product states ρ⊗n and σ⊗n . Using the mapping (12),
these states are mapped to the probability distributions p⊗n and q⊗n . By Proposition 2,
the quantum error probability is bounded from below as

Pe,q(Πn, ρ
⊗n, π0, σ

⊗n, π1) ≥ 1

2
inf
φn

Pe,c(φn, p⊗n, π0, q⊗n, π1). (20)

By the classical Chernoff bound, the rate limit of the right-hand side is given by

− log inf
0≤s≤1

∑
i, j

p1−s
i, j qs

i, j

(provided the priors π0, π1 are non-zero) and this is, therefore, an upper bound on the
rate limit of the optimal quantum error probability. By Proposition 1 the latter expression
is equal to − log inf0≤s≤1 Tr[ρ1−sσ s], which is what we set out to prove. �

In a similar way one can prove the converse part of the quantum Hoeffding bound by
relating it to the classical problem in the sense of (12), as already noted by Nagaoka in
[20]. This will be discussed in Sect. 5.4.

3.2. Proof of Theorem 1: Achievability Part. In this section, we prove the achievabi-
lity of the quantum Chernoff bound, which is the statement that the error rate limit
limn→∞

(− 1
n log P∗

e,n

)
is not only bounded above by, but is actually equal to the quan-

tum Chernoff distance ξQC B . This can directly be inferred from the following matrix
inequality, which first made its appearance in [1]:

Theorem 2. Let a and b be positive semi-definite operators, then for all 0 ≤ s ≤ 1,

Tr[asb1−s] ≥ Tr[a + b − |a − b|]/2. (21)

Note that inequality (21) is also interesting from a purely matrix analytic point of view,
as it relates the trace norm to a multiplicative quantity in a highly nontrivial and very
useful way.

If we specialise this theorem to states, a = σ and b = ρ, with Tr ρ = Tr σ = 1, we
obtain

Qs + T ≥ 1, 0 ≤ s ≤ 1,

where Qs := Qs(ρ, σ ) := Tr[ρ1−sσ s] and T := T (ρ, σ ) := ‖ρ − σ‖1/2 is the trace
norm distance.

Remark 1. Inequality (21) can be written in the form 〈b1/2| fs(∆a,b)b1/2〉 ≤ ‖a − b‖1,
where∆a,b is the relative modular operator acting on the matrix space endowed with the
Hilbert-Schmidt inner product, and fs is the operator convex function fs(t) := 1+t−2t s ,
see [25]. The expression on the left-hand side is a quasi-entropy. This also implies
some of the properties of Qs . For s = 1/2 inequality (21) becomes ‖a1/2 − b1/2‖2 =
Tr[(a1/2 − b1/2)2] ≤ ‖a − b‖1, which is known to hold also in infinite dimensions.
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Remark 2. The inequality Qs +T ≥ 1 is strongly sharp, which means that for any allowed
value of T one can find ρ and σ that achieve equality. Indeed, take the commuting density
operators ρ = |0〉〈0| and σ = (1 − T )|0〉〈0| + T |1〉〈1|, then their trace norm distance is
T , and Qs = 1 − T .

Proof of achievability of the quantum Chernoff bound from Theorem 2. We will prove
the inequality

lim inf
n→∞

(
−1

n
log P∗

e,n

)
≥ ξQC B . (22)

Put a = π1σ
⊗n and b = π0ρ

⊗n , so that the right-hand side of (21) turns into

(1 − ‖π1σ
⊗n − π0ρ

⊗n‖1)/2 = P∗
e,n .

The logarithm of the left-hand side of inequality (21) simplifies to

log(π1−s
0 π s

1) + n log
(

Tr[ρ1−sσ s]
)
.

Upon dividing by n and taking the limit n → ∞, we obtain log Qs , independently of
the priors π0, π1 (as long as the priors are not degenerate, i.e. are different from 0 or 1).
Then (22) follows from the fact that the inequality

lim inf
n→∞

(
−1

n
log P∗

e,n

)
≥ − log Qs

holds for all s ∈ [0, 1] and we can replace the right-hand side by ξQC B . �
Proof of Theorem 2. The left-hand and right-hand sides of (21) look very disparate, but
they can nevertheless be brought closer together by expressing a + b − |a − b| in terms
of the positive part (a − b)+. The inequality (21) is indeed equivalent to

Tr[a − asb1−s] ≤ Tr[a − (a + b − |a − b|)/2]
= Tr[(a − b + |a − b|)/2]
= Tr[(a − b)+]. (23)

At this point we mention another equivalent formulation of this inequality, which will
be used later in the proof of the achievability of the quantum Hoeffding bound. WithΠ
the projector on the range of (a − b)+, we can write:

Tr[asb1−s] ≥ Tr[Πb + (11 −Π)a]. (24)

What we do next is strengthening the inequality (23) by replacing its left-hand side
by an upper bound, and its right-hand side by a lower bound. Since, for any self-adjoint
operator H , we have H ≤ H+, we can write

Tr[a − asb1−s] = Tr[as(a1−s − b1−s)] ≤ Tr[as(a1−s − b1−s)+]
= Tr[asΠ(s)(a1−s − b1−s)]
= Tr[Π(s)(a − b1−sas)],

where Π(s) is the projector on the range of (a1−s − b1−s)+. Likewise,

Tr[Π(s)(a − b)] ≤ Tr[(a − b)+],
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because Tr[(a − b)+] is the maximum of Tr[Π(a − b)] over all orthogonal projections
Π . Inequality (21) would thus follow if, for that particular Π(s),

Tr[Π(s)(a − b1−sas)] ≤ TrΠ(s)(a − b).

The benefit of this reduction is obvious, as after simplification we get the much nicer
statement

Tr[Π(s)b1−s(as − bs)] ≥ 0.

Equally obvious, though, is the risk of this strengthening; it could very well be a false
statement. Nevertheless, we show its correctness below.

It is interesting to note the meaning here of this strengthening in the context of the
optimal hypothesis test, i.e. when a = σ⊗n and b = ρ⊗n . While the Holevo-Helstrom
projectorsΠ∗

n are optimal for every finite value of n, we can use other projectors that are
suboptimal but reach optimality in the asymptotic sense. Here we are indeed usingΠ(s∗),
the projector on the range of (a1−s∗ − b1−s∗

)+, where s∗ is the minimiser of Tr[ρ1−sσ s]
over [0, 1], if it exists. Otherwise we have to use the Holevo-Helstrom projector.

In the next few steps we will further reduce the statement by reformulating the matrix
powers in terms of simpler expressions. One can immediately absorb one of them into
a and b via appropriate substitutions. As we certainly don’t want a power appearing in
the definition of the projector Π(s), we are led to apply the substitutions

A = a1−s, B = b1−s, t = s/(1 − s).

This yields a value of t between 0 and 1 only when 0 ≤ s ≤ 1/2. However, this is no
restriction since the case 1/2 ≤ s ≤ 1 can be treated in a completely similar way after
applying an additional substitution s → 1 − s.

Inequality (21) is thus implied by the lemma below, which ends the proof of Theorem
2. �
Lemma 2. For matrices A, B ≥ 0, a scalar 0 ≤ t ≤ 1, and denoting by P the projector
on the range of (A − B)+, the following inequality holds:

Tr[P B(At − Bt )] ≥ 0. (25)

Proof. To deal with the t th matrix power, we use an integral representation (see, for
example [3] (V.56)). For scalars a ≥ 0 and 0 ≤ t ≤ 1,

at = sin(tπ)

π

∫ +∞

0
dx xt−1 a

a + x
.

For other values of t this integral does not converge. This integral can be extended to
positive operators in the usual way:

At = sin(tπ)

π

∫ +∞

0
dx xt−1 A(A + x11)−1.

To deal with non-invertible A (arising when the states ρ and σ are not faithful), we define
limx→0 A(A + x11)−1 = 11.

The potential benefit of this integral representation is that statements about the integral
might follow from statements about the integrand, which is a simpler quantity.
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Applying the integral representation to At and Bt , we get

Tr[P B(At − Bt )] = sin(tπ)

π

∫ +∞

0
dx xt−1 Tr[P B(A(A + x)−1 − B(B + x)−1)].

If the integrand is positive for all x > 0 (it is zero for x = 0), then the whole integral is
positive. The lemma follows if indeed we have

Tr[P B(A(A + x)−1 − B(B + x)−1)] ≥ 0.

As a further reduction, we note that a difference can be expressed as an integral of a
derivative:

f (a)− f (b) = f (b + (a − b))− f (b) =
∫ 1

0
dt

d

dt
f (b + (a − b)t).

Here, we will apply this to the expression A(A + x)−1 − B(B + x)−1. Let ∆ = A − B.
Then

A(A + x)−1 − B(B + x)−1 =
∫ 1

0
dt

d

dt
(B + t∆)(B + t∆ + x)−1.

The potential benefit is again that the required statement might follow from a statement
about the integrand, which is a simpler quantity provided one is able to calculate the
derivative explicitly. In this case we are not dealing with a stronger statement, because
the statement has to hold for the derivative anyway (when A is close to B).

In the present case, we can indeed calculate the derivative:

d

dt
(B + t∆)(B + t∆ + x)−1 = x (B + t∆ + x)−1 ∆ (B + t∆ + x)−1.

Therefore,

Tr[P B(A(A + x)−1 − B(B + x)−1)]
= x

∫ 1

0
dt Tr[P B(B + t∆ + x)−1∆(B + t∆ + x)−1].

Again, if the integrand is positive for 0 ≤ t ≤ 1, the whole integral is positive. Absorbing
t in ∆ we need to show, with P the projector on ∆+:

Tr[P B V ∆ V ] ≥ 0, where V := (B +∆ + x)−1 ≥ 0.

After all these reductions, the statement is now in sufficiently simple form to allow
the final attack. Since B = V −1 − x −∆, we have BV∆V = ∆(V − V∆V )− xV∆V .
Positivity of B implies V BV = V − V∆V − xV 2 ≥ 0, thus V − V∆V ≥ xV 2.
Furthermore, since P∆ = ∆+ ≥ 0,

Tr[P BV∆V ] = Tr[P(∆(V − V∆V )− xV∆V )]
= Tr[∆+(V − V∆V )] − x Tr[PV∆V ]
≥ x(Tr[∆+V 2] − Tr[PV∆V ]).

Because 11 ≥ P ≥ 0, ∆+ ≥ 0, and ∆+ ≥ ∆,

Tr[∆+V 2] = Tr[V∆+V ] ≥ Tr[P(V∆+V )] ≥ Tr[P(V∆V )].
The conclusion is that, indeed, Tr[P BV∆V ] ≥ 0, which proves the lemma. �
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4. Properties of the Quantum Chernoff Distance

In this section, we study the non-logarithmic variety Q of the quantum Chernoff distance
ξQC B , i.e.

Q(ρ, σ ) := inf
0≤s≤1

Tr[ρ1−sσ s], (26)

where ρ, σ are density operators on a fixed finite-dimensional Hilbert space H. All
properties of ξQC B = − log Q can readily be derived from Q. It will turn out that ξQC B
is not a metric, since it violates the triangle inequality, but it has a lot of properties
required of a distance measure on the set of density operators.

4.1. Relation to Fidelity and Trace Distance. The Uhlmann fidelity F between two
states is defined as

F(ρ, σ ) := ‖ρ1/2σ 1/2‖1 = Tr[(ρ1/2σρ1/2)1/2]. (27)

Here, the latter formula is best known, but the first one is easier and makes the sym-
metry under interchanging arguments readily apparent. The Uhlmann fidelity can be
regarded as the quantum generalisation of the so-called Hellinger affinity [29] defined
as B(p0, p1) := ∑

i
√

p0(i)p1(i), where p0 and p1 are classical distributions. It is an
upper bound on Q, which can be shown as follows. By definition, for any fixed value
of s ∈ [0, 1], Qs = Tr[ρ1−sσ s] is an upper bound on Q. In particular, this is true for
s = 1/2. Furthermore, by replacing the trace with the trace norm ‖ · ‖1, we get an even
higher upper bound. Indeed,

Q ≤ Tr[ρ1/2σ 1/2] = ‖ρ1/4σ 1/2ρ1/4‖1 ≤ ‖ρ1/2σ 1/2‖1 = F. (28)

In the last inequality we have used the fact ([3], Prop. IX.1.1) that for any unitarily
invariant norm |||AB||| ≤ |||B A||| if AB is normal. In particular, consider the trace
norm, with A = ρ1/4σ 1/2 and B = ρ1/4.

For a pair of density operators the trace distance T is defined by

T (ρ, σ ) := 1

2
‖ρ − σ‖1.

Fuchs and van de Graaf [10] proved the following relation between F and T :

(1 − F)2 ≤ T 2 ≤ 1 − F2. (29)

Combining this with inequality (28) yields the upper bound

Q2 + T 2 ≤ 1. (30)

Recall the relation 1 − T ≤ Q, following from Theorem 2. Then combining everything
yields the chain of inequalities

1 −
√

1 − F2 ≤ 1 − T ≤ Q ≤ F ≤
√

1 − T 2. (31)

There is a sharper lower bound on Q in terms of F , namely

F2 ≤ Q. (32)

This bound is strongly sharp, as it becomes an equality when one of the states is pure
[18]. Indeed, for ρ = |ψ〉〈ψ |, the minimum of the expression Tr[ρ1−sσ s] is obtained
for s = 1 and reduces to 〈ψ |σ |ψ〉, while F is given by the square root of this expression.

We prove (32) in Appendix A, where we also give an alternative proof of the upper
bound Q ≤ √

1 − T 2. Both proofs go through in countably infinite dimensions.
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4.2. Range of Q. The maximum value Q can attain is 1, and this happens if and only
if ρ = σ . This follows, for example, from the upper bound Q2 + T 2 ≤ 1. The minimal
value is 0, and this is only attained for pairs of orthogonal states, i.e. states such that
Tr ρσ = 0. Consequently the range of the Chernoff distance is [0,∞] and the infinite
value is attained on orthogonal states; this has to be contrasted with the relative entropy,
where infinite values are obtained whenever the states have a different support.

4.3. Triangle inequality. As already mentioned, on the set of pure states we have the
identity Q = F2. The Uhlmann fidelity F does not obey the triangle inequality; however
it can be transformed into a metric by going over to arccos F , while the Chernoff distance
on pairs of pure states is equal to ξQC B = − log Q = −2 log F .

When considering the triangle inequality for ξQC B , one should note first that in
the classical case, the classical expression ξC B should be expected to behave like a
squared metric, similarly to the relative entropy or Kullback-Leibler distance. Indeed
consider two laws from the normal shift family N (µ, 1), µ ∈ R; then it is easy to
see that ξC B = (µ1 − µ2)

2 /8. Thus ξC B defines a squared metric on the normal shift
family, which will not satisfy the triangle inequality due to the square, but

√
ξC B will.

However
√
ξC B does not satisfy the triangle inequality in the general case. To see this,

let Be(ε) be the Bernoulli law with parameter ε ∈ [0, 1]. Some computations show that
ξC B (Be(1/2), Be(ε)) → log 2 and ξC B (Be(ε), Be(1 − ε)) → ∞ as ε → 0. As a
consequence we have, for ε small enough,

ξ
1/2
C B (Be(ε), Be(1 − ε)) > ξ

1/2
C B (Be(ε), Be(1/2)) + ξ1/2

C B (Be(1/2), Be(1 − ε))

contradicting the triangle inequality.

4.4. Convexity of Qs as a function of s. The target function s �→ Qs = Tr[ρ1−sσ s] in
the variational formula defining Q has the useful property to be convex in s ∈ [0, 1]
in the sense of Jensen’s inequality: Qts1+(1−t)s2 ≤ t Qs1 + (1 − t)Qs2 for all t ∈ [0, 1].
This implies that a local minimum is automatically the global one, which is an important
benefit in actual calculations.

Indeed, the function s �→ x1−s ys is analytic for positive scalars x and y, and in
this case its convexity may be easily confirmed by calculating the second derivative
x1−s ys(log y − log x)2, which is non-negative. If one of the parameters, say x , happens
to be 0, then s �→ x1−s ys is a constant function equal to 0 for s ∈ [0, 1) and equal to 1 at
s = 1. Hence, it is still convex, albeit discontinuous. Consider then a basis with respect
to which the matrix representation of ρ is diagonal

ρ = Diag(λ1, λ2, . . .).

Let the matrix representation of σ (in that basis) be given by

σ = U Diag(µ1, µ2, . . .)U
∗,

where U is a unitary matrix. Then

Tr[ρ1−sσ s] =
∑
i, j

λ1−s
i µs

j |Ui j |2.

As this is a sum with positive weights of convex terms λ1−s
i µs

j , the sum itself is also
convex in s.
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4.5. Joint concavity of Q in (ρ, σ ). By Lieb’s theorem [19], Tr[ρ1−sσ s] is jointly
concave on pairs of density operators (ρ, σ ) for each fixed s ∈ R. Since Q is the
point-wise minimum of Tr[ρ1−sσ s] over s ∈ [0, 1], it is itself jointly concave as well.
Hence the related quantum Chernoff distance is jointly convex, just like the relative
entropy.

4.6. Monotonicity under CPT maps. From the joint concavity one easily derives the
following monotonicity property: for any completely positive trace preserving (CPT)
map Φ on the C∗-algebra B(H) of linear operators, one has

Q(Φ(ρ),Φ(σ)) ≥ Q(ρ, σ ). (33)

We remark that this has been shown as a more general result in the framework of
relative modular operators in [25]. Moreover, another proof appeared in [26]. We give
an alternative proof omitting the notion of relative modular operators.

First, we note that Q is invariant under unitary conjugations, i.e.

Q(UρU∗,UσU∗) = Q(ρ, σ ).

Secondly, Q is invariant under addition of an ancilla system: for any density operator τ
on a finite-dimensional ancillary Hilbert space we have the identity

Q(ρ ⊗ τ, σ ⊗ τ) = Q(ρ, σ ).

This is because Tr[(ρ ⊗ τ)1−s(σ ⊗ τ)s] = Tr[ρ1−sσ s] Tr[τ ]. Exploiting the unitary
representation of a CPT map, which is a special case of the Stinespring form, the mono-
tonicity statement follows for general CPT maps if we can prove it for the partial trace
map. As noted by Uhlmann [27,7], the partial trace map can be written as a convex
combination of certain unitary conjugations. Monotonicity of Q under the partial trace
then follows directly from its concavity and its unitary invariance.

4.7. Continuity. By the lower bound Q + T ≥ 1, the distance measures 1− Q and ξQC B
are continuous in the sense that states that are close in trace distance are also close w.r.t.
1 − Q and w.r.t. ξQC B . Indeed, we have 0 ≤ 1 − Q ≤ T and ξQC B = − log Q ≤
− log(1 − T ) = T + O(T 2).

4.8. Relation of the Chernoff distance to the relative entropy. In the classical case there
is a striking relation between the Chernoff distance ξC B and the relative entropy H(·‖·).
It takes its simplest version if the two involved discrete probability distributions p and
q have coinciding supports since then s �→ log

∑
x p1−s(x)qs(x) = log Qs is analytic

over [0, 1] and its infimum, which defines the Chernoff distance, may be obtained simply
by setting

0 = (log Qs)
′ = H(ps‖p)− H(ps‖q)

(the prime denotes derivation w.r.t. s). Here

ps := p1−sqs∑
x p1−s(x)qs(x)
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defines a parametric family of probability distributions interpolating between p and q
as the parameter s varies between 0 and 1. In the literature, this family is called the
Hellinger arc. It follows that the minimiser s∗ ∈ [0, 1] is uniquely determined by the
identity

H(ps∗‖q) = H(ps∗‖p). (34)

Furthermore, for any s ∈ [0, 1] we have:

H(ps‖p) = s(log Qs)
′ − log Qs, (35)

and similarly

H(ps‖q) = −(1 − s)(log Qs)
′ − log Qs, (36)

This may be verified by direct calculation using essentially the identity log p1−sqs =
log p1−s + log qs . For the minimiser s∗ the formulas (35) and (36) reduce to

H(ps∗‖p) = H(ps∗‖q) = ξC B(p, q). (37)

In the generic case of possibly different supports of p and q one has to modify (34) and
(37) slightly, see [22].

It turns out that in the quantum setting the minimiser s∗ ∈ [0, 1] of infs∈[0,1] log Qs
can be characterised by a generalized version of (34). However, the surely more remar-
kable relation (37) between the Chernoff distance ξC B and the relative entropy seems to
have no quantum counterpart.

We assume again that the involved density operators ρ and σ both have full support,
i.e. are invertible. Then Qs = Tr(ρ1−sσ s) is an analytic function over [0, 1] and its
local infimum over [0, 1], which is a global minimum due to convexity, can be found by
differentiating Qs w.r.t. s:

∂

∂s
Tr[ρ1−sσ s] = − Tr[(log ρ) ρ1−s σ s] + Tr[ρ1−s σ s log σ ]

= − Tr[ρ1−s σ s log ρ] + Tr[ρ1−s σ s log σ ]. (38)

The infimum is therefore obtained for an s ∈ [0, 1] such that

Tr[ρ1−sσ s log ρ] = Tr[ρ1−sσ s log σ ].
This is equivalent to the condition

S(ρs ||ρ) = S(ρs ||σ), (39)

where S(ρ||σ) denotes the quantum relative entropy defined by (15) and ρs is defined
as

ρs = ρ1−sσ s

Tr[ρ1−sσ s] . (40)

Note that ρs , with s ∈ (0, 1), is not a density operator, because it is not even self-adjoint
(except in the case of commuting ρ and σ ). Nevertheless, as it is basically the product of
two positive operators, it has positive spectrum, and its entropy and the relative entropies
used in (39) are well-defined. The value of s for which both relative entropies coincide
is the minimiser in the variational expression (26) for Q.
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The family ρs , s ∈ [0, 1], can be considered as a quantum generalisation of the
Hellinger arc interpolating between the quantum states ρ and σ , albeit out of the state
space, in contrast to the classical case.

When attempting to generalise relation (37) to the quantum setting one has to verify
(35) or (36) with density operators ρ, σ replacing the probability distributions p, q. This
would require the identity Tr ρs log ρ1−sσ s = Tr ρs(log ρ1−s + log σ s) to be satisfied.
However, this is not the case for arbitrary non-commutative density operators ρ, σ . Thus
the second identity in (37) seems to be a classical special case only.

5. Asymmetric Quantum Hypothesis Testing: Quantum Hoeffding Bound

In this section, we consider the applications of our techniques presented in Sect. 3 to the
case of asymmetric quantum hypothesis testing. More precisely, we consider a quantum
generalisation of the Hoeffding bound and of Stein’s Lemma.

5.1. The Classical Hoeffding Bound. The classical Hoeffding bound in information
theory is due to Blahut [6] and Csiszár and Longo [9]. The corresponding ideas in
statistics were first put forward in the paper [16] by W. Hoeffding, from which the
bound got its name. Some authors prefer the more complete name of Hoeffding-Blahut-
Csiszár-Longo bound. In the following paragraph we review the basic results in Blahut’s
terminology; at this point we have to mention that many different notational conventions
are in use throughout the literature.

Let p be the distribution associated with the null hypothesis, and q the one associated
with the alternative hypothesis.1 Following [6], and for the purposes of this discussion,
we initially assume that p and q are equivalent (mutually absolutely continuous) on a
finite sample space. The Hoeffding bound gives the best exponential convergence rate
of the type-I error under the constraint that the rate limit of the type-II error is bounded
from below by a constant r , i.e. when the type-II error tends to 0 sufficiently fast.

Blahut defines the error-exponent function e(r), r ≥ 0, with respect to two probability
densities p and q with coinciding supports, as a minimisation over probability densities
x :

e(r) = inf
x

{H(x‖p) : H(x‖q) ≤ r}, (41)

where H(·‖·) is again the classical relative entropy defined in (16). This minimisation
is a convex minimisation, since the target function is convex in x , and the feasible set,
defined by the constraint H(x‖q) ≤ r , is a convex set. Pictorially speaking, the optimal
x is the point in the feasible set that is closest (as measured by the relative entropy) to
p. If p itself is in the feasible set (i.e. if H(p‖q) ≤ r ), then the optimal x is p, and
e(r) = 0. Otherwise, the optimal x is on the boundary of the feasible set, in the sense
that H(x‖q) = r , and e(r) > 0. Obviously, if r = 0, the feasible set is the singleton
{q}, and e(r) = H(q‖p).

The error-exponent function is thus a non-increasing, convex function of r ≥ 0,
with the properties that e(0) = H(q‖p) and e(H(p‖q)) = 0. It can be expressed in a

1 In [6], the null hypothesis corresponds to H2, with distribution q2, and the alternative hypothesis to H1,
with distribution q1.
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Fig. 1. (Color online) Example plot of the error-exponent function e(r), Eq. (42), for the distributions p =
(0.95, 0.05) and q = (0.5, 0.5). The thick (red) line is the graph of e(r), while the thin (blue) lines are instances
of the linear function (−rs − log

∑
k qs

k p1−s
k )/(1 − s) for various values of s, of which e(r) is the point-wise

maximum. For the chosen p and q, the value of H(p‖q) = 0.49463 and the value of H(q‖p) = 0.83037

computationally more convenient format as

e(r) = sup
0≤s< 1

−rs − log
∑

k qs
k p1−s

k

1 − s
. (42)

An example is shown in Fig. 1.
Let φ = (φn) be a sequence of test functions. Recall the notations αR(φ) and βR(φ)

introduced in Sect. 2 for the rate limits (if they exist) of the corresponding type-I and
type-II errors, respectively:

αR(φ) = lim
n→∞ −1

n
logαn(φ), βR(φ) = lim

n→∞ −1

n
logβn(φ).

Then the classical HBCL Theorem can be stated as follows.

Theorem 3 (HBCL). Assume that p, q are mutually absolutely continuous. Then for
each r > 0 there exists a sequence φ of test functions φn such that the rate limits of
the type-II and type-I errors behave like βR(φ) ≥ r and αR(φ) = e(r). Moreover, for
any sequence φ such that αR(φ) and βR(φ) both exist, the relation βR(φ) > r implies
αR(φ) ≤ e(r).

We remark that for sequences φ of test functions φn for which the rate limits αR(φ)

or βR(φ) do not exist, the result still applies to subsequences (φnk ) along which both
error rate limits exist. The second part of the HBCL theorem is thus a statement about all
accumulation points of

(− 1
n logαn(φ),− 1

n logβn(φ)
)

for an arbitrary test sequence φ.
Referring to Fig. 1, the claim of this theorem is that for any sequence of test functionsφ

the point (βR(φ), αR(φ)) cannot be above the graph of e(r) over r > 0 and for any point
on the graph over r ≥ 0 one can find a sequence φ. Since βR(φ) = 0 may correspond to
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the case where β(φn) vanishes subexponentially slowly as well as converges to a positive
value, a rate limit of type-I error αR(φ) larger than e(0) = H(q‖p) is achievable.

The case βR(φ) > r ≥ H(p‖q), where e(r) = 0, can be shown to correspond
to α(φn) converging to 1, rather than to 0. (This is basically the content of the
so-called ‘Strong Converse’.) In the case βR(φ) = H(p‖q) a convergence of α(φn)

to 0 is achievable, albeit only subexponantially slowly (this is due to Stein’s Lemma.)
Note that in order to obtain a bound on βR under a constrained αR one just has to

interchange p and q in the theorem.

5.2. Nonequivalent hypotheses. The Chernoff and Hoeffding bounds have typically
been treated in the literature under a restrictive assumption that hypotheses p, q are
mutually absolutely continuous (equivalent), cf., e.g., Blahut [6]. As a prerequisite for
a quantum generalisation, unless one wants to limit oneself to faithful states, one has to
understand the classical Hoeffding bound for nonequivalent hypotheses. For the Cher-
noff bound, a corresponding discussion can be found in [22] without restrictions on
the underlying sample space. Here we limit ourselves to finite sample spaces, thereby
excluding infinite relative entropies for equivalent measures p, q.

For probability measures p, q on a finite sample space Ω , let D0 be the support of
p, D1 be the support of q and B = D0 ∩ D1. Let ψ0 = p (B), ψ1 = q (B) and note
that ψ0 > 0, ψ1 > 0 unless the measures p, q are orthogonal (which we exclude for
triviality). Define conditional measures given the set B: p̃ (·) = p (·|B), q̃ (·) = q (·|B).
Note that p̃, q̃ are equivalent measures; we may have p̃ = q̃ . We consider hypothesis
testing for a pair of product measures p⊗n, q⊗n .

Recall that a (nonrandomised) test is a mapping φn : Ωn �→ {0, 1}. In our setting,
only observations in either Dn

0 or Dn
1 can occur, so we will modify the sample space to

be Dn
0∪ Dn

1 . We will then establish the relation of tests φn in the original problem p⊗n

vs. q⊗n to tests in the ‘conditional’ problem p̃⊗n vs. q̃⊗n, i.e. to tests φ̃n : Bn �→ {0, 1}.
Call a test φn null admissible if it takes value 0 on Dn

0\Bn and value 1 on Dn
1\Bn . These

tests correspond to the notion that if a point in the sample spaceΩn is not in Bn , then it
identifies the hypothesis errorfree (either p or q). We need only consider null admissible
tests; for any test there is a null admissible test with equal or smaller error probabilities
αn , βn . The restriction φn|Bn gives a test on Bn , i.e. in the conditional problem.

Lemma 3. There is a one-to-one correspondence between null admissible tests φn in
the original problem p⊗n vs. q⊗n and tests φ̃n in the conditional problem p̃⊗n vs. q̃⊗n,
given by φ̃n = φn|Bn. The errror probabilities satisfy

αn (φ) = ψn
0 αn

(
φ̃
)
, βn (φ) = ψn

1 βn

(
φ̃
)
,

where ψ0 = p(B) and ψ1 = q(B).

Proof. The first claim is obvious, if one takes into account that we took all tests in the
original problem to be mappings φn : Dn

0∪ Dn
1 �→ {0, 1}. For the relation of error

probabilities, note that p⊗n(A) = ψn
0 p̃⊗n(A ∩ Bn), A ⊂ Dn

0∪ Dn
1 and therefore

αn (φ) =
∫
φndp⊗n =

∫
Bn
φndp⊗n (by null admissibility)

= ψn
0

∫
φnd p̃⊗n = ψn

0

∫
Bn
φ̃nd p̃⊗n = ψn

0 αn

(
φ̃
)

and analogously for βn (φ) . �
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This result already allows to state the general Hoeffding bound in terms of the
error-exponent function for the conditional problem

ẽ(r) = sup
0≤s< 1

−rs − log
∑

k q̃s
k p̃1−s

k

1 − s
.

Indeed, rate limits αR(φ) and βR(φ) for a null admissible test sequence φ exist if and
only if they exist for the corresponding test sequence φ̃, and

αR (φ) = − logψ0 + αR

(
φ̃
)

, βR (φ) = − logψ1 + βR

(
φ̃
)
. (43)

Proposition 3. Let p, q be arbitrary probability measures on a finite sample space.
(i) (achievability) For each r ≥ − logψ1 there exists a sequence φ of test functions φn
such that the rate limits of the type-II and type-I errors behave like βR (φ) ≥ r and
αR (φ) = − logψ0 + ẽ(r + logψ1). For the case 0 ≤ r ≤ − logψ1, there is a sequence
φ of test functions φn obeying −n−1 logβn (φ) = − logψ1 and αn (φ) = 0 for every n.
(ii) (optimality) Consider any sequence φ such that αR(φ) and βR(φ) both exist. If
r ≥ − logψ1 then the relation βR(φ) > r implies αR(φ) ≤ − logψ0 + ẽ(r + logψ1).

Note that in (ii) the omission of the case 0 ≤ r ≤ − logψ1 means that there is no
upper bound on αR(φ), as shown by the achievability part (αR (φ) has to be set equal
to ∞ for a test of vanishing error probability αn).

Proof. (i) Assume r ≥ − logψ1 and take a test sequence φ̃n in the conditional problem
p̃⊗n vs. q̃⊗n such thatβR(φ̃) ≥ r +logψ1 andαR(φ̃) = ẽ(r +logψ1), which exists accor-
ding to the HBCL theorem since p̃, q̃ are mutually absolutely continuous. According to
Lemma 3, the corresponding null admissible test φn satisfies (43) and hence βR (φ) ≥ r
and αR (φ) = − logψ0 + ẽ(r + logψ1). Furthermore, consider the test φ̃n ≡ 0 in p̃⊗n

vs. q̃⊗n . This has αn(φ̃n) = 0 and βn(φ̃n) = 1, hence the corresponding null admissible
test φn has αn(φn) = 0 and βn(φn) = ψn

1 .
(ii) Using a reduction to the conditional problem p̃⊗n vs. q̃⊗n similar to the one

above, the optimality part also follows immediately from the HBCL theorem. �
Remark. Consider the dual of the test used in the second part of (i), i.e. the null admissible
extension of the test φ̃n ≡ 1. This one obviously has αn (φ) = ψn

0 and βn(φ) = 0. It
can be used for achievability for large r , i.e. it has βR(φ) = ∞ and αR(φ) = − logψ0.

It is possible to obtain a closed form expression for the Hoeffding bound, using the
error-exponent function defined for r ≥ 0 exactly as in (42), for the case of nonequivalent
p, q. The difference is that we now have to admit a value +∞ for certain arguments.

Lemma 4. For general p, q, the error-exponent function e(r) satisfies

e(r) =
{− logψ0 + ẽ(r + logψ1), for r ≥ − logψ1

∞, for 0 ≤ r < − logψ1.

Remark. For two distinct p, q it is possible that p̃ = q̃ . In that case ẽ(r) = 0 for r ≥ 0.
It follows that e(r) = ∞ for r < −logψ1 and e(r) = − logψ0 for r ≥ − logψ1. This
case will be relevant in the quantum setting when the hypotheses will be represented by
two non-orthogonal pure quantum states.
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Proof. Assume r ≥ − logψ1 and set

es(r) = −rs − log Qs

1 − s
,

where Qs = ∑
k p1−s

k qs
k . Let Q̃s = ∑

k p̃1−s
k q̃s

k and note Qs = ψ1−s
0 ψ s

1 Q̃s . Hence

es(r) = −rs − (1 − s) logψ0 − s logψ1 − log Q̃s

1 − s

= − logψ0 +
−(r + logψ1)s − log Q̃s

1 − s
= − logψ0 + ẽs(r + logψ1),

where ẽs is the analogue of the function es(r) with Qs replaced by Q̃s . Since e(r) =
sup0≤s< 1 es(r) and the analogue is true for ẽs and ẽ, the claim follows in the case
r ≥ − logψ1.

Assume now 0 ≤ r < − logψ1 and ψ1 < 1, i.e. − logψ1 > 0. Clearly we have
Qs → ψ1 as s ↗ 1, hence −rs − log Qs → −r − logψ1 > 0 as s ↗ 1. Hence
lims↗1 es(r) = ∞, and since e(r) = sup0≤s< 1 es(r), we also have e(r) = ∞. �

In conjunction with Proposition 3 we obtain a closed form description of the Hoeffding
bound for possibly nonequivalent measures p, q, in terms of the original error-exponent
function e(r).

Theorem 4. Let p, q be arbitrary probability measures on a finite sample space. Then
the statement of the HBCL Theorem (Theorem 3) is true, where the error-exponent
function defined in (42) obeys e(r) = ∞ for 0 ≤ r < − logψ1 if ψ1 < 1.

We noted already that for e(r) = ∞, the bound on αR(φ) is achievable in the sense that
a test exists having exactly αn(φ) = 0 for all n.

Using the properties of the rate function ẽ pertaining to equivalent measures p̃, q̃ ,
as illustrated in Fig. 1, and the representation of Lemma 4 we obtain the following
description of the general rate exponent function. In the interval [0,− logψ1) it is infinity.
At r = − logψ1 it takes value e(r) = − logψ0 + H(q̃‖ p̃) = H(q̃‖p). For r ≥ − logψ1
it is convex and non-increasing. More precisely, over the interval [− logψ1,− logψ1 +
H( p̃‖q̃) = H( p̃‖q)] e(r) is convex (even strictly convex) and monotone decreasing.
Over the interval [H( p̃‖q),∞) it is constant with value − logψ0. A visual impression
can be obtained by imagining the origin in Fig. 1 shifted to the point (− logψ1,− logψ0).
This picture will explicitly appear in Fig. 2 below, in a situation further generalized to
two quantum states with different supports.

5.3. Quantum Hoeffding Bound. In the quantum setting the error-exponent function
e(r) has to be replaced by a function eQ : R

+
0 −→ [0,∞] given by

eQ(r) := sup
0≤s<1

−rs − log Tr σ sρ1−s

1 − s
. (44)

In view of Proposition 1, eQ(r) coincides with the error-exponent function e(r) for the
pair of probability distributions (p, q) associated with (ρ, σ ) via relation (12). Therefore,
we can use Lemma 4 to describe properties of the function eQ(r), or the remarks after
Theorem 4.
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Recall that for a pair (p, q), we defined a related pair of probability distributions
( p̃, q̃) by conditioning p and q, respectively, on the intersection B = D0 ∩ D1 of the
two support sets D0 and D1, and also ψ0 = p(B), ψ1 = q(B). In the present context,
in accordance with (12) we have

D0 = {(i, j) : 1 ≤ i, j ≤ d, λi > 0} , D1 = {
(i, j) : 1 ≤ i, j ≤ d, µ j > 0

}
.

Let, as before, ẽ(r) be the error-exponent function pertaining to the pair ( p̃, q̃) according
to (42). Then the quantum error-exponent function eQ(r) for the hypotheses ρ, σ may
be represented simply by

eQ(r) = e(r) =
{− logψ0 + ẽ(r + logψ1), for r ≥ − logψ1

∞, for 0 ≤ r < − logψ1.
(45)

It obtains its characteristic properties from the classical function being convex and
monotone decreasing in the interval

[− logψ1, H( p̃‖q)
]

with e(− logψ1) = H(q̃‖p),
and constant with value − logψ0 in the interval [H( p̃‖q),∞).

Lemma 5. Let supp ρ, supp σ be the support projections associated with ρ, σ . Then the
critical points and extremal values of eQ(r) may be expressed in a more direct way in
terms of the density operators:

ψ0 = Tr
[
ρ supp σ

]
, ψ1 = Tr

[
σ supp ρ

]
and

H( p̃‖q) = Sσ (ρ‖σ) H(q̃‖p) = Sρ(σ‖ρ),

where the entropy type quantities on the right-hand side are defined as

Sσ (ρ‖σ) := Tr

[
ρ

ψ0

(
log

ρ

ψ0
− log σ

)
supp σ

]
,

Sρ(σ‖ρ) := Tr

[
σ

ψ1

(
log

σ

ψ1
− log ρ

)
supp ρ

]
.

Proof. Note that for B = D0 ∩ D1 we have

ψ0 =
∑

(i, j)∈B

λi
∣∣〈xi |y j

〉∣∣2 =
∑
i, j

λi sgn(µ j )
∣∣〈xi |y j

〉∣∣2

=
∑
i, j

λi
∣∣〈xi |sgn(µ j )y j

〉∣∣2 =
∑
i, j

λi
∣∣〈xi | (supp σ) y j

〉∣∣2

=
∑
i, j

λi
∣∣〈(supp σ) xi |y j

〉∣∣2 =
∑

i

λi ‖(supp σ) xi‖2

= Tr

[∑
i

λi |(supp σ) xi 〉 〈(supp σ) xi |
]

= Tr
[
ρ supp σ

]
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and analogously for ψ1. Furthermore

H( p̃‖q) =
∑

(i, j)∈B

p̃i, j log
p̃i, j

qi, j
=

∑
(i, j)∈B

λi
∣∣〈xi |y j

〉∣∣2 1

ψ0
log

λi

µ jψ0

=
∑
i, j

sgn(µ j )
∣∣〈xi |y j

〉∣∣2 λi

ψ0
log

λi

ψ0
−

∑
i, j

sgn(µ j )
∣∣〈xi |y j

〉∣∣2 λi

ψ0
logµ j

= Tr

[
ρ

ψ0

(
log

ρ

ψ0

)
supp σ

]
− Tr

[
ρ

ψ0
(log σ) supp σ

]
,

where the third equality is analogous to the calculation in the proof of Proposition 1. �
To shed some light on the entropy type quantity Sσ (ρ‖σ), note that it may be rewritten
as a difference of usual (Umegaki’s) relative entropies:

Sσ (ρ‖σ) = S

(
ρ

ψ0
supp σ‖σ

)
− S

(
ρ

ψ0
supp σ‖ ρ

ψ0

)
.

This may be verified by direct calculations similar to those in the proof of Lemma 5.
The linear operator ρ

ψ0
supp σ is a kind of conditional expectation of ρ. While it

is not self-adjoint, the relative entropies on the right-hand side are well defined (in a
mathematical sense) and real: first, the entropy of ρ

ψ0
supp σ is defined in terms of its

spectrum, which is positive and normalised to 1, hence giving a real, positive entropy, and
second, Tr[ρ supp σ log(ρ)] can be written as Tr[supp σρ log ρ supp σ ], from which it
is evident that this term is also real.

It is easily seen from the above formula that Sσ (ρ‖σ) coincides with S(ρ‖σ) if σ is
a faithful state, or more generally if supp ρ ≤ supp σ . Otherwise S(ρ‖σ) = ∞, while
Sσ (ρ‖σ) is finite.

Note also that Sρ(σ‖ρ) ≥ − logψ0 and equality holds if and only if it holds in
Sσ (ρ‖σ) ≥ − logψ1. This immediately follows from Sρ(σ‖ρ) + logψ0 = H( p̃‖q̃),
which is seen from Lemma 5. This happens in particular if both ρ and σ are pure states.
In this case there is only one pair (i, j) where both λi > 0 and µ j > 0, hence the set
B consists of one element only. In this case we must have p̃ = q̃, hence H( p̃‖q̃) =
H(q̃‖ p̃) = 0.

The general shape of the quantum error-exponent function eQ(r) is represented in
Fig. 2. If both ρ and σ are pure states then the shape degenerates to ‘rectangular’ form
(eQ(r) = ∞ or eQ(r) = − logψ1).

A quantum generalisation of the HBCL Theorem then reads as follows.

Theorem 5 (Quantum HBCL). For each r > 0 there exists a sequence Π of test pro-
jections Πn on H⊗n for which the rate limits of type-I and type-II errors behave like
αR(Π) = eQ(r) and βR(Π) ≥ r , respectively. Moreover, for any sequenceΠ such that
αR(Π) and βR(Π) both exist, the relation βR(Π) > r implies αR(Π) ≤ eQ(r).

The statement of the quantum HBCL Theorem is that for every sequence Π (for
which both error rate limits exist) the point (βR(Π), αR(Π)) lies on or below the curve
eQ(r) over (0,∞], and for every point on the curve over the closed interval [0,∞] there
is a sequence Π achieving it.

We remark that, just like (37), the relationship (41) seems to have no general quantum
counterpart, even when both states are faithful. In other words, there is no known subset of
linear operators τ with positive spectrum such that eQ(r) = infτ {S(τ‖ρ) : S(τ‖σ) ≤ r}.

To prove the quantum Hoeffding bound, the following lemmas are needed.
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Fig. 2. Example plot of the quantum error-exponent function eQ(r) in the general case

Lemma 6. For scalars x, y > 0, bounds on log(x + y) are given by

max(log x, log y) ≤ log(x + y) ≤ max(log x, log y) + log 2. (46)

Proof. For the first inequality, put x = ea and y = eb, and note

log(ea + eb) = a + log(1 + eb−a)

≥ a + max(0, b − a)

= max(a, b).

The second inequality follows directly from the fact that the logarithm increases mono-
tonically, so that log((x + y)/2) ≤ log max(x, y). �

A direct consequence of this lemma is

Lemma 7. For two scalar sequences xn, yn > 0 with rate limits xR and yR, the rate
limit of xn + yn is given by

lim
n→∞ −1

n
log(xn + yn) = min(xR, yR). (47)

5.4. Proof of Optimality of the Quantum Hoeffding Bound. Again we use the mapping
from the pair (ρ, σ ) to the pair (p, q), so that, by Proposition 1, e(r) = eQ(r). From
Proposition 2 we have that for any sequence Π of orthogonal projections Πn and for
any real value of the scalar x , for all n ∈ N one as

α(Πn) + e−nxβ(Πn) ≥ 1

2

(
α(φn) + e−nxβ(φn)

)
,

where φn are classical test functions corresponding to the maximum likelihood decision
rule, cf. the proof of Proposition 2. Recall that the type-I and type-II errors are defined
as α(φn) = ∑

i pn
i φn(i) and β(φn) = ∑

i qn
i (1 − φn(i)).

On taking the rate limit on the left side, this gives

lim
n→∞ −1

n
log

(
α(Πn) + e−nxβ(Πn)

) ≤ lim inf
n→∞ −1

n
log

(
α(φn) + e−nxβ(φn)

)
.
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By possibly taking a subsequence, we can ensure that the rate limits αR(φ), β(φn) also
exist. By Lemma 7, the above simplifies to

min(αR(Π), x + βR(Π)) ≤ min(αR(φ), x + βR(φ)). (48)

Assume now that βR(φ) ≤ − logψ1. Then, by selecting x < 0 and |x | sufficiently large,
we obtain x + βR(Π) ≤ x + βR(φ), and hence βR(Π) ≤ − logψ1. Since eQ(r) = ∞
for r < βR(Π) ≤ − logψ1 according to the discussion above Lemma 5, the claim
αR(Π) ≤ eQ(r) holds trivially. Henceforth we assume that βR(φ) > − logψ1.

From the classical HBCL Theorem (more precisely, from Theorem 4), the right-hand
side of (48) is bounded above by min(e(r), x + βR(φ)), for any r with − logψ1 ≤ r <
βR(φ). Note that e(r) is continuous for r ≥ − logψ1 (since it is monotonely nonincre-
asing and convex). By letting r ↗ βR(φ) we obtain an upper bound min(e(r), x + r)
with r ≥ − logψ1.

We can now prove the optimality part of the quantum HBCL Theorem, using only
this upper bound plus the fact that e(r) is monotonously decreasing.

The upper bound min(e(r), x + r) holds for some particular value r . We will find a
further upper bound by maximizing over r ≥ − logψ1. For this we have to distinguish
two cases, depending on the value of x .

a) At r = − logψ1 we have e(r) > x +r . Since e(r) is decreasing in r and continuous,
and x + r is increasing, the maximum of min(e(r), x + r) is obtained when e(r) = x + r .
Let r∗(x) > − logψ1 be the solution of x +r = e(r). We now have that for any sequence
of quantum measurements Π and for any real value of the scalar x ,

min(αR(Π), x + βR(Π)) ≤ x + r∗(x) = e(r∗(x)).

b) At r = − logψ1 we have e(r) ≤ x + r . Again by the properties of e(r) and x + r ,
the maximum of min(e(r), x +r) is e(r∗), attained for r∗(x) = − logψ1. We then obtain
the upper bound

min(αR(Π), x + βR(Π)) ≤ e(r∗(x)).

Now set x = αR(Π) − βR(Π), then both inequalities above yield αR(Π) ≤ e(r∗).
Assume r < βR(Π); we intend to show that this implies αR(Π) ≤ e(r). Indeed, in both
cases a) and b) r∗ is such that

e(r∗) ≤ x + r∗ = αR(Π)− βR(Π) + r∗ < αR(Π)− r + r∗,

hence r∗ − r ≥ e(r∗) − αR(Π) ≥ 0. Therefore, from the monotonicity of the error-
exponent function e(r∗) ≤ e(r) follows and we finally obtain αR(Π) ≤ e(r) = eQ(r).
�

5.5. Proof of achievability of the quantum Hoeffding bound. The proof of achievability
is mainly due to Hayashi [12], who used inequality (24), which is obtained as a byproduct
of the proof of Theorem 2. However, we modify it avoiding any implicit assumption that
the involved quantum states are faithful; hence we prove Theorem 5 in full generality,
which includes for example the case of two non-orthogonal pure states.

Let us fix an arbitrary s ∈ (0, 1), and set

a = e−nxσ⊗n, (49)

b = ρ⊗n, (50)



Asymptotic Error Rates in Quantum Hypothesis Testing 279

where the value of x will be chosen in due course. Consider the sequence of POVMs
{(11 −Πn,Πn)} with Πn the projector on the range of (a − b)+; again element 11 −Πn
is assigned to the null hypothesis ρ⊗n , and element Πn is assigned to the alternative
hypothesis σ⊗n . We will show that this POVM asymptotically attains the Hoeffding
bound.

Recall that inequality (24) states

Tr[asb1−s] ≥ Tr[Πb + (11 −Π)a].
By positivity of Tr[Πb] and Tr[(11 −Π)a], this implies the two inequalities

Tr[Πb],Tr[(11 −Π)a] ≤ Tr[asb1−s].
These yield the following upper bounds on the α and β errors of the chosen POVM
(recall Qs = Tr[ρ1−sσ s]):

βn(Πn) = Tr[(11 −Πn)σ
⊗n]

= enx Tr[(11 −Πn)a]
≤ enx Tr[asb1−s]
= enx(1−s)Qn

s

= exp[n(x(1 − s) + log Qs)], (51)

αn(Πn) = Tr[Πnρ
⊗n]

= Tr[Πnb]
≤ Tr[asb1−s]
= e−nxs Qn

s

= exp[n(−xs + log Qs)]. (52)

Choosing x such that x(1 − s) + log Qs = −r then yields, from (51),

βn(Πn) ≤ exp(−nr),

and from (52),

αn(Πn) ≤ exp

(
−n

(
−s

r + log Qs

1 − s
− log Qs

))

= exp

(
−n

−rs − log Qs

1 − s

)
≤ exp

(−neQ (r)
)
,

where in the last inequality we have used the fact that the parameter s was arbitrarily
chosen from (0, 1).

Thus, for the rate limits we get

βR ≥ r, αR ≥ eQ(r).

The optimality, proven in the previous subsection, states that αR ≤ eQ(r) if βR = r .
Furthermore, since eQ(r) is a non-increasing function, αR ≤ eQ(r) if βR > r . This
implies that for the chosen sequence of POVMs

βR = r, αR = eQ(r)

must hold, which proves that the Hoeffding bound is indeed attained. �
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5.6. Quantum Stein’s Lemma and quantum version of Sanov’s Theorem. The quantum
generalisation of Stein’s Lemma deals with the asymptotics of the error quantity

β∗
n (ε) := inf

Πn
{βn(Πn) : αn(Πn) ≤ ε}, (53)

for fixed 0 < ε < 1. Here, the infimum is taken over all positive semi-definite contrac-
tions Πn on H⊗n .

Quantum Stein’s Lemma states that the rate limit β∗
R(ε) of the sequence (β∗

n (ε))

exists and is equal to S(ρ‖σ), independently of ε. It was first obtained by Hiai and Petz
[15]. Its optimality part was then strengthened by Ogawa and Nagaoka in [24].

Here we use the quantum HBCL Theorem to prove that the relative entropy S(ρ‖σ)
is an achievable error rate limit and deduce optimality of this bound from Proposition 1
in [5].

Proof of the quantum Stein’s Lemma. We need to show that there is a sequenceΠ with
α(Πn) ≤ ε achieving βR(Π) = S(ρ‖σ). Let η > 0 be small and set r = S(ρ||σ)− η.
Achievability of the quantum Hoeffding bound means that a sequenceΠ exists for which
βR ≥ r and αR = eQ(r). Since eQ(r) > 0 for all r < S(ρ‖σ) and η > 0, the sequence
αn converges to 0. Thus, from a certain value of n onwards, αn will get lower than any
value ε > 0 chosen beforehand. This means that Π is a feasible sequence in (53) for n
large enough, exhibiting βR(ε) ≥ r = S(ρ‖σ)−η. As this holds for any η > 0, we find
that β∗

R(ε) ≥ S(ρ‖σ).
With β∗

R(ε) ≥ S(ρ‖σ) the two hypotheses associated to the pair of density operators
(ρ, σ ) satisfy the HP-condition in the terminology of the paper [5]. Thus Proposition 1
in [5] implies β∗

R(ε) = S(ρ‖σ). �
We remark that in [5] the HP-condition was introduced for (ordered) pairs (Ψ,Φ) of

arbitrary correlated states on quantum spin chains, while in the present paper only density
operators of the tensor-product form ρ⊗n have been considered. These correspond to
the special case of shift-invariant product states on the infinite spin chain (quantum i.i.d.
states). A pair (Ψ,Φ) is said to satisfy the HP-condition if the relative entropy rate
s(Ψ ‖Φ) exists and is a lower bound on the lower rate limit β∗

R
(ε) for all ε ∈ (0, 1).

Specifically to our setting (the i.i.d. case), Theorem 1 in [5] states that the achievability
part in quantum Stein’s Lemma (the HP-condition) is equivalent to a quantum version
of Sanov’s Theorem, which has been presented in [4] and which is a priori a result
extending quantum Stein’s Lemma in the following way: Let the null hypothesis H0
correspond to a family Γ of density operators on H instead of a single density operator
ρ. Let the alternative hypothesis H1 be still represented by a fixed density operator σ .
Then there exists a sequenceΠ of orthogonal projectionsΠn on H⊗n , respectively, such
that for all ρ ∈ Γ the corresponding type-I error vanishes asymptotically, i.e.

lim
n→∞ Tr[ρ⊗nΠn] = 0, (54)

while the type-II error rate limit βR(Π) is equal to the relative entropy distance from Γ

to σ :

S(Γ ‖σ) := inf
ρ∈Γ S(ρ‖σ).

Moreover S(Γ ‖σ) is the upper bound on type-II error (upper) rate limit, for any sequence
Π of POVMs satisfying the constraint (54).

With the above reasoning we obtain the statement of quantum Sanov’s Theorem from
the quantum HBCL Theorem as well.
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A Proofs of Bounds on Q

Inequality (32) stated in terms of general positive operators is

Theorem 6. For positive operators A and B, and 0 ≤ s ≤ 1,

‖A1/2 B1/2‖1 ≤ (Tr[As B(1−s)])1/2 (Tr[A])(1−s)/2 (Tr[B])s/2. (55)

Specialising to states, A = σ and B = ρ, the left-hand side is just F(ρ, σ ), while the
right-hand side is equal to Qs(ρ, σ )

1/2.

Proof. We rewrite A1/2 B1/2 as a product of three factors

A1/2 B1/2 = A(1−s)/2(As/2 B(1−s)/2)Bs/2,

apply Hölder’s inequality on the 1-norm of this product, and exploit the relation

‖X p‖q = ‖X‖p
pq

(for X ≥ 0) a number of times:

‖A1/2 B1/2‖1 = ‖A(1−s)/2(As/2 B(1−s)/2)Bs/2‖1

≤ ‖A(1−s)/2‖2/(1−s) ‖As/2 B(1−s)/2‖2 ‖Bs/2‖2/s

= (Tr[A])(1−s)/2 ‖As/2 B(1−s)/2‖2 (Tr[B])s/2
= (Tr[As B(1−s)])1/2 (Tr[A])(1−s)/2(Tr[B])s/2.

�
We now give a direct proof of inequality (30) that circumvents the proof of (29) and

goes through in infinite dimensions. We state it in terms of general positive operators:

Theorem 7. For positive operators A and B,

‖A − B‖2
1 + 4(Tr[A1/2 B1/2])2 ≤ (Tr(A + B))2. (56)

Proof. Consider two general operators P and Q, and define their sum and difference
as S = P + Q and D = P − Q. We thus have P = (S + D)/2 and Q = (S − D)/2.
Consider the quantity

P P∗ − Q Q∗ = 1

4

(
(S + D)(S + D)∗ − (S − D)(S − D)∗

)
= 1

2
(SD∗ + DS∗).

www.qipirc.org
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Its trace norm is bounded above as

‖SD∗ + DS∗‖1/2 ≤ (‖SD∗‖1 + ‖DS∗‖1)/2

= ‖SD∗‖1

≤ ‖S‖2‖D‖2.

In the last line we have used a specific instance of Hölder’s inequality for the trace norm
([3] Cor. IV.2.6). Now put P = A1/2 and Q = B1/2, which exist by positivity of A and
B, and which are themselves positive operators. We get S, D = A1/2 ± B1/2, hence

‖A − B‖1 ≤ ‖A1/2 + B1/2‖2 ‖A1/2 − B1/2‖2,

which upon squaring becomes

‖A − B‖2
1 ≤ Tr(A1/2 + B1/2)2 Tr(A1/2 − B1/2)2

= Tr(A + B + A1/2 B1/2 + B1/2 A1/2)

× Tr(A + B − A1/2 B1/2 − B1/2 A1/2)

= (Tr(A + B) + 2 Tr(A1/2 B1/2))

×(Tr(A + B)− 2 Tr(A1/2 B1/2))

= (Tr(A + B))2 − 4(Tr(A1/2 B1/2))2.

�
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