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1. = INTRODUCTION

A general method of calculating the large orders of perturbation series in
classical mechanlcs has been proposed in Ref. 1). The detailed calculations in
Ref, 1) have been done only for the simple case of the two-dimensional area-

preserving mapping of the following form:

/

x'= -y

/ xX +.ysg {1)

é’

Here we continue the investigation of the structure of large orders of
perturbation series for the two-dimensional area-preserving mappings T(x,y} =

= {x'y'):
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As a specific example the pelynomial mapping will be considered

rtv 2! = Casel (33*-:f3) - tf Sin el

Y o= Aind (xay’) o Y Condl (4)

where o = 2m.

At u = 1/4 one cbtains the mapping (1}. The coupling constant for this
mapping is r2 = x2 + y2 and the unperturbed part describes a rotation by a,
In this paper we will concentrate primarily on giving the peculiarities of the
application of the method, proposed in Ref. 1), to the mapping (4) with dif-

ferent yu, both rational and irrational,

As in Ref, 1) we will be interested in the large orders of the perturba-
tion series for the formal integral of this mapping. Let us recall that the
formal integral for the mapping (2} is the function of two variables H(x,y)
such that
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Hi<y')= Hiz,y) (5)

where x',y' are connected to x,y by Egs. (2).

2}

It is known that for arbitrary polynomial mappings H{x,y) can be

written as a power series in x and y:

H [:r,,z/) :Z\ Hn {m,‘j) (6}

Ha (=) = Z. gk! a’k?é 1)

K+lzh

where

are the homogeneous pclynomials of degree n,

It is not difficult to find the algorithm for recursive calculation of Hn.

2),3) that this series is only a formal one and the

But it is alsoc well known
coefficients of Hn blow up at n + =, It was the purpose of Ref, 1} to
investigate the method of obtaining the asymptotic formulas for Hn at large

4) the behaviour of large orders of the perturbaticn series is

n, As usual
closely conmected with the singularity structure of H(x,y) at r =0, In
Ref, 1) it has been shown that H(x,y) has square-root singularities near all

periodic points of a given mapping.

The periodic point with the period equal to N is the point xp,y
such that

1%

N
T =) = (20 e) ©

where TN is the result of the N fold application of our mapping:

N x<

T N Su (=)
’?N = gu (m,‘?) (9)

For the polyncmial mappings f‘N and gy are polynomials of large degree.
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As the set of periodic points is dense at pr » 02)’1), the function H{x,y)
has singularities at a dense set of points, which lead to the divergence of

series (6).

To find the explicit character of a singularity of H(x,y) near the
given periodic point it is necessary to know the matrix of the first derivatives

of the mapping (9) calculated at this point:

8,
M (oc ]:: I ag
1
LS SV B w0

=
In Ref, 1} it has been noted that the quantity

A = SPMN -2 (11)

decreases at N + « [laster than any fixed power of 1/N and for mapping (1)
it has been found that at N =+ o and N odd
3
A, = const- N exp _M)S;W(J_L“N‘)
4N 2 2 (12)

where const, = H63

o 3

fut the dependence of the pre-exponent factor on N (¥ term) has been

obtained only from numerical calculatieons,

In Section I1 of this paper an znalytical expression for A, up tc a con-

M
stant factor will be obtained for the general case with rational y. For the
mapping (1) it coincides with Eq. (12)., The constant in analogous formulas

is a measure of non-integrability of the theory considered and cannot be ob-

tained analytically.

In Section IIT the positicns of the periodic points and the explicit
asymptotic formulas for AN for the mapping (4) with rational and irrational
L will be investigated,

In Section IV the asymptotics of the perturbation series for H(x,y) will
be found, As specific examples of rational and irraticnal rotation zngles the
cases of W= 1/5 and p = (/5 + 1)/2 will be considered.
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2. = CALCULATION OF THE MONODROMY MATRIX TRACE

ir xO,yO is a periocdic point with a pericd equal to N then
Tk(xo,yo), 1<k <N-1 is another periodic point with the same period. 350 we
always have a complete sequence of periodic points XP'yP connected by
the transformation (XP+1'yP+l) z T(xP,yP) and T(xN,yN) =(xo,yo). We will

refer to this sequence as the periodic cycle.

Let us introduce instead of the N points (xp,yP), their Fourier com-

ponents fn’gn

Z exp(iwbPn) §

x =
S
dp = L o0 (wBn) g, )
{r}

where w = 2tM/ N ({for different mappings it is convenient to choose dif-
ferent M},

Using the identity

Nl

Z_. exp ( wan.) = N when n=0 (MOJ' N)

p=o 0 when n*o (Mocl_-”)
{14)

cne cbtains
N-{
i
-S = -——Z expf-iwfn e (15)
Sy P( )X,

and the analogous formula for gn.

If N = 20 is even then we choose -0 +1<n <Q, if N = 20+l 1is
odd we choose -0 <n < Q. We will call this interwval the main zone and will
use the symbol {n} to denote the summation over all n in the main zone,
If ny and n, are both in the main zone, then from equalilty n, =1, (mod N)
it follows that ny = n,. From Eg. {15) it is clear that if we know all N

periodic points we can find fn for all n 1in the main zone,

The direct determination of the matrix MN from Egs. (10) and (9} is

gifficult, It is easy to see that



N-{
M =[] m, (16)
N ip ¢

where mi is the matrix of derivatives of the mapping (2) calculated at the

ith periodic point of the given cycle

o, .

m, = / ¢ f"-) (17)
LT

where o = af/ax, Bi = af/9dy, Yy = g/ dx, 51 = 9g/dy and all derivatives

are calculated at the pericdic peint (xi,yi) of the given cycle.

Thus to obtain MN one has to linearize Egs. (2) near the given periocdic
cycle and then solve the corresponding linearized equations. Equation (16)
means that the matrix FlN is the monodromy matrix of their solutions,

. (0) _ (0) ' . - {0} {0)

Let X, = X, +UY, =Y + dn' X' =X 1+ ¥ = Vol and X, » ¥y
be the co-ordinates of the points of our periodic cycle. From Egs. (2) one
finds

R+t
d

naq Jﬂ. Un + Sn. c‘.,\_ (18)

where oy Bn’ Yy & are the corresponding derivatives calculated at the point
C 0
[xn( )’yn( )]

Let (un,dn) and (ué,dﬁ) n=0,1,,..,N-1 be the twe linearly indepen-
dent solutions of these equations., Using Eq. (16) one obtains

{ ( / / !
SeM = = (w d - u + - "\ (19)
Y c N o N 0lo CJ'rfuo altvuo) ?
where ¢ 1s the analogue of the Wronskian of Eqs, (18):
d' i ,
c= U, d - U, Jk {20}
Using the area-preserving conditions (3) it is easy to show that ¢ is inde-

dendent of k. As usual, if one sclution of the given linear system is known

one can find the explicit ferm of the other one,



Let
f
uk = Zk uk
!
d' =4 d
k k "k (21)
From Egs, (18) one has
r
= ZL
Yo h=D u’nq
Kt
5, = ds _, ; (22)
A h=o dn neg

Using these values one obtains

ML R e, () s e

U Uy dyds
where

N-1

B ¥
‘Lo o)

Let us discuss the question of choosing the sclution (un’dn)' If it were

Nay

possible to embed X, and Yy into continucus functions x(t} and y{t) in

such a manner that x = x(k) and vy, = y(k), then one of the solutions of

the linearized equations (18) would be known, It is evident that if x{t}) and

y(t) obey the equations (2):

Ty = § (=), 4&)
Y= 3 (2t go)

(24)
then
wie) = (&)
di)= §(¥) (25)
are the soluticns of Egs. (18).

But it is known2) that such an embedding does not exist in the vicinity

of periodic points. Let us assume that we know the positions of all periodic
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points. Let us try to construct the difference analogue of the derivative which
uses the positions of the periodic points only and gives the correct answer
for as large a number of Fourier components as possible., If fn is the value

of some perlodic function f(t) at t = n, then we introduce the following
operator

N-1
Djd = é Dlim 4, (26)

where ® = 2nM/N  and

twn
D(R) = ) “L%exp (iwnP)
N
{n}

[Note that the summation in D(P) is done over all n in the main zone.] It
is easy to prove that for fn = exp(iwnk) DJf = ﬂn{k}fJ where k = + {k}
.and {k} is in the main zone, This means that the cperator DJ glves the
correct derivative for functions whose Fourier components are in the main 2zone
[e g., for X, and Y from Eq. (13)]. For the arbitrary function f(t) =

= Zkf Lxplivkt)e,  with w = ZﬂM/N one has

:DJ_:fa- j—tf +_-' "2'“"M'Z_,P L ‘S‘ Nav exp (iwrd.,) (27)
k = {r}

and the inner summation is done over all r in the main zone,

In the next section it will be sheown that for the quantities that inter-
ested us the large Fourier ccmponents are exponentially small, This means that
the operator Dj correctly differentiates the functions up to exponentially

small terms, Taking these terms into account is our main prcblem, Let

= ,Dhm-#?ﬂ
"‘n_ =_:Dh3 +l2n. (28)

It is natural to expect that gn and n, are expenentially small., To
find the equations for gn and nn, note firstly that the transformations {13)
are the identity transformations, One simply replaces the 2N quantities
X, and Y, by fn and gn. But, as will be seen in the next section, fn
and &, with large n are exponentially small. It is this p?operty which
leads to the possibility of finding explicit expressions for gn and n, .



Let us substitute the Fourier expansions (13) into the right-hand side of
our mapping (2} [or {24) with the substitution n - t]. This gives the formal

expansions of the right-hand sides into Fourier series

T e conmy .
P
§ (%o ifn) = Z; exp (Fupn) GP (29)

P
As far as the polynomial mapping is concerned this procedure can easily

:F ("'n,ah)

be done. The important fact is that due to the non-linearity of our mapping
the expansions {29) have Fourier compohents beyond the main zone, For example,

for the non-linear part of the mapping {4) one has

ff-“ 7 = Siwd L j‘& 3& ?'fa
kf"k,_"k; =P
where all ki are in the main zone, but p is not.

{30)

Using Egs. (27) and (29) one can find the following non-homogeneocus

equations for ‘:n and nn:

gtn\ = J" §h M ﬁ'\?n * R"‘
Tow = BE 8 T (31)

where

o
]

L= —2wiM L P Z_ F exp (iwrn)

e g PN
{32}
T. =-2rrc.MZ__P[_ G-N, exp (iwrn)
P {r} PN+
Taking into account terms with p = £ 1 conly one obtains
R.,='2"N‘LMZ__.(TN - % )exp (:‘wr-n,)
.y ~N+p
ird
T - -2 'M L (Gf G’ . (33)
- w = Ny~ -ll'-or) axp (iwrn)

If (un,dn) and (ué,dé) are two linear independent solutions of the homo=-

geneous equations (18) then,

{ {
;nzcn‘)w +Cz) “',:_

n L

7.2 ¢ d, + c®d, (34)
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(1)

n

where the ccefficients (¢ have the following form

n-y
“y . i ,
Co = ¢ lé;; (Rk CLk*f Tk ukﬂ)
T ]

(2} { (35)

= L -
h ¢ & ( Rk 0{"‘01 T;e “k-u )

and ¢ was defined in Eq. {20).

Substituting these expressions into Eq. (28), using Eq. (23) and keeping
in mind that an and Dny are periodic functions with the same period as xn
and y, one obtains te first order in Rn and Tn:

N-|

A, = %‘Ku L (Tow,, -R,.d

h=¢

(36)

-y

On the right-hand side of this equation the equalities uo= an and dm = Dny
can be used. Using Eq. {33) one has (for even N)

5, = z’-KN,(szf{ L (e, -¢

ir}
-2 (F F )-3’_-1'*. exp [arr) +

5."1 N-y - - N-r

W 5
+(-)2, [( G-auyz G—rlz ) 5”/2, - (\?SN/E i &:K/z) 8"‘/2 ]} e

At odd N the terms in square brackets must be omitted. So if the exact

s )-fr.r.exp( (wrhr) =~

positions of all points of the given cycle are know, cne can find fn and gn
from Eqs. (13) and then T, and R, from Eq. (37). But, of course, for an
arbitrary mapping this is impossible., So we try to obtain an asymptotic formula

for A, at large N (and, correspondingly, small r).

N

3. - THE POSITIONS OF PERICDIC POINTS AND THE BEHAVIQUR OF AN AT N +

Let us find the first few terms in the perturbation series expansion of the
solutions of Eqs, (24). For clarity we consider the mapping (4}). It is conve-
nient to use the complex function 2Z(t) = x(t) + iy(t), Then Egs. (24) become

il , — 3
T: Zit)ce (Z(4) » 81/2&)- ) ) (38)

If w is an irrational number, Z(t) can be expanded into a Fourier seriesz)

cot
Z{-l:) = Ze + Z, Zk exp (iwkt) (39)
k1



= 10

and

- K
w = ol + ], w (2t)
ko
Substituting these expressions in Eq. {38) and considering Z as a coupling
conatant, it is not difficult to obtain successively all the coefficients Zk

and wk' At the first order of perturbation theory we have

wt z2 .ot ] 3csl -3
F)=2e -ﬁa-( SEE 2 2 ’S“"t 0(a’) o)
1_8 1-E f_e-‘n'd.

w:d-%i‘ i -3-(77) (3Cf1°l+ Ctn,?d) "‘0(“*")

128
The parameter Z 1is connected to the initial point Z(0) = ZO by the follow-
ing relation
WEIXN 2, z
2=1 +L('“JL£? + = - Ty ) 0 1zl 41
o 8 ’_e_z.,‘* {_e&.d 1-e Yeid ( ) (41)
If Zy=re ¢, then Z = !Z[eiw where
2
hE=27 cos (49-24) Cos
nza) A T ] «0(rs)
rz S q - d T - (42)
\P=,£+__( 'w_(‘PZ)_44~n(29*2)+0(,~~)
16 Stn (.Zu.) Siw
Z as a function of ZO is the sc called normal co-ordinate for the mapping
2) iw

(387, In these co-ordinates the mapping {38) is a multiplication by e,
e.g., if ZO is governed by the mapping (38), then

!

fw
Z =€ 7 (43)

and any formal integral is a function of h2 = ZZ,

For irrational u this method glves all terms of the perturbation expan-
sions both for Z{t) and for H(x,y,}) = 77. At rational p = m/n these series
can be used only up to the occurrence of the first resonant term 1 - exp {2minu) =
= 0. In particular, Egs., (40) - (43) are valid for all lu] # 0, 174, 1/2, To

obtain the perturbation series at rational u one can use another method



-1 -

Note that when wu = m/n the linear (unperturbed) part of the mapping (4) is a
rotation by 2mm/n, So, the linear part of the mapping ™ iz the identity

transformation and in complex

} —
= +
¢ z ¢ {5’2) {44}
where ¢(Z,Z) is a polynomial. For example, for the mapping (4) and u = 1/n

(n £ 1,2,4) one cobtains

- _ 3‘."- z2 -~ -é_ 4 4> _ ___!___-' Ly
‘p(%‘}).'"_{' z2 Gyh[ z.:..v.;'zz ’n‘dz *

3 32 / 3z2
+(‘4-e"““ + g r-et™ e ""‘)E : -

(45)

233 5 34 ?
-8 1- 8
Let us try to embed this discrete mapping into a continuous one in such a manner

that: (i) the feollowing relation is satisfied

2{t+1) = Z{t) + ¢> ( Z(+), ?(H) o)

and (ii) the evoluticn of Z{t} is described by Hamilton equations with a
certain Hamiltonian ﬁ(x,y)
H
: ?
F =l —— (471
dz
Then, evidently, ﬁ(x,y) is an integral of the mapping (44) and one can provea)
that it will alsoc be an integral of the mapping (4). This embedding can easily
be done within the perturbation series by expanding the difference Z(t+l) - Z{t}

as a Taylor series
Z(k+) - 2(8) = 2 14) 2_'1‘?'({-) 4. (48)

and finding all derivatives successively from Egq. (46). For the mepping (3)
using Eq. (45) one obtains that H = 3/(l6n}h4 where

-4
b o502 s/ 2 222 .
h = (i) -,}-(zz)((_e_,ﬂ“ — -cc)

_. ¥
. ﬁ (22) (3 Clyd + Chy2al) +O(12/%) )

For the mapping (1) u = 1/4 and Egs. (45) and (49) are not applicable, 1In

Ref, 1) it has been shown that in this case
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~y
= e oL {50)
H ‘1( *‘a+213 ) +0(r3)
It is not difficult to obtain an arbitrary number of terms by this method.

In practical calculation it is convenient to keep in mind that the mapping (38)

can be rewritten as the product of two inversions

fr': I‘OI:.

L il

1,: 2=¢ ¢
] - L 31
I‘_ ' zZ = 2 2 (E i}

(51)

Using these relations one can prove that for the mapping (3) at N > 3 there
is always a periodic point at the abscissa axis. It is not difficult to find
the approximate position of this point (and the positions at the other points
of the given cycle). If some point is a periodic point with pericd N then

the following condition must be satisfied
whN = 2xk (52)

where ® is the rotation frequency. At small r and |u| # C, 1/4, 1/2 the
first terms in the expansion of w{Z) are given by Egs. (40) and (41), from

which one has in the leading order

x® — b {53)

and n = uN - K.

Let us consider the case of rational yu, e.g., W = 1i/n, Then N = m/n

and m= N -nk or N = m+ nk, At fixed N one has different families

of periodic points corresponding to different k. The point with minimal x2
corresponds to minimal |m|. If N = M, (mod n) and O < my<n - 1 then
My = Mo when m, < n/2 and Mgy T —(n—mo) when m, 2 n/2. The first

case gives real xp,yp, while the second one implies that the periodic point
co-crdinates are purely imaginary., In the latter case it is convenient to use
the substitution x_ = iﬁp and yp = i?p which corresponds to the mapping (4)
with the sign of the y3 terms reversed. At irrational u there are also
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different families of periodic points. If Ny = N = [uN], where [B]
denotes the integer part of B, then vy = Mg when Ny £ 1/2 and
Nyiy = Ng = 1 when N, 2 1/2. But if for rational u = m/n |nMIN| > 1/n at all
N, then at irrational y there are certain sequences for which nMIN + 0

at N + o, Their specific form is deeply dependent on the arithmetic nature

of the given irrational numbePS). Let us consider, for example, u = (/5+1)/2

for which the best approximations czn be obtained from the Fibonacci numbers

F = F +F,

LIS 4 {54)
F, =0, F =1
Fn = (0,1,1,2,3,5,8,13,21,34,55,89,144,...,)
If N=F, k=F then
n n+l
ney rd .
TS (55)
N V5§ N
and ¢ = 1. For the Fibonacci numbers with arbitrary initial conditions FO
. . 2 2
and Fl ny 1= given by Eg. (55}, but ¢ = Fl - FO - FOFl' For example, for

the sequence Fa: (1,3,%,7...) ¢ = 5. There are irrational u for which
5)
)

decreases faster than (55 . Using the approximate expressions for Z(t)

n
N
and for the positions of the periodic points, one can obtain an asymptotic
- in Eqs, (36) and (23).
At small |Z] one can take into account the first terms in Eq. (40) only:
it
tt)= fe and  uroz ok - 53'” (56)

formula for AN at large N. Let us first calculate K

Then it is evident that the two independent solutions of the linear Egs. (18)
have the following forms:

o= i) ad oz dzle) 4 L) (57)
Comparing these with Egs, (21) and (22), one finds
K o= 2o (58)
NTORY 3

where h4 = (x2+y2)2 is the first term of the expansion (6), For the mapping

(1) one must use h4 = (x4+yq). For rational 1y, hi = a/N and Ky = N3, which
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ig in agreement with Eq, (18) obtained in Ref, 1) by comparison with numerical
calculations, By taking into account further terms in the perturbation series

for Z(t) it is possible to find KN with any power accuracy.

To estimate the large Fourier componenets in Eq. (37) we assume that
there are functions x(t) and y(t) which are good approximations to X, and
Vit The Fourier components of these functions can easily be estimated from the

usual formula:

{
Ifk=';.7:

where T is fthe period of the functions considered and w = 271/T.

T
rexp(io‘c'&)a:(t)iﬁ (597

Let ik the position of the singularity nearest to the real axis.

Deforming the integration contour, one obtains

{

k

. ﬁ’_,.- exp (-0 lkt) Y (wk) (60)

The function ¥{2Z) is defined by the behavicur of x(t) near the singularity.
Analogous expressions can be cbtained for the functions Tn and Rn' The quan~
tity ix is, roughly speaking, the "time" of motion from the initial point

to the singular points of the functions x(t) and y(t) and, of course, it is
very dependent on the initial point, But, at least for rational u, it is
natural to assume that the character of the singularity and, consequently, the
form of W¥{Z), is independent of the initial point. Let us take into account
a finite number of terms of the perturbation series for the Hamiltonians {(47)
and (49) and let us solve Eqs. (47). As ﬁ(x,y) is a polynomial the singula-
rity points are the points where x(t}, y{t) + =, The character of these
singularities is defined by the coefficients in ﬁ(x,y) and does not depend

on the choice of the initial point =x{0}) and y(0), Substituting expreasions
like Eq. (60} to Eq. (37} and changing the summation over r to an integration

one obtains
N

Y (wr) +ce (61

z
8, = K, e (- zw)_{ dr AW (wr) L
z

setting r = NZ and taking into account Eg. {58} we have
~c N ¥
A~~C.-;‘-exp(-2w) (62)
4 hP
where c¢ is constant and h = H(x ,y ).
p p*°Db
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For the mapping (1) u = 1/4 and the Hamilteonian begins with the term
x4 + yq, which fixes Re A = N/8. All other terms give 0(l) contributions to
Re A, which are not important because they redefine the constant term only,
As a result one obtains Eq. (12}, But for other [pl # 0, 1/4, 1/2 the

2)d, which does not define M., To

Hamiltonian begins with the term (X2+y
find it, zll the other terms are essential., Let us assume that Eq., (56) is

correct up to Z = a v 1l, Then the following estimate can be obtained

_ 1 2 (63)
e Lb

The constant a in this formula is dependent on the higher order terms in the
perturbation series of the Hamiltonian. The results of numerical calculations
{(see below, Tables 1, 2 and 3) strongly suggest a = 1 and we will use this
value below. But it must be emphasized that we know of no good arguments

to fix this specific value of a,.

Using (63) with a = 1 one cbtains

N
A ze _A_,;’grl (64)

N
F N i N
{Note that at the periodic point ¢ = 27 M/N and Zp = |Zp} .

Let us give some other arguments to clarify this formula. The direct
calculation of TN in Eq. (9) is very difficult at large N. Let us con-
sider the TN mapping near the periodic points, Then TN: ZN = Z + W(Z,ﬁ)
and the function ¥(Z,Z) must have at least N zeros on the circle Z = |Zp|,
corresponding to the N pericdic points of the given cycles [really, it must
have 2N zeros corresponding to infterchanging elliptic and hyperbolic pointsz}],
So, roughly speaking, W(Z,Z) mist be proportional to sin{Nwé) and because

W(Z,E) is some polynomial

- N
w(i-‘)i) = RN [EP\ Siw (Nw‘_e) (65)

Starting from this formula an expression aralogous to Eg. (64) can be
obtained for matrix MN {10). These considerations are valid if on the circle
[Z] = const, <there are no other periodic points except those which can be ob-
tained from the periodic point on the abscissa axis by the mapping T ({and
their counterparts with the opposite sign of AN). But the transformation

Z' = -Z commutes with the mapping (13). So if Zp is some periodic point
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At odd N this point cannot coincide with any point of a given cycle, so N

in Eq. (63) must be replaced by 2N. For even N = 2Q, Tu = -1, and this trans-
formation does not give new periodic points. Thus Eq. (64) is applicable for

even N, When N is cdd AN is, roughly speaking, equal to the square

of Eq. (64).

Unfortunately at irrational u we do not know of any arguments which give
information about ¢ in Eg. {63). But the results of numerical calculations
show that ¢ is a slowly varying function of N and for pericdic points
which are of interest to us Cy will be found numerically.

In the next section it will be shown that the main contribution tc large
order estimates is given by the periodic points with minimal [n]| in Eq. (53).
As specific examples we consider the mapping {4) with u = 1/56 and u = (V5+1)/2,
From the above-mentioned facts it is clear that at u = 1/5 the most important
pericdic points have N = 6, 16, 26,..., for which n =1/6 and N = 4, 14,
4,..., for which n = -1/5. At 1y = (Y/5+1)/2 one must take into account the
fractions whose denominators are equal to the even terms of the Fibonacci num-
bers: N = 2, 8, 34, 144,,.,, and for which |n| = 1/(/BN). To do the numerical
calculations it is convenient to find the point on the abscissa axis which,
after the N fold application of our mapping, returns to its original position

anc¢ then one can easily obtain M, from Eq. (16). It can be shown that for

N
periedic points on the abscissa axis MN has the following form:
{i+0 g
MN = ud ¥ (66)
"C~ 4’+a~
and y can easily be obtained from Eq. (56)
ol Yu 3 .2
¢y, == —— = = Ap N (67)
N dx 3 °F

The quantities bN and aN are exponentially small and connected with each

other by the relations 4 = 2ay = -bc,. Using Egs. (64}, (53) and (40) one

N™N
finds

»
(as) g-

o)< 3

N

2
exp (_ a,L) (68)

where for = 1/5 and N = 6, 16, 26,..., a = 16m/1% and for N = 4, 14,
26,.4., a = =161/15
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1
=—1% + Cf
32,( Cgc( Cg.?,o{)
To obtain § we calculated AN for some values of N and found

$ x 1077 (69)

A comparison of this asymptotic formula with the results of numerical calcul-

ations is made in Tables 1 and 2.

The analogous formula can be used when u is an irrational number. PRut
in this case a = 16m/3(aN-M) and & in Eq. (68) 1is some (unknown) function
of N. For Fibonacci sequences a = ¢/N and at N + « one has

(&s)

L
A, = SNN (-}%;)‘ exp(—% (70)

Using this formula for the periodic point with N = 8 for which xi = =0,1280158

and Ag = 3.78.107" gives § = 3.1070.

A comparison of the asymptotic formula (68) with u = (/5+1)/2 and
8§ = 3.10_3
It is seen that the function SN is some oscillating function which varies

with the results of numerical calculations is presented in Table 3.
very slowly in comparison with AN'

4, - ASYMPTOTIC ESTIMATES FOR H(x,y)

Up to now the formal integral has been considered only within the pertur=
bation series. For it to make sense to speak about the singularities of Hi{x,y),
one needs a more general definition. First of all, note that if Hix,y) is
an integral of some mapping, then f(H) where f is any function is also an
integral. In recursive relations this non=unigueness manifests itself as an
arbitrariness in the coefficients of the (x2+y2)k terms for irrational
and of the (x2+y2)2k terms for rational yu. So one can define H(x,y) along
some line in the (x,y) plane by any convenient condition (but which must
be consistent with the perturbation series) and then one can extend the defi-
nition of H(x,y} to all points which are images of our chosen line. Usually

we will assume that H{x,y) is a known function at the abscissa axis

H (1,0) = g(“—) (71)
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where H(x) is a fixed function. [To obtain the large order estimates only
the first twe coefficients of H({x) are important, so this condition does not
lead to any difficulties.]

If (xk,yk) is the result of the application of some power of our mapping

to the point (xO,O} then according to our definition
H(’xk,;jk)= H (=, ) (72)

There are some points in the (x,y) plane which are not images of the
abscissa axis. To define Hix,y) at these points one has to think that
E{x,y) 1is known not only at the line y = 0 but alsc in the corresponding
complex plane and to consider X in Eq. (72) as & point in this complex

plane,

It is evident that the function constructed in this manner is an integral
of a given mapping and, if H(x) is consistent with the perturbation series,
the expansion of H(x,y) coincides with that obtained from the usual recursive
scheme. Sometimes, it is convenient to use other definitions of H(x,y). For
example, at irrational p we will use the condition

2w

_[ H, (rm‘Q,Y‘S\'w 12) dy = 0 when n>4 (73)
o

i.e., we simply set all the ccoefficients of the (x2+y2)k terms (k > 1)

equal zero.

Tt has been shown in Ref. 1) that the function H{x,y) defined as in
Eq. (72) has singularities of the square-root type near all periodic points

of a given mapping. Let us briefly review the arguments of Ref. 1).

If Hix,y) is an integral of the mapping T then it will be, of course,
an integral of the mapping TN also. In the near vicinity of any pericdic

point the mapping TN is a linear mapping and has the following form:

(i:)= M, ;:) (74)

where &x =z X = X% Sy =¥ - yp and MN is the monocdromy mafrix defined

in Eg. (10).

p’
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Consequently, H(x,y) must be the integral of this transformation. But
*
the following quadratic form is the only invariant of this linear mapping )

H(‘x,-a,) = My, (sa‘)z - (mﬂ.. 22 ) Sg,._c?a_ -mz{(fx}zWSJ

where mij are the corresponding matrix elements of MN' For periodic point

cn the abscissa axis MN has the form (66) and

h’ ('xa%) = CSO"-)L + FN &2 (76}

y @t large N have the forms {63)

and (67} correspondingly. So if Hp = H(xp) is the value ¢f H(x,y) at the

- _ 2
where BN = bN/cN = —AN/CN, and 4, and <

given periodic point then, in a amall vieinity of it, H must be a function

of h only:
H=§( ?+ fygd) 77

But according to our definition H(x,0) = ﬁ(x) and at any point on the

abscissa axis one must have
OH g,
32

This relation defines the unknown function in Eq. {(77) and one has

H::HP+

+ regular terms (78)

H("‘JH)-‘- 2" ﬁ&"-)z + Ry ?: + regular terms (79)

H
%
So H(x,y) near the fixed point on the abscissa axis has a square-root singu-

larity of known form. Using the explicit form of M near other periodic

N
points, or simply taking into account the invariance of H{x,y)} under our

mapping, one can find the singularity of H(x,y) near any periocdic point.

H(a‘,g): I(H'Hf)z"' FN(SS)LT + regular terms (80)
where &5 1is the distance calculated aleng the curve H = const., and
normalized in such a way that for periodic points on the abscissa axis

8S = (aﬁ/ax)y. There is some correction to &8 precportional to H - H

but it is inessential for us,

We assume that M" £ 1, or that A o # KT for some integer k., For the
matrix under consideration this statement can easily be proved from the
results of the last section.
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Taking into account only the linear term in @ (note that B is an
. N N

exponentially small guantity) cne obtains

; (S.S')a
H(Oﬁ,}) = -Z-:?NH“ - (81)
iy

To find large order estimates of the perturbation geries coefficients one

must construct some function which has this behaviour near all periodic peints
of a given mapping. Using Egs. (64) and (42) it is easy to understand that
for rational u for which the first terms of H(x,y) are given by Eg. (49)

- (82)
H('—t,g)--lzgz, TR h" {'5‘ [2 44’ +7 e“bo_]} i
where Z(x,y) is the normal co~ord1nate defined in Eq. (42). ¢o = 3Nh§/l6
is the phase chosen in such a manner that the expression in the square brackets
has an expansion near the abscissa axis beginning with the y2 term.

The function f.. is connected with our definition of the formal integral

N
and is of minor interest to us.

hi is the value of H(x,y) at the given periodic cycle whose period

equals N.

Let us emphasize that with any desired accuracy hbr does not change under
the mapping (4) [or (38)7] and the quantity Z{x,y) is multiplied by exp{iw)
[see Eq. (43)] but at a periodic point w = 2mM/N and 7N (and EN) does
not change either, This means that H(x,y) in Eq, (82) is really an invariant
of the given mapping. [Of course, it is easy to find an expression which is
an invariant not only at the periodic points but at all other points too. To
do this it is enough to use instead of the term ZN in Eq. (82} the term ZT
where T = 2n/w and o is defined by a perturbation expansion analogous to
Eq. {40).]

Taking into account the pole terms only and omitting the term fN we

have

N
H(uq): 128 L 3 ’i"’ Cos (”‘2*4’0) (83)
35 Nsh.P (hz—frn:)
where |Z] and Y are given by Eq. (42).

. . 2 .
Expanding this expression as a power seriles in h~ one finds
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2k
H (=)= ), h R, () (84)
k
where
(v
Z.\ Rk (tf) (85)
N
and
k-3
(M A’Au
R, =- — (86)
h.
or using the asymptotic formulas for A and cy ©ne has
2
R (e )“-!—‘E ‘p IZPI (Tj_ ca:)(hr!-q-S) (87)
where f

E S
g = Nl ( Swlie-24) 4 & (20-0) -3)
(88)

16 dn2e Sine of

2 = 8¢ cs_+€5§;)
bo =~ (et + Cty24)
f:= lérr(),_N M)

The expansion of h2 depends on our definition of H{x,y). For irrational

U ohe can use
K= 22 = v* (L4 6,73 k;=2‘§' (89)

where

f (lp -.._..( CM (4"#—2«:{) - @(2@-«))
Siw el
For rational 1y the first terms of h2 = #Hix,y) can be obtained from
Eq. {49):

L’z: F‘z(i + Kh_ r’-) , A_f,zz z.?z (1.,.@’2,}) (90)
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where

j /[
ghzgh*ggi. , g,.—.-—fga

The difference between rational and irrational u 1lies in the fact that

for irrational wu all coefficients of (Z,E)k are arbitrary, but for rational

u the (Z,E}2k+l terms cannot be changed,

Finally the following expression for Rk(¢) can be found

k.2
128 Q 2,2
Rk(‘£3="'5" 2__ m (SP ) exp (4) Cos (N +8)

N
where s is the correction term, s = (N/2 - k - Z)DEbZ - (k+2)p§b.

{91}

For irrational py one has the same formula with b' = 0 and an additiocnal

factor of 1/2. To obtain asymptotic estimates for Hn it is necessary

to expand (hz)k in powers of r2 = (x2+y2) in Eq. (84), If Rk(¢) ~ kla

then

k

(as)

2n
Ho W= rexp (B8 (o)) R, (2) (92)

If Rk -~ ak then

{os
HE o p2n exp(n f._;&'{ﬂ) R (¢) (93)

where bh(¢) is the zecond term in the expansion of h2 in powers of r2.

For irraticnal y, bn(¢) is defined in Eq. (89); for rational p, it is
defined in Eq, (90),

In principle, the summation in Eq, (91} is done over all periodic points

of the given mapping with an even N, (For odd N 8 is proportional to

N
|Z\2N and, roughly speaking, one must change N - 2N in this equation). Let
us estimate the sum in this equation by the saddle point method. For raticnal
Hy p2 = a/N and the main contribution comes from N which is the solution

of the saddle point equation: U'(N) = O where

U=(2M-‘<-2)en—a'- (94)
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This gives

2(k+2) = NS-F ey, [e NS-P /a) {95}
or
N ~ 2 (x+2)
sp. {96}
bn ( 2atrezy) -1
For irrational y, pi = §/N2 and Ns b is given by the same formula with the

substitution a -+ /%,

A very crude estimate of the saddle point term for rational U gives
Nep k
—_-k-2 2
(£} ==
P ~ K (97)
a buk

For irrational y one must substitute k + 2k and a > 2/%.

For odd N one must change a + 2a in Eq. (97). So, from these formulas
one sees that the main contribution to the large order estimates is given by
the periodic points with the smallest values of a. All cther points give

exponentially small terms and can be neglected,

However, it is necessary to keep in mind that values of N which corres-
pend to minimal |a| are rare. For example, it has been shown in the last
section that for p = 1/5 only two sequences of N, N = 6 + 10k and

N =& + 10k, give the smallest |a|. For u = (/5+41}/2 only the even terms

of the Fibonaccl sequence correspond to smallest |al. This means that when k

is not extremely large (k g 100} it is possible that one can cbtain Ns

from Eg. (96), but in reality there is no such term corresponding to the

smallest |a . In that case one must take into account either the nearest of

such terms or the terms with larger |a . It is most important at irrational
M when the necessary N are exponentially rare. For example, for pu = (V5+1}/2
the periodic peoint with N = 8§ is the saddle point for k = 6 and the point

with N = 34 only when Lk «~ 60,

Let us take into account for yu = (/5+1}/2 only the one periodic point
with N = 8. The point with N = 2 is important at k ¢ 4, and the point
with N = 34 becomes important when k > 50. In this case, of course, there
is no necessity te have an asymptotic formula for AN. We will use the follow-

ing computed values:
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2 -
%4 =-.280158 | B = 38077 ¢, = 605572 | (98)

Using Eqs. (86) and (93) one obtains (N = 8):

{ns)
H (rmg r§i - a&n A” n=1 (99)
" S} =-v 4.ca.ﬂz [A] coo (We+8)
N
where

S 2
A= mP,_ exp [‘ ocr (g,‘IOJ -gh(r’)))
and bh{¢) and 8 are defined in Eaqs. (89) and (88},

¥  in this formula is the position of the periodic point on the abscissa

p
axis. This value can be taken directly from Eq., (98}, or it can be obtained

by comparing the two expressions for hg

he = g (1 2 b o) x2)

and

I

W 2 2
p = S (ubegp) (100)
where for N = 8 and M= 13 pi = -0.1167165.

Let us emphasize that, when one takes intc account only one periodic
(as)
n

large number of periodic cycles is considered,

cycle, H grows only exponentially., The factorial growth appears when a

A comparison of the asymptotic formula (99) with the results of numerical
calculations is made in Table 4, It is seen that the accuracy of Eq. (99) is
high., The small discrepancies are of the order of xé and can be attributed
to the following :

i) In Eq. (99} the corrections of order of const x2 to the pre-expo-
nential term are not included. °
ii} We do not take into account the corrections of order (kxg) to 4.
When k » 8 they are also important.

iii) The results of numerical calculations are presented when Hix,y!)
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obeys the additional condition (73}, But Eg. (99) does not
satisfy 1t. So we must subtract from Eq. (99) its mean value < H >.
It is not difficult to calculate this integral, When k is not
very large < H > has the order (k x§)2 and gives only a small
correction.

iv) We take into account only one periodic cycle with N = 8, so it
is difficult te argue that the resulting asymptotic formula will

be very accurate at all k.

Taking into account all these corrections connected with the fact that for
the periodic cycle considered xg is not very small, one can improve the com-
parison with numerical calculations but this is not connected with the problem

of large order estimates and it is beyond the scope of thisg paper.
5., = SUMMARY

The main result of this paper is that the method of large order estimates
of perturbation series in classical mechanics proposed in Ref. 1} is applicable
and gives good results even at irrational 1y, when the existence of small

denominators greatly complicates the application of other methods.

It would be interesting:
i) To estimate a in Eg, (63} at rational yu and to explain why

numerically a = 1.

ii) To obtain a more accurate asymptotic formula for AN at
irrational y.

iii) To find the large order estimates for additional integral in a

real Hamiltonian system, e.g. for the Henon-Heiles Hamiltonian6)

where a few terms of the perturbation series for the additional

integral are kncwnT).
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N

(as)
N xp AN AN/AN
& 0.666351 0.9413 31.9
16 0,442462 0.3339.107" 2.810
26 0.351535 0.4237.1071° 1,135
36 0. 300480 0.9872.10717 1.006
Table 1 - AN for N = 10k + &
. (as)
N 1xp AN AN/AN
A 0.847611 3.639 80.0
14 0.508800 -0,5139.1073 4,110
24 0.3582380 1.053 107% 1.335
34 0.319096 -0,3218,10713 1,009
Table 2 - AN for N = 10k + 4
N % A 5. = A sates)
P N N T SN SN
12 0.588357 4,67.1072 7
16 0.630077 0.621 80
18 0.32L544 -0.279,107¢8 - 0.33
22 0.552207 -0,745,107°8 - 5.1
28 0.395609 0,123,1071% 0.53
32 0.534135 0,420,1077 C.96
42 0.523475 -0.203,107 1! -11.7
58 0.445590 -0,132,1072° -~ 1.3
Table 3 = A, at u = (/s+1)/2 and & = 3.107°
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