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Abstract. The relation between the upper and lower asymptotic estimates of
the density and the fractal dimensions on the sphere of the spectral measure for
a multivariate stable distribution is discussed. In particular, the problem and
the conjecture on the asymptotic estimates of multivariate stable densities in
the work of Pruitt and Taylor in 1969 are solved. The proper asymptotic orders
of the stable densities in the case where the spectral measure is absolutely
continuous on the sphere, or discrete with the support being a finite set, or a
mixture of such cases are obtained. Those results are applied to the moment
of the last exit time from a ball and the Spitzer type limit theorem involving
capacity for a multi-dimensional transient stable process.

1. Introduction

Since Lévy [20] in 1937, the study of stable processes and their distributions has
been an important subject not only in theoretical probability but also in physics and
finance. Many properties of univariate stable distributions are found in Zolotarev
[43]. However, there are few known results on the asymptotic properties of mul-
tivariate stable densities up to now. Only Pruitt and Taylor [28] investigated the
asymptotic estimates of multivariate stable densities in a general setting. The others
made certain strong assumptions on the spectral measure, for instance, symmetry,
absolute continuity or discreteness. In this paper, surprisingly explicit estimates
can be obtained for a multivariate α-stable density p(x) on Rd. We first obtain the
general upper and lower estimates without any technical assumption. See Theorem
1.1. In particular, we find the best possible and worst possible cases. Then we
discuss the upper and lower asymptotic estimates of p(x + y) as |x| → ∞ with y
being bounded, from the point of view of their relation to the fractal dimensions
of the spectral measure σ on Sd−1. See Theorems 1.2 and 1.4. The asymptotic
order delicately depends on the direction of x/|x| in relation to the location of the
support of σ. Thus we discover that a wide range of decay orders is possible. See
Remark 1.3. Moreover, we solve the problem (Theorem 1.1) and the conjecture
(Theorem 1.5) on the upper asymptotic estimates of multivariate stable densities
in the classical work of Pruitt and Taylor [28] in 1969.
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2852 TOSHIRO WATANABE

In what follows, we use the terminology in Sato’s book [32]. Let {Xt : t � 0} be a
Lévy process on Rd, d � 1, with generating triplet (A, ν, γ). Here A is the Gaussian
covariance matrix, ν is the Lévy measure, and γ is the location parameter. That
is,

(1.1) E exp(i〈z, Xt〉) = exp(tψ(z)), z ∈ Rd,

with

(1.2) ψ(z) =
∫

Rd

(ei〈z,x〉 − 1 − 1{|x|�1}(x)i〈z, x〉)ν(dx) + i〈γ, z〉 − 1
2
〈Az, z〉,

where ν is a measure on Rd satisfying ν({0}) = 0 and
∫

Rd(1 ∧ |x|2)ν(dx) < ∞,
γ ∈ Rd, and A is a nonnegative-definite matrix. If A = 0, {Xt} is said to be purely
non-Gaussian. A Lévy process {Xt} on Rd is called a trivial process if there is
c ∈ Rd such that, for every t, Xt = tc a.s.; otherwise {Xt} is said to be nontrivial.

A set B in Rd is called one-sided if there is c �= 0 in Rd such that B ⊂ {x : 〈c, x〉 �
0}. A measure ρ on Rd is called one-sided if the support Sρ of ρ is one-sided. A
measure ρ on Rd is called degenerate if there are a ∈ Rd and a proper linear subspace
V of Rd such that Sρ ⊂ a+V ; otherwise ρ is called nondegenerate. A Lévy process
{Xt} on Rd is called degenerate if the distribution of Xt is degenerate for every t > 0
(equivalently, for some t > 0); otherwise {Xt} is called nondegenerate. See [32],
Proposition 24.17 for conditions for nondegenerateness in terms of the generating
triplet.

A Lévy process {Xt} on Rd, d � 1, is called stable if, for every a > 0, there are
b > 0 and c ∈ Rd such that

(1.3) {Xat : t � 0} d= {bXt + tc : t � 0}.

If {Xt} is a nontrivial stable process, then define the index α of {Xt} by α =
log a/ log b for a �= 1; this α is uniquely determined and 0 < α � 2. In this case
the process {Xt} is sometimes called an α-stable process. Let {Xt} be a nontrivial
stable process on Rd. If c = 0 in (1.3) for every a > 0, we call {Xt} a first-class
stable process. Otherwise we call {Xt} a second-class stable process. The process
is first-class stable if and only if it is strictly stable in the terminology of [32]; it is
second-class stable if and only if it is stable but not strictly stable.

Let {Xt} be a nontrivial α-stable process on Rd with α �= 2. Then there is a
probability measure σ on Sd−1 = {ξ ∈ Rd : |ξ| = 1} such that

(1.4) ν(B) = c

∫
Sd−1

σ(dξ)
∫ ∞

0

1B(rξ)r−1−αdr for B ∈ BRd ,

where c is a positive constant independent of ξ and r, and BRd is the class of all
Borel sets in Rd. This σ is uniquely determined and is called the spectral measure
of the process {Xt}. We consider σ as a measure on Rd with the understanding
that σ((Sd−1)c) = 0.

Let φ(r) be a positive and decreasing function on (0,∞). We use the words
“increase” and “decrease” in the wide sense allowing flatness. Then we say φ ∈ D
if there is a constant c1 > 0 such that φ(r) ≤ c1φ(2r) for r > 0. A positive
and decreasing function φ ∈ D is called of dominated variation. Denote by Ba

an open ball in Rd with center 0 and radius a. Thus Ba = {x : |x| � a} and
Ba + y = {x : |x− y| < a}. For the spectral measure σ of an α-stable process {Xt}
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on Rd with α �= 2, define functions σξ(r) and σ∗(r) for r > 0 as

(1.5) σξ(r) = σ(ξ + B1/r) and σ∗(r) = sup
ξ∈Sd−1

σ(ξ + B1/r).

Obviously σ∗(·) is positive and decreasing and σ∗(·) ∈ D. Thus there is a constant
b � 0 such that

(1.6) σ∗(sr) � s−bσ∗(r) for 0 < s < 1 and r > 0.

See Bingham et al. [3]. Let Sσ be the support of σ. Taking Carathéodory’s theorem
into account, we define

C0
σ(n) = {ξ ∈ Sd−1 : ξ =

∑n
j=1cjξj for some cj > 0 and ξj ∈ Sσ,

j = 1, . . . , n, such that ξ1, . . . , ξn are linearly independent}
(1.7)

for 1 � n � d, Tσ(1) = C0
σ(1) = Sσ, and

(1.8) Tσ(n) = C0
σ(n) \ C0

σ(n − 1)

for 2 � n � d, where C0
σ(n − 1) is the closure of C0

σ(n − 1). We have C0
σ(n) ⊃

C0
σ(n − 1) for 2 � n � d, since it is clear that C0

σ(n) ⊃ C0
σ(n − 1). We write

C0
σ = C0

σ(d) and Cσ = C0
σ. Let int Cσ be the interior of the set Cσ in the relative

topology on Sd−1. Note that in general, Cσ ⊃
⋃d

n=1 Tσ(n) and int Cσ ⊃ C0
σ. The

set C0
σ is nonempty if {Xt} is nondegenerate. These sets are introduced by Hiraba

[12], when Sσ is a finite set.
In the rest of this section, we assume that {Xt} is a nondegenerate α-stable

process on Rd with 0 < α < 2 and d � 1. Thus {Xt} is purely non-Gaussian and
Xt has the probability density function p(t, x) for t > 0. We write p(1, x) = p(x). We
denote by m the uniform probability measure on Sd−1. In the case where 0 < α < 1
and ν is one-sided, p(x) can be zero, and thereby an additional condition |x| > R
with sufficiently large R > 0 is needed in the lower estimates of p(x). Otherwise,
there is no need for that condition. Thus we promise to omit such a condition in
the lower estimates of p(x). First we give general asymptotic estimates applicable
for all α-stable densities.

Theorem 1.1. (i) There is a constant c1 > 0 such that

(1.9) p(x) � c1(1 + |x|)−(1+α)σ∗(1 + |x|) for x ∈ Rd.

In particular, we have

(1.10) p(x) � c1(1 + |x|)−(1+α) for x ∈ Rd.

(ii) Let ξ0 ∈ Sd−1. In the case where 0 < α < 1 and ν is one-sided, we make
an additional assumption that ξ0 ∈ int Cσ. (Otherwise we make no additional
assumption.) Then for any δ1 > 0, there is c2 > 0 such that it is independent of ξ0

and

(1.11) p(rξ0 + y) � c2(1 + r)−(1+α)σξ0(1 + r) whenever |y| � δ1.

(iii) For any compact set K1 in C0
σ and for any δ2 > 0, there is c3 > 0 such that

(1.12) p(x + y) � c3(1 + |x|)−(1+α)d whenever x/|x| ∈ K1, |y| � δ2.

(iv) For any compact set K2 ⊂ Sd−1 with K2 ∩ Cσ = ∅, for any δ3 > 0, and for
any c0 > 0, there is c4 > 0 such that

(1.13) p(x + y) � c4 exp(−c0|x| log |x|) whenever x �= 0, x/|x| ∈ K2, |y| � δ3.
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Pruitt and Taylor [28] showed the second assertion of (i) of Theorem 1.1 by a
complicated Fourier-analytic method except in the case of second-class with α = 1;
in this case the estimate (1.10) has been unproven up to now. Our method of proof
is more probabilistic and simpler. Further Port [24] used (1.10) for the classification
of transient stable processes into weakly transient and strongly transient. Thus he
could not classify the case of second-class with α = 1 and d = 2, which is shown to
be strongly transient by Sato and Watanabe [34]. Pruitt and Taylor [28] called the
order (1 + |x|)−(1+α) of the density p(x) the worst possible case. Thus the order
(1+|x|)−(1+α)d should be called the best possible case in the case where C0

σ = Sd−1.
The following theorem gives a proper asymptotic order of the density, which leads
to a remark amazing even to the author.

Theorem 1.2. Let φ ∈ D and let K be a compact set in Sσ. Suppose that

(1.14) lim sup
r→∞

sup
ξ∈Sd−1

σ(ξ + B1/r)
φ(r)

< ∞ and lim inf
r→∞

inf
ξ∈K

σ(ξ + B1/r)
φ(r)

> 0.

In the case where 0 < α < 1 and ν is one-sided, we make an additional assumption
that K ⊂ int Cσ. Then given δ > 0, we can find c1 > 0 and c2 > 0 such that

(1.15) c1(1 + |x|)−(1+α)φ(1 + |x|) � p(x + y) � c2(1 + |x|)−(1+α)φ(1 + |x|)
whenever x/|x| ∈ K, |y| � δ.

Remark 1.3. Let d � 2 and fix α ∈ (0, 2) in the above theorem. Let β be an
arbitrary real number in (1 + α, d + α). Then we can choose the spectral measure
σ in such a way that, for any δ > 0, there is a compact set K in Sd−1, c1 > 0, and
c2 > 0 such that

(1.16) c1(1 + |x|)−β � p(x + y) � c2(1 + |x|)−β whenever x/|x| ∈ K, |y| � δ.

Indeed we can take σ as a so-called s-measure on Sd−1 with 0 < s < d − 1 such
that K = Sσ and β = 1 + s + α and that, for c3 > 0 and c4 > 0 independent of
x ∈ K,

(1.17) c3a
s � σ(K ∩ (x + Ba)) � c4a

s for x ∈ K and a ∈ (0, 1).

The existence of s-measure on Sd−1 is clear from that in Rd−1.

Now we can give interesting asymptotic estimates of p(rξ0 + y) for ξ0 ∈ Tσ(n)
with 1 ≤ n ≤ d as r → ∞ in relation to the fractal dimensions of the spectral
measure σ. The upper estimate (1.19) and lower one (1.21) are attained in the
cases of Theorems 3.8 and 3.10, respectively.

Theorem 1.4. Consider ξ0 ∈ Tσ(n) with 1 ≤ n ≤ d. Let φ1, φ2 ∈ D.
(i) Suppose that

(1.18) lim sup
r→∞

sup
ξ∈Sd−1

σ(ξ + B1/r)
φ1(r)

< ∞.

Then, given δ1 > 0, we can find c1 > 0 such that

(1.19) p(rξ0 + y) � c1(1 + r)−(1+αn)φ1(1 + r) whenever r > 0, |y| � δ1.

(ii) Suppose that

(1.20) lim inf
r→∞

σ(ξ + B1/r)
φ2(r)

> 0 for any ξ ∈ Sσ.
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In the case where 0 < α < 1 and ν is one-sided, we make an additional assumption
that ξ0 ∈ int Cσ. Then, given δ2 > 0, we can find c2 > 0 such that

(1.21) p(rξ0 + y) � c2

(
(1 + r)−(1+α)φ2(1 + r)

)n

whenever |y| � δ2.

Next, we give some new estimates of p(x), which include the well-known rotation-
invariant case. The upper estimate (1.23) was conjectured by Pruitt and Tay-
lor [28] under the assumption (1.22). Dziubański [7] showed the existence of
limr→∞ rd+αp(rξ) = k(ξ) with some k(ξ) in some special case. Further related
results were obtained by Arkhipov [1], G�lowacki and Hebisch [10], and G�lowacki
[9]. They also obtained (1.23) under certain additional assumptions. Namely, [1]
assumed first-class and smoothness of the density of the spectral measure. On the
other hand, [7], [9], and [10] assumed symmetry. The results of those papers are
interesting in view of ours.

Theorem 1.5. (i) If, for some c1 > 0,

(1.22) σ(dξ) � c1m(dξ) on Sd−1,

then, for some c2 > 0

(1.23) p(x) � c2(1 + |x|)−(d+α) for x ∈ Rd.

The converse is also true except in the case where 0 < α < 1 and ν is one-sided.
(ii) Suppose that there is a nonempty compact set K in Sd−1 such that

(1.24) lim inf
r→∞

inf
ξ∈K

σ(ξ + B1/r)
r−(d−1)

> 0.

In the case where 0 < α < 1 and ν is one-sided, we impose an additional condition
that K ⊂ int Cσ. Then, for any δ > 0, there is c3 > 0 such that

(1.25) p(x + y) � c3(1 + |x|)−(d+α) whenever x/|x| ∈ K, |y| � δ.

Remark 1.6. The condition (1.24) is satisfied if there are a nonempty relatively
open set U in Sd−1, a compact set K in U and c1 > 0 such that

(1.26) σ(dξ) � c1m(dξ) on U and lim inf
a→0+

inf
ξ∈K

m((ξ + Ba) ∩ U)
ad−1

> 0.

We prove the main results above in Section 3 after some preliminaries in Section
2. In Section 3, we add several other interesting results as follows. First we make
a more precise observation of both the best possible and the worst possible cases.
See Corollaries 3.4 and 3.5. Next we obtain the proper asymptotic order of the
stable density p(x + y) as |x| → ∞ with y being bounded for all or most of all the
directions of x/|x| in the case where the spectral measure σ is absolutely continuous
with respect to the uniform measure m on Sd−1, or discrete with the support Sσ

being a finite set, or a mixture of those cases. See Theorems 3.8, 3.10 and 3.13.
Then we apply those results to the moment of the last exit time from a ball and also
to the Spitzer type limit theorems involving capacity in Section 4 for a second-class
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transient stable process with d � 2 and 1 � α < 2. The reason why we study the
order of p(rξ + y) not of p(rξ) for ξ ∈ Sd−1 is found in Lemma 4.5.

2. Preliminaries

In this section, we provide some preliminary results for Section 3. The support
Sρ of a measure ρ on Rd is the smallest closed set that carries the whole measure
of ρ. We denote by ρn∗ n-th convolution power of the measure ρ. The distribution
of an Rd-valued random variable X is denoted by L(X). We write {Xt}

d= {Yt} for
two stochastic processes {Xt} and {Yt} if they have an identical system of finite-
dimensional joint distributions. For a Lévy process {Xt}, we denote µ = L(X1) and
µt = L(Xt). The support of µt is denoted by S(Xt). If µt is absolutely continuous
with the density p(t, x) being continuous in x, then the set {x : p(t, x) > 0} is
denoted by G(Xt).

Let {Xt} be a nontrivial α-stable process on Rd with 0 < α < 2 and Lévy
measure ν. Let ψ(z) be the function defined in (1.2). If 0 < α < 1, then

(2.1) ψ(z) =
∫

Rd

(ei〈z,x〉 − 1)ν(dx) + i〈γ0, z〉

where γ0 is called the drift of {Xt}. If 1 < α < 2, then

(2.2) ψ(z) =
∫

Rd

(ei〈z,x〉 − 1 − i〈z, x〉)ν(dx) + i〈γ1, z〉

where γ1 is called the center of {Xt} and γ1 = EX1. We define τ ∈ Rd as τ = γ0

for 0 < α < 1, τ = γ1 for 1 < α < 2, and τ = c
∫

Sd−1 ξσ(dξ) for α = 1. Here c is
the constant in (1.4). Note that the stable process {Xt} is first-class if and only if
τ = 0. If {Xt} is nondegenerate, then L(Xt) has the probability density function
p(t, x). We write p(1, x) = p(x). Then p(x) is of class C∞ and satisfies the relation

(2.3) p(t, x) =

{
t−d/αp(t−1/αx + (1 − t1−1/α)τ ) (α �= 1),
t−dp(t−1x − (log t)τ ) (α = 1).

A Lévy process {Xt} on Rd, d � 1, is called semistable if, for some a > 0 with
a �= 1, there are b > 0 and c ∈ Rd satisfying (1.3). We call a semistable Lévy
process, briefly, a semistable process. In this case we can choose a > 1 without
loss of generality. If {Xt} is a nontrivial semistable process, then the index α can
be defined in the same way as for nontrivial stable processes. See Sato [31], [32]
concerning semistable processes.

A subset H of Rd is said to be a closed additive semigroup if H is a closed set
such that H + H ⊂ H. If moreover −H ⊂ H, then H is called a closed additive
group. It should be noted that a closed additive semigroup H in Rd is either one-
sided or a closed additive group. See Sato and Watanabe [33]. Let {Xt} be a
nondegenerate α-stable process on Rd with 0 < α � 2 and Lévy measure ν. The
set Sgp(ν) is the smallest closed additive semigroup containing Sν . We define a
map Π from Rd \ {0} to Sd−1 as Πx = x/|x|. Note that Cσ = Π(Sgp(ν) \ {0}). The
following lemma is due to Taylor [38] and Port and Vitale [27]. See Tortrat [39],
Sharpe [35], and Sato and Watanabe [34] concerning the supports of general Lévy
processes and semistable processes.
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Lemma 2.1. Let {Xt} be a nondegenerate α-stable process on Rd with 0 < α � 2.
(i) Suppose that 0 < α < 1 and ν is one-sided. Then Sgp(ν) is a one-sided,

closed convex cone, and

(2.4) S(Xt) = tγ0 + Sgp(ν) and G(Xt) = tγ0 + int Sgp(ν) for t > 0,

where int Sgp(ν) is the interior of the set Sgp(ν).
(ii) Suppose that 1 � α � 2, or suppose that 0 < α < 1 and ν is not one-sided.

Then

(2.5) S(Xt) = G(Xt) = Rd for t > 0.

The following lemma was found by Taylor [38].

Lemma 2.2. Let {Xt} be a nondegenerate α-stable process on Rd with 0 < α � 2.
Then the following conditions are equivalent:

0 < α < 1 and −γ0 �∈ int Sgp(ν),(2.6)

p(t, 0) = 0 for all t > 0,(2.7)

p(t, 0) = 0 for some t > 0.(2.8)

For the rest in this section let {Xt} be a nondegenerate α-stable process on Rd

with 0 < α < 2. Our basic technique is to decompose {Xt} into the sum of inde-
pendent Lévy processes {Yt} and {Zt}. That is, let {Yt} and {Zt} be independent
Lévy processes such that {Xt}

d= {Yt +Zt} and {Zt} is a compound Poisson process
with Lévy measure νZ equal to ν restricted to {|x| > θ} for some θ > 0. Thus the
Lévy measure νY of {Yt} is the restriction of ν to {|x| � θ}. Let L(Y1) = µY

and L(Z1) = µZ . Since | log µ̂Z(z)| is bounded, we get |µ̂t
Y (z)| � e−ct|z|α+c1t with

some c > 0 and c1 > 0 as in Proposition 24.20 of Sato [32]. Thus L(Yt), t > 0,
has a density pY (t, x), which is continuous in (t, x), of class C∞ in x, and bounded
for (t, x) ∈ [ε1, ε2] × Rd for every 0 < ε1 < ε2 < ∞. We write pY (t, x) = q(t, x)
and L(Zt) = µt

Z = λt. Further we write q(x) = q(1, x) and λ = λ1. As before,
Br = {x : |x| < r}; thus Br = {x : |x| � r} and Br + y = {x : |x − y| < r}. The
following fact will be useful. See Sato and Watanabe [34] for the proof.

Lemma 2.3. Let {Xt} be a nondegenerate α-stable process on Rd, 0 < α < 2, with
Lévy measure ν. Then S(Yt) = S(Xt) and G(Yt) = G(Xt) for t > 0.

Lemma 2.4. Let c0 > 0. If θ in the above satisfies that 0 < θ < 1/(2c0), then
there is c1 such that

(2.9) q(x) � c1 exp(−c0|x| log |x|) for |x| > 0.

Proof. Theorem 26.1 of [32] tells us that∫
|y|>r

q(1/2, y)dy � c3 exp(−2(c0 + δ)r log r) for r > 0
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with some positive constants c3 and δ. Let c2 = supx∈Rd q(1/2, x). Now,

q(x) =
∫
|x−y|�|x|/2

q(1/2, x − y)q(1/2, y)dy +
∫
|x−y|>|x|/2

q(1/2, x − y)q(1/2, y)dy

� 2c2

∫
|y|�|x|/2

q(1/2, y)dy

� 2c2c3 exp(−(c0 + δ)|x| log(|x|/2))

� c4 exp(−c0|x| log |x|)

for large |x| with some positive constant c4. This gives (2.9). �

The following simple lemma, together with Lemma 3.1, will be a key to prove
the main results. All the estimates below are carried over under the condition that
θ is given and fixed.

Lemma 2.5. Let ϕ1 and ϕ2 be nonnegative decreasing functions on (0,∞) with
ϕ1 ∈ D and let K1 and K2 be compact sets in Sd−1.

(i) Asssume that there are c1 > 0 and δ0 > 0 such that if x �= 0 and z satisfy
x/|x| ∈ K1 and |z| � δ0|x|, then

(2.10) λ(x + z + B1) � c1ϕ1(1 + |x|).
Then, for any δ1 > 0, there is c2 > 0 such that if x �= 0 and y satisfy x/|x| ∈ K1

and |y| � δ1, then

(2.11) p(x + y) � c2ϕ1(1 + |x|).
(ii) In the case where 0 < α < 1 and ν is one-sided, we impose an additional

condition that K2 ⊂ int Cσ. Otherwise we impose no additional condition on K2.
Assume that there are a > 0, c3 > 0 and R1 > 0 such that if x/|x| ∈ K2 and
|x| � R1, then

(2.12) λ(x + Ba) � c3ϕ2(1 + |x|).
Then, for any δ2 > 0, there are c4 > 0 and R2 > 0 such that if x/|x| ∈ K2,
|x| � R2, and |y| � δ2, then

(2.13) p(x + y) � c4ϕ2(1 + |x|).

Proof. (i) Since p(t, x) =
∫

q(t, x − z)λt(dz), we have

p(x + y) =
∫

q(−z)λ(x + y + dz)

=
∫
|z|�δ0|x|/2

q(−z)λ(x + y + dz) +
∫
|z|>δ0|x|/2

q(−z)λ(x + y + dz).

Let J1 and J2 be the first and the second term in the last expression. We can
choose xj , j = 1, . . . , N = N(x), with |xj | � δ0|x|/2 such that {z : |z| � δ0|x|/2} ⊂⋃N

j=1(B1+xj), and there is c5 > 0 independent of N and x satisfying
∑N

j=1 Qj � c5

for Qj = supz∈B1+xj
q(−z). This is possible by Lemma 2.4. Let R = 2δ1/δ0. If

x/|x| ∈ K1, |x| � R, and |y| � δ1, then

|y + xj | � |y| + |xj | � (|y|/|x|)|x| + (δ0/2)|x| � δ0|x|,
λ(x + y + xj + B1) � c1ϕ1(1 + |x|)
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by (2.10). Hence

J1 �
N∑

j=1

Qjλ(x + y + xj + B1) � c1c5ϕ1(1 + |x|).

On the other hand, by Lemma 2.4 and ϕ1 ∈ D,

J2 � sup
|z|>δ0|x|/2

q(−z) � c6 exp(−c0(δ0|x|/2) log(δ0|x|/2)) � c7ϕ1(1 + |x|)

with some c0, c6, and c7. Thus we get (2.11) under the condition |x| � R. Hence
it holds without this condition with a suitable choice of c2.

(ii) First, suppose that 1 � α < 2, or suppose that 0 < α < 1 and ν is not
one-sided. We have

p(x + y) �
∫

Ba

q(y − z)λ(x + dz).

Let c8 = inf |y|�δ2, |z|<a q(y − z). Then c8 > 0 by Lemma 2.1, Lemma 2.3, and the
continuity of q(·). Thus, if x/|x| ∈ K2, |x| � R1, and |y| � δ2, then

p(x + y) � c8λ(x + Ba) � c8c3ϕ2(1 + |x|).

Next, suppose that 0 < α < 1, ν is one-sided and K2 ⊂ int Cσ. Recall that
q(z) > 0 for z ∈ γ0 + int Sgp(ν) (Lemmas 2.1 and 2.3) and that

(2.14) Sgp(ν) = Π−1Cσ ∪ {0}

(the closedness of Sgp(ν) under multiplication by positive reals in Lemma 2.1).
Choose r0 > 0 so large that K ′ = r0K2 + Ba+δ2+|γ0| ⊂ int Sgp(ν). Let c9 =
infz∈γ0+K′ q(z). Then c9 > 0. If x/|x| ∈ K2, |x| � R1 + r0, and |y| � δ2, then

p(x + y) �
∫

z∈−r0K2+Ba

q(y − z)λ(x + dz) � c9λ(x − r0K2 + Ba)

� c9λ(x − r0x/|x| + Ba) = c9λ((|x| − r0)x/|x| + Ba)

� c9c3ϕ2(1 + (|x| − r0)) � c10ϕ2(1 + |x|)

with some c10. �

Remark 2.6. Picard [22] studied the density estimates in small time for jump pro-
cesses. In the case of first-class stable processes, his results are essentially similar
to the statements of Lemma 2.5 because of the relation (2.3) with τ = 0. However,
the arguments in Lemma 2.7 below are not therein, and thereby the relation to the
spectral measure is not discussed in [22].

Let l be a positive integer. For ξ0, ξ1, . . . , ξl ∈ Sd−1 (not necessarily distinct),
r > 0, y ∈ Rd, let

(2.15) I = I(ξ1, . . . , ξl; r, ξ0, y) =
∫

(θ,∞)l

1rξ0+y+B1

⎛⎝ l∑
j=1

rjξj

⎞⎠ l∏
j=1

drj

r1+α
j

and

(2.16) J = J(l, r, ξ0, y) =
∫

(Sd−1)l

I(ξ1, . . . , ξl; r, ξ0, y)
l∏

j=1

σ(dξj).
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Note that νl∗
Z (rξ0 + y + B1) = clJ(l, r, ξ0, y) with c being the constant in (1.4).

Denote the smallest linear subspace containing ξ1, . . . , ξl by Span{ξ1, . . . , ξl}. Define
the set Ξn with 1 ≤ n ≤ d as

Ξn ={(ξ1, . . . , ξn) : ξj ∈ Sd−1,

j = 1, . . . , n, such that ξ1, . . . , ξn are linearly independent}.
(2.17)

For (ξ1, . . . , ξn) ∈ Ξn, let P be a isometric linear mapping from Span{ξ1, . . . , ξn}
to Rn and define D(ξ1, . . . , ξn) = | det(Pξ1, . . . , P ξn)| where det(Pξ1, . . . , P ξn)
is the determinant considering each Pξj as a column vector in Rn. Obviously
D(ξ1, . . . , ξn) does not depend on the choice of the mapping P . Define

(2.18) An =
∫

Ξn

1
D(ξ1, . . . , ξn)

n∏
j=1

σ(dξj).

Next we give some upper estimates of the integral J for ξ0 ∈ Tσ(n) with 1 � n � d.

Lemma 2.7. Given ξ0 ∈ Tσ(n) with 1 � n � d, we can find 0 < δ < 1 and R > 0
with the following properties:

(i) If ξ1, . . . , ξl ∈ Sσ and dim Span{ξ1, . . . , ξl} � n − 1, then I = 0 whenever
|y| � δr and r � R.

(ii) There are constants b � 0, c1 > 0 and c2 > 0 determined by α, θ, δ, and n,
such that, if ξ1, . . . , ξl ∈ Sσ and dim Span{ξ1, . . . , ξl} � n, then

(2.19) J � c1

(
l

n

)
l(1+α)nα−lθ−αlr−(1+α)nAn whenever |y| � δr/2 and r � R

and

(2.20) J � c2

(
l

n

)
lαn+bα−lθ−αlr−(1+αn)σ∗(r) whenever |y| � δr/2 and r � R.

Proof. Given ξ0 as above, choose δ > 0 so small and R so large that, if |y| � δr

and r � R, then (rξ0 + y + B1) ∩ Π−1C0
σ(n − 1) = ∅. This is possible because, for

x = rξ0 + y + z with |y| � rδ and |z| < 1, we have r(1− δ)− 1 � |x| � r(1 + δ) + 1
and ∣∣∣∣ x

|x| − ξ0

∣∣∣∣ =
|(r − |x|)ξ0 + y + z|

|x| � 2(rδ + 1)
r(1 − δ) − 1

� 2(δ + R−1)
1 − δ − R−1

,

and ξ0 �∈ C0
σ(n − 1).

(i) Assume that dim Span{ξ1, . . . , ξl} � n − 1. We claim that, if w =
∑l

j=1 rjξj

with r1, . . . , rl > 0, then w ∈ Π−1
⋃n−1

k=1 C0
σ(k)∪{0}. Indeed, if ξ1, . . . , ξl are linearly

independent, then this is clear; if ξ1, . . . , ξl are linearly dependent, then we can find
(after change of numbering if necessary) b1, . . . , bl satisfying

∑l
j=1 bjrjξj = 0 and

bl = 1 � bj for 1 � j � l − 1, which implies that w is a linear combination
with positive coefficients of some {ξ′1, . . . , ξ′l′} � {ξ1, . . . , ξl}. We can continue this
procedure until w is expressed as a linear combination with positive coefficients of
some linearly independent subsystem of {ξ1, . . . , ξl}. Now we see that I = 0 from
the definition of I.

(ii) Let |y| � δr/2 and r � R. Suppose that w =
∑l

j=1 rjξj ∈ rξ0 + y + B1.
We may assume that there is l1 such that rj � δr/(2l) for j = 1, . . . , l1 and
rj < δr/(2l) for j = l1 + 1, . . . , l after rearrangement of ξ1, . . . , ξl if necessary.
Write y2 =

∑l
j=l1+1 rjξj , y1 = y − y2, and w′ = w − y2 =

∑l1
j=1 rjξj . Then
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|y2| � δr/2, |y1| � |y| + |y2| � δr, and w′ ∈ rξ0 + y + B1 − y2 = rξ0 + y1 + B1.
Thus, w′ �∈ Π−1C0

σ(n − 1). Now the property shown in the proof of (i) tells us that
dim Span{ξ1, . . . , ξl1} � n. Hence l1 � n. It follows that I is not larger than(

l

n

) (
δr

2l

)−(1+α)n ∫
(θ,∞)l−n

⎛⎝ l∏
j=n+1

drj

r1+α
j

⎞⎠ ∫
(θ,∞)n

1rξ0+y1+B1

⎛⎝ l1∑
j=1

rjξj

⎞⎠ n∏
j=1

drj .

Denote by Vn the volume of the n-dimensional unit ball. We have∫
(θ,∞)n

1rξ0+y1+B1

⎛⎝ l1∑
j=1

rjξj

⎞⎠ n∏
j=1

drj � Vn

D(ξ1, . . . , ξn)

when rj (n + 1 � j � l) are fixed. Therefore, noting Vn � 2n,

J �
(

l

n

) (
δr

2l

)−(1+α)n

α−(l−n) θ−α(l−n) 2n An,

which is written as (2.19). On the other hand, since l1 � n it follows that I is not
larger than(

l

n

)
α−(n−1)

(
δr

2l

)−α(n−1) ∫
(θ,∞)l−n

⎛⎝ l∏
j=n+1

drj

r1+α
j

⎞⎠sup
a∈Rd

∫ ∞

(δr)/(2l)

1a+B1 (r1ξ1)
dr1

r1+α
1

.

We have by (1.6)

sup
a∈Rd

∫
Sd−1

σ(dξ1)
∫ ∞

(δr)/(2l)

1a+B1 (r1ξ1)
dr1

r1+α
1

=r−α sup
a′∈Rd

∫
Sd−1

σ(dξ1)
∫ ∞

δ/(2l)

1a′+B1/r
(uξ1)

du

u1+α

�r−α sup
ξ∈Sd−1

σ(ξ + B 2l
δr

)
∫ δ/(2l)+2/r

δ/(2l)

du

u1+α

�c3α
−1

(
2l

δ

)α

r−α−1σ∗
(

δr

2l

)
� c4l

α+br−α−1σ∗(r)

with positive constants b, c3 and c4, which implies (2.20). �
Remark 2.8. Let K be a compact set in Tσ(n). Then we see from the proof above
the constants c1 and c2 can be taken uniformly with respect to ξ0 ∈ K.

3. Proof of the main results

In this section, we prove the results mentioned in Section 1 and their corollaries
and remarks by using the preliminaries in Section 2. Then we present some addi-
tional results which give the proper asymptotic orders of the stable densities. We
continue to use the notation of Sections 1 and 2.

Lemma 3.1. (i) There is a constant c1 > 0 such that

(3.1) λ(x + B1) � c1(1 + |x|)−(1+α)σ∗(1 + |x|) for x ∈ Rd.

(ii) Let ξ0 ∈ Sd−1. There are constants c2 > 0 and R > 0 independent of
ξ0 ∈ Sd−1 such that

(3.2) λ(rξ0 + B2) � c2(1 + r)−(1+α)σξ0(1 + r) for r � R.
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Proof. (i) Recall (1.4) and see that νZ(dx) = 1{|x|>θ}(x)ν(dx). Then, for n � 1
and |x| � 2,

νn∗
Z (x + B1) = cn

∫
(Sd−1)n×(θ,∞)n

1x+B1

⎛⎝ n∑
j=1

rjξj

⎞⎠ n∏
k=1

r
−(1+α)
k σ(dξk)drk.

If
∑n

j=1 rjξj ∈ x + B1, then rl � |x|/(2n) for some l with 1 � l � n. Thus we see
from (1.6) that

νn∗
Z (x + B1) � cnα−(n−1)θ−α(n−1) sup

a∈Rd

∫
Sd−1

σ(dξl)
∫ ∞

|x|/(2n)

1a+B1 (rlξl)
drl

r1+α
l

=cnα−(n−1)θ−α(n−1)|x|−α sup
a′∈Rd

∫
Sd−1

σ(dξl)
∫ ∞

1/(2n)

1a′+B1/|x| (uξl)
du

u1+α

�cnα−(n−1)θ−α(n−1)|x|−α sup
ξ∈Sd−1

σ(ξ + B 2n
|x|

)
∫ 1/(2n)+2/|x|

1/(2n)

du

u1+α

�c3c
nα−nθ−α(n−1)(2n)α|x|−α−1σ∗

(
|x|
2n

)
�c4c

nα−nθ−α(n−1)(2n)α+b(1 + |x|)−α−1σ∗(1 + |x|)

with some positive constants c3 and c4. Hence there is c5 such that

λ(x+B1) �
∞∑

n=1

e−a(n!)−1νn∗
Z (x+B1) � c5(1+|x|)−(1+α)σ∗(1+|x|) for |x| � 2,

where a = νZ(Rd). This proves (3.1) with some c1.
(ii) Let r > 2θ + 2. There is c6 > 0 independent of ξ0 ∈ Sd−1 such that

λ(rξ0 + B2) � e−aνZ(rξ0 + B2)

=e−a

∫
Sd−1

σ(dξ1)
∫ ∞

θ

1rξ0+B2 (r1ξ1)
dr1

r1+α
1

=e−ar−α

∫
Sd−1

σ(dξ1)
∫ ∞

θ/r

1ξ0+B2/r
(uξ1)

du

u1+α

�c6e
−aα−1r−α−1σ(ξ0 + B1/r)

�c6e
−aα−1(1 + r)−α−1σξ0(1 + r),

which implies (3.2). �

Proof of Theorem 1.1. (i) By Lemma 3.1 and (1.6) we can find c5 > 0 and c6 > 0
such that, for any x, z ∈ Rd with |z| � |x|/2,

λ(x + z + B1) � c5(1 + |x + z|)−(1+α)σ∗(1 + |x + z|) � c6(1 + |x|)−(1+α)σ∗(1 + |x|).

Hence, applying Lemma 2.5 (i) to K1 = Sd−1 and y = 0, we get (1.9). The second
assertion is obviously true because σ∗(1 + |x|) � 1 for x ∈ Rd.

(ii) By Lemma 3.1 we can find c7 > 0 and R3 > 0 such that

λ(rξ0 + B2) � c7(1 + r)−α−1σξ0(1 + r) for r > R3.

Hence, applying Lemma 2.5 (ii) to K2 = {ξ0} we get (1.11).
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(iii) We have K1 ⊂ C0
σ. Let us check the assumption in Lemma 2.5 (ii) with

ϕ2(r) = r−d(1+α). Namely, we claim that there are c8 > 0 and R4 > 0 such that if
ξ ∈ K1 and r � R4, then

(3.3) λ(rξ + B1) � c8(1 + r)−d(1+α).

Let ξ0 ∈ K1. By (1.7) we can find a linearly independent system ξ0
1 , . . . , ξ0

d in Sσ

and positive reals a0
1, . . . , a

0
d such that ξ0 =

∑d
j=1 a0

jξ
0
j . Choose a small relatively

open neighborhood U(ξ0
j ) of ξ0

j in Sd−1 for each j in such a way that, for every
ξj ∈ U(ξ0

j ), j = 1, . . . , d, there uniquely exist aj > 0, j = 1, . . . , d, satisfying
ξ0 =

∑d
j=1 ajξj and that a1, . . . , ad continuously depend on {ξj}. We have aj = a0

j

for {ξj} = {ξ0
j }. For r > 2 let

Vε(rξ0) =

⎧⎨⎩y =
d∑

j=1

sjξj : ξj ∈ U(ξ0
j ) and ajr − ε < sj < ajr + ε for j = 1, . . . , d

⎫⎬⎭.

Choose ε > 0 so small that Vε(rξ0) ⊂ rξ0 + B1. Then, with a = νZ(Rd), there are
c9 and R5 such that

λ(rξ0 + B1) � e−a(d !)−1νd∗
Z (Vε(rξ0))

� e−a(d !)−1cd

∫
U(ξ0

1)×···×U(ξ0
d)

σ(dξ1) · · ·σ(dξd)
d∏

j=1

∫ ajr+ε

ajr−ε

s
−(1+α)
j dsj

� c9r
−d(1+α) � c9(1 + r)−d(1+α)

for all r � R5. The set C0
σ is relatively open in Sd−1. On reflection we see that

there is a small relatively open neighborhood W (ξ0) of ξ0 in Sd−1 such that we can
find c10 and R6 satisfying

λ(rξ + B1) � c10(1 + r)−d(1+α)

for all ξ ∈ W (ξ0) and r � R6. By compactness of K1 we see (3.3). Now we have
only to apply Lemma 2.5 (ii).

(iv) This is a one-sided case. Given K2, c0, and δ3 with K2 ∩ Cσ = ∅, we have
to show (1.13). Let δ be the distance between K2 and Cσ. We have 0 < δ < 2.
Choosing 0 < θ < δ/(8c0), we will apply Lemma 2.4. Let x/|x| ∈ K2 and |y| � δ2.
As in the proof of Lemma 2.5 (i),

p(x + y) =
∫
|z|�δ|x|/4

q(−z)λ(x + y + dz) +
∫
|z|>δ|x|/4

q(−z)λ(x + y + dz).

Denote by J1 and J2 the first and the second integral. As before, we have J1 �∑N
j=1 Qjλ(x+y +xj +B1) where |xj | � δ|x|/4. But (x+y +xj +B1)∩Π−1Cσ = ∅

uniformly in y and xj when |x| is large. Indeed, letting |y − y′| < 1,

|Π(x + y′ + xj) − Πx| � ||x + y′ + xj |−1 − |x|−1| |x| + |x + y′ + xj |−1|y′ + xj |
� 2|x + y′ + xj |−1|y′ + xj |
� (|x| − δ|x|/4 − |y′|)−1(δ|x|/2 + 2|y′|) → (1 − δ/4)−1δ/2 < δ

as |x| → ∞. It follows from (2.14) that J1 = 0 when |x| is large. Now we get (1.13)
for large |x| from Lemma 2.4. If we take the constant c4 large enough, it holds
without restriction that |x| is large. �
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Remark 3.2. A nondegenerate α-semistable process with 0 < α < 2 on Rd does
not satisfy (1.10) in general. We give such an example for d = 1. However, it is
noteworthy that the description of the finiteness of the moment of the last exit time
from a ball in Corollary 2.7 of Sato and Watanabe [34] in one-dimensional case is
true for all semistable processes as well as stable processes.

Proof. Let d = 1 and 0 < α < 2. We give an example of an α-semistable process
on R which does not satisfy (1.10). Let a > 1 and ν =

∑∞
n=−∞ a−nδan/α(dx) be

the process’ Lévy measure, where δan/α is the δ-measure at an/α. That is, ν is a
discrete one-sided measure. In the case of 0 < α < 1, we assume that the drift
of the process is nonpositive. Then the associated α-semistable process does not
satisfy (1.10). Indeed, choose θ = 1 in the same decomposition {Xt}

d= {Yt +Zt} as
for the stable case. Then c = νZ(R) = 1/(a − 1) and, letting 0 < ε < 1 and n � 1,
we have λ((an/α − ε, an/α + ε/2)) � e−cca−n. Note that the density q(x) = q(1, x)
of L(Y1) is continous and positive on [0,∞). See Proposition 3.7 of [34]. Thus∫ an/α+ε

an/α−ε

p(x)dx �
∫ ε/2

0

q(y)dyλ((an/α − ε, an/α + ε/2)) � c2a
−n

with some c2 > 0. Hence, if (1.10) holds, we have

0 < lim inf
n→∞

an

∫ an/α+ε

an/α−ε

p(x)dx � lim inf
n→∞

anc1(an/α − ε + 1)−1−α2ε = 0,

which is absurd. �

Remark 3.3. Let d � 2.
(i) Suppose that there are ξ0 ∈ Sσ and c1 > 0 such that

(3.4) σ∗(1 + r) � c1σξ0(1 + r) for r > 0.

Then, given δ1 > 0 there are c2 > 0 and c3 > 0 such that

(3.5) c2(1 + r)−(1+α)σξ0(1 + r) � p(rξ0 + y) � c3(1 + r)−(1+α)σξ0(1 + r)

whenever |y| � δ1.
(ii) Fix s ∈ (0, d − 1). Let �(r) be slowly varying as r → ∞ and define �∗(r) =∫ ∞

r
�(u)du/u in case

∫ ∞
1

�(u)du/u < ∞. Then we can choose σ such that it is
absolutely continuous with respect to m, σξ0(r) satisfies (3.4), and σξ0(r) � r−s�(r)
or σξ0(r) � �∗(r). In general, A(t) � B(t) means that there are constants 0 < c3 �
c4 < ∞ such that c3B(t) � A(t) � c4B(t) for all sufficiently large t.

Proof. Assertion (i) is obvious from (i) and (ii) of Theorem 1.1. Next we prove
Assertion (ii). Fix s ∈ (0, d − 1) and let �(r) be slowly varying as r → ∞. Let
h(u) be a nonnegative measurable function on (0, 2] such that h(0+) = ∞ and
h(u) is bounded on (δ, 2] for every δ ∈ (0, 2). Then we can choose σ by σ(dξ) =
h(|ξ−ξ0|)m(dξ) satisfying h(1/r) � rd−1−s�(r). Then we have σξ0(r) � r−s�(r). In
the same way, if

∫ ∞
1

�(u)du/u < ∞, then we can set σ by σ(dξ) = h(|ξ − ξ0|)m(dξ)
with h(1/r) � rd−1�(r). Then we get σξ0(r) � �∗(r). Moreover, the measures σ
fulfill (3.4) because h(0+) = ∞ and h(u) is bounded on (δ, 2] for every δ ∈ (0, 2). �

Next we observe more precisely both of the best possible and the worst possible
cases as corollaries of Theorem 1.1.
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Corollary 3.4. Let ξ0 ∈ Sσ. In the case where 0 < α < 1 and ν is one-sided, we
make an additional assumption that ξ0 ∈ int Cσ. Suppose that σ({ξ0}) > 0. Then,
given δ > 0, we can find c1 > 0 and c2 > 0 such that

(3.6) c1(1 + r)−(1+α) � p(rξ0 + y) � c2(1 + r)−(1+α) whenever |y| � δ.

Proof. Since limr→∞ σξ0(r) = σ({ξ0}) > 0, the corollary is clear from (1.10) and
(1.11). �
Corollary 3.5. Let d � 2. Consider a compact set K ⊂ Tσ(d). Define the set
Ξd as Ξd = {(ξ1, . . . , ξd) : det(ξ1, . . . , ξd) �= 0, ξj ∈ Sd−1, j = 1, . . . , d} where
det(ξ1, . . . , ξd) is the determinant considering each ξj as a column vector in Rd.
Suppose that σ =

∑N
j=1 σj with N � d where Sσj

= Sd−1 ∩ Cj with Cj being a
nonempty closed convex cone in Rd and Sσi

∩ Sσj
= ∅ for i �= j. Further suppose

that, for any set {k(j)}d
j=1 of strictly increasing integers with 1 � k(j) � N ,

(3.7)
∫

Ξd

1
| det(ξ1, . . . , ξd)|

d∏
j=1

σk(j)(dξj) < ∞.

Then, given δ1 > 0, we can find c1 > 0 and c2 > 0 such that

(3.8) c1(1 + |x|)−(1+α)d � p(x + y) � c2(1 + |x|)−(1+α)d

whenever x/|x| ∈ K, |y| � δ1.

Proof. The left-hand side inequality in (3.8) is true by (1.12) in Theorem 1.1 with
K1 = K. Let δ and R be those discovered in Lemma 2.7. Let |y| � δr/2 and r � R.
By Lemma 2.7 (i),

λ(rξ0 + y + B1) =
∞∑

l=d

e−a(l!)−1νl∗
Z (rξ0 + y + B1).

Let n = d in the proof of Lemma 2.7 (ii). Then we can express w′ by the convexity
of Cj , 1 � j � N , as

w′ =
l1∑

j=1

rjξj =
l2∑

j=1

sjζj

where 1 � l2 � l1 and sj > 0 for 1 � j � l2 and ζj ∈ Sσk(j) for strictly increasing
integers {k(j)}l2

j=1 with 1 � k(j) � N . Hence, by w′ /∈ Π−1(C0
σ(d − 1)), we have

l1 � l2 � d and we may assume that ξj ∈ Sσk(j) for 1 � j � d with {k(j)}d
j=1 as

above. We have, for l � d,

νl∗
Z (rξ0 + y + B1) = clJ(l, r, ξ0, y)

� clc1

(
l

d

)
l(1+α)dα−lθ−αlr−(1+α)dA,

where c1 is a positive constant independent of ξ0 ∈ K and A is the maximum of the
integral in (3.7) in all possible {k(j)}d

j=1. Here c is the constant in (1.4). Summing
up in l, we get

sup
ξ0∈K

λ(rξ0 + y + B1) � c3r
−(1+α)d � c2(1 + r)−(1+α)d

with some c3 and c2. Hence, applying Lemma 2.5 (i) for K1 = K and δ0 = δ/2, we
get the right-hand side inequality in (3.8). �
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Proof of Theorem 1.2. The right-hand side inequality is true by (i) of Theorem 1.1
and (1.14). We show the left-hand side. Let ξ0 = ξ ∈ K in Lemma 3.1. Then we
have

lim inf
r→∞

inf
ξ0∈K

λ(rξ0 + B2)
(1 + r)−(1+α)φ(1 + r)

� c3 lim inf
r→∞

inf
ξ0∈K

σξ0(1 + r)
φ(1 + r)

with some c3 > 0. It follows from (1.14) that there are c4 > 0 and R1 > 0 such
that

λ(rξ0 + B2) � c4(1 + r)−(1+α)φ(1 + r)

for ξ0 ∈ K and r � R1. Thus, letting K2 = K and δ2 = δ, we obtain from Lemma
2.5 (ii) that there are c1 > 0 and c2 > 0 such that the left-hand side inequality
holds. �

Remark 3.6. Let E be the classical Cantor set with Hausdorff dimension log 2/ log 3
in [0,1]. We identify S1 with [0, 2π) by the usual map ξ = ξ(θ), θ ∈ [0, 2π). Let
d = 2 and set K = ξ(E) and s = log 2/ log 3 in Remark 1.3. Then we have
Cσ = ξ([0, 1]) and β = 1 + α + log 2/ log 3 and the following.

(i) In the case where 0 < α < 1, we make an additional assumption that 0 <
θ < 1. If θ ∈ E, then there are some positive constants c1, c2, and δ1 such that

(3.9) c1(1 + r)−β � p(rξ(θ) + y) � c2(1 + r)−β whenever |y| � δ1.

(ii) If θ /∈ E and 0 < θ < 1, then there are some positive constants c3, c4, and
δ2 such that

(3.10) c3(1 + r)−2−2α � p(rξ(θ) + y) � c4(1 + r)−2−2α whenever |y| � δ2.

the proof of assertion (ii) is similar to that of Corollary 3.5. In this example, the
surface {(x, y) : y = p(x), x ∈ R2} in R3 is waving infinitely many times when |x| is
sufficiently large. Thus it is a delicately difficult problem whether all multivariate
stable distributions are unimodal in a certain sense as a natural extension of the
univariate unimodality proved by Yamazato [42]. See also Kanter [17], Watanabe
[40] and Wolfe [41] for the symmetric case.

Proof of Theorem 1.4. (i) Let δ and R be those discovered in Lemma 2.7. Let
|y| � δr/2 and r � R. By Lemma 2.7 (i),

λ(rξ0 + y + B1) =
∞∑

l=n

e−a(l!)−1νl∗
Z (rξ0 + y + B1).

We have as in the proof of (3.1), for l � n,

νl∗
Z (rξ0 + y + B1) = clJ(l, r, ξ0, y)

� clc3

(
l

n

)
lαn+bα−lθ−αlr−(1+αn)σ∗(r)

� clc4

(
l

n

)
lαn+bα−lθ−αl(1 + r)−(1+αn)φ1(1 + r)

with some c3 and c4 by Lemma 2.7 (ii). Here c is the constant in (1.4). Summing
up in l, we get

λ(rξ0 + y + B1) � c5(1 + r)−(1+αn)φ1(1 + r)

with some c5. Thus by Lemma 2.5 (i) we have (1.19).
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(ii) We express ξ0 as ξ0 =
∑n

j=1 ajξ
0
j with aj > 0 and ξ0

j ∈ Sσ for 1 � j � n.
Then

∑n
j=1 rjξj−rξ0 ∈ B1 if |rj−raj | < 1/(3n) and |ξj−ξ0

j | < (2(aj+1)n(1+r))−1.
Hence

λ(rξ0 + B1) � e−a(n!)−1νn∗
Z (rξ0 + B1)

� e−a(n!)−1cn

⎛⎝ n∏
j=1

σ(ξ0
j + B 1

2(aj+1)n(1+r)
)

⎞⎠ n∏
j=1

∫ raj+1/(3n)

raj−1/(3n)

r
−(1+α)
j drj

� c6

(
(1 + r)−(1+α)φ2(1 + r)

)n

with some positive c6 for r � a−1
j (θ + 1/n), 1 � j � n. It follows from Lemma 2.5

(ii) that, for some c4 > 0, (1.21) holds. �

Proof of Theorem 1.5. (i) Suppose that (1.22) holds. Then there are c3 > 0 and
c4 > 0 such that

σ∗(r) = sup
ξ∈Sd−1

σ(ξ + B1/r) � c3m(ξ + B1/r) � c4r
−(d−1).

Thus we have by Theorem 1.1 (i)

p(x) � c2(1 + |x|)−(1+α)(1 + |x|)−(d−1) = c2(1 + |x|)−(d+α).

Let us prove the converse, excepting the case where 0 < α < 1 and ν is one-sided.
Suppose that (1.23) holds. Then by Theorem 1.1 (ii) we see that, for any ξ ∈ Sd−1,

lim inf
r→∞

σ(ξ + B1/r)
r−(d−1)

� c5 lim inf
r→∞

p(rξ)rd+α � c6

with some positive constants c5 and c6 independent of ξ ∈ Sd−1. Thus we obtain
from Theorem 2.12 of Mattila [21] that σ is absolutely continuous with respect to
m and the derivative dσ/dm is bounded.

(ii) Let ξ ∈ K. For all large r, we have

νZ(rξ + B1) = ν(rξ + B1) = r−αν(ξ + B1/r)

= r−αc

∫
Sd−1

σ(dξ′)
∫ ∞

0

1ξ+B1/r
(uξ′)u−1−αdu

� r−α−1c7σ(ξ + B1/(2r)) � c8r
−(d+α)

with some c7 > 0 and c8 > 0, using (1.24). These constants do not depend on ξ in
K. Hence there are c9 > 0 and R > 0 such that

λ(rξ + B1) � e−aνZ(rξ + B1) � c9(1 + r)−(d+α) for ξ ∈ K and r � R.

Therefore we get (1.25) from Lemma 2.5 (ii). �

The following remark is of some interest.

Remark 3.7. Let d � 2 and δ > 0.
(i) If the measure σ is continuous, that is, if σ({ξ}) = 0 for any ξ ∈ Sd−1, then

(3.11) lim inf
r→∞

r1+αp(rξ + y) = 0 for each ξ ∈ Sd−1 and every y with |y| � δ.

The converse is also true except in the case where 0 < α < 1 and ν is one-sided.
(ii) Suppose that

(3.12) lim inf
r→∞

rd+αp(rξ + y) = 0 for each ξ ∈ Sd−1 and every y with |y| � δ.
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Then we have 0 < α < 1, ν is one-sided and Sσ ⊂ ∂Cσ where ∂Cσ is the boundary
of the set Cσ in the relative topology on Sd−1, and thereby σ is singular with respect
to m.

Proof. Assertion (i) is proved as follows. Assume that σ is continuous and

lim
r→∞

σ∗(r) > 0.

Then there are c > 0, ξn ∈ Sd−1 and rn > 0 such that ξn → ξ ∈ Sd−1 and rn ↑ ∞
as n → ∞ and σξn

(rn) � c for any n � 1. Then we have a contradiction :

c � lim
k→∞

lim sup
n→∞

σξn
(rk) � lim

k→∞
σξ(rk/2) = σ({ξ}) = 0.

Thus, if σ is continuous, then lim infr→∞ σ∗(r) = 0 and thereby (3.11) holds
from (1.9). If lim infr→∞ r1+αp(rξ + y) = 0 for each ξ ∈ Sd−1 and every y
with |y| � δ except in the case where 0 < α < 1 and ν is one-sided, then
σ({ξ}) = lim infr→∞ σξ(r) = 0 for each ξ ∈ Sd−1 by (1.11).

(ii) Suppose that (3.12) holds for d � 2. Let φ2(r) = r−(d−1). We have, by using
Theorem 2.12 of Mattila [21] as in the proof of (i) of Theorem 1.5, that σ = 0 except
in the case where 0 < α < 1 and ν is one-sided. Next suppose that 0 < α < 1 and
ν is one-sided. Then by Theorem 1.5 (ii) with K = {ξ} ⊂ int Cσ we see that

lim inf
r→∞

σ(ξ + B1/r)
φ2(r)

= 0 for any ξ ∈ int Cσ.

Thus we again find from Theorem 2.12 of Mattila [21] that σ = 0 on int Cσ. The
last assertion is clear from m(∂Cσ) = 0. �

Finally we can give the proper asymptotic order of p(x + y) as |x| → ∞ when σ
is absolutely continuous with respect to m, or when Sσ is a finite set, or when σ is
the sum of such. Let U be a relatively open set in Sd−1. Taking Carathéodory’s
theorem into account again, we define

C0(U, n) = {ξ ∈ Sd−1 : ξ =
∑n

j=1cjξj for some cj > 0 and ξj ∈ U ,

j = 1, . . . , n, such that ξ1, . . . , ξn are linearly independent}
(3.13)

for 1 � n � d, T (U, 1) = C0(U, 1) = U , and

(3.14) T (U, n) = C0(U, n) \ C0(U, n − 1)

for 2 � n � d. If Sσ = U , then C0(U, n) = C0
σ(n) and hence T (U, n) ⊂ Tσ(n) for

1 � n � d; further in general
⋃d

n=1 T (U, n) ⊂ int Cσ.

Theorem 3.8. Let U be a relatively open set in Sd−1 and let K be a compact subset
of U . Suppose that, for some c1 > 0,

(3.15) σ(dξ) � c1m(dξ) on U, and σ(Uc) = 0,

and

(3.16) lim inf
r→∞

inf
ξ∈K

σ(ξ + B1/r)
r−(d−1)

> 0 for any K ⊂ U.

Assume that ξ0 ∈ T (U, n) with 1 � n � d. Then, given δ > 0, we can find c2 > 0
and c3 > 0 such that

(3.17) c2(1 + r)−(d+αn) � p(rξ0 + y) � c3(1 + r)−(d+αn) whenever |y| � δ.
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Proof. For n = 1, the theorem is true by Theorem 1.5. Suppose that 2 � n � d, all
assumptions of the theorem hold and that ξ0 ∈ T (U, n) with 2 � n � d. Then, by
Theorem 1.4 (i), we have the right-hand side inequality with φ1(r) = r−(d−1). We
can find a linearly independent system ξ0

1 , . . . , ξ0
n in U and positive reals a0

1, . . . , a
0
n

such that ξ0 =
∑n

j=1 a0
jξ

0
j . Choose big R1 > 0, small ε > 0, and a small relatively

open neighborhood U(ξ0
j ) of ξ0

j in U for each j in such a way that with y =
rξ0 −

∑n
j=2 xj

ν(dxj) � c4
dxj

|xj |d+α
on U(ξ0

j ) × (r(a0
j − ε), r(a0

j + ε)),

for 2 � j � n and

ν(dx1) � c5
dx1

|x1|d+α
on y + B1

with some positive c4 and c5. Further

ra0
1/2 � |y| � 2ra0

1 and y + B1 ⊂ U × (θ,∞)

for r � R1 and xj ∈ U(ξ0
j )× (r(a0

j − ε), r(a0
j + ε)) with 2 � j � n. This is possible

thanks to (3.16) and Theorem 2.12 of Mattila [21]. Let

Vj = U(ξ0
j ) × (r(a0

j − ε), r(a0
j + ε))

for 2 � j � n. Then, with a = νZ(Rd), there are c6, c7 and R2 such that

λ(rξ0 + B1) � e−a(n !)−1νn∗
Z (rξ0 + B1)

� e−a(n !)−1cn
6

∫
y+B1

|x1|−(d+α)dx1

∫
V2×···×Vn

n∏
j=2

|xj |−(d+α)dxj

� c7r
−d−αr−α(n−1) � c7(1 + r)−(d+nα)

for all r � R2. Thus we obtain from Lemma 2.5 (ii) the left-hand side inequality
of the theorem with the notice that

⋃d
n=1 T (U, n) ⊂ int Cσ. �

Lemma 3.9. Assume that Sσ is a finite set. Let ξ0 ∈ Tσ(n) with 1 � n � d. Then
there are c1 > 0, c2 > 0, 0 < δ < 1 and R > 0 such that

λ(rξ0 + y + B1) � c1(1 + r)−(1+α)n whenever |y| � δr/2 and r � R,(3.18)

λ(rξ0 + B1) � c2(1 + r)−(1+α)n whenever r � R.(3.19)

Proof. Let δ and R be those discovered in Lemma 2.7. Let |y| � δr/2 and r � R.
By Lemma 2.7 (i),

λ(rξ0 + y + B1) =
∞∑

l=n

e−a(l!)−1νl∗
Z (rξ0 + y + B1).

We have

νl∗
Z (rξ0 + y + B1) = clJ(l, r, ξ0, y)

� clc3

(
l

n

)
l(1+α)nα−lθ−αlr−(1+α)nAn,

by Lemma 2.7 (ii). Here c is the constant in (1.4) and An is finite. Summing up in
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l, we get
λ(rξ0 + y + B1) � c4r

−(1+α)n � c1(1 + r)−(1+α)n

with some c4 and c1.
To get the lower bound, we have only to use the proof of Theorem 1.4 (ii). �

The following result is related to the works of Hiraba [12], [13], and Byczkowski
et al. [5]. Note that Cσ =

⋃d
n=1 Tσ(n) in the case where Sσ is a finite set.

Theorem 3.10. Suppose that Sσ is a finite set. Assume that ξ0 ∈ Tσ(n) with
1 � n � d. In the case where 0 < α < 1 and ν is one-sided, we assume in addition
that ξ0 ∈ int Cσ. Given δ > 0, we can find c1 > 0 and c2 > 0 such that

(3.20) c1(1 + r)−(1+α)n � p(rξ0 + y) � c2(1 + r)−(1+α)n whenever |y| � δ.

Proof. Use Lemma 3.9. Then apply Lemma 2.5 for a one-point set K1 = K2 = {ξ0}.
The lower bound is also obtained by Theorem 1.4 (ii). �

Remark 3.11. Let K be a compact set in Tσ(n). Then the assertion in Theorem
3.10 is true uniformly with respect to ξ0 ∈ K. In order to convince ourselves of
this, we have only to reexamine the proof of Lemma 3.9 and Remark 2.8.

We conclude this section by considering the two-dimensional case (d = 2).

Lemma 3.12. Suppose that d = 2. Assume that σ =
∑N

j=1 σj, 1 � N < ∞, with
Sσ1 , . . . , SσN

being disjoint, each Sσj
is a closed interval (not a one-point set) in

S1, and there are 0 < aj � bj < ∞ such that

(3.21) ajm(dξ) � σj(dξ) � bjm(dξ) on Sσj
.

Then, given δ1 > 0, we can find c1 > 0 and c2 > 0 such that, for any ξ0 ∈ Sσ (if
1 � α < 2 or if 0 < α < 1 and σ is not one-sided) or for any ξ0 ∈ Sσ ∩ int Cσ (if
0 < α < 1 and σ is one-sided),

(3.22) c1(1 + r)−(2+α) � p(rξ0 + y) � c2(1 + r)−(2+α) for |y| � δ1.

Moreover, given a compact set K ⊂ C0
σ \ Sσ and δ2 > 0, we can find c3 > 0 and

c4 > 0 such that

(3.23) c3(1 + r)−(2+2α) � p(rξ0 + y) � c4(1 + r)−(2+2α) for ξ0 ∈ K, |y| � δ2.

Proof. The condition (1.26) is satisfied for U = int Sσ and K = Sσ. Hence the
estimates in (3.22) are consequences of Theorem 1.5. The estimate from below in
(3.23) follows from Theorem 1.1 (iii). Let K be a compact set in C0

σ \Sσ. Note that
C0

σ \ Sσ = Tσ(2). Thus we see from Theorem 1.4 (i) that the estimate from above
in (3.23) is true with φ1(r) = r−1 and n = 2. The constant c4 is taken uniformly
for ξ0 ∈ K thanks to Remark 2.8. �

It is still hard to give the proper asymptotic order in the case where σ is a
mixture of an absolutely continuous part and a discrete part. However, we can
show them for d = 2.

Theorem 3.13. Suppose that d = 2. Assume that there are nonnegative integers
N1 and N2 such that

(3.24) σ(dξ) =
N1∑
k=1

ckδξk
+

N2∑
j=1

σj(dξ),
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where ck > 0 for all k, ξ1, . . . , ξN1 are distinct points in S1, δξk
is the δ-measure

at ξk, σj is m-absolutely continuous for each j, Sσ1 , . . . , SσN2
are disjoint closed

intervals (not one-point sets) in S1, and there are 0 < aj � bj < ∞ such that

(3.25) ajm(dξ) � σj(dξ) � bjm(dξ) on Sσj
.

Further assume that N1 � 2 or N2 � 1. Let Pσ = {ξ1, . . . , ξN1}. Let ξ0 ∈ Sd−1. If
0 < α < 1 and σ is one-sided, we assume that ξ0 ∈ int Cσ. Let δ > 0. Note that
Cσ = Pσ ∪ (Sσ \ Pσ) ∪ (C0

σ \ Sσ). If ξ0 ∈ Pσ, then we can find c1 > 0 and c2 > 0
such that

(3.26) c1(1 + r)−(1+α) � p(rξ0 + y) � c2(1 + r)−(1+α) for |y| � δ.

If ξ0 ∈ Sσ \ Pσ, then we can find c3 > 0 and c4 > 0 such that

(3.27) c3(1 + r)−(2+α) � p(rξ0 + y) � c4(1 + r)−(2+α) for |y| � δ.

If ξ0 ∈ C0
σ \ Sσ, then we can find c5 > 0 and c6 > 0 such that

(3.28) c5(1 + r)−(2+2α) � p(rξ0 + y) � c6(1 + r)−(2+2α) for |y| � δ.

Proof. Hereafter c1, c2, . . . are positive constants. For ξ0 ∈ Pσ, (3.26) is true by
Corollary 3.4.

Assume N1 � 2 and N2 � 1. Let ξ0 ∈ Sσ \ Pσ and |y| � δ. Let us prove
(3.27). Denote the first and the second term in the right-hand side of (3.24) by
σd and σac, respectively. Let {Xd

t } and {Xac
t } be independent α-stable processes

such that {Xt}
d= {Xd

t +Xac
t } and the σ-measures of {Xd

t } and {Xac
t } are equal to

σd and σac, respectively. They are nondegenerate. Let pd(x) and pac(x) be their
continuous densities at time 1. Then

(3.29) p(rξ0 + y) =
∫

R2
pac(rξ0 + y − z)pd(z)dz.

In the same way, we decompose {Zt} as {Zt}
d= {Zd

t + Zac
t }. Let λd and λac be

the distribution of Zd
1 and Zac

1 . Then, as in the proof of Theorem 1.5 (ii), there is
R1 > 0 such that

λ(rξ0 + B1) � c1λ
ac(rξ0 + B1) � c2(1 + r)−(2+α) for r > R1.

This gives the lower estimate by Lemma 2.5 (ii) with K2 = {ξ0}. Next, let us show
the upper estimate. When ξ0 ∈ Tσd(2), choose a small 0 < δ1 < 1 such that if
|rξ0 − z| � δ1r, then z/|z| ∈ Tσd(2). This is possible as in the proof of Lemma
2.7. When ξ0 �∈ Tσd(2), choose 0 < δ1 < 1 such that if |rξ0 − z| � δ1r, then
z/|z| �∈ Cσd (note that ξ0 �∈ Cσd since Cσd \ C0

σd ⊂ Sσd = Pσ). Write (3.29) as
p(rξ0 + y) = I1 + I2, where

I1 =
∫
|rξ0−z|�δ1r

pac(rξ0+y−z)pd(z)dz, I2 =
∫
|rξ0−z|>δ1r

pac(rξ0+y−z)pd(z)dz.

If ξ0 ∈ Tσd(2), then

pd(z) � c3(1 + |z|)−2(1+α) � c4(1 + r)−2(1+α)

for |rξ0−z| � δ1r and for large r, by Theorem 3.10 and Remark 3.11. If ξ0 �∈ Tσd(2),
then

pd(z) � c5e
−|z| log |z| � c6e

−r log r
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for |rξ0 − z| � δ1r, by Theorem 1.1 (iv). Thus we have I1 � c7(1 + r)−2(1+α). On
the other hand, I2 � c8(1 + r)−(2+α), since

pac(rξ0 + y − z) � c9(1 + r)−(2+α)

for |rξ0 − z| > δ1r with large r, by Theorem 1.5 (i). Thus we get (3.27).
Still keeping the assumption that N1 � 2 and N2 � 1, let us next prove (3.28)

for ξ0 ∈ C0
σ \ Sσ. The lower estimate follows from Theorem 1.1 (iii). To get

the upper estimate, let I1, I2, and I3 be the integral in (3.29) with domain of
integration changed to {z : |rξ0 − z| � δ1r}, {z : |rξ0 − z| > δ1r and |z| � δ2r}, and
{z : |rξ0−z| > δ1r and |z| > δ2r}, respectively, where δ1 > 0 and δ2 > 0 are chosen
sufficiently small. Then we can check Ij � cj(1 + r)−(2+2α) for j = 1, 2, 3. Indeed,
for j = 1 this is by the same discussion as in the case where ξ0 ∈ Sσ \ Pσ. For
j = 2, we consider two cases, ξ0 ∈ C0

σac and ξ0 �∈ C0
σac . In the first case we can use

pac(rξ0 + y − z) � c4(1 + |rξ0 − z|)−(2+2α) � c5(1 + r)−(2+2α)

for large r by Lemma 3.12, letting Π(rξ0 − z) ∈ C0
σac \ Sσac . In the second case we

can use Theorem 1.1 (iv). For j = 3, notice that

pac(rξ0 + y − z) � c6(1 + |rξ0 − z|)−(2+α) � c7(1 + r)−(2+α)

for large r by Theorem 1.5 (i), and that

(3.30) P (|W1| > s) � const (1 + s)−α for s � 0

for any α-stable process {Wt} on Rd, to conclude

I3 � c7(1 + r)−(2+α)

∫
|z|>δ2r

pd(z)dz � c3(1 + r)−(2+2α).

The estimate (3.30) is well-known in one dimension and, for general d, can be
reduced to a one-dimensional case by considering components.

It remains to prove (3.27) and (3.28) in the following three cases: (1) N1 � 2
and N2 = 0, (2) N1 = 1 and N2 � 1, (3) N1 = 0 and N2 � 1. Case (1) is treated
by Theorem 3.10. The case (3) is done by Lemma 3.12. In case (2), with the choice
of τd = 0, there is a straight line V through the origin such that the distribution
ρ of Xd

1 is concentrated on V , thus p(rξ0 + y) =
∫

V
pac(rξ0 + y − z)ρ(dz), and we

note that dis (rξ0, V ) = c1r with some c1 > 0 if ξ0 �∈ Pσ. Thus the proof is similar
to the case of N1 � 2 and N2 � 1. �

4. Applications to stable processes

We study implications of our results on the asymptotic estimates in the set T

below and in the Spitzer type limit theorems mentioned in the last paragraph of
Section 1. Let X = (Ω,F ,Ft, Xt, θt, P

x) be the standard (Markov) process in the
sense of Blumenthal and Getoor [4] induced by a Lévy process {Xt} on Rd. That
is, P x(Xt ∈ B) = P (x + Xt ∈ B) for any x ∈ Rd, t � 0, and Borel set B. The
symbol Ex stands for the expectation under P x. Denote the dual process of X by
X̃ = (Ω,F ,Ft, Xt, θt, P̃

x). Let TB be the hitting time of a Borel set B defined by
TB = inf{t > 0: Xt ∈ B}, where we understand TB = ∞ if Xt �∈ B for all t > 0.
Let LB be the last exit time from an open set B, that is, LB = sup{t � 0: Xt ∈ B}.
Let Br = {x : |x| < r}. The process is recurrent if and only if LBr

= ∞ a.s. for
all r > 0; it is transient if and only if LBr

< ∞ a.s. for all r > 0. Recall that, in
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general, A(t) � B(t) means that there are constants 0 < c1 � c2 < ∞ such that
c1B(t) � A(t) � c2B(t) for all sufficiently large t.

Lemma 4.1. Let {Xt} be a transient Lévy process on Rd. Let η > 0. Then one of
the following is true:

E0[LBr

η] < ∞ for all r > 0;(4.1)

E0[LBr

η] = ∞ for all r > 0.(4.2)

This is Theorem 2.8 of [33]. Given a transient Lévy process on Rd, denote

(4.3) T = {0} ∪ {η > 0: (4.1) is true}.

The bigger this set T, the stronger a degree of transience. The process {Xt} is
called strongly transient if 1 ∈ T; it is called weakly transient if 1 �∈ T. Hawkes
[11] and Takeuchi [37] are early works on the moment of the last exit time for a
symmetric Lévy process. Strong transience is important in the theory of the range
of random walks. See Jain and Pruitt [15]. After Sato [29], [30], the set T has been
studied in detail by Sato and Watanabe [33], [34]. In [33], they obtained a criterion
for η ∈ T for a general transient Lévy process and discussed the relation with the
moment of the last exit time from a half line for a one-dimensional random walk.
This had been studied by Janson [16] and Kesten and Maller [18]. Dawson et al.
[6] investigated the application of the set T in branching systems. The following is
Lemma 2.3 of [33].

Lemma 4.2. Let {Xt} be a transient Lévy process on Rd. Let η > 0. Then η ∈ T

if and only if

(4.4)
∫ ∞

0

tηP 0[Xt ∈ B1]dt < ∞;

η �∈ T if and only if

(4.5)
∫ ∞

0

tηP 0[Xt ∈ B1]dt = ∞.

Let us remark the following fact ([32] Theorems 37.8, 37.16, 37.18).

Lemma 4.3. Let {Xt} be a nondegenerate α-stable process on Rd. If d � 3, then it
is transient. If d = 1 or 2, then it is recurrent if and only if it is first-class α-stable
with d � α � 2.

Define EB(t) for t � 0 as

(4.6) EB(t) =
∫

Rd

P x(TB � t)dx.

Asymptotic expansion of EB(t) as t → ∞ for a bounded Borel set B has been
a subject of research in many papers since Spitzer [36] in 1964 for a transient
Brownian motion. Later Le Gall [19] extended Spitzer’s results by determining the
more exact order of the asymptotic expansion conjectured by M. Kac in a footnote
of Spitzer [36]. Assume that the original Lévy process {Xt} on Rd is transient and
nondegenerate. Let C(B) be the capacity for a Borel set B. We have 0 � C(B) < ∞
for any bounded Borel set B. See Port and Stone [26], Sato [32], Chapter 8, and
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Bertoin [2], Chapter 2. Fix a nonnegative continuous function f(x) with compact
support, f(0) > 0 and

∫
Rd f(x)dx = 1. Let

(4.7) r(t) =
∫ ∞

t

ds

∫
Rd

f(x)(Exf(Xs))dx.

We have r(t) < ∞ for t � 0 because of the transience. In the following, let B be a
bounded Borel set in Rd. In the case where Xt has a purely singular distribution
for every t > 0, we make an additional assumption that P x(TB = TintB) = 1 for
almost every x. Let

(4.8) ϕB(x) = P x(TB < ∞), ϕ̃B(x) = P̃ x(TB < ∞).

If 1 ∈ T, then
∫

Rd ϕ̃B(x)ϕB(x)dx < ∞. Define

(4.9) ∆(1)
B (t) = EB(t) − tC(B)

and

(4.10) ∆(2)
B (t) = EB(t) − tC(B) −

∫
Rd

ϕ̃B(x)ϕB(x)dx.

The following lemma is a result obtained by a series of works [36], [8], [23],
[24], [25], [26]. Assertion (i) is given in Theorem 14.2 of [26] and assertion (ii)
is in Lemmas 3.1 and 3.3 and Theorem 1 of [25] with (3.19) and (14.13) of [26],
respectively. See also Proposition 6.2 of [34].

Lemma 4.4. (i) If 1 �∈ T, then

(4.11) ∆(1)
B (t) = (C(B))2

∫ t

0

r(s)ds + o

(∫ t

0

r(s)ds

)
, t → ∞.

(ii) If 1 ∈ T and

(4.12) r(·) ∈ D, that is, sup
t>0

r(t/2)
r(t)

< ∞,

then

(4.13) ∆(2)
B (t) = −(C(B))2

∫ ∞

t

r(s)ds + o

(∫ ∞

t

r(s)ds

)
, t → ∞.

Sato and Watanabe [34] obtained the set T for all transient α-semistable pro-
cesses with d = 1 and classified all transient α-semistable processes into weakly
transient and strongly transient. Port [23], [24] completely studied the asymptotic
order of ∆(1)

B (t) when 1 �∈ T and partially did that of ∆(2)
B (t) when 1 ∈ T for

transient α-stable processes. See also Sato and Watanabe [34] for α-semistable
processes. Now the case in 1 ∈ T where we do not have a proper order of ∆(2)

B (t)
is the same as for the set T, that is, d � 2, 1 � α < 2 and second-class with
σ({−τ/|τ |}) = 0. Combining the following lemma and our estimates in Sections 1
and 3, we can find that the set T and the proper asymptotic order of ∆(2)

B (t) as
t → ∞ delicately depend on the direction of −τ/|τ | in relation to the location of
Sσ in this case.

Lemma 4.5. Let {Xt} be a nondegenerate transient second-class α-stable process
on Rd with 1 � α < 2 and σ({−τ/|τ |}) = 0. Assume that d � 2 and that there are
β � 1 + α, c1 > 0, c2 > 0 and R > 0 such that

(4.14) c1(1 + r)−β � p(−rτ + y) � c2(1 + r)−β for r � R, |y| � 1.
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(i) If 1 < α < 2, then

(4.15) T = [0, d/α + (1 − 1/α)β − 1) and − ∆(2)
B (t) � t2−d/α−(1−1/α)β .

(ii) If α = 1, then

(4.16) T = [0, d − 1] and − ∆(2)
B (t) �

{
(log t)−β+1 for d = 2,

t2−d(log t)−β for d � 3.

Proof. For any η > 0, it follows from Lemma 4.2 that
∫ ∞
0

tη−1r(t)dt < ∞ if and
only if η ∈ T. We prove (i). Suppose that 1 < α < 2. We have by (2.3)

r(t) �
∫
|x|�1

dx

∫ ∞

t

p(s, x)ds � t1−d/α−(1−1/α)β , t → ∞,

and hence T = [0, d/α + (1 − 1/α)β − 1) and∫ ∞

t

r(s)ds � t2−d/α−(1−1/α)β , t → ∞.

Now use Lemma 4.4. Next we prove (ii). Suppose that α = 1. We have by (2.3)

r(t) �
∫
|x|�1

dx

∫ ∞

t

p(s, x)ds � (log t)−βt−(d−1), t → ∞.

Hence T = [0, d − 1] and∫ ∞

t

r(s)ds �
{

(log t)−β+1 for d = 2,

(log t)−βt−(d−2) for d � 3.

Then use Lemma 4.4. �

In the following propositions, assume d � 2, 1 � α < 2 and that our stable
process {Xt} is second-class.

Proposition 4.6. Suppose that the assumptions in Theorem 3.8 are satisfied for
our process {Xt}.

(i) If 1 < α < 2, and −τ/|τ | ∈ T (U, n) with 1 � n � d, then

(4.17) T = [0, d + n(α − 1) − 1) and − ∆(2)
B (t) � t2−d−n(α−1).

(ii) If α = 1, and −τ/|τ | ∈ T (U, n) with 1 � n � d, then

(4.18) T = [0, d − 1] and − ∆(2)
B (t) �

{
(log t)−1−n for d = 2,

t2−d(log t)−d−n for d � 3.

Proposition 4.7. Assume that Sσ is a finite set. By Theorem 3.10, we have the
following:

(i) If 1 < α < 2 and −τ/|τ | ∈ Tσ(n) with 1 � n � d, then

(4.19) T = [0, d/α + (α − 1/α)n − 1) and − ∆(2)
B (t) � t2−d/α−(α−1/α)n.

(ii) If α = 1 and −τ/|τ | ∈ Tσ(n) with 1 � n � d, then

(4.20) T = [0, d − 1] and − ∆(2)
B (t) �

{
(log t)−2n+1 for d = 2,

t2−d(log t)−2n for d � 3.
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Proposition 4.8. Suppose that the assumptions in Theorem 3.13 are satisfied for
our process {Xt} with d = 2. Note that C0

σ \ Sσ = Cσ \ Sσ.
(i) Assume 1 < α < 2.

(1) If −τ/|τ | ∈ Pσ, then

(4.21) T = [0, α + 1/α − 1) and − ∆(2)
B (t) � t2−α−1/α.

(2) If −τ/|τ | ∈ Sσ \ Pσ, then

(4.22) T = [0, α) and − ∆(2)
B (t) � t1−α.

(3) If −τ/|τ | ∈ C0
σ \ Sσ, then

(4.23) T = [0, 2α − 1) and − ∆(2)
B (t) � t2−2α.

(ii) Assume α = 1.
(1) If −τ/|τ | ∈ Pσ, then

(4.24) T = [0, 1] and − ∆(2)
B (t) � (log t)−1.

(2) If −τ/|τ | ∈ Sσ \ Pσ, then

(4.25) T = [0, 1] and − ∆(2)
B (t) � (log t)−2.

(3) If −τ/|τ | ∈ C0
σ \ Sσ, then

(4.26) T = [0, 1] and − ∆(2)
B (t) � (log t)−3.

The final proposition shows that the asymptotics of ∆(2)
B (t) can be more delicate

than those of Lemma 4.5 in a certain special case.

Proposition 4.9. Let �(r) and �∗(r) be slowly varying as in Remark 3.3. Suppose
that d � 2, 1 � α < 2 and second-class, and further ξ0 = −τ/|τ | satisfies (3.4) and
(3.5) with σξ0(r) � r−s�(r) and 0 < s < d − 1 or with σξ0(r) � �∗(r).

(i) Assume 1 < α < 2. Then η ∈ T if and only if
∫ ∞
1

tη−(d−1)/α−ασξ0(t1−1/α)dt
< ∞.

(1) If σξ0(r) � r−s�(r) with 0 < s < d − 1, then

(4.27) −∆(2)
B (t) � t2−(d−1)/α−α−(1−1/α)s�(t1−1/α).

(2) If σξ0(r) � �∗(r), then

(4.28) −∆(2)
B (t) � t2−(d−1)/α−α�∗(t1−1/α).

(ii) Assume α = 1. Then T = [0, d − 1].
(1) If σξ0(r) � r−s�(r) with 0 < s < d − 1, then

(4.29) −∆(2)
B (t) �

{
(log t)−1−s�(log t) for d = 2,

t2−d(log t)−2−s�(log t) for d � 3.

(2) If σξ0(r) � �∗(r), then

(4.30) −∆(2)
B (t) �

{
(log t)−1�∗(log t) for d = 2,

t2−d(log t)−2�∗(log t) for d � 3.

Proof. Proof is similar to Lemma 4.5 by using (2.3). �
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We add some final remarks on the set T.

Remark 4.10. Let {Xt} be a nondegenerate second-class transient α-stable process
with d � 2 and 1 � α < 2.

(i) Suppose that −τ/|τ | ∈ C0
σ. Then T ⊂ [0, dα − 1) for 1 < α < 2 and T =

[0, d − 1] for α = 1.
(ii) Suppose that there is φ ∈ D such that

lim inf
r→∞

σ(ξ + B1/r)
φ(r)

> 0 for any ξ ∈ Sσ.

If −τ/|τ | ∈
⋃d

n=1 Tσ(n), then T = [0, d − 1] for α = 1 and T is bounded for
1 < α < 2.

(iii) If −τ/|τ | �∈ Cσ, then T = [0,∞).

Proof. (i) If −τ/|τ | ∈ C0
σ for 1 < α < 2, then we see from (iii) of Theorem 1.1 that,

for η � dα − 1,∫
|x|�1

dx

∫ ∞

1

tηp(t, x)dt � c1

∫ ∞

1

tη−d/α−(1−1/α)d(1+α)dt = ∞

with some c1 > 0. Thus T ⊂ [0, dα− 1) for 1 < α < 2 by Lemma 4.2. The proof of
T = [0, d − 1] for α = 1 is similar by using Theorem B (i) of [34].

(ii) Let α = 1 and −τ/|τ | ∈
⋃d

n=1 Tσ(n). By Theorem B (i) of [34], we have
T ⊃ [0, d − 1]. Since φ ∈ D, there are B � 0 and c2 > 0 such that

φ(1 + r) � c2(1 + r)−B for r � 0.

By Theorem 1.4 (ii) we have, for η > d − 1,∫
|x|�1

dx

∫ ∞

1

tηp(t, x)dt =
∫
|x|�1

dx

∫ ∞

1

tη−dp(t−1x − (log t)τ )dt

� c3

∫ ∞

1

tη−d(log t)−d(2+B)dt = ∞

with some c3 > 0. Hence T ⊂ [0, d − 1] by Lemma 4.2. Let 1 < α < 2 and
−τ/|τ | ∈ ∪d

n=1Tσ(n). Then we see that T ⊂ [0, αd + (1 − 1/α)Bd − 1) as above.
The proof of (iii) is similar by using (iv) of Theorem 1.1. �

The complete study of determining the set T and the proper order of ∆(2)
B (t)

for the transient stable process is still far from us. The situation is more difficult
for transient semistable processes. A result of Ishikawa [14] suggests that there
might be an essential difference of the asymptotics of ∆(2)

B (t) between stable and
semistable processes. We finish this article by posing a natural conjecture related
to Proposition 6.3 of [34]. Let {Xt} be a transient Lévy process. Define two indices
a1 for 1 /∈ T and a2 for 1 ∈ T as

a1 = inf{c � 0 : lim sup
t→∞

∆(1)
B (t)
tc

< ∞}

and

a2 = sup{c � 0 : lim sup
t→∞

−∆(2)
B (t)

t−c
< ∞}.

Then we conjecture that if T̄ = [0, b] with 0 � b < ∞, then a1 = 1 − b for 1 /∈ T

and a2 = b − 1 for 1 ∈ T.
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