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2Istituto Nazionale Fisica della Materia, Sezione A, Pisa, Italy

~Received 6 December 1999; revised manuscript received 4 April 2000!

The long-time evolution of nonlinear Landau damping in collisionless plasmas is analyzed by solving the

Vlasov-Poisson system numerically. The value of the parameter marking the transition between Landau’s and

O’Neil’s regimes is determined and compared with analytical results. The long-time evolution of a finite-

amplitude electric field with wavelength l equal to the length of the simulation box L is given by a superpo-

sition of two counterpropagating ‘‘averaged’’ Bernstein-Greene-Kruskal ~BGK! waves. When L.l and longer

wavelength modes can be excited, the BGK waves correspond to an intermediate regime that is eventually

modified by the excitation of the sideband instability. Ions dynamics is found not to affect these behaviors

significantly.

PACS number~s!: 52.35.Fp, 52.35.Mw, 52.35.Qz

I. INTRODUCTION

The self-consistent damping of longitudinal waves in col-

lisionless plasmas is a classic fundamental problem in the

study of nonlinear wave-particle interaction processes.

In the linear regime, when a spatially uniform plasma

with equilibrium electron distribution function ~EDF! f eq(v)

is perturbed by a small-amplitude electrostatic disturbance,

the Landau’s analysis @1# predicts that the time-asymptotic

evolution of the electric field exhibits exponential damping

~or growth! as well as oscillatory behavior. The damping ~or

growing! rate gk is proportional to the derivative with re-

spect to v of the equilibrium EDF calculated at the phase

velocity vph of the electrostatic wave.

In the case of a Maxwellian equilibrium EDF f eq(v)

5 f M(v), a long-wavelength electron plasma oscillation with

klD!1, where lD is the Debye length and k is the wave

number, decays with time on a scale that is large compared

to that of the oscillation time. However, even in the case of

‘‘small’’-amplitude perturbations, the linear analysis breaks

down for t.tp ,tp being the particle trapping time scale that

depends on the electric-field amplitude E as tp51/AkE in

normalized units @see below Eq. ~2.2!#. Thus, Landau’s lin-
ear solution holds at large times only if initially the condition
td!tp is satisfied, where td is the damping time scale. In the
opposite limit td@tp , O’Neil @2# has shown that the energy
exchange between the wave and the particles with velocities

v.vph trapped in the wave prevents the complete damping
of the wave that reaches a constant nonzero value asymptoti-
cally.

Recently, the existence of a critical initial perturbation
amplitude, which marks the transition between these two dif-
ferent asymptotic regimes, has been proved in the limit of
small-amplitude waves @3# and the analytical expression of
the asymptotic wave amplitude a f in has been given in the
case of a sinusoidal perturbation of a linearly stable equilib-
rium. In this limit, the general solution for the asymptotic
electric field has been found to be a finite superposition @4#
of traveling Bernstein-Greene-Kruskal ~BGK! waves @5# plus
higher-order terms @see Eq. ~9! of Ref. @3##, a subject that has

been recently studied in many numerical and theoretical

works. In Ref. @6#, a generic longitudinal plasma-wave per-

turbation was found to decay as 1/t and not to be stopped by

the nonlinear effects of particle trapping and BGK wave for-

mation. However, the numerical results presented in Ref. @7#,
for a single value of the perturbation amplitude, and the re-

sults of Ref. @8#, which show that the damping rate vanishes

for t→` for a wide class of nonlinear waves, contradict the

conclusions of Ref. @6#.
Here, we report the results of a systematic numerical

study of the Vlasov-Poisson equations in the intermediate

range where the restrictions assumed in the papers of Landau

(td!tp) and O’Neil (td@tp) do not apply.

The ratio between the time scales characterizing the sys-

tem q5tp /td is analyzed as a function of the initial pertur-

bation amplitude e , and the critical perturbation amplitude

e* marking the transition between Landau’s and O’Neil’s

scenarios is determined and discussed. For small-amplitude

initial conditions, a comparison with the analytical results in

Ref. @3# is performed.

When e.e*, the asymptotic state of an initial perturba-

tion with wavelength l equal to the length of the simulation

box L is found to be a superposition of two counterpropagat-

ing ‘‘averaged’’ BGK waves. Filaments of increasingly

smaller size are also formed in phase space due to phase
mixing, but they gradually disappear because of the finite
resolution of the simulations. We show that the asymptotic
state is a superposition of averaged BGK waves, also in the
case of large-amplitude waves.

For L.l , such that modes with longer wavelengths can
be excited, the onset of the sideband instability changes the
asymptotic evolution of the system and the BGK solutions
play the role of an intermediate regime.

Finally, we discuss whether the behavior of such systems
changes when the ion dynamics is included.

The paper is organized as follows. In Sec. II, the basic
equations are given and the properties of the code employed
are discussed. In Sec. III, the numerical results concerning
the determination of the critical value e* are presented and
discussed. The formation of averaged BGK waves, the onset
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of the sideband instability, and the role of ion dynamics are
presented in Sec. IV. Conclusions are drawn in Sec. V.

II. BASIC EQUATIONS

We solve the one-dimensional Vlasov-Poisson system of
equations numerically:

] f

]t
1v

] f

]x
2E

] f

]v

50, ~2.1!

]E

]x
512E

2`

1`

f dv , ~2.2!

where f (x ,v ,t) is the EDF and E(x ,t) is the electric field,
which at t50, is given by

E~x ,0!52 a insin~kx !. ~2.3!

In Eqs. ~2.1! and ~2.2! and in the following, time is nor-
malized to the inverse of the electron plasma frequency vpe ,
velocity to the speed of light c, and consequently, E to
mcvpe /e and f to the equilibrium particle density n0. At
first, we assume that the ions form a fixed, neutralizing back-
ground. Oscillations are excited by initializing Fourier spa-
tial modes with wave number k and 2k:

f ~x ,v ,0!5 f M~v !@11e cos~kx !# , ~2.4!

where e is the perturbation amplitude, related to the initial
electric-field amplitude a in as e52ka in , and f M(v) is the
Maxwellian EDF,

f M~v !5

1

A2pv th

exp@2v
2/~2v th

2 !# . ~2.5!

Here v th is the thermal velocity.
The Vlasov-Poisson equations are integrated numerically

in the 1-D 1-V phase space (x ,v) by using the well-known
‘‘splitting scheme’’ developed in Ref. @9# in the electrostatic
limit. The Poisson equation is integrated in the Fourier space

by using a standard fast Fourier transform algorithm coupled
to the fourth-order Runge-Kutta scheme.

The number of points used in the simulations are typically
Nx5256, N

v
53000 with dt.0.0025. The numerical phase

space is given by 0<x,L , 2vmax<v<vmax , where L is
the maximum length of the space interval and vmax the maxi-
mum velocity that can be reached by the particles. Periodic
boundary conditions are used in the space direction. The
simulation is stopped if the particles are accelerated up to

vmax .
The code has been tested in many well-known electro-

static problems, as, for example, plasma waves, Landau
damping, two-stream instability, and Best’s oscillations.

III. CRITICAL INITIAL PERTURBATION AMPLITUDE

We present a number of simulations ~some of which are
listed in Table I! with vmax50.6, l52p/k5L , and with
different values of the initial perturbation amplitude e . We
set the thermal velocity to v th50.1 in order to describe plas-
mas with a nonrelativistic temperature, and the initially per-
turbed wave number to k54. The evolution of the system is

investigated up to t.2500vpe
21 . The perturbation amplitude

e , the initial wave amplitude a in5e/(2k), the trapping time

tp51/Aka in5A2/e , the damping time td , their ratio q

5tp /td , and the large-time wave amplitude a f in are given in
Table I. Note that the definition of tp given before is used
conventionally also for large-amplitude waves and that td is
estimated numerically from the simulations.

When the initial amplitude of the electric field is suffi-
ciently small, we can calculate the damping rate using linear
theory @1,10#. For k54, we find for the Landau damping rate
gL520.0661, and tL51/ugLu515.1. However, as can be
seen from Table I ~in agreement with @11#!, td is different
from tL in all the simulations with e.0.04, since the corre-
sponding amplitude cannot be considered as ‘‘small.’’

For very small perturbations td5tL5const, while tp

5A2/e , so that q→` as e→0. In Fig. 1~a!, we plot the
asymptotic amplitude a f in of the electric field versus the ini-
tial perturbation amplitude e , at fixed wave number k54.

TABLE I. Normalized time scales and parameters of the simulations with v th50.1, k54, L52p/k , for

e.e*.

e a in tp td q a f in

0.015 0.0019 11.5 15.1 0.76 2.231025

0.017 0.002125 10.8 15.1 0.72 6.031025

0.018 0.00225 10.5 15.1 0.70 7.031025

0.020 0.0025 10.0 15.1 0.66 9.331025

0.025 0.003125 8.9 15.1 0.59 1.731024

0.03 0.00375 8.2 15.1 0.54 2.831024

0.04 0.005 7.1 15.1 0.47 5.131024

0.05 0.0062 6.3 14.3 0.44 8.231024

0.07 0.0088 5.3 13.7 0.39 1.131023

0.08 0.01 5.0 13.3 0.38 1.531023

0.1 0.0125 4.5 12.5 0.36 2.231023

0.2 0.025 3.2 9.1 0.35 5.531023

0.25 0.03125 2.8 7.7 0.37 8.031023

0.3 0.0375 2.6 6.7 0.39 8.831023
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The dashed line corresponds to the analytical expression of
the asymptotic amplitude given by Eq. ~19! in Ref. @3#,
which in our units and for an initial perturbation of the form
given in Eq. ~2.4!, reads ~for v th50.1 and vph50.31),

a f in5

4p v th
2

~vph
2 /v th

2
21 !

~e2e*!.0.0146~e2e*!, ~3.1!

where e* is the critical initial perturbation amplitude that
marks the transition between Landau’s and O’Neil’s sce-
narios. The analytical expression of e* is reported in Ref. @3#
in terms of the transient part of the electric field. The ana-
lytical values a f in of Eq. ~3.1! @dashed line in Fig. 1~a!# agree
with our numerical results in the limit of small initial pertur-
bation amplitudes e,0.04 if we set e*.0.012, which corre-

sponds to q*5A2/e*/td.0.85. For initial perturbations with
e,e*, the field amplitude is completely damped. Thus, this
method allows us to find the critical value e*, avoiding the
regime of very small initial perturbations, where the simula-
tions are particularly delicate since the electric-field ampli-
tude becomes so small that a very high numerical resolution
is necessary. Nevertheless, setting Nx5256 and N

v
53000,

we find that the plasma oscillations are completely destroyed
and the field amplitude reaches the noise level when e
<0.01, according to the critical value of e* and q* found by
using the different method described before. The critical ini-
tial value q* differs from those previously predicted in Ref.
@12#, which were obtained for lower resolution and shorter
times.

In Table I, only the simulation results for e.e* are listed.
We find that there is a minimum in q as a function of e in the
parameter range considered, as can be seen in Fig. 1~b!.

IV. AVERAGED BGK WAVES, SIDEBAND INSTABILITY,

AND ROLE OF ION DYNAMICS

When the initial perturbation amplitude is such that e
.e*, nonlinear effects come into play and the electric-field
amplitude oscillates at large times around a constant nonzero
value a f in . For e50.05, the results are in agreement with
Ref. @7#. After the initial linear damping of the wave, two
vortices appear in phase space, centered in v56vph , and
propagate in opposite directions. In order to analyze how
these results depend on the numerical resolution used in our
simulations, we have performed runs with different numbers
of grid points Nx .

In Fig. 2, we plot the spatial Fourier component Ek with
k54 versus t for e50.1, large times, and different values of
Nx ~only Ek.0 is shown for symmetry reasons!. We note
that the time at which the damping stops and the electric-

FIG. 1. ~a! Final electric-field amplitude a f in as a function of the

initial perturbation amplitude e; ~b! q5tp /td plotted versus the ini-

tial electric-field amplitude a in .

FIG. 2. Spatial Fourier component of the electric field Ek versus t for k52p/L54, e50.1, and for Nx564, Nx5128, and Nx5256,

respectively.
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field amplitude starts to oscillate around a constant nonzero
value is the same in all the simulations (tc.950). The dif-
ference between the runs is that for bigger values of Nx ,
larger low-frequency oscillations in the electric field are ob-
served. For Nx564, the long-time amplitude is nearly con-
stant. Moreover, the abscissas of the minima of the EDF
~averaged over x) in the resonant region after a number of
oscillations reach, in all the simulations with different Nx ,
the same constant value corresponding to the phase velocity
of the wave, 6vph560.31, as seen in Fig. 3~a!. The bumps
in the EDF near these minima do not settle into a plateau.

In Fig. 4, the contour plot of the EDF in the resonant
region is shown for t51200, e50.1, and for different val-
ues of the spatial resolution Nx564,128, and 256. We note
that the vortices become regular and the EDF and Ek become

time independent faster as the numerical dissipation in phase
space increases ~i.e., for smaller Nx). The filamentation in
the vortices, corresponding to the low-frequency oscillations
observed in the electric-field amplitude, disappears because
of phase mixing on the grid scales Dv52vmax /N

v
and Dx

5L/Nx . Nevertheless, the overall structure that corresponds
to a superposition of two traveling BGK waves is the same at
large times in all the simulations, since tc ,vph , and the di-
mensions of the vortices do not change with the numerical
resolution, as shown in Fig. 2, Fig. 3~a!, and Fig. 4.

A similar conclusion has been obtained analytically in the
small-amplitude limit in Ref. @3#. In fact, in this limit, the
general solution for the asymptotic electric field E is a finite
superposition of traveling waves plus higher order terms @see
Eq. ~9! of Ref. @3# #. Our numerical results show that the
asymptotic electric field is given by a superposition of trav-
eling ‘‘averaged’’ BGK waves, i.e., of stationary solutions in
their own reference frame, also in the case of nonsmall am-
plitudes.

As long as the relative phase velocity Dv of the two BGK
waves is sufficiently large, so that particles trapped in one
wave feel only a high-frequency perturbation from the field
of the other, we can consider the two BGK waves as inde-
pendent @4#. This corresponds to the following condition on
the field amplitude a f in :

a f in!k ~Dv !2, ~4.1!

which is well satisfied, in our case ~see Table I! with
k(Dv)2

5k(2vph)2.1.5.
Eventually, the BGK waves will be affected by collisions.

However, collisions will start to be important first on the
smallest scales and will thus regularize the filamentary struc-

FIG. 3. Semilogarithmic plot of the EDF ~averaged over x)

versus v at t50 ~dashed line! and t51100 ~solid line! for e50.2:

~a! L52p/4; ~b! L52p .

FIG. 4. Contour plot of the EDF in the resonant region at t51200 for e50.1,L5l and Nx564,128, and 256, respectively.
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tures inside the vortices. The estimate of the ratio between
the collision time at large scales t l and at small scales ts can
be written as

t l /ts.~vphN
v

/2vmax!2, ~4.2!

which for vph50.31, N
v
53000, and vmax50.6 gives t l /ts

.63105.
More importantly, when longer-wavelength modes can be

excited, the asymptotic electric field will be determined by
the growth of upper and lower sideband waves @13#. In the
simulations described so far, the length of the simulation box
is set equal to the wavelength of the initial perturbation L

5l52p/k . In order to study the long-time evolution of a
more generic system, we have enlarged the simulation box,
L52p.l , so as to allow for the presence of wave numbers
smaller than the initially excited k54 mode.

In Fig. 5, the energy spectrum is plotted for e50.25 at

different times. Initially, only the k54 component is present

and evolves as in the previous case, reaching a nearly con-

stant amplitude. In the meantime, the two sideband modes

k53 and k55 start to grow with equal rate. At ts.375, the
lower mode reaches the same level of the k54 mode
~dashed line in Fig. 5!, which falls off abruptly. This evolu-
tion corresponds to four vortices, at the resonant velocity

vph50.31 in the interval L, which at ts.375 become un-
stable and start to mix, as seen in Fig. 6. When the lower k

53 mode reaches the same level of the k54 mode and be-
comes dominant, the k54 mode decreases significantly so
that three vortices are present in phase space and its overall
resonant structure remains relatively ‘‘coherent.’’

At larger times, t.1100 ~solid line in Fig. 5!, other side-
band Fourier components become important and many vor-
tices are present at the same time in the resonant region,
leading to an EDF that settles into a flat plateau, as can be
seen in Fig. 3~b!. The difference between the resonant ve-
locities Dv of these vortices depends on the length of the
simulation box. As this length increases, Dv becomes
smaller and the condition ~4.1! ceases to be valid, resulting
in the overlapping of the vortices in phase space and in the
chaotic motion of the particles in the resonant region.

The growth rate of the sideband instability increases with
the wave amplitude, as can be seen in Fig. 7, with a power-
law scaling between square root and linear, in agreement
with Ref. @14#. Thus the lifetime of the BGK solution de-
creases with the wave amplitude and depends logarithmically
on the initial noise in the k61 sideband Fourier components.
We note that at ‘‘large’’ initial field amplitudes ~in our case,
for a in.0.025, as shown in Fig. 7!, the growth rate saturates.

Finally, we include the ion dynamics in the numerical
code by integrating the corresponding Vlason-Poisson equa-
tions in order to verify whether the ion response can modify

FIG. 5. Energy spectrum at t50 ~star!, t5375 ~dashed line!,

and t51100 ~solid line! for the simulation with L52p.l , e
50.25.

FIG. 6. Onset of the sideband instability (e50.25): ~top! Semilogarithmic plot of uEku versus t for k54 and k53; ~middle! contour plot

of the EDF in the resonant region at t5350; and ~bottom! at t5400.
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the asymptotic evolution of the system described previously.
In fact, the charge separation induced, for example, by pon-
deromotive effects ~see Ref. @15# and references therein! is
supposed to play a significant role in the asymptotic evolu-
tion of electrostatic waves. Typically, we investigate the

plasma evolution up to 2500vpe
21 , which corresponds to .58

ion dynamics times. We find that the system dynamics is not
affected by the ion motion, even for the ~unrealistic! value of
the mass ratio m i /me5100. In fact, the damping time td , the
real part of the frequency v , and the time ts at which the
sideband mode reaches the one that is initially excited do not
change with respect to the case of fixed ions ~i.e., they are
td57.7, v51.22, and ts5375 for e50.25 and k54, to be
compared to the corresponding results in Table I and Fig. 6!.
After the initial damping of the wave, the field amplitude
becomes small ~of the order of a f in listed in Table I! on a
time scale tp shorter than the ion dynamics time. By consid-

ering waves that do not resonate with the electrons and thus
have a constant amplitude, we have verified that, for an ini-
tial field amplitude a.a f in , the ions do not play a significant
role on the evolution of the system.

V. SUMMARY AND CONCLUSIONS

We have studied the long-time evolution of longitudinal
perturbations in a spatially uniform collisionless plasma.

When the wavelength of the initially excited mode is
equal to the simulation length l5L , we have found that, in
the limit of small wave amplitudes, our numerical results are
in agreement with the analytical analysis performed in Ref.
@3#. In particular, we have found that in this limit our numeri-
cal results agree with the analytical evaluated asymptotic
electric-field amplitude a f in , when the critical perturbation
amplitude e*, which marks the transition between Landau’s
and O’Neil’s scenario, is set to e*50.012 in our parameter
range ~i.e., k54 and Maxwellian equilibrium with v th

50.1). Moreover, for initial perturbation amplitudes such
that e.e*, we have found that the asymptotic solution is a
superposition of two counterpropagating averaged BGK
waves, also in the case of nonsmall amplitudes.

For L.l , the onset of the sideband instability modifies
the plasma evolution. The BGK waves become unstable
when the amplitude of the daughter sideband mode reaches
the amplitude of the initially excited mode. Thus, in this
case, the BGK waves correspond to an intermediate regime,
their lifetime decreasing with the wave amplitude.

Finally, we have verified that including the ion dynamics
does not affect the asymptotic evolution of the system.
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