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We consider a linear dissipative wave equation in RY with periodic coefficients. By
means of Bloch wave decomposition, we obtain an expansion of solutions as t — oo and
conclude that, in a first approximation, the solutions behave as the homogenized heat

kernel.

1. Introduction

1.1. Setting of the problem

This paper is concerned with the analysis of the asymptotic behavior, as t — oo, of

the solutions of

p(x)ug — a;gk (akg(x)%) + app(x)us =0 in RN x (0, 00)
u(z,0) = ¢°(x)
ug(x,0) = ot (z)

where the coefficients satisfy

are € LF(Y) where Y =]0,27[V, ie., each ay is a

Y -periodic bounded measurable function defined on RY,

Ja >0 such that age(z)mene > aln* Vpe RY, ae. z€ R,
Q¢ — Qe Vk,fz 1,...,N, and

ap is a positive constant,

and
p € LF(Y), ie., pis Y-periodic, and
Ipo, p1 € R4, such that 0 < pg < p(z) < p1, ae. © €Y.

(1.1)

(1.2)

(1.3)



The equation (1.1) has a dissipative nature. Indeed, the energy associated to
(1.1), given by

1 9 Ou Ou
E(t)_i/ [p(:n)|ut| +akg(m)6—ma—m dz,
RN
is decreasing
OFE
5 = " / p(x)|ug|*de.

RN
Moreover, solutions of (1.1) satisfy the conservation law

o [ apie = [ 2 (i) ) ae o

RN RN
That is, the mass of u; + a,u with respect to the weight p(-) is conserved along
time:

-+ g0) = my (' +a0g) = [ (0" +aop(o)ie (1.4)
RN
Using Bloch waves decomposition together with a choice of a convenient Lya-
punov function we obtain the asymptotic expansion of the solutions of (1.1). In
particular we conclude that solutions behave as the homogenized heat kernel as
t — oo. In fact, equation (1.1) can be viewed as a heat equation “perturbed” by
the second order term p(x)us, that introduces oscillations that, according to our
analysis, are not strong enough to change the behavior of solutions as ¢t — oo in a
first approximation.
To be more precise, equation (1.1) can be viewed as a perturbation of the
parabolic equation

p@)agu; — 52 (are(@)22) =0 in BY x (0,00) s
1.5

u(z,0) = ¢°(x).
The asymptotic behavior of solutions of (1.5) is well known when p = 1, ap = 1.
The first term in the asymptotic expansion was obtained in ¢. It was shown that

202 ||lu(t) = m(@)Gr(-t)|l, — 0, as t = 00, 1 < p < 00,

where

mip)= [ odo
RN
and G}, is the fundamental solution of the homogenized system
2

Ut — Qre aiE:k =0 in RN x (0, 00)

u(z,0) = do(x).



Here and in the sequel we denote by dg the Dirac delta at the origin and by {qjk}j-\szl
the homogenized coefficients associated to the periodic matrix with coefficients (1.2).
The constant m(¢p) is the mass of the solution of (1.5) which is conserved along time,
ie.,

0
5 m(u(-£)] =0, Vt € (0,00).

Later on, in J.H. Ortega and E. Zuazua 7, the asymptotic expansion as t — oo
of the solutions of (1.5) with L' (R™) N L2(R") initial data was obtained by means
of the Bloch wave decomposition (see ? and * for an introduction to Bloch waves).
Their first result was stablished in the L?(R™)-setting and then, thanks to the
parabolic regularizing effect, a converge result in L°(R") was derived. The results
in 7 are, to some extent, an extension of those of > on the constant coefficient heat
equation. The analysis in 7 can be easily adapted to the general parabolic equation
(1.5) with variable, periodic density p.

This work is devoted to adapt the analysis in 7 to the case of the dissipative
wave equation (1.1) under consideration.

Our main result will only be given for the solution u of (1.1) in the L?(RY)-
setting with L2N LY(RY) x H=' N L*(R") initial data but, as it will become clear
during the proofs, a similar analysis allows to obtain the asymptotic expansion of
(u,us) in H¥(R™) x H*~'(RY) with initial data in H*NL'(RY) x H*~"'nL'(RY).
An asymptotic expansion in L (RN ) can also be given, but here, in the absence
of the parabolic regularizing effect used in 7, we should consider sufficiently smooth
initial data so that the asymptotic expansion holds in H® with s > 0 large enough
so that H® — C°.

1.2. Main results

The well-posedness of the equation (1.1) under the conditions (1.2) and (1.3) can
be easily obtained writing (1.1) as an abstract evolution equation in the space of
finite energy H = H'(R"™) x L?(R"), with the inner product

((u,v), (@,0)), = /uﬂdaz +/ake(w)§—;lg—z dr + /vﬂp(m)dm,

RN RN RN
with {age} as in (1.2) and p as in (1.3), whenever (u,v), (w,v) € H. Under these
conditions the operator associated to (1.1) is maximal and dissipative on H. Then,
Lummer-Phillip’s theorem guarantees that the operator associated to (1.1) is the
infinitesimal generator of a continuous semigroup. Thus, we deduce that for any
initial data (©°,¢"') € L2(R™) x H='(R") the equation (1.1) has a unique weak
solution u = u(x,t) such that

uwe CO(RT, LA (RN)nCY(RT, H Y(R")).

Let us now state the main result.



Theorem 1 Assume that ¢° € L'(RY) N L*(RY) and o' € LY(RY)n H-'(RY)
with |z|*1° (), |z/* 1o (z) € LY(R"N) for some k > 0. Let u = u(x,t) be the
solution of (1.1). Then, there exist periodic functions co € LY (Y), with |a| < k,
and constants cg ,, with n < g and 4 < |B| < 2k, depending on the initial data, the
coefficients {are} and p, such that the solution u satisfies

pa) a(a,n)
2k+2+N
Ju(,t)= " ca +Z 2. 2 camGas(nl S et
lo| <k m=0 |3|=4n+2m
(1.6)
as t — oo. Here p(a) = [k_z,la‘], ala,n) =pla) —n,
1
G (z,t) = W /f e aof:ik&t iz- £d§ (1.7)
T e
and p is the averaged density:
_ 1
p @~ /p(a:)da:. (1.8)

We observe that G* = (—i)!?1(0°G* /dx,) where G* = G*(z,t) is the funda-
mental solution of the underlying parabolic homogenized system

2 A
paoG} — qre gwgk =0 in RN x (0, 00)

(1.9)
G*(,0) = do(x).

The convergence result in (1.6) indicates that, roughly, the solution u of the equation
(1.1) may be approximated at any order by a linear combination of the derivatives of
the fundamental solution of the heat equation, modulated by the periodic functions
¢a(+). The role of these coefficients is to adapt the gaussian asymptotic profiles to
the periodicity of the medium where the solution u evolves.

We consider v(z,t) = co(z)G*(z,1), the first term of the asymptotic expansion
of the solution of (1.1). As we shall see below (see Section 5), co(-) turns out be a
constant and more precisely

1
co = —m,(us + agu 1.10
0= 2ob p(ut + aou). (1.10)

It is important to observe that the mass of v(z,t) with respect to the weight p(-),
as t — 00, is the same as the mass of u; + agu associated to (1.1) which is constant
in time as seen in . In fact, we have

£
m,(vy) = q“,f Ee ™m0 Mo S e () da (x = YT, € = %)
RN RN
Co 1 qre i iy
= —T/p(y\/f)w / anp a0r e ) dy,
RN RN 0



and
1

mo0) = [ oy [ e B .
RN RN
Since p(yv/t) — p weakly-* in L°(R"Y) as t — oo, then

mp(vy) — 0 ast— oo,

and, thanks to

Y[

RN RN

we have
m,(v) = pcg, ast — oo.
Thus, we obtain as t — o0,
mp (v + agv) — ao pco = mp(u + apw).

Therefore, as expected, the total mass of the solution is captured by the first term
in the asymptotic expansion.

The rest of the paper is organized as follows. First, in Section 2 and 3, we study
the simpler problem in which p = 1:
m)ﬂ) +apus =0 in RN x (0,00)

Ut — % (ake v

u(z,0) = () (1.11)
ue(z,0) = ' (z).
In Section 2 we recall some basic results on Bloch wave decomposition. In Section
3 we prove some basic lemmas and obtain the asymptotic behavior of the solutions
of (1.11). In Section 4 we prove the main result, Theorem 1, in the general case.
Finally, in Section 5, we analyze the periodic functions ¢, and the constants cg
entering in the asymptotic expansion.

2. Bloch wave decomposition

All along this section we assume that p = 1. The general case will be discussed in
Section 4.

In this section we recall some basic results on Bloch wave decompositions. We
refer to 2 and to # for the notations and the proofs.

Let us condider the following spectral problem parametrized by ¢ € RY: To
find A = A(¢) € R and ¢ = ¢(x;&) (no identically zero) such that

AP(5€) = AE)P(;6) i RY,
P(+5€) is (€,Y)-periodic, i.e., (2.12)
Yy +2mm;€) = T EP(y) Yme 2V, y € RY,



where A is the elliptic operator in divergence form

def 0 0 N
A= — — — R". 2.13
8a:k <ak£(m) 8.7:[) ’ Y € ( )
We can write 1(z; &) = e®®€$¢(z, &), ¢ being Y-periodic in the variable z. It is
clear from (2.12) that the (&,Y)-periodicity is unaltered if we replace & by (£ + m)
with m € ZV. Therefore, ¢ can be confined to the dual cell £ € V' = [-1, L[V,
Under these conditions, it is known (see %) that the above spectral problem admits
a discrete sequence of eigenvalues with the following properties:
Am (&) is a Lipschitz function of £ € Y/, Vm > 1. '
Besides, the corresponding eigenfunctions denoted by ,,(-;€) and ¢, (-;€), form
orthonormal basis in the subspaces of leoc(RN) which are (£,Y)-periodic and Y-
periodic, respectively. Moreover, as a consequence of the min-max principle, it
follows that (see 4)
A(6) > AN >0, Veey!, (2.15)

where )\gN) is the second eigenvalue of A in the cell Y with Neumann boundary

conditions on 9Y.

The Bloch waves introduced above enable us to describe the spectral resolution
of the unbounded self-adjoint operator A in L2(RN), in the orthogonal basis of
Bloch waves

{'QZJm(ZU,f) = ei“(ﬁm(m;ﬁ) :m2>1,§€ YI}'
Thus, we have

Proposition 1 Let g € LZ(RN). The m'" Bloch coefficient of g is defined as
follows:

in(© = [ 9@ "G )ds Vm2 1, €€V

RN
Then the following inverse formula holds:

9@) = [ 3 GO <o @i )

v m=1

Further, we have Parseval’s identity:

[ ls@ds = [ - lga©Pdc.

RN v m=1

Finally, for all g in the domain of A, we have

Agla) = / S A (E)Gm (€)™ € bz ),

yr =I



and, consequently, the equivalence of norms in H'(R™) and in H—'(R"):

(o)

ol = [ 30 1+ Anl@lan ©F e,

vy m=1
2 _ |gm
I p— / Z e

Using Proposition 1, the solution of (1.11) can be written as follows.
Lemma 1 Let u(z,t) be the solution of (1.11). Then

utet)= [ S (4O @ 1 2O ) e, (w00, (210
m=1

where
04, (€) = 3 a0 — /a3 — A (©)), (27)
02(6) = 5(a0 + /a3 — (), (218)
and
1 _ az, (§) ~0 1 ~1
IO = SRRSOt (O, 219
2 a'}n(f) ~0 1 ~1
B = ———r=r 5 () ———0,,(9), 2.20
(©) SO - e, 220

where 39 (€) and @1, (€) are the Bloch coefficients of the initial data ©° and ¢".

Proof. Since u(z,t) € L2(R") for all t > 0, we have that
+oo )
u(e,t) = [ 3 A€ 0 <60, ) (2.21)
v m=1

where U, (&, t) is defined by Proposition 1 and satisfies for any m > 1 the following
differential equation

02T + a0O4Tim + A (E)Tm = 0'in Y7 x (0, +00)
(2.22)

am(')o) = @%” %L—Z"(:O) = @:n in Y.

Here, 0; denotes the derivative with respect to t. Solving the differential equation
(2.22) we find

U (€,) = BL(E)e™om O 4 g2 (¢)e=om (O, (2.23)



where {al, (), i = 1,2} are defined by (2.17) and (2.18), and they are the two roots
of the characteric equation

y? + aoy + A (&) = 0.

= 1,2} as in (2.19)-(2.20) are obtained in order to meet

The constants {3% (£), i
1nd.

the initial data in (1.11

We also have the following result on the dependence of A; and ¢; with respect
to the parameter ¢ (see 4 and 2).

Proposition 2 Assume that the coefficients age satisfy (1.2). Then there exists
01 > 0 such that the first eigenvalue A\; is an analytic function on Bs, = {& : |{| <
01} and satisfies

alé? < M) < elé)?, VEeY, (2.24)
and

A1(0) = 921 (0) =0, k=1,...,N,
OfeM(0) =2qre, Kk £=1,...,N, (2.25)
0%A\(0) =0 Yo such that |a| is odd.

Futhermore, there is a choice of the first eigenfunction ¢1(x, &) satisfying

§ = d1(x,8) € L® N HL(Y) is analytic on Bs,

N
2

¢1(x,0) = (2m)~

The coefficients qi¢ are those of the homogenized matrix associated with the
family (af,), where a5,(z) = are(z/e) as ¢ — 0. Since af(€) and B (€) is defined
by (2.19), respectively, we have:

Proposition 3 Assume the same hypotheses as in Proposition 2. Then there e-
zists § > 0, with § < &1, such that al(€) and B1(€) are analytic functions on Bg.
Futhermore, at(€) satisfies

csl€” < aj(€) < ealél?, V€€ Bs, (2.26)
and

ai(O)zakai(O):o k=1,--- N,
D1 (0) = 2%, kl=1,---,N, (2.27)
0

9%at(0) =0 VB such that |3| is odd.



3. Asymptotic expansion when p =1

3.1. Bloch component of u with erponential decay

We start this section proving that, in (2.16), the terms corresponding to the eigen-
values A\, (€), m > 2, decay exponentially as ¢ — oo. Further, we also prove that
the term corresponding to A () goes to zero exponentially, a ¢ — oo, whenever
EeU={£eY": £ >0}, with § > 0.

Lemma 2 Let u,, = Un,(§,t), m > 1, be the Bloch coefficients associated to the
solution w = u(x,t) of (1.11) given in (2.16). Then, there exists positive constants
a and B3, such that

Y fam(& 0P d€ < ae™ (Il + 1ot lI7-) - (3.28)

v m=2

Proof. We consider the Lyapunov function

Lm(gvt) = Em(gvt) + SFm(fat)a

where

Bn(6t) = 5 (0@ 0F + An(©lin(E ),
Fu(§t) = O (& Dim (1) + 5 lim (€, 8)

and ¢ is a suitable constant to be chosen later. Here, ~ denotes the complex conju-
gate. It follows from (2.15) that for m > 2,

Lal€) = Ba(€)] < elrglaitnle 0 + (2 + 2ol

U (&, 1)
o RRSNCRIGAGLLY

. 1 ao
< ecpEn(&t), with qo=max|—=,—+ +1].

Consequently, we have for € < 1/¢q that
(1 —eco) En(&,8) < Lip(&,t) < (1 +eco) En(&,t). (3.29)

Now, we claim that
0¢tLm(§,t) < —cLm(&,t) (3.30)

holds for some positive constant independent of £ whenever m > 2. Clearly, from
(3.29) and (3.30) we conclude the proof of (3.28) for all m > 2.

In order to prove the claim, we proceed as follows: Multiplying the equation
(2.22) by Oty (€, 1), we obtain

8tEm (f, t) = —Qop |8tam (5, t) |2'



Next, we multiply the equation (2.22) by @, (£,t) to obtain

~ = ap |~ ~ ~
01 (1 (& Vm(€,8) + G (D17 = ~An(€) i (&, DI + [0 (&, D
Adding the identities above and choosing € small we deduce that

th(£> t) = _a0|atam(£7 t)|2 - 6Am(£)|am(£7 t)|2 + €|6tam(£) t)|2
—c1(e) Epp(&,t)  with 0 < ¢1(e) = 2min(e,ap —e). (3.31)

IN

Now, using (3.29) with € sufficiently small and satisfying (3.31), in particular ¢ < ay,
there exits ¢z = ca(e) > 0 such that

C1

i Lm (&) < —c2Lp(€,1), where c; = T ()" > 0.
Therefore,
Lin(§,t) < Lin(€,0)e™",
and using again (3.29) we obtain
Eon(6,1) < cEn(€,0)e =, (3.3

where ¢ = 1 +¢&(cp)~!. Recalling the definition of E,,(¢,t) we have from (3.32) and
(2.14) that

Am(£)|am(£;t)|2 < Ceic2t{|6tam(f:0)|2 + /\m(g)|am(£;0)|2}

and

- e 1 . .
[T (&, < o™= {5 100m (€O + [ (€, 0) ).
A2

Adding the inequalities above it follows that

(L4 A (€D < 0”3 (14 {08 (E O + (1 + €l (€. O,

2

and consequently

|Otim (€, 0) 2

~ — 1 “
|Um(§at)|2 <ce CZt(1+ )\gN))ﬂum(fao)P 1+ M\, ( ) }
Therefore,
cat Ao 2 185 (O
!n;| (€ dE < coe” !%ﬂ O + 75 e

where @9 (£) and @1, (€) are the Bloch coefficients of the initial data ¢° and ¢!,
respectively. This completes the proof of (3.28)0

10



Remark 1 We choose § > 0 in Proposition 8 such that 6 < &, (61 being the radius
of the ball where \y and ¢, are analytic as in Proposition 2) and satisfying that

ad — 4\ (&) > al — 4¢26® = ¢5 > 0, V€ € By, (3.33)

Obuiously this can be done since X1 (0) = V¢A(0) = 0.

Lemma 3 Let uy = uy(&,t) be the first Bloch coefficient of the solution u of (1.11)
given in (2.16). Then, there exist positive constants « and 3, such that

a1 (&, )7 d€ < ae P8 (l11* + [l [13-1) (3.34)
Y'—Bs

with & satisfying (3.33). On the other hand, the second component B%(f)e*a%(g)t of
ui(&,t) as in (2.23) satisfies

t/mwﬁ(sn2e—2a?“>tds < Cem ™ ([l + Il I3-1) - (3.35)

Bs

Proof. In order to prove (3.34) we argue as in Lemma 2. We consider the Lyapunov
fuction L;(&,t) and, instead of (2.15), we use Proposition 2 and Remark 1 to obtain
(3.29) for £ €Y' — Bs and m = 1. We observe that (2.24) gives us
1 1
< —, VéeY' - Bs,
)\1 (f) C1 52 6 g

and (3.34) is obtained following the same steps of Lemma 2.
To prove (3.35) it is enough to observe that, thanks to (3.33), and since, accord-
ing to (2.18) a2 (&) > ag/2 for all £ € Bs, we have

(1+ M (9)|BLO PO < (14 c5[¢])|B2() Pe2o1 )t

44 (80 = V)" —aot(151 6))2 + 5 (O)2)

S (1 + 02(52) 2%
5

44 (ag —/e5)? _, R ~
su+@ﬁ*—i%aizLe°%1+M@M%P+WW»

Consequently,

—202(€) a0 EHGIE >
BP0 < e (IBOF + 12500 )

and the result follows .

3.2. Bloch component of u with polynomzial decay

11



Thanks to Lemmas 2 and 3, to conclude the proof of the Theorem 1 it is sufficient
to analyse

I(e,1) = / BL©)e Ot E g (: £)de, (3.36)
B;s

since the other components of u have an exponentially decay in L? (RN ). To do that
we make use of classical asymptotic lemmas (see Lemma 5 and Lemma 6 below) and
assume that the initial data ¢ € L*(R") and o' € LY(R™)n H-*(R") are such
that |z|*1¢0(z), |z|*T1!(z) € L*(R"). Under these conditions the first Bloch
coefficients @9(¢) and @} (€) of the initial data belong to C**1(B;) (see Lemma 4),
what is crucial in the proof of the asymptotic expansion (see the definitions of 3 (£)
and o} (€) in Lemma 1).

Lemma 4 Let o € L'(RY) be a function such that |z|*¢ € L'(RY). Then , its
first Bloch coefficient ¢, (£), belongs to C*(B;), where Bs is a neighborhood of € = 0
where the first Bloch wave ¢ (z;€) is analytic.

Proof. Since
519 = [ pl@e *Biaie)ds,
RN
for all a € (IV U {0})" with |a| < k, we have
991 oy _ « I8l 8 e 0P
26 = BZ( 5 ) [ ettt 2 g,
= RN

where § < « if and only if B < ag forall j =1,...,N, and

(5)-1(
“TI( % )
g i\ B
Moreover, Proposition 2 gives us that the function & — ¢;(z;¢) is analytic with
values in L3 (Y), what guarantees that

(5 )cBR[ (o),
S (6 )e [arietietas,

BLla RN

0%
0&q

(5)‘

IN

for 0 < |a| < k, where c¢g is a positive constant. Thus, using again Proposition 2,
we have that the map & — e*iﬁ-wag@ (z;€) is continuous, and the result follows O .

Now, we are going to present some basic asymptotic results. The following
definition will be useful to simplify the notation.

12



Definition 1 Given f,g € C(R; R), we say that f and g are of the same order as
t — oo and we denote it by f ~ g when

t~>oo t)

The following basic lemmas on asymptotic analysis are needed (see !, p. 263):

Lemma 5 Let f : [0,b] = R be a continuous function such that it has the uniform
asymtotic series expansion

r) = 2% Zanxﬁ", z € [0,b],
n=1

with a« > 1 and B, > 0. Then

b

n+ 1
/_t””f deZan Dla+ B +1) as t — oo.

tla+Bn+1)
0

When f(x) = % we have that
b

[a+1)
—t
/e wxadeW, as t — 00,

0

where

oo
= /e_””asz_lda:, z> 0.
0

As a consequence of Lemma 5, the following holds in 7
Lemma 6 Let ¢ > 0. Then

. k
/676‘5‘2t|§|’” dé ~ ckt*#, as t — oo,
bs

for all k € IN, where ¢, is a positive constant that may be computed explicitly. On
the other hand , if ¢ = (gij) is a symmetric positive matriz, we also have

/ —aa it §Bd§~c‘3|t (e ), as t — oo,

Y’
for all multi-index § € (NU{0})™ and for a suitable constant c|g| that may computed
as well.

In the sequel we prove three lemmas which are related to the asymptotic behavior
of the terms S} (€), ¢1(x;€) and e~1(&)t respectively, that appear in (3.36).

13



We recall that the idea we have in mind is to prove that the solutions of (1.1)
may be approximated by a linear combination of the derivatives of the fundamental
solution of the homogenized heat equation and, as we said in the begining of this
section, in view of Lemma 5 and 6, our analysis may be restricted to consider (3.36).
Thus, our first step in this direction is to prove that (3.36) can be replaced by

Ja,t)= [ Y dagem 1Ot C, (;6)de, (z,t) € RY x R, (3.37)
B;s ll<k

where
_ laa 1
da = —0"51(0), (3.39)

which are obtained by means of the Taylor expansion of 81 (€) in &€ = 0.

Lemma 7 Let ¢° € L'(RM)NL2(RYN) and ¢' € L'(RN)NH~'(RY) be such that
|2k 10 (), |2kt (x) € L (RN). Consider I(z,t) as in (3.36) and J(x,t) as in
(3.87). Then, there exist ¢, > 0 such that

2k+24N

||I(7t) - J(at)” S th7 4 ast — oo.

Proof. Since ¢° € L'(RV)NL*(R"Y) and ' € L'(RN)NH1(R") with |z|*T1¢°,
|z[Ft1p! € L'(RY) then, from Lemma 4, we have that 39,3! € C*+1(Bjs), and,
according to (2.19), f € C**1(Bjs) as well. Thus, thanks to (3.38), from the Taylor
expansion we have that for all £ € By,

B1(E) = D dal®| < Cilg*™,  C > 0. (3.39)

lo| <k

These constants can be computed explicitly in terms of 9%\, (0) and 0%¢;(0), and
the mass of the initial datum (see Section 5). Indeed, from Parseval’s identity, we
have

1160 = T6oIF = [1850 = 3 dagefeei@ag,
Bs

la| <k
Then, thanks to estimate (2.26) in Proposition 3 and Lemma 6, we obtain

MEO=T6oIF = 180 = 3 dagee >l g
B;

lor|<k

IN

. _ 2  2k424+N
ck/|f|2(’”“)e 2esl€t ge s oyt z, ast — oo.
Bs

This concludes the proof of Lemma 7 .

14



In a second step, we compute the Taylor expansion of ¢, (z, &) around £ = 0, and
prove that all the terms entering in the definition (3.37) of J and that we denote
by J, with a € (N U0)Y

To(w,t) = g [ €6 O @i, (@) € RY < BY, (340

may be approximated in L?-setting by a linear combination of the form

1 — ix-
RSP IR /f“ e

lv|<k—|a
where ci, are periodic functions defined by
~ 1
da(") = =0 d1(0) € L (RY). (3.41)

This way be done obtaining the same rate of decay as in Lemma 7.
Now we present a result from ? that will be needed when stating and proving in
Lemma 9 the facts metioned above.

Lemma 8 Let us introduce

G(z) = /g(f)e”'gw(m;f)df, zeRY, (3.42)

Y’

where g € L*(Y') and w € L®(Y'; L3 (Y)). Then we have
IGIP = [ lo( Pkt Ol .
YI

Proof. To check this result we expand w(z; &) as a function of z in the orthonormal
basis {¢m (2;€)}5°_, where £ € Y’ is a parameter:

Z am Qsm T, 6)
m=1

Introducing this expression in (3.42), we get

0= [ 96) 3 an(©c om(z; )¢,
m=1

Y’

Applying the Parseval’s identity of Proposition 1, it follows that

G| = / 9OP 3 lam(©)Pde.
v m=1

15



This completes the proof of the lemma if we use the Parseval’s identity in L?(Y):

oo

oG5 Z2ry = D lam(@FF VE€Y'D

m=1

Lemma 9 We consider J,(z,t) defined in (3.40), with |a] <k, and

Io(x, /ga ©teieege  (z,t) € RN x RY, (3.43)

Then there exits periodic functions d~7 = d?(a:) defined in (8.41), such that

||Ja('7t) - Z d 'y+a , || < Ck,|a t_2k+2+N, as t — oo.
[v|<k—|af

Proof. We set
Ri(2;6) = ¢1(x;€) — Z d

lo| <k

where d, () is defined in (3.41). Since ¢ is an analytic function with respect to &
in Bs; and values in L?(Y') we have, for all £ € B,

1RG5l L2y < CrlE[*FY, G > 0.

Thus, Ry € L®(Y'; L3, (Y)). Then, for a € (IV U {0})" with |a| < k, we have

T = 3 @ raet) = o [ e O Ry e,

v1<k—|a| Bs

and since Ry (y; &) is Y-periodic in the variable y, it follows from Lemma 8 that

k=|o
(i
L LG AL
|v|=0 Bs

IN

b2 90
Ck—\a|/|€|2’”“e 201 (&)t g,

and we conclude as in Lemma 7, using the Proposition 2 and Lemma 6 O .

The proofs of Lemmas 7 and 9, as well as that of Lemma 10 that we present
below, provide a systematic way of computing the coefficients that appear in the
statement of Theorem 1. We note that the functions ¢, (-) are related to the deriva-
tives of the first Bloch eigenfunction ¢;(z; &) with respect to £ in £ = 0. We shall
describe how to compute them explicitly in Section 5.
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Now, we are going to study the asymptotic behavior of the integral I,(z,t)
defined in Lemma 9. We observe that, according to Proposition 3,

a1(0) = Okai(0) =0, k=1,...,N,

2
akfal(o) Z(];l) &k:l:"')N)

where the coefficients g, are those of the homogenized matrix associated with the
family (a3,), where af,(2) = age(z/€), as € = 0. Then, for all { € B;, we have

1 _ ke
e~ @t L g R a5t 0.

This fact provides a first idea of the behavior of I, (z,t), defined in (3.43), as t — oo.
Futhermore, in Lemma 10 it turns evident that solutions of (1.1) behave as a linear
combination of functions G (z,t) introduced in (1.7), which are the derivatives
(—i)l*19% of the fundamental solution G* of the homogenized heat equation.

Lemma 10 We consider the function I, (x,t) defined in (3.43) with |a| < k. Then,
there exist constans cg pn, with 4 < |B| < 4p(«), such that

a(a,
" " " _ 2k424N
Io (-, t) = I3+, 1) o Z o eanliisG| <crgat™ T,

0 |B|=4n+2m

as t — 00, with p(«a)

Il
[
kol
ol L
=

], a(a,n) = p(a) —n, and where for a € (N U0)N

I* (2, 1) Webetgintge  (p1) € RN x RT. (3.44)

Here and in the sequel [-] denotes the integer part.
Remark 2 In view of (1.7) with p =1 and (3.44) the analogy between I and G,
is clear. I is in fact obtained by integrating the same quantity as in G, but this
time in By instead of RY . In particular, I*(z,t) has the same polynomial decay as
Gi (x,t), because

NG (1) = T (-, 1)) < ce ™D with ¢(8) > 0. (3.45)

Indeed, by Parseval’s identity and the coercitivity of coefficients {qre} we have

* * 1 ol — s W62
||Ga('7t) _Ia(',t)||2 = W / |§|2‘ |6 255 &x€ tdf
RN _B;
(2 1)2N / €)7ol dee 2% €M de < cemeO,
Y[

RN —Bs

IN
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Proof of Lemma 10. We consider the map £ € Bs — v(£) given by

€)= al(9) - 3Ol Ot = al(9) - Loty (3.46)

Thanks to Proposition 3, the map v = v(§) is analytic in Bs. Moreover, it follows
from (2.27) that for £ € B;

szﬁ@—%@&swﬁ (3.47)

The function (e *(®)* — 1) is also analytic, and by (3.47) we have

14

L SO

- < Cp WP < e i, (3.48)

n=0

Thus, defining for p > 1

meJ*:@%N/Eﬂijgcw@wmf%&&%w%aCuneRNxRﬂ
Bj n=0

and replacing (3.46) in I, (z,t), we get
p

In(z,t) —va p(z,t) = ﬁ /Eaef?—(fﬁk&t[e—u(g)t _ Z t—(—l/(f))n]eix{df.

n!
Bj n=0

Then, from Parseval’s identity and (3.48) it follows that

2

p

—v " n —2dkL ey g,

e O E :m(—’/(f)) RT3
n=0

2|
1Ha(: t) = vap (- )| = / (|2€7|r)2N

Bs

< ct2p+2/|£|2‘&|+8P+86*2%5k§etd€

B;
2la|+8p+8+N  __ _ 2|a|+4p+a+N
2 2

~ Gt =ct as t — 0o. (3.49)

Now we choose p such that the above decay rate is of the order of (2k + 2+ N)/2,
i.e., p satisfies (2|a| +4p+4+ N > 2k + N + 2), or, equivalently,

2p > k—|al-1. (3.50)
Thus, we have

o~ _ 2k4n42
—2ktn+2

a(-t) = vap(,0)|| < €t , ast— oo. (3.51)
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To conclude the proof we are going to study the asymptotic behavior of the
integral v, p(z,t) defined above. But before doing it, we note that if we consider
the Taylor expansion of v(£) around £ = 0, we obtain

o0

Vap(z,t) = /ga{ +Zt” Z @86 1(0)¢ }e Bl gy 60t eimE e,

=1 |B]=0

Indeed, since 3°v(0) = 0 for |3| < 4 and |3] odd (see (3.46) and Proposition 3) we

have -
ZGEDDEDY 5,5563 a1(0),

m=0 |B|=4+2m

and, consequently

=" (Y % 6,6535 ) =3 S el 352

m=0 |B|=44+2m m=0 |3|=4n+2m

for suitable constants cg , that will be computed in Section 5. This fact suggests
the following approximation

Va,p(l' t /ga{ + Z Z Z C3im 66}6 ‘Zke EkEet iz Edg

! m=0 |3|=4n+2m
where a(n) is an index to be chosen for any n = 1,...,p. Thus, let us define

n a(n)

Wap(T,t) = ﬁ/fa{ +Z Z Z o€ le” et ging e
B;

= 'm 0 |B|=4n+2m

an

P
* " *
Ia(w,t)-i—zn— Z csnl5iq0(2,t),

m=0|B8|=4n+2m

with a(n) to be chosen later, and consider the difference

Va,p(T,t) — wa,p(z,t) =

1 p tn a(n) . N
- (27T)N Z E /é‘a [(_V(f))n - Z Z éﬂcﬁ,n]e*ﬁﬁkﬁe ew{dé-.
n=1 .Bs

m=0 |3|=4n+2m

Now, computing in (3.52) the Taylor expansion of order (4n + 2a(n)) of (—v (&))",
we obtain the existence of a positive constant Cy(,,) > 0 satisfying, for all £ € Bg,

- Z Z fﬁcﬁ,n < Ca(n) |£|4n+2a(n)+2‘

m=0 |3|=4n+2m
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a(n)

<zp: t2n / |€|2|a\ Z Z §BC |2672%£k&td€
=& W) ) @)y -

n=1 : B; m=0 |3|=4n+2m

1 2 2]al|e(2(4n+2a(n)+2)  —2LELE &t
2m)2N Z (n!)? Cu/|§| | ‘|§| (nt2a(n)+2) g~ 2 d§
B;s

P
_ N+4n+4+4a(n)+2|a|
<ec E t 2 , ast — oo.

n=1

Finally, in order to obtain the same decay rate as in Lemma 9 we take into account
(3.49), and choose a(n) satisfying (N +4n + 4 +4a(n) + 2|a| > 2|a| +4p+ 4+ N),
ie.,

a(n) >p—mn.

Recalling that p satisfies (3.50), we choose

This gives us that

a(n,a)
" " . _ 2k+n42
SRS IES S0 ol TN P

as t — 0o, and, since (3.51) is satisfied, we conclude the proof of Lemma 100 .

In the sequel, we are going to prove the main result of this section, i.e., we obtain
the complete asymptotic expansion of the solution of (1.11) when p = 1.

Proof of Theorem 1 with p = 1.
Firstly, for (z,t) € RY x R, we denote by

p(a) ,, ala,
Hit) = 3 cal@)Ghlo,t) + Z;—Z S esnGhisa b))

ol <k m=0 ||=4n+2m

the asymptotic expansion presented in Theorem 1, where G%(x,t) was defined in
(L.7).
From Lemma 2 and Lemma 3 it follows that
lu(t) = HC O < flul,8) = IGO0+ (G, 8) — H( )]
< e+ () - H(, 1),

20



where I(z,t) is defined in (3.36). Then, to conclude the proof it is enough to prove
that

2k4+24+N

NI(,t) —H(, O < et %, ast— oo.

In fact, from Lemma 7 we have

1(-,t) — H(-, 1)l () = JC 0l + 1T t) — H( )|
B NIt — H(, 0|, ast— oo, (3.53)

IN

A

cpt™

and recalling that

J(x,t) = Z 2m)Ndy o (z,t),

lo| <k

where both, J(z,t) and J,(z,t), were defined in (3.37) and (3.40), respectly, we
obtain from Lemma 9,

1Tt = HEDI = 1Y @oNdafdalt) = > dy() a5 D}
lal<k I <k—la|
< AT ast o . (3.54)

Thus, if we define the periodic functions as

ca(@) = 2m)N > dy(2)dar, (3.55)

v<a

thanks to (3.53) and (3.54), it follows that

2k+24N
4

() = H(,t)|| < 't Z Co(Va(5t) — H(-,t)||, as t = oco.

lo| <k

Now, we are going to prove that the following holds:

> aOMal ) —HE)| < et T, ast— oo
lo| <k
Using Lemma 10, we obtain, as t — oo,
. p(a) m a(a,n) 2k+2+N
I caOTal)=T20=Y = D0 > comlans(D]|| < Cut :
|| <k n=1 " m=0 |B|=4n+2m

where C}, depends on the L*-norm of the functions ¢, (-) and the function I*(z,t)
defined in (3.44). Finally, Remark 8 gives us that

|| Z Ca(') a +

la|<k

p(@) ,, alan)

Z Z cg,nléw(.,t)) — H(-,t)|| < ce~°O)

=1 ! m=0 |B|=4n+2m

3
§|”‘
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as t — oo, and, returning to (3.53) we obtain

2k+24+N -
7 + ce c(8)t

|| Z ca a y _H(>t)|| S thi

la|<k

as t — oo,

what concludes the proof O .

4. Proof of the general case

Theorem 1 is proved following the same steps of Section 2 and 3 for the case p = 1.
However, the Bloch wave decomposition used for the equation (1.11) in Section 2
can not be applied for the problem (1.1), due to variable density p. Consequently,
we need to introduce a different spectral problem.

Given £ € Y’ we consider the spectral problem of finding numbers A = A(§) € R
and functions ¢ = ¥(z; &) (no identically zero) such that

AP(5€) = MY (58)p() in RV,
¥(+ &) is (&,Y)-periodic, i.e., (4.56)
Uy + 2mm; €) = ™M EP(y) Vme ZV, y € RY,

where A is the elliptic operator in divergence form defined in (2.13) and p satisfies
(1.3). If we consider ¢(x;€) = eS¢ (x; ), the variational formulation obtained for
(4.56) for any p € Hy(Y) is given by

(406, ) = Y/ auee) (22 +i6u0) (2 +igeo) o = / ol

Since the operator associated with (4.56) is uniformly elliptic and self-adjoint, de-
fined in a bounded domain, it is known (see ® and *) that the above spectral problem
admits a discrete sequence of eigenvalues with the following properties:

0<A(6) <o < Am(§) < - = 00, (4.57)
Am (€) is a Lipschitz functlon of £ € Y’,‘v’m > 1. '

Besides, the corresponding eigenfunctions denoted by vy, (+; €) = €%, (+; €), where
the functions {¢p, (z;£)} form orthonormal basis in the space of periodic functions
in L2 (RN;p(x)dz), ie

loc

/d)manp(a:)da: =0mn (Kronecker’s delta).

The eigenfunctions ¢, (-, &) and ¢, (-, &) are (§,Y)-periodic and Y-periodic, respec-
tively. Moreover, as a consequence of the min-max principle (see ) we have

(N)

A2(§>2A; >0, Veev, (4.58)
1
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where )\gN) is the second eigenvalue of A in the cell Y with Neumann boundary

condition on Y for p =1 and p; is defined in (1.3).
Now, with the orthonormal basis of Bloch waves {e®€¢,, (z;&) : m > 1, £ € Y'},
we have a similar Bloch wave decomposition as in Proposition 1:

Proposition 4 Let g € LZ(RN). The mi" Bloch coefficient of g is defined as
follows:

Gm(6) = / 9(2)e™ G (2 E)pla)de Ym > 1, E€ V.

RN
Then the following inverse formula holds:

oo

Further, we have Parseval’s identity:

lgll2(,) = / l9(0)2p(e)de = / S [ (€) 2.

Y,ml

Finally, for all g in the domain of A, we have

Ag(a) = p<x>/ S A ()G ()€™ o (a3 €) .

v m=1

Using Proposition 4, the equation (1.1) can be written as follows:

/ S (0 (6, 8) + A ()iin (6,8) + a0yt (€,1)) €€ 6 (3 ) p()dE = 0.

v m=1

Since {e¥€¢,,(x;€) : m > 1, £ € Y'} form an orthonormal basis, this is equivalent
to the family of the differential equations

Bz (€,1) + A (E)Um (£,1) + aoBsim (€,8) =0, ¥Ym>1,£€Y".

Once these differential equations are solved, (1.1) is solved as in (2.16) and Lemma
1 holds. The developments of Section 3 apply with minor changes and Theorem 1
holds.

In order to understand the type of changes that the variable density p(-) causes
in the fundamental solution, we are going to study the Taylor expansion of the
first Bloch eigenvalue and eigenvector. For a more complete analysis the reader is
referred to 2. We observe that

A(0) =0 and ¢(z;0) = (271')_%/5—%’
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where p is defined in (1.8). We consider the equation

A()d1(+€) = A (&)p(-)dr(+5€), (4.59)

where

AG) = - <8ia:k +i€k> {au(ﬂ?) (% +i£g>] .

If we differentiate the equation (4.59) with respect to &, with k =1,..., N and if
we take scalar product with ¢ (z;&) in £ = 0, we get

kA1 (0) = 0.

Futhermore, we observe that

Ad¢ (50) = i(2m)

then

. N _ 1
A (2;0) = i(2m) "= 5 2x" (),
where x* is the classical test function in homogenization theory, solution of the cell

problem
Oare

Axk = Y,
o (4.60)
x* € Hy(Y), mlx dy = 0.

This is the same test function as in the case p = 1. If we differentiate again the
eigenvalue equation, we have that

1 8 L a k 2
e (0) = /(QGM Qe F g Ydx = 2kt

0xm 0xm p
Y
with gg¢ the homogenized coefficients as in previous section (see in *).
Since a}(€) is defined in (2.17) and thanks to the analysis above for the eigen-
value A1, we obtain

a1 (0) = Opai (0) =0 k=1,---,N,

2qke
82,0} (0) = == k,t=1--- N.
k(al( ) ﬁG/O ) ) )

Then, for all £ € Bs we have

1Ot o FhbErtet

5. Analysis of the periodic functions and constants entering in the
asymptotic expansion
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To finish this work we describe the periodic functions c,(-) and constants cg,,
where a, 3 € (IN U {0})"V and n > 1, that appear in the statement of Theorem 1.
Computation of ¢, (-). According to (3.38), (3.41) and (3.55),

o) = 3 5084 (2:0)07 81 0) (5.61)
P ARl 07O

where, recalling the definition of ] (£) given in (2.19), we have

B0 = RO + Y FITE0) ((a3 - a0 (€)7#) (0)
0478

+ 30730007 ((af — 4M(€)7F) (0)

v<B

and for j = 0,1 ( the first Bloch coefficients of the initial data)

0731(0) = / (@) [~ e 207 g, (2 0)de

RN a<ly

We observe that the higher order derivatives of A\; and ¢, in £ = 0 may be computed
as in the previous section.
First, note that
N 1 N 0 1(0)
co(x) = (2m)7 ¢1(2;0)51(0) = (2m)7 @1 (2, 0) { £7(0) + ——— |,

ao

and since ¢ (z,0) = (27)~% p~2, it follows that co is constant. Futhermore, ac-

p
cording to Proposition 4, we have for i = 0,1

N
2

Nf=

N
2

/ i ()p(x)dz = (2r)~F 5 m, ().

RN

P1(0)=(2m)"=p p

Thus,
o _ 0 1
co=co(z) = —my(p" + —¢°),
ao

p

and, since (1.4) is satisfied, ¢o is defined as in (1.10).
For |a| = 1, we consider a = e, any of the canonical vectors. The corresponding

periodic function is

=ik 0o, ¢ k o, ¢

(@) = — (X" (@) m, (" + =) +my (X" +21)(¢" +—) |,

p ao Qo
with x* the periodic test function, solution of (4.60). Observe that two different
terms appear in ¢i. First the total mass of the solution multiplied by the periodic
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function x*(-). Second, a constant term in which the periodic function x*(-) enters
as well, but this time as a weight when computing the corresponding moment of the
initial data. In both cases we see how the periodicity of the medium affects the value
of ¢, that varies substantially with respect to the case of constant coefficients. This
fact was already pointed out in 7 when studying the heat equation with periodic
coeffcients.

The remaining values of the functions ¢, (-) with multiindexes a with |a| > 2
may be computed by taking successive derivatives in (4.59).
Computation of cz,. We recall that the constants cg , were defined in (3.52)
and satisfy

n

> Y o= Y ¥ g0 .

m=1 ‘B|:4n+2m m=0 |B\:4+2m
where ai (¢) is given in (2.17). Moreover, we have for |3| even and |3| > 4 that

8 18')=m i , ,
=3 Y T o] 000 [onn®] 0,
m=1 g1 g, . . ByeNN 0

B4 B1+-ABn=

where, for m € IV,

f(m) ST,

m) = (2m—3)!

Observe that the constants 0°a}(0) depend on the derivatives of A; at ¢ = 0,
computed in Section 4. Thus, we may write the constants cg ;, as

i|=4+s;
|Bil=4+s 1 1

g = > > o)

o ...Bn!aﬁla}(())---aﬁna}(()).

51y 8n EN Bl Bn€NN
81+~~~+8n:|m+4" Bit+Bn=0
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