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We study the asymptotic expansion for solution of singularly perturbed equation for

functional of Markovian evolution in Rd. The view of regular and singular parts of so-

lution is found.

1. Introduction

The problems of asymptotic expansion for solutions of PDE and PDE systems were stud-

ied by many authors. A lot of references could be found in [5]. As a rule, border problems

are studied with the small parameter being denoted at the higher derivative by t.
For example, in [8, page 155] the system of first-order equations is studied with the

small parameter denoted by t and x that corresponds to the telegraph equation.

In this paper we study asymptotic expansion for solution of singularly perturbed equa-

tion for functional of Markovian evolution in Rd.

Let x ∈ Rd and ξ(s) is an ergodic Markovian process in the set E = {1, . . . ,N} with the

intensity matrix Q = {qi j , i, j = 1,N}.
The probability of being in the ith state longer than t is P{θi > t} = e−qit, where qi =∑
j �=i qi j .
Let a(i)= (a1(i), . . . ,ad(i)) be a vector-function on E. We regard a vector-function as a

corresponding vector-column.

Put matrix A= {ak(i), k = 1,d, i= 1,N}.
We study evolution

xε(t)= x+ ε−1

∫ t

0
a
(
ξ
s

ε2

)
ds= x+ ε

∫ t/ε2

0
a
(
ξ(s)

)
ds. (1.1)

It is well known [6], that the functionals of evolution, determined by a test-function

f (x)∈ C∞(Rd) (here f (x) is integrable onRd and has equal components f (x)=( f (x), . . . ,

f (x))) such that uεi (x, t) = Ei f (xε(t)), i = 1,N (here i is a start state of ξ(s)) satisfy the

system of Kolmogorov backward differential equations:

∂

∂t
uε(x, t)= ε−2Quε(x, t) + ε−1A∇uε(x, t), (1.2)
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where uε(x, t) = (uε1(x, t), . . . ,uεN (x, t)), A∇ = diag[(a(i),∇), i = 1,N], ∇ = (∂/∂x1, . . . ,
∂/∂xd).

As an example we will describe a well-known model, where an equation of type (1.2)

appears.

Example 1.1. In [6, 7] functionals of the view

ui(x, t)= Ei f
(
x+ v

∫ t

0
τξ(s)ds

)
, i= 0,n (1.3)

were studied. Here ξ(u) is the Poisson process with parameter λ, ξ(0)= 0, v is the velocity

of particle’s motion, τ i, i= 0,n are vectors that determine the directions of motion. The

systems of Kolmogorov backward differential equations were obtained for the functionals

ui(x, t), i= 0,n in case of cyclic and uniform change of motion directions.

In a matrix form we have

∂

∂t
uε(x, t)= [λQ+ vA∇]uε(x, t), (1.4)

where uε(x, t) = (uε0(x, t), . . . ,uεn(x, t)), A∇ = diag[(τ i,∇), i = 0,n], Q = [qi j , i, j = 0,n].

Here qii =−1, qii+1 = 1, qi j = 0, j �= i, j �= i+ 1 in case of cyclic change of directions, and

qii =−1, qi j = 1/n, i �= j in case of uniform change.

If we put in (1.4) v = ε−1, λ= ε−2, where ε is a small parameter, we will have a singularly

perturbed equation of type (1.2):

∂

∂t
uε(x, t)=

[
ε−2Q+ ε−1A∇

]
uε(x, t). (1.5)

Initial condition uε(x,0)= f (x) := ( f (x), . . . , f (x)).

Equations of type (1.2) were also studied in [2, 4]. It was partially shown in [2] that

for the distribution of absorption time of Markov chain with continuous time that de-

pends on small parameter ε, the following equation was obtained ε(d/dx)uε(x) = (Q−
εG)uε(x), Q = P− I . Asymptotic expansion of its solution was found there.

In this paper, we study system (1.2) with the second-order singularity. This problem

has interesting probabilistic sense: hyperbolic equation of high degree, corresponding to

system (1.4) (see [7]) becomes parabolic equation of Wiener process in hydrodynamic

limit, when ε → 0. The fact that solution of (1.4) in hydrodynamic limit tends to the

functional of Wiener process is well known and studied, for example, in [3].

To find asymptotic expansion of the solution of (1.2), we use the method proposed

in [8]. The solution consists of two parts, regular terms and singular terms, which are

determined by different equations. Asymptotic expansion allows not only the determina-

tion of the terms of asymptotic, but also allows us to see the velocity of convergence in

hydrodynamic limit.

Besides, when studying this problem, we improved the algorithm of asymptotic expan-

sion. Partially, the initial conditions for the regular terms of asymptotic are determined

without the use of singular terms, that is, the regular part of the solution may be found
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by a separate recursive algorithm; scalar part of the regular term is found and without the

use of singular terms. These and other improvements in the algorithm are pointed later.

2. Asymptotic expansion of the solution

Let P(t) = eQt = {pi j(t); i, j = 1,N}. Put π j = limt→∞ pi j(t) and −R0 = {
∫∞

0 (pi j(t) −
π j)dt; i, j = 1,N} = {ri j ; i, j = 1,N}. Let Π be a projecting matrix on the null-space NQ of

the matrix Q. For any vector g we have Πg = ĝ1, where ĝ =
∑N

i=1 giπi, 1= (1, . . . ,1). Then

for the matrix Q the following correlation is true: ΠQΠ= 0 (see [3, Chapter 3]).

Let the matrix A satisfy balance condition

ΠAΠ= 0. (2.1)

We put

R0A∇=
{
ri j
(
a( j),∇

)
, i, j = 1,N

}
=

{ d∑

k=1

ri jak( j)
∂

∂xk
, i, j = 1,N

}
,

A∇R0 =
{(
a(i),∇

)
ri j , i, j = 1,N

}
=

{ d∑

k=1

ak(i)ri j
∂

∂xk
, i, j = 1,N

}
,

A∇R0A∇=
{(
a(i),∇

)
ri j
(
a( j),∇

)
, i, j = 1,N

}

=

{ d∑

k=1

d∑

l=1

ak(i)ri jal( j)
∂

∂xk

∂

∂xl
, i, j = 1,N

}
,

exp0(Qt) := eQt −Π,

âkl =
N∑

i, j=1

πiak(i)ri jal( j)π j .

(2.2)

Here, following [6], we need the condition

âkl > 0. (2.3)

Theorem 2.1. The solution of (1.2) with initial condition uε(x,0) = f (x), where f (x) ∈

C∞(Rd) and integrable on Rd has asymptotic expansion

uε(x, t)= u(0)(x, t) +
∞∑
n=1

εn
(
u(n)(x, t) + v(n)

(
x, t/ε2

))
. (2.4)

Regular terms of the expansion are u(0)(x, t) which represent the solution of equation

∂

∂t
u(0)(x, t)=

d∑

k,l=1

âkl
∂2u(0)(x, t)

∂xk∂xl
(2.5)
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with initial condition u(0)(x,0)= f (x),

u(1)(x, t)= R0A∇u
(0)(x, t)=

[ d∑

k=1

N∑

j=1

ri jak( j)
∂u(0)

j (x, t)

∂xk
, i= 1,N

]
. (2.6)

For k ≥ 2,

u(k)(x, t)= R0

[
∂

∂t
u(k−2)(x, t)−A∇u(k−1)(x, t)

]
+ c(k)(t)

:= R0Φ

[
u(k−2)(x, t),u(k−1)(x, t)

]
+ c(k)(t),

(2.7)

where

c(k)(t)∈NQ, c(k)(t)= c(k)(0) +

∫ t

0
L̂kc

(0)(s)ds. (2.8)

Here

c(0)(t)= u(0)(x, t), L0 =

{ d∑

k=1

d∑

l=1

ak(i)ri jal( j)
∂

∂xk

∂

∂xl
, i, j = 1,N

}
,

L̂k =ΠLkΠ, Lk = (−1)k+1
(
A∇R0

)k
£0, k ≥ 1,

£0 =

{
∂

∂t
−

d∑

k=1

d∑

l=1

ak(i)ri jal( j)
∂

∂xk

∂

∂xl
, i, j = 1,N

}
.

(2.9)

The singular terms of the expansion have the view

v(1)(x, t)= exp0(Qt)A∇ f (x). (2.10)

For k > 1,

v(k)(x, t)= exp0(Qt)v(k)(x,0) +

∫ t

0
exp0

(
Q(t− s)

)
A∇v(k−1)(x,s)ds

−Π

∫∞
t
A∇v(k−1)(x,s)ds.

(2.11)

Initial conditions are

c(0)(0)= f (x),

u(1)(x,0)= R0A∇ f (x), v(1)(x,0)=−
1

2
A∇Π f (x).

(2.12)

For k > 1,

v(k)(x,0)=Φ

[
u(k−2)(x,0),u(k−1)(x,0)

]
,

c(k)(0)=−A∇ṽ(k−1)(x,0),
(2.13)
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where ṽ(1)(x,0)=−R0A∇ f (x),

ṽ(k)(x,0)= R0Φ

[
u(k−2)(x,0),u(k−1)(x,0)

]
+R0A∇ṽ

(k−1)(x,0)

+ΠA∇
(
ṽ(k−1)(x,λ)

)′
λ

∣∣∣
λ=0

,
(
ṽ(k)(x,λ)

)′
λ

∣∣∣
λ=0
= R2

0Φ

[
u(k−2)(x,0),u(k−1)(x,0)

]
+R2

0Q1ṽ
(k−1)(x,0)

+R0A∇
(
ṽ(k−1)(x,λ)

)′
λ

∣∣∣
λ=0

.

(2.14)

Remark 2.2. The initial conditions for the regular terms of asymptotic are determined

without the use of singular terms, that is, the regular part of the solution may be found

by a separate recursive algorithm (cf. [2]).

Remark 2.3. In case of evolution described in Example 1.1 (2.5) has the view

∂

∂t
u(0)(x, t)=

1

(n+ 1)2
△u(0)(x, t) (2.15)

with initial condition u(0)(x,0)= f (x).

Solution of this problem in the class of integrable and infinitely differentiable functions

of exponential growth is

u(0)(x, t)= (2πt)−n/2
1

(n+ 1)2

∫

Rn
e−(n+1)2(〈(x−y),(x−y)〉/2t) f (y)dy. (2.16)

Proof of Theorem 2.1. We substitute the solution uε(x, t) in the view (2.4) to (1.2) and

equal the terms at ε degrees. We will have the system for the regular terms of asymptotic:

Qu(0) = 0,

Qu(1) +A∇u0 = 0,

Qu(k) =
∂

∂t
u(k−2)−A∇u(k−1), k ≥ 2,

(2.17)

and for the singular terms,

∂

∂t
v(1) =Qv(1),

∂

∂t
v(k)−Qv(k) = A∇v(k−1), k > 1.

(2.18)

From (2.17) we have u(0) ∈ NQ, u(1) = R0A∇u(0) + c(1)(t). For u(2) we obtain Qu(2) =

(∂/∂t)u(0)−A∇u(1) = (∂/∂t)u(0)−A∇R0A∇u(0) = (∂/∂t)u(0)−L0u(0).

The solvability condition for u(2) has the view

ΠQΠu(2) = 0=
∂

∂t
u(0)−ΠL0Πu

(0). (2.19)

So, we have (2.5) for u(0)(x, t).
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We note that in [2] solvability condition is written for the equation that contains the

terms u(0)(x, t) and u(1)(x, t). In this paper we have to express u(1)(x, t) through u(0)(x, t)
and only then we can write down solvability condition for the equation that contains the

terms u(0)(x, t) and u(2)(x, t).

For u(1) we have

u(1) = R0A∇u
(0) + c(1)(t). (2.20)

Using the last equation from (2.17) we obtain

u(k)(x, t)= R0

[
∂

∂t
u(k−2)(x, t)−A∇u(k−1)(x, t)

]
+ c(k)(t)

:= R0Φ

[
u(k−2)(x, t),u(k−1)(x, t)

]
+ c(k)(t),

(2.21)

where c(k)(t)∈NQ.

To find c(k)(t) we will use the fact that u(0) ∈NQ. We put c(0)(t)= u(0)(x, t). From the

equation Qu(2) = (∂/∂t)c(0)(t)−L0c(0)(t)= £0c(0)(t), we have

u(2) = R0£0c
(0)(t). (2.22)

For u(3),

Qu(3) =
∂

∂t
c(1)(t)−A∇u(2) =

(
c(1)(t)

)′
−A∇R0£0c

(0)(t)= £1c
(0)(t). (2.23)

From the solvability condition ΠQΠu(3)=0=(∂/∂t)c(1)(t)−ΠA∇R0£0Πc(0)(t)=(c(1)(t))′−

L̂1c(0)(t) we find

c(1)(t)= c(1)(0) +

∫ t

0
L̂1c

(0)(s)ds, (2.24)

and u(3) = R0£1c(0)(t), where £1 = (−L1)c(0)(t), as soon as R0L̂1 = 0.

By induction

c(k)(t)= c(k)(0) +

∫ t

0
L̂kc

(0)(s)ds, (2.25)

where L̂k =ΠLkΠ, Lk = (−1)k+1(A∇R0)k£0,£0 = (∂/∂t)−L0, k ≥ 2.

In contrast to [2], where the equations for c(k)(t) were found, in this paper we may

find c(k)(t) explicitly through c(0)(t).

For the singular terms we have from (2.18),

v(1)(x, t)= exp0(Qt)v(1)(x,0). (2.26)

Here we should note that the ordinary solution v(1)(x, t) = exp(Qt)v(1)(x,0) is cor-

rected by the term−Πv(1)(x,0) in order to obtain the following limit: limt→∞ v(1)(x, t)= 0.

This limit is true for all singular terms due to uniform ergodicity of switching Markovian

process.
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For the homogenous part of the second equation of the system, we have the following

solution:

v(k)(x, t)= exp0(Qt)v(k)(x,0). (2.27)

But as soon as the equation is not homogenous, the corresponding solution should be

v(k)(x, t)= exp0(Qt)v(k)(x,0) +

∫ t

0
exp0

(
Q(t− s)

)
A∇v(k−1)(x,s)ds. (2.28)

But here we should again correct the solution in order to obtain the limit

limt→∞ v(k)(x, t)= 0, by the term −Π
∫∞
t A∇v(k−1)(x,s)ds.

And so the solution is

v(k)(x, t)= exp0(Qt)v(k)(x,0) +

∫ t

0
exp0

(
Q(t− s)

)
A∇v(k−1)(x,s)ds

−Π

∫∞
t
A∇v(k−1)(x,s)ds.

(2.29)

We should finally find the initial conditions for the regular and singular terms.

We put c(0)(t)= u(0)(x, t), so c(0)(0)= u(0)(x,0)= f (x).

From the initial condition for the solution uε(x,0) = u(0)(x,0) = ( f (x), . . . , f (x)), we

have u(k)(x,0) + v(k)(x,0) = 0, k ≥ 1. We rewrite this equation for the null-space NQ of

matrix Q:

Πu(k)(x,0) +Πv(k)(x,0)= 0, k ≥ 1, (2.30)

and the space of values RQ:

(I −Π)u(k)(x,0) + (I −Π)v(k)(x,0)= 0, k ≥ 1. (2.31)

As we proved for k > 1,

u(k)(x,0)= R0Φ

[
u(k−2)(x,0),u(k−1)(x,0)

]
+ c(k)(0)

= (I −Π)Φ
[
u(k−2)(x,0),u(k−1)(x,0)

]
+Πc(k)(0),

v(k)(x,0)= (I −Π)v(k)(x,0)−Π

∫∞
0
A∇v(k−1)(x,s)ds.

(2.32)

Functions v(k−1)(x,s), u(k−2)(x,0), u(k−1)(x,0) are known from the previous steps of

induction. So, we have found Πv(k)(x,0) in (2.30) and (I −Π)u(k)(x,0) in (2.31).

Now we may use the correlations (2.30), (2.31) to find the unknown initial conditions

c(k)(0)=−

∫∞
0
A∇v(k−1)(x,s)ds,

v(k)(x,0)=Φ

[
u(k−2)(x,0),u(k−1)(x,0)

]
.

(2.33)
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In [2], an analogical correlation was found for c(k)(0). To find c(k)(0) explicitly and

without the use of singular terms, we will find Laplace transform for the singular term.

The following lemma is true.

Lemma 2.4. Laplace transform for the singular term of asymptotic expansion

ṽ(k)(x,λ)=

∫∞
0
e−λsv(k)(x,s)ds (2.34)

has the view

ṽ(1)(x,λ)=
(
λ−Π+

(
R0 +Π

)−1
)−1[

−R0A∇ f (x)
]
,

ṽ(k)(x,λ)=
(
λ−Π+

(
R0 +Π

)−1
)−1

Φ

[
u(k−2)(x,0),u(k−1)(x,0)

]

+
(
λ−Π+

(
R0 +Π

)−1
)−1

A∇ṽ(k−1)(x,λ)

+
1

λ
ΠA∇

[
ṽ(k−1)(x,λ)− ṽ(k−1)(x,0)

]
,

(2.35)

where

ṽ(1)(x,0)=−R0A∇ f (x),
(
ṽ(1)(x,λ)

)′
λ

∣∣∣
λ=0
=−R2

0A∇Π f (x),

ṽ(k)(x,0)= R0Φ

[
u(k−2)(x,0),u(k−1)(x,0)

]
+R0A∇ṽ

(k−1)(x,0)

+ΠA∇
(
ṽ(k−1)(x,λ)

)′
λ

∣∣∣
λ=0

,
(
ṽ(k)(x,λ)

)′
λ

∣∣∣
λ=0
= R2

0Φ

[
u(k−2)(x,0),u(k−1)(x,0)

]
+R2

0Q1ṽ
(k−1)(x,0)

+R0A∇
(
ṽ(k−1)(x,λ)

)′
λ

∣∣∣
λ=0

.

(2.36)

Proof.

ṽ(1)(x,λ)=

∫∞
0
e−λsv(1)(x,s)ds=

∫∞
0
e−λs

[
eQs−Π

]
ds v(1)(x,0)

=
(
λ−Π+

(
R0 +Π

)−1
)−1[

−A∇ f (x)
]
,

(2.37)

where the correlation for the resolvent was found in [3]. Moreover,

ṽ(1)(x,0)=−R0A∇ f (x),
(
ṽ(1)(x,λ)

)′
λ

∣∣∣
λ=0
= lim

λ→0

R(λ)−R0

λ

[
−A∇ f (x)

]
=−R2

0A∇ f (x).
(2.38)
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For the next terms we have

ṽ(k)(x,λ)=
(
λ−Π+

(
R0 +Π

)−1
)−1

Φ

[
u(k−2)(x,0),u(k−1)(x,0)

]

+
(
λ−Π+

(
R0 +Π

)−1
)−1

A∇ṽ(k−1)(x,λ)

+
1

λ
ΠA∇

[
ṽ(k−1)(x,λ)− ṽ(k−1)(x,0)

]
.

(2.39)

Here the last term was found using the following correlation:

∫∞
0
e−λs

∫∞
s
A∇v(k−1)(x,τ)dτ ds=

∫∞
0

∫ τ

0
e−λsA∇v(k−1)(x,τ)ds dτ

=

∫∞
0

(
−

1

λ

)(
e−λτ − 1

)
A∇v(k−1)(x,τ)dτ

=
1

λ
A∇

[
ṽ(k−1)(x,λ)− ṽ(k−1)(x,0)

]
.

(2.40)

So,

ṽ(k)(x,0)= R0Φ

[
u(k−2)(x,0),u(k−1)(x,0)

]
+R0A∇ṽ

(k−1)(x,0)

+ΠA∇
(
ṽ(k−1)(x,λ)

)′
λ

∣∣∣
λ=0

,
(
ṽ(k)(x,λ)

)′
λ

∣∣∣
λ=0
= R2

0Φ

[
u(k−2)(x,0),u(k−1)(x,0)

]

+R2
0Q1ṽ

(k−1)(x,0) +R0A∇
(
ṽ(k−1)(x,λ)

)′
λ

∣∣∣
λ=0

− lim
λ→0

{
1

λ2
ΠA∇

[
ṽ(k−1)(x,λ)− ṽ(k−1)(x,0)

]

−
1

λ
ΠA∇

(
ṽ(k−1)(x,λ)

)′
λ

}
,

(2.41)

where the last limit tends to 0.

Lemma is proved. �

So, the obvious view of the initial condition for the c(k)(t) is

c(k)(0)=−A∇ṽ(k−1)(x,0). (2.42)

Theorem is proved. �

3. Estimate of the remainder

Let function f (x, i) in the definition of the functional uε(x, t) belong to Banach space

twice continuously differentiable by x functions C2(Rd ×E).

We write (1.2) in the view

ũε2(x, t)= uε(x, t)−uε2(x, t), (3.1)
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where uε2(x, t) = u(0)(x, t) + ε(u(1)(x, t) + v(1)(x, t)) + ε2(u(2)(x, t) + v(2)(x, t)), and the ex-

plicit view of the functions u(i)(x, t), v( j)(x, t), i= 0,2, j = 1,2 is given in Theorem 2.1.

By [3, Theorem 3.2.1], in Banach space C2(Rd × E) for the generator of Markovian

evolution Lε = ε−2Q + ε−1A∇, there exists bounded inverse operator (Lε)−1 = ε2[Q +

εA∇]−1.

We substitute the function (3.1) into (1.2):

d

dt
ũε−Lεũε =

d

dt
uε2−Lεuε2 := εwε. (3.2)

Here εwε = ε[(d/dt)((u(1) + v(1)) + ε(u(2) + v(2)))− (ε−1Q(u(1) + v(1)) +Q(u(2) + v(2)) +

A∇(u(1) + v(1)) + εA∇(u(2) + v(2)))].

The initial condition has the order ε, so we may write it in the view

ũε(0)= εũε(0). (3.3)

Let Lεt f (x, i)= E[ f (xε(t),ξε(t/ε2)) | xε(0)= x,ξε(0)= i] be the semigroup correspond-

ing to the operator Lε.

Theorem 3.1. The following estimate is true for the remainder (3.1) of the solution of (1.2):

∥∥ũε(t)
∥∥≤ ε

∥∥ũε(0)
∥∥exp

{
εL
∥∥wε

∥∥}, (3.4)

where L= 2‖(Lε)−1‖.

Proof. The solution of (3.2) is

ũε2(t)= ε
[
Lεt ũ

ε(0) +

∫ t

0
Lεt−sw

ε(s)ds
]
. (3.5)

For the semigroup we have Lεt = I +Lε
∫ t

0 L
ε
sds, so

∫ t
0 L

ε
sds= (Lε)−1(Lεt − I).

Using Gronwell-Bellman inequality [1], we obtain

∥∥ũε(t)
∥∥≤ εLεt

∥∥ũε(0)
∥∥exp

{
ε

∫ t

0
Lεsw

ε(t− s)ds
}
≤ εLεt

∥∥ũε(0)
∥∥exp

{
εL
∥∥wε

∥∥}, (3.6)

where L= 2‖(Lε)−1‖.

Theorem is proved. �

Remark 3.2. For the remainder of asymptotic expansion (2.4) of the view,

ũεN+1(x, t) := uε(x, t)−uεN+1(x, t), (3.7)

where uεN+1(x, t)= u(0)(x, t) +
∑N+1

n=1 ε
n(u(n)(x, t) + v(n)(x, t)) we have analogical estimate

∥∥ũεN+1(t)
∥∥≤ εN

∥∥ũε(0)
∥∥exp

{
εNL

∥∥wε
N

∥∥}, (3.8)

where (d/dt)uεN+1−LεuεN+1 := εNwε
N .
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