
Asymptotic expansion of β matrix models in the multi-cut regime

G. Borot 1, A. Guionnet 2
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Abstract

We push further our study of the all-order asymptotic expansion in β matrix models with a

confining, offcritical potential, in the regime where the support of the equilibrium measure is a reunion

of segments. We first address the case where the filling fractions of those segments are fixed, and show

the existence of a 1{N expansion to all orders. Then, we study the asymptotic of the sum over filling

fractions, in order to obtain the full asymptotic expansion for the initial problem in the multi-cut

regime. We describe the application of our results to study the all-order small dispersion asymptotics

of solutions of the Toda chain related to the one hermitian matrix model (β “ 2) as well as orthogonal

polynomials outside the bulk.
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1 Introduction

This paper deals with the all-order asymptotic expansion for the partition function and multilinear

statistics of β matrix models. These laws represent a generalization of the joint distribution of the

N eigenvalues of the Gaussian Unitary Ensemble [Meh04]. The convergence of the empirical measure

of the eigenvalues is well-known (see e.g. [dMPS95]), and we are interested in the all-order finite size

corrections to the moments of this empirical measure. This problem has received a lot of attention in

the regime when the eigenvalues condensate on a single segment, usually called the one-cut regime. In

this case, a central limit theorem for linear statistics has been proved by Johansson [Joh98], while a full

1{N expansion was derived first for β “ 2 [APS01, EM03], then for any β ą 0 in [BG11]. On the other

hand, the multi-cut regime remained poorly understood at a rigorous level until recently, except for

β “ 2 which is related to integrable systems, and can be treated with the powerful asymptotic analysis

techniques for Riemann-Hilbert problems, see e.g. [DKM`99b]. Nevertheless, a heuristic derivation

of the asymptotic expansion for the multi-cut regime was proposed to leading order by Bonnet, David

and Eynard [BDE00], and extended to all orders in [Eyn09], in terms of Theta functions and their

derivatives. It features oscillatory behavior, whose origin lies in the tunneling of eigenvalues between

the different connected components of the support. These heuristics, initially written for β “ 2,

trivially extend to β ą 0, see e.g. [Bor11].

Lately, M. Shcherbina has established this asymptotic expansion up to terms of order 1 [Shc11,

Shc12]. This allows for instance the observation that linear statistics do not always satisfy a central

limit theorem (this fact was already noticed for β “ 2 in [Pas06]). In this paper, we go beyond the

Op1q and put the heuristics of [Eyn09] to all orders on a firm mathematical ground. As a consequence

for β “ 2, we can establish the full asymptotic expansion outside of the bulk for the orthogonal

polynomials with real-analytic potentials, and the all-order asymptotic expansion of certain solutions

of the Toda lattice in the continuum limit. The same method would allow to justify rigorously the

asymptotics of skew-orthogonal polynomials (β “ 1 and 4) outside of the bulk, derived heuristically

in [Eyn01].

1.1 Definitions

We consider the probability measure µVN,β on BN given by:

dµV ;B
N,βpλq “

1

ZV ;B
N,β

N
ź

i“1

dλi 1Bpλiq e
´
βN
2 V pλiq

ź

1ďiăjďN

|λi ´ λj |
β . (1.1)

B is a reunion of closed intervals of RYt˘8u, β is a positive number, and ZV ;B
N,β is the partition function

so that (1.1) has total mass 1. This model is usually called the β ensemble [Meh04, DE02, For10]. We

introduce the unnormalized empirical measure MN of the eigenvalues:

MN “

N
ÿ

i“1

δλi , (1.2)

and we consider several types of statistics for MN . We sometimes denote Λ “ diagpλ1, . . . , λN q.

Correlators

We introduce the Stieltjes transform of the n-th order moments of the empirical measure, called

disconnected correlators:

ĂWnpx1, . . . , xnq “ µV ;B
N,β

”´

ˆ
dMN pξ1q

x1 ´ ξ1
¨ ¨ ¨

ˆ
dMN pξnq

xn ´ ξn

¯ı

. (1.3)
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They are holomorphic functions of xi P CzB. For reasons related to concentration of measures, it is

more convenient to consider the correlators to study large N asymptotics:

Wnpx1, . . . , xnq “ Bt1 ¨ ¨ ¨ Btn

´

lnZ
V´ 2

βN

řn
i“1

ti
xi´‚

;B

N,β

¯
ˇ

ˇ

ˇ

ti“0

“ µV ;B
N,β

”

n
ź

i“1

Tr
1

xj ´ Λ

ı

c
. (1.4)

By construction, the coefficients of their expansion as a Laurent series in the variable xi Ñ8 give the

n-th order cumulants of MN . If I is a set, we introduce the notation xI “ pxiqiPI for a set of variables

indexed by I. The two type of correlators are related by:

ĂWnpx1, . . . , xnq “
n
ÿ

s“1

ÿ

J1 9Y¨¨¨ 9YJs“I

s
ź

i“1

W|Ji|pxJiq. (1.5)

If ϕn is an analytic function in n variables in a neighborhood of Bn, the n-linear statistics can be

deduced as contour integrals of the disconnected correlators:

µV ;B
N,β

”

N
ÿ

i1,...,in“1

ϕnpλi1 , . . . , λinq
ı

“

˛
B

dξ1
2iπ

¨ ¨ ¨

˛
B

dξn
2iπ

ϕnpξ1, . . . , ξnqĂWnpξ1, . . . , ξnq. (1.6)

We remark that the knowledge of the correlators for a smooth family of potentials pVtqt determines

the partition function up to an integration constant, since:

Bt lnZVt;BN,β “ ´
βN

2
µVt;BN,β

”

N
ÿ

i“1

BtVtpλiq
ı

“ ´
βN

2

˛
B

dξ

2iπ
BtVtpξqW1pξq (1.7)

Kernels

Let c be a n-uple of non zero complex numbers. We introduce the n-kernels:

Kn,cpx1, . . . , xnq “ µV ;B
N,β

«

n
ź

j“1

detcj pxj ´ Λq

ff

“
Z
V´ 2

βN

řn
j“1 cj lnpxj´‚q;B

N,β

ZV ;B
N,β

. (1.8)

When cj are integers, the kernels are holomorphic functions of xj P CzB. When cj are not integers, the

kernels are multivalued holomorphic functions of xj in CzB, with monodromies around the connected

components of B and around 8.

In particular, for β “ 2, K1,1pxq is the monic N -th orthogonal polynomial associated to the weight

1Bpxq e
´N V pxqdx on the real line, and K2,p1,´1qpx, yq is the N -th Christoffel-Darboux kernel associated

to those orthogonal polynomials, see Section 2.

1.2 Equilibrium measure and multi-cut regime

By standard results of potential theory, see [Joh98] or the textbooks [Dei99, Theorem 6] or [AGZ10,

Theorem 2.6.1 and Corollary 2.6.3], we have:

Theorem 1.1 Assume that V : BÑ R is a continuous function, and if τ8 P B, assume that:

lim inf
xÑτ8

V pxq

2 ln |x|
ą 1. (1.9)
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If V depends on N , assume also that V Ñ V t0u in the space of continuous function over B for the

sup norm. Then, the normalized empirical measure LN “ N´1MN converges almost surely and in

expectation towards the unique probability measure µeq :“ µV ;B
eq on B which minimizes:

Erµs “

ˆ
dµpξqV t0upξq ´

¨
dµpξqdµpηq ln |ξ ´ η|. (1.10)

µeq has compact support, denoted S. It is characterized by the existence of a constant C such that:

@x P B, 2

ˆ
B

dµeqpξq ln |x´ ξ| ´ V t0upxq ď C, (1.11)

with equality realized µeq almost surely. Moreover, if V t0u is real-analytic in a neighborhood of B, the

support consists of a finite disjoint union of segments:

S “
g
ď

h“0

Sh, Sh “ rα
´
h , α

`
h s, (1.12)

µeq has a density of the form:

dµeq

dx
“
Spxq

π

g
ź

h“0

pα`h ´ xq
ρ`h {2px´ α´h q

ρ´h {2, (1.13)

where ρ‚h is `1 (resp. ´1) if the corresponding edge is soft (resp. hard), and S is analytic in a

neighborhood of S.

The goal of this article is to establish an all-order expansion of the partition function, the correlators

and the kernels, in all such situations.

1.3 Assumptions

We will refer throughout the text to the following set of assumptions.

Hypothesis 1.1

‚ (Regularity) V : BÑ R is continuous, and if V depends on N , it has a limit V t0u in the space

of continuous functions over rb´, b`s for the sup norm.

‚ (Confinement) If τ8 P B, lim infxÑτ8
V pxq

2 ln |x| ą 1.

‚ (g ` 1-cut regime) The support of µV ;B
eq is of the form S “

Ťg
h“0 Sh where Sh “ rα

´
h , α

`
h s with

α´h ă α`h .

‚ (Control of large deviations) The effective potential UV ;Bpxq “ V pxq ´ 2
´

ln |x ´ ξ|dµV ;B
eq pξq

achieves its minimum value on S only.

‚ (Offcriticality) In the equilibrium measure (1.13), Spxq ą 0 in S.

At some point, we shall need to add a stronger assumption concerning off-criticality:

Hypothesis 1.2 The same as Hypothesis 1.3, and:

‚ (Strong off-criticality) For any soft edge α‚h, we have S1pα‚hq ‰ 0.
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We will also require regularity of the potential:

Hypothesis 1.3

‚ (Analyticity) V extends as a holomorphic function in some open neighborhood U of S.

‚ (1{N expansion of the potential) There exists a sequence pV tkuqkě0 of holomorphic functions in

U and constants pvtkuqkě0 such that, for any K ě 0,

sup
ξPU

ˇ

ˇ

ˇ
V pξq ´

K
ÿ

k“0

N´k V tkupξq
ˇ

ˇ

ˇ
ď vtKuN´pK`1q. (1.14)

In Section 6, we shall weaken Hypothesis 1.3 by allowing complex perturbations of order 1{N and

harmonic functions instead of analytic functions:

Hypothesis 1.4 V : BÑ C can be decomposed as V “ V1 ` V2 where:

‚ For j “ 1, 2, Vj extends to a holomorphic function in some neighborhood U of B. There exists a

sequence of holomorphic functions pVtkuj qkě0 and constants pv
tku
j qkě0 so that, for any K ě 0:

sup
ξPU

ˇ

ˇ

ˇ
Vjpξq ´

K
ÿ

k“0

N´k Vtkuj pξq
ˇ

ˇ

ˇ
ď v

tKu
j N´pK`1q. (1.15)

‚ V t0u “ Vt0u1 ` Vt0u2 is real-valued on B.

The topology for which we study the large N expansion of the correlators is described in § 5.1, and

amounts to controlling the (moments of order m)ˆCm uniformly in m for some constant C ą 0. We

now describe our strategy and announce our results.

1.4 Main result with fixed filling fractions

Before coming to the multi-cut regime, we analyze a different model where the number of λ’s in a

small enlargment of Sh is fixed. Let A “
Ťg
h“0 Ah where Ah “ ra

´
h , a

`
h s are pairwise disjoint segments

such that a´h ă α´h ă α`h ă a`h . We introduce the set:

Eg “
!

ε Ps0, 1rg,
g
ÿ

h“1

εh ă 1
)

. (1.16)

If ε P Eg, we denote ε0 “ 1 ´
řg
h“1 εh, we let N “ ptNε0u, tNε1u, . . . , tNεguq, and consider the

probability measure on
śg
h“0 A

Nh
h :

dµV ;A
N,ε,βpλq “

1

ZV ;A
N,ε,β

g
ź

h“0

”

Nh
ź

i“1

dλh,i 1Ahpλh,iq e
´
βN
2 V pλh,iq

ź

1ďiăjďN

|λh,i ´ λh,j |
β
ı

ˆ
ź

0ďhăh1ďg

ź

1ďiďNh
1ďjďNh1

|λh,i ´ λh1,j |
β . (1.17)

The empirical measure MN,ε and the correlators Wn,εpx1, . . . , xnq for this model are defined as in

§ 1.1. We call εh the filling fraction of Ah. It follows from the definitions that:˛
Ah

dξ

2iπ
Wn,εpξ, x2, . . . , xnq “ δn,1Nεh. (1.18)

We will refer to (1.1) as the initial model, and to (1.17) as the model with fixed filling fractions.

Standard results from potential theory imply:
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Theorem 1.2 Assume V regular and confining on A. Then, the normalized empirical measure

N´1MN,ε converges almost surely and in expectation towards the unique probability measure µeq,ε

on A which minimizes:

Erµs “

¨ ˆ

1

2
pV t0upξq ` V t0upηqq ´ ln |ξ ´ η|

˙

dµpξqdµpηq . (1.19)

among probability measures with partial masses µrAhs “ εh. They are characterized by the existence

of constants Cε,h such that:

@x P Ah, 2

ˆ
B

dµeq,εpξq ln |x´ ξ| ´ V t0upxq ď Cε,h, (1.20)

with equality realized µeq,ε almost surely. µeq,ε can be decomposed as a sum of positive measures µeq,ε,h

having compact support in Ah, denoted Sε,h. Moreover, if V t0u is real-analytic in a neighborhood of

A, Sε,h consists of a finite reunion of segments.

µeq appearing in Theorem 1.1 coincides with µeq,ε‹ for the optimal value ε‹ “ pµeqrAhsq1ďhďg, and in

this case Sε‹,h is actually the segment rα´h , α
`
h s. The key point is that, for ε close enough to ε‹, the

support Sε,h remains connected, and the model with fixed filling fraction enjoys a 1{N expansion.

Theorem 1.3 If V satisfies Hypotheses 1.1 and 1.4 on A, there exists t ą 0 such that, uniformly for

ε P Eg such that |ε´ ε‹| ă t, we have an expansion for the correlators:

Wn,εpx1, . . . , xnq “
ÿ

kěn´2

N´kW tku
n,ε px1, . . . , xnq `OpN

´8q. (1.21)

Up to a fixed OpN´Kq and for a fixed n, (1.21) holds uniformly for x1, . . . , xn in compact regions of
pCzA. Besides, if the strong off-criticality of Hypothesis 1.2 is satisfied, W

tku
n,ε are smooth functions of

ε close enough to ε‹.

We prove this theorem, independently of the nature soft/hard of the edges, in Section 5 with real-

analytic potential (i.e. Hypothesis 1.3 instead of 1.4). The result is extended to harmonic potentials

(i.e. Hypothesis 1.4) in Section 6.2. Actually, we provide in Proposition 5.5 an explicit control of the

errors in terms of the distance of x1, . . . , xk to A, and its proof makes clear that the expansion of the

correlators is not expected to be uniform for x1, . . . , xn chosen in a compact of pCzA independently of

n and K.

We then compute in Section 7.1 the expansion of the partition function thanks to the expansion

of W1,ε, by a two-step interpolation preserving Hypotheses 1.2-1.4 between our potential V and a

reference situation where the partition function is exactly computable for finite N , in terms of Selberg

integrals.

Theorem 1.4 If V satisfies Hypotheses 1.2 and 1.4 on A, there exists t ą 0 such that, uniformly for

ε P Eg such that |ε´ ε‹| ă t, we have:

N !
śg
h“0pNεhq!

ZV ;A
N,ε,β “ N pβ{2qN`e exp

´

ÿ

kě´2

N´k F
tku
ε,β `OpN

´8q

¯

, (1.22)

with e “
řg
h“0 eρ´h ,ρ

`
h

, where:

e`` “
3` β{2` 2{β

12
, e`´ “ e´` “

β{2` 2{β

6
, e´´ “

´1` 2{β ` β{2

4
, (1.23)

and we recall ρ‚h “ 1 for a soft edge and ρ‚h “ ´1 for a hard edge. Besides, F
tku
ε,β is a smooth function

of ε close enough to ε‹, and at the value ε “ ε‹, the derivative of F
t´2u
ε,β vanishes and its Hessian is

negative definite.
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Up to a given OpN´Kq, all expansions are uniform with respect to parameters of the potential and

of ε chosen in a compact set so that the assumptions hold. The power of N in prefactor is universal

in the sense that it only depends on the nature of the edges, and its value can be extracted from the

large N expansion of Selberg type integrals. Theorems 1.3-1.4 are the generalizations to the fixed

filling fraction model of our earlier results about existence of the 1{N expansion in the one-cut regime

[BG11] (see also [Joh98, APS01, EM03, GMS07, KS10] for previous results concerning the one-cut

regime in β “ 2 or general β ensembles).

1.5 Main results in the multi-cut regime

Let us come back to the initial model (1.1), and take A “
Ťg
h“0 Ah Ď B a small enlargement of

the support S as in the previous paragraph. It is well-known that the partition function ZV ;B
N,β can

be replaced by ZV ;A
N,β up to exponentially small corrections when N is large (see [] for results in this

direction, and we give a proof for completeness in § 3.1 below). The latter can be decomposed as a

sum over all possible ways of sharing the λ’s between the segments Ah, namely:

ZV,AN,β “
ÿ

0ďN1,...NgďN

N !
śg
h“0Nh!

ZV ;A
N,N{N,β , (1.24)

where we have denoted N0 “ N ´
řg
h“1Nh the number of λ’s put in the segment A0. So, we can use

our results for the model with fixed filling fractions to analyze the asymptotic behavior of each term

in the sum, and then find the asymptotic expansion of the sum taking into account the interference

of all contributions.

In order to state the result, we need to introduce the Siegel Theta function with characteristics

µ,ν P Cg. If τ be a g ˆ g matrix of complex numbers such that Im τ ą 0, it is the entire function of

v P Cg defined by the converging series:

ϑ

„

µ
ν



pv|τ q “
ÿ

mPZg
exp

´

iπpm` µq ¨ τ ¨ pm` µq ` 2iπpv ` νq ¨ pm` µq
¯

. (1.25)

Among its essential properties, we mention:

‚ for any characteristics µ,ν, it satisfies the diffusion-like equation 4iπBτh,h1ϑ “ BvhBvh1ϑ.

‚ it is a quasiperiodic function on the lattice Zg ‘ τ pZgq: for any m0,n0 P Zg,

ϑ

„

µ
ν



pv `m0 ` τ ¨n0|τ q “ exp
`

2iπm0 ¨µ´ 2iπn0 ¨ pv ` νq ´ iπn0 ¨ τ ¨n0

˘

ϑ

„

µ
ν



pv|τ q. (1.26)

‚ it has a nice transformation law under τ Ñ pAτ `BqpCτ `Dq´1 where A,B,C,D are the

g ˆ g blocks of a 2g ˆ 2g symplectic matrix [Mum84].

‚ when τ is the matrix of periods of a genus g Riemann surface, it satisfies the Fay identity [Fay70].

We define the operator ∇v acting on the variable v of this function. For instance, the diffusion

equation takes the form 4iπBτϑ “ ∇b2
v ϑ.

Theorem 1.5 Assume Hypotheses 1.2 and 1.4. Let ε‹ “ pµeqrShsq1ďhďg. Given the coefficients of

the expansion in the fixed filling fraction model from Theorem 1.4, we denote pF
tku
‹,β q

p`q their tensor of
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`-th order derivatives with respect to ε, evaluated at ε‹. Then, the partition function has an asymptotic

expansion of the form:

ZV ;A
N,β “ ZV ;A

N,ε‹,β

#

´

ÿ

kě0

N´k T
tku
‹,β

“∇v
2iπ

‰

¯

ϑ

„

´Nε‹
0



pv‹,β |τ‹,βq `OpN
´8q

+

. (1.27)

In this expression, if X is a vector with g components, T
t0u
ε,β rXs “ 1, and for k ě 1:

T
tku
ε,β rXs “

k
ÿ

r“1

1

r!

ÿ

`1,...,`rě1
m1,...,mrě´2
řr
i“1 `i`mi“k

´ r
â

i“1

pF
tmiu
ε,β qp`iq

`i!

¯

¨Xbp
řr
i“1 `iq, (1.28)

where ¨ denotes the contraction of tensors. We have also introduced:

v‹,β “
pF
t´1u
‹,β q1

2iπ
, τ‹,β “

pF
t´2u
‹,β q2

2iπ
. (1.29)

Being more explicit but less compact, we may rewrite:

T
tku
‹,β

“∇v
2iπ

‰

ϑ

„

´Nε‹
0



pv‹,β |τ q “
k
ÿ

r“1

1

r!

ÿ

`1,...,`rě1
m1,...,mrě´2
řr
i“1 `i`mi“k

´ r
â

i“1

pF
tmiu
ε,β qp`iq

`i!

¯

(1.30)

ˆ

´

ÿ

mPZg
pm´Nε‹q

bp
řr
i“1 `iq eiπpm´Nε‹q¨τ‹,β¨pm´Nε‹q`2iπv‹,β ¨pm´Nε‹q

¯

.

For β “ 2, this result has been derived heuristically to leading order in [BDE00], and to all orders

in [Eyn09], and the arguments there can be extended straightforwardly to all values of β, see e.g.

[Bor11]. Our work justifies their heuristic argument. We exploit the Schwinger-Dyson equations for

the β ensemble with fixed filling fractions taking advantage of a rough control on the large N behavior

of the correlators. The result of Theorem 1.5 has been derived up to op1q by Shcherbina [Shc12] for real-

analytic potentials, with different techniques, based on the representation of
ś

1ďhăh1ďg |λh,i´λh1,j |
β ,

which is the exponential of a quadratic statistic, as expectation value of a linear statistics coupled

to a Brownian motion. The rough a priori controls on the correlators do not allow at present the

description of the op1q by such methods. The results in [Shc12] were also written in a different form:

F t0u was identified with a combination of Fredholm determinants (see also the physics paper [WZ06]),

whereas this representation does not come naturally in our approach). Also, the step of the analysis

of Section 8 consisting in replacing the sum over nonnegative integers such that N0` . . .`Ng “ N in

(1.24), by a sum over N P Zg, thus reconstructing the theta function, was not performed in [Shc12]

Let us make a few remarks. The 2iπ appears because we used the standard definition of the Siegel

theta function, and should not hide the fact that all terms in (1.30) are real-valued. Here, the matrix:

τ‹,β “
HessianpF

t´2u
‹,β q

2iπ
(1.31)

involved in the theta function has purely imaginary entries, and Im τ‹,β is definite positive according

to Theorem 1.4, hence the theta function in the right-hand side makes sense. Notice also that for

it is Zg-periodic in its characteristics µ, hence we can replace ´Nε‹ by ´Nε‹ ` tNε‹u, and this is

responsible for modulations of frequency Op1{Nq in the asymptotic expansion, and thus breakdown of

the 1{N expansion. Still, ”subsequential” asymptotic expansions in 1{N may occur. For instance, in
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a symmetric two cuts (g “ 1) model, we have ε‹ “ 1{2 and thus the right-hand side is an asymptotic

expansion in powers of 1{N depending on the parity of N .

Let us give the two first orders of (1.30):

T
t1u
‹,β rXs “

1

6
pF
t´2u
‹,β q3 ¨Xb3 `

1

2
pF
t´1u
‹,β q2 ¨Xb2 ` pF

t0u
‹,β q

1 ¨X, (1.32)

and:

T
t2u
‹,β rXs “

1

72

“

pF
t´2u
‹,β q3

‰b2
¨Xb6 `

1

12

“

pF
t´2u
‹,β q3 b pF

t´1u
‹,β q2

‰

¨Xb5

`

´1

6

“

pF
t´2u
‹,β q3 b pF

t0u
‹,β q

1
‰

`
1

8

“

pF
t´1u
‹,β q2

‰b2
`

1

24
pF
t´2u
‹,β qp4q

¯

¨Xb4

`

´1

2

“

pF
t´1u
‹,β q2 b pF

t0u
‹,β q

1
‰

`
1

6
pF
t´1u
‹,β q3

¯

¨Xb3

`

´1

2

“

pF
t0u
‹,β q

1
‰b2

`
1

2
pF
t0u
‹,β q

2
¯

¨Xb2 ` pF
t1u
‹,β q

1 ¨X. (1.33)

If the potential V is independent of β, we observe that ε‹ does not depend on β, and it is well-known

[CE06] that the coefficients in the expansion (1.22) have a simple dependence in β:

F
tku
ε,β “

tk{2u`1
ÿ

G“0

ˆ

β

2

˙1´G
´

1´
2

β

¯k`2´2G

F rG,k`2´2Gs
ε . (1.34)

In particular, those coefficients vanish for odd k. The first few ones are:

F
t´2u
ε,β “

β

2
F r0,0sε , F

t´1u
ε,β “

´β

2
´ 1

¯

F r0,1sε , F
t0u
ε,β “ F r1,0sε `

´β

2
`

2

β
´ 2

¯

F r0,2sε , (1.35)

and have been first identified in [WZ06]. In particular, for the argument of the theta function:

v‹,β “
´β

2
´ 1

¯

pF r0,1s‹ q1

2iπ
, τ‹,β “

β

2

pF r0,0s‹ q2

2iπ
. (1.36)

Similarly for the correlators in the fixed filling fraction model, the dependence in β takes the form:

W tku
n,ε px1, . . . , xnq “

tpk´n`2q{2u
ÿ

G“0

ˆ

β

2

˙1´G´n
´

1´
2

β

¯k`2´2G´n

WrG;k`2´2G´ns
n,ε px1, . . . , xnq. (1.37)

All coefficients F
rG,Ks
ε and functions W

rG,Ks
n,ε px1, . . . , xnq can be computed with the β deformation of

the topological recursion formulated by Chekhov and Eynard [CE06], applied to the spectral curve

determined by the equilibrium measure µeq,ε andW
t0u
2,ε , which encodes the covariance of linear statistics

at leading order in the model with fixed filling fractions. We stress now a point of this theory relevant in

the present case. When V is a polynomial and ε is close enough to ε‹, the density of the equilibrium

measure can be analytically continued to a hyperelliptic curve of genus g, denoted Cε and called

spectral curve. Its equation is:

y2 “

g
ź

h“0

px´ α´ε,hq
ρ`h px´ α`ε,hq

ρ´h . (1.38)

Let Ah be the cycle in Cε surrounding Aε,h “ rα
´
ε,h, α

`
ε,hs. The family A “ pAhq1ďhďg can be completed

by a family of cycles B so that pA,Bq is a symplectic basis of homology of Cε. The correlators W
rG,Ks
n,ε

are meromorphic functions on Cnε , computed recursively by a residue formula on Cε. In particular, the

analytic continuation of

ω0
2px1, x2q “Wr0,0s

2,ε px1, x2qdx1dx2 `
2

β

dx1 dx2

px1 ´ x2q
2

(1.39)
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is the unique 2-form on Cε, which has vanishing A periods, and has for only singularity a double

pole with leading coefficient 2
β and without residue at coinciding points. Then, it is a property of

the topological recursion that the derivatives of F
rG,Ks
ε can be computed as B-cycle integrals of the

correlators: for any pG,Kq ‰ p0, 0q, p0, 1q,

pF rG,Ksε qp`q “

˛
B

dx1 ¨ ¨ ¨

˛
B

dx`WrG,Ks
`,ε px1, . . . , x`q, (1.40)

and for any pn,G,Kq:

pWrG,Ks
n qp`qpx1, . . . , xnq “

˛
B

dxn`1 ¨ ¨ ¨

˛
B

dxn``WrG,Ks
n``,ε px1, . . . , xn``q. (1.41)

In particular:

pW
r0,0s
1,ε q1pxqdx “ 2iπ$pxq (1.42)

where $ is the basis of holomorphic 1-forms on Cε dual to A, i.e. characterized by
¸
Ah $h1 “ δh,h1 .

This formula at ε “ ε‹ can be used to compute the functions T
tku
β rXs appearing in (1.28). The

derivation wrt ε is not a natural operation in the initial model when N is finite, since Nεh are forced

to be integers in (1.17). We rather show that the coefficients of expansion themselves are smooth

functions of ε, and thus Bε makes sense.

For β “ 2, we remark from (1.34) that the coefficients F
t2k`1u
‹,β“2 all vanishes, so that we retrieve

the celebrated 1{N2 expansion in the one-cut regime or in the fixed filling fraction model. This is

in general not true anymore in the multi-cut regime. For instance, we have a term of order 1{N

involving:

T
t1u
‹,β“2rXs “

1

6
pF
t´2u
‹,β q3 ¨Xb3 ` pF

t0u
‹,β q

1 ¨X. (1.43)

In a two-cut regime (g “ 1), a sufficient condition for all terms of order N´p2k`1q to vanish is that

ε‹ “ 1{2 and ZV ;A
N,ε “ ZV ;A

N,1´ε, i.e. the potential has two symmetric wells. In this case, we have an

expansion in powers of 1{N2 for the partition function, whose coefficients depends on the parity of

N . In general, we also observe that v‹,β“2 “ 0, i.e. Thetanullwerten appear in the expansion.

1.6 Asymptotic expansion of kernels and correlators

Once the result on large N expansion of the partition function is obtained, we can easily infer the

asymptotic expansion of the correlators and the kernels by perturbing the potential by terms of order

1{N , maybe complex-valued, as allowed by Hypothesis 1.4.

1.6.1 Leading behavior of the correlators

Although we could write down the expansion for the correlators as a corollary of Theorem 1.5, we

bound ourselves to point out their leading behavior. Whereas Wn behaves as OpN2´nq in the one-cut

regime or in the model with fixed filling fractions, Wn for n ě 3 does not decay when N is large in a

pg ` 1q-cut regime with g ě 1. More precisely:

Theorem 1.6 Assume Hypothesis 1.2, 1.4 and number of cuts pg ` 1q ě 2. We have, for uniform

convergence when x1, . . . , xn belongs to any compact of ppCzAqn:

W2px1, x2q „
NÑ8

W
t0u
2,‹ px1, x2q `

´$px1q

dx1
b
$px2q

dx2

¯

¨∇b2
v lnϑ

„

´Nε‹
0



`

v‹,β
ˇ

ˇτ‹,β
˘

, (1.44)
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and for any n ě 3:

Wnpx1, . . . , xnq „
NÑ8

´ n
â

i“1

$pxiq

dxi

¯

¨∇bnv lnϑ

„

´Nε‹
0



`

v‹,β
ˇ

ˇτ‹,β
˘

. (1.45)

Integrating this result over A-cycles provide the leading order behavior of n-th order moments of the

filling fractions N . We will also describe in Section 8.2 the fluctuations of the filling fractions: we

find that they converge to a discrete Gaussian random variable.

1.6.2 Kernels

We explain in § 6.4 that the following result concerning the kernel – defined in (1.8) – is a consequence

of Theorem 1.3:

Corollary 1.7 Assume Hypothesis 1.2 and 1.4. There exists t ą 0 such that, for any ε P Eg such

that |ε´ ε‹| ă t, the n-kernels in the model with fixed filling fractions have an asymptotic expansion

of the form:

Kn,c,εpx1, . . . , xnq “ exp
”

ÿ

kě´1

N´k
´

k`2
ÿ

n“1

1

k!
Lbnx,crW tku

n,ε s

¯

`OpN´8q
ı

, (1.46)

where Lx,c is the linear form :

Lx,c “
n
ÿ

j“1

cj

ˆ xj

8

. (1.47)

Up to a given OpN´Kq, this expansion is uniform for x1, . . . , xn in any compact of pCzA.

Hereafter, if γ is a smooth path in pCzSε, we set Lγ “
´
γ
, and Lbnγ is given by:

Lbnγ rW tku
n s “

ˆ
γ

dx1 ¨ ¨ ¨

ˆ
γ

dxnW
tku
n px1, . . . , xnq.

A priori, the integrals in the right-hand side of (1.46) depend on the homology class in CzA of paths

8 Ñ xi. A basis of homology cycles in CzA is given by A “ pAhq0ďhďg. We also denote for

convenience ε “ pεhq0ďhďg. We deduce from (1.18) that:

˛
A

dξ

2iπ
W tku
n,ε pξ, x2, . . . , xnq “ δn,1δk,´1 ε. (1.48)

Therefore, the only multivaluedness of the right-hand side comes from the first term N
´

dξ W
t´1u
1,ε pξq,

and given (1.48) and observing that Nεh are integers, we see that it exactly reproduces the mon-

odromies of the kernels depending on cj .

We now come to the multi-cut regime of the initial model. If X is a vector with g components,

and L is a linear form on the space of holomorphic functions on pCzSε, let us define:

T̃
tku
ε,β rL,Xs “

k
ÿ

r“1

1

r!

ÿ

`1,...,`rě1
m1,...,mrě´2
n1,...,nrě0

řr
i“1 `i`mi`ni“k

´ r
â

i“1

LbnirpW tmiu
ni,ε q

p`iqs

ni! `i!

¯

¨Xbp
řr
i“1 `iq, (1.49)

where we took as convention W
tku
n“0,ε “ F

tku
ε . Then, as a consequence of Theorem 1.5:
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Corollary 1.8 Assume Hypothesis 1.2 and 1.4. With the notations of Corollary 1.7, the n-kernels

have an asymptotic expansion1:

Kn,cpxq “ Kn,c,‹pxqp1`OpN
´8qq (1.50)

ˆ

´

ř

kě0N
´k T̃

tku
‹,β

“

Lx,c, ∇v2iπ

‰

¯

ϑ

„

´Nε‹
0



`

v‹,β ` Lx,cr$s
ˇ

ˇτ‹,β
˘

´

ř

kě0N
´k T

tku
‹,β

“∇v
2iπ

‰

¯

ϑ

„

´Nε‹
0



`

v‹,β
ˇ

ˇτ‹,β
˘

,

where Lx,c “
řn
j“1 cj

´ xj
8

and $ is the basis of holomorphic 1-forms.

A diagrammatic representation for the terms of such expansion was proposed in [BE12, Appendix A].

2 Application to orthogonal polynomials and integrable sys-
tems

Since orthogonal polynomials are related to the 1-hermitian matrix model (i.e. β “ 2), our results can

be used to establish the all-order asymptotics of orthogonal polynomials outside the bulk (Theorem 2.2

below). We will illustrate it for orthogonal polynomials with respect to an analytic weight defined on

the whole real line, but it could be applied equally well to orthogonal polynomials with respect to an

analytic weight on a finite union of segments of the real axis.

The leading order asymptotic of orthogonal polynomials is well-known since the work of Deift et

al. [DKM`97, DKM`99b, DKM`99a], using the asymptotic analysis of Riemann-Hilbert problem

which was pioneered in [DZ95]. In principle, it is possible to push the Riemann-Hilbert analysis

beyond leading order, but this approach being very cumbersome, it has not been performed yet to

our knowledge. Notwithstanding, the all-order expansion has a nice structure, and was heuristically

derived by Eynard [Eyn06] based on the general works [BDE00, Eyn09]. In this article, we provide a

proof of those heuristics.

Unlike the Riemann-Hilbert technique which becomes cumbersome to study the asymptotics of

skew-orthogonal polynomials (i.e. β “ 1 and 4) and thus has not been performed up to now, our

method could be applied without difficulty to those values of β, and would allow to justify the heuristics

of Eynard [Eyn01] formulated for the leading order, and describe all subleading orders. In other words,

it provides a purely probabilistic approach to address asymptotic problems in integrable systems. It

also suggest that the appearance of theta functions is not intrinsically related to integrability. In

particular, we see in Theorem 2.2 that for β “ 2, the theta function appearing in the leading order is

associated to the matrix of periods of the hyperelliptic curve Cε‹ defined by the equilibrium measure.

Actually the theta function is just the basic block to construct analytic functions on this curve, and

this is the reason why it pops up in the Riemann-Hilbert analysis. However, for β ‰ 2, the theta

function comes is associated to pβ{2q times the matrix of periods of Cε‹ , which might be or not the

matrix of period of a curve, and anyway is not that of Cε‹ . So, the monodromy problem solved by this

theta function is not directly related to the equilibrium measure, which makes for instance for β “ 1

or 4 its construction via Riemann-Hilbert techniques a priori more involved.

Contrarily to Riemann-Hilbert techniques however, we are not yet in position within our method

to consider the asymptotic in the bulk, at the edges, or the double-scaling limit for varying weights

close to a critical point, or the case of complex-values weights which has been studied in [BM09]. We

hope those technical restrictions to be removable in a near future.

1We warn the reader that 1 denotes a derivative with respect to filling fractions, not with respect to variables of the
correlators.
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2.1 Setting

We first review the standard relations between orthogonal polynomials on the real line, random ma-

trices and integrable systems, see e.g. [CG12, Section 5]. In this section, β “ 2 and we omit to

precise it in the notations. Let Vtpλq “ V pλq`
řd
k“1 tkλ

k. Let pPn,N pxqqně0 be the monic orthogonal

polynomials associated to the weight dwpxq “ dx e´NVtpxq on B “ R. We choose V and restrict in

consequence tk so that the weight decreases quickly at ˘8. If we denote hn,N the L2pdwq norm of

Pn,N , the polynomials P̂n,N “ Pn,N{
a

hn,N are orthonormal. They satisfy a three-term recurrence

relation:

xP̂n,N pxq “
a

hn,N P̂n`1pxq ` βn,N P̂npxq `
a

hn´1,N P̂n´1pxq. (2.1)

The recurrence coefficients are solutions of a Toda chain: if we set

un,N “ lnhn,N , vn,N “ ´βn,N , (2.2)

we have:

Bt1un,N “ vn,N ´ vn´1,N , Bt1vn,N “ eun`1,N ´ eun,N , (2.3)

and the coefficients tk generate higher Toda flows. The recurrence coefficients also satisfy the string

equations:
a

hn,N rV
1pQN qsn,n´1 “

n

N
, rV 1pQN qsn,n “ 0, (2.4)

where QN is the semi-infinite matrix:

QN “

¨

˚

˚

˚

˚

˚

˝

a

h1,N β1,N

β1,N

a

h2,N β2,N

β2,N

a

h3,N β3,N

. . .
. . .

. . .

˛

‹

‹

‹

‹

‹

‚

. (2.5)

Eqns 2.4 determines in terms of V the initial condition for the system (2.3). The partition function

T ptq “ ZVt;R
N is the Tau function associated to the solution pun,N ptq, vn,N ptqqně1 of (2.3). The

partition function itself can be computed as [Meh04, PS11]:

ZV ;R
N “ N !

N´1
ź

j“1

hj,N . (2.6)

We insist on the dependence on N and V by writing hj,N “ hjpNV q. Therefore, the norms can be

retrieved as:

hnpNV q “

śn
j“1 hjpNV q

śn´1
j“1 hjpNV q

“
1

n` 1

Z
NV {pn`1q;R
n`1

Z
NV {n;R
n

“
1

n` 1

Z
V

sp1`1{nq ;R
n`1

Z
V {s;R
n

, s “
n

N
. (2.7)

The regime where n,N Ñ 8 but s “ n{N remains fixed and positive correspond to the small

dispersion regime in the Toda chain, where 1{n plays the role of the dispersion parameter.

2.2 Small dispersion asymptotics of hn,N

When Vt0{s0 satisfies Hypotheses 1.2 and 1.3 for a given set of times ps0, t0q, Vt{s satisfies the same

assumptions at least for ps, tq in some neighborhood U of ps0, t0q, and Theorem 1.5 determines the

asymptotic expansion of TN ptq “ ZVt,R
N up to OpN´8q. Besides, we can apply Theorem 1.5 to study

the ratio in the right-hand side of (2.7) when nÑ8.
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Theorem 2.1 In the regime n,N Ñ8, s “ n{N ą 0 fixed, and Hypotheses 1.2 and 1.3 are satisfied

with soft edges, we have the asymptotic expansion:

un,N “ n
`

2F r0s‹ ´ LVt{srW
r0s
1,‹s

˘

` F r0s‹ ´ LVt{srW
r0s
1,‹s `

1

2
Lb2
Vt{s

rWr0s
2,‹s

` ln

¨

˚

˚

˝

ϑ

„

´pn` 1q ε‹
0



`

LVt{sr$s
ˇ

ˇτ‹
˘

ϑ

„

´n ε‹
0



p0
ˇ

ˇτ‹
˘

˛

‹

‹

‚

´ ln
´

1`
1

n

¯

`
ÿ

Gě0, mě0
2´2G´mă0

pn` 1q2´2G´mLbmVt{s
rWrGs

m,‹s

` ln

¨

˚

˚

˝

1`

´

ř

kě1pn` 1q´k T̃
tku
‹

“

LVt{s ; ∇
2iπ

‰

¯

ϑ

„

´pn` 1q ε‹
0



`

LVt{sr$s
ˇ

ˇτ‹
˘

ϑ

„

´pn` 1q ε‹
0



`

LVt{sr$s
ˇ

ˇτ‹
˘

˛

‹

‹

‚

´ ln

¨

˚

˚

˝

1`

´

ř

kě1 n
´k T

tku
‹

“ ∇
2iπ

‰

¯

ϑ

„

´n ε‹
0



`

0
ˇ

ˇτ‹
˘

ϑ

„

´n ε‹
0



`

0
ˇ

ˇτ‹
˘

˛

‹

‹

‚

(2.8)

Here, ε‹ are the filling fractions of µ
Vt{s
eq and LVt{s is the linear form defined by:

LVt{srf s “

˛
S

dξ

2iπ

Vtpξq

s
fpξq (2.9)

We have not performed the expansion of 1{pn ` 1q in powers of 1{n to make the structure more

transparent. We recall that all the quantities WrGs
m,‹ can be computed from the equilibrium measure

associated to the potential Vt, so making those asymptotic explicit just requires to solve the scalar

Riemann-Hilbert problem for µsVt
eq . Notice that the number g ` 1 of cuts a priori depends on ps0, t0q,

and we do not address the issue of transitions between regimes with different number of cuts (because

we cannot relax at present our off-criticality assumption), which are expected to be universal [Dub08].

We also collect here in one place and for β “ 2 other notations appearing throughout the text:

WrGs
0,‹ “ F rGs‹ “ F t2G´2u

ε‹ , WrGs
n,‹ “W t2G´2`nu

n,ε‹ , τ‹ “
pF r0s‹ q2

2iπ
, (2.10)

and

T tku‹ rXs “

k
ÿ

r“1

1

r!

ÿ

`1,...,`rě1
G1,...,Grě0
`i`2Gi´2ą0

řr
i“1p`i`2Gi´2q“k

´ r
â

i“1

pF rGis‹ qp`iq

`i!

¯

¨Xbp
řr
i“1 `iq, (2.11)

T̃ tku‹ rL ; Xs “

k
ÿ

r“1

1

r!

ÿ

`1,...,`rě1
G1,...,Grě0
n1,...,nrě0

`i`2Gi´2`nią0
řr
i“1p`i`2Gi´2`niq“k

´ r
â

i“1

LbnirpWrGis
ni,‹ q

p`iqs

ni! `i!

¯

¨Xbp
řr
i“1 `iq. (2.12)
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2.3 Asymptotic expansion of orthogonal polynomials away from the bulk

The orthogonal polynomials can be computed thanks to Heine formula [Sze39]:

Pnpxq “ µVt{s;R
n

“

n
ź

i“1

px´ λiq
‰

“ K1,1pxq. (2.13)

Hence, as a corollary of Theorem 1.8:

Theorem 2.2 In the regime n,N Ñ8, s “ n{N ą 0 fixed, and Hypotheses 1.2 and 1.3 are satisfied,

for x P CzS, we have the asymptotic expansion:

Pnpxq “ exp
´

ÿ

mě1

ÿ

Gě0

n2´2G´mLbmx rWrGs
m,‹s

m!

¯

`

1`Opn´8q
˘

(2.14)

ˆ

´

ř

kě0 n
´k T̃ tku

“

Lx ; ∇v
2iπ

‰

¯

ϑ

„

´n ε‹
0



`

Lxr$s
ˇ

ˇτ‹
˘

´

ř

kě0 n
´k T tku

“∇v
2iπ

‰

¯

ϑ

„

´n ε‹
0



`

0
ˇ

ˇτ‹
˘

,

where Lx “
´ x
8

. Up to a given OpN´Kq, this expansion is uniform for x in any compact of CzS.

We remark that Lxr$s is the Abel map evaluated between the points x and 8.

As such, the results presented in this article do not allow the study of the asymptotic expansion

of orthogonal polynomials in the bulk, i.e. for x P S. Indeed, this requires to perturb the potential

V pλq by a term ´ 1
n lnpλ´ xq having a singularity at x P S, a case going beyond our Hypothesis 1.4.

Similarly, we cannot address at present the regime of transitions between a g cut regime and and

g1-cut regime with g ‰ g1, because offcriticality was a key assumption in our derivation. Although it

is the most interesting in regard of universality, the question of deriving uniform asymptotics, even at

the leading order, valid for the crossover around a critical point is still open from the point of view of

our methods.

3 Large deviations and concentration of measure

3.1 Restriction to a vicinity of the support

Our first step is to show that the interval of integration in (1.1) can be restricted to a vicinity of

the support of the equilibrium measure, up to exponentially small corrections when N is large. The

proofs are very similar to the one-cut case [BG11], and we remind briefly their idea in § 3.2. Let V

be a regular and confining potential, and µV ;B
eq the equilibrium measure determined by Theorem 1.1

or Theorem 1.2. We denote S its (compact) support. We define the effective potential by:

UV ;Bpxq “ V pxq ´ 2

ˆ
B

dµV ;B
eq pξq ln |x´ ξ|, ŨV ;Bpxq “ UV ;Bpxq ´ inf

ξPB
UV ;Bpξq (3.1)

when x P B, and `8 otherwise.

Lemma 3.1 If V is regular and confining, we have large deviation estimates: for any F Ď BzS closed

and O Ď BzS open,

lim sup
NÑ8

1

N
lnµV ;B

N,β rDi λi P Fs ď ´
β

2
inf
xPF

ŨV ;Bpxq, (3.2)

lim inf
NÑ8

1

N
lnµV ;B

N,β rDi λi P Os ě ´
β

2
inf
xPO

ŨV ;Bpxq. (3.3)
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We say that V satisfies a control of large deviations on B if ŨV,B is positive on BzS. Note that ŨV,B

vanishes at the boundary of S. According to Lemma 3.1, such a property implies that large deviations

outside S are exponentially small when N is large.

Corollary 3.2 Let V be regular, confining, satisfying a control of large deviations on B, and assume

BBX S “ H. Let A Ď B be a finite union of segments such that S Ă Å. There exists ηpAq ą 0 so that:

ZV ;B
N,β “ ZV ;A

N,β p1`Ope
´NηpAqqq, (3.4)

and for any n ě 1, there exists a universal constant γn ą 0 so that, for any x1, . . . , xn P pCzBqn:

ˇ

ˇWV ;B
n px1, . . . , xnq ´W

V ;A
n px1, . . . , xnq

ˇ

ˇ ď
γn e

´NηpAq

śn
i“1 dpxi,Bq

. (3.5)

It is useful to have a local version of this result:

Corollary 3.3 Let V be regular, confining, satisfying a control of large deviations on B, and assume

BB X S “ H. Let A Ď B be a finite union of segments such that S Ď Å. If a0 is the left (resp. right)

edge of a connected component of A, let us define Aa “ AYra, a0s. For any ε ą 0 small enough, there

exists ηε ą 0 so that, for N large enough and any a Psa0 ´ ε, a0 ` εr, we have:
ˇ

ˇ

ˇ
Ba lnZV ;Aa

N

ˇ

ˇ

ˇ
ď e´Nηε , (3.6)

and, for N large enough and any n ě 1 and x1, . . . , xn P pCzAaq:
ˇ

ˇ

ˇ
Ba1
´
WV ;Aa
n px1, . . . , xnq

ˇ

ˇ

ˇ
ď

γn e
´Nηε

śn
i“1 dpxi,Aaq

. (3.7)

From now on, even though we want initially to study the model on BN , we are going first to study

the model on AN , where A is small (but fixed) enlargement of S as allowed above, in particular we

choose A bounded.

Proposition 3.4 For any fixed ε P Eg, the same results holds for the partition function and the

correlators in the fixed filling fraction model.

3.2 Sketch of the proof of Lemma 3.1

We only sketch the proof, since it is similar to [BG11].

Recall that LN “ N´1
řN
i“1 δλi denotes the normalized empirical measure, either in the initial

model, or in the fixed filling fraction model. We represent:

µV ;B
N,β

“

Di λi P Fs “ N
ΥV ;B
N,βpFq

ΥV ;B
N,βpBq

(3.8)

where, for any measurable set X:

ΥV ;B
N,βpXq “ µ

NV
N´1 ;B

N´1,β

„ˆ
X

dξ exp
!

´
Nβ

2
V pξq ` pN ´ 1qβ

ˆ
B

dLN´1pλq ln |ξ ´ λ|
¯)



(3.9)

We first prove a lower bound for ΥV ;B
N,βpXq assuming X contains at least an open interval, of size larger

than some ε ą 0. Let κ1pV q be the Lipschitz constant for V on B, and:

Xε “ tx P B, inf
ξPBzX

|x´ ξ| ą ε{2u (3.10)
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Using twice Jensen’s inequality, we get

ΥV ;B
N,βpXq ě sup

xPXε
µ
NV
N´1 ;B

N´1,β

«ˆ x`ε{4

x´ε{4

dξ exp
!

´
Nβ

2
V pξq ` pN ´ 1qβ

ˆ
B

dLN´1pηq ln |ξ ´ η|
¯)

ff

ě sup
xPXε

e´
Nβ
2

`

V pxq`
κ1pV q

2 ε
˘

µ
NV
N´1 ;B

N´1,β

«ˆ x`ε{4

x´ε{4

dξ exp
!

pN ´ 1qβ

ˆ
B

dLN´1pλq ln |ξ ´ λ|
)

ff

ě
ε

2
sup
xPXε

e´
Nβ
2

`

V pxq`
κ1pV q

2 ε
˘

exp
!

pN ´ 1qβ µ
NV
N´1 ;B

N´1,β

”

ˆ
B

dLN´1pλqHx,εpλq
ı)

(3.11)

where we have set:

Hx,εpλq “

ˆ x`ε{4

x´ε{4

dξ

ε{2
ln |ξ ´ λ| (3.12)

For any fixed ε ą 0, Hx,ε is bounded continuous on any compact, so we have by Theorem 1.1 in the

initial model (or Theorem 1.2 in the fixed filling fraction model):

ΥV ;B
N,βpXq ě

ε

2
sup
xPXε

e´
Nβ
2

`

V pxq`
κ1pV q

2 ε
˘

exp
!

pN ´ 1qβ

ˆ
B

dµV ;B
eq pλqHx,εpλq `NRpε,Nq

)

(3.13)

with limNÑ8Rpε,Nq “ 0. Letting N Ñ8, we deduce:

lim inf
NÑ8

1

N
ln ΥV ;B

N,βpXq ě ´
β

4
κ1pV q ε´

β

2
inf
xPXε

´

V pxq ´ 2

ˆ
dµV ;B

eq pλqHx,εpλq
¯

(3.14)

Interchanging the integration over ξ and x, observing that ξ Ñ
´

dµV ;B
eq pλq ln |ξ ´ λ| is smooth and

then letting εÑ 0 we conclude

lim inf
NÑ8

1

N
ln ΥV ;B

N,βpXq ě ´
β

2
inf
xPX

UV ;Bpxq (3.15)

where we have recognized the effective potential of (3.1). To prove the upper bound, we observe that

for any M ą 0,

ΥV ;B
N,βpXq ď µ

NV
N´1 ;B

N´1,β

„ˆ
X

dξ exp
!

´
Nβ

2
V pξq ´ pN ´ 1qβ

ˆ
B

dLN´1pλq ln max
`

|ξ ´ λ|,M´1
˘

)



(3.16)

As λ Ñ ln min
`

|ξ ´ λ|,M´1
˘

is bounded continuous on compacts, we can use Theorem 1.1 in the

initial model (or Theorem 1.2 in the fixed filling fraction model) to deduce that for any ε ą 0

ΥV ;B
N,βpXq ď

ˆ
X

dξ exp
!

´
Nβ

2
V pξq´ pN ´ 1qβ

ˆ
B

dµV ;B
eq pλq ln max

`

|ξ´λ|,M´1
˘

`NMε
)

` eN
2R̃pε,Nq

(3.17)

with

lim sup
NÑ8

R̃pε,Nq “ lim sup
NÑ8

1

N2
lnµ

NV
N´1 ;B

N´1,βpdpLN´1, µ
V ;B
eq q ą εq ă 0. (3.18)

Moreover, ξ Ñ V pξq ´
´

dµV ;B
eq pλq ln max

`

|ξ ´ λ|,M´1
˘

is bounded continuous so that a standard

Laplace method yields

lim inf
NÑ8

1

N
ln ΥV ;B

N,βpXq ď ´ inf
ξPX

!β

2

´

V pξq ´

ˆ
B

dµV ;B
eq pλq ln |ξ ´ λ| _M´1

¯)

. (3.19)

Finally, we conclude by monotone convergence theorem which implies that
´

dµV ;B
eq pλq ln max

`

|ξ ´

λ|,M´1
˘

increases as M goes to infinity towards
´

dµV ;B
eq pλq ln |ξ ´ λ|.
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3.3 Concentration of measure and consequences

We will need rough a priori bounds on the correlators, which can be derived by purely probabilistic

methods. This type of result first appeared in the work of [dMPS95, Joh98] and more recently

[KS10, MMS12]. Given their importance, we find useful to prove independently the bound we need

by elementary means.

Hereafter, we will say that a function f : RÑ C is b-Lipschitz if

κbpfq “ sup
x‰y

|fpxq ´ fpyq|

|x´ y|b
ă 8. (3.20)

Our final goal is to control pLN ´µeqqrϕs for a class of functions ϕ which is large enough, in particular

contains analytic functions on a neighborhood of the interval of integration A. This problem can be

settled by controlling the ”distance” between LN and µeq for an appropriate notion of distance. We

introduce the pseudo-distance between probability measures:

Dpµ, νq “ ´

¨
drµ´ νspxqdrµ´ νspyq ln |x´ y| (3.21)

which can be represented in terms of Fourier transform of the measures by:

Dpµ, νq “

ˆ 8
0

ds

|s|

ˇ

ˇppµ´ pνqpsq
ˇ

ˇ

2
(3.22)

Since LN has atoms, its pseudo-distance to another measure is in general infinite. There are several

methods to circumvent this issue, and one of them, that we borrow from [MMS12], is to define a reg-

ularized measure rLu
N (see the beginning of § 3.4.1 below) from LN . Then, the result of concentration,

takes the form:

Lemma 3.5 Let V be regular, C3, confining, satisfying a control of large deviations on A. There

exists C ą 0 so that, for t small enough and N large enough:

µV ;A
N,β

“

DrrLu
N , µ

V ;A
eq s ě t

‰

ď eCN lnN´N2t2 . (3.23)

We prove it in § 3.4.1 below. The assumption V of class C3 ensures that the effective potential (3.1)

defined from the equilibrium measure is a 1
2 -Lipschitz function (and even Lipschitz if all edges are

soft) on the compact set A, as one can observe on (A.4) given in Appendix A.

This lemma allows a priori control of expectation values of test functions:

Corollary 3.6 Let V be regular, C3, confining, satisfying a control of large deviations on A. Let

b ą 0, and assume ϕ : RÑ C is a b-Lipschitz function with constant κbpϕq, and such that:

|ϕ|1{2 :“
´

ˆ
R

ds |s| |pϕpsq|2
¯1{2

ă 8. (3.24)

Then, there exists C3 ą 0 such that, for t small enough and N large enough:

µV ;A
N,β

”
ˇ

ˇ

ˇ

ˆ
A

drLN ´ µ
V ;A
eq spxqϕpxq

ˇ

ˇ

ˇ
ě

2κbpϕq

pb` 1qN2b
` t |ϕ|1{2

ı

ď eC3N lnN´N2t2 . (3.25)

As a special case, we can obtain a rough a priori control on the correlators:

Corollary 3.7 Let V be regular, C3, confining and satisfying a control of large deviations on A. Let

D1 ą 0, and:

wN “

c

lnN

N
, fpδq “

a

| ln δ|

δ
, dpx,Aq “ inf

ξPA
|x´ ξ| ě

D1
?
N lnN

(3.26)
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There exists a constant γ1pA, D
1q ą 0 so that, for N large enough:

ˇ

ˇW1pxq ´NW
t´1u
1 pxq

ˇ

ˇ ď γ1pA, D
1qwN f

`

dpx,Aq
˘

. (3.27)

Similarly, for any n ě 2, there exists constants γnpA, D
1q ą 0 so that, for N large enough:

ˇ

ˇWnpx1, . . . , xnq
ˇ

ˇ ď γnpA, D
1qwnN

n
ź

i“1

f
`

dpxi,Aq
˘

. (3.28)

In the pg ` 1q-cut regime with g ě 1, we denote pShq0ďhďg the connected components of the support

of µV ;B
eq , and we take A “

Ťg
h“0 Ah, where Ah “ ra

´
h , a

`
h s Ď B are pairwise disjoint bounded segments

such that Sh Ď Åh. For any configuration λ P AN , we denote Nh the number of λi’s in Ah, and

N “ pNhq1ďhďg. The following result gives an estimate for large deviations of N away from Nε‹ in

the large N limit.

Corollary 3.8 Let A be as above, and V be C3, confining, satisfying a control of large deviations on

A, and leading to a pg ` 1q-cut regime. There exists a positive constant C such that, for N large

enough and uniformly in t:

µV ;A
N,β

“

|N ´Nε‹| ą t
?
N lnN

‰

ď eN lnNpC´t2q. (3.29)

As an outcome of this article, we will be more precise in Section 8.2 about large deviations of filling

fractions when the potential satisfies the stronger Hypotheses 1.1-1.4.

3.4 Large deviation of LN : distance (Lemma 3.5)

3.4.1 Regularization of LN

We start by following an idea introduced by Mäıda and Maurel-Segala [MMS12, Proposition 3.2]. Let

σN , ηN Ñ 0 be two sequences of positive numbers. To any configuration of points λ1 ď . . . ď λN in

A, we associate another configuration rλ1, . . . , rλN by the formula:

rλ1 “ λ1, rλi`1 “ rλi `maxpλi`1 ´ λi, σN q, (3.30)

It has the properties:

@i ‰ j, |rλi ´ rλj | ě σN , |λi ´ λj | ď |rλi ´ rλj |, |rλi ´ λi| ď pi´ 1qσN . (3.31)

Let us denote rLN “ N´1
řN
i“1 δrλi the new counting measure. Then, we define rLu

N be the convolution

of rLN with the uniform measure on r0, ηNσN s.

We are going to compare the logarithmic energy of LN to that of rLu
N , which has the advantage of

having no atom. We may write by (3.31):

Σ∆pLN q “

¨
x‰y

dLN pxqdLN pyq ln |x´ y| ď

¨
x‰y

drLN pxqdrLN pyq ln |x´ y| “ Σ∆prLN q (3.32)

and, if we denote U ,U 1 are two independent random variables uniformly distributed on r0, 1s, we find:

Σ∆prLN q ´ Σ∆prL
u
N q “

ˆ
x‰y

drLN pxqdrLN pyqE
”

ln
´

1` ηNσN
U ´ U 1

px´ yq

¯ı

ď

ˆ
x‰y

drLN pxqdrLN pyq
ηNσN
|x´ y|

ď ηN ,
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thanks to the minimal distance between rλi’s enforced in (3.30). Eventually, we compute with Σpµq “˜
ln |x´ y|dµpxqdµpyq,

Σ∆prL
u
N q ´ ΣprLu

N q “ ´

¨
x“y

drLu
N pxqd

rLu
N pyq ln |x´ y|

“ ´
1

N
E
“

ln |ηNσN pU ´ U 1q|
‰

“
1

N

´3

2
´ 3 lnpηNσN q

¯

. (3.33)

Besides, if b ą 0 and ϕ : AÑ C is a b-Lipschitz function with constant κbpϕq, we have by (3.31):

ˇ

ˇ

ˇ

ˆ
A

drLN ´ rLu
N spxqϕpxq

ˇ

ˇ

ˇ
ď
κbpϕq

N

N
ÿ

i“1

pi´ 1qbrσN p1` 2ηN qs
b ď

2κbpϕq

p1` bq
pNσN q

b (3.34)

3.4.2 Large deviations of Lu
N

We would like to estimate the probability of large deviations of rLu
N from the equilibrium measure

µeq “ µV ;A
eq . We need first a lower bound on ZV ;A

N,β similar to that of [AG97] obtained by localizing the

ordered eigenvalues at a distance N´3 of the quantiles λcl
i of the equilibrium measure µV ;A

eq , which are

defined as:

λcl
i “ inf

!

x P A, µV ;A
eq

`

r´8, xs
˘

ě
i

N

)

. (3.35)

Since V is C2, dµV ;A
eq is continuous on the interior of its support, and diverge only at hard edges, where

it blows at most like the inverse of a squareroot. Therefore, there exists a constant C ą 0 such that,

for N large enough:

|λcl
i ´ λ

cl
i´1| ě

C

N2
. (3.36)

Then, since V is a fortiori C1 on A compact,

ZV ;A
N,β ě N !

ˆ
|δi|ďN´3

ź

1ďiăjďN

|λcl
i ´ λ

cl
j ` δi ´ δj |

β
N
ź

i“1

e´
βN
2 V pλcl

i `δiqdδi

ě N !N´3Ne´C1N
ź

1ďiăjďN

|λcl
i ´ λ

cl
j |
β

N
ź

i“1

e´
Nβ
2

řN
i“1 V pλ

cl
i q, (3.37)

for some constant C1 ą 0. Therefore, since:

¨
xďy

ln |x´ y|dµV ;A
eq pxqdµV ;A

eq pyq ď
ÿ

iăj

ˆ λcl
i`1

λcl
i

ˆ λcl
j`1

λcl
j

ln |x´ y|dµV ;A
eq pxqdµV ;A

eq pyq

ď
1

N2

ÿ

iăj´1

ln |λcl
i ´ λ

cl
j |

ď
1

N2

ÿ

iăj

ln |λcl
i ´ λ

cl
j | `

1

N
ln
´N2

C

¯

, (3.38)

we find:

ZV ;A
N,β ě exp

!β

2

´

´ C2N lnN ´N2ErµV ;A
eq s

¯)

. (3.39)

for some positive constant C2 and with the energy introduced in (1.10).

Now, let us denote SN ptq the event tDrrLu
N , µ

V ;A
eq s ě tu. We have:

µV ;A
N,βrSN ptqs “

1

ZV ;A
N,β

ˆ
SN ptq

e
βN2

2

`˜
x‰y

dLN pxqdLN pyq ln |x´y|´
´

dLN pxqV pxq
˘ N
ź

i“1

dλi, (3.40)
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and using the comparisons (3.32)-(3.34), we find, with the notations of Theorem 1.2:

µV ;A
N,βrSN ptqs ď

e
β
2 RN

ZV ;A
N,β

ˆ
SN ptq

e
βN2

2

`˜
drLu

N pxqd
rLu
N pyq ln |x´y|´

´
drLu

N pxqV pxq
˘ N
ź

i“1

dλi

ď
e
β
2

`

RN´N
2 ErµV ;A

eq s

˘

ZV ;A
N,β

ˆ
SN ptq

e´
βN2

2

`

DrrLu
N ,µeqs`

´
drLu

N pxqU
V ;A
pxq

˘ N
ź

i“1

dλi, (3.41)

where:

RN “ N3σN κ1pV q `N
2ηN `

3N

2
´ 3N lnpηNσN q, (3.42)

and the effective potential UV ;A was defined in (3.1). Since UV ;A is at least 1
2 -Lipschitz on A (and

even 1-Lipschitz if all edges are soft),we find:

µV ;A
N,βrSN ptqs ď

e
β
2

`

RN`κ1{2pU
V ;A
qN5{2σ

1{2
N ´N2 ErµV ;A

eq s

˘

ZV ;A
N,β

ˆ
SN ptq

e´
βN2

2 DrrLu
N ,µeqs

N
ź

i“1

e´
βN
2 UV ;A

pλiq dλi.

(3.43)

We now use the lower bound (3.39) for the partition function, and the definition of the event SN ptq,
in order to obtain:

µV ;A
N,βrSN ptqs ď e

β
2 pRN`κ1{2pUqN

5{2σ
1{2
N `C2N lnN´N2t2q

´

ˆ
A

dλ e´
βN
2 UV ;A

pλq
¯N

ď e
β
2 pR̃N`C2N lnN´N2t2q,

(3.44)

with:

R̃N “ RN ` κ1{2pUqN
5{2σ

1{2
N `

2N

β
ln `pAq. (3.45)

Indeed, since UV ;A is nonnegative on A, we observed that the integral in bracket is bounded by the

total length `pAq of the range of integration, which is here finite. We now choose:

σN “
1

N3
, ηN “

1
?
N
, (3.46)

which guarantee that R̃N P OpN lnNq. Thus, there exists a positive constant C3 such that, for N

large enough:

µV ;A
N,βrSN ptqs ď e

β
2 pC3N lnN´N2t2q, (3.47)

which concludes the proof of Proposition 3.5. We may rephrase this result by saying that the proba-

bility of SN ptq becomes small for t larger than wN “
a

2C3 lnN{N .

l

3.5 Large deviations for test functions

3.5.1 Proof of Corollary 3.6

Since ϕ is b-Lipschitz, we can use the comparison (3.34) with σN “ N´3 chosen in (3.46):

ˇ

ˇ

ˇ

ˆ
A

drLN ´ rLu
N spxqϕpxq

ˇ

ˇ

ˇ
ď

2κbpϕq

pb` 1qN2b
(3.48)

Then, we compute:

ˇ

ˇ

ˇ

ˆ
A

drrLu
N ´ µeqspxqϕpxq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˆ
R

ds
`

p

rLu
N ´ xµeq

˘

psq pϕp´sq
ˇ

ˇ

ˇ

ď |ϕ|1{2

´

ˆ
R

ds

|s|

ˇ

ˇp
p

rLu
N ´ xµeqqpsq

ˇ

ˇ

2
¯1{2

, (3.49)
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and we recognize in the last factor the definition (3.22) of the pseudo-distance:

ˇ

ˇ

ˇ

ˆ
A

drrLu
N ´ µeqspxqϕpxq

ˇ

ˇ

ˇ
ď
?

2 |ϕ|1{2 DrrL
u
N , µeqs. (3.50)

Corollary 3.6 then follows from this inequality combined with Lemma 3.5.

3.5.2 Bounds on correlators and filling fractions (Proof of Corollary 3.7 and 3.8)

If µ is a probability measure, let Wµ denote its Stieltjes transform. We have:

rWLN ´Wµeq
spxq “

ˆ
A

drLN ´ µeqspξqψxpξq, ψxpξq “ ψRx pξq ` iψIxpξq “
1Apξq

x´ ξ
(3.51)

Since ψx is 1-Lipschitz with constant κ1pψxq “ d´2px,Aq, we have for N large enough:

ˇ

ˇrWLN ´W
rLu
N
spxq

ˇ

ˇ ď
1

N2 d2px,Aq
(3.52)

We now focus on estimating W
rLu
N
´Wµeq

. Since the support of rLu
N is included in

A1{N2 “ tx P R, dpx,Aq ď 1{N2u, (3.53)

we have the freedom to replace ψ‚x by any function φ‚x which coincides with ψ‚x on A1{N2 . We also

find:
ˇ

ˇrW
rLu
N
´Wµeq

spxq
ˇ

ˇ ď
?

2
`

|φRx |1{2 ` |φ
I
x|1{2

˘

DrrLu
N , µeqs (3.54)

Let φ : RÑ R be C1 function which decays as φpxq P Op1{x2q when |x| Ñ 8. We observe:

|φ|21{2 “

ˆ
R
|s| |pφpsq|2ds “

ˆ
R

1

|s|
|pφ1psq|2ds

“ ´2

ˆ
R2

ln |ξ1 ´ ξ2|φ
1pξ1qφ

1pξ2qdξ1dξ2 “ ´2

ˆ
R2

ln
|ξ1 ´ ξ2|

M
φ1pξ1qφ

1pξ2qdξ1dξ2

ď 2

ˆ
R2

ˇ

ˇ

ˇ
ln
´ξ1 ´ ξ2

M

¯
ˇ

ˇ

ˇ
|φ1pξ1q| |φ

1pξ2q|dξ1dξ2 (3.55)

where M ą 0 can be chosen arbitrarily. Let ax,h P Ah the point such that dpx,Ahq “ |x ´ ax,h|. We

claim that, for dpx,Aq small enough, we can always choose φRx and φIx such that:

ˇ

ˇpφ‚xq
1pξq

ˇ

ˇ ď

g
ÿ

h“0

1

pξ ´ ax,hq2 ` dpx,Ahq2
(3.56)

This family (indexed by x) of functions is uniformly bounded by pg ` 1q{ξ2 at 8, which is integrable

at 8. Therefore, we can choose M in (3.55) independent of x so that:

|φ‚x|
2
1{2 ď 1´

ˆ
R2

2 ln
´ξ1 ´ ξ2

M

¯

ˇ

ˇpφ‚xq
1pξ1q

ˇ

ˇ

ˇ

ˇpφ‚xq
1pξ2q

ˇ

ˇdξ1dξ2 (3.57)

If we plug the bound (3.56) in the right-hand side, the integral can be explicitly computed and we

find a finite constant D ą 0 which depends only on A, such that:

|φ‚x|
2
1{2 ď

D ln dpx,Aq

d2px,Aq
(3.58)

when x approaches A. Combining (3.52)-(3.54)-(3.58) with Lemma 3.5, we find:
ˇ

ˇ

ˇ

1

N
W1pxq ´ W

t´1u
1 pxq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
µV ;A
N,β

“

WLN pxq ´Wµeq
pxq

‰

ˇ

ˇ

ˇ

ď
1

Nd2px,Aq
` 2D

c

lnN

N

a

| ln dpx,Aq|

dpx,Aq
(3.59)
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If we restrict ourselves to x P CzA such that:

dpx,Aq ě
D1

?
N lnN

(3.60)

for some constant D1, then:

ˇ

ˇ

ˇ

1

N
W1pxq ´ W

t´1u
1 pxq

ˇ

ˇ

ˇ
ď p2D `D1q

c

lnN

N

a

| ln dpx,Aq|

dpx,Aq
. (3.61)

Now let us consider the higher correlators. For any n ě 2, WV ;A
n is the expectation value of some

homogeneous polynomial of degree 1 in the quantities pWLN´Wµeq
qpxiq and µV ;A

N,β

“

pWLN´Wµeq
qpxiq

‰

.

Accordingly, Lemma 3.5 yields:

|Wnpx1, . . . , xnq| ď γn

´ lnN

N

¯n{2 n
ź

i“1

a

| ln dpxi,Aq|

dpxi,Aq
. (3.62)

for some constant γn ą 0, which depends only on A. This concludes the proof of Corollary 3.7.

Similarly, to have a hand on filling fraction, we write:

Nh ´Nε‹,h “ N

ˆ
drLN ´ µeqspξq1Ahpξq. (3.63)

After replacing the function 1Ah by a smooth function which assumes the value 1 on Ah, vanishes on

Ah1 for h1 ‰ h, and has compact support, we can apply Corollary 3.6 to deduce Corollary 3.8. l

4 Schwinger-Dyson equations for β ensembles

Let A “
Ťg
h“0 Ah be a finite union of pairwise disjoint bounded segments, and V be a C1 function of

A. Schwinger-Dyson equation for the initial model µV ;A
N,β can be derived by integration by parts. Since

the result is well-known (and has been reproved in [BG11]), we shall give them without proof. They

can be written in several equivalent forms, and here we recast them in a way which is convenient for

our analysis. We actually assume that V extends to a holomorphic function in a neighborhood of A,

so that they can written in terms of contour integrals of correlators, and an extension to V harmonic

will be mentioned in § 6.2. We introduce (arbitrarily for the moment) a partition BA “ pBAq` 9YpBAq´

of the set of edges of the range of integration, and

Lpxq “
ź

aPpBAq´

px´ aq, L1px, ξq “
Lpxq ´ Lpξq

x´ ξ
, L2px; ξ1, ξ2q “

L1px, ξ1q ´ L1px, ξ2q

ξ1 ´ ξ2
. (4.1)

Theorem 4.1 Schwinger-Dyson equation at level 1. For any x P CzA, we have:

W2px, xq `
`

W1pxq
˘2
`

´

1´
2

β

¯

BxW1pxq (4.2)

´N

˛
A

dξ

2iπ

Lpξq

Lpxq

V 1pξqW1pξq

x´ ξ
´

2

β

ÿ

aPpBAq`

Lpaq

x´ a
Ba lnZV ;A

N,β

`

´

1´
2

β

¯

˛
A

dξ

2iπ

L2px; ξ, ξq

Lpxq
W1pξq

´

‹
A2

dξ1dξ2
p2iπq2

L2px; ξ1, ξ2q

Lpxq

`

W2pξ1, ξ2q `W1pξ1qW1pξ2q
˘

“ 0.

And similarly, for higher correlators:
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Theorem 4.2 Schwinger-Dyson equation at level n ě 2. For any x, x2, . . . , xn P CzA, if we denote

I “ v2, nw, we have:

Wn`1px, x, xIq `
ÿ

JĎI

W|J|`1px, xJqWn´|J|px, xIzJq `
´

1´
2

β

¯

BxWnpx, xIq (4.3)

´N

˛
A

dξ

2iπ

Lpξq

Lpxq

V 1pξqWnpξ, xIq

x´ ξ
´

2

β

ÿ

aPpBAq`

Lpaq

x´ a
BaWn´1pxIq

`
2

β

ÿ

iPI

˛
A

dξ

2iπ

Lpξq

Lpxq

Wn´1pξ, xIztiuq

px´ ξqpxi ´ ξq2
`

´

1´
2

β

¯

˛
A

dξ

2iπ

L2px; ξ, ξq

Lpxq
Wnpξ, xIq

´

‹
A2

dξ1dξ2
p2iπq2

L2px; ξ1, ξ2q

Lpxq

´

Wn`1pξ1, ξ2, xIq `
ÿ

JĎI

W|J|`1pξ1, xJqWn´|J|pξ2, xIzJq
¯

“ 0.

The last line in (4.2) or (4.3) is a rational fraction in x, with poles at a P pBAq`, whose coefficients

are linear combination of moments of λi.

As a matter of fact, if N P r0, N sg so that |N | “
řg
h“1Nh ď N , the correlators in the model with

fixed filling fractions µV ;B
N,ε“N{N,β satisfy the same equations. Indeed, in the process of integration by

parts, one does not make use of the information about the location of the λi’s. By linearity, in a model

N where is random, the partition function Z “ ErZV ;A
N,N{N,βs and the correlators Wnpx1, . . . , xnq “

ErWN{N,npx1, . . . , xnqs satisfy the same equations. The initial model µV ;A
N,β and the model with fixed

filling fractions are just special cases of the model with random filling fractions.

When g ě 1, we denote A “ pAhq1ďhďg a family of contours surrounding Ah in pCzA, and introduce

the vector-valued linear operator:

LArf s “
´

˛
A1

dξ

2iπ
fpξq, . . . ,

˛
Ag

dξ

2iπ
fpξq

¯

(4.4)

on the space of holomorphic functions in pCzA. For any m P v1, nw, We denote:

Wn|mpx1, . . . , xn´mq “ LbmA rWnpx1, . . . , xn´m, ‚qs, (4.5)

which means that we integrate the remaining m variables on A-cycles. By definition, if we denote

pehq1ďhďg the canonical basis of Cg,

Wn|mpx1, . . . , xn´mq “
ÿ

1ďh1,...,hmďg

µV ;A
N,‚,β

”

n
ź

i“n´m`1

Nhi

n´m
ź

j“1

Tr
1

xj ´ Λ

ı

c

m
â

i“1

ehi . (4.6)

In particular, Wn|n is the tensor of n-th order cumulants of the numbers Nh of λ’s in the segment

Ah. We take as convention Wn|0px1, . . . , xnq “ Wnpx1, . . . , xnq. Here, µV ;A
N,‚,β denotes the probability

measure in a model with N λ’s and random filling fractions. If ε P Eg and if we specialize to the model

with fixed filling fraction ε, we have:

Wn|mpx1, . . . , xn´mq “ δn,1δm,1Nε. (4.7)

In general, we deduce from Theorem 4.2:

Corollary 4.3 For any n ě 1 and m P v0, n ´ 1w, for any x, x2, . . . , xn´m P CzA, if we denote
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I “ v2, n´mw, we have:

Wn`1|mpx, x, xIq `
ÿ

JĎI
0ďm1ďm

ˆ

m

m1

˙

W|J|`1`m1|m1px, xJq bWn´|J|´m1|m´m1px, xIzJq (4.8)

`

´

1´
2

β

¯

BxWn|mpx, xIq ´N

˛
A

dξ

2iπ

Lpξq

Lpxq

V 1pξqWn|mpξ, xIq

x´ ξ

´
2

β

ÿ

aPpBAq`

Lpaq

x´ a
BaWn´1|mpxIq `

2

β

ÿ

iPI

˛
A

dξ

2iπ

Lpξq

Lpxq

Wn´1|mpξ, xIztiuq

px´ ξqpxi ´ ξq2

`

´

1´
2

β

¯

˛
A

dξ

2iπ

L2px; ξ, ξq

Lpxq
Wn|mpξ, xIq ´

‹
A2

dξ1dξ2
p2iπq2

L2px; ξ1, ξ2q

Lpxq

´

Wn`1|mpξ1, ξ2, xIq

`
ÿ

JĎI
0ďm1ďm

ˆ

m

m1

˙

W|J|`1`m1|m1pξ1, xJq bWn´|J|´m1|m´m1pξ2, xIzJq
¯

“ 0.

Proof. Straightforward from (4.3), once we notice that the integrals over a closed cycle of a total

derivative or a holomorphic integrand in neighborhoods of A in C give a zero contribution. l

5 Fixed filling fractions: 1{N expansion of correlators

5.1 Norms on analytic functions and assumptions

In this Section, we analyze the Schwinger-Dyson equations in the model with random filling fractions

(which contains the model with fixed filling fractions as special case) and the following assumptions:

Hypothesis 5.1

‚ A is a disjoint finite union of bounded segments Ah “ ra
´
h , a

`
h s.

‚ (Real-analyticity) V : AÑ R extends as a holomorphic function in a neighborhood U Ď C of A.

‚ (1{N expansion for the potential) There exists a sequence pV tkuqkě0 of holomorphic functions

in U and constants pvtkuqkě0, so that, for any K ě 0:

sup
ξPU

ˇ

ˇ

ˇ
V pξq ´

K
ÿ

k“0

N´k V tkupξq
ˇ

ˇ

ˇ
ď vtKuN´pK`1q. (5.1)

‚ (g ` 1-cut regime) W
t´1u
1 pxq “ limNÑ8N

´1W1pxq exists, is uniform for x in any compact

of CzA, and extends to a holomorphic function on CzS, where S is a disjoint finite union of

segments Sh “ rα
´
h , α

`
h s Ď Ah.

‚ (Offcriticality) ypxq “ pV t0uq1pxq
2 ´W

t´1u
1 pxq takes the form:

ypxq “ Spxq
g
ź

h“0

b

px´ α`h q
ρ`h px´ α´h q

ρ´h , (5.2)

where S does not vanish on A, α‚h are all pairwise distinct, and ρ‚h “ 1 if α‚h P BA, and ρ‚h “ ´1

else.
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‚ (1{N expansion for correlations of filling fractions) For any n ě 1, there exist a sequence

pW
tku
n|n qkěn´2 of elements of pCgqbn, and positive constants pw

tku
n|nqkěn´2, so that, for any K ě

´1, we have:
ˇ

ˇ

ˇ
Wn|n ´

K
ÿ

k“n´2

N´kW
tku
n|n

ˇ

ˇ

ˇ
ď N´pK`1q w

tKu
n|n (5.3)

We say that Hypothesis 5.1 holds up to opN´Kq if we only have a 1{N expansion of the potential at

least up to opN´Kq, and an asymptotic expansion for correlations of filling fractions up to opN´pK´1qq.

Remark 5.2 In the model with fixed filling fractions, this last point is automatically satisfied since

Wn|n is given by (4.7). Then, W
t´1u
1 pxq is the Stieltjes transform of the equilibrium measure deter-

mined by Theorem 1.2, and Hypothesis 5.1 then constrains the choice of V and ε.

We fix once for all a neighborhood U of A so that S´1p0q X U “ H, and contours A “ pAhq1ďhďg

surrounding Ah in U.

Definition 5.3 If δ ą 0, we introduce the norm ‖ ¨ ‖δ on the space Hpnqm1,...,mnpAq of holomorphic

functions on pCzAqn which behave like Op1{xmii q when xi Ñ8:

‖f‖δ “ sup
dpx,Aqěδ

|fpx1, . . . , xnq| “ sup
dpxi,Aq“δ

|fpx1, . . . , xnq|, (5.4)

the last equality following from the maximum principle. If n ě 2, we denote Hpnqm “ Hpnqm,...,m.

From Cauchy residue formula, we have a naive bound on the derivatives of a function f P Hp1q1 in

terms of f itself:

‖Bmx fpxq‖δ ď
2m`1C

δm`1
‖f‖δ{2. (5.5)

Definition 5.4 We fix once for all a sequence δN of positive numbers, so that:

lim
NÑ8

ln1{3 δN
δN

´ lnN

N

¯1{3

“ 0 (5.6)

If f P Hpnqm pAq is a sequence of functions indexed by N , we will denote f P OpRN pδqq when, for any

ε ą 0, there exists a constant Cpεq ą 0 independent of δ and N , so that:

‖f‖δ ď Cpεqδ´εRN pδq (5.7)

for N large enough and δ small enough but larger than δN .

This choice will be justified at the end of § 5.3.1, and we can simplify the condition by taking δN of

order N´1{3`ε for some ε ą 0 arbitrarily small. We notice it also guarantees the assumptions dpx,Aq

not much smaller than pN lnNq´1{2 as it appears in Corollary 3.7.

Definition 5.5 If X is an element of pCgqbn, we define its norm as:

|X| “
ÿ

1ďh1,...,hnďg

|Xh1,...,hn |. (5.8)
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To perform the asymptotic analysis to all order, we need a rough a priori estimate on the correlators.

We have established (actually under weaker assumptions on the potential) in § 3.3 that:

´

W1 ´
1

N
W
t´1u
1

¯

P O
`

?
N lnN δ´θ

˘

(5.9)

and for any n ě 2 and m P v0, nw:

Wn|m P O
`

pN lnNqn{2 δ´pn´mqθ
˘

(5.10)

with exponent θ “ 1.

Our goal in this section is to establish under those assumptions Proposition 5.5 below about the

1{N expansion for the correlators. We are going to recast the Schwinger-Dyson equations in a form

which makes the asymptotic analysis easier. We already notice that it is convenient to choose

pBAq˘ “ ta
‚
h P pBAq, ρ‚h “ ˘1u, (5.11)

as bipartition of BA to write down the Schwinger-Dyson equation, since the terms involving Ba lnZ

and BaWn´1 for a P pBAq` will be exponentially small according to Corollary 3.3. If a “ a‚h, we denote

αpaq “ α‚h.

5.2 Some relevant linear operators

5.2.1 The operator K

We introduce the following linear operator defined on the space Hp1q2 pAq:

Kfpxq “ 2W
t´1u
1 pxqfpxq ´

1

Lpxq

˛
A

dξ

2iπ

”Lpξq pV t0uq1pξq

x´ ξ
` P t´1upx; ξq

ı

fpξq, (5.12)

where:

P t´1upx; ξq “

˛
A

dη

2iπ
2L2px; ξ, ηqW

t´1u
1 pηq (5.13)

We remind that Lpxq “
ś

aPpBAq´
px´αpaqq and L2 was defined in (4.1). Notice that W

t´1u
1 pxq „ 1{x

when x Ñ 8, and P t´1upx, ξq is a polynomial in two variables, of maximal total degree |pBAq´| ´ 2.

Hence:

K : Hp1q2 pAq Ñ Hp1q1 pAq. (5.14)

Notice also that:

ypxq “

`

V t0u
˘1
pxq

2
´W

t´1u
1 pxq “ Spxq

d

L̃pxq

Lpxq
, (5.15)

where L̃pxq “
ś

aPpBAq`
px´ αpaqq, and by offcriticality assumption the zeroes of S are away from A.

Let us define σpxq “
b

ś

aPpBAqpx´ αpaqq “
b

L̃pxqLpxq, so that σpxq
ypxq “

Lpxq
Spxq . We may rewrite:

Kfpxq “ ´2ypxqfpxq `
Qfpxq
Lpxq

, (5.16)

where:

Qfpxq “ ´
˛
A

dξ

2iπ

”Lpξq pV t0uq1pξq ´ Lpxq pV t0uq1pxq

x´ ξ
` P t´1upx; ξq

ı

fpξq. (5.17)
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For any f P Hp1q2 pAq, Qf is analytic in CzA, with singularities only where pV t0uq1pξq has singularities,

in particular it is holomorphic in the neighborhood of A. It is clear that ImK Ď Hp1q1 pAq. Let ϕ P ImK,

and f P Hp1q2 pAq such that ϕ “ Kf . We can write:

σpxq fpxq “ Res
ξÑx

dξ

ξ ´ x
σpξq fpξq “ ψpxq ´

˛
A

dξ

2iπ

σpξq fpξq

ξ ´ x
, (5.18)

where:

ψpxq “ ´ Res
ξÑ8

dξ

ξ ´ x
σpξq fpξq. (5.19)

Since fpxq P Op1{x2q, ψpxq is a polynomial in x of degree at most g ´ 1. We then pursue the

computation:

σpxqfpxq “ ψpxq ´

˛
A

dξ

2iπ

1

ξ ´ x

σpξq

2ypξq

´

´ ϕpξq `
Qfpξq
Lpξq

¯

“ ψpxq `

˛
A

dξ

2iπ

1

ξ ´ x

1

2Spξq

”

Lpξqϕpξq ` pQfqpξq
ı

“ ψpxq `

˛
A

dξ

2iπ

1

ξ ´ x

Lpξq

2Spξq
ϕpξq, (5.20)

using the fact that S has no zeroes on A. Let us denote G : ImK Ñ Hp1q2 pAq the linear operator

defined by:

rGϕspxq “ 1

σpxq

˛
A

dξ

2iπ

1

ξ ´ x

Lpξq

2Spξq
ϕpξq. (5.21)

One also obtains:

fpxq “
ψpxq

σpxq
` pG ˝Kqrf spxq. (5.22)

5.2.2 The extended operator pK and its inverse

It was first observed in [Ake96] that ψpxqdx
σpxq defines a holomorphic 1-form on the Riemann surface

Σ : σ2 “
ś

aPpBAqpx ´ αpaqq. The space H1pΣq of holomorphic 1-forms on Σ has dimension g if all

αpaq are pairwise distinct (which is the case by offcriticality) and the number of cuts is pg ` 1q and.

So, if g ě 1, K is not invertible. But we can define an extended operator:

pK : Hp1q2 pAq ÝÑ ImK ˆ Cr

f ÞÝÑ pKf,LArfdxsq. (5.23)

Since
´

xj´1dx
σpxq

¯

0ďjďg´1
are independent, they form a basis of H1pΣq. On the other hand, the family

of linear forms:

LA “
´

˛
A1

, . . . ,

˛
Ag

¯

(5.24)

are independent, hence they determine a unique basis $hpxq “
ψhpxqdx
σpxq P H1pΣq so that:

@h, h1 P v1, gw,

˛
Ah

$h1pxq “ δh,h1 . (5.25)

LA thus induces a linear isomorphism of the space of H1pΣq. Its inverse can be written:

L´1
A rws “

g
ÿ

h“1

wh$hpxq (5.26)
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We deduce that pK is an isomorphism, its inverse being given by:

pK´1rϕ,wspxq “
L´1
A

“

w ´ LArpGϕqdxs
‰

pxq

dx
` Gϕpxq, (5.27)

where G is defined in (5.21). We will use the notation pK´1
w ϕ “ pK´1rϕ,ws. The continuity of this

inverse operator is the key ingredient of our method:

Lemma 5.1 ImK is closed in Hp1q2 pAq, and there exists s constant kΓpAq, k
1
ΓpAq ą 0 such that:

@pϕ,wq P ImK ˆ Cg, ‖pK´1
w ϕ‖Γ ď kΓpAq ‖ϕ‖Γ ` k

1
ΓpAq|w| (5.28)

l

Remark 1. If one is interested in controlling the large N expansion of the correlators explicitly in

terms of the distance of xi’s to A, it is useful to give an explicit bound on the norm of pK´1
w . For this

purpose, let δ0 ą 0 be small enough but fixed once for all, and we move the contour in (5.21) to a

contour close staying at distance larger than δ0 from A. If we choose now a point x so that dpx,Aq ă η,

we can write:

Gϕpxq “ ϕpxq

2Spxqσpxq
´
ϕpxq

σpxq

˛
dpξ,Aq“δ0

dξ

2iπ

Lpξq

2Spξq

1

x´ ξ
`

1

σpxq

˛
dpξ,Aq“δ0

dξ

2iπ

Lpξq

2Spξq

ϕpξq

x´ ξ
(5.29)

Hence, there exist constants C,C 1 ą 0 depending only on the position of the pairwise disjoint segments

Ah such that, for any δ ą 0 smaller than δ0{2:

‖Gϕ‖δ ď pCDcpδq ` C
1q δ´1{2 ‖ϕ‖δ ` δ

´1{2 ‖ϕ‖δ0 (5.30)

We set:

Dcpδq “ sup
dpξ,Aq“δ

ˇ

ˇ

ˇ

Lpξq

Spξq

ˇ

ˇ

ˇ
(5.31)

For δ small enough but fixed, Dcpδq blows up when the parameters of the model are tuned to achieve

a critical point, i.e. it measures the distance to criticality. Besides, we have for the operator L´1
A

written in (5.26):

‖L´1
A rws‖δ ď

max1ďhďg ‖ψh‖U8
infdpξ,Aq“δ|σpxq|

|w|, (5.32)

and the denominator behaves like δ´1{2 when δ Ñ 0. We then deduce from (5.27) the existence of a

constant C2 ą 0 so that:

‖pK´1
w ϕ‖δ ď pCDcpδq ` C

1qδ´κ‖ϕ‖δ ` δ
´κ |w|, (5.33)

with exponent κ “ 1{2.

Remark 2. From the expression (5.27) for the inverse, we observe that, if ϕ is holomorphic in CzS,

so is pK´1
w ϕ for any w P Cg, in other words pK´1

w pImK XHp1q1 pSqq Ď Hp1q2 pSq.

5.2.3 Other linear operators

Some other linear operators appear naturally in the Schwinger-Dyson equation. We collect them

below. Let us first define:

∆´1W1pxq “ N´1W1pxq ´W
t´1u
1 pxq, (5.34)

∆´1P px; ξq “

˛
A

dη

2iπ
2L2px; ξ, ηq∆´1W1pηq, (5.35)

∆0V pxq “ V pxq ´ V t0upxq. (5.36)
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Let also h1, h2 be two holomorphic functions in U. We define:

L1 : Hp1q1 pAq Ñ Hp1q2 pAq L1fpxq “

˛
A

dξ

2iπ

L2px; ξ, ξq

Lpxq
fpξq ,

L2 : Hp2q1 pAq Ñ Hp1q1 pAq L2fpxq “

˛
A

dξ1dξ2
p2iπq2

L2px; ξ1, ξ2q

Lpxq
fpξ1, ξ2q ,

Mx1 : Hp1q1 pAq Ñ Hp2q1 pAq Mx1fpxq “

˛
A

dξ

2iπ

Lpξq

Lpxq

fpξq

px´ ξqpx1 ´ ξq2
,

Nh1,h2 : Hp1q1 pAq Ñ Hp1q1 pAq Nh1,h2fpxq “
1

Lpxq

˛
A

dξ

2iπ

´Lpξqh1pξq

x´ ξ
` h2pξq

¯

fpξq ,

∆K : Hp1q1 pAq Ñ Hp1q1 pAq p∆Kqfpxq “ ´Np∆0V q1,∆´1P px;‚qrf spxq ` 2∆´1W1pxq fpxq

`
1

N

´

1´
2

β

¯

pBx ` L1qfpxq. (5.37)

All those operators are continuous for appropriate norms, since we have the bounds, for δ0 small

enough but fixed, and δ small enough:

‖L1fpxq‖δ ď
C ‖L2‖8U
DLpδq

‖f‖δ0 ,

‖L2fpxq‖δ ď
C2 ‖L2‖8U
DLpδq

‖f‖δ0 ,

‖Mx1f‖δ ď
C‖L‖8U
DLpδq δ3

‖f‖δ{2 ,

‖Nh1,h2
‖δ ď ‖h1‖8U ‖f‖δ ` C

‖Lh1‖8U ` ‖h2‖8U
δ0DLpδq

‖f‖δ0 ,

‖p∆Kqf‖δ ď
`

‖p∆0V q
1‖8U ` 2 ‖∆´1W1‖δ

˘

‖f‖δ `
ˇ

ˇ

ˇ
1´

2

β

ˇ

ˇ

ˇ

2C

Nδ2
‖f‖δ{2

`C
‖L p∆0V q

1‖8U ` ‖∆´1P‖8U2

DLpδq δ0
‖f‖δ0 (5.38)

for any f in the domain of definition of the corresponding operator, and:

C “ `pAq{π ` pg ` 1q, DLpδq “ inf
dpx,Aqěδ

|Lpxq|. (5.39)

If all edges are soft, DLpδq ” 1, whereas if there exist at least one hard edge, DLpδq scales like δ when

δ Ñ 0.

5.3 Recursive expansion of the correlators

5.3.1 Rewriting Schwinger-Dyson equations

For n ě 2 and m P v0, n ´ 1w, we can organize the Schwinger-Dyson equation of Corollary 4.2 as

follows:

”

K `∆K ` 1

N

´

1´
2

β

¯

Bx

ı

Wn|mpx, xIq “ An`1|m `Bn|m `Cn´1|m `Dn´1|m, (5.40)
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where:

An`1|mpx;xIq “ N´1pL2 ´ idqWn`1|mpx, x, xIq,

Bn|mpx;xIq “ N´1pL2 ´ idq
!

ÿ

JĎI, 0ďm1ďm
pJ,m1q‰pH,0q,pI,mq

ˆ

m

m1

˙

W|J|`1`m1|m1px, xJq bWn´|J|´m1|m´m1px, xIzJq
)

,

Cn´1|mpx;xIq “ ´
2

βN

ÿ

iPI

MxiWn´1|mpx, xIztiuq,

Dn´1|mpx;xIq “
2

βN

ÿ

aPpBAq`

Lpaq

x´ a
BaWn´1|mpxIq. (5.41)

This equation can be rewritten, with the notation pK´1
w ϕ “ pK´1rϕ,ws and by definition (4.5) of Wn|m,

Wn|mpx, xIq “ pK´1
Wn|m`1pxIq

”

An`1|mpx, xIq `Bn|mpx, xIq `Cn´1|mpx, xIq `Dn´1|mpx, xIq

´ p∆KqrWn|mpx, xIqs ´
1

N

´

1´
2

β

¯

pBx ` L1qWn|mpx, xIq
ı

, (5.42)

where it is understood that the operators all act on the first variable (or the two first variables for

L2).

For n “ 1 and m “ 0, we have almost the same equation; with the notation of (5.34), and in view

of (4.2),

∆´1W1pxq “ pK´1
∆´1W1|1

”A2pxq `D0

N
´

1

N

´

1´
2

β

¯

pBx ` L1qW1pxq

´Np∆0V q1,0W1pxq ´
`

∆´1W1pxq
˘2
ı

, (5.43)

where:

∆´1W1|1 “ LAr∆´1W1s “ N´1 LArW1s ´ LArW
t´1u
1 s (5.44)

is the first correction to the expected filling fractions.

We would like ∆K to be negligible compared to K in (5.40), that is

‖pKwp∆Kfq‖δ ! ‖f‖δ (5.45)

This can be controlled thanks to (5.33) and (5.38). From our assumptions, we know that:

‖∆´1P‖8U2 P op1q, ‖∆0V ‖8U P Op1{Nq. (5.46)

Taking into account those estimates in (5.38), we observe that it will be possible independently of the

nature of the edges provided δ is restricted to be larger than δN such that limNÑ8 δ
´1{2
N ‖∆´1W1‖δN “

0, and limNÑ8
1´2{β

Nδ
5{2
N

“ 0. Given the a priori bound in Corollary 3.7 on ∆´1W1, this can be realized

independently of β if:

lim
NÑ8

c

lnN

N

?
ln δN
δN

DcpδN q δ
´κ
N “ 0 (5.47)

Since we consider here a fixed, off-critical potential, Dcpδq remains bounded, and since κ “ 1{2, this

condition is equivalent to:

lim
NÑ8

´ lnN

N

¯1{3 ln1{3 δN
δN

“ 0 (5.48)

It justifies the introduction of the sequence δN in Definition 5.4. Then, by similar arguments, ‖Dn|m‖δ
will always be exponentially small when N is large provided δ ě δN , and thus negligible in front of

the other terms.

30



5.3.2 Initialization and order of magnitude of Wn

We remind θ “ 1 and κ “ 1{2 here. The goal of this section is to prove the following bounds.

Proposition 5.2 There exists a function W
t0u
1 P Hp1q2 pSq independent of N so that:

W1 “ NW
t´1u
1 `W

t0u
1 `∆0W1, ∆0W1 P O

´

d

ln3N

N

´Dcpδq

DLpδq

¯2

δ´p2θ`κq
¯

(5.49)

It is given by:

W
t0u
1 pxq “ pK´1

W
t0u

1|1

"

”

´

´

1´
2

β

¯

pBx ` L1q ´NpV t1uq1,0
ı

W
t´1u
1

*

pxq (5.50)

Proposition 5.3 For any n ě 2, there exists a function W
tn´2u
n P Hpnq2 pSq so that:

Wn|m “ N2´npW
tn´2u
n|m `∆n´2Wn|mq (5.51)

where:

∆n´2Wn P O
´

N´1{2plnNq2n´3{2
´Dcpδq

DLpδq

¯3n´3

δ´θpn´mq´pκ`θqp3n´3q
¯

(5.52)

Prior to those results, we are going to prove the following bound:

Lemma 5.4 Denote r˚n “ 3n´ 4. For any integers n ě 2 and r ě 0 such that r ď r˚n, we have:

Wn|m P O
´

N
n´r
2 plnNq

n`r
2

´Dcpδq

DLpδq

¯r

δ´θpn´mq´pκ`θqr
¯

(5.53)

Proof. The a priori control of correlators (3.28) provides the result for r “ 0. Let s be an integer,

and assume the result is true for any r P v0, sw. Let n be such that s` 1 ď r˚n “ 3n´ 4. We consider

(5.42) which gives Wn|m in terms of Wn`1|m and Wn1|m1 for n1 ă n or n1 “ n but m1 ą m, and we

exploit the control (5.33) on the inverse of pK. We obtain the following bound on the A-term:

pK´1
Wn|m`1

pAn`1|mq P O
´

N
n´ps`1q

2 plnNq
n`s`1

2

´Dcpδq

DLpδq

¯s`1

δ´pn´mqθ´ps`1qpκ`θq ` ‖Wn|m`1‖δ δ
´1{2

¯

,

(5.54)

and we now argue that it will be the worse estimate among all other terms, given that δ ě δN . The

B-term involves linear combinations of Wj`1|m1 bWn´j|m´m1 . Notice that:

s´ r˚j`1 ď r˚n ´ r
˚
j`1 “ r˚n´j (5.55)

Therefore, we can use the recursion hypothesis with r “ r˚j`m1`1 “ 3pj`m1q´1 to boundWj`m1`1|m1 ,

and with r “ s´ r˚j`m1`1 to bound Wn´j´m1|m´m1 , and we find:

pK´1
Wn|m`1

pBn|mq P O
´

N
n´ps`1q

2 plnNq
n`ps`1q

2

´Dcpδq

DLpδq

¯s`1

δ´pn´mqθ´ps`1qpκ`θq ` ‖Wn|m`1‖δ δ
´κ

¯

(5.56)

which is of the same order as (5.54). The C-term involves Wn´1|m. If s ď r˚n´1, we can use the

recursion hypothesis at r “ s to bound it as

pK´1
Wn|m`1

pCn´1|mq P O
´ δ2θ´3

N2 lnN
N

n´ps`1q
2 plnNq

n`1`s
2

´Dcpδq

DLpδq

¯s`1

δ´pn´mqθ´ps`1qpκ`θq
¯

(5.57)
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The prefactor makes this term negligible comparing to (5.54). If s ą r˚n´1, we can only use the

recursion hypothesis for r “ r˚n´1, and find the bound:

pK´1
Wn|m`1

pCn´1|mq P O
´

N2´n plnNq2n´4
´Dcpδq

DLpδq

¯3n´6

δ´pn´mqθ´p3n´4qpκ`θq`2pθ´κq

`‖Wn|m`1‖δ δ
´κ

¯

, (5.58)

and thus still negligible compared to the A-term when N Ñ 8 and δ Ñ 0. We can conclude by

recursion from m “ n to m “ 0, taking into account the assumed expansion (5.3) for Wn|n. l

Proof of Proposition 5.2. Lemma 5.4 for r “ 1 gives the bound:

W2 P O
´a

N ln3N
Dcpδq

DLpδq
δ´p3θ`κq

¯

(5.59)

Then, in (5.43), we find that A2 P O
`

W2

NDLpδq

˘

, and we already know that |∆´1W1| goes to zero

for uniform convergence in any compact subset of CzA, so that }pK´1
Wn|m`1

p∆´1W1q
2lδ is neglectable

with respect to ∆´1W1 at list for δ not going to zero with N . By continuity of pK´1, we deduce

that N∆´1W1pxq has a limit W
t0u
1 for convergence in any compact subset of CzA, given by (5.50).

Reminding Remark 2 page 28, this limit belongs to Hp1q2 pSq, and given the behavior of W
t´1u
1 at the

edges, we have a naive bound:

pBx ` L1qW
t0u
1 P O

´ δ´3{2

DLpδq

¯

, (5.60)

and we have already argued at the end of § 5.3.1 that ‖N´1pBx ` L1qp∆´1W1q‖δ was negligible

compared to ‖∆´1W1‖δ{2 provided δ ě δN . Moreover, Therefore, the worse estimate on the error

∆0W1 is given by the term A2. Taking into account the effect of pK´1 given in (5.33), we find:

∆0W1 P O
´

plnNq3{2
?
N

´Dcpδq

DLpδq

¯2

δ´p3θ`2κq
¯

(5.61)

which is the desired result. l

Proof of Proposition 5.3 We already know the result for n “ 1. Let n ě 2, m P v0, n ´ 1w, and

assume the result holds for all n1 P v1, n ´ 1w and m1 P vm,nw. We want to use (5.40) once more to

compute Wn|m. Applying Lemma 5.4 to r “ 3n´ 4 for n ě 2, we find:

An`1|m P O
´

N2´n plnNq
2n´3{2

?
N

`

DLpδq
˘´p3n´4q

δ´pn`1´mqθ´p3n´4qpθ`κq
¯

, (5.62)

whereas the recursion hypothesis implies that Bn|m and Cn´1|m are of order OpN2´nq. Hence,

Wn|m “ N2´npW
tn´2u
n|m `∆n´2Wn|mq with:

W
tn´2u
n|m px, xIq “ pK´1

W
tn´2u

n|m`1
pxIq

”

´
2

β

ÿ

iPI

MxiW
tn´3u
n´1|mpx, xIq (5.63)

`pL2 ´ idq
!

ÿ

0ďm1ďm
JĎI

ˆ

m

m1

˙

W
t|J|´1`m1u
|J|`1`m1|m1px, xJq bW

tn´|J|´2´m1u
n´|J|´m1|m´m1px, xIzJq

)ı

The error term ∆n´2Wn|m receives contribution either from errors ∆n1´2Wn1|m1 appearing in Bn|m

and Cn´1|m, which we already know how to bound. And the restriction that limNÑ8Nδ
2
N “ `8
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guarantees that they are negligible in front of An`1|m computed in (5.62). Hence, we deduce by

substracting W
tn´2u
n|m and inverting K that:

∆n´2Wn|m P O
´

c

plnNq4n´3

N

´Dcpδq

DLpδq

¯3n´3

δ´pn´mqθ´p3n´3qpθ`κq
¯

(5.64)

which is the desired result at step pn,mq. We conclude by recursion. l

5.4 Recursive expansion of the correlators

Proposition 5.5 For any k0 ě 0, we have for any n ě 1:

Wn|mpx1, . . . , xnq “
k0
ÿ

k“n´2

N´kW
tku
n|mpx1, . . . , xnq `N

´k0p∆k0Wn|mqpx1, . . . , xnq, (5.65)

where:

piq for any n ě 1 and any k P v0, . . . , k0w, W
tku
n|m has a limit when N Ñ 8 in Hpn´mq2 pSq for

pointwise convergence in any compact of pCzAqn´m, and:

W
tku
n|m P O

´

plnNq
n`k

2

´Dcpδq

DLpδq

¯n`2k

δ´pn´mqθ´pn`2kqpκ`θq
¯

. (5.66)

piiq for any n ě 1, ∆k0Wn|m P H
pn´mq
2 pAq and:

∆k0Wn|m P O
´

plnNqn`k0`1{2

?
N

´Dcpδq

DLpδq

¯n`2k0`1

δ´pn´mqθ´pn`2k0`1qpκ`θq
¯

. (5.67)

Proof. The case k0 “ 0 follows from § 5.3.2, and we prove the general case by recursion on k0, which

can be seen as the continuation of the proof of Proposition 5.3. Assume the result holds for some

k0 ě 0. Let us decompose:

V “
k0`2
ÿ

k“0

N´k V tku `N´pk0`2q∆k0`2V. (5.68)

We already know that the loop equations are satisfied up to order N1´k0 . We can decompose the

remainder as:

N´pk0´1q
!

K `∆K ` 1

N

´

1´
2

β

¯

Bx

)

∆k0Wn|mpx, xIq “ N´k0
`

E
tk0u
n|m px;xIq `R

tk0u
n|m px;xIq

˘

. (5.69)

It is understood that all linear operators appearing here (and defined in § 5.2) act on the variable(s)

x. We have set:

E
tk0u
n|m px;xIq “ pL2 ´ idq

“

W
tk0´1u
n`1|m px, x, xIq

‰

`
ÿ

0ďkďk0
0ďm1ďm

ÿ

JĎI

ˆ

m

m1

˙

pL2 ´ idq
“

W
tku
|J|`1`m1|m1px, xJq bW

tk0´ku
n´|J|´m1|m´m1px, xIzJq

‰

´

´

1´
2

β

¯

pBx ` L1q
“

W
tk0u
n|m px, xIq

‰

`

k0
ÿ

k“n0´2

NpV tk0`1´kuq1,0

“

W
tku
n|mpx, xIq

‰

´
2

β

ÿ

iPI

Mxi

“

W
tk0u
n´1|mpx, xIztiuq

‰

, (5.70)
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and:

R
tk0u
n|m px;xIq “ pL2 ´ idq

“

∆k0Wn`1|mpx, x, xIq
‰

`
ÿ

0ďm1ďm
JĎI

pL2 ´ idq
“`

∆k0W|J|`1`m1|m1px, xJq
˘

bWn´|J|´m1|m´m1px, xIzJq
‰

`
ÿ

0ďkďk0
0ďm1ďm

ÿ

JĎI

pL2 ´ idq
“

W
tk0´ku
|J|`1`m1|m1px, xJq b

`

∆kWn´|J|´m1|m´m1px, xIzJq
˘‰

`

k
ÿ

l“´1

Np∆l`1V q1,0

“

W
tk0´lu
n|m px, xIq

‰

´
2

β

ÿ

iPI

Mxi

“

∆k0Wn´1|mpx, xIztiuq
‰

´
2

β

ÿ

aPpBAq`

Lpaq

x´ a
BaWn´1|mpxIq.

Let us denote:

w
tku
n|mpN, δq “

plnNqn`k`1{2

?
N

´Dcpδq

DLpδq

¯n`2k`1

δ´pn´mqθ´pn`2k`1qpκ`θq. (5.71)

Thanks to the recursion hypothesis and the bound on the norm of the inverse of pK from (5.33), we

find:
pK´1
0 Rn|m P O

`

wtk`1u
n pN, δq

˘

. (5.72)

This bound arise from the three first lines. Indeed, the two last terms are negligible compared to

w
tk`1u
n as noticed in the proof of Lemma 5.4, and the term involving ∆l`1V is of order plnNqp{N for

some p, with a dependence in δ which is less divergent than that appearing of w
tk`1u
n . Therefore, we

deduce by recursion on m from m “ n to m “ 0 that N∆k0Wn|m converges to:

W
tk0`1u
n|m px, xIq “ pK´1

W
tk0`1u

n|m`1
pxIq

“

Etk0un px, xIq
‰

, (5.73)

pointwise and uniformly on any compact of pCzAqn´m. Besides, the estimate (5.72) yields the bound

(5.67) for the error, while the recursion hypothesis combined with (5.73) leads to (5.66). l

This proves the first part of Theorem 1.3 for real-analytic potentials (i.e. the stronger Hypoth-

esis 1.3 instead of 1.4). For given n and k, the bound on the error ∆kWn depend only on a finite

number of constants vtk
1
u, w

tk1u
n1 appearing in Hypotheses 5.1.

5.5 Central limit theorem

With Proposition 5.2 at our disposal, we can already establish a central limit theorem for linear

statistics of analytic functions in the fixed filling fraction model. It will be refined for non-analytic

but smooth enough functions in § 6.1.

Proposition 5.6 Assume the result of Proposition 5.2. Let ϕ : A Ñ R extending to a holomorphic

function in a neighborhood of S. Then:

µV ;A
N,‚,β

”

exp
´

N
ÿ

i“1

ϕpλiq
¯ı

“ exp
´

NLrϕs `M rϕs `
1

2
Qrϕ,ϕs ` op1q

¯

, (5.74)

where:

Lrϕs “

˛
A

dξ

2iπ
ϕpξqW

t´1u
1 pξq, M rhs “

˛
A

dξ

2iπ
ϕpξqW

t0u
1 pξq (5.75)

W
t0u
1 has been introduced in (5.49), and Q is a quadratic form given in (5.78) or (5.79) below.
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Proof. Let us define Vt “ V ´ 2t
βN ϕ. Since the equilibrium measure is the same for Vt and V , we

still have the result of Proposition 5.2 for the model with potential Vt for any t P r0, 1s, with uniform

errors. We can thus write:

lnµV ;A
N,‚,β

”

exp
´

N
ÿ

i“1

t ϕpλiq
¯ı

“

ˆ 1

0

dt

˛
A

dξ

2iπ
WVt

1 pξqϕpξq

“

ˆ 1

0

dt

˛
A

dξ

2iπ
ϕpξq

“

N W
Vt;t´1u
1 `W

Vt;t0u
1 pξq

‰

` op1q (5.76)

As already pointed out, W
Vt;t0u
1 “W

V ;t0u
1 , and from (5.49):

W
Vt;t0u
1 “W

V ;t0u
1 ´

2t

β

`

pK´1

W
t0u

1|1

˝Nϕ1,0

˘

rW
V ;t´1u
1 s (5.77)

Hence (5.74), with:

Qrϕ,ϕs “ ´
2

β

˛
A

dξ

2iπ
ϕpξq

`

pK´1

W
t0u

1|1

˝Nϕ1,0

˘

rW
V ;t´1u
1 spξq (5.78)

If we restrict to the model with fixed filling fraction, it can be simplified to:

Qrϕ,ϕs “

‹
A

dξ1 dξ2
p2iπq2

ϕpξ1qϕpξ2qW
V ;t0u
2 pξ1, ξ2q (5.79)

where W
V ;t0u
2 has been introduced in (5.51) and we recall W V

2|1 “ 0 for the model with fixed filling

fractions. From the proof of Proposition 5.2, we observe that the op1q in (5.74) is uniform in h such

that supξPΓE |ϕpξq| is bounded by a fixed constant. l

In other words, the random variable Φ “
řN
i“1 ϕpλiq´Lrϕs converges almost surely to a Gaussian

variable with mean M rϕs and variance Qrϕ,ϕs. This is a generalization of the central limit theorem

already known in the one-cut regime [Joh98, BG11]. A similar result was recently obtained in [Shc12].

In the next Section, we are going to extend it to holomorphic h which could be complex-valued on A

(Proposition 6.3). In general, to establish the central limit theorem, one could be tempted to use the

definition of the correlators:

Bnt lnµV ;A
N,‚,β

”

exp
´

N
ÿ

i“1

t ϕpλiq
¯ı

ˇ

ˇ

ˇ

t“0
“

˛
An

n
ź

i“1

dξi
2iπ

ϕpξiqW
V
n pξ1, . . . , ξnq, (5.80)

then represent GN ptq “ lnµV ;A
N,‚,βre

tΦs by its Taylor expansion up to t “ 1, and use the result of

Proposition 5.2 that WV
n P OpN2´nq to conclude. However, for any fixed N , GN ptq is analytic in the

domain of the complex plane where µV ;A
N,‚,βre

tΦs does not vanish, and it is not obvious that for N large

enough (although it will turn out to be true) that this does not happen for some t0 P C with |t0| ă 1,

i.e. that the Taylor series converges in the appropriate domain.

6 Fixed filling fraction: refined results

In this section, we show how the asymptotic expansion of multilinear statistics for non-analytic test

functions can be deduced from our results, thanks to their explicit dependence on the distance of the

variables x (appearing in the correlators) to A. We also show how to extend our results to the case of

harmonic potentials, and potentials containing a complex-valued term of order Op1{Nq. The latter is

performed by using fine properties of analytic functions (the two-constants theorem) as was recently

proposed in [Shc12].
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6.1 Multilinear statistics for non-analytic test functions

Our methods establish a control on n-point correlators Wnpx1, . . . , xnq, depending on how x1, . . . , xn

approach the range of integration A. We now argue that it gives a control n-linear statistics for

test functions with regularity lower than analytic. If s is a finite-dimensional vector, we denote

|s|1 “
ř

i |si|.

Lemma 6.1 Let fn be a holomorphic function defined in a neighborhood of An in pCzAqn. Assume

there exists C, r, and η P p0, 1q small enough, such that

@δ ě η, sup
dpξi,Aqěδ

|fnpξ1, . . . , ξnq| ď
C

δr
(6.1)

Then, there exists a constant C 1 so that, for any s satisfying |s|1 P rr, r{ηs, we have:

ˇ

ˇ

ˇ

˛
An

n
ź

j“1

dξj
2iπ

eisjξj fnpξ1, . . . , ξnq
ˇ

ˇ

ˇ
ď C 1 |s|r1 (6.2)

Proof. For δ small enough but larger than η, let Cpδq be the contour surrounding A such that

dpξ,Aq “ δ for any ξ P Cpδq. When A has pg`1q connected components, its length is 2p`pAq`pg`1qπδq.

For any s P R, we find:

ˇ

ˇ

ˇ

˛
An

n
ź

j“1

dξj
2iπ

e´isjξj fnpξ1, . . . , ξnq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

˛
Cnpδq

dξj
2iπ

e´isjξj fnpξ1, . . . , ξnq
ˇ

ˇ

ˇ

ď C
´`pAq

π
` pg ` 1qδ

¯n

e|s|1δ´r ln δ (6.3)

We now optimize this inequality keeping |s|1 large in mind, by choosing δ “ r{|s|1, which leads to the

desired result. l

Corollary 6.2 Let ϕ : Rn Ñ C be a continuous function with compact support, so that its Fourier

transform satisfies:

pϕpsq P op|s|´rq, |s| Ñ 8 (6.4)

Then, for any integer k0 such that r ě 1` κ` 2θ ` 2k0
n pκ` θq, we have an expansion of the form:

µV ;A
N,β

”

n
ź

j“1

´

N
ÿ

ij“1

ϕpλij q
¯ı

c
“

k0
ÿ

k“n´2

N´kMtku
n rϕs ` o

`

N´pk0`1{2qplnNqn`k0`1{2
˘

(6.5)

Proof. Let η ą 0, and define a function ϕη by its Fourier transform pϕηpsq “ e´η|s| pϕpsq. It is analytic

in the strip tξ P C, |Im ξ| ă ηu, and we may write:

µV ;A
N,β

”

n
ź

j“1

´

N
ÿ

ij“1

ϕηpλij q
¯ı

c
“

˛
An

´

n
ź

j“1

dξj
2iπ

ϕηpξjq
¯

Wnpξ1, . . . , ξnq (6.6)

“

ˆ
Rn

´

n
ź

j“1

dsj e
´η|sj |

pϕpsjq
¯

˛
An

´

n
ź

j“1

dξj
2iπ

e´isjξj
¯

Wnpξ1, . . . , ξnq

We may insert the large N expansion of the correlators established in Proposition 5.5:

Wnpξ1, . . . , ξnq “
k0
ÿ

k“n´2

N´kW tku
n pξ1, . . . , ξnq `N

´k0 ∆k0Wnpξ1, . . . , ξnq (6.7)
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where:

‖∆k0Wn‖δ P O
´

plnNqn`k0`1{2

?
N

´Dcpδq

DLpδq

¯n`2k0`1

δ´nθ´pn`2k0qpκ`θq
¯¯

(6.8)

We may pass to the limit η Ñ 0 in (6.6) when the integrand in the right-hand side is integrable near

|s|1 “ 8. It constrains the allowed behavior for pϕpsq at |s| Ñ 8. The worse behavior at |s|1 “ 8

comes from the error term ∆k0Wn. Lemma 6.1 implies that, for any ε ą 0, there exists a constant

Cε ą 0 such that:

ˇ

ˇ

ˇ

ˇ

ˇ

˛
An

´

n
ź

j“1

dξj
2iπ

e´isjξj
¯

Wnpξ1, . . . , ξnq

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cε
plnNqn`k0`1{2

?
N

´Dcp|s|
´1
1 q

DLp|s|
´1
1 q

¯n`2k0`1

|s|
nθ`pn`2k0qpκ`θq`ε
1

(6.9)

Assume now that pϕpsq P op|s|´rq. Then, integrability at |s|1 in (6.6) requires:

nθ ` pn` 2k0qpκ` θq ´ npr ` εq ă ´n (6.10)

In other words, performing an expansion up to opN´k0q if the regularity exponent r satisfies:

r ě 1` κ` 2θ `
2k0

n
pκ` θq. (6.11)

l

6.2 Extension to harmonic potentials

The main use of the assumption that V is analytic came from the representation (1.6) of n-linear

statistics described by a holomorphic function, in terms of contour integrals of the n-point correlator.

If ϕ is holomorphic in a neighborhood of A, its complex conjugate ϕ is antiholomorphic, and we can

also represent:

µV ;A
N,β

”

N
ÿ

i“1

ϕpλiq
ı

“

˛
A

dx

2iπ
ϕpxqW1pxq (6.12)

In this paragraph, we explain how to use a weaker set of assumptions than Hypothesis 1.3 , where

”analyticity” and ”1{N expansion of the potential” are weakened as follows.

Hypothesis 6.1 ‚ (Harmonicity) V : A Ñ R can be decomposed V “ V1 ` V2, where V1,V2

extends to holomorphic functions in a neighborhood U of A.

‚ (1{N expansion of the potential) For j “ 1, 2, there exists a sequence of holomorphic functions

pVtkuj qkě0 and constants pv
tku
j qk so that, for any K ě 0:

sup
ξPU

ˇ

ˇ

ˇ
Vjpξq ´

K
ÿ

k“0

N´k Vtkuj pξq
ˇ

ˇ

ˇ
ď v

tKu
j N´pK`1q (6.13)

In other words, we only assume V to be harmonic. ”Analyticity” corresponds to the special case

V2 ” 0. The main difference lies in the representation (6.12) of expectation values of antiholomorphic

statistics, which come into play at various stages, but do not affect the reasoning. Below chronologi-

cally Section 5, we enumerate below the small changes to take into account.

In § 4, in the Schwinger-Dyson equations (Theorem 4.2 and 4.2), we encounter a term:

µV ;A
N,β

”

N
ÿ

i“1

Lpλiq

Lpxq

V 1pλiq

x´ λi

n
ź

j“2

´

N
ÿ

ij“1

1

xj ´ λij

¯ı

c
. (6.14)
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It is now equal to:

1

Lpxq

˛
A

dξ

2iπ
Lpξq

V 11pξq
x´ ξ

Wnpξ, xIq ´
1

Lpxq

˛
A

dξ

2iπ
Lpξq

V 12pξq
x´ ξ

Wnpξ, xIq. (6.15)

Remark that (6.14) or (6.15) still defines a holomorphic function of x in CzA. The second line in

Corollary 4.3 has to be modified similarly. In § 5.2, we can define the operator K by (5.16) with Qpxq
now given by:

Qfpxq “ ´

˛
A

dξ

2iπ
P t´1upξqpx; ξq fpξq

`

˛
A

dξ

2iπ

LpξqpVt0u1 q1pξq ´ LpxqpVt0u1 q1pxq

ξ ´ x
fpξq

`

˛
A

dξ

2iπ

LpξqpVt0u2 q1pξq ´ LpxqpVt0u2 q1pxq

ξ ´ x
fpξq. (6.16)

It is still a holomorphic function of x in a neighborhood of A, thus it disappears in the computation

leading to formula 5.22 for the inverse of K, which still holds. In § 5.2.3, the expression (5.37) for the

operator ∆K used in (5.40) should be replaced by:

p∆Kqfpxq “ 2∆´1W1pxq fpxq `
1

N

´

1´
2

β

¯

L1fpxq

´Np∆0V1q1,∆´1P px;‚qrf spxq ´Np∆0V2q1,0rf spxq, (6.17)

and the bound (5.38) still holds, where v0 is replaced by v1,0 ` v2,0 introduced in (6.13). In § 5.3.1-

5.4, all occurences of NV 1,0rf spxq should be replaced by NpV1q1,0rf spxq `NpV2q1,0rf spxq (and similarly

for Np∆kV q1,0 or NpV tkuq1,0). The key remark is that the terms where V2 appear involve complex

conjugates of contour integrals of the type gpξqW
tku
n pξ, xIq or gpξq∆kWnpξ, xIq where g is some

holomorphic function in a neighborhood of A. Their norm can be controlled in terms of the norms

of W
tku
n or ∆kWn on contours Γ, as were the terms involving V1, so the recursive control of errors in

the 1{N expansion of correlators for the fixed filling fraction model is still valid, leading to the first

part of Theorem 1.3, and to the central limit theorem (Proposition 5.6) for harmonic potentials in a

neighborhood of A, which are still real-valued on A.

6.3 Complex perturbations of the potential

Proposition 6.3 The central limit theorem (5.74) holds for ϕ : AÑ C, which can be decomposed as

ϕ “ ϕ` ϕ2, where ϕ1, ϕ2 are holomorphic functions in a neighborhood of A.

Proof. We present the proof for ϕ “ t f , where t P C and f : A Ñ R extends to a holomorphic

function in a neighborhood of A. Indeed, the case of f : A Ñ R which can be decomposed as

f “ f1 ` f2 with f1, f2 extending to holomorphic functions in a neighborhood of A, can be treated

similarly with the modifications pointed out in § 6.2. Then, if ϕ : A Ñ C can be decomposed

as ϕ “ ϕ1 ` ϕ2 with ϕ1, ϕ2 holomorphic, we may decompose further ϕj “ ϕRj ` iϕIj , then write

Ṽ “ V ´ 2
βN pϕ

R
1 ` ϕ

R
2 q and f “ pϕI1 ´ ϕ

I
2q, and:

µV ;A
N,ε,β

”

exp
´

N
ÿ

i“1

hpλiq
¯ı

“ µV ;A
N,ε,β

”

exp
´

N
ÿ

i“1

pϕR1 ` ϕ
R
2 q

¯ı

µṼ ;A
N,ε,β

”

exp
´

N
ÿ

i“1

ifpλiq
¯ı

. (6.18)

The first factor can be treated with the initial central limit theorem (Proposition 5.6), while an

equivalent of the second factor for large N will be deduced from the following proof applied to the

potential Ṽ .
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This proof is inspired from that of [Shc12, Lemma 1]. From Theorem 1.3 applied to V up to

op1q, we introduce W
tku
n,ε for pn, kq “ p1,´1q, p2, 0q, p1, 0q (see (5.51)-(5.49)). If t P R, the central limit

theorem (Proposition 5.6) applied to ϕ “ t f implies:

µV ;A
N,‚,β

”´

N
ÿ

i“1

t fpλiq
¯ı

“ GN ptqp1`RN ptqq, GN ptq “ exp
´

NtLrf s` tM rf s`
t2

2
Qrf, f s

¯

, (6.19)

where suptPr´T0,T0s
|RN ptq| ď CpT0q ηN and limNÑ8 ηN “ 0. Let T0 ą 0, and introduce the function:

R̃N ptq “
1

CpT0qηN
RN ptq. (6.20)

For any fixed N , it is an entire function of t, and by construction

sup
tPr´T0,T0s

|R̃N ptq| ď 1. (6.21)

Besides, for any t P C, we have

ˇ

ˇ

ˇ
µV ;A
N,‚;β

”

exp
´

N
ÿ

i“1

t fpλiq
¯ıˇ

ˇ

ˇ
ď µV ;A

N,‚,β

”

exp
´

N
ÿ

i“1

pRe tq fpλiq
¯ı

(6.22)

Therefore, we deduce that

sup
|t|ďT0

|R̃N ptq| ď
1

CpT0qηN
sup
|t|ďT0

GN pRe tq

|GN ptq|

ď
1

CpT0qηN
sup
|t|ďT0

exp
´

pIm tq2

2
Qrf, f s

¯

ď
1

C 1pT0qηN
(6.23)

for some constant C 1pT0q. By the two-constants lemma [NN22], (6.21)-(6.23) imply

@T Ps0, T0r, sup
|t|ďT

|R̃N ptq| ď pC
1pT0qηN q

´2φpT,T0q{π, φpT, T0q “ arctan
´ 2T {T0

1´ pT {T0q
2

¯

. (6.24)

In particular, for any compact K of the complex plane, we can find an open disk of radius T0 which

contains K, and thus show (6.19) with RN ptq P op1q uniformly in K. l

We observe from the proof that Proposition 6.3 cannot be easily extended to TN |t| P Op1q with

TN Ñ `8. Indeed, the ratio GN pTN pRe tqq{|GN pTN tq| in (6.23) will not be bounded when N Ñ 8,

hence applying the two-constants lemma as above does not show RN ptq Ñ 0.

Corollary 6.4 In the model with fixed filling fractions ε, assume the potential V0 satisfies Hypothe-

ses 5.1. Then, if ϕ : A Ñ C can be decomposed as ϕ “ ϕ1 ` ϕ2 with ϕ1, ϕ2 extending to holo-

morphic functions in a neighborhood of A, then the model with fixed filling fractions ε and potential

V “ V0 ` ϕ{N satisfies Hypotheses 5.1. Therefore, the result of Proposition 5.5 also holds: the

correlators have a 1{N expansion.

Proof. Hypothesis 5.1 contrains only the leading order of the potential, i.e. it holds for pV0, εq iff it

holds for pV “ V0`h{N, εq. Proposition 6.3 implies a fortiori the existence of constants C`, C´, C ą 0

such that:

C´ C
N ď |ZV ;A

N,ε,β | ď C` C
N (6.25)
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Using this inequality as an input, we can repeat the proof given in Section 3 to check to obtain Corol-

lary 3.7 (i.e. the a priori control reminded in (5.9)-(5.10)) for the potential V . Then, in the recursive

analysis of the Schwinger-Dyson equation of Section 5 for the model with fixed filling fractions, the

fact that the potential is complex-valued does not matter, so we have proved the 1{N expansion of

the correlators. l

This proves Theorem 1.3 in full generality.

6.4 1{N expansion of n-kernels

We can apply Corollary 6.4 to study potentials of the form:

Vc,xpξq “ V ´
2

βN

ÿ

j

cj lnpxj ´ ξq (6.26)

where xj P CzA, and thus derive the asymptotic expansion of the kernels in the complex plane, i.e.

Corollary 1.7 and 1.8. Indeed, let us introduce the random variable Hcpxq “
řn
j“1 cj

řN
i“1 lnpxj´λiq.

We now know from Proposition 6.3 that lnµV ;A
N,ε,β

“

etHcpxq
‰

is an entire function. Therefore, its Taylor

series is convergent for any t P C, and we have:

Kn,cpxq “ exp
´

lnµV ;A
N,ε,β

“

etHcpxq
‰

¯

“ exp
´

ÿ

rě1

1

r!

˛
Ar

n
ź

i“1

dξi
2iπ

´

n
ÿ

j“1

cj lnpxj ´ ξiq
¯

Wrpξ1, . . . , ξrq
¯

(6.27)

which can also be rewritten:

Kn,cpxq “ exp
´

ÿ

rě1

1

r!
Lbrc,xrWrs

¯

(6.28)

where we introduced:

Lc,xfpxq “
n
ÿ

j“1

cj

ˆ xj

8

(6.29)

As a consequence of Proposition 5.5, Wn P OpN
2´nq and has a 1{N expansion. Therefore, only a

finite number of terms contribute to each order in the n-kernels, and we find:

Proposition 6.5 Assume Hypothesis 1.3. Then, for any K ě ´1, we have the asymptotic expansion:

Kn,cpxq “ exp

#

K
ÿ

k“´1

N´k
´

k`2
ÿ

r“1

1

r!
Lx,crW tku

r s

¯

+

, (6.30)

where δ “ infj dpxj ,Aq is assumed larger than δN introduced in Definition 5.4. For a fixed K, it is

uniform for x in any compact of pCzAqn. l

If ϕ : AÑ C is a function such that pϕpsq P op|s|´rq when |s| Ñ 8, one could study by similar methods

the asymptotic expansion of the exponential statistics µV ;A
N,βre

Hrϕss where Hrϕs “
řN
i“1 ϕpλiq, that we

would establish thanks to Corollary 6.2 up to opN´Kprqq, where

Kprq “
Yr ´ p1` κ` 2θq

2pκ` θq

]

(6.31)

Note that Kprq ě 0 implies r ě 1` κ` 2θ “ 7{2. In particular, we can deduce:

Proposition 6.6 The central limit theorem 5.6 holds for test functions ϕ such that |pϕpsq| P

op|s|´p1`κ`2θqq when |s| Ñ 8.
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7 Fixed filling fractions: 1{N expansion of the partition func-
tion

In this Section, we restrict ourselves to the fixed filling fraction model, i.e. we study µV ;A
N,ε,β for some

ε P Eg. Following § 6.2, it is again not difficult to consider potentials of the form V “ V1 ` V2, with

V1,V2 is holomorphic, so we will write down proofs only for holomorphic V .

7.1 Interpolation principle

Recall that, if pVtqt is a smooth family of potentials so that BtVt is holomorphic in a neighborhood of

A, we have:

Bt lnZVt;AN,ε,β “ ´
βN

2

˛
A

dξ

2iπ
BtVtpξqW

Vt
1 pξq. (7.1)

We are going to interpolate in two steps between the initial potential V , and a potential for which the

partition function can be computed exactly by means of a Selberg β integral.

7.1.1 Reference potentials

We first describe a set of reference potentials. Let γ “ rγ´, γ`s be a segment not reduced to a point,

and ρ˘ two elements of t˘1u. We introduce a probability measure supported on γ:

dσγ,ρpxq “
cγ,ρ
π

b

px´ γ´qρ´pγ` ´ xqρ` dx, (7.2)

where the constant cΓ,ρ ensures that the total mass is 1. It is well-known that σγ,ρ “ µ
Vγ,ρ;γ̃
eq for the

following data:

‚ if pρ´, ρ`q “ p1, 1q, σγ,ρ is a semi-circle law, and it is the equilibrium measure for the Gaussian

potential

Vγ,ρ “
8

pγ` ´ γ´q2

´

x´
γ´ ` γ`

2

¯2

, cγ,ρ “
8

pγ` ´ γ´q2
(7.3)

on γ̃, any interval of γm “ R which is a neighborhood of γ.

‚ if pρ´, ρ`q “ p´1, 1q, σγ,ρ is a Marčenko-Pastur law, and it is the equilibrium measure for a

linear potential:

Vγ,ρ “
4px´ γ´q

γ` ´ γ´
, cγ,ρ “

2

γ` ´ γ´
(7.4)

on γ̃, any interval of γm “ rγ
´,`8r which is a neighborhood of γ.

‚ if pρ´, ρ`q “ p1,´1q, we have similarly a linear potential:

Vγ,ρ “
4pγ` ´ xq

γ` ´ γ´
, cγ,ρ “

2

γ` ´ γ´
(7.5)

on γ̃, any intevral of γm “s ´8, γ
`s which is a neighborhood of γ.

‚ if pρ´, ρ`q “ p´1,´1q, σγ,ρ is an arcsine law, and it is the equilibrium measure for a constant

potential:

Vγ,ρ “ 0, cγ,ρ “ 1 (7.6)

on γ̃ “ γ “ γm.
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When we choose γ̃ “ γm, the partition function Z
Vγ,ρ;γm
N,β of the initial model with such potentials are

special cases of Selberg β integrals, and therefore can be computed exactly. We have in general:

Z
Vγ,ρ;γm
N,β “ exp

´

´
“

pβ{2qN2 ` p1´ β{2qN
‰

ln
´γ` ´ γ´

4

¯¯

Zρ
N,β , (7.7)

where Zρ
N,β do not depend on γ and their expression is given in Appendix B.2.

7.1.2 Step 1: interpolation with a reference potential

Given A “
Ťg
h“0 Ah “

Ťg
h“0ra

´
h , a

`
h s, we consider the support of the equilibrium measure µV ;A

eq,ε , which

is of the form Sε “
Ťg
h“0 Sh,ε “

Ťg
h“0rα

´
h,ε, α

`
h,εs, with signs ρh “ pρ

´
h , ρ

`
h q indicating the soft of hard

nature of the edges. Let pUhq0ďhďg be a family of pairwise distinct neighborhoods of Ah. We denote:

Vref,εpxq “
g
ÿ

h“0

1Uhpxq
´

εh VSh,ε,ρhpxq `
ÿ

h1‰h

2εh1

ˆ
Sh1,ε

ln |x´ ξ|dσSh1,ε,ρh1 pξq
¯

. (7.8)

By construction, Vref,ε is holomorphic in the neighborhood U “
Ťg
h“0 Uh of A, and:

σref,εpxq “
g
ÿ

h“0

εh σSh,ε,ρh (7.9)

is the equilibrium measure for the potential Vref,ε on A. Indeed, it satisfies the characterization (1.20).

Notice that σref has same support as µeq,ε, edges of the same nature, and same filling fractions.

Besides, Vref satisfy the assumptions of 1.2. Then, if we consider the convex combination of potentials

Vs “ p1´sqV`sVref , it follows from the characterization (1.20) that the equilibrium measure associated

to Vs on A with filling fraction ε is precisely:

µVs;Aeq,ε “ p1´ sqµ
V ;A
eq,ε ` s σref,ε. (7.10)

Besides, since both µV ;A
eq,ε and σref,ε satisfy (5.2) with edges of the same nature, we conclude that if V

satisfies 1.2, so does the family pVsqsPr0,1s. Therefore, we can use Theorem 5.5 to deduce from (7.1)

the asymptotic expansion:

ZV ;A
N,ε,β

ZVref ;A
N,ε,β

“ exp

#

β

2

ÿ

kě´2

N´k
ˆ 1

0

ds

˛
S

dξ

2iπ
pVrefpξq ´ V pξqqW

tk`1u;Vs
1,ε pξq

+

. (7.11)

7.1.3 Step 2: localizing the supports

We now have to analyze the partition function for the reference potential Vref defined by (7.8). When

g “ 0 (the one-cut regime), Vref coincides with one of the reference potentials, and we know that up

to exponentially small correction, ZVref ;A
N,β will be given by the Selberg integrals described case by case

in (B.6)-(B.8), so there is nothing more to do.

Assume now g ě 1. Let us define shortening flows on the support:

‚ if pρ´h , ρ
`
h q “ p1, 1q or p´1,´1q, we set Sth,ε “

„

α´h,ε`α
`
h,ε

2 ´
α`h,ε´α

´
h,ε

2 t,
α´h,ε`α

`
h,ε

2 `
α´h,ε`α

`
h,ε

2 t



,

‚ if pρ´h , ρ
`
h q “ p´1, 1q, we set Sth,ε “

“

α´h,ε, α
`
h,ε ` tpα

`
h,ε ´ α

´
h,εq

‰

,

‚ if pρ´h , ρ
`
h q “ p1,´1q, we set Sth,ε “

“

α`h,ε ´ tpα
`
h,ε ´ α

´
h,εq, α

`
h,ε

‰

.
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We consider the family of potentials on A:

V tref,εpxq “
g
ÿ

h“0

1Uhpxq
´

εh VStε,h,ρhpxq ´
ÿ

h1‰h

2εh1

ˆ
St
h1,ε

ln |x´ ξ|dσSt
ε,h1

,ρh1
pξq

¯

, (7.12)

for which the equilibrium measure is obviously
řg
h“0 εh σSth,ε,ρh and has support Stε “

Ťg
h“0 S

t
h,ε.

Accordingly, V tref,ε satisfies Hypothesis 5.1, uniformly for t in any compact of s0, 1s. Besides, the

partition function Z
V tref,ε;A

N,ε,β can be computed exactly in the limit tÑ 0. If we introduce:

α0
ε,h “

$

&

%

pα´ε,h ` α
`
ε,hq{2 if pρ´h , ρ

`
h q “ p1, 1q or p´1,´1q

α´ε,h if pρ´h , ρ
`
h q “ p´1, 1q

α`ε,h if pρ´h , ρ
`
h q “ p1,´1q

, (7.13)

we find that:

lim
tÑ0

Z
V tref,ε;A

N,ε,β

śg
h“0 Z

VSt
h
,ρh

;Tth

Nεh,β

“
ź

0ďhăh1ďg

ˇ

ˇα0
ε,h ´ α

0
ε,h1

ˇ

ˇ

N2εhεh1 , (7.14)

where Tth is the maximum allowed interval associated to Sth which depends on the nature of the edges

(i.e. on ρh) as described in § 7.1.1. We remark that the dependence in t factors and:

Z
VSt
h
,ρh

;Tth

Nεh,β
“ exp

#

´
“

pβ{2qN2ε2h ` p1´ β{2qNεh
‰

ln
´α`ε,h ´ α

´
ε,h

4t

¯

+

Zρh
Nεh,β

, (7.15)

where Zρh
Nεh

is an analytic function of Nεh. The asymptotic expansion when N Ñ8 of those factors

associated to reference potentials is described in Appendix B.2. We just mention that it is of the form:

Zγ,ρ
N,β “ N pβ{2qN`γ

1
ρ exp

´

ÿ

kě´2

N2 Fρ
β

¯

, (7.16)

for γ “ rγ´, γ`s. Therefore, we obtain:

ZVref ;A
N,ε,β “

ź

0ďhăh1ďg

ˇ

ˇα0
ε,h ´ α

0
ε,h1 |

β
g
ź

h“0

Zρh
Nεh,β

exp

#

´

”

pβ{2qN2
´

g
ÿ

h“0

ε2h

¯

` p1´ β{2qN
ı

ln
´α`ε,h ´ α

´
ε,h

4

¯

+

ˆ exp

#

ÿ

kě´2

N´k
ˆ 1

0

ds
”

pβ{2q
´

g
ÿ

h“0

ε2h

¯δk,´2

s
` p1´ β{2q

δk,´1

s

`

˛
Sε

dξ

2iπ
pBsV

s
ref,εqpξqW

tk`1u;V sref,ε
1,ε pξq

ı

*

. (7.17)

By construction, the integrand in the right-hand side is finite when s Ñ 0. The expression does

not make it obvious for the terms k “ ´2 and k “ ´1, but it can be checked explicitly since the

eigenvalues in different Ssh,ε decouple in the limit sÑ 0, in the sense that:

W
V sref,ε
1 pxq “

sÑ0

g
ÿ

h“0

W
VSs
h
,ρh

1 pxq ` op1q, (7.18)

and the expressions for the non decaying contributions to W
V γ,ρref
1 when N is large are given in Ap-

pendix B.1.

43



7.2 Expansion of the partition function

We establish in Lemma B.1 that the partition functions for the reference potentials Zρ
N,β do have an

asymptotic expansion of the form:

Zρ
N,β “ N pβ{2qN`eρ exp

´

ÿ

kě´2

N´k Fρ
β `OpN

´8q

¯

, (7.19)

where:

γ1`` “
3` β{2` 2{β

12
, e`´ “ e´` “

β{2` 2{β

6
, e´´ “

´1` β{2` 2{β

4
. (7.20)

Therefore, we have proved a part of Theorem 1.3:

Proposition 7.1 If pV, εq satisfy Hypothesis 1.1 and 1.3 on A (instead of B), we have:

ZV ;A
N,ε,β “ N pβ{2qN`e exp

´

ÿ

kě´2

N´k F
tku
ε,β `OpN

´8q

¯

. (7.21)

with a universal constant e “
řg
h“0 eρh depending on β and the nature of the edges.

Let ε‹ the equilibrium filling fractions in the initial model µV ;A
N,β . In order to finish the proof of

Theorem 1.3, it remains to show that the stronger Hypotheses 1.2-1.3 for µV ;A
N,β imply Hypothesis 5.1

for the model µV ;A
N,Nε,β for the model with fixed filling fractions ε P Eg close enough to ε‹, that all

coefficients of the expansion are smooth functions of ε, and that the Hessian of F
t´2u
ε with respect

to filling fractions is negative definite. This last part is justified in Proposition A.3 proved in Ap-

pendix A.1, whereas to prove the first part, we rely on the basic result also proved in Lemma A.1 and

Corollary A.2 in Appendix A.1:

Lemma 7.2 If V satisfies Hypotheses 1.2-1.4, then pV, εq satisfies Hypotheses 5.1 for ε P Eg close

enough to ε‹. Besides, the soft edges α‚h and W
t´1u
1,ε pxq are C8 functions of ε, while the hard edges

remain unchanged, at least for ε close enough to ε‹.

We observe that, once W
t´1u
1,ε and the edges of the support α‚ε,h are known, the W

tku
n,ε for any n ě 1

and k ě 0 are determined recursively by (5.51)-(5.49) and (5.70)-(5.73), where the linear operator

K´1 is given explicitly in (5.21)-(5.27), and thus depend also analytically on ε close enough to ε‹.

Similarly, F
tku
ε for k ě 0 are obtained from (7.11)-(7.17), which shows their analyticity for ε close

enough to ε‹.

Corollary 7.3 If V satisfies Hypotheses 1.2-1.4, then W
tku
n,ε and F

tku
ε are C8 functions of ε P Eg close

enough to ε‹. l

This concludes the proofs of Theorem 1.3 and Corollary 1.7 announced in Section 1.4.

8 Asymptotic expansion in the initial model in the multi-cut
regime

8.1 The partition function

We come back to the initial model µV ;A
N,β , and we assume Hypotheses 1.2-1.4 with number of cuts

pg ` 1q ě 2. We remind the notation N “ pNhq1ďhďg for the number of eigenvalues in Ah, and the

number of eigenvalue in A0 is N0 “ N ´
řg
h“1Nh. The Nh are here random variables, which take the

value Nε with probability ZV ;A
N,ε,β{Z

V ;A
N,β . We denote ε‹ the vector of equilibrium filling fractions, and

N‹ “ Nε‹. Let us summarize four essential points:
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‚ We have established in Theorem 1.4 an expansion for the partition function with fixed filling

fractions:
N !

śg
h“0pNεhq!

ZV ;A
N,ε,β “ N pβ{2qN`e exp

´

ÿ

kě´2

N´k F
tku
ε,β

¯

, (8.1)

where e are independent of the filling fractions.

‚ By concentration of measures, we have established in Corollary 3.8 the existence of constants

C,C 1 ą 0 such that, for N large enough,

µV ;A
N,β

“

|N ´N‹| ą lnN
‰

ď eCN lnN´C1N ln2N . (8.2)

‚ Thanks to the strong offcriticality assumption, we have after Lemma 7.2 that F
tku
ε,β is smooth

when ε is in the vicinity of ε‹. From there we deduce that, for any K, k ě ´2, there exists a

constant Ck,K ą 0 such that:
ˇ

ˇ

ˇ

ˇ

ˇ

N´k F
tku
N{N,β ´

K´k
ÿ

j“0

N´pk`jq
pF
tku
‹,β q

pjq

j!
¨ pN ´N‹q

bj

ˇ

ˇ

ˇ

ˇ

ˇ

ď Ck,K N
´pK`1q|N ´N‹|

K´k`1. (8.3)

‚ We establish in Proposition A.3 in Appendix A.1 that the Hessian pF
t´2u
‹,β q2 is negative definite.

We now proceed with the proof of Theorem 1.5.

8.1.1 Taylor expansion around the equilibrium filling fraction

By the estimate (8.2), we can write:

ZV ;A
N,β

ZV ;A
N,ε‹,β

“
ÿ

0ďN1,¨¨¨ ,NgďN
|N |ďN

N !
śg
h“0Nh!

ZV ;A
N,N{N,β

ZV ;A
N,ε‹,β

“

´

ÿ

0ďN1,¨¨¨ ,NgďN
|N´N‹|ďlnN

N !
śg
h“0Nh!

ZV ;A
N,N{N,β

¯

p1` rN q, (8.4)

with:

rN ď pg ` 1qN e´
C1

2 N ln2N . (8.5)

And, we have, for any K ě ´2:

ÿ

0ďN1,...,NrďN
|N‚´N‹|ďlnN

N !
śg
h“0Nh!

ZV ;A
N,N{N,β

“
ÿ

0ďN1,...,NrďN
|N´N‹|ďlnN

exp
´

K
ÿ

k“´2

K´k
ÿ

j“0

N´pk`jq
pF
tku
‹ qpjq

j!
¨ pN ´N‹q

bj `N´pK`1qRK

¯

. (8.6)

And, since N´pK`1qRK ď 1 for N large enough:

|eN
´pK`1qRK ´ 1| ď 2|N´pK`1qRK | (8.7)

ď N´pK`1q
K
ÿ

k“´2

2Ck,K plnNq
K´k`1 ď C 1K N

´pK`1qplnNqK`3.

where we finally used (8.3). Notice that, since ε‹ is the equilibrium filling fraction, we have pF t´2uq1‹ “

0, and therefore, for any K ě 0:

exp
´

K
ÿ

k“´2

K´k
ÿ

j“1

N´pk`jq
pF
tku
‹,β q

pjq

j!
¨ pN ´N‹q

bj
¯

(8.8)

“ eiπτ‹,β ¨pN´N‹q
b2
`2iπv‹,β ¨pN´N‹q

´

1`
K
ÿ

k“1

N´k T
tku
‹,β rN ´N‹s `OpN

´pK`1qplnNqK`3q

¯

,
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where we have introduced:

v‹,β “
pF
t´1u
‹,β q1

2iπ
, τ‹ “

pF
t´2u
‹,β q2

2iπ
, (8.9)

and for any vector X with g components:

T
tku
ε,β rXs “

k
ÿ

r“1

1

r!

ÿ

`1,...,`rě1
m1,...,mrě´2
řr
i“1 `i`mi“k

´ r
â

i“1

pF
tmiu
ε,β qp`iq

`i!

¯

¨Xbp
ř

i“1r`iq. (8.10)

Since the number of lattice points N satisfying |N ´N‹| ď lnN is a OplnNq, we can write:

ZV ;A
N,β

ZV ;A
N,‹,β

“

!

ÿ

N1,...,NgPZg
|N´N‹|ďηN

eiπτ‹,β ¨pN´N‹q
b2
`2iπv‹,β ¨pN´N‹q

´

1`
K
ÿ

k“1

N´k T
tku
‹,β rN ´N‹s

¯)

`OpN´pK`1qplnNqK`4q. (8.11)

where we have set ηN “ lnN .

8.1.2 Waiving the constraint on the sum over filling fractions

Now, we would like to extend the sum over the whole lattice Zg. Let us denote λ‹,β “

min Sp p´F
t´2u
‹,β q2 ą 0. For any α ą 0 small enough, there exists a constant C2 ą 0 so that:

ˇ

ˇ

ˇ

ÿ

NPZr
|N´N‹|ěηN

eiπτ‹,β ¨pN´N‹q
b2
`2iπv‹,β ¨pN´N‹qpN ´N‹q

bj
ˇ

ˇ

ˇ

ď C2
ÿ

NPZg
|N´N‹|ěηN

e´λ‹,βp1´αqg|N´N‹|
2

|N ´N‹|
j

ď C2
ÿ

něηN

Volgpnq pn` 1qj e´λ‹,βp1´αqg n
2

, (8.12)

where Volgpnq “ p2n`1qg´p2n´1qg ď g 2g ng´1 is the number of points in Zg so that n ď |N´N‹| ă

n` 1. Therefore:
ˇ

ˇ

ˇ

ÿ

NPZr
|N´N‹|ěηN

eiπτ‹,β ¨pN´N‹q
b2
`2iπv‹,β ¨pN´N‹qpN ´N‹q

bj
ˇ

ˇ

ˇ

ď C2p1` αqg 2g
´

ÿ

něηN

pn` 1qg´1`j e´λ‹p1´αqgnηN
¯

ď C3,j e
´λ‹p1´αqgη

2
N , (8.13)

where C3,j is a constant depending on j. In other words, by unrestricting the sum in (8.11), we only

make an error of order Ope´C4plnNq
2

q, which is OpN´8q. Then, we remark that:

ÿ

NPZg
eiπpN´N‹q¨τ‹,β ¨pN´N‹q`2iπv‹,β ¨pN´N‹q pN ´N‹q

bj “

´∇v
2iπ

¯bj

ϑ

„

´N‹
0



pv‹,β |τ‹,βq. (8.14)

We have thus proved:

ZV ;A
N,β

ZV ;A
N,‹,β

“

#

K
ÿ

k“0

N´k T
tku
‹,β

“∇v
2iπ

‰

+

ϑ

„

´N‹
0



pv‹,β |τ‹,βq `OpN
´pK`1qplnNqK`4q. (8.15)

The term appearing as a prefactor of N´k is bounded when N Ñ 8. So, by pushing the expansion

one step further, the error OpN´pK`1qplnNqK`4q can be replaced by OpN´pK`1qq. This concludes

the proof of Theorem 1.5.
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8.2 Deviations of filling fractions from their mean value

We now describe the fluctuations of the number of eigenvalues in each segment. Let P “ pP0, . . . , Pgq

be a vector of integers such that P´Nε‹,h P opN
1{3q when N Ñ8. The joint probability for h P v0, gw

to find Ph eigenvalues in the segment Ah is:

µV ;A
N,βrN “ P s “

N !
śg
h“0 Ph!

ZV ;A
N,P {N,β

ZV ;A
N,β

(8.16)

We remind that the coefficients of the large N expansion of the numerator are smooth functions of

P {N . Therefore, we can perform a Taylor expansion in P {N close to ε‹, and we find that provided

P ´Nε‹ P opN
1{3q, only the quadratic term of the Taylor expansion remains when N is large:

µV ;A
N,βrN “ P s “

´

ϑ

„

´N‹
0



pv‹,β |τ‹,βq
¯´1

exp
”´

g
ÿ

h“0

pβ{2qpPh ´Nε‹,hq
¯

lnN
ı

ˆ exp
´1

2
pF
t´2u
‹,β q

2

¨ pP ´Nε‹q
b2 ` pF

t´1u
‹,β q1 ¨ pP ´Nε‹q ` op1q

¯

(8.17)

In other words, the random vector ∆N “ p∆N1, . . . ,∆Ngq defined by:

∆Nh “ Nh ´Nε‹,h `
g
ÿ

h1“1

rpF
t´2u
‹,β q2s

´1
h,h1 pF

t´1u
‹,β q1h1 (8.18)

converges in law to a random discrete Gaussian vector, with covariance rpF
t´2u
‹,β q2s´1. We observe

that, when β “ 2, F
t´1u
‹,β “ 0 so that N ´Nε‹ converges to a centered discrete Gaussian vector.

A Elementary properties of the equilibrium measure with
fixed filling fractions

A.1 Smooth dependence

In this section, we prove Lemma 7.2, i.e. we establish under some assumptions that the equilibrium

measure µVeq,ε depends smoothly on the potential V and the filling fractions ε. Let V be at least C2

and confining on A. We know that the support consists of a finite union of pairwise disjoint segments:

SVε “
g
ď

h“0

SVε,h, SVε,h “ rα
´;V
ε,h , α

`;V
ε,h s, α´;V

ε,h ă α`;V
ε,h . (A.1)

Upon squeezing A, we can always assume that it is the disjoint union of pg ` 1q pairwise disjoint

segments A “
Ťg
h“0 Ah, which are neighborhoods of SVε,h in R. The Stieltjes transform W

t´1u;V
ε of

this equilibrium measure satisfies:

@h P v0, gw, @x P SVε,h, W
t´1u;V
1,ε px` i0q `W

t´1u;V
1,ε px` i0q “ V 1pxq, (A.2)

and

@h P v0, gw,

˛
Ah

dξ

2iπ
W
t´1u;V
1,ε pξq “ εh. (A.3)

The general solution of (A.2) takes the form:

W
t´1u;V
1,ε pxq “

1

2

´PVε pxq

σpxq
`

˛
A

V 1pxq ´ V 1pξq

ξ ´ x

σpξq

σpxq
dξ
¯

, (A.4)
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where PVε is a polynomial of degree g which should be determined by (A.3), and we recall the notation:

σpxq “
g
ź

h“0

b

px´ α´;V
ε,h qpx´ α

`;V
ε,h q. (A.5)

This implies that the equilibrium measure has a density, which can be written in the form:

dµVε pxq “ dxSVε pxq
g
ź

h“0

|x´ α‚ε,h|
ρ‚h . (A.6)

for some ρ‚h “ ˘1, and SVε pxq is a smooth function in a neighborhood of the support. This rewriting

assumes SVε pα
‚
hq ‰ 0 when ρ‚h “ ´1.

Let I “ v0, gw ˆ t˘1u, and H “ tI P I ρI “ ´1u. We assume strong off-criticality as defined in

Hypothesis 1.2:

Hypothesis A.1 The initial data V r0s and εr0s is strongly off-critical, in the sense that, for any

I P IzH, SpαIq ‰ 0 and S1pαIq ‰ 0.

For any ph, ‚q P H, we consider the values αI fixed and equal to α
‚;V r0s
εr0s,h . We introduce the open set:

U “
!

α P
ź

IPIzH

R
ˇ

ˇ

ˇ
all αI , for I P I are pairwise distinct

)

, (A.7)

and the map:

pF ,T q : U ˆ RgrXs ˆ C2pAq ˆ Rg`1 ÝÑ R2g`2´|H| ˆ Rg`1 (A.8)

defined by:

@I P H FI rα, P, V, εs “
P pαIq

ś

JPIztIu

b

α‚h ´ α
‚1

h1

`

˛
A

σrαspξqdξ

2iπ

V 1pαIq ´ V
1pξq

αI ´ x
,

@h P v0, gw Thrα, P, V, εs “ ´εh `

˛
Ah

dξ

2iπ
wrα, P, V spξq, (A.9)

where:

wrα, P, V spxq “
1

2

´ P pxq

σrαspxq
`

˛
A

dξ

2iπ

V 1pxq ´ V 1pξq

x´ ξ

σrαspξq

σrαspxq

¯

, (A.10)

σrαspxq “
ź

IPI

?
x´ αI . (A.11)

By construction, the data of the equilibrium measure µVε satisfies:

pF ,T qrαVε , P
V
ε , V, εs “ 0. (A.12)

We would like to apply the implicit function theorem to show that:

Lemma A.1 If Hypothesis A.1 holds and V r0s is Cr (resp. analytic) with r ě 2, αVε and PVε are

Cr´1 (resp. analytic) functions of pε, V q close enough to pεr0s, V r0sq.

The contour integrals
¸
A

used in this Appendix A.1 can be rewritten as integrals over the segment

S. Thus, these manipulations do not assume that V is analytic in a neighborhood of A, and it does

makes sense to consider only V of class Cr in the statement of Lemma A.1.
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Proof. To achieve this we need to show that pdα,dP qpF, T q when evaluated at a point such that

pF ,T qpα, P, V, εq “ 0. We first compute:

BTh
BXh1

rα, P, V, εs “

˛
Ah

dξ

2iπ

ξh
1

2σrαspξq
. (A.13)

It is well-known that the g ˆ g submatrix of (A.13) consisting of indices h, h1 P v1, gw is invertible

when α P U , and on top of that, we find:

@h1 P v0, gw,
g
ÿ

h“0

BTh
BXh1

rα, P, V, εs “

˛
A

dξ

2iπ

ξh
1

σrαspξq
“ ´ Res

ξÑ8

ξh
1

dξ

σrαspξq
“
δh1,g

2
. (A.14)

In particular, this expression does not vanish for h1 “ g, hence (A.13) is invertible. Then, we compute:

BFI
BαJ

rα, P, V s “ δI,J

˛
A

σrαspξqdξ

2iπ

V 2pαIqpξ ´ αIq ´ pV
1pαIq ´ V

1pξqq

pαI ´ ξq2

`
ÿ

JPI

FI rα, P, V s ´ FJ rα, P, V s

2pαI ´ αJq

“ δI,J

´ P 1pαIq
ś

JPIztIu
?
αI ´ αJ

`

˛
A

σrαspξqdξ

2iπ

V 2pαIqpξ ´ αIq ´ pV
1pαIq ´ V

1pξqq

pαI ´ ξq2

¯

“ δI,J lim
xÑaI

?
x´ αI Bx

`

wrα, P, V spxq
˘

, (A.15)

and the latter does not vanish when evaluated at pα
V r0s
εr0s , P

V r0s
ε , V r0s, εr0sq thanks to Hypothesis A.1.

So, pdα,dP qpF ,T q is invertible at this point. Besides, if V is Cr for r ě 2, then dpF ,T q is Cr´2.

Therefore, by the implicit function theorem, for pε, V q close enough to pεr0s, V r0sq, there is a unique

function Cr´1 function pαVε , P
V
ε q so that pF ,T qpαVε , P

V
ε , V, εq “ 0. By uniqueness, it must correspond

to the data of µVeq,ε. l

Corollary A.2 If Hypothesis 1.2 holds for pV r0s, εr0sq with V r0s not necessarily real-analytic but Cr

with r ě 2, they hold also for pV, εq close enough to pV r0s, εq and V r0s Cr, and the density (A.6), once

multiplied by σpxq, is Cr´1 for such data.

Indeed, (A.4) shows that W
t´1u;V
1,ε pxq is a linear function of P

V r0s
ε pxq{σpxq and hence, once multiplied

by σpxq, it is a smooth function of ε. l

A.2 Hessian of the value of the energy functional

We are now in position to prove:

Proposition A.3 If Hypothesis 1.2 holds for pV r0s, εr0sq with V r0s not necessarily real-analytic but

at least C2, F
t´2u;V
ε is C2 for pε, V q close enough to pεr0s, V r0sq, and the gˆ g matrix τVε with purely

imaginary entries:

@h, h1 P v1, gw, pτVε qh,h1 “
1

2iπ

B2F
t´2u;V
ε

BεhBεh1
(A.16)

is such that Im τVε ą 0.

Proof. We are going to justify that F
t´2u
ε is a concave function of ε in the domain:

Eg “
!

ε Ps0, 1rg`1,
g
ÿ

h“0

εh “ 1
)

, (A.17)
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and within Hypothesis 1.2, which will imply the result. Let e a vector of Rg`1 such that
řg
h“0 eh “ 0

and e ‰ 0. For any ε P Eg, we define εt “ ε ` te, which belongs to Eg for t small enough, and

µt “ µVeq,εt . Its characterization as an equilibrium measure imply that :

U tpxq “ V pxq ´ 2

ˆ
ln |x´ y|dµtpyq (A.18)

is locally constant on the support of µt, and µtpAhq “ εh ` teh. Let us denote U th the value of U tpxq

when x P Sh.

Let us denote Feptq “ F
t´2u;V
εt . After a classical result (see e.g. [AG97, Joh98]):

Feptq “
β

2

”

¨
ln |x´ y|dµtpxqdµtpyq ´

ˆ
V pxqdµtpxq

ı

(A.19)

It follows from Corollary A.2 that the density of µt is C1 away from the edges, and its derivative is

integrable at the edges, thus define a measure that we denote νt. It has same support as µt, and

we deduce from the characterization of µt that x ÞÑ ´2
´

ln |x ´ y|dνtpyq is locally constant on the

support of µt, and νtrAhs “ eh. We deduce that Feptq is C1 and:

F 1eptq “
β

2

ˆ
A

´

2

ˆ
ln |x´ y|dµtpyq ´ V pxq

¯

dνtpxq “ ´
β

2

g
ÿ

h“0

U th eh (A.20)

eh does not depend on t, whereas t ÞÑ U th is C1 as one can deduce from the expression (A.18). Thus,

Fe is C2 and:

F 2e ptq “ β
g
ÿ

h“0

ˆ
Ah

ln |xh ´ y|dν
tpyq eh (A.21)

where xh is any point in the interior of Ah. This can be rewritten:

F 2e ptq “ β
g
ÿ

h“0

¨
2 ln |x´ y|dνtpxq1Ahpxqdν

tpyq1Ahpyq “ β
g
ÿ

h“0

Qrνt1Ah , ν
t1Ahs (A.22)

It is well-known property (see e.g. [AG97, Dei99]) that, for any signed measure ν with total mass 0,

Qrν, νs ě 0, with equality iff ν “ 0. Since we chose e ‰ 0, the vector of measures pνt1Ahq0ďhďg is

not identically zero, hence F 2e ptq ă 0. In other words, Fe is strictly concave for any direction e, hence

F
t´2u
ε is a strictly concave function of ε P Eg so that Hypothesis 1.2 holds. l

B Model Selberg integrals

B.1 Non decaying terms in correlators

Let us denote W ρ,γm
1 the first point correlator in the model with potential Vρ,γm described in § 7.1.1.

Let us denote ∆ “ pγ` ´ γ´q{4. It admits a 1{N expansion: W1ρ, γm “
ř

kě´1N
´kW

tku;γm,ρ
1 .The

expression for the equilibrium measure gives access to W
t´1u;γm,ρ
1 ,

W
t´1u;γm,``
1 pxq “

x´
a

px´ γ´qpx´ γ`q

2∆2
,

W
t´1u;γm,´`
1 pxq “

1

2∆

´

1´

d

x´ γ`

x´ γ´

¯

, (B.1)

W
t´1u;γm,`´
1 pxq “

1

2∆

´

1´

d

x´ γ´

x´ γ`

¯

, (B.2)

W
t´1u;γm,´´
1 pxq “

1
a

px´ γ´qpx´ γ`q
, (B.3)
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and then we deduce from (5.49):

W
t0u;γm,``
1 pxq “W

t0u;γm,´´
1 pxq “

1

2

´

1´
2

β

¯´ 1
a

px´ γ´qpx´ γ`q
´

x´ γ``γ´

2

px´ γ´qpx´ γ`q

¯

,

W
t0u;γm,´`
1 pxq “W

t0u;γm,`´
1 px “ ´

´

1´
2

β

¯ ∆

px´ γ´qpx´ γ`q
. (B.4)

Besides, we find from (5.51) that all these models share the same W
t0u
2 :

W
t0u;γm,ρ
2 px1, x2q “

2

β

1

2px1 ´ x2q
2

´

´ 1`
x1x2 ´ px1 ` x2q

γ´`γ`

2 ` γ´γ`
a

px1 ´ γ´qpx1 ´ γ`qpx2 ´ γ´qpx2 ´ γ`q

¯

. (B.5)

B.2 Exact formulas for partition function

Let us denote:

Z``N,β “

ˆ
RN

ź

1ďiăjďN

|λi ´ λj |
β
N
ź

i“1

e´
βN
2 V``pλiqdλi, V``pλq “

λ2

2

“ exp

"

´

”βN2

4
`

´

1´
β

2

¯N

2

ı

ln
´βN

2

¯

*

p2πqN{2
N
ź

j“1

Γp1` jβ{2q

Γp1` β{2q
. (B.6)

Z´`N,β “

ˆ
RN
`

ź

1ďiăjďN

|λi ´ λj |
β
N
ź

i“1

e´
βN
2 V´`pλiqdλi, V´`pλq “ λ

“ exp

"

´

”βN2

2
`

´

1´
β

2

¯

N
ı

ln
´βN

2

¯

* N
ź

j“1

Γp1` jβ{2qΓp1` pj ´ 1qβ{2q

Γp1` β{2q
. (B.7)

Z´´N,β “

ˆ
r´2,2sN

ź

1ďiăjďN

|λi ´ λj |
β
N
ź

i“1

dλi

“ 2N
2β`p2´βqN

N
ź

j“1

`

Γp1` pj ´ 1qβ{2q
˘2

Γp1` jβ{2q

Γp2` pN ´ 2` jqβ{2qΓp1` β{2q
. (B.8)

These are the values of the reference partition functions given in (B.6)-(B.8). To emphasize that they

can be defined for N not restricted to be an integer by analytic continuation, we introduce a function

related to the Barnes double Gamma function:

Γ2pN ; b1, b2q “ exp
´ d

ds

ˇ

ˇ

ˇ

s“0
ζ2ps ; b1, b2, xq

¯

, (B.9)

where:

ζ2ps ; b1, b2, xq “
1

Γpsq

ˆ 8
0

e´tx ts´1 dt

p1´ e´b1tqp1´ e´b2tq
. (B.10)

Its properties are reviewed in [Spr09], in particular it solves the functional equation:

Γ2px` b2 ; b1, b2q “
Γ2pxq

Γpx{b1q

?
2π b

1{2´x{b1
1 , Γ2p1 ; b1, b2q “ 1. (B.11)

We deduce from (B.11) the representation:

N
ź

j“1

Γp1` jβ{2q “ p2πqN{2pβ{2qβN
2
{4`Np1{2`β{4q ΓpN ` 1q

Γ2pN ` 1 ; 2{β, 1q
(B.12)
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Therefore, we can recast the Selberg integrals as:

Z``N,β “ exp
´

´ pβ{4qN2 lnN ` pβ{4´ 1{2qN lnN `N
“

pβ{2q lnpβ{2q ` lnp2πq ´ ln Γp1` β{2q
‰

¯

ˆ
ΓpN ` 1q

Γ2pN ` 1 ; 2{β, 1q

Z`´N,β “ exp
´

´ pβ{2qN2 lnN ` pβ{2´ 1qN lnN `N
“

β lnpβ{2q ` lnp2πq ´ ln Γp1` β{2q
‰

¯

ˆ
Γ2pN ` 1q

Γp1`Nβ{2qΓ2
2pN ` 1 ; 2{β, 1q

Z´´N,β “ exp
´

βN2 ln 2`N
“

p2´ βq ln 2` p3β{2q lnpβ{2q ` lnp2πq ´ ln Γp1` β{2q
‰

¯

ˆ
Γp2{β `N ´ 1qΓpN ´ 1q

Γp2{β ` 2N ´ 1qΓp2N ´ 1q

Γ3pN ` 1qΓ2p2N ´ 1 ; 2{β, 1q

Γ2p1`Nβ{2qΓ3
2pN ` 1 ; 2{β, 1qΓ2pN ´ 1 ; 2{β, 1q

B.3 Large N asymptotics of the partition function

We need the asymptotic expansion of Barnes double Gamma function [Spr09]:

ln Γ2px ; 2{β, 1q “xÑ8 ´
βx2 lnx

4
`

3βx2

8
`

1

2

´

1`
β

2

¯

px lnx´ xq ´
3` β{2` 2{β

12
lnx

´χ1p0 ; b1, b2q `
ÿ

kě1

pk ´ 1q!Ekpb1, b2qx
´k `Opx´8q, (B.13)

Ekpb1, b2q are the polynomials in two variables appearing as coefficients in the expansion:

1

p1´ e´b1tqp1´ e´b2tq
“
tÑ0

ÿ

kě´2

Ekpb1, b2q t
k (B.14)

which are expressible in terms of Bernoulli numbers. χps ; b1, b2q is the analytic continuation to the

complex plane of the series defined for Re s ą 2:

χps ; b1, b2q “
ÿ

pm1,m2qPN2ztp0,0qu

1

pm1b1 `m2b2qs
. (B.15)

For instance:

χ1p0 ; 1, 1q “ ´
lnp2πq

2
` ζ 1p´1q (B.16)

We remind also the Stirling formula for the asymptotic expansion of the Gamma function:

ln Γpxq “
xÑ8

x lnx´ x´
lnx

2
`

lnp2πq

2
`

ÿ

kě1

Bk`1

kpk ` 1q
x´k, (B.17)

where Bk are the Bernoulli numbers. We deduce the asymptotic expansions:

Lemma B.1

lnZ``N,β “ ´p3β{8qN2 ` pβ{2qN lnN `
`

´ 1{2´ β{4` pβ{2q lnpβ{2q ` lnp2πq ´ ln Γp1` β{2q
˘

N

`
3` β{2` 2{β

12
lnN ` χ1p0 ; 2{β, 1q `

lnp2πq

2
` op1q (B.18)

lnZ`´N,β “ ´p3β{4qN2 ` pβ{2qN lnN `
`

´ 1` pβ{2q lnpβ{2q ` lnp2πq ´ ln Γp1` β{2q
˘

N

`
β{2` 2{β

6
` 2χ1p0 ; 2{β, 1q ´

lnpβ{2q

2
`

lnp2πq

2
` op1q (B.19)

lnZ´´N,β “ pβ{2qN lnN `
`

´ β{2` pβ{2q lnpβ{2q ` pβ{2´ 1q lnp2q ` lnp2πq ´ ln Γp1` β{2q
˘

N

`
´1` 2{β ` β{2

4
lnN ` 3χ1p0 ; 2{β, 1q `

27´ 13p2{βq ´ 13pβ{2q

12
lnp2q

´ lnpβ{2q `
lnp2πq

2
` op1q (B.20)
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where the op1q have an asymptotic expansion in powers of 1{N .
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