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We study asymptotic behavior in time of global small solutions to the quadratic nonlinear
Schrödinger equation in two-dimensional spaces i∂tu+ (1/2)∆u = �(u), (t,x) ∈ R×R2;
u(0,x)=ϕ(x),x ∈R2, where �(u)=∑2

j,k=1(λjk(∂xju)(∂xku)+µjk(∂xju)(∂xku)), where
λjk,µjk ∈ C. We prove that if the initial data ϕ satisfy some analyticity and smallness
conditions in a suitable norm, then the solution of the above Cauchy problem has the
asymptotic representation in the neighborhood of the scattering states.
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1. Introduction. We consider the large time asymptotic behavior of small analytic

solutions to the Cauchy problem for the derivative nonlinear Schrödinger equation in

two-dimensional spaces

i∂tu+ 1
2
∆u=�(u), (t,x)∈R×R2,

u(0,x)=ϕ(x), x ∈R2,
(1.1)

with quadratic nonlinearity

�(u)=
2∑

j,k=1

(
λjk
(
∂xju
)(
∂xku
)
+µjk
(
∂xju
)(
∂xku
))
, (1.2)

where λjk,µjk ∈ C. In [8], we proved the global in time existence of small analytic

solutions to the Cauchy problem (1.1) and showed that the usual scattering states

exist. In [3], a global existence theorem of small solutions to (1.1) with λjk = 0 was

shown in the usual weighted Sobolev space by using the method of normal forms by

Shatah [12]. In the present paper, we continue to study the asymptotic behavior in

time of solutions to the Cauchy problem (1.1) and obtain the asymptotic expansion of

solutions in the neighborhood of the scattering states.

We use the following classification of the scattering problem. If the usual scattering

states exist in L2 sense, then we call the scattering problem a super-critical problem.

If the usual scattering states do not exist and the L2 norm of the nonlinearity decays

like Ct−δ, then we call the problem a critical one, when δ = 1 and a sub-critical one,
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when 0 < δ < 1. The problem under consideration is classified as super-critical since

the usual scattering states were shown, in [8], to exist in L2. In [10], the asymptotic

expansion was obtained in the neighborhood of scattering states for small solutions

to the nonlinear nonlocal Schrödinger equations with nonlinearities of Hartree type

�(u)=u(t,x)
∫
dy|x−y|−δ∣∣u(t,y)∣∣2 (1.3)

in the super-critical case 1< δ<n. The critical case δ= 1 was treated in [13], where the

asymptotic expansion of small solutions in the neighborhood of the modified scatter-

ing states was obtained. In the case of critical power nonlinearity �(u)= |u|2u in one-

dimensional spaces, the asymptotic expansion of solutions was constructed in [11]. In

[5, 6], the sub-critical scattering problem in one-dimensional spaces was studied for

the nonlinear Schrödinger equation with power nonlinearity �(u) = t1−δ|u|2u and

Hartree type nonlinearity (1.3) with 0< δ< 1. Roughly speaking, they used the asymp-

totic expansion in the neighborhood of the final states to the transformed equations

for the new dependent variable

w =��(−t)u(t)exp
(
i
∫ t

1
t−δ
∣∣��(−t)u(t)∣∣2dt) (1.4)

(in the case of the power type nonlinearity).

Thus the asymptotic expansions of solutions to the nonlinear Schrödinger equa-

tions were studied extensively in the case of the nonlinear terms without derivatives

of unknown function and satisfying the gauge condition (i.e., having the self-conjugate

property �(u)= e−iθ�(eiθu) for any θ ∈R). The present paper is concerned with the

derivative nonlinear Schrödinger equations which do not satisfy the gauge condition.

The presence of derivatives in the nonlinear term implies the so-called derivative loss

and the absence of the gauge condition makes it difficult to estimate the norm involv-

ing the operator � = x+ it∇, which plays a crucial role in the large time asymptotic

behavior of solutions to the nonlinear Schrödinger equations. To overcome these ob-

stacles, we use the analytic function spaces A
m,p
b defined in (1.9) and the operators

�= x ·∇+2t∂t and � = x ·∇+it∆.

To state our result precisely, we now give notation and function spaces. We de-

note ∂xj = ∂/∂xj and ∂α = ∂α1
x1 ∂

α2
x2 , where α ∈ (N∪ {0})2. We define the following

differential operators � = x · ∇ + 2t∂t , � = x · ∇ + it∆, � = x + it∇ and the vec-

tor Ω = (Ω(j,k))(j,k=1,2), where the operators Ω(j,k) = xj∂k −xk∂j act as the angular

derivatives. These operators help us to obtain the time decay properties of the linear

Schrödinger evolution group

�(t)φ= 1
2πit

∫
e(i/2t)(x−y)

2
φ(y)dy =�−1e−(it/2)ξ

2
�φ, (1.5)

where �φ ≡ φ̂(ξ) = (1/2π)∫ e−i(x·ξ)φ(x)dx denotes the Fourier transform of the

function φ(x), and �−1 is the inverse Fourier transformation defined by �−1φ ≡
φ̌(x) = (1/2π)∫ ei(x·ξ)φ(ξ)dξ. Note that the free Schrödinger evolution group �(t)
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also can be represented as �(t)=�(t)�(t)��(t), where �(t)= exp(ix2/2t), the di-

lation operator is (�(t)φ)(x)= (i/t)φ(x/t), then the inverse free Schrödinger evolu-

tion group is written as �(−t)=−�(−t)i�−1�(1/t)�(−t), where �−1(t)=−i�(1/t)
is the inverse dilation operator. We define the extended vectors Γ = (�,Ω,∇), Γ̃ =
(�+2,Ω,∇), and Θ= (�,Ω,∇). We have the following relations:

� =�−2it	= �·∇ =�(t)x�(−t)·∇ = it�(t)∇�(t)·∇, (1.6)

where �(t)= eix2/2t , 	= i∂t+(1/2)∆. The commutation relations

[�,∇]= [�,∇]=−∇, [�,�]= [�,�]= �,

[�,�]=[Ω,�]=[Ω,�]=0,
[
∂k,�l
]=δ(k)l ,[

Ω(j,k)x ,∂l
]
= δ(k)l ∂j−δ(j)l ∂k,

(1.7)

where δ(k)j = 1 if j = k and δ(k)j = 0 if j ≠ k are used freely in the paper. We denote the

usual Lebesgue space by Lp(R2)with the norm ‖φ‖p = (
∫
R2 |φ(x)|pdx)1/p if 1≤ p <∞

and ‖φ‖∞ = esssup{|φ(x)|;x ∈R2} if p =∞. For simplicity we write ‖·‖ = ‖·‖2. The

weighted Sobolev space is defined by

Hm,kp
(
R2)= {φ∈ Lp

(
R2) : ∥∥〈x〉k〈i∇〉mφ∥∥p <∞}, (1.8)

where m,k ∈ R+, 1 ≤ p ≤ ∞, 〈x〉 = √
1+x2. We write for simplicity Hm,k(R2) =

Hm,k2 (R2) and the norm ‖φ‖m,k = ‖φ‖m,k,2. Now we define the analytic function space

Amb =
{
φ∈ L2(R2); ‖φ‖Amb

=
∑

|β|≤m

∑
α

b|α|

α!

∥∥Γα+βφ∥∥<∞}, (1.9)

where the vector Γ = Γ(t) = (�,Ω,∇), b = b(t) = b0+(a−b0)(log(e+t))−γ , 0 < b0 <
a< 1, γ > 0 is sufficiently small. Similarly, we write

Ãmb =
{
φ∈ L2(R2); ‖φ‖Ãmb

=
∑

|β|≤m

∑
α

b|α|

α!

∥∥Γ̃α+βφ∥∥<∞}. (1.10)

Here the summation is over all admissible multi-indices α. We often use the summa-

tions convention if it does not cause confusion. By [s] we denote the largest integer

less than or equal to s. Let C(I;B) be the space of continuous functions from a time

interval I to a Banach space B. We denote different positive constants by the same

letter C . We introduce the following functional spaces

Xb =
{
u∈ C
(
R;L2(R2)); ‖u‖Xb <∞

}
,

Yb =
{
u∈ C
(
R;L2(R2)); sup

t>0

∥∥u(t)∥∥Yb <∞}, (1.11)
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where

‖u‖Xb = sup
t>0

∥∥u(t)∥∥A3
b
+sup
t>0
t−1−η ∑

|γ|≤1

∥∥�γu(t)∥∥A2
b

+
∑
|γ|=1

∫∞
0

∥∥Θγu∥∥A3
b

∣∣b′∣∣dt+ ∑
|γ|=1,|σ |≤1

∫∞
1

∥∥Θγ�σu
∥∥

A3
b

∣∣b′∣∣dt
t1+η

+sup
t>0
t1−2η
∑
α

b|α|

α!

∥∥∂t��(−t)Γα∇u(t)∥∥∞
+
∑
|δ|≤3

∫∞
1

∑
α

b|α|

α!

∥∥∂t��(−t)Γα+δu(t)∥∥t2η−1/2dt,

∥∥u(t)∥∥Yb = ∥∥u(t)∥∥A2
b
+
∑

|β|+|γ|≤1

t−|β|−|γ|−η
∥∥�γΘβu(t)∥∥A1

b

+t1−η
∑

|γ|+|δ|≤1

∑
α

b|α|

α!

∥∥∂t��(−t)Γα+γΘδu(t)∥∥,

(1.12)

where η > 0 is sufficiently small. We define the constants {bn} such that

0< bn < bn−1 < ···< b1 < b0 <a< 1. (1.13)

Let u0(t) = �(t)u+ with some final state u+ ∈ L2 and un(t), n = 1,2, . . . , be the

solution to the final problem for the linear Schrödinger equations

	un =
n−1∑
m=0

�
(
un−1−m,um

)
, (1.14)

such that limt→∞un(t)= 0 in L2, where 	= i∂t+(1/2)∆ and

�(φ,ψ)=
2∑

j,k=1

(
λjk
(
∂xjφ
)(
∂xkψ
)+µjk(∂xj φ̄)(∂xkψ̄)). (1.15)

From [8] we see that if the initial data ϕ ∈A3
a are such that xjϕ ∈A2

a for j = 1,2 and

the norm ‖ϕ‖A3
a
+‖x1ϕ‖A2

a
+‖x2ϕ‖A2

a
= ε is sufficiently small, then the final state

u+ ∈ A2
a1

, where b0 < a1 < a, hence u0 ∈ Yb0 and ‖u−u0‖Yb0
≤ Cε2t−w for all t ≥ 1,

where w ∈ (0,1/2).
Now we state the main result in this paper.

Theorem 1.1. We assume that the initial data ϕ ∈ A3
a are such that xjϕ ∈ A2

a for

j = 1,2 and the norm ‖ϕ‖A3
a
+‖x1ϕ‖A2

a
+‖x2ϕ‖A2

a
= ε is sufficiently small. Then there

exists a unique global solution u(t,x) ∈ A3
b(t) of the Cauchy problem (1.1). Moreover,

the estimates ∥∥un(t)∥∥Ybn ≤ Cnεn+1t−nw, n= 0,1,2, . . . (1.16)

and the asymptotics∥∥∥∥∥u(t)−
n−1∑
m=0

um(t)

∥∥∥∥∥
Ybn

≤ Cnεn+1t−nw, n= 1,2, . . . (1.17)
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are valid for all t ≥ 1, where w ∈ (0,1/2) and

Cn = C(n+1)2n
 n∏
j=0

(
log

bj
bj+1

)−1
2n

, (1.18)

where C is a positive constant independent of n and bj .

We assume in Theorem 1.1 that 0<a< 1. This ensures that the function space A3
a

for the initial data is not empty, as in [1, 2], we can see that our result is valid for the

initial function φ, which has analytic continuation Φ to the domain∏
= {z ∈ C2; zj = xj+iyj, xj ∈R, −C1−

∣∣xj∣∣tanϑ <yj < C1+
∣∣xj∣∣tanϑ, j = 1,2

}
,

(1.19)

such that ∫ ∫
∏∣∣Φ(z)∣∣2dxdy <∞, (1.20)

where ϑ ∈ (0,π/2), sinϑ = C2, and C1,C2 ∈ (a,1). For example, we can take 1/(1+x4),
e−x2

as the initial data for the Cauchy problem (1.1).

Denote û+0 (t,ξ)= û+(ξ) and

û+n(t,ξ)=−1
4

n−1∑
m=0

û+n−1−m
(
t,
ξ
2

)
û+m
(
t,
ξ
2

) 2∑
j,k=1

λjkξjξk
∫ t
∞
eitξ

2/4dτ
iτ

− 1
4

n−1∑
m=0

û+n−1−m
(
t,−ξ

2

)
û+m
(
t,−ξ

2

) 2∑
j,k=1

µjkξjξk
∫ t
∞
e3itξ2/4dτ

iτ
.

(1.21)

Corollary 1.2. Let the conditions of Theorem 1.1 be fulfilled. Then the following

asymptotics in L2 sense

��(−t)u(t)= û+(ξ)+
n−1∑
j=1

û+j (t,ξ)+O
(
t−nw
)

(1.22)

are valid for large time t ≥ 1, where n= 1,2, . . . .

For the convenience of the reader we now give the outline of the proof of Theorem

1.1. As in [8] we apply the operator ��(−t) to (1.1) to get

i∂t��(−t)u= I(t,ξ)+R(t,ξ), (1.23)

where

I(t,ξ)= 1
it

2∑
j,k=1

(
λjk�2E2(��(−t)∂xju

)(
��(−t)∂xku

)
+µjk�−2E6(��(−t)∂xju

)(
��(−t)∂xku

))
,

(1.24)
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E = eitξ2/2, and R is a remainder term since in [8] we proved the estimate ‖R‖ ≤
Ct−1−w∑|α|≤1‖Θαu‖2, Θ = (Q,Ω,∇), 0 < w < 1/2. Then we show that the first term

of the integral
∫
I(t,ξ)dt is also convergent in view of the oscillating factor E. Roughly

speaking, in [8] the following estimate was shown:

∥∥u(t)∥∥≤ ∥∥u(1)∥∥+C ∫ t
1
τ−1−w ∑

|α|≤1

∥∥Θαu∥∥2dτ. (1.25)

Similarly, we have

∑
|β|≤1

∥∥Γβu(t)∥∥≤ ∑
|β|≤1

∥∥(Γβu)(1)∥∥+C ∫ t
1
τ−1−w ∑

|α|≤1,|β|≤1

∥∥ΘαΓβu∥∥2dτ. (1.26)

However, the right-hand sides of (1.25) and (1.26) contain an additional operatorΘ (de-

rivative loss with respect to derivative Θ). This is the reason why we used the analytic

function spaces involving generalized derivative Γ , enabling us to get an additional

regularity with respect to operator Γ , hence we obtain the estimate

∑
|β|≤1

b(t)|β|

β!

∥∥Γβu(t)∥∥<Cε. (1.27)

Similarly, we have

∑
|β|
≤ 1
b|β|1

β!

∥∥Γβu(t)−Γβu(s)∥∥<Cε2|t|−w (1.28)

for all t > s > 0. The last estimate implies existence of the usual scattering states

u+. Method of analytic function spaces involving usual derivatives was used by many

authors (e.g., see [4, 9]) and analytic function spaces involving the generalized deriva-

tives was used in [7]. By the definition of un(t) we have with 	= i∂t+(1/2)∆

	

u− n−1∑
m=0

um

=�

u− n−1∑
m=0

um,
n−1∑
m=0

um

+�

 n−1∑
m=0

um,u−
n−1∑
m=0

um



+�

u− n−1∑
m=0

um,u−
n−1∑
m=0

um

+R,
(1.29)

where R is the remainder term since ‖R‖Ybn+1
≤ Cεn+2|t|−1−(n+1)w . In Section 3, we

will prove that the other three terms are estimated by Cεn+1|t|−1−nw in the norm

Ybn+1 . Then via the inequality

∥∥Γαu∥∥Ybn+1
≤ C
 n∏
j=1

(
log

bj
bj+1

)−1
|α|‖u‖Ybn , (1.30)

for any |α| we obtain the desired result.

The rest of the paper is organized as follows. In Section 2, we state some preliminary

estimates concerning the analytic functional spaces Amb . Section 3 is devoted to the

proof of Theorem 1.1 and Corollary 1.2.
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2. Preliminary estimates. We summarize some lemmas proved in [7, 8], which are

necessary to prove the theorem.

Lemma 2.1. Let φ∈A
m,p
b , then

‖φ‖Ã
m,p
b

≤ e2b‖φ‖A
m,p
b
, (2.1)

where

A
m,p
b =

{
φ∈ Lp

(
R2); ‖φ‖A

m,p
b

=
∑

|β|≤m

∑
α

b|α|

α!

∥∥Γα+βφ∥∥p <∞
}
,

Ã
m,p
b =

{
φ∈ Lp

(
R2);‖φ‖Ã

m,p
b

=
∑

|β|≤m

∑
α

b|α|

α!

∥∥Γ̃α+βφ∥∥p <∞
}
,

(2.2)

and 2≤ p ≤∞.

Lemma 2.2. The following commutation relations are valid:[
∂lxj ,�xj

]
= l∂l−1

xj ,
[

�lj ,∂xj
]
=−l�l−1

xj ,

�l�xj =
∑

0≤m≤l
Cml �xj�

l−m, �l∂xj =
∑

0≤m≤l
Cml (−1)m∂xj�

l−m

�xj�
l =
∑

0≤m≤l
Cml (−1)m�l−m�xj , ∂xj�

l =
∑

0≤m≤l
Cml �l−m∂xj

Ωlxjxk∂xj =
∑

0≤2m≤l
(−1)mC2m

l ∂xjΩ
l−2m
xjxk +

∑
0≤2m+1≤l

(−1)m+1C2m+1
l ∂xkΩ

l−2m−1
xjxk ,

∂xjΩ
l
xjxk =

∑
0≤2m≤l

(−1)m+1C2m
l Ωl−2m

xjxk ∂xj +
∑

0≤2m+1≤l
(−1)mC2m+1

l Ωl−2m−1
xjxk ∂xk ,

(2.3)

where Cml = l!/(l−m)!m! is the binomial coefficient.

Lemma 2.3. The estimate

‖�∇φ‖A
m,p
b

≤ C
∑
|α|=1

∥∥Θαφ∥∥Am,pb
(2.4)

is true.

Lemma 2.4. The inequalities

C1

∥∥∂xjφ∥∥Am,pb
≤
∑

|β|≤m

∑
α

b|α|

α!

∥∥∥∂xj Γα+βφ∥∥∥p ≤ C2

∥∥∂xjφ∥∥Am,pb
,

C1

∥∥�xjφ∥∥Am,pb
≤
∑

|β|≤m

∑ b|α|
α!

∥∥∥�xj Γα+βφ∥∥∥p+‖φ‖A
m,p
b

≤ C2

(∥∥�xjφ∥∥Am,pb
+‖φ‖A

m,p
b

)
(2.5)

are true for all t > 0, where C1,C2 > 0.
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We define the evolution operator


(t)φ=�−1eiξ
2/2t�φ= t

2iπ

∫
e(−it/2)(ξ−y)

2
φ(y)dy (2.6)

and �=���(−t). By a direct calculation we see that


(−t)(Eν−1φ
)=�νEν(ν−1)
(−νt)φ, (2.7)

with �νφ = (1/ν)φ(ξ/ν) and E = eitξ2/2, where ν ≠ 0. We need the following lemma

to get the decay estimates of the solution for large time.

Lemma 2.5. The estimate∥∥�νEν(ν−1)(
(−νt)−1
)
(�φ)(�ψ)

∥∥
+∥∥�νEν(ν−1)(�ψ)

(

(−νt)−1

)
(�φ)
∥∥

≤ Ctη−1/2
∑

|α|≤1,|β|≤1

∥∥�αφ∥∥∥∥�βψ∥∥
(2.8)

is valid for all t > 0, where ν ≠ 0, η > 0 is sufficiently small.

3. Proof of Theorem 1.1. We consider the linear Schrödinger equation

	un =
n−1∑
m=0

�
(
un−1−m,um

)
. (3.1)

Sinceu0(t) is a solution of linear Schrödinger equation it is easy to see that ‖u0(t)‖Yb0

≤ C0ε. Then by induction we assume that

∥∥uj(t)∥∥Ybj ≤ Cjεj+1|t|−jw, 0≤ j ≤n−1. (3.2)

Multiplying both sides of (3.1) by �Γα+δ, where �=���(−t), we get

	ξ�Γα+δun

= 1
it

n−1∑
m=0

∑
β≤α

∑
γ≤δ
CβαC

γ
δ

2∑
j,k=1

(
λjkE
(
�Γ̃δ−γf

)
�Γγg+µjkĒ3

(
�Γ̃δ−γf

)
�Γγg
)
,

(3.3)

where 	ξ = i∂t + (1/2t2)∆ξ , f = Γ̃α−β∂xjun−1−m, g = Γβ∂xkum, Cβα = α!/(α−β)!β!,

|δ| ≤ 2. Applying the operator 
(−t)=�−1�(t)� to both sides of (3.3) we obtain by

virtue of identity (2.7)

i∂t
(−t)�Γα+δun(t)

= 1
it

n−1∑
m=0

∑
γ≤δ

∑
β≤α
CγδC

β
α

2∑
j,k=1


(−t)
(
λjkE
(
�Γ̃δ−γf

)
�Γγg+µjkĒ3

(
�Γ̃δ−γf

)
�Γγg
)
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= 1
it

n−1∑
m=0

∑
γ≤δ

∑
β≤α
CγδC

β
α

2∑
j,k=1

(
λjk�2E2
(−2t)

(
�Γ̃δ−γf

)
�Γγg

+µjk�−2E6
(2t)
(

�Γ̃δ−γf
)

�Γγg
)
.

(3.4)

Then we write the identity


(−2t)
(
�Γ̃δ−γf

)
�Γγg

= (
(−2t)�Γ̃δ−γf
)

(−2t)�Γγg−(�Γγg)(
(−2t)−1

)(
�Γ̃δ−γf

)
−(
(−2t)�Γ̃δ−γf

)(

(−2t)−1

)
�Γγg+(
(−2t)−1

)(
�Γ̃δ−γf

)
�Γγg.

(3.5)

By Lemma 2.5, we have the estimate∥∥�2E2(
(−2t)−1
)(

�Γ̃δ−γf
)
�Γγg
∥∥

+∥∥�2E2(�Γγg)(
(−2t)−1
)
�Γ̃δ−γf

∥∥
≤ C|t|η−1/2

 ∑
|σ |≤1

∥∥∥�σ Γ̃σ−γf∥∥∥
 ∑

|σ |≤1

∥∥∥�σ Γγg∥∥∥
.

(3.6)

Thus we can rewrite (3.4) in the form

i∂t
(−t)�Γα+δun(t)

= 1
it

n−1∑
m=0

∑
γ≤δ

∑
β≤α
CγδC

β
α

2∑
j,k=1

(
λjk�2E2(
(−t)�Γ̃δ−γf )
(−t)�Γγg
+µjk�−2E6

(

(−t)�Γ̃δ−γf

)

(−t)�Γγg

)
+R1(t),

(3.7)

where the remainder term R1(t) can be estimated by virtue of (3.6) and Lemmas 2.1,

2.2, 2.3, and 2.4 as follows:

∑
α

(
bn
)|α|
α!

∥∥R1(t)
∥∥

≤ C|t|η−3/2
n−1∑
m=0

∑
γ≤δ

∑
α

∑
β≤α
CγδC

β
α

(
bn
)|α|
α!

 ∑
|σ |≤1

∥∥�σ Γ̃δ−γf∥∥
 ∑
|σ |≤1

∥∥�σ Γγg∥∥
≤ C|t|η−3/2

n−1∑
m=0

∑
|σ |≤1

∥∥Θσun−1−m(t)
∥∥

A2
bn

∑
|σ |≤1

∥∥Θσum(t)∥∥A2
bn

≤ C|t|η−3/2

 n∏
j=0

(
log

bj
bj+1

)−1
2 n−1∑

m=0

∥∥un−1−m(t)
∥∥

A2
bn−1−m

∥∥um(t)∥∥A2
bm

≤ C
 n∏
j=0

(
log

bj
bj+1

)−1
2 n−1∑

m=0

Cn−1−mCm

εn+1|t|η−3/2−(n−1)w.

(3.8)
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Since

n−1∑
m=0

Cn−1−mCm ≤
n−1∑
m=0

(n−m)2(n−1−m)
n−1−m∏

j=0

(
log

bj
bj+1

)−1
2(n−1−m)

×(m+1)2m
 m∏
j=0

(
log

bj
bj+1

)−1
2m

≤
n−1∏
j=0

(
log

bj
bj+1

)−1
2(n−1)

(n+1)2n,

(3.9)

we have

∑
α

(
bn
)|α|
α!

∥∥R1(t)
∥∥≤ C
 n∏
j=0

(
log

bj
bj+1

)−1
2n

(n+1)2nεn+1|t|η−3/2−(n−1)w

≤ Cnεn+1|t|η−3/2−(n−1)w.

(3.10)

By virtue of the identity 
(−t)�=�−1�����(−t)=��(−t), we have iξj
(−t)�=

(−t)�∂xj . Hence by (3.7) we get

i∂t��(−t)Γα+δun(t)

= 1
t

n−1∑
m=0

∑
γ≤δ

∑
β≤α
CγδC

β
α

2∑
j,k=1

(
λjk�2E2ξj

(
��(−t)∂−1

xj Γ̃
δ−γf
)
��(−t)Γγg

−µjkD−2E6ξj
(

��(−t)∂−1
xj Γ̃δ−γf

)
��(−t)Γγg

)
+R1(t).

(3.11)

If |δ−γ| < |γ| we exchange f and g in the right-hand side of (3.11). By virtue of the

equality Eν = (1+(it/2)νξ2)−1∂t(tEν) we obtain the identity

φ
t
Eν = ∂t

(
φEν

1+(it/2)νξ2

)
− Eν∂tφ

1+(it/2)νξ2
+ 1+itνξ2

t
(
1+(it/2)νξ2

)2φEν. (3.12)

Therefore, we get from (3.11)

i∂tΨ = R2, (3.13)

where

Ψ =��(−t)Γα+δun(t)

+
n−1∑
m=0

∑
γ≤δ

∑
β≤α
CγδC

β
α

×
2∑

j,k=1

(
λjk�2

ξjE2

1+itξ2

(
��(−t)∂−1

xj Γ̃
δ−γf
)

��(−t)Γγg

+µjk�−2
ξjE6

1+3itξ2

(
��(−t)∂−1

xj Γ̃δ−γf
)

��(−t)Γγg
)
,

(3.14)
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R2 = R1+
∑3
j=1 Ij , and

I1 = 1
it

n−1∑
m=0

∑
γ≤δ

∑
β≤α
CγδC

β
α

×
2∑

j,k=1

(
λjk�2

(
1+2itξ2

)
E2(

1+itξ2
)2 ξj
(

��(−t)∂−1
xj Γ̃

δ−γf
)

��(−t)Γγg

−µjk�−2

(
1+6itξ2

)
E6(

1+3itξ2
)2 ξj(��(−t)∂−1

xj Γ̃δ−γf
)

��(−t)Γγg
)
,

I2 =− 1
it

n−1∑
m=0

∑
γ≤δ

∑
β≤α
CγδC

β
α

2∑
j,k=1

λjk�2
ξjE2

1+itξ2

×
((
∂t��(−t)∂−1

xj Γ̃
δ−γf
)
��(−t)Γγg

+(��(−t)∂−1
xj Γ̃

δ−γf
)
∂t��(−t)Γγg

)
,

I3 =− 1
it

n−1∑
m=0

∑
γ≤δ

∑
β≤α
CγδC

β
α

2∑
j,k=1

µjk�−2
ξjE6

1+3itξ2

×
((
∂t��(−t)∂−1

xj Γ̃δ−γf
)

��(−t)Γγg

+
(

��(−t)∂−1
xj Γ̃δ−γf

)
∂t��(−t)Γγg

)
.

(3.15)

By Hölder’s inequality, the identity �j =�(t)xj�(−t), and Lemmas 2.1, 2.2, 2.3, and

2.4 we get the estimates

∑
α

(
bn
)|α|
α!

∥∥I1(t)∥∥
≤ C|t|−3/2

n−1∑
m=0

∑
α

∑
β≤α
Cβα
(
bn
)|α|
α!

2∑
j,k=1

 ∑
|δ|≤2

∥∥∥∂−1
xj Γ̃

δf
∥∥∥


×
∑
|γ|≤1

∥∥
(−t)�Γγg∥∥∞
≤ C|t|−3/2

n−1∑
m=0

∑
α

∑
β≤α
Cβα
(
bn
)|α|
α!

 ∑
|δ|≤2

∥∥∥∂−1
xj Γ̃

δf
∥∥∥


×
∑
|γ|≤1

 ∑
|σ |≤1

∥∥�σ Γγg∥∥1−η
 ∑
|σ |≤2

∥∥�σ Γγg∥∥η
≤ Cnεn+1|t|−3/2−(n−1−m)w−mw+(1−mw)η

≤ Cnεn+1|t|η−3/2−(n−1−mη)w

(3.16)
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for |δ| ≤ 3. In the same way we obtain

∑
α

(
bn
)|α|
α!

(∥∥I2(t)∥∥+∥∥I3(t)∥∥)
≤ C|t|−1/2

n−1∑
m=0

∑
α

∑
β≤α

∑
|γ|≤1

CγδC
β
α

(
bn
)|α|
α!

×
2∑

j,k=1

(∥∥∂t��(−t)∂−1
xj Γ̃

δ−γf
∥∥∥∥��(−t)Γγg∥∥∞

+∥∥∂t��(−t)Γγg∥∥∞∥∥��(−t)∂−1
xj Γ̃

δ−γf
∥∥)

≤ C|t|−1/2
n−1∑
m=0

∑
α

(
bn
)|α|
α!

×
(
εm+1|t|−mw

∑
|δ|≤3

∥∥∥∂t��(−t)Γ̃α+δun−1−m(t)
∥∥∥

+εn−m|t|−(n−m−1)w
∑
γ≤1

∥∥∥∂t��(−t)Γα+γ∇um(t)
∥∥∥)

≤ Cnεn+1|t|η−3/2−(n−1)w.

(3.17)

In view of (3.10), (3.16), and (3.17) we have the estimate

∑
α

(
bn
)|α|
α!

∥∥R2(t)
∥∥≤ Cnεn+1|t|−1−nw. (3.18)

Multiplying both sides of (3.13) by Ψ(t), integrating with respect to the space variables,

and taking the imaginary part of the result, we obtain the inequality (d/dt)‖Ψ(t)‖ ≤
‖R2(t)‖, hence

d
dt

∑
α

(
bn
)|α|
α!

∥∥Ψ(t)∥∥≤∑
α

(
bn
)|α|
α!

∥∥R2(t)
∥∥≤ Cnεn+1|t|−1−nw. (3.19)

Then integration with respect to t in view of (3.18) yields

∥∥un(t)∥∥A2
bn
≤ Cnεn+1|t|−nw. (3.20)

Applying the operator �xl to both sides of (3.1), we get

	�xlΓ
α+δun =

∑
γ≤δ

∑
β≤α
CγδC

β
α

2∑
j,k=1

(
λjk
(
Γ̃δ−γf

)
�xlΓ

γg+itλjk
(
∂xl Γ̃

δ−γf
)
Γγg

+µjk
(
Γ̃δ−γf

)
�xlΓγg−itµjk

(
∂xl Γ̃δ−γf

)
Γγg
)
,

(3.21)

hence by the classical energy method, via the inequality

∥∥(∂xjφ)(∂xkψ)∥∥≤ Ct ‖Θφ‖‖Θψ‖, (3.22)
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and Lemmas 2.1, 2.2, 2.3, and 2.4 we obtain

∑
α

(
bn
)|α|
α!

d
dt
∥∥�xlΓα+δun(t)∥∥≤ Cnεn+1|t|−1/2−(n−1)w+η (3.23)

for |δ| ≤ 1. Multiplying both sides of the last inequality by t−1−η and integrating with

respect to t, we have

t−1−η ∑
|γ|=1

∥∥�γun(t)∥∥A2
bn
≤ Cnεn+1|t|−nw. (3.24)

By the identity �u= �u+2it�(ν), and Lemmas 2.1, 2.2, 2.3, and 2.4 we see that

∥∥�un∥∥A1
bn
≤ ∥∥�un∥∥A1

bn
+C

n−1∑
m=0

∥∥�un−1−m
∥∥

A1
bn

∥∥�um∥∥A1
bn

≤ ∥∥�un∥∥A1
bn
+Cnεn+1|t|−nw.

(3.25)

Therefore, by virtue of (3.24) and (3.25) we get

t−1−η ∑
|γ|+|δ|=1

∥∥�γΘδun(t)∥∥A2
bn
≤ Cnεn+1|t|−nw. (3.26)

In the same way as above by virtue of (3.11) and (3.26) we obtain

t1−η
∑

|γ|+|δ|≤1

∑
α

(
bn
)|α|
α!

∥∥∂t��(−t)Γα+γΘδun(t)
∥∥≤ Cnεn+1|t|−nw. (3.27)

By (3.20), (3.26), and (3.27) we have the first part of the theorem∥∥un(t)∥∥Ybn ≤ Cnεn+1|t|−nw (3.28)

for any n∈N. We next prove the last part of the theorem by induction. By the defini-

tion of un(t) we have with 	= i∂t+(1/2)∆

	

(
u−

n∑
m=0

um

)
=�(u,u)−

n∑
k=1

k−1∑
m=0

�
(
uk−1−m,um

)= I+R, (3.29)

where

I =�

u− n−1∑
m=0

um,
n−1∑
m=0

um

+�

 n−1∑
m=0

um,u−
n−1∑
m=0

um



+�

u− n−1∑
m=0

um,u−
n−1∑
m=0

um


(3.30)

and R consists of quadratic nonlinearities involving ukul and ūkūl with k+l≥n. We

have

i∂t��(−t)Γα+δ
(
u−

n∑
m=0

um

)
=��(−t)Γα+δ(I+R). (3.31)
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In the same way as in the proof of (3.7) we estimate

��(−t)Γα+δ�(φ,ψ)

= 1
it

n−1∑
m=0

∑
γ≤δ

∑
β≤α
CγδC

β
α

2∑
j,k=1

(
λjk�2E2(��(−t)Γ̃δ−γf )��(−t)Γγg

+µjk�−2E6
(

��(−t)Γ̃δ−γf
)

��(−t)Γγg)+R3(t),

(3.32)

f = Γ̃α−β∂xjφ, g = Γβ∂xkψ. We have by (3.10) and the fact that bn < bn−1

∑
α

(
bn
)|α|
α!

∥∥R3(t)
∥∥≤ C|t|η−3/2

∑
|σ |≤1

∥∥Θσφ(t)∥∥A3
bn

∑
|σ |≤1

∥∥Θσψ(t)∥∥A3
bn
. (3.33)

Hence by the assumption and (3.28)

∑
α

(
bn+1
)|α|

α!

∥∥Γα+δI(t)∥∥≤ Cnεn+2|t|−1−(n+1)w. (3.34)

We also have by (3.28)

∑
α

(
bn+1
)|α|

α!

∥∥Γα+δR(t)∥∥≤ C∥∥uk(t)ul(t)∥∥Ybn+1
≤ Cnεn+2|t|−1−(n+1)w. (3.35)

Thus in view of (3.28), (3.31), (3.32), (3.34), and (3.35) we obtain∥∥∥∥∥u−
n∑
m=0

um

∥∥∥∥∥
Ybn+1

≤ Cnεn+2|t|−1−(n+1)w (3.36)

which yields the second part of the theorem. Theorem 1.1 is proved.

Proof of Corollary 1.2. By (1.1) we have

i∂t��(−t)u(t)= 1
t

2∑
j,k=1

(
λjk�2E2ξj

(
��(−t)u)��(−t)∂xku

−µjk�−2E6ξj
(

��(−t)u
)

��(−t)∂xku
)
+R(t)

(3.37)

and the property of the solution of (1.1) we see that ‖R‖ ≤ Cε2|t|−1−wt . In the same

way as in the proof of Theorem 1.1 we have∥∥��(−t)u(t)−û+(ξ)∥∥≤ C1ε2|t|−wt. (3.38)

By the definition of u we see that

��(−t)u(t)−û+(ξ)=−1
4

2∑
j,k=1

∫ t
∞
λjk
iτ
E1/2dτξjξkû+

(
ξ
2

)
û+
(
ξ
2

)

− 1
4

2∑
j,k=1

∫ t
∞
µjk
iτ
E3/2dτξjξkû+

(
− ξ

2

)
û+
(
− ξ

2

)
+I,

(3.39)
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where

I =−1
4

2∑
j,k=1

∫ t
∞
λjk
iτ
E1/2(��(−t)u)2(t, ξ

2

)
dτξjξk

− 1
4

2∑
j,k=1

∫ t
∞
µjk
iτ
E3/2(��(−t)u)2(t,−ξ

2

)
dτξjξk

+ 1
4

2∑
j,k=1

∫ t
∞
λjk
iτ
E1/2dτξjξkû+

(
ξ
2

)
û+
(
ξ
2

)

+ 1
4

2∑
j,k=1

∫ t
∞
µjk
iτ
E3/2dτξjξkû+

(
− ξ

2

)
û+
(
− ξ

2

)
.

(3.40)

From (3.38) the L2 norm of I is estimated as ‖I(t)‖ ≤ Cε3|t|−2w . Therefore we get∥∥∥∥∥��(−t)u(t)−û+(ξ)+ 1
4

2∑
j,k=1

∫ t
∞
λjk
iτ
E1/2dτξjξkû+

(
ξ
2

)
û+
(
ξ
2

)

+ 1
4

2∑
j,k=1

∫ t
∞
µjk
iτ
E3/2dτξjξkû+

(
− ξ

2

)
û+
(
− ξ

2

)∥∥∥∥∥≤ C3ε3|t|−2w.

(3.41)

We iterate this procedure to get∥∥∥∥��(−t)u(t)−û+(ξ)

+ 1
4

n∑
l=1

l−1∑
m=0

2∑
j,k=1

∫ t
∞
λjk
iτ
E1/2dτξjξkû+l−1−m

(
t,
ξ
2

)
û+m

(
t,
ξ
2

)

+ 1
4

n∑
l=1

l−1∑
m=0

2∑
j,k=1

∫ t
∞
µjk
iτ
E3/2dτξjξkû+l−1−m

(
t,−ξ

2

)
û+m
(
t,−ξ

2

)∥∥∥∥
≤ Cn+1εn+2|t|−(n+1)w

(3.42)

with û+0 (t,ξ)= û+(ξ). This completes the proof of Corollary 1.2.
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Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
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