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1. Introduction. Let

F(x) = K(xt) f(t) dt (1.1)

be the K-transform off In recent years various techniques have been developed to obtain

explicit expressions for the remainder in the asymptotic expansions of functions defined by

(1.1) as x —> oo. A survey of such techniques is given by Wong [17]. It is well known that

under some reasonable assumptions on / and K, the Parseval relation for the Mellin

transform provides a powerful tool for obtaining the asymptotic expansion of F(x). How-

ever, until recently the potential of this technique for obtaining an explicit expression for

the remainder had been largely overlooked. If M[K, s] is the Mellin transform of K

evaluated at s, M\_f 1 — s] is the Mellin transform of/evaluated at 1 — s, and the integrals

defining these transforms converge in a strip containing the line Re s = c then, formally, by

the Parseval relation,

K(xt)f(t) dt =
0

c + i oo

x"s M[K, s] M[/, 1 - s] ds. (1.2)

Handelsman and Lew [3] had shown that for a large class of kernels K and functions f
M\_K, s] and M[/, 1 — s] can be analytically continued to meromorphic functions in the

right half plane. If we can shift the line of integration from Re s = c to Re s = d > c, then by

the residue theorem,

F(x) = - £ Res {x~° M[K, s] M[f 1 - s]} + E (1.3)
c< Re s <d

where

E-i
%d + iao

x~s M[K, s] M[f 1 — s] ds. (1.4)
d — ioo

In [11] we proved that for a certain class of kernels K, the remainder E can be given as

E = x~ K(xt, p) R(np\t) dt, (1.5)
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where K(t, p) is the inverse Mellin transform of M\_K, s + p] r(s)/r(s + p) and Rn{t) is the

nth remainder in the asymptotic expansion off(t) near the origin. In the present paper we

apply the Mellin transform technique to obtain explicit expression for the remainder in the

asymptotic expansion of the finite Hankel transform. Although we consider a specific

kernel, K(t) = t ~v Jv (t), the technique developed here is quite general and can be applied to

other kernels such as the Bessel function Yv(t) and the Airy function At( — t). For finite

integral transforms with such kernels, the Handelsman-Lew technique [1, Chapter 4]

cannot be applied without modification because, in general, M\K, s] M[f 1 — s] in (1.2)

does not approach zero as | Im s | —> oo in a strip wide enough to the right of the line

Re s = c. In this paper we show that by first separating the terms which tend to zero slowly

near the line Re s = c, we can shift the line of integration in (1.2) to the right. The terms that

we separate provide the contribution to the asymptotic approximation from the right

endpoint of the interval of integration. The remainder is given by (1.4). For the computation

of realistic error bounds, we need to express the remainder E in as simple a form as we

possibly can. In [11], this was achieved by using simple integration by parts to express

M[K, s] M[/, 1 — s] in an equivalent but different form. For the Hankel transform, we use

the differential operator t~l d/dt to integrate by parts. In general, the differential operator is

suggested by the form of the Mellin transform of the kernel. Although the asymptotic

expansion of the Hankel transform is usually discussed with Jv(t) as the transform kernel

(see for example [12] and [16]), we use the kernel Jv(t)/tv because its Mellin transform has a

very simple structure,

(1'6)

Since the parameter v appears only in the demoninator, it is easy to see how we can modify

the basic technique in [11] to change M[/, 1 — s] so that the kernel in the remainder can be

identified easily. By this technique we obtain the same form of the remainder as given by

Wong by a different technique when the interval of integration is (0, oo). A comparison with

his results is given in Sec. 3.

The error terms in the asymptotic approximation of the finite Hankel transform can

also be obtained by other techniques such as that used by Olver [7] and Wong [16], A

completely different approach is used by Soni and Soni [12], However, as mentioned

earlier, our objective is to show that the basic Mellin transform technique can be modified

to obtain explicit expressions for the remainder when the Mellin transform of the kernel is

known and

/M~ I amn (log 0"» t —> 0 +, (1.7)
m, n = 0

where Re am f oo as m —> oo and {n : amn / 0} is finite for each m. As in [11], we assume for

the sake of simplicity that the logarithmic singularities of / are only of the first degree.

Logarithmic singularities of higher integral order can be treated similarly.

2. Notation and Basic Assumptions. Let a > 0. We assume that f(t) is a real or

complex-valued function, absolutely integrable in (0, a) and f(t) = 0 for t > a. For

K(t) = Jv(t)/tv, (1.1) reduces to

■IF(x) = (xt)-* JJxt)f(t) dt. (2.1)
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In the rest of the paper we assume that F(x) is defined by (2.1). Since Jv(f)/tv is continuously

differentiable in [0, oo), F(x) also is continuously differentiable. Following the notation used

in [11] we write

/(*)=/,-! (*) + *.« (2.2)

where

and

fn-iW = X (ak + bk log t) tH
k = 0

— 1 < Re a0 < Re a! < • • • < Re an_i,

I ao I ~t~ I I ^ 0> (2-3)

Rn (f) = 0(t"n), t -> 0 +, Re a„ _! < Re a„. (2.4)

The variable s is complex; the real and imaginary parts of s are denoted by a and t

respectively. The Mellin transform of a function evaluated at s is denoted by M[</>, s] or

M[0(r), s]. Thus

M[(p, s] = M[0(t), s] = ts 1 4>{t) dt, s = a + it, (2.5)

whenever the above integral converges. As is usual, s] also denotes the function which

is an analytic continuation of the function element defined by (2.5) in the complex s-plane.

As in [12], Q) is the differential operator defined by

2 = = r1 J, 2n = 9 9n-\ (2.6)

The function ijt is the logarithmic derivative of the gamma function and (a)„ is Poch-

hammer's symbol, (a)„ = T(a + n)/V(a).

3. Statement of results.

Theorem 1. Iff(t) satisfies (2.2)-(2.4) and

(i) f{t) is p times continuously differentiable in (0, a] where

Re a„_! < Re v + p + i, (3.1)

(ii) f(k\t) =/?>!(*) + t -» 0 + , k = 0, 1,p;
then

r n - 1

(xt)"v JAxt) fit) dt = Y, 2*k~vx~1~'"'0t(v, ak)
k = 0

+ Z(-ifc?+k+1x-*-k-1 jv+i+1(flxX^ r2'-1
k = 0

+ E(x), (3.2)
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where

«(v, ak) =
ni + *«*)

and

r(v + i - iat)

X [«k + M'og(2/x) + iiA(i + iat) + ^(v + I - iat)}] (3.3)

£(x) = (-l)>JV)-v-> Jv+P(xt) ̂"(r2"-1 «„(*)) t2v+1+2" dr. (3.4)

If for some k,v + % — $cck = — m, w = 0, 1,..., then

«(V, a*) = i(-l)m + 1 r(m + 1) r(i + $ak)bk. (3.5)

Note that by condition (i) above, fk\t) is continuous in (0, a] for k = 1, ... p. Also, as

stated in Sec. 2,/(t) = 0 for t > a. Therefore, for k = 0, 1,..., p, R(„k>(t) = f(k>(t) — f*L j(t) is
continuous in (0, oo) except perhaps at t = a where it may have a jump discontinuity. In

Sec. 5 we shall show that the remainder £(x) in the asymptotic approximation of F(x) as

given by (3.2) is of a lower order as x —► oo than the order of the larger of the two terms,

x-v-P-i/2 an(j x-a„-i-i jQg x por tjje numerjca] computation of error bounds, it is more

convenient to write

E(x) = £x(x, v, p) - E2 (x, v, p) (3.6)

where

£x(x, v, p) = (-!)"

E2(x, v, p) = (-!)"

(xtyv~p jv+p(xt) ^p(r2v_1 RM t2*+1 + 2> dt, (3.7)

(xt)-»-■' Jv+p(xt) 2*"1 /„. 1(r))t2v+1 + 2p dt. (3.8)

For fixed v, p, and a, E2 depends only on the behavior of/ near the origin and can be given

precisely. As a —* oo, E2 (x, v, p) —> 0 and we have the following:

Theorem 2. Iff(t) satisfies (2.2H2.4) and
(i) f(t) is p times continuously differentiable in (0, oo) where p satisfies (3.1);

(ii) /<*>« =/?>,(») + 0(t°"-k),t - 0 + ,k = 0, 1 p;
(iii) The integrals

* Jv(xt) !-/(() dt, f\+,(*) rv-kf-k\t) dt, k = 0, 1 (3.9)
) Jo

converge as N —► oo;

(iv) f{k\t) = o(tv + 1/2), t -> oo, k = 0, 1, ..., p - 1;

then

n - 1

(xr)~v Jv(xt) f (t) dt = £ y-'x"1-*1 «(v, at) + E(x) (3.10)
0 k = 0

where 0t{y, at) is defined by (3.3) and E(x) by (3.4).

For at = v + fc + A— 1, fc = 0, 1,n and bk = 0, k = 0, 1, ...,« — 1 (see (2.3) and
(2.4)), the above theorem is due to Wong [16]. The condition Q3 in [16] needs strengthen-
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ing. (Compare (2.2) in [16] with (3.9) above.) For a discussion of this, see [17, p. 409] and

[12]. Also, (3.1) above is weaker than the corresponding condition (3.5) in [16]. We must

mention here that Theorem 1 holds without the conditions (3.1). This condition is required

only for the convergence of the integral (3.4) defining E(x). We can write E in terms of Et

and E2. For fixed x and p, £x is an entire function of v and E2 is analytic in the half v-plane

Re v > Re a„_ x — p — Furthermore, using integration by parts in (3.8) we can show that

E2 can be continued analytically into the whole complex v-plane and has no singularities

there. Thus, by analytic continuation, the expansion (3.2) is valid for every complex v. In

Theorem 2, we can remove the condition (3.1) provided that we impose some additional

restriction on f If the integrals in the condition (iii) converge uniformly with respect to v on

compact sets in the v-plane, in particular if f~v_1/2/(t), 1/2/(p,(t) and t~v~3/2/(p_1)(t)

are absolutely integrable in (1, oo), then we can show that by analytic continuation, (3.10)

holds for all complex v.

4. Proof of Theorem 1. Without loss of generality we may assume that v > —

Since t'v Jv(t) is an entire function of v, the expansion (3.2) can be extended to other values

to v by analytic continuation in the complex v-plane. To prove that F(x) can be expressed as

the contour integral in (1.2), consider its Mellin transform. For Re s > 0,

rxs 1 F(x) dx fit) t~
'Nt

u~v+s~l JMdudt. (4.1)

The repeated integral on the right is obtained by using (2.1), then reversing the order of

integration which is justified by the absolute convergence of the double integral and

finally by applying a change of variable. As N —* oo, the last integral converges to

M[/, 1 — s] ■ M[u"v Jv(«), s] uniformly in < Re s < S2 where (51( d2 are arbitrary

numbers that satisfy 0 < <5X < d2 < min(l, 1 + Re a0). By [15, p. 391],

M[u -v Jv (u), s] = 2s -v'1 r(s/2)/r(v + 1 - s/2), (4.2)

and by [13, p. 151],

r(s/2)/r(v + 1 - s/2) = OdTl"-'-1), ITI —> OO, S = <7 + IT. (4.3)

M\_f, 1 — s] is analytic in Re s < 1 + Re a0 • Furthermore, integrating once by parts,

dt = (1 — s)-1 ja1-'/(«) - {/'"V'W dt}. (4.4)

From (4.3) and (4.4) it follows that if 0 < c < min(l/2, 1 -I- Re a0) and v > - •£, then M[/,

1 — s] M[u~v Jy(u), s] is absolutely integrable along the line Re s = c. Since F(x) is con-

tinuous, by [14, p. 47] we have

F(x) = (2ni) 1

'c + i oo

(r(s/2)/r(v + 1 - s/2))M\_f 1 - s] ds. (4.5)

To obtain an asymptotic expansion for F(x) as x -» oo, we need to shift the line of inte-

gration in the above integral to the right. Since / satisfies (2.2)-(2.4), M[f 1 — s] can be

continued analytically into Re s < Re a„ + 1 and its only singularities in the region 0 < Re

s < Re a„ + 1 are poles of order two at most at s = ock -I- 1, k = 0, 1,..., (n — 1) (see, for



6 K. SON I

example, [3] and [11]). To obtain the principal part of M[/, 1 — s] ats = a.k + 1, we write

MU, 1 - s] =
l

t sf(t) dtrs(f(t)-fn-M dt +
0

+ Z («k(afc + 1 - s)"1 - bk(ak + 1 - s)~2). (4.6)
fc = o

The functions represented by the two integrals above have no sinularities in Re s < Re

a„ + 1. Thus, the poles of M\_f 1 — s] are the only singularities of the integrand in (4.5) in

the region 0 < Re s < Re a„ + 1. Let Res (at + 1) denote the residue of x~s ■

2s-y- 1(T(s/2)/r(v + 1 - s/2))M[f 1 - s] at ak + 1. Then, by (4.6), for k = 0, 1, ..., n - 1,

Res (a* + 1) = — 2°""v x'l'n3t{v, <xk) (4.7)

where 0i(y, ak) is defined by (3.3).

By the condition (3.1) on p and the fact that Rean_j < Re a„, we can choose a positive

number d which satisfies

Re a„_! + 1 < d < min(a„ + 1, v + p + 3/2). (4.8)

If Re s > v + 2, the integrand in (4.5) does not approach zero as | Im s \ -* oo unless f(a) = 0

(see (4.3) and (4.4)). Therefore, for d > v + 2, we cannot shift the line of integration in (4.5)

from Re s = c to Re s = d. However, by the residue theorem and (4.7) it follows that

n — 1

F(x) = Z 2""-* x'1-*" &(v, txk)

+ (2ni) 1 X-M 2.-v-i (r(s/2)/r(v + 1 - s/2)) M[f 1 - s] ds, (4.9)

where C is the contour shown in Fig. 1. M[/, 1 — s] can be expressed in a form which is

more desirable than (4.4), by applying integration by parts as follows. For Re s < 1 +

Re a0,

I'f(t)r°dt= S /(a)
o 2(v + 1 — s/2)

1 C a
2v — 1 ru\\ #2v + 3

2(v +

T

J  f°
1 - s/2) Jo

9(t~*~f(t))t:2v + 3'sdt, (4.10)

c ■
I n-l

d ex. a
n

Fig. 1.
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where 3) is defined by (2.6). We integrate by parts in this manner p times and in the final

integral replace/(t) by Rn(t) +/„_ i(t)- Thus,

p— 1 / i \k >y — k— 1 n2v + 2k + 2— s

M[/" ' - S] =

(-2V
(v + 1 - 5/2),

0"(r2v_1 Rn(t))t2v+2p+i~s dt

where

But

+ 7 X ^ ~n\ 1 - (4*1 ̂(v + 1 - s/2)

fc(t) = ®"(r2,-1/„_1(t)) t2v+2P+i; o < t < a,

= 0, t > a. (4.12)

^"(r^-Vn-iW) f2v+2p+1 = (^tkp + Bkp log t) t« (4.13)
fc = 0

where /4fcp, Bkp are constants. Therefore,

M[/j, 1 - s] = X /l,pa«-s + 1(at - s + I)"
k = 0

+ YJBkpa°>-s+\oLk-s+ l)-1{loga-(at-s+ l)"1}. (4.14)
fc = 0

Furthermore, the integral in (4.11) converges absolutely in Re s < Re a„ + 1. Therefore,

M[/, 1 — s] can be continued analytically into the half plane Re s < Rea„ + 1. Now denote

the integral in (4.9) by /. By substituting the expression obtained for M[/, 1 — s] in (4.11),

we can decompose / into the desired form. By means of the relation T(v + 1 — s/2)(v +

1 — s/2)k + l = T(v + k + 2 — s/2), we write

I = lY- !)W "2v" Vm-« /1. * + (■- l)p'2 + (■- l)"/3 (4.15)

where

I i,k — (2ni) 1

12 = {2ni)'1

jc_^,_v_k_2fl2v + 2t+2-.r(s/2)

 rv—,i,o ™ ^s' (4-16)
c T(v + k + 2 — s/2)

x-s2s-V-p- !F(s/2)

/3 = (2tti)

c T(v + p + 1 - s/2)

S>p(r2v"1R„(f))f2v+2p+1"s dt ds, (4.17)

x-s2s-v-p-lr(s/2)

0

-1

c f(v + p + 1 - s/2)
Af[/j, l-s]ds. (4.18)

The integrand in /1Jc has no singularity in Re s > 0. Therefore the coutour C can be

replaced by the straight line Re s = c, 0 < c < 1/2. Along this line, the integral converges
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absolutely for k = 0,1, ..., p — 1. By using [15, p. 192, Eq. (7)], we obtain

Ii,k = x~v~k~iav + k+1Jv+k + 1(ax). (4.19)

In consequence of the condition (ii), the inner integral in I2 converges absolutely in

Re s < Re a„ +1. Therefore, the integrand has no singularity in the strip 0 < Re s < Re a„ + 1

and we can replace the contour C by the straight line Re s = c in this case also. By [15,

p. 391], for each fixed x, 0 < x < oo,

M[(xtyv-pJv+p(xt), si = x-!2s-v-"-1r(s/2)/r(v + p + 1 - s/2). (4.20)

By using the estimate (4.3), we conclude that M[(xt)""~pJv + p(xt), c 4- it] as a function of t

belongs to L(—oo, oo). Furthermore, the Mellin transform of the function, which

equals 3>pit~2v~1R„(t))t2v+2p+l for 0 < t < a and is zero for t > a, converges absolutely for

s = — c. Therefore, by the Parseval relation for the Mellin transform [14, Theorem 42],

h = (xt)~v'pJv+ {xt)@"(t ~ 2 v"1 R„{t))t2v+2p+1 dt. (4.21)

In the case of /3, we cannot replace the contour C by the straight line Re s = c as we did for

the integrals considered above. However, in consequence of (4.3) and (4.14), we can replace

C by the straight line Re s = d. The integral along this line may not converge absolutely. It

is possible to use (4.13) and evaluate the integral term by term but it is more convenient to

prove that

h = (xf)"v" "Jv + (xt)S>"(t" 2v" y„ _ ,(t))f2v + 2p+l dt, (4.22)

by verifying the conditions for the validity of the Parseval relation. Referring back to the

inequality (4.8), we see that for each fixed x, the Mellin transform of(xf)-v-pJv+p(xf) which

is given in (4.20), converges uniformly in a strip containing Re s = d. If we define

git) = 0, 0<t< a,

= ^p(r2v"1/„_l(t))t2v + 2p+1, a < t, '

then, as a consequence of (4.13), the Mellin transform of g(t) converges absolutely in a strip

containing Re s = 1 — d and M[g, 1 — s] = — M[h, 1 — s]. By means of (4.13) again, we

can verify that for each fixed x, 0 < x < oo and for r = d, the function

fN

e-di^ + rr (:xt)-*-pJv+p(xt)g(Zt) dt (4.24)

is bounded uniformly inN>l, 0<£<oo; and when N —> oo, it represents a function

continuous at £ = 1. Therefore, by [14, Theorem 43], (4.22) holds.

By (4.19), (4.21), and (4.22), we obtain I which represents the contour integral in (4.9).

Since I2 = Ex and /3 = E2, we obtain the expansion (3.2).

Proof of Theorem 2. Let a —* oo in (3.2). We observe that for k = 0,1, ..., p,

S>kir2v~1fit))t2v+2k+1 = lClktk-rk-'\t). (4.25)
1 = 0
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Therefore, by the condition (iv), for k = 0,1,..., p — 1,

a*+k + iJv + k+1 (ax)(®kt" 2*" =a - 0. (4.26)

By the condition (3.1), E2—>0 and finally, by (4.25) and the conditions (iii), (iv) and (3.1),

Ei —> E. Thus we obtain (3.10).

5. Order of the remainder. We will prove that the asymptotic behavior of F(x) as

x —> oo, can be obtained from (3.2) without any restriction on v provided that E(x) denotes

the function obtained from (3.4) by analytic continuation in the complex v-plane. To show

that E(x) is indeed defined in the whole complex v-plane, consider the integrals

t" rv"p jv+p (xt) dt (5.1)G(x, v) =

and

H(x, v) = | t" log t t~v~p Jv+p (xt) dt. (5.2)

G and H are analytic functions of v in Re v > Re a — p — 1/2. By using
»

/ ViM dy = y" J,(y) (5.3)

to integrate G by parts / times we obtain

' xa 1
-_-_v_p| jv + pHG(x,v)= £ (-x)-k2k-1<f~->-k+1 Jv+p+,(ax)

k= 1 V 1 / k-1

+ (-x) ' 2' ~ pj | ft v " ' Jv+p+l (xt)dt. (5.4)

This provides the analytic continuation of G into the half plane Re v > Re a — p — I — 5.

Since I is arbitrary, G can be continued analytically into the whole complex v-plane.

Furthermore, if we choose I so that the integral on the right in (5.4) converges absolutely, we

conclude that for any fixed v, a, and p,

G(x, v) = 0{x~3'2), x —> 00. (5.5)

We use the same technique to show that H can be continued analytically into the whole

complex v-plane and for any fixed v, a, and p,

H(x, v) = 0(x~312 log x), x —> 00. (5.6)

By (4.13), (5.5) and (5.6) it follows that for p > 1 and any fixed v,

E2(x, v, p) = 0(x~v~p~312 log x), x —> 00, (5.7)

where E2 is defined by (3.8). Now we consider E{. Let

(-l)"£1(x,v,p) = /4 + /5 (5.8)

where

f 1/x
U = I (*rv~p J.+P(xt) g>p(r2v~l RM t2v+2p+1 dt (5.9)
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and

/5 = (xt)-*-' Jv+P(xt) ^p(r2v_1 RM t2> + 2"+l dt. (5.10)
J 1/x

By (2.2) and the condition (ii) of Theorem 1,

^p(r2v_1 Rn{t)) t2v+2p+l = 0{t*"), t -> 0 + . (5.11)

Since for fixed v and p,y~v~pJv + p(y) is bounded in 0<y< 1,

/4 = 0^J t"" dt^j = 0(x~"n l), x —> oo. (5.12)

We can obtain sharper estimates for the asymptotic behavior of/5 as x —> oo if we consider

the cases Re v > Re a„ — p + 1/2 and Re v < Re an — p + 1/2 separately. For Re v > Re

an ~ P + 1/2, by using (5.11) and the fact that for fixed v and p, y1/2 Jv + p(y) is bounded

when y > 1,

/, = 0 (xr)~v_p (xt)~1/2 ?» dt) = 0[ x x"1

ii*

u~ v — p + a„ — 1/2 du I x _> oo

(5.13)

The last integral is bounded as x —> oo unless v = a„ — p + 1/2, in which case it is of the

same order as log x. Therefore, for Re v > Re a„ — p + 1/2,

/5 = 0(x-""-1 log x), x —> oo. (5.14)

For Re v < Re a„ — p + 1/2, we use the asymptotic behavior of Jv+P(xr). By [15, p. 199],

I5 = x-v-P-i/2 cos(xt _ (v + p)n/1 — 7r/4) dt
Jl/x

+ 0\ x-v-p-3/2 t-l j^l dt^x_> 00) (515)
1/x

where g(t) = tv + p+1/2 0'(r-2v_1 R„(r)). By (5.11), gf(t) = O^"-'-""1'2) as f -» 0 + . There-

fore, g(t) is absolutely integrable in (0, a) and we can apply the Riemann-Lebesque lemma to

the first integral in (5.15). The order of the second integral as x —► oo is given by

x —v-p —3/2 {an - v — p — 3/2 ^ = ^-v-p-3/2) + O^-"""1), v # ^ _ p _ l/2,

Jl/jc

= 0(x_a"_1 log x), v = an - p — 1/2. (5.16)

Therefore, for Re v < Re a„ — p + 1/2,

/5 = 0(x"v-p-1/2) + 0(x~a"~1 log x), x -» oo. (5.17)

By (5.14) it follows that the above estimate for /5 holds without any restriction on v. Thus,

referring back to (5.8) and (5.12),

= o(x~v_p~1/2) -I- 0(x~<1"~1 log x), x —> oo. (5.18)

By (5.7), E2 is of a lower order than Ex as x —> oo. Therefore, the order of the remainder E
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in (3.2) is determined by that of E t in (5.18). If Re oe„ _ t < Re v + p — 1/2 < Re a„, £ is of a

lower order than the order of the last term in each one of the finite sums in (3.2)

but in general, some of the terms in the finite sums may be of a lower order than the order of

E. For example, if for a fixed v, positive integers n and p are chosen so that Re v + p -

1/2 < Re a„_1; some of the terms in the first sum will, in general, be of a lower order than

the order of E. In such a case, the asymptotic approximation of F(x) must include only

those terms in (3.2) which are of a higher order than the order of E and the remainder

should include E and the remaining terms.

In Theorem 2, we can write

E = Ei — E2 + (— l)p h (5.19)

where

h = (xt)~v_p Jv+P(xt) S>'(r2v-1 f{t)) t2v+2"+1 dt (5.20)

and a is some fixed number which satisfies 0 < a < oo. If we assume that the integrals in the

condition (iii) converge absolutely as N —> oo, then by referring to (4.25) and the condition

(iv), the integral /6 converges absolutely and, by [15, p. 199] and the Riemann-Lebesque

lemma, /6 = o(x~y~p~1/2), x —► oo. Therefore, the behavior of E is again given by that of Ex

in (5.18).
If the integrals in the condition (iii) converge uniformly as N —» oo for all x sufficiently

large, but not necessarily absolutely, then I6 — o(x~v~p) as x-+ oo. (For a discussion of

this, see [16].)

6. Applications

Example 1. Let

g(x) = J t Jv(t) dt. (6.1)

This integral has been studied and tabulated for various values of x, A, and v (for example,

see [2, 5, 15]). Tables for large values of x when v = A = 0 have also been given by Schmidt

[9]. By a change of variable,

= xx+v+1 |g(x) = x I (xw) vJv(xu)u +v du.

We use (3.2) with a = 1 ,/(u) = ux + \ / and v real, a0 = A + v, a0 = 1, andfr0 = 0- «i can be

taken as large as we want. Referring to (2.6),

Q>\u~2"'^ u* + v) = (— l)k2k(]~ + ^ v — ̂  A j m*-"-2*-1.

\2 2 2 Jk

If p + 1/2 < A and n = 1, the condition (3.1) is not satisfied. In this case we can take n = 0

so that/„_i(t) defined by (2.3) as well as the first sum in (3.2) contains no terms. Thus, by

(3.2),

= £ 2* \ ^ J,+t+tix)

fl

(xi)~pJy+p(xt)tk dt. (6.2)
o
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We should mention here that the expansion (3.2) is valid even if we take n— 1. But since the

condition (3.1) is not satisfied, we must use (3.6) with the understanding that E2(x, v, p)

cannot be expressed as the integral (3.8). If p + 1/2 > X and rt = 1, the condition (3.1) is

satisfied; Rj(t) = 0 for 0 < t < 1 and we obtain

0(*) = 2**—rQ + iv + ̂ )/rQ + iv-^

+ X 2k* k 1(| + |V_^)Jv + *+l(X)

-2\\ + \v~\X) (xt)-"Jv+p(xtr dt. (6.3)

An upper bound for the last integral can be obtained by using integration by parts twice:

0

tx~"Jy+Jxt) dt = -x_1Jv+ +1(x) + rj(x) (6.4)f
where

|>/(x)| < x'2(2p + v + 1 — A){1 + (2p + v + 3 — A)/(l + p — A)}. (6.5)

The expansions (6.2) and (6.3) can also be obtained by using repeated integration by parts.

This technique is used in [9] and [10],

Example 2. Let

E(a, X) = J e"'txJ0(xt) dt. (6.6)

Integrals of this type appear in the study of currents in an aerial parallel to the earth and in

certain problems in acoustics [4; 6], Expansions for E(ni, 0) and E(ni, 1) for large x are given

by Pidduck [8]. We consider E(a, 1) where a is any given complex number. Let f(t) = teM

and n = p = 3. The condition (3.1) is satisfied,

f2(t) = t + at2 + (a2/2)f3

and R3 (f) = 0(t4) as t —>• 0 +. By Theorem 1, for v = 0,

E( a, 1) = x'1J1(x)e" — x~2J2(x)aex — ax"3

+ x~3J3(x)a(a — l)ea + Et — E2, (6.7)

where and E2 are defined by (3.7) and (3.8) respectively. Since

@3(t~lf2(t)) = 3a r5,

an upper bound for | E21 can be obtained by using (6.4) and (6.5); thus

E2 = 3ax~ t lJ3(xt) dt < 3 I a I x"4(l + 23/x). (6.8)

Again, since R3 (t) =f{t) -f2 (f),

t7^3(t"1i?3(f)) = -a3f4/2 + X (" - 1)(" - 3)an+1t" + 2/n!. (6.9)
n = 4
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Therefore,

Ei = 2~\a/x)3Px(x) - x~3 X (n - lXn - 3)«» + 1Pn-1(x)/n\, (6.10)
n = 4

where

Pn(x) = t"J3(xt)dt. (6.11)

To obtain an upper bound for |P„(x)|, we use (5.3) and the fact that | Jm (y) | < 1 for

0 < y < oo, m = 0, 1, When n = 1, 3, we use integration by parts and when n > 4, we

use the mean value theorem and then (5.3). Thus for n = 1, | Pn(x) \ < 4/x and for n > 3,

| P„W| < 2/x; consequently,

|£j| <2|a|3e|a|/x4 (6.12)

Finally we give an example to emphasize that the computation of good uniform error

bounds may not be easy even when such bounds exist.

Example 3. Let

9(x, a) = tK0(at)J0(xt) dt (6.13)

where K0 is the modified Bessel function of the third kind,

K0(x) = £ 2~2"(n!)~2x2"(i//(n + 1) + log 2 - log x).
n = 0

By Theorem 2, as x—> oo,

g(x, oo) ~ Et-lfA"21-2, (6.14)
k = 0

and by Theorem 1,

oo oo

g(x, 1)~ K-l)V'x-21"2 + YakKk(a)x-k~lJk+1(x). (6.15)
k=0 k=0

It is known that g(x, oo) = (x2 + a2)-1 [15, p. 410]. Therefore, if we terminate the ex-

pansion (6.14) after a finite number of terms, we can estimate the error directly. Since,

g(x, 1) = g(x, oo) - f tK0(at)J0(xt) dt, (6.16)

the corresponding error estimate in the asymptotic approximation of g(x, 1) can be ob-

tained readily from (6.16) by using integration by parts. On the other hand, even for small

values of k, 3>k(t~1 Rn(t)) becomes quite complicated and it is difficult to obtain any reason-

able estimates for the error without the aid of a computer.
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