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Université Paris 13, Sorbonne Paris Cité
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Abstract

Three-dimensional random tensor models are a natural generalization of the cel-
ebrated matrix models. The associated tensor graphs, or 3D maps, can be classified
with respect to a particular integer or half-integer, the degree of the respective
graph. In this paper we analyze the general term of the asymptotic expansion in N ,
the size of the tensor, of a particular random tensor model, the multi-orientable ten-
sor model. We perform their enumeration and we establish which are the dominant
configurations of a given degree.

Keywords: 3D maps; 4-regular maps; Eulerian orientations; schemes

1 Introduction and motivation

Random tensor models (see [11] for a recent review) generalize in dimension three (and
higher) the celebrated matrix models (see, for example, [3] for a review). Indeed, in
the same way matrix models are related to combinatorial maps [14], tensor models in
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dimension three are related to tensor graphs or 3D maps. A certain case of random
tensor models, the so-called colored tensor models, have been intensively studied in the
recent years (see [7] for a review). The graphs associated to these models are regular edge-
colored graphs. An important result is the asymptotic expansion in the limit N → ∞
(N being the size of the tensor), an expansion which was obtained in [5]. The role played
by the genus in the 2D case is played here by a distinct integer called the degree. The
dominant graphs of this asymptotic expansion are the so-called melonic graphs, which
correspond to particular triangulations of the three-dimensional sphere S3. Let us also
mention here that a universality result generalizing matrix universality was obtained in
the tensor case in [6].

A particularly interesting combinatorial approach for the study of these colored graphs
was proposed recently by Gurău and Schaeffer in [9], where they analyze in detail the
structure of colored graphs of fixed degree and perform exact and asymptotic enumeration.
This analysis relies on the reduction of colored graphs to some terminal forms, called
schemes. An important result proven in [9] is that the number of schemes of a given
degree is finite (while the number of graphs of a given degree is infinite).

Nevertheless, a certain drawback of colored tensor models is that a large number of
tensor graphs is discarded by the very definition of the model. Thus, a different type of
model was initially proposed in [13], the 3D multi-orientable (MO) tensor model. This
model is related to tensor graphs which correspond to 3D maps with a particular Eulerian
orientation. The set of MO tensor graphs contains as a strict subset the set of colored
tensor graphs (in 3D). The asymptotic expansion in the limit N → ∞ for the MO tensor
model was studied in [2], where it was shown that the same class of tensor graphs, the
melonic ones, are the dominant graphs in this limit. The sub-dominant term of this
expansion was then studied in detail in [10].

In this paper we implement a Gurău-Schaeffer analysis for the MO random tensor
model. We investigate in detail the general term of the asymptotic expansion in the limit
N → ∞. As in the colored case, this is done by defining appropriate terminal forms, the
schemes. Nevertheless, our analysis is somehow more involved from a combinatorial point
of view, since, as already mentioned above, a larger class of 3D maps has to be taken
into consideration. Also an important difference with respect to the colored model, which
only allows for integer degrees, is that the MO model allows for both half-odd-integer and
integer degrees. This leads to the the fact that the dominant schemes are different from
the ones identified in [9] for the colored model (interestingly, in both cases, dominant
schemes are naturally associated to rooted binary trees).

Let us also mention that the analysis of this paper may further allow for the imple-
mentation of the the so-called double scaling limit for the MO tensor model. This is a
particularly important mechanism for matrix models (see again [3]), making it possible
to take, in a correlated way, the double limit N → ∞ and z → zc where z is a variable
counting the number of vertices of the graph and zc is some critical point of the generating
function of schemes of a given degree.
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2 Preliminaries

In this section we recall the main definitions related to MO tensor graphs.

2.1 Multi-orientable tensor graphs

Amap (also called a fat-graph) is a graph (possibly with loops and multiple edges, possibly
disconnected) such that at each vertex v the cyclic order of the d incident half-edges (d
being the degree of v) in clockwise (cw) order around v is specified. A corner of a map is
defined as a sector between two consecutive half-edges around a vertex, so that a vertex of
degree d has d incident corners. A 4-regular map is a map where all vertices have degree
4. A multi-orientable tensor graph, shortly called MO-graph hereafter, is a 4-regular map
where each half-edge carries a sign, + or −, such that each edge has its two half-edges
of opposite signs, and the two half-edges at each corner also have opposite signs. In
addition, for convenience, the half-edges at each vertex are turned into 3 parallel strands,
see Figure 1 for an example.

+

+

-

-

Figure 1: An MO-graph, with the 3 types of strands (left strands in blue, straight strands
in green, right strands in red).

The strand in the middle is called internal, the two other ones are called external. An
external strand is called left if it is on the left side of a positive half-edge or on the right
side of a negative half-edge; an external strand is called right if it is on the right side of
a positive half-edge or on the left side of a negative half-edge. A face of an MO-graph
is a closed walk formed by a closed (cyclic) sequence of strands. External faces (faces
formed by external strands) are the classical faces of the 4-regular map, while internal
faces (faces formed by internal strands), also called straight faces thereafter, are not faces
of the 4-regular map. Note also that external faces are either made completely of left
external strands, or are made completely of right external strands; accordingly external
faces are called either left or right. We finally define a rooted MO-graph as a connected
MO-graph with a marked edge, which is convenient (as in the combinatorial study of
maps) to avoid symmetry issues (indeed, as for maps, MO graphs are unlabelled).
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2.2 The degree of an MO-graph

The degree of an MO-graph G is the quantity δ ∈ 1
2
Z+ defined by

2δ = 6c+ 3V − 2F, (1)

where c, V, F are respectively the numbers of connected components, vertices, and faces
(including internal faces) of G. For G1 and G2 two MO-graphs, denote by G1 + G2 the
MO-graph made of disconnected copies of G1 and G2. Note that the quantities c, V, F for
G result from adding the respective quantities from G1 and G2. Hence we have:

Claim 1. For two MO-graphs G1 and G2, the degree of G1+G2 is the sum of the degrees
of G1 and G2. In particular, the degree of an MO-graph is the sum of the degrees of its
connected components.

That δ ∈ 1
2
Z+ follows from the following observation [13]: G gives rise to three 4-

regular maps Gℓ,r (resp. Gℓ,s, Gr,s), called the jackets of G, which are obtained from G
by deleting straight faces (resp. deleting right faces, deleting left faces), see Figure 2 for
an example. Note that Gℓ,r is an orientable map, while Gℓ,s and Gr,s are typically only
locally orientable (in a usual ribbon representation, edges have twists). Let gℓ,r, gℓ,s and
gr,s be the respective genera of Gℓ,r, Gℓ,s, Gr,s (since Gℓ,r is orientable, gℓ,r ∈ Z+, while
gℓ,s and gr,s are in 1

2
Z+). Let Fℓ, Fr, Fs be the numbers of left faces, right faces, and

straight faces of G. Denoting by E the number of edges of G, the Euler relation gives
V −E+(Fℓ+Fr) = 2c−2gℓ,r, V −E+(Fℓ+Fs) = 2c−2gℓ,s, V −E+(Fr+Fs) = 2c−2gr,s.
Since F = Fℓ + Fr + Fs and E = 2V (because the map is 4-regular) we conclude that

δ = gℓ,r + gℓ,s + gr,s.

We call g := gℓ,r ∈ Z+ the (canonical) genus of G. An MO-graph G is called planar if
g = 0.

Figure 2: The three jackets of the MO graph in Figure 1.

2.3 MO-graphs as oriented 4-regular maps.

Seeing edges as directed from the positive to the negative half-edge, MO-graphs may be
seen as 4-regular maps where the edges are directed such that each vertex has two ingoing
and two outgoing half-edges, and the two ingoing (resp. two outgoing) half-edges are
opposite, see Figure 3 for an example. We call admissible orientations such orientations
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of 4-regular maps. This point of view of MO-graphs as oriented 4-regular maps is quite
convenient and will be adopted most of the time in the rest of the article (except when
we need to locally follow the strand structure). Note that the left faces are directed
counterclockwise (ccw), and the right faces are directed cw; and the straight faces are
closed walks that alternate in direction at each vertex they pass by.

Figure 3: The MO-graph shown in Figure 1, represented as an oriented 4-regular map.

Remark 2. Since straight faces alternate at each vertex they pass by, straight faces have
even length.

Note also that admissible orientations are completely characterized by the property
that the faces of the 4-regular map (not including the straight faces) are either cw or
ccw; this is also equivalent to coloring the faces of the map in two possible colors, say
red or blue, such that at each edge there is a blue face on one side and a red face on the
other side (this is also directly visible given the definition with strands, where right faces
are red and left faces are blue, see Figure 1). In other words, a 4-regular map can be
endowed with an admissible orientation iff the dual of every of its connected components
is a bipartite quadrangulation. If this is the case, and if there is a marked directed edge
in each connected component, then there is a unique admissible orientation that fits with
the prescribed edge directions (existence follows from the above discussion, and there is
clearly a unique way to propagate the directions starting from the marked directed edges).

Recall that, in the context of maps, a rooted map means a connected map with a
marked directed edge. The above paragraph yields the following statement, which we
think is worth mentioning even if it will not be needed to perform the combinatorial
study (scheme extraction and associated analysis) of MO-graphs:

Remark 3. Rooted MO-graphs having genus g and m vertices may be identified with
rooted 4-regular maps having genus g and m vertices, and with the property that the dual
rooted quadrangulation is bipartite (these are themselves well-known to be in bijection
with rooted connected maps having genus g and m edges). In genus 0 (planar case), all
rooted 4-regular maps have this property.

We conclude this subsection with a simple lemma relating the degree and the genus
to the number of straight faces:
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Lemma 4. Let G be a connected MO-graph. Let V be the number of vertices, Fs the
number of straight faces, and for each p > 1, F

(p)
s the number of straight faces of length

2p in G. Then the quantity Λ :=
∑

p>1(p− 2) · F (p)
s + 2 = V − 2Fs + 2 satisfies

Λ = 2δ − 4g,

where δ and g are respectively the degree and the genus of G. Hence Λ 6 2δ.

Proof. Since the number E of edges is twice the number of vertices, we have
∑

p>1 2pF
(p)
s =

E = 2V , so that
∑

p>1 pF
(p)
s = V , hence Λ = V − 2Fs + 2. Let Fℓ, Fr be the numbers

of left faces and right faces of G. We have seen in Section 2.2 that δ = gℓ,r + gℓ,s + gr,s,
where g = gℓ,r and

−V + (Fℓ + Fr) = 2− 2gℓ,r, −V + (Fℓ + Fs) = 2− 2gℓ,s, −V + (Fr + Fs) = 2− 2gr,s,

Substracting the sum of the two last equalities from the first one, we obtain:

V − 2Fs = −2 + 2gℓ,s + 2gr,s − 2gℓ,r = −2 + 2δ − 4g,

so that Λ = 2δ − 4g.

Remark 5. For g = 0, according to Remark 3, rooted MO-graphs correspond to rooted 4-
regular planar maps. Seeing such a map as the planar projection of an entangled link that
lives in the 3D space (vertices of the map correspond to crossings, where the under/over
information is omitted), Fs is classically interpreted as the number of knot-components.
Lemma 4 gives Fs = V/2 + 1 − δ. Since Fs > 1 and δ > 0, the extremal cases are: (1)
δ = 0, in which case Fs = V/2 + 1; (2) Fs = 1, in which case δ = V/2 (the MO-graph
of Figure 3, having V = 5, Fs = 2, and thus δ = 3/2, is intermediate). While the case
δ = 0 is combinatorially well-understood (as will be recalled in Section 3.1), the case
Fs = 1 is notoriously difficult: in that case, 4-regular planar maps are projected diagrams
of one-component links (i.e., knot diagrams), see [12] and references therein.

We will go back to this remark in Section 7 (on generating functions), where we will
establish, for each fixed δ ∈ 1

2
Z+, the asymptotic enumeration of rooted 4-regular planar

maps with 2n vertices and with n+ 1− δ knot-components, as n ∈ δ+Z goes to infinity.

2.4 Regular colored graphs for D = 3 as a subfamily of MO-graphs

As recalled here from [13], MO-graphs form a superfamily of the well studied regular
colored graphs of dimension 3. For D > 2 a regular colored graph of dimension D is
defined as a (D + 1)-regular bipartite graph G (vertices are either black or white) where
the edges have a color in {0, . . . , D}, such that at each vertex the D + 1 incident edges
have different colors. A rooted colored graph is a connected colored graph with a marked
edge of color 0. For 0 6 i < j 6 D, a face of type (i, j) in a colored graph of dimension
D is a cycle made of edges that alternate colors in {i, j}; let Fi,j be the number of faces
of type (i, j) in G. Let c be the number of connected components, V = 2k the number of
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vertices and F the total number of faces of G, i.e., F =
∑

06i<j6D Fi,j. The degree of G
is the integer δ given by

δ =
1

2
D(D − 1)k + c ·D − F. (2)

Note that a colored graph has a canonical realization as a map, where the edge colors
in cw (resp. ccw) order around black (resp. white) vertices are (0, 1, . . . , D). Let G be a
rooted colored graph of dimension 3 that is canonically embedded. Orienting the edges of
even color from the black to the white extremity and the edges of odd color from the white
to the black extremity, we obtain a rooted MO-graph G̃, see Figure 4 for an example.
Clearly this gives an injective mapping, since there is a unique way (when possible) to
propagate the edge colors starting from the root-edge. Hence, rooted colored graphs of
dimension 3 form a subfamily of rooted MO-graphs. In addition

Fr(G̃) = F0,1(G) + F2,3(G), Fℓ(G̃) = F1,2(G) + F0,3(G). Fs(G̃) = F0,2(G) + F1,3(G),

so that G̃ and G have the same total number of faces. Hence the degree formula for
colored graphs is consistent with the degree formula for MO-graphs.

0
1

23

0
1

23

0
1

2
3

0 0 0

2 2 2
1 1 1

3 3 3

root root

Figure 4: Left: a rooted colored graph in 3 dimensions. Right: the induced rooted
MO-graph.

3 From MO-graphs to schemes

3.1 Extracting the melon-free core of a rooted MO-graph

From now on, it is convenient to consider that a “fake” vertex of degree 2, called the
root-vertex, is inserted in the middle of the root-edge of any rooted MO-graph (so that
the root-edge is turned into two edges). By convention also, it is convenient to introduce
the following MO-graph: the cycle-graph is defined as an oriented self-loop carrying no
vertex. The cycle-graph is connected, has V = 0, F = 3 (one face in each type), hence
has degree 0. In its rooted version, the (rooted) cycle-graph is made of an oriented loop
incident to the root-vertex. In a (possibly rooted) MO-graph G, a melon is a triple edge
(e1, e2, e3) such that none of the 3 edges is the root-edge (if G is rooted), (e1, e2) form a
left face of length 2, (e2, e3) form a right face of length 2, and (e1, e3) form a straight face
of length 2, see Figure 5.
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e1

e2

e3

Figure 5: Left: a melon. Right: a triple edge that does not form a melon.

Define the removal of a melon as the operation below (where possibly u = v, and
possibly u or v might be the root if the MO-graph is rooted):

⇒
u v

e

u v

The reverse operation (where e is allowed to be a loop, and is allowed to be incident to
the root-vertex if the MO-graph is rooted) is called the insertion of a melon at an edge.

A rooted MO-graph G is called melonic if it can be reduced to the rooted cycle-graph
by successive removals of melons, see Figure 6 for an example. An important remark is
that, for a rooted melonic MO-graph, any greedy sequence of melon removals terminates
at the cycle-graph.

Figure 6: A rooted melonic graph is one that can be built from the cycle-graph, by
successive insertions of melons at edges.

It is known [2] that rooted MO-graphs of degree 0 are exactly the rooted melonic
graphs. For G a (possibly rooted) MO-graph, e an edge of G (possibly a loop, possibly in-
cident to the root-vertex), and G′ a rooted MO-graph, define the operation of substituting
e by G′ in G as in the following generic drawing:

G
e

G′ ⇒
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We have the following bijective statement, which is the counterpart for MO-graphs
of [9, Theo. 4]:

Proposition 6. Each rooted MO-graph G is uniquely obtained as a rooted melon-free
MO-graph H —called the melon-free core of G— where each edge e is substituted by a
rooted melonic MO-graph (possibly the rooted cycle-graph, in which case e is unchanged).
In addition, the degree of G equals the degree of H.

Proof. Let H be the rooted melon-free graph obtained from G after performing a maximal
greedy sequence of melon removals. Conversely, G is obtained from H where a sequence
of melon insertions is performed. Hence G is equal to H where each edge e is substituted
by a rooted melonic graph Ge. This gives the existence of a melon-free core. Uniqueness
of the melon-free core is given by the observation that any other maximal greedy sequence
of melon removals starting from G has to progressively shell the melonic components Ge,
hence terminates at H. Finally, it is clear that G and H have the same degree, since a
melon insertion preserves the degree (it preserves the number of connected components,
increases the number of vertices by 2, and increases the number of faces by 3).

3.2 Extracting the scheme of a rooted melon-free MO-graph

In this section we go a step further and define the process of extracting a scheme from a
rooted melon-free MO-graph.

Define a 2-dipole, shortly a dipole, in a (possibly rooted) MO-graph G as a face of
length 2 incident to two distinct vertices, and not passing by the root if G is rooted.
Accordingly, one has three distinct types of dipoles: L, R, or S, see Figure 7 (left part).
As the figure shows, each dipole has two exterior half-edges on one side and two exterior
half-edges on the other side. Notice also that a double edge does not necessarily delimit
a dipole, as shown in Figure 7 (right part).

L R S not 2-dipoles

Figure 7: Left: the three types of dipoles. Right: two examples of double edges that do
not form a dipole.

Remark 7. A face of length 2 is actually always incident to two distinct vertices, except
in the MO-graphs that are made of one vertex and two loops. These two graphs, shown
in Figure 8, are called the clockwise and the counterclockwise infinity graph, respectively.
They have no dipole but have two faces of length 2.
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Figure 8: Left: the clockwise infinity graph. Right: the counterclockwise infinity graph.
Both have two faces of length 2, two faces of length 1, and have degree 1/2.

In an MO-graph G, define a chain as a sequence of dipoles d1 . . . , dp (not passing by
the root if G is rooted) such that for each 1 6 i < p, di and di+1 are connected by two
edges involving two half-edges on the same side of di and two half-edges on the same side
of di+1, see Figure 9. A chain is called unbroken if all the p dipoles are of the same type.

Figure 9: Left: a chain of 4 dipoles. Right: a sequence of 3 dipoles that do not form
a chain (the 3rd element, a dipole of type S, is connected to the 2nd element by two
half-edges on opposite sides).

A broken chain is a chain which is not unbroken. A proper chain is a chain of at least
two dipoles. A proper chain is called maximal if it cannot be extended into a larger proper
chain. By very similar arguments as in Lemma 8 of [9] one obtains the following result:

Claim 8. In a rooted MO-graph, any two maximal proper chains are vertex-disjoint.

Let G be a rooted melon-free MO-graph. The scheme of G is the graph obtained by
simultaneously replacing any maximal proper chain of G by a so-called chain-vertex, as
shown in Figure 11, see also Figure 10 for an example.

⇒
L

B

Se

Figure 10: Left: a rooted melon-free MO-graph. Right: the associated scheme.
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⇒

⇒

⇒

⇒

L

R

So

Se

⇒ B

Figure 11: Top-part: examples of the 4 types of unbroken proper chains; Bottom-part:
example of a broken proper chain. In each case, the graphical symbol for the chain-vertex
(in the associated scheme) is shown.

Since a scheme is not an MO-graph (due to the presence of chain-vertices), we need to
extend the definition and main properties seen so far in order to allow for chain-vertices.
In the following, an MO-graph with chain-vertices is an oriented 4-regular map with two
types of vertices: standard vertices and chain-vertices (each chain-vertex being labelled
by either {L,R, Se, So, B}), so as to satisfy the local rules of Figure 12.

Figure 12: The two types of vertices (standard vertex or chain-vertex, which can be
labelled by either {L,R, Se, So, B}) in an MO-graph with chain-vertices.

Such a graph is possibly rooted, i.e., has a fake-vertex of degree 2 in the middle of some
edge. Note that the class of (rooted) MO-graph with chain-vertices is larger than the class
of schemes (we will see below which rooted MO-graphs with chain-vertices are schemes).
In order to compute the number of faces of an MO-graph G̃ with chain-vertices, we need
to specify locally the strand structure at every type of chain-vertex; as for MO-graphs,
we imagine here that each edge is turned into 3 parallel strands and we have to specify
at each chain-vertex how the incident strands go through the vertex. The specification
is given by Figure 13; in the case of an unbroken chain-vertex the two strands that go
through the chain-vertex are called the crossing strands at that chain-vertex. Note that
this specification gives the natural strand structure to expect whenever a chain-vertex w
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is to be consistently substituted by a chain c (for instance a chain-vertex of type L is to
be susbtituted by an unbroken chain of dipoles of type L), that is, the strand structure
of w reflects how the strands arriving at c are routed (some bouncing back, some going
through c).

⇔L

R

So

Se

B

⇔

⇔

⇔

⇔

Figure 13: The configurations of the strands for each type of chain-vertex.

Then, as for classical MO-graphs, a face is a closed walk formed from strands. The
degree δ of G̃ is defined as

2δ = 6c+ 3V − 2F + 4U + 6B, (3)

where c, V , F are as usual the numbers of connected components, standard vertices, and
faces, and where U and B stand respectively for the numbers of unbroken chain-vertices
and broken chain-vertices.

An edge e of G̃ is said to be adjacent to a chain-vertex if the two half-edges of e are the
two half-edges on the same side of a chain-vertex of G̃. Then G̃ is said to be melon-free if
it has no melon nor an edge adjacent to a chain-vertex. It is easy to see that an MO-graph
is melon-free iff its scheme is melon-free.

In a melon-free (possibly rooted) MO-graph G̃ with chain-vertices, define a chain as
a sequence d1 . . . , dp of elements that are either dipoles (not passing by the root if G̃ is
rooted) or chain-vertices, such that for each 1 6 i < p, di and di+1 are connected by two
edges involving two half-edges on the same side of di and two half-edges on the same side
of di+1, see Figure 14. A proper chain is a chain of at least two elements.

Now define a reduced scheme as a rooted melon-free MO-graph with chain-vertices
and with no proper chain. By construction, the scheme of a rooted melon-free MO-graph
(with no chain-vertices) is a reduced scheme.
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SoBSe

Figure 14: A chain of five elements in an MO-graph with chain-vertices: it consists of two
dipoles and three chain-vertices.

Claim 8 then easily yields the following bijective statement:

Proposition 9. Every rooted melon-free MO-graph is uniquely obtained as a reduced
scheme where each chain-vertex is consistently substituted by a chain of at least two dipoles
(consistent means that if the chain-vertex is of type L, then the substituted chain is an
unbroken chain of L-dipoles, etc).

The following result ensures that the degree definition for MO-graphs with chain-
vertices is consistent with the replacement of chains by chain-vertices:

Lemma 10. Let G be an MO-graph with chain-vertices. And let G′ be an MO-graph with
chain-vertices obtained from G by consistently substituting a chain-vertex by a chain of
dipoles. Then the degrees of G and G′ are the same.

Proof. Let m be the chain-vertex where the substitution takes place, and let k be the
number of dipoles in the substituted chain. Denote by δ, c, V, F, U,B the parameters
(degree, numbers of connected components, standard vertices, faces, unbroken chain-
vertices, broken chain-vertices) for G, and by δ′, c′, V ′, F ′, U ′, B′ the parameters for G′.
Clearly c′ = c, V ′ = V + 2k. If m is unbroken, then U ′ = U − 1 and B′ = B. Say m is of
type L (the arguments for types R, Se, So are similar). Then the strand structure remains
the same, except for k new faces of type L (of degree 2), k − 1 new faces of type R (of
degree 4) and k− 1 new faces of type S (of degree 4) inside the substituted chain. Hence
F ′ = F +3k− 2. Consequently, δ′ = δ. If m is broken, then U ′ = U and B′ = B− 1. The
strand structure remains the same, except for k − 1 new faces of each type L,R, S inside
the substituted chain (an easy case inspection ensures that substituting a chain of two
dipoles of different types always bring 3 new faces, one of each type, and any additional
dipole brings 3 new faces, one of each type). Hence F ′ = F + 3k − 3. Consequently,
δ′ = δ.

Corollary 3.1. A rooted melon-free MO-graph has the same degree as its scheme.

4 Finiteness of the set of reduced schemes at fixed degree

The main result in this section is the following:

Proposition 11. For each δ ∈ 1
2
Z+, the set of reduced schemes of degree δ is finite.
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Similarly as in [9], this result will be obtained from two successive lemmas, proved
respectively in Section 4.2 and Section 4.3:

Lemma 12. For each reduced scheme of degree δ, the sum N(G) of the numbers of dipoles
and chain-vertices satisfies N(G) 6 7δ − 1.

Lemma 13. For k > 1 and δ ∈ 1
2
Z+, there is a constant nk,δ (depending only on k and

δ) such that any connected unrooted MO-graph (without chain-vertices) of degree δ with
at most k dipoles has at most nk,δ vertices.

Let us show how Lemmas 12 and 13 imply Proposition 11. Let S be a reduced scheme
of degree δ, and let G(S) be the rooted MO-graph with no chain-vertices obtained by
substituting each chain-vertex of S by a chain of dipoles of length 2 or 3 as shown in
Figure 15. As already seen in Lemma 10, such substitutions preserve the degree, and the
mapping S → G(S) is injective. In addition, the number of dipoles of G(S) is at most
three times the total number of dipoles and chain-vertices of S, hence G(S) has at most
3 · (7δ − 1) dipoles according to Lemma 12.

⇒⇒

⇒

⇒LR

So

Se

⇒B

Figure 15: The drawings show a choice of canonical substitution of chain-vertices by
proper chains that preserves the strand structure (hence the degree) and yields an injective
mapping from MO-graphs with chain-vertices to MO-graphs without chain-vertices.

Unrooting G(S) might increase the number of dipoles by up to 2 (recall that dipoles
are not counted in rooted MO-graphs if they pass by the root, and at most 2 dipoles can
pass by the root, the case of 2 additional dipoles happening when the root-edge belongs
to a melon). Hence, writing k := 3 · (7δ − 1) + 3, Lemma 13 ensures that G(S) has at
most nk,δ vertices. Since there is an injective mapping from reduced schemes of degree
δ to rooted MO-graphs of size bounded by the fixed quantity nk,δ, we conclude that the
number of reduced schemes of degree δ is finite.

We finally state the following “loop-removal” lemma, which will be useful at some
points in the following:

Lemma 14. Let G be an MO-graph of degree δ ∈ 1
2
Z+, let ℓ be a loop of G, and let G′

be the MO-graph obtained from G by erasing the loop and its incident vertex, as shown in
Figure 16.

Then G′ has degree δ − 1/2. Hence G has at most 2δ loops.
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⇒

Figure 16: Removing a loop in an MO-graph.

Proof. Clearly G′ has the same number of connected components as G, has one vertex
less, and has one face less (which has length 1).

4.1 Analysis of the removal of dipoles and of chain-vertices

We analyze here how the degree of an MO-graph with chain-vertices (not necessarily a
reduced scheme, possibly with melons) evolves when removing a chain-vertex. We then
have a similar analysis for the removal of a dipole.

Let G be an MO-graph with chain-vertices, and let m be a chain-vertex of G. The
removal of m consists of the following operations (see the left part of Figure 17):

(i) delete m from G;

(ii) on each side of m, connect together the two detached legs (without creating a new
vertex).

⇒ ⇒ ⇒⇒

Figure 17: The first drawing shows the removal of a chain-vertex (whatever its type). The
next drawings show the removal of a dipole in each of the three types (L,R,S).

Denote by G′ the resulting graph. The chain-vertexm is said to be non-separating if G′

has the same number of connected components as G, and separating otherwise (in which
case G′ has one more connected component). In the separating case, it might be that one
of the two resulting connected components is the cycle-graph (this happens if two half-
edges on one side of m belong to the same edge). Let δ, c, V, F, U,B be the parameters for
G (degree, numbers of connected components, standard vertices, faces, unbroken chain-
vertices, broken chain-vertices), and let δ′, V ′, F ′, U ′, B′ be the parameters for G′.

Assume first that m is a broken chain-vertex. We clearly have V ′ = V , F ′ = F (the
strand structure is the same before and after removal), U ′ = U , B′ = B − 1 and c′ = c
(resp. c′ = c + 1) if m is non-separating (resp. separating). Hence, if m is separating,
then 2δ′ = 2δ + 6− 6 = 2δ, so that δ′ = δ; and if m is non-separating, then 2δ′ = 2δ − 6,
so that δ′ = δ − 3.

Assume now that m is an unbroken chain-vertex. We clearly have V ′ = V , U ′ = U−1,
B′ = B, and c′ = c (resp. c′ = c + 1) if m is non-separating (resp. separating). If the
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two crossing strands at m belong to a same face, then that face splits into two faces when
removing m, hence F ′ = F + 1; as opposed to that, if the two crossing strands belong
to different faces, then these two faces are merged when removing m, hence F ′ = F − 1.
Moreover, the two crossing strands are easily seen to always be in the same face if m is
separating. We conclude that, if m is separating, then 2δ′ = 2δ + 6− 2− 4 = 2δ, so that
δ′ = δ; and if m is non-separating then 2δ′ = 2δ − 2σ − 4, where σ ∈ {−1,+1}, hence
either δ′ = δ − 1 or δ′ = δ − 3.

We now consider the operation of removing a dipole d from G, removal which consists
of the following operations (the 3 cases are shown in the right-part of Figure 17):

(i) delete the two vertices and the two edges of d from G;

(ii) on each side of d, connect together the two detached legs (without creating a new
vertex).

Let G′ be the resulting graph. Again, d is called non-separating if G′ has as many
connected components as G, and separating otherwise. Observe that the operation of
removing d is the same as substituting d by an unbroken chain-vertex m (of the same
type as d, so that the substitution does not change the degree according to Lemma 10)
and then removing m. From the discussion on the degree variation when removing m,
we conclude that, if d is separating, then the degree is the same in G′ as in G, and if d
is non-separating then the degree of G′ equals the degree of G minus a quantity that is
either 1 or 3.

This analysis thus leads to the following statement:

Lemma 15. The degree is unchanged when removing a separating chain-vertex or a sep-
arating dipole (hence, by Claim 1, the degree is distributed among the resulting compo-
nents). The degree decreases by 3 when removing a non-separating broken chain-vertex.
The degree decreases by 1 or 3 when removing a non-separating unbroken chain-vertex or
a non-separating dipole.

Corollary 4.1. An MO-graph with chain-vertices and with degree δ ∈ {0, 1/2} has no
non-separating dipole nor non-separating chain-vertex.

4.2 Proof of Lemma 12

We show Lemma 12, i.e., that for each reduced scheme G of degree δ, the sum N(G) of
the numbers of dipoles and chain-vertices in G satisfies N(G) 6 7δ − 1.

As a first step, starting from G, as long as there is at least one non-separating dipole
or one non-separating chain-vertex, delete it (as in Figure 17) and color the two resulting
edges. Let G′ be the resulting graph with chain-vertices, and let q be the number of
removals from G to G′. According to Lemma 15, each non-separating removal decreases
the degree by at least 1, hence q 6 δ, G′ has degree at most δ − q, and G′ has at most
2q blue edges. During the sequence of steps from G to G′, denote by N the current sum
of the numbers of chain-vertices and uncolored dipoles (dipoles with no colored edge). It
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⇒

Figure 18: In the worst case, removing a dipole might decrease by 3 the total number of
(uncolored) dipoles.

is easy to see that each removal decreases N by at most 3 (the worst case is shown in
Figure 18).

Hence, if we denote by N(G′) the value of N for G′, we have N(G′) > N(G) − 3q >

N(G)− 3δ.
Call a connection a chain-vertex or uncolored dipole of G′. Since all dipoles and chain-

vertices of G′ are separating, G′ can be seen as a tree T of “components” (see the last row
of Figure 19 for an example), where the edges of T correspond to the N(G′) connections of
G′, and the nodes of T correspond to the connected components of G′ left after removing
the connections (note that some of these connected components might be cycle-graphs,
including the component carrying the root).

For a component C of T , the adjacency order of C is the number of adjacent com-
ponents in T . An edge e of C resulting from a (removed) connection is called a marked
edge. As shown in Figure 20, every marked edge e is involved in t > 1 connections (hence
the adjacency order of a component is at least its number of marked edges), and results
from the merger of t+1 edges of G′; e is called colored if at least one of these t+1 edges
is colored.

A component C is called colored if if it bears either a colored edge of G′ left untouched
by removals, or a colored marked edge; and it is called uncolored otherwise. Thus, there
are at most 2q colored components in G′.

Similarly as in [9], an important remark is the following:

Claim 16. An uncolored component C of T of degree 0 and not containing the root has
adjacency order at least 3.

Proof. The first unrooted MO-graphs of degree 0 are the cycle-graph (no vertex) and the
so-called “quadruple-edge graph” (the MO-graph whose underlying map is of genus 0 with
two vertices connected by 4 edges). And any other MO-graph of degree 0 can be obtained
from the quadruple-edge graph by successive melon insertions. This easily implies that,
if C is not the cycle-graph and has adjacency order smaller than 3 (hence has less than
3 marked edges), then C has a dipole not passing by any marked edge, a contradiction.
If C is the cycle-graph and has adjacency order 1, then it clearly yields a melon in G, a
contradiction. Finally, if C is the cycle-graph and has adjacency order 2, then the two
edges of T at C —each of which either corresponds to a separating dipole or to a chain-
vertex of G— together form a proper chain (of two elements) of G, a contradiction.

Denote by n0 the number of uncolored components in G′ of degree 0 and not containing
the root, n′

0 the number of other components of degree 0 (colored or containing the root),
and n+ the number of components of positive degree. The degrees of the components
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Figure 19: The first drawing shows a reduced scheme G. Then, iteratively, one removes
at each step a non-separating dipole or a non-separating chain-vertex (at each step the
non-separating dipole or chain-vertex to be removed next is surrounded). Let G′ be the
MO-graph with chain-vertices thus obtained (where colored edges are drawn bolder). As
the last two drawings show, the removal of uncolored dipoles and chain-vertices (which
are all separating) of G′ yields a tree of components (a tree edge is labelled cx if it comes
from a chain-vertex of type x and is labelled dx if it comes from an uncolored dipole of
type x).

add up to the degree of G′ (recall that, for separating removals, the degree is distributed
among the components), and each component of positive degree has degree at least 1/2,
hence n+/2 6 δ − q. The components counted by n0 have at least 3 neighbours in T ,
hence 3n0 + n′

0 + n+ 6 2N(G′). Since T has at most 2q colored components, we have
n′
0 6 2q + 1 (the +1 accounting for the component containing the root). And since T is

a tree, we have
N(G′) = n0 + n′

0 + n+ − 1,

hence, if we eliminate n0 using 3n0 + n′
0 + n+ 6 2N(G′), we obtain

N(G′) 6
2

3
(N(G′) + n′

0 + n+)− 1 6
2

3
(N(G′) + 2q + 1 + 2δ − 2q)− 1,
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Be1

e2

e3

e4 L

C⇒ e

Figure 20: For each marked edge e of a component C of G′ such that e is involved in
t > 1 connections, e results from the merger of t+ 1 edges of G′ (t = 3 in the example, e
results from the merger of {e1, e2, e3, e4}).

so that N(G′) 6 4δ − 1. Since N(G) 6 N(G′) + 3δ, we conclude that N(G) 6 7δ − 1.

4.3 Proof of Lemma 13

We prove here Lemma 13, i.e., that for any δ ∈ 1
2
Z+ and k > 1, there exists some constant

nk,δ such that any connected unrooted MO-graph (with no chain-vertices) of degree δ with
at most k dipoles has at most nk,δ vertices, so that there are finitely many MO-graphs of
degree δ with k dipoles. The bound nk,δ we obtain is linear in k and δ, with quite large
multiplicative constants (we have not pushed to improve the bound, also to avoid making
the proof too complicated).

The proof is a bit more technical than the analogous statement for colored graphs
in [9], because in the MO model, only straight faces have even length, while left and right
faces are allowed to have odd lengths. Precisely, our proof strategy is to show in a series of
claims that some properties (e.g. being incident to a dipole) are satisfied only by a limited
(bounded by a quantity depending only on k and δ) number of vertices. Hence if G could
be arbitrarily large, it would have vertices not safisfying these properties. As we will see,
this would yield the contradiction that G has to be reduced to a certain MO-graph with
6 vertices.

In all the proof, G denotes a connected unrooted MO graph with no chain-vertices,
of degree δ and with at most k dipoles; V,E, F are respectively the numbers of vertices,
edges, and faces of G. Moreover, for p > 1, F

(p)
s is the number of straight faces of length

2p. According to Remark 7, the only MO-graphs where the set of dipoles is not equal to
the set of faces of length 2 are the two infinity graphs (both having one vertex). Hence

we can assume that G is not equal to these two graphs. Thus F
(1)
s 6 k, which gives:

Claim 17. There are at most 2k vertices of G that are incident to a dipole.
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Also, Lemma 4 directly implies

∑

p>3

(p− 2)F (p)
s 6 2δ − 2 + k.

Since p− 2 > p/3 for p > 3, the total length L =
∑

p>3 2pF
(p)
s of straight faces of length

larger than 4 is bounded by 12δ − 12 + 6k, so that we obtain:

Claim 18. There are at most 12δ − 12 + 6k vertices of G incident to a straight face of
length larger than 4.

A cycle is called self-intersecting if it passes twice by a same vertex.

Claim 19. There are at most 2δ self-intersecting straight faces of length 4 in G. Hence
there are at most 6δ vertices incident to such faces.

Proof. As we see in Figure 21, a self-intersecting straight face of length 4 must contain
a loop, which yields the first statement according to Lemma 14 (there are at most 2δ
loops). The second statement just follows from the fact that these cycles (due to the
self-intersection) have at most 3 vertices.

u vru vr

Figure 21: On the left the unique map configuration for a self-intersecting straight face of
length 4 that does not create a loop. On the right we see that it is not possible to orient
the edges so as to satisfy the local condition at the vertices u and v if the local condition
is satisfied at r.

Given a non-self-intersecting cycle C of G, a chordal path for C is a path that starts
from C, ends at C (possibly at the same vertex), and is outside of C inbetween. In the
context of maps, we call a chordal path faulty if it starts on one side of C and ends on the
other side of C. A cycle C is called faulty if it has a faulty chordal path, and, for k > 1,
is called k-faulty if it has a chordal path of length at most k. For C a faulty cycle, we
denote by Ĉ the union of C and of a (canonically chosen) shortest possible faulty chordal

path of C; Ĉ is called the faulty extension of C.

Claim 20. Let d := 96768. There are at most 14dδ 4-faulty cycles of length 4 in G.
Hence there are at most 56dδ vertices incident to such cycles.

Proof. For C a faulty cycle, Ĉ is clearly a topological minor of G of genus 1. Hence, if
we have s > 1 vertex-disjoint faulty extensions of faulty cycles, these yield a topological
minor of genus s. Since the genus of G is bounded by 2δ, we conclude that there can
not be more than 2δ vertex-disjoint faulty extensions of faulty cycles. Let E be the set
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of 4-faulty cycles of length 4 of G, and let Ê := {Ĉ, C ∈ E} (where we distinguish the

cycle from the faulty path in every faulty extension, so that |E| = |Ê |). Any Ĉ ∈ Ê has
at most 7 vertices, and an easy calculation ensures that any given vertex v of G belongs
to at most d := 96768 elements of Ê (this can probably be improved, but we just aim at

a certain fixed bound). Hence Ĉ can intersect at most 7d other elements of Ê . We easily

conclude that |E| = |Ê | 6 14dδ (otherwise one could construct incrementally a subset of

2δ+1 vertex-disjoint elements of Ê).

Let Vexc be the set of vertices of G that are either incident to a dipole, or incident to
a straight face of length larger than 4, or incident to a self-intersecting straight face of
length 4, or incident to a 4-faulty cycle of length 4. The four claims above give

|Vexc| 6 (18 + 56d)δ + 8k − 12 =: h. (4)

And let V0 be the set of vertices in Vexc or adjacent to a vertex in Vexc. Since G is
4-regular, |V0| 6 5h. We are now going to show that if G has a vertex v not in V0, then
G is actually reduced to having only 6 vertices. Since v /∈ Vexc, it is incident to two
non-intersecting straight faces C1 and C2, both of length 4. Since C1 is not faulty, it has
to meet C2 at a vertex different from v (otherwise C2 would be a faulty chordal path for
C1). Let v̂ be an intersection of C1 and C2 different from v. For i ∈ {1, 2}, let di be the
distance of v̂ from v on Ci (note that di ∈ {1, 2}). If d1 = d2 = 1 then either the two
corresponding edges e1, e2 of C1 and C2 form an external dipole, or otherwise e2 is a faulty
chordal edge for C1. Both cases are excluded since v /∈ Vexc, hence d1 = d2 = 2. We write
the cycle C1 as (v, w1, v̂, z1) and the cycle C2 as (v, w2, v̂, z2), see Figure 22.

C1

C2

v v̂

w1

z1

w2

z2

C(w1)

Figure 22: The situation in the proof of Lemma 13

Let C(w1) be the straight face (non-intersecting and of length 4, since w1 /∈ Vexc)
passing by w1 and different from C1. Since w1 /∈ Vexc, C(w1) is not faulty, hence it
intersects the 4-cycle (v, w1, v̂, w2) at a vertex different from w1; this other intersection
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must be at w2 because v and v̂ have their 4 incident edges already in C1 ∪ C2. Similarly
C(w1) intersects the 4-cycle (v, w1, v̂, z2) at a vertex different from w1, and this other
intersection must be z2; and C(w1) intersects the 4-cycle C1 at a vertex different from w1,
and this other intersection must be z1, see Figure 22. Hence G′ = C1 ∪C2 ∪C(w1) forms
a connected induced subgraph that saturates all its vertices (each of the 6 vertices of G′

is incident to 4 edges of G′). Hence G′ = G. In other words, if G has a vertex outside of
V0, then G has 6 vertices.

We can now easily conclude the proof. Define nk,δ := max(6, 5h), and assume G has
more than nk,δ vertices. Since |V0| 6 5h, G has a vertex not in V0, which implies that G
is reduced to a graph with 6 vertices, giving a contradiction.

5 MO-graphs of degree 1/2

In this section we recover the results of [10] about the structure of MO-graphs of degree
1/2, using ingredients from the preceding sections.

Proposition 21. The only unrooted connected melon-free MO-graphs of degree 1/2 are
the cw and the ccw infinity graph.

Proof. Assume there is a connected melon-free MO-graph G of degree 1/2 different from
the cw or the ccw infinity graph. According to Remark 7 the set of dipoles of G equals the
set of its faces of length 2. Note that in degree 1/2, the genus g has to be 0 (since g is a

nonnegative integer bounded by δ). Hence Lemma 4 gives −F
(1)
s +

∑
p>3(p−2)F

(p)
s = −1,

so that F
(1)
s > 1, i.e., G has a dipole d (of type S). Since δ < 1, d has to be separating

according to Corollary 4.1. Let G1 and G2 be the connected components resulting from
the removal of d. Since d is separating, the degrees of G1 and G2 add up to 1/2, hence
one has degree 0 and the other has degree 1/2. By convention let G1 be the one of degree
0, considered as rooted at the edge resulting from the deletion of d. There are two cases:
(i) if G1 is the cycle-graph, then d is part of a melon of G, giving a contradiction; (ii) if
G1 is not the cycle-graph, then it has a melon (since rooted MO-graphs of degree 0 are
melonic), giving again a contradiction.

This yields the following bijective result, where we recover [10, Theo. 3.1]:

Corollary 5.1. Every unrooted connected MO-graph of degree 1/2 is uniquely obtained
from the cw or the ccw infinity graph where each of the two edges is substituted by a
rooted melonic graph.

Proof. All the arguments in the proof of Proposition 6 (extraction of a unique melon-
free core) can be directly recycled to give the following statement: “for δ ∈ 1

2
Z
∗
+, every

unrooted connected MO-graph of degree δ is uniquely obtained as an unrooted connected
melon-free MO-graph of degree δ where each edge is substituted by a rooted melonic
graph”, which —together with Proposition 21— yields the result.

Another direct consequence of Proposition 21 is the following statement that will prove
useful in the next section:
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Corollary 5.2. Every rooted connected MO-graph of degree 1/2 different from the (rooted)
cw or ccw infinity graph has a dipole.

Proof. According to Proposition 21, the underlying unrooted MO-graph (obtained by
erasing the fake-vertex of degree 2) has a melon, hence there is a dipole not including the
root edge; by definition this dipole is also a dipole of the rooted MO-graph (recall that
dipoles of rooted MO-graphs are required not to pass by the root).

6 Dominant schemes

A reduced scheme S of degree δ ∈ 1
2
Z+ is called dominant if it maximizes (over reduced

schemes of degree δ) the number b of broken chain-vertices (as we will see in Section 7, b
determines the singularity order of the generating function of rooted MO-graphs of degree
δ and reduced scheme S, the larger b the larger the singularity order). In this section we
show that, in each degree δ, the maximal number of broken chain-vertices is 4δ − 1, and
we precisely determine what are the dominant schemes.

Let S be a reduced scheme of degree δ, and let b be the number of broken chain-vertices
of S. We now determine a bound for b in terms of δ. The discussion is very similar to the
one of Section 4.2, with the difference that only the broken chain-vertices are removed.
First, as long as there is a non-separating broken chain-vertex, we remove it (as shown
in Figure 17) and color the two resulting edges. Let q be the number of such removals
until all broken chain-vertices are separating; at this stage, denote by S ′ the resulting
MO-graph with chain-vertices, which has degree δ′ = δ − 3q according to Lemma 15,
and has at most 2q colored edges. Then S ′ can be seen as a tree T of components that
are obtained by removing all separating broken chain-vertices. It is also convenient to
consider the tree T̂ of components that are obtained by removing all separating chain-
vertices and all separating uncolored dipoles —dipoles with no colored edge— of S ′ (in T
and T̂ some components of degree 0 might be cycle-graphs). Note that T̂ is a refinement
of T , i.e., each component C of T “occupies” a subtree TC of T̂ . For a component C of T
(resp. of T̂ ), the adjacency order of C is defined as the number of adjacent components
in T (resp. in T̂ ). An edge e of C resulting from a separating removal for T (resp. T̂ ) is
called a marked edge. Such an edge e results from the merger of edges of S ′. Then e is
called colored if at least one of these edges is a colored edge of S ′. And a component C
of T (resp. of T̂ ) is called uncolored if it bears no colored edge (marked or unmarked).
Since S ′ has at most 2q colored edges, T (resp. T̂ ) has at most 2q colored components.

Consider an uncolored component C of T of degree 0 and not containing the root. Note
that C has no non-separating dipoles nor non-separating chain-vertices, by Corollary 4.1.
In addition, by the arguments of Claim 16, any component of TC must have adjacency
order at least 3, otherwise it would yield a melon or a proper chain in S. This clearly
implies that C can not have adjacency order smaller than 3, and if it has adjacency order
3, then TC consists of a unique component.

Let n0 be the number of components of T of degree 0, uncolored, and not containing
the root. Let n′

0 be the number of other components of degree 0. Let n+ be the number
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of components of positive degree. Moreover, let p be the number of edges of T , which is
also the number of broken chain-vertices of S ′, so that b = q + p.

The degrees of the components add up to the degree δ′ = δ− 3q of G′ (recall that, for
separating removals, the degree is distributed among the components), and each compo-
nent of positive degree has degree at least 1/2, hence

n+/2 6 δ − 3q.

The components counted by n0 have at least 3 neighbours in T , hence

3n0 + n′

0 + n+ 6 2p.

The graph S ′ has at most 2q blue edges, hence

n′

0 6 2q + 1,

where the +1 accounts for the component containing the root. Since T is a tree, we have

p = n0 + n′

0 + n+ − 1,

hence, eliminating n0 using 3n0 + n′
0 + n+ 6 2p, we obtain

p 6
2

3
(p+ n′

0 + n+)− 1 6
2

3
(p+ 2q + 1 + 2δ − 6q)− 1,

so that p 6 4δ − 8q − 1. Hence b = p+ q 6 4δ − 7q − 1 6 4δ − 1.
If a scheme S is such that b reaches the upper bound 4δ − 1, then it implies that all

the above inequalities are tight, hence q = 0 (all broken chain-vertices are separating),
n′
0 = 1 (the component containing the root has degree 0), 3n0 + n′

0 + n+ = 2p (all the
components of positive degree and the component containing the root are leaves of T ,
and the other components of degree 0 have 3 neighbours in T ), and n+ = 2δ (all positive
degree components have degree 1/2).

We take a closer look at the components of degree 0. Let C be such a component
not containing the root; note that C has no non-separating dipole nor non-separating
chain-vertex according to Corollary 4.1. Since C has adjacency order 3 and is uncolored
(because q = 0), as already mentioned TC must have a single component, hence C has
no chain-vertex and any dipole of C must pass by a marked edge of C. Recall that an
unrooted MO-graph of degree 0 is either the cycle-graph, or can be obtained from the
“quadruple-edge” MO-graph (two vertices connected by 4 edges) by successive insertions
of melons. Note that, as soon as at least one melon is inserted in the quadruple-edge
MO-graph, there are two vertex-disjoint melons. Hence, an MO-graph of degree 0 with at
most 3 marked edges and strictly more than 2 vertices has a dipole that avoids the marked
edges. It follows that C has to be either the cycle-graph or the quadruple-edge graph.
Now, if C is the component containing the root, since it has only one adjacent component
C ′, it has to be the (rooted) cycle-graph. Indeed, the case of a rooted quadruple-edge
MO-graph is excluded; in that case, among the 4 edges of C, one carries the root, one
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is marked, and the two other ones form a dipole that, together with the chain-vertex
connecting C to C ′, would form a proper chain of S, a contradiction.

We now take a closer look at components of positive degrees (of degree 1/2). Let C
be such a component (which has a unique marked edge since it is at a non-root leaf of T ).
Since C has degree 1/2 it can not have non-separating chain-vertices or non-separating
unbroken chain-vertices, according to Corollary 4.1. And by the arguments of Claim 16,
components of degree 0 of TC must have adjacency order at least 3. Since the degrees
of components in TC add up to 1/2, this easily implies that the unique possibility is TC

having a single node. Hence C has no dipole avoiding the marked edge nor chain-vertices,
so that C must be the cw or the ccw infinity graph, according to Corollary 5.2.

Proposition 22. For δ ∈ 1
2
Z
∗
+, the dominant schemes of degree δ arise from rooted binary

trees (see Figure 23 for an example) with 2δ + 1 leaves, 2δ − 1 inner nodes, and 4δ − 1
edges, where the root-leaf is occupied by the rooted cycle-graph, the 2δ other leaves are
occupied by (cw or ccw) infinity graphs, the 2δ − 1 inner nodes are occupied either by the
cycle-graph or by the quadruple-edge graph, and the 4δ−1 edges are occupied by separating
broken chain-vertices.

B

B B

BB

B

B

(a) (b)

root

Figure 23: (a) A rooted binary tree β with 5 leaves. (b) One of the 210 dominant schemes
of degree 2 arising from β.

Each rooted binary tree with 2δ + 1 leaves yields 26δ−2 dominant schemes.

Proof. In the analysis above we have seen that b 6 4δ − 1 and that any scheme with
b = 4δ−1 must be of the stated form. Conversely any scheme of the stated form is a valid
scheme (no melon nor proper chain) of degree δ with b = 4δ − 1 chain-vertices. Hence
these schemes are exactly the dominant schemes at degree δ. Each rooted binary tree
with 2δ + 1 leaves gives rise to 42δ−122δ = 26δ−2 dominant schemes. Indeed, at each inner
node, one has to decide whether it is occupied by the cycle-graph or by the quadruple-edge
graph, and in the second case, one has to choose among the three possible configurations
for the free edge (the unique edge not involved in any connection) since the straight face
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passing by the free edge can go either toward the left child, or the right child, or the
parent. Finally, one has to decide at each non-root leaf if it is occupied by the cw or the
ccw infinity graph.

Remark 23. As we have recalled in Section 2.4, regular colored graphs in dimension 3
naturally form a subfamily of MO-graphs. However, since half-integer degrees are not
possible in the model of regular colored graphs, the dominant schemes differ; as shown
in [9], in degree δ ∈ Z+, the dominant schemes are associated to rooted binary trees with
δ+1 leaves (and δ−1 inner nodes), where the root-leaf is occupied by a root-melon, while
the δ non-root leaves are occupied by the unique scheme of degree 1.

7 Generating functions and asymptotic enumeration

Let δ ∈ 1
2
Z+, and let Sδ be the (finite) set of reduced schemes of degree δ. For each

S ∈ Sδ, let G
(δ)
S (u) be the generating function of rooted melon-free MO-graphs of reduced

scheme S, where u marks half the number of non-root vertices (i.e., for p ∈ 1
2
Z+, a weight

up is given to rooted MO graphs with 2p non-root vertices). Let p be half the number
of non-root standard vertices of S, b the number of broken chain-vertices, a the number
of unbroken chain-vertices of type L or R, se the number of even straight chain-vertices,
and so the number of odd straight chain-vertices. The generating functions for unbroken
chains of type L (resp. R) is clearly u2/(1 − u), the one for even straight chains is
u2/(1− u2), the one for odd straight chains is u3/(1− u2), and the one for broken chains
is (3u)2/(1− 3u)− 3u2/(1− u) = 6u2/((1− 3u)(1− u)). Therefore

G
(δ)
S (u) = up u2a

(1− u)a
u2se

(1− u2)se
u3so

(1− u2)so
6bu2b

(1− 3u)b(1− u)b
.

Denoting by c the total number of chain-vertices and by s = se + so the total number of
straight chain-vertices, this simplifies as

G
(δ)
S =

6bup+2c+so

(1− u)c−s(1− u2)s(1− 3u)b
. (5)

It is well-known that the generating function of rooted melonic graphs is given by

T (z) = 1 + zT (z)4.

In addition, a rooted melon-free MO-graph with 2p non-root vertices has 4p + 1 edges
(recall that the root-edge is split into two edges) where one can insert a rooted melonic

graph. Therefore, defining U(z) := zT (z)4 = T (z)− 1, the generating function F
(δ)
S (z) of

rooted MO-graphs of reduced scheme S is given by

F
(δ)
S (z) = T (z)

6bU(z)p+2c+so

(1− U(z))c−s(1− U(z)2)s(1− 3U(z))b
, (6)
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and the generating function F (δ)(z) of rooted MO-graphs of degree δ is simply given by

F (δ)(z) =
∑

S∈Sδ

F
(δ)
S (z). (7)

As discussed in [9], T (z) has its main singularity at z0 := 33/28, T (z0) = 4/3, and
1 − 3U(z) ∼z→z0 23/23−1/2(1 − z/z0)

1/2. Therefore, the dominant terms are those for
which b is maximized. As shown in Section 6, these schemes are naturally associated to
rooted binary trees with 2δ−1 inner nodes, as stated in Proposition 22. For a fixed rooted
binary tree γ with 2δ− 1 inner nodes, the total contribution of schemes arising from γ to
the generating function of rooted melon-free MO-graphs of degree δ is

(2u1/2)2δ(1 + 3u)2δ−164δ−1u8δ−2

(1− u)4δ−1(1− 3u)4δ−1
.

Indeed, such schemes have b = 4δ − 1, c = b, s = so = 0, each of the 2δ non-root leaves
is occupied either by the cw or ccw infinity graph, and each of the 2δ − 1 inner nodes
is either occupied by the cycle-graph or the quadruple-edge graph that has 3 possible
configurations.

Hence the total contribution to the generating function of rooted MO-graphs is

T (z)
U(z)δ22δ(1 + 3U(z))2δ−164δ−1U(z)8δ−2

(1− U(z))4δ−1(1− 3U(z))4δ−1

= zδT (z)1+4δ 2
6δ−134δ−1(1 + 3U(z))2δ−1U(z)8δ−2

(1− U(z))4δ−1(1− 3U(z))4δ−1
.

This is to be multiplied by the Catalan number Cat2δ−1 of rooted binary trees with 2δ−1
inner nodes. Note that, by design, the dominant schemes contribute only to graphs with
2n non-root vertices such that n ∈ δ + Z, which is consistent here with the prefactor
zδ. Graphs with 2n non-root vertices such that n ∈ δ + 1/2 + Z have schemes with
strictly less than 4δ − 1 broken chain-vertices, hence have a singular behaviour of type
(1 − z/z0)

−2δ+1+α, with α ∈ 1
2
Z+. After elementary calculations and applying transfer

theorems of analytic combinatorics [4], we obtain:

Proposition 24. For δ and n in 1
2
Z+, let a

(δ)
n be the number of rooted MO-graphs with

2n vertices and degree δ. Then, δ being fixed, for n ∈ δ + Z (and Γ(·) denoting the Euler
gamma function),

a(δ)n ∼ Cat2δ−1 ·
3δ−3/2

22δ−5/2
· n2δ−3/2

Γ(2δ − 1/2)
· (28/33)n as n → ∞. (8)

and aδn+1/2 = O(aδn/
√
n) as n → ∞.

Remark 25. By Proposition 24, a
(δ)
n is asymptotically Θ(n2δ−3/2(28/33)n) for δ ∈ Z+,

where the multiplicative constant involves Cat2δ−1. As a comparison, as shown in [9], for
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δ ∈ Z+ the number c
(δ)
n of rooted colored graphs (in dimension 3) of degree δ with 2n

vertices is asymptotically Θ(nδ−3/2(28/33)n), where the multiplicative constant involves
Catδ−1. We also deduce from these estimates that for fixed δ ∈ Z+, the probability that a
random rooted MO-graph of degree δ with 2n vertices (where n ∈ Z+) is a regular colored
graph is Θ(n−δ).

Now, going back to Remark 5, we can also easily obtain the asymptotic enumeration
under the planarity constraint, based on the following:

Lemma 26. Each rooted melon-free MO-graph whose reduced scheme is dominant is
planar.

Proof. As shown in Section 6, a rooted melon-free MO-graph G of degree δ ∈ 1
2
Z has a

total of 2δ loops (one at each non-root leaf of the associated binary tree, see Figure 23).
According to Lemma 14, erasing all these 2δ loops yields a (rooted) MO-graph G′ of
degree 0, hence a planar MO-graph. Clearly the 2δ erased loops can be inserted back
without breaking planarity, from which we conclude that G is planar.

Remark 27. Given any dominant scheme such as shown in Figure 23 (naturally drawn
following the shape of a rooted binary tree), one can easily figure out how to retract/extend
some parts of the drawing so as to obtain a planar redrawing, see Figure 24.

B

B B

BB

B

B

root

B

B B

BB

B

root

B

⇒

Figure 24: Planar redrawing of the scheme of Figure 23.

Corollary 7.1. For each fixed δ ∈ 1
2
Z+ and for n ∈ δ + Z, the probability that a rooted

MO-graph of degree δ with 2n vertices is planar tends to 1 as n → ∞.

Proof. It just follows from the observation that the edge-substitution by melonic compo-
nents clearly preserves planarity, so that all rooted MO-graphs arising from a dominating
reduced scheme are planar. This concludes the proof since these rooted MO-graphs are
the ones that dominate the asymptotic expansion.

According to Remark 5, in the planar case, rooted MO-graphs correspond (bijec-
tively) to rooted 4-regular maps, the straight faces of the MO-graph identify to the knot-
components of the map, and the number of straight faces is equal to V/2 + 1 − δ, with
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V the number of vertices and δ the degree. Under this rephrasing, Proposition 24 and
Corollary 7.1 yield the following:

Proposition 28. For n ∈ 1
2
Z+ and k ∈ Z+, let b

(k)
n be the number of rooted 4-regular

planar maps with 2n vertices and k knot-components. Then b
(k)
n = 0 for k > n + 1. In

addition, for each fixed δ ∈ 1
2
Z+, and for n ∈ δ + Z, b

(n+1−δ)
n has the same asymptotic

estimate as a
(δ)
n , given by (8).

8 Concluding remarks and perspectives

In this article we have shown that, similarly as in the colored model [9], the combinatorial
study of MO-graphs can be done by extraction of so-called schemes, such that there
are finitely many schemes in each fixed degree δ ∈ 1

2
Z+. We have also identified the

dominant schemes in each degree, whose shapes are naturally associated to rooted binary
trees. Having determined the dominant schemes we have obtained an explicit asymptotic
estimate for the number of (rooted) MO-graphs of fixed degree as the number of vertices
tends to infinity.

As already mentioned in the introduction, a first perspective for future work is the
implementation of the double scaling limit for the MO tensor model. For the sake of
completeness, let us mention that the double scaling mechanism was implemented, for a
different type of colored model, in [1], using quantum field theoretical-inspired methods
(the so-called intermediate field method). From a probabilistic point a view, a different
perspective for future work is to investigate whether the new dominant schemes we have
exhibited in this paper correspond or not to phases different from the one of branched
polymers (it was recently proved that the melon graphs correspond, from this point of
view, to branched polymers [8]). Another appealing perspective is to extend the MO
model (currently only developed in dimension D = 3) and results of this paper to higher
dimensions. Finally, one can address the issue of proving counting theorems for 3D maps
using tensor integral techniques, generalizing the fact that counting theorems for maps
can be obtained using matrix integral techniques.
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- Probability and Statistics (in press).
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