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ASYMPTOTIC EXPANSIONS FOR EIGENVALUES OF THE

STEKLOV PROBLEM IN SINGULARLY PERTURBED DOMAINS

S. A. NAZAROV

Dedicated to Vladimir Andreevich Steklov

Abstract. Full asymptotic expansions are constructed and justified for two series
of eigenvalues and the corresponding eigenfunctions of the spectral Steklov problem
in a domain with a singular boundary perturbation having the form of a small cavity.
The terms of those series are of type λk+o(1) and ε−1(μm+o(1)), where λk and μm

are the eigenvalues of the Steklov problem in a bounded domain without cavity and
the exterior Steklov problem for a cavity of unit size. A similar problem of the surface
wave is also treated. The smoothness requirements on the boundary are discussed
and unsolved problems are stated.

§1. Introduction

1.1. Motivation. In this paper, we deal with the spectral Steklov problem

−Δuε(x) = 0, x ∈ Ω(ε),(1.1)

∂nu
ε(x) = λεuε(x), x ∈ ∂Ω(ε),(1.2)

and with its versions pertaining to the linear theory of surface waves, in a singularly
perturbed domain (see Figure 1)

(1.3) Ω(ε) = Ω \ Ďωε.

Here Δ is the Laplace operator, Ω and ω are domains in the Euclidean space R
d, d ≥ 2,

with smooth (of class C∞, see Subsection 4.4 below) boundaries ∂Ω and ∂ω and with
compact closures sΩ = Ω∪ ∂Ω, sω = ω ∪ ∂ω, and containing the origin O of the Cartesian
coordinates x = (x1, . . . , xd). Also in (1.1)–(1.3),

(1.4) ωε = {x = (x1, . . . , xd) ∈ R
d : ξ = ε−1x ∈ ω},

ε is a small parameter, and ∂n stands for the derivative along the outer (relative to Ω(ε))
normal on the surface ∂Ω(ε) = ∂Ω ∪ ∂ωε. In other words, the set (1.3) is obtained by
removing from Ω a small inner cavity (1.4) (in Subsection 6.3 we also discuss the case of
a small cavern, see Figure 2). The upper bound ε0 for ε is fixed so that Ďωε ⊂ Ω for all
ε ∈ (0, ε0]; however, if needed, we reduce ε0, keeping the notation.

We shall use the general approach [1, Chapters 9, 10] to the asymptotic analysis of
spectral boundary-value problems in domains with singularly perturbed boundaries to
construct the asymptotics of the eigenvalues

(1.5) 0 = λε
1 < λε

2 ≤ λε
3 ≤ . . . ≤ λε

k ≤ . . . → +∞
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a) c)b)

(  )

Figure 1. Initial (a and b) and singularly perturbed (c) domains.

of the Steklov problem (1.1), (1.2), and also the asymptotics of the corresponding eigen-
functions. Iteration processes and methods for justifying asymptotic expansions are fully
known, and there are no obstructions for their realization. What turned out to be unex-
pected for the author is the result of [2] saying that the asymptotic series

(1.6) λε
k =

∞∑
j=0

εjλ
(j)
k

converges, e.g., under the following conditions: d ≥ 3, and λ0
k = λ

(0)
k is a simple eigen-

value of the Steklov problem in the limiting domain Ω (if these conditions are violated,
then the claim requires modification and loses elegance). The procedures of constructing
and justifying the asymptotics presented in this paper and originating from the general
algorithms [1] do not allow one to judge about the convergence of the series (1.6), in-
dicating only an estimate O(εN+1) for the error occurring when the eigenvalue λε

k is
approximated by the partial sum

(1.7)
N∑
j=0

εjλ
(j)
k ,

however, for any natural N .
In the paper [2] and the preceding publications [3, 4] etc., an original approach was sug-

gested, based on the analysis of the integral equation to which the Steklov boundary-value
problem (1.1), (1.2) reduces. Unfortunately, this approach gives no explicit formulas for
the terms in (1.6), proving only the real analyticity of the function

(1.8) ε 	→ λε
k

for any k, e.g., under the conditions mentioned above. Being evidently significant, the
result of [3] gives the impression that the spectrum of the singularly perturbed prob-
lem (1.1), (1.2) is simply obtained by an analytic perturbation of the spectrum

(1.9) 0 = λ0
1 < λ0

2 ≤ λ0
3 ≤ . . . ≤ λ0

k ≤ . . . → +∞

of the Steklov problem in the intact domain Ω,

(1.10) −Δv(x) = 0, x ∈ Ω, ∂nv(x) = λv(x), x ∈ ∂Ω.

One of our goals in the present paper is to show that such an idyllic picture is alien for
the entire spectrum, being only valid in the low-frequency part of the spectrum. Namely,
in the sequence (1.5) we find another series of eigenvalues with regular asymptotics

(1.11) λε
M(ε) = ε−1μ0

m +O(1).
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a) c)b)

O

Figure 2. A singularly perturbed domain with a small cavity.

Here μ0
m is an element of the sequence

(1.12) 0 < μ0
1 < μ0

2 ≤ μ0
3 ≤ . . . ≤ μ0

m ≤ . . . → +∞
of eigenvalues for the outer Steklov problem

−Δξw(ξ) = 0, ξ ∈ R
d \ sω,

∂νw(ξ) = μw(ξ), ξ ∈ ∂ω,
(1.13)

in which the dilated coordinates ξ as in (1.4) are used, and ∂ν denotes the derivative along
the outer (inner relative to the hole ω) normal in the same coordinates. The number
M(ε) of the eigenvalue (1.8) depends on the small parameter ε and grows unboundedly
as ε → +0. A fairly rough picture looks like this: when ε reduces from ε0 to zero, the
eigenvalue (1.11) runs to infinity, colliding alternately with the eigenvalues (1.9) and,
thereby, increasing its number in the sequence (1.5), which leads to violating the stable
nature of perturbations in the high-frequency range of the spectrum. This circumstance
has two important consequences. First, we can get good estimates for the errors caused
by the replacement of the functions (1.8) by the sums (1.7) only for ε ∈ (0, εkN ], and,
as usual, εkN → +0 as either of the natural indices k or N grows unboundedly. Second,
it is usually hard to refine the asymptotic representations (1.11) in the high-frequency
range.

The arising itself of different asymptotic series of eigenvalues is well knows and has
been studied for many singularly perturbed problems (see, e.g., the survey [5]). In par-
ticular, a mathematical machinery was created for distinguishing the zones where various
asymptotic formulas act; this techniques are based on direct and inverse reductions and
involve individual and collective asymptotics, see [6] and, e.g., [7, 8]. Therefore, it is not
hard to predict that the analyticity intervals (0, εk∞) of the functions (1.8) will narrow
rapidly when k grows (see the end of the preceding paragraph), but any estimates of
their size remain unknown.

A new and, again, unexpected observation, which prompted the author to writing the
present paper, is as follows: we can build and justify the full asymptotic expansion1 for
any eigenvalue (1.11) that remains in vicinity of a point ε−1μm with a simple2 eigenvalue
μm of problem (1.13). As has already been mentioned, in high-frequency asymptotics,
no explicit formulas are available for the main error terms (see the survey [5] once again);

1However, as usual, one can get an estimate for the discrepancy of approximation by a partial sum
of the asymptotic series only when ε ∈ (0, εkN ) and εkN → +0 as k → ∞ or N → ∞.

2Some problems concerning full asymptotic expansions of the eigenvalues coming from multiple eigen-
values of limiting problems remain open in the low- as well as high-frequency parts of the spectrum of
singularly (and even regularly) perturbed problems. These issues will be discussed in Subsections 2.4
and 3.4.
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a) b)
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Figure 3. A pond with a piece of ice (Ωε), a clearing (Σ), and an
ice-hole (ωε); view from above (a) and side view (b).

the author knows only one paper [9] where, in the case of the Steklov problem on the
concatenation of a thin and massive domains (pond with a bank), the main discrepancies
were found explicitly, but only for narrow ranges of the small parameter.

Possibly, the full asymptotic expansions described in §3 are the first result of this
sort. Note that they are only obtained in the case where the outer boundary ∂Ω of
the domain Ω(ε) is C∞ (all iteration processes fit also for the Lipschitz boundary ∂ω
of the hole ω; see Subsections 4.4 and 6.1). The reason is that, in accordance with the
asymptotic Anzatz (1.11), under the change λε 	→ ε−1με the boundary condition (1.2)
on ∂Ω acquires the small parameter in the coefficient of the leading derivative and re-
shapes to the Dirichlet condition in the limit. But the term ε−1∂n, treated formally as
a small perturbation, is in fact not such, aggravating any singularity of the solution of
the Dirichlet problem in Ω and expelling the asymptotic terms from the natural Sobolev
class. Some consequences of the smoothness loss will be discussed in Subsections 4.4 and
5.3 by the example of a problem pertaining to the linear theory of waves on the surface
of a weighty liquid; now we pass to the setting of such a problem.

1.2. Interaction of surface waves in clearings and ice-holes. One of physical
interpretations of the Sobolev boundary conditions is related to propagation of surface
waves within the framework of linear theory [10] (see the surveys [11, 12] and, e.g., the
book [13]). We describe the setting of a problem about a pond covered with ice in
which there are several large clearings and one (for simplicity) ice-hole of relatively small
diameter.

Let Ω and ω be plane domains containing the origin of the coordinates y = (y1, y2)
and having smooth boundaries and compact closures. The domain Ω is assumed to be
multiply connected, and ω is simply connected, i.e., the boundary ∂ω is a simple smooth
closed contour, while the boundary ∂Ω consists of an outer contour Γ and several contours
Γ1, . . . ,ΓJ embracing the holes Σ1, . . . ,ΣJ ; here J ≥ 1. We denote by Ξ the 3-dimensional
domain that lies in the lower half-space R3

− = {x = (y, z) : x3 = z < 0} and is bounded

by the flat water surface Ω ∪ ĎΣ1 ∪ . . . ∪ ĎΣJ ⊂ ∂R3
−, and also by a surface Υ (the bottom

of the pond) lying in R
3
− and making nonzero angles3 with the plane ∂R3

− = {x : z = 0}
along Γ. In what follows we shall non distinguish notationally between two-dimensional
sets and their immersions lying on the plane ∂R3

− in R3.
The volume Ξ is filled with water, and the area Ω(ε) = Ω \ Ďωε of its surface is covered

with an underformable piece of ice with clearings Σ1, . . . ,ΣJ and an ice-hole ωε (see

3This requirement ensures the discreteness of the spectrum of problem (1.14)–(1.3): peak-like cusps
can lead to the arising of a nonempty essential component in that spectrum (see [14, 15]).
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Figure 3). The velocity potential uε satisfies the Laplace equation

(1.14) −Δuε(x) = 0, x ∈ Ξ,

the Neumann condition

(1.15) ∂nu
ε(x) = 0, x ∈ Υ ∪ Ω(ε)

(no normal flow), and the following kinematic condition on the free surfaces:

(1.16) ∂zu
ε(x) = λεuε(x), x ∈ Σ1 ∪ · · · ∪ ΣJ ∪ ωε,

where λε = κ2/g, κ is the frequency of harmonic (in time) oscillations of the liquid, and
g > 0 is the free fall acceleration due to gravity.

Introducing the “trace” operator T ε (see [16] and Subsection 2.5 below), we can reduce
problem (1.14)–(1.16) to the study of the spectrum of a compact positive selfadjoint
operator; this allows us to indicate the sequence (1.5) of eigenvalues the asymptotics of
which will be studied in §4.

In Subsection 5.3 we also deal with a planar version of problem (1.14)–(1.16). Its
physical interpretation causes doubt: the middle piece of ice in Figure 3,b is not connected
with shores and must flow freely. Nevertheless, this two-dimensional problem allows us
to discuss some new boundary layer phenomena.

1.3. Structure of the paper. In the next section, for d ≥ 3, we describe in detail the
procedure of constructing the coefficients of the asymptotic series for λε

k and uε
k in the

cases of a simple or a multiple eigenvalue λ0
k of the limiting problem (1.10), and obtain

explicit formulas for the leading terms (Lemmas 2.1 and 2.2). Also, we prove Theorem 2.1
on the convergence λε

k → λ0
k, together with an estimate for the rate of convergence

(Theorem 2.2). Finally, in Theorem 2.3, for a simple eigenvalue λ0
k, we estimate the

errors of approximation of λε
k and uε

k by partial sums of our formal asymptotic series.
Note once again that the methods employed do not allow us to establish the convergence
of the series (1.6).

In §3, we study the asymptotics of the eigenvalues (1.11) in the high-frequency range
of the spectrum of problem (1.1), (1.2), again in the case where d ≥ 3. The main
attention is paid to the case of a simple eigenvalue μ0

m of problem (1.13), for which
we can build full asymptotic series for λε

Mε(m) and for uε
Mε(m); Theorem 3.2 justifies

these asymptotic constructions. Also, we find the leading terms of the asymptotics
corresponding to perturbation of a multiple eigenvalue (Theorem 3.1).

§4 is devoted to the 3-dimensional problem (1.14)–(1.16) on surface waves. The pre-
sentation of asymptotic procedures here is independent of the preceding sections, being
based largely on arguments of physical nature.

Therefore, the reader interested only in the formal setting may restrict himself to the
reading of §4 and Subsection 5.3. We only find the main asymptotic discrepancies in
both the low- and high-frequency ranges, and Theorems 4.1 and 4.2 provide approxima-
tion error estimates. In the first case, we ignore the lower terms for simplicity; on the
contrary, in the second case it is impossible to determine the second order errors without
modification of the asymptotic constructions, for the reasons explained in Subsections 4.4
and 5.3.

In §5 we discuss the specifics of asymptotic expansions in planar (d = 2) problems (1.1),
(1.2) and (1.14)–(1.16) and make an attempt (however, unsuccessful) to compensate for
the singularities arising near an irregular point and the contours of the boundary.

The last §6 contains comments on the presented asymptotic analysis and discussion
of similar spectral problems in singularly perturbed domains.
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§2. Asymptotics in the low-frequency range

2.1. Asymptotic Ansätze. For d ≥ 3 (see Subsection 5.1 for the case of the planar
problem), the standard formal asymptotic series (cf. [17, 18] and [1, Chapter 9]) for
solutions of the spectral problem (1.1), (1.2) looks like this:

λε
k ∼

∞∑
j=0

εjλ
(j)
k ,(2.1)

uε
k(x) ∼

∞∑
j=0

εj
(
v
(j)
k (x) + εw

(j)
k (ξ)

)
.(2.2)

Here, λ0
k = λ

(0)
k and v

(0)
k are the eigenvalue and the corresponding eigenfunction of the

first limiting problem (1.10) and w
(j)
k is a boundary layer type term written in the dilated

coordinates ξ = ε−1x (see formula (1.4)). The coefficients of the asymptotic series (2.1)
and (2.2) are to be determined, and, as we shall see later on,

(2.3) λ
(1)
k = . . . = λ

(d−2)
k = 0, v

(1)
k = . . . = v

(d−2)
k = 0.

For the functions v
(j)
k and w

(j)
k we write the following expansions, also to be verified,

near x = 0 and near infinity:

v
(j)
k (x) =

N∑
p=0

rpV
(j)
kp (ϑ) + rv

(j)
kN (x),(2.4)

w
(j)
k (ξ) =

N∑
p=0

ρ2−d−pW
(j)
kp (ϑ) + rw

(j)
kN (ξ).(2.5)

Here, r = |x|, ρ = |ξ|, and ϑ is a point of the unit sphere Sd−1 ⊂ Rd. The angular parts

V
(j)
kp and W

(j)
kp are smooth functions on Sd−1, and the remainder terms rv

(j)
kN and rw

(j)
kN

satisfy the estimates ∣∣∇q
xrv

(j)
kN (x)

∣∣ ≤ cjqkNrN+1−q, x ∈ Ω,(2.6) ∣∣∇q
ξ rw

(j)
kN (ξ)

∣∣ ≤ cjqkNρ2−d−N−1−q, ξ ∈ R
d \ sω,(2.7)

for all q ∈ N0 = {0} ∪ N = {0, 1, 2, . . . }, where ∇q
xv is the collection of all derivatives of

v of order q, and the notation ∇q
ξw has a similar meaning. Recall that the point ξ = 0 is

assumed to lie inside the domain ω, i.e., ρ ≥ ρω > 0 if ξ ∈ Rd \ ω. In fact, the functions

rpV
(j)
kp (ϑ) are polynomials of degree p in the variables x = (x1, . . . , xd), and the functions

ρ2−d−pW
(j)
kp (ϑ) are linear combinations of the derivatives of order p of the fundamental

solution

(2.8) Φ(ξ) =
(
measd−1 S

d−1
)−1

(d− 2)−1|ξ|2−d

for the Laplace operator Δξ in Rd for d ≥ 3. This refinement will not be needed in what
follows, with the exception of the important formula

(2.9) r0V
(j)
k0 (ϑ) = v

(j)
k (0) ∈ R.

Note that problem (1.10) has an unbounded monotone sequence of eigenvalues (1.9)
(written with regard to multiplicity), and the corresponding eigenfunctions

v01 , v02 , v03 , . . . , v0k, . . .

can be chosen to obey the orthogonality and normalization conditions

(2.10) (v0k, v
0
l )∂Ω = δk,l, k, l ∈ N := {1, 2, 3, . . . },
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where ( , )∂Ω is the natural scalar product in the Lebesgue space L2(∂Ω), and δk,l is the
Kronecker symbol. The first eigenvalue is simple, and the corresponding eigenfunction
v01(x) = (measd−1 ∂Ω)

−1/2 is constant.

2.2. Algorithm of constructing the asymptotics. Let λ0
k > 0 be a simple eigenvalue

of the Steklov problem (1.10) in Ω (of course, the case of k = 0 is not interesting, because

the zero eigenvalue is not perturbed). We put v
(0)
k = v0k and plug the formal asymptotic

expansions (2.2) and (2.1) in problem (1.1), (1.2). We see immediately that the functions

v
(j)
k and w

(j)
k are harmonic in the domains Ω and R

d \ sω, respectively. In the boundary
condition (1.2) restricted to the outer part ∂Ω of the boundary ∂Ω(ε), in the boundary
layer type terms (2.5) we pass to the slow variables x and, recalling the relation ρ = ε−1r,
collect the coefficients of the same powers of ε. As a result, we get the boundary-value
problem

(2.11) −Δxv
(j)
k (x) = 0, x ∈ Ω, ∂nv

(j)
k (x)− λ0

kv
(j)
k (x) = f

(j)
k (x), x ∈ ∂Ω,

with the right-hand side

f
(j)
k (x) =

j∑
q=1

λ
(q)
k v

(j−q)
k (x)−

j−d+1∑
l=0

∂n
(
r2−d−lW

(j−d+1−l)
kl (ϑ)

)
+

j−d+1∑
q=0

λ
(q)
k

j−d+1−q∑
l=0

r2−d−lW
(j−d+1−q−l)
kl (ϑ).

(2.12)

Similar manipulations with the boundary condition (1.2) restricted to the inner part
∂ωε of ∂Ω(ε) and passage to the fast variables ξ in the smooth type solutions (2.4) lead
to the exterior Neumann problem

(2.13) −Δξw
(j)
k (ξ) = 0, ξ ∈ R

d \ sω, ∂νw
(j)
k (ξ) = g

(j)
k (ξ), ξ ∈ ∂ω,

with the right-hand side

(2.14) g
(j)
k (ξ) =

j−1∑
q=0

λ
(q)
k w

(j−q−1)
k (ξ)−

j+1∑
l=1

∂ν
(
ρlV

(j+1−l)
kl (ϑ)

)
+

j∑
q=0

λ
(q)
k

j−q∑
l=0

ρlV
(j−q−l)
kl (ϑ).

It should be noted that the boundary condition has lost the term λ0
kw

(j)
k , which passed

to formula (2.14) with j 	→ j + 1, because of arising of a large factor in the relation
∂n = ε−1∂ν . Also, the index l = 0 disappeared from the second sum, due to (2.9). Thus,
the expression (2.14) turns out to depend only on the following collections of quantities:

(2.15) λ0
k, . . . , λ

(j)
k ; v

(0)
k , . . . , v

(j)
k ; w

(0)
k , . . . , w

(j−1)
k .

Writing the representation

(2.16) f
(j)
k (x) = λ

(j)
k v

(0)
k (x) + f

(j)
k (x),

i.e., chipping off one (q = j) summand from the first sum on the right in (2.12), we see

that the remainder f
(j)
k depends on the quantities

(2.17) λ0
k, . . . , λ

(j−1)
k ; v

(0)
k , . . . , v

(j−1)
k ; w

(0)
k , . . . , w

(j−d+1)
k .

We use induction to describe an iteration process.
Base of induction. We take a simple eigenvalue λ0

k and the corresponding eigenfunction

v
(0)
k = v0k normalized as in (2.10) and then find the boundary layer w

(0)
k from the problem

−Δξw
(0)
k (ξ) = 0, ξ ∈ R

d \ sω,

∂νw
(0)
k (ξ) = −∂ν

(
ξ · ∇xv

(0)
k (0)

)
+ λ0

kv
(0)
k (0), ξ ∈ ∂ω.

(2.18)
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The right-hand side of the boundary condition is formed in accordance with relation
(2.14) and the Taylor formula at the point O for the infinitely differentiable function

v
(0)
k ; we have

r0V
(0)
k0 (ϑ) = v

(0)
k (0), r1V

(1)
k1 (ϑ) = x · ∇xv

(0)
k (0) =

d∑
m=1

xm
∂v

(0)
k

∂xm
(0).

Since d ≥ 3 throughout in this section, the exterior Neumann problem (2.18) has a unique
solution decaying at infinity and admitting the expansion (2.5), (2.7).

Induction step. Suppose we have made the steps with the numbers 0, . . . , j − 1; we
show how to make the jth step. Since λ0

k is a simple eigenvalue for the formally selfadjoint
problem (2.11), the Fredholm alternative yields the solvability condition

(2.19) (f
(j)
k , v0k)∂Ω = 0,

which takes the form

(2.20) λ
(j)
k = λ

(j)
k (v0k, v

0
k)∂Ω = −(f

(j)
k , v0k)∂Ω,

due to (2.16) and (2.10). As has already been mentioned, the expression f
(j)
k only depends

on the quantities (2.17), which have already been found by the inductive assumption. So,
problem (2.11) has a solution. This solution admits the representation (2.4), (2.6) (the

Taylor formula) and is determined uniquely up to the term c
(j)
k v0k, but this arbitrariness

is eliminated by the orthogonality condition

(2.21) (v
(j)
k , v0k)∂Ω = 0, j ∈ N.

As a result, we can calculate all quantities occurring in the list (2.15), and we can find the

solution w
(j)
k of the exterior Neumann problem (2.13), which is known to satisfy (2.5),

(2.7). This completes the induction step.

2.3. Specific formulas. Now we calculate the main correction term in the asymptotics
of the eigenvalue λε

k assuming that the eigenvalue λ0
k is simple.

Lemma 2.1. Relations (2.3) are valid, and

(2.22) λ
(d−1)
k = −λ0

k measd−1(∂ω)|v0k(0)|2,

where measd−1(∂ω) is the (d− 1)-dimensional area of the surface ∂ω.

Proof. First we note that by (2.12) and (2.16) we have

f
(j)
k (x) =

j−1∑
q=1

λ
(q)
k v

(j−q)
k (x) for j = 1, . . . , d− 2,(2.23)

f
(d−1)
k (x) =

d−2∑
q=1

λ
(q)
k v

(d−1−q)
k (x)− ∂n

(
r2−dW

(0)
k0 (ϑ)

)
+ λ0

kr
2−dW

(0)
k0 (ϑ).(2.24)

By (2.20) the orthogonality conditions (2.21) for the functions v(1), . . . , v
(d−2)
k mean that

the first collection of relations (2.3) is fulfilled, so that f
(1)
k = . . . = f

(d−2)
k = 0, and the

second group is also fulfilled for the same reason.

The solution w
(0)
k of the exterior Neumann problem (2.18) behaves at infinity as the

fundamental solution (2.8), i.e., the last expression in (2.23) involves the leading term

(2.25) ρ2−dW
(0)
k0 (ϑ) = B

(0)
k Φ(ξ)
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of the expansion (2.5), j = 0. To calculate the factor B
(0)
k , we substitute the functions

w
(0)
k and 1 in the Green formula on the set Bd

R \ sω, where Bd
R = {ξ : ρ < R} is a ball of

a large radius R. We have∫
∂ω

(
λ0
kv

(0)
k (0)− ∂ν

(
ξ · ∇xv

(0)
k (0)

))
dsξ =

∫
∂ω

∂νw
(0)
k (ξ) dsξ

= − lim
R→∞

∫
∂Bd

R

∂w
(0)
k

∂ρ
(ξ) dsξ = −B

(0)
k lim

R→∞

∫
∂Bd

R

∂Φ

∂ρ
(ξ) dsξ = B

(0)
k .

Since
∫
∂ω

∂νξm dsξ = 0, m = 1, . . . , d, we get

(2.26) B
(0)
k = λ0

kv
(0)
k (0)measd−1(∂ω).

It remains to calculate the integral

λ
(d−1)
k = −B

(0)
k

∫
∂Ω

(
λ0
kΦ(x)− ∂nΦ(x)

)
v0k(x) dsx.

We apply the Green formula in the domain Ω \ ĎBd
δ with a small spherical cavity to

the harmonic functions Φ and v0k. Recalling the Steklov boundary condition in problem
(1.10) for v0n, we write

λ
(d−1)
k = B

(0)
k lim

δ→0

∫
∂Bd

δ

(
v0k(x)∂rΦ(x)− Φ(x)∂rv

0
k(x)

)
dsx

= B
(0)
k v0k(0) lim

δ→0

∫
∂Bd

δ

∂Φ

∂r
(x) dsx = −B

(0)
k v0k(0),

(2.27)

Combined with (2.26), this ensures the desired result (2.22). �
Lemma 2.2. If v0k(0) = 0, then, besides formula (2.3), we have

λ
(d−1)
k = 0, v

(d−1)
k = 0,(2.28)

λ
(d)
k = −

d∑
m,l=1

Mml(ω)
∂v

(0)
k

∂xm
(0)

∂v
(0)
k

∂xl
(0),(2.29)

where (Mkl(ω))
d
k,l=1 is a symmetric positive definite matrix (see below).

Proof. By (2.26), the requirement v0k(0) = 0 means that B
(0)
k = 0; consequently, the

right-hand side of (2.24) vanishes, together with the solution v
(d−1)
k of problem (2.11)

satisfying (2.21). Moreover, the solution w
(0)
k of (2.18) can be written as

(2.30) w
(0)
k (ξ) = −

d∑
m=1

∂v
(0)
k

∂xm
(0)wm(ξ),

where the wm are the solutions of the external Neumann problem with the specific
right-hand sides

−Δξwm(ξ) = 0, ξ ∈ R
d \ sω, ∂νwm(ξ) = ∂νξm, ξ ∈ ∂ω,

as described, e.g., in [19, Appendix G]. It is known that these solutions decay at infinity
at the rate of O(ρ1−d) and admit the representation

(2.31) wm(ξ) =
d∑

l=1

Mml(ω)
∂Φ

∂ξl
(ξ) +O(ρ−d), ρ → +∞,

in which the coefficients of the derivatives of the fundamental solution form a symmetric
positive definite matrix M(ω) of size d × d. It is called the matrix associated with the
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tensor of virtual mass, and we have M(ω) ≥ Imeasd ω, where measd ω is the volume of
the cavity, and I is the unit (d× d)-matrix.

Now we use relations (2.3) and (2.28) to find that the right-hand (2.12) in prob-
lem (2.11) with the number j = d takes the form

f
(d)
k (x) = λ

(d)
k v

(0)
k (x) + f

(d)
k (x)

= λ
(d)
k v

(0)
k (x)− ∂n

(
r1−dW

(0)
k1 (ϑ)

)
+ λ

(0)
k r1−dW

(0)
k1 (ϑ)

− ∂n
(
r2−dW

(1)
k0 (ϑ)

)
+ λ

(0)
k r2−dW

(1)
k0 (ϑ).

We have

r1−dW
(0)
k1 (ϑ) = −

d∑
m,l=1

Mml(ω)
∂v(0)

∂xm
(0)

∂Φ

∂xl
(x)

in accordance with the representations (2.30), (2.31), and (2.5) of the function w
(0)
k . At

the same time, we shall not need to know the coefficient B
(1)
k in the leading term of the

expansion (2.5) of the function w
(1)
k similar to (2.25).

As a result, we rewrite formula (2.20) with the number j = d as follows:

λ
(d)
k = −(f

(d)
k , v0k)∂Ω = B

(1)
k (∂nΦ− λ0

kΦ, v
0
k)∂Ω

−
d∑

m,l=1

Mml(ω)
∂v

(0)
k

∂xm
(0)

(
∂n

∂Φ

∂xl
− λ0

k

∂Φ

∂xl
, v0k

)
∂Ω

.
(2.32)

The first scalar product is equal to −v0k(0) = 0 (see (2.27) and the assumptions of the
lemma). Moreover, we obtain(
∂n

∂Φ

∂xl
− λ0

k

∂Φ

∂xl
, v0k

)
∂Ω

= lim
δ→0

∫
∂Bd

δ

(
v0k(x)

∂

∂r

∂Φ

∂xl
(x)− ∂Φ

∂xl
(x)

∂v0k
∂r

(x)

)
dsx

=
1

measd−1 S
d−1

lim
δ→0

∫
∂Bd

δ

((
v0k(0) + x·∇xv

0
k(0)

)
(d− 1)

xl

rd+1
+

xl

rd
1

r
x·∇xv

0
k(0)

)
dsx

=
d

measd−1 S
d−1

∂v0k
∂xl

(0) lim
δ→0

∫
∂Bd

δ

x2
l

rd+1
dsx =

∂v0k
∂xl

(0).

Substituting the result in the right-hand side of (2.32), we arrive at (2.29). �

It should be mentioned that Lemmas 2.1 and 2.2 prescribe negative perturbations

εd−1λ
(d−1)
k +O(εd) and εdλ

(d)
k +O(εd+1) of the simple eigenvalue λ0

k in the cases where
v0k(0) �= 0 and v0k(0) = 0, ∇xv

0
k(0) �= 0 ∈ Rd. The sign of the perturbation of a simple

eigenvalue will be discussed in Subsection 6.2.

2.4. Perturbation of a multiple eigenvalue. Suppose that, in the sequence (1.9),
we have

(2.33) λ0
k−1 < λ0

k = . . . = λ0
k+κk−1 < λ0

k+κk
,

i.e., the eigenvalue λ0
k of problem (1.10) has multiplicity κk > 1.

To a large extent, the procedure of constructing the asymptotics for the eigenvalues
and eigenfunctions of problem (1.1), (1.2) remains the same as above. In particular,
the general form of the Ansätze (2.1) and (2.2) is preserved, as well as the boundary-
value problems (2.11), (2.12) and (2.13), (2.14). We recall that these problems are
satisfied by the smooth type and the boundary layer type summands, which still admit
the expansions (2.4), (2.6) and (2.5), (2.7). The eigenvalues λε

k, . . . , λ
ε
k+κk−1 and the

corresponding eigenfunctions uε
k, . . . , u

ε
k+κk−1 are studied simultaneously. Moreover, the
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leading components v
(0)
k , . . . , v

(0)
k+κk−1 of the latter functions are sought in the form of

linear combinations

(2.34) v(0)p (x) = a
(0)
p,kv

0
k(x) + · · ·+ a

(0)
p,k+κk−1v

0
k+κk−1(x)

of eigenfunctions of problem (1.10) corresponding to the eigenvalue λ0
k and satisfying the

orthogonality and normalization conditions (2.10). The rows of coefficients

(2.35) a
(0)
(p) = (a

(0)
p,k, . . . , a

(0)
p,k+κk−1) ∈ R

κk

turn out to be new unknowns.
Yet another novelty is the fact that, by the Fredholm alternative, the limiting Steklov

problem (2.11) acquires κk solvability conditions

(2.36) (f (j)
p , v0m)∂Ω = 0, m = k, . . . , k + κk − 1,

in place of one condition (2.19). Here and below, the objects supplied with indices
p = k, . . . , k + κk − 1 are calculated by the corresponding formulas in the preceding
subsections with the replacement k 	→ p. Thus, conditions (2.36) involve the right-hand

(2.12) of problem (2.11) for determining the function v
(j)
p .

Repeating the calculations made in the proof of Lemma 2.1, we see that, even under
the modified conditions, relations (2.3) remain valid with the replacements k 	→ p =
k, . . . , k + κk − 1. Also, (2.16), (2.24), and (2.27) show that the solvability conditions
(2.36) take the form

λ(d−1)
m a(0)p,m = λ(d−1)

m (v(0)p , v0m)∂Ω = −(f (d−1)
p , v0m)∂Ω

= −B(0)
p (λ0

kΦ− ∂nΦ, v
0
m)∂Ω = −B(0)

p v0m(0),

m = k, . . . , k + κk − 1.

(2.37)

Here B
(0)
p = λ0

kv
(0)
p (0)measd−1(∂ω) is the coefficient (2.26) in the leading term (2.25) of

the summand w
(0)
p of the boundary layer type. As a result, equations (2.37) turn into

the following linear system for the row (2.35):

(2.38) P (k)a
(0)
(p) = λ(d−1)

p a
(0)
(p).

The matrix P (k) of size κk × κk is composed of the elements

(2.39) P (k)
mq = −λ0

k measd−1(∂ω)v
0
m(0)v0q(0)

and is symmetric and negative, but its rank cannot be greater than 1. Thus, it has κk−1
zero eigenvalues

λ
(d−1)
k+1 = . . . = λ

(d−1)
k+κk−1 = 0

and one nonpositive eigenvalue λ
(d−1)
k ≤ 0, which vanishes only if

(2.40) v0k(0) = . . . = v0k+κk−1(0) = 0.

The corresponding eigenvectors-rows a
(0)
(k), . . . , a

(0)
(k+κk−1) ∈ Rκk can be chosen to obey

the orthogonality and normalization conditions

(2.41)

k+κk−1∑
l=k

a
(0)
p,l a

(0)
m,l = δp,m, p,m = k, . . . , k + κk − 1.

Precisely the elements of these rows are the coefficients of the linear combinations (2.34).
However, only under the additional condition

(2.42) κk = 2, v0k(0) �= 0
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are the rows a
(0)
(k) and a

(0)
(k+1) determined uniquely (up to the sign), i.e., the leading terms

in (2.2) become fixed.
Assuming (2.40) and repeating the calculations of Lemma 2.2, we arrive at the formulas

λ
(d−1)
k = . . . = λ

(d−1)
k+κk−1 = 0, v

(d−1)
k = . . . = v

(d−1)
k+κk−1 = 0,

similar to (2.28), and the compatibility conditions (2.36) of problem (2.11) for the func-

tions v
(d)
p , p = k, . . . , k + κk − 1, give rise to the linear system

(2.43) Q(k)a
(0)
(p) = λ(d)

p a
(0)
(p),

involving a symmetric negative (κk × κk)-matrix Q(k) with the entries

(2.44) Q(k)
mq = −∇xv

0
m(0) ·M(ω)∇xv

0
q (0) = −

d∑
j,l=1

Mj,l(ω)
∂v0m
∂xj

(0)
∂v0q
∂xl

(0)

(cf. the right-hand side of (2.29)). Since M(ω) is a symmetric positive definite matrix
of size (d× d), the rank of Q(k) cannot exceed d, and

rankQ(k) = dimL
{
∇xv

0
k(0), . . . ,∇xv

0
k+κk−1(0)

}
,

where L{. . . } is the linear span of the rows ∇xv
0
m(0) ∈ Rd, m = k, . . . , k + κk − 1.

The raise of the rank of the matrix in (2.43) provides more possibilities for fixing the
rows (2.35) of coefficients of the linear combinations (2.34). For instance, if the matrix

Q(k) happens to have κk distinct eigenvalues λ
(d)
k , . . . , λ

(d)
k+κk−1, then the corresponding

eigenvectors a
(0)
(k), . . . , a

(0)
(k+κk−1) satisfying (2.41) are determined up to the sign, and the

leading terms (2.34) of the asymptotic Ansatz (2.2) are specified fully.
Note that in the situation described above the eigenvalues λε

k, . . . , λ
ε
k+κk−1 of the

singularly perturbed Steklov problem (1.1), (1.2) become simple.
On the other hand, if we have a multiple eigenvalue in the algebraic problem (2.43)

(no matter zero or negative), then, as before, the leading terms of the Ansatz (2.2) needs
refining via constructing lower asymptotic terms. The corresponding algorithms are
known in principle, but they do not answer the following question: having constructed
the full formal asymptotic series (2.1), can we judge whether a multiple eigenvalue λ0

k =
. . . = λ0

k+κk−1 splits into simple ones, or the collection λε
k, . . . , λ

ε
k+κk−1 may contain

multiple eigenvalues.
Of course, if the domain Ω(ε) has a geometric symmetry, then the Steklov prob-

lem (1.1), (1.2) is sure to possess multiple eigenvalues for all ε ∈ (0, ε0], but the above
question is related to the possible existence of overpower (decaying as o(εN ) for any
N ∈ N) distances between two neighbors λε

p and λε
p+1 in the sequence (1.5). It is fairly

plausible that the method of [2] can give a negative answer.
However, the lack of information on the leading term (2.34) makes no obstruction

to justifying the constructed asymptotics in the next subsections. Therefore, now we
restrict ourselves to a commentary on the situation where

(2.45) v0k(0) �= 0 and λ
(d−1)
k < 0, but κk > 2,

which supplements the situation (2.42), (2.40).
Keeping the orthogonality conditions (2.10), we can choose a basis in the eigenspace

of problem (1.10) corresponding to λ = λ0
k so that

(2.46) v0k(0) �= 0, v0k+1(0) = . . . = v0k+κk−1(0) = 0.

Then in the matrix P (k) only one entry

P
(k)
kk = −λ0

k|v0k(0)|2measd−1(∂ω) (equal to λ
(d−1)
k ),
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is nonzero, whence a
(k)
(k) = (1, 0, . . . , 0) ∈ Rκk . We put a

(k)
pk = 0 for p = k+1, . . . , k+κk−1

and then repeat the calculations of the proof of Lemma 2.2. It is easily seen that the
truncated rows

a
(k)′
(p) = (a

(k)
p,k+1, . . ., a

(k)
p,k+κk−1) ∈ R

κk−1

satisfy the linear system

Q(k)′′a
(k)′
(p) = λ(d)

p a
(k)′
(p)

with the matrix Q(k)′′ of size (κk − 1)× (κk − 1) composed of the elements (2.44) with
m, q = k + 1, . . . , k + κk − 1. Again, the rank of Q(k)′′ is at most d, but a possibility
arose to detect new nontrivial perturbations of order of εd for the eigenvalue λ0

k in the
situation (2.45).

2.5. Operator setting of the Steklov problem. In the Sobolev space H1(Ω(ε)), we
introduce the scalar product

(2.47) 〈uε, vε〉ε = (∇uε,∇vε)Ω(ε) + (uε, vε)∂Ω(ε).

Lemma 2.3. Uniformly with respect to ε ∈ (0, ε0], the weighted Kondrat′ev4 norm

‖uε;V 1
0 (Ω(ε))‖ =

(
‖∇uε;L2(Ω(ε))‖2 + ‖r−1uε;L2(Ω(ε))‖2

)1/2
is equivalent to the usual Sobolev norm ‖uε;H1(Ω(ε))‖ and to the norm 〈uε, uε〉1/2ε in-
troduced above. We have

(2.48) ‖uε;L2(∂ωε)‖2 ≤ cε〈uε, uε〉ε
where c is independent of uε ∈ H1(Ω(ε)) and of ε ∈ (0, ε0].

Proof. Let Bd
RΩ

be a ball containing ωε for ε ∈ (0, ε0] and lying inside Ω together with

the sphere ∂Bd
RΩ

. We recall the Steklov–Poincaré inequality

‖uε;L2(Ω \ Bd
RΩ

)‖2 ≤ c
(
‖∇uε;L2(Ω \ Bd

RΩ
)‖2 + ‖uε;L2(∂Ω)‖2

)
≤ c〈uε, uε〉ε

and the one-dimensional Hardy inequality

(2.49)

∫ +∞

δ

rα−1|U(r)|2 dr ≤ 4

α2

∫ +∞

δ

rα+1

∣∣∣∣dUdr (r)

∣∣∣∣2 dr,
valid for any δ > 0 and α > 0 for all U ∈ C∞

c [δ,+∞) (continuously differentiable
functions with compact support). We put α = d− 2 > 0 and U(r, ϑ) = χ(x)uε(x), where
χ ∈ C∞

c (Ω) is a cut-off function equal to 1 on B
d
RΩ

. Assuming for simplicity5 that the
set ω is star-like relative to the coordinate origin, we pick an appropriate δ = δ(ϑ) and
integrate inequality (2.49) over the angular variables ϑ ∈ Sd−1, obtaining the estimate

‖r−1uε;L2(Bd
RΩ

\ ωε)‖2 ≤ c‖∇(χuε);L2(Ω(ε))‖2

≤ c(‖∇uε;L2(Ω(ε))‖2 + ‖uε;L2(Ω \ Bd
RΩ

‖2).
Finally, we write the inequality

(2.50) ε−1‖uε;L2(∂ωε)‖2 ≤ c
(
‖∇uε;L2(Bd

εRω
\ ωε)‖2 + ε−2‖uε;L2(Bd

εRω
\ ωε)‖2

)
,

which is obtained from the standard trace inequality in BRω
\sω (see, e.g., [20, Chapter 1])

with the help of the coordinate compression ξ 	→ x = εξ; here the radius Rω is chosen so
that sω ∈ Bd

Rω
. Since O ∈ ω and ε−1r ≥ cω > 0 for x ∈ BεRω

\ ωε, the right-hand side of

(2.50) does not exceed c‖u;V 1
0 (Ω(ε))‖2.

Combining the above estimates, we get the desired statement. �

4We use the commonly adopted notation V l
β , but not explain its origin.

5In the general situation, we need the extension (2.61) of uε to the cavity ωε.
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Let T ε be the operator given on the Hilbert space Hε = H1(Ω(ε)) with the scalar
product (2.47) by the formula

(2.51) 〈T εuε, vε〉ε = (uε, vε)∂Ω(ε), uε, vε ∈ Hε.

This operator is symmetric, positive, and continuous, hence selfadjoint. The variational
form of problem (1.1), (1.2) consists of finding a number λε and a nontrivial function
uε ∈ Hε that satisfy the integral identity (see [20])

(2.52) (∇uε,∇vε)Ω(ε) = λε(uε, vε)∂Ω(ε), vε ∈ Hε.

By the definitions (2.47) and (2.51), identity (2.52) is equivalent to the abstract equation

(2.53) T εuε = τ εuε on Hε

with the new spectral parameter

(2.54) τ ε = (1 + λε)−1.

The properties of T ε listed above show that, in accordance with Theorems 10.1.5 and
10.2.2 in [21], its spectrum σ(T ε) is formed by the essential spectrum σe(T ε) = {τ ε = 0}
and the discrete spectrum σd(T ε) consisting of an infinitely small sequence of eigenvalues

(2.55) τ ε1 ≥ τ ε2 ≥ τ ε3 ≥ . . . ≥ τ εk ≥ . . . → +0,

Due to (2.54), this sequence is transformed into the sequence (1.5) of eigenvalues of
the boundary-value problem (1.1), (1.2). The point τ ε = 0 is an eigenvalue of infinite
multiplicity with the eigenspace

{uε ∈ Hε : uε = 0 on ∂Ω(ε)}.

The eigenvectors uε
1, u

ε
2, u

ε
3, . . ., u

ε
k, . . . ∈ Hε of the operator T ε, i.e., the eigenfunctions of

the boundary-value problem (1.1), (1.2) or the variational problem (2.52) can be chosen
so as to satisfy the orthogonality and normalization conditions

(2.56) 〈uε
k, u

ε
l 〉ε = (∇uε

k,∇uε
l )Ω(ε) + (uε

k, u
ε
l )∂Ω(ε) = δk,l, k, l ∈ N.

The role of the main tool for justifying the asymptotics will be played by the following
classical lemma about “near-eigenvalues” and “near-eigenvectors” (see the paper [22] and
also the spectral resolvent expansion in Chapter 6 of the book [21]).

Lemma 2.4. Suppose that, for some tε ∈ R+ and Uε ∈ Hε, we have

(2.57) ‖Uε;Hε‖ = 1, ‖T εUε − tεUε;Hε‖ =: δε ∈ (0, tε),

Then there exists an element τ εn of the sequence (2.55) such that

(2.58) |τ εn − tε| ≤ δε.

Moreover, for any δε∗ ∈ (δε, tε) we can find coefficients bεn, . . ., b
ε
n+κ−1 for which

(2.59)

∥∥∥∥Uε −
n+κ−1∑
m=n

bεnu
ε
n;Hε

∥∥∥∥ ≤ 2
δε

δε∗
,

n+κ−1∑
j=n

|bεm|2 = 1.

Here τ εn, . . . , τ
ε
n+κ−1 is the complete list of the eigenvalues of T ε on the segment [tε − δε∗,

tε + δε∗], and the corresponding eigenvectors uε
n, . . . , u

ε
n+κ−1 obey (2.56).
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2.6. Convergence theorem. Let λε
k be an eigenvalue of problem (1.1), (1.2), and let

the corresponding eigenfunction uε
k be normalized as in (2.56). In the next subsection,

it will be checked that for any fixed index k ∈ N there exist quantities ε(k) ∈ (0, ε0] and
c(k) such that

(2.60) λε
k ≤ c(k) for ε ∈ (0, ε(k)).

We extend the function uε
k to the cavity ωε by the formula

(2.61) ûε
k(x) =

{
uε
k(x) if x ∈ Ω(ε),

suε
k + ûε⊥

k (x) if x ∈ ωε,

where we have used the representation

uε
k(x) = suε

k + uε⊥
k (x), x ∈ B

d
εRω

\ sωε,

suε
k =

(
measd(B

d
εRω

\ ωε)
)−1

∫
Bd
εRω

\ωε

uε
k(x) dx,∫

Bd
εRω

\ωε

uε⊥
k (x) dx = 0,

(2.62)

and an extension ûε⊥
k (ξ) = ûε⊥

k (x) of the function

B
d
Rω

\ ω � ξ 	→ uε⊥
k (ξ) = uε⊥

k (x)

to the set ω in the class H1. Due to the last orthogonality condition in (2.62), we have
the Poincaré inequality

‖uε⊥
k ;L2(Bd

εRω
\ ωε)‖2 ≤ cε2‖∇uε⊥

k ;L2(Bd
εRω

\ ωε)‖2 = cε2‖∇uε
k;L

2(Bd
εRω

\ ωε)‖2,
and the extension in question satisfies the estimate

ε−2‖ûε⊥
k ;L2(Bd

εRω
)‖2 + ‖∇ûε⊥

k ;L2(Bd
εRω

)‖2

= εd−2‖ûε⊥
k ;H1(Bd

Rω
)‖2 ≤ chd−2‖uε⊥

k ;H1(Bd
Rω

\ ω)‖2

= c
(
h−2‖uε⊥

k ;L2(Bd
εRω

\ ωε)‖2 + ‖∇uε⊥
k ;L2(Bd

εRω
\ ωε)‖2

)
≤ C‖∇uε

k;L
2(Bd

εRω
\ ωε)‖2.

(2.63)

Combined with (2.56), (2.63), this implies

‖∇ûε
k;L

2(Ω)‖+ ‖ûε
k;L

2(∂Ω)‖ ≤ C(k),

hence, by Lemma 2.3 applied in the domain Ω(0) = Ω, the Sobolev norms ‖ûε
k;H

1(Ω)‖
are uniformly bounded. Thus, recalling (2.60), we can find an infinitely small sequence
{εj}j∈N along which we have the convergences

(2.64) λε
k → λ•

k, ûε
k → u•

k weakly in H1(Ω) and strongly in L2(Ω) and L2(∂Ω).

For any test function v ∈ C∞
c (sΩ \ 0) there exists a number εv > 0 depending on v

such that v = 0 on Ďωε for ε ∈ (0, εv). Since ûε
k = uε

k outside ωε by (2.61), the integral
identity (2.52) can be rewritten as

(∇ûε
k,∇v)Ω = λε

k(û
ε
k, v)∂Ω,

and then we can pass to the limit as εj → 0, using (2.64). This results in the new integral
identity

(2.65) (∇u•
k,∇v)Ω = λ•

k(u
•
k, v)∂Ω,

in which, by closure, the test functions can be taken in the Sobolev class H1(Ω), because
the linear set C∞

c (sΩ \ O) is dense in that class.
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Note that ‖uε
k;L

2(∂ωε)‖ tends to zero as ε → +0 by (2.48). Therefore, the integral
identities (2.52) and (2.65), the convergences (2.64), and the normalization condition
(2.56) show that

1 = 〈uε
k, u

ε
k〉ε = (1 + λε

k)
(
‖uε

k;L
2(∂Ω)‖2 + ‖uε

k;L
2(∂ωε)‖2

)
= (1 + λε

k)
(
‖ûε

k;L
2(∂Ω)‖2 + ‖uε

k;L
2(∂ωε)‖2

)
→ (1 + λ•

k)‖u•
k;L

2(∂Ω)‖2 = ‖∇u•
k;L

2(Ω)‖2 + ‖u•
k;L

2(∂Ω)‖2.
Thus, u•

k is a normalized eigenfunction of the limiting problem (1.10) corresponding to
its eigenvalue λ•

k. The proof of the next statement will be finished in Subsection 2.7,
because it remains to check estimate (2.60) and the fact that λ•

k = λ0
k.

Theorem 2.1. For the sequences (1.5) and (1.9) we have

(2.66) λε
k → λ0

k, k ∈ N.

It should be noted that the index k in (2.66) is assumed to be fixed, so that, for
sufficiently small ε > 0, “growing” eigenvalues (1.11) are excluded from consideration.

2.7. Justification of the eigenvalue asymptotics. For the role of approximate so-
lutions of the abstract equation (2.53) we take

tεp =
(
1 + λ0

p + εd−1λ(d−1)
)−1

, Uε
p = ‖Uε

p ;Hε‖−1Uε
p ,(2.67)

Uε
p (x) = v(0)p (x) + εd−1v(d−1)

p (x) + ε
(
w(0)

p (ε−1x) + rwε
p(ε

−1x)
)
.(2.68)

Here, v
(0)
p is the eigenfunction v0p itself if the eigenvalue λ0

p of problem (1.10) is simple,

and the linear combination (2.34) of the eigenfunctions v0k, . . . , v
0
k+κk−1 if λ0

p is multiple
(see condition (2.33)). The coefficient rows (2.35) are some eigenvectors of the matrix

P (k) with entries (2.39) corresponding to its eigenvalues λ
(d−1)
k , . . . , λ

(d−1)
k+κk−1. Also, w

(0)
p

and v
(d−1)
p are solutions of problems (2.18) and (2.11), (2.16), (2.24), and the solvability

of the latter problem is ensured by condition (2.36) (transformed into system (2.38)).
Finally, rwε

p is a function harmonic in Rd \ sω that satisfies

(2.69)
∣∣

rwε
p(ξ)

∣∣+ ρ
∣∣∇ξ rwε

p(ξ)
∣∣ ≤ cpερ

2−d,

this function will be fixed later on. The factor cp does not depend on ε ∈ (0, ε0].
First, we calculate the scalar products 〈Uε

p , U
ε
q 〉ε and check that

(2.70)
∣∣〈Uε

p , U
ε
q 〉ε − (1 + λ0

p)δp,q
∣∣ ≤ cpqε

d/2.

For this, we observe that, by (2.10), (2.41), and Lemma 2.3,

(∇v(0)p ,∇v(0)q )Ω + (v(0)p , v(0)q )∂Ω = (1 + λ0
p)δp,q,∣∣(∇v(0)p ,∇v(0)q )ωε

∣∣ ≤ cpqε
d,

∣∣(v(0)p , v(0)q )∂ωε

∣∣ ≤ cpqε
d−1.

It is also clear that∣∣〈v(0)p , εd−1v(d−1)
q 〉ε

∣∣ ≤ cεd−1,
∣∣〈v(0)p , ε(w(0)

q + rwε
q)〉ε

∣∣ ≤ cεd/2,

because

ε2‖w(0)
q ;Hε‖2

≤ cε2
(
εd−2

∫
Rd\ω

|∇ξw
(0)
q (ξ)|2 dξ + εd−1

∫
∂ω

|w(0)
q (ξ)|2 dsξ +

∫
∂Ω

|ξ|2(2−d) dsx

)
≤ cqε

d

and a similar estimate is valid for ε rwε
p by the assumption (2.69). Besides the coordinate

dilation x 	→ ξ, we have used formulas (2.5), (2.7) with j = 0, k = p, N = 1, and q = 0.
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Combined with elementary considerations, the above relations lead to inequality (2.70),
which implies, in particular, that for any small ε we have

(2.71) ‖Uε
p ;Hε‖ ≥ cp > 0.

We estimate the quantities δεp arising in Lemma 2.4. Applying formulas (2.47), (2.51),
and (2.67), (2.68), and also recalling one of the definitions of the norm in Hilbert space,
we obtain

δεp = ‖T εUε
p − tεpUε

p ;Hε‖ = sup |〈T εUε
p − tεpUε

p , V
ε〉ε|

= ‖Uε
p ;Hε‖−1tεp sup

∣∣(∇Uε
p ,∇V ε)Ω(ε) −

(
λ0
p + εd−1λ(d−1)

p

)
(Uε

p , V
ε)∂Ω(ε)

∣∣.(2.72)

Here the supremum is over all V ε ∈ Hε such that ‖V ε;Hε‖ = 1, and hence, by Lemma 2.3,

‖V ε;H1(Ω)‖+ ‖V ε;L2(∂Ω)‖+ ε−1/2‖V ε;L2(∂ωε)‖ ≤ c.

The expression under the last supremum sign is equal to

−(ΔxU
ε
p , V

ε)Ω(ε) +
(
∂nU

ε
p −

(
λ0
p + εd−1λ(d−1)

p

)
Uε
p , V

ε
)
∂Ω

+
(
∂nU

ε
p −

(
λ0
p + εd−1λ(d−1)

p

)
Uε
p , V

ε
)
∂ωε

.
(2.73)

The first scalar product in (2.73) vanishes, because all terms of the sum in (2.68) are
harmonic functions. On the external boundary ∂Ω we have

∂nU
ε
p (x)− (λ0

p + εd−1λ(d−1)
p )Uε

p (x) = ∂nv
(0)
p (x)− λ0

pv
(0)
p (x)

+ εd−1
(
∂nv

(d−1)
p (x)− λ0

pv
(d−1)
p (x)− λ(d−1)

p v(0)p (x) +B(0)
p (∂nΦ(x)− λ0

pΦ(x))
)

+ ε∂n
(
w(0)

p (ξ)−B(0)
p Φ(ξ) + rwε

p(ξ)
)
− ελ0

p

(
w(0)

p (ξ)−B(0)
p Φ(ξ) + rwε

p(ξ)
)

− εdλ(d−1)
p

(
w(0)

p (ξ) + rwε
p(ξ)

)
− ε2(d−1)λ(d−1)

p v(d−1)
p (x).

The first two summands on the right-hand side vanish in accordance with the definition

of the asymptotic terms v
(0)
p and v

(d−1)
p of regular type, and the moduli of the other three

terms are at most cεd by estimates (2.7) and (2.69). Thus,∣∣(∂nUε
p −

(
λ0
p + εd−1λ(d−1)

p

)
Uε
p , V

ε
)
∂Ω

∣∣ ≤ cpε
d.

On the inner boundary ∂ωε we write the identity

∂nU
ε
p (x)−

(
λ0
p + εd−1λ(d−1)

p

)
Uε
p (x)

= ∂νw
(0)
p (ξ) + ∂ν

(
ξ · ∇xv

(0)(0)
)
− λ0

pv
(0)
p (0)

+ ∂ν rwε
p(ξ)− ε

(
λ0
p + εd−1λ(d−1)

p

)
rwε
p(ξ)− rgεp(ξ),

(2.74)

where

rgεp(ξ) = ε
(
λ0
p + εd−1λ(d−1)

p

)
w(0)

p (ξ) + λ0
p

(
v(0)p (x)− v(0)p (0) + εd−1v(d−1)

p (x)
)

+ εd−1λ(d−1)
p

(
v(0)p (x) + εd−1v(d−1)

p (x)
)

− ε−1∂ν
(
v(0)p (x)− v(0)p (0)− x · ∇xv

(0)
p (0) + εd−1v(d−1)

p (x)
)
.

(2.75)

The first group of terms on the right in (2.74) vanishes due to the boundary conditions

in problem (2.18). By smoothness, the Taylor formula for v
(0)
p shows that the function

(2.75) admits the estimates ∣∣∇j
s(ξ)rg

ε
p(ξ)

∣∣ ≤ cjε, j ∈ N0.

Consequently, for small ε there exists a function satisfying (2.69) and solving the exterior
problem

−Δξ rwε
p(ξ) = 0, ξ ∈ R

d \ sω,

∂ν rwε
p(ξ)− ε

(
λ0
p + εd−1λ(d−1)

p

)
rwε
p(ξ) = rgεp(ξ), ξ ∈ ∂ω,

(2.76)
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which differs from the Neumann problem (2.13) only by a small perturbation of the
boundary condition. Under such a choice of the extra summand ε rwε

p in the Ansatz
(2.68), the expression (2.74) and the last scalar product (2.73) turn out to be zero. As a
result, using (2.67) and (2.71), we get the following estimate for the quantity (2.72):

δεp ≤ cpε
d.

Since condition (2.57) of Lemma 2.4 is fulfilled, there exists an eigenvalue τ εn(p) =

(1 + λε
n(p))

−1 of the operator T ε that satisfies inequality (2.58),∣∣τ εn(p) − (
1 + λ0

p + εd−1λ(d−1)
p

)−1∣∣ ≤ cpε
d.

For ε small, simple transformations convert this inequality into the estimate∣∣λε
n(p) − λ0

p − εd−1λ(d−1)
p

∣∣ ≤ Cpε
d

for the eigenvalue of problem (1.1), (1.2). Now our nearest goal is to show that the
indices p and n(p) coincide.

If the eigenvalue λ0
k is simple or satisfies condition (2.46) (cf. (2.42) and (2.45)), then

in the Ckε
d-neighborhood of the point λ0

k + εd−1λ
(d−1)
k we find at least one eigenvalue of

problem (1.1), (1.2), but we cannot state so far that in a small neighborhood of an eigen-
value λ0

k of multiplicity κk there are at least κk distinct eigenvalues λε
n(k), . . . , λ

ε
n(k)+κk−1.

Note that the verification of this fact allows us to obtain relation (2.60), already used
in Subsection 2.6: indeed, looking at the points λ0

1, . . . , λ
0
k we establish that n(k) ≥ k,

whence

(2.77) λε
k ≤ λε

n(k) ≤ λ0
k + εd−1λ

(d−1)
k + Ckε

d ≤ ck.

Since the situations (2.40) and (2.46) are analyzed similarly, suppose for definiteness

that we deal with the first of them (this case is more complicated), i.e., λ
(d−1)
k = . . . =

λ
(d−1)
k+κk−1 = 0. Using the second part of Lemma 2.4 and taking

(2.78) δε∗ = εdD,

where D > 0 is large but fixed, we get normalized rows of coefficients

(2.79) b(p) =
(
b
(p)
n(k), . . . , b

(p)
n(k)+κ(k)−1

)
, p = k, . . . , k + κk − 1,

for which

(2.80)

∥∥∥∥∥Uε
p −

n(k)+κ(k)−1∑
j=n(k)

b
(p)
j uε

j ;Hε

∥∥∥∥∥ ≤ 2
δε

δε∗
=

2

D
max{Ck, . . . , Ck+κk−1}.

Let Sε
p denote the sum on the left in (2.80). Taking conditions (2.56) into account, we

see that, first, ‖Sε
p ;Hε‖ = 1 and, second,

(2.81)

n(k)+κ(k)−1∑
j=n(k)

b
(p)
j b

(q)
j = 〈Sε

p ,Sε
q 〉ε = 〈Sε

p − Uε
p ,Sε

q 〉ε + 〈Uε
p ,Sε

q − Uε
q 〉ε + 〈Uε

p ,Uε
q 〉ε.

Formulas (2.70), (2.72), and (2.10) imply

(2.82) |〈Uε
p ,Uε

q 〉ε − δp,q| ≤ Cpqε
d/2.

Together with formula (2.80), this estimate shows that the right-hand side in (2.81) is
equal to δp,q + O(εd/2 +D−1), that is, if ε is small and D is large, then the rows (2.79)
are “almost orthonormal”, which is possible only if

κk ≤ κ(k).
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Since τ εn(k), . . . , τ
ε
n(k)+κ(k)−1 is the collection of eigenvalues of T ε that lie on the segment[

(1 + λ0
k)

−1 −Dεd, (1 + λ0
k)

−1 +Dεd
]
, it is easy to show that in the Ckε

d-neighborhood

of λ0
k there are the eigenvalues λε

n(k), . . . , λ
ε
n(k)+κ(k)−1. It remains to check that n(k) = k

and κ(k) = κk.
Suppose that

(2.83) n(k) + κ(k) > k + κk.

By what was proved in this and the preceding subsections, each normalized eigenfunction
uε
j of problem (1.1), (1.2) converges strongly in L2(∂Ω) to an eigenfunction u0

m(j) of

problem (1.10), and m(j) �= m(k) if j �= k. Thus, (2.83) implies that there is an
eigenvalue λε

m•(ε) and an Hε-normalized eigenfunction uε
m•(ε) such that

λε
m•(ε) → λ•

m• ∈ [0, λ0
k],

‖uε
m•(ε);L

2(∂ωε)‖ → 0, uε
m•(ε) → u•

m• �= 0 strongly in L2(∂Ω),

0 = (uε
m•(ε), u

ε
m(l))∂Ω(ε) → (u•

m• , u0
l )∂Ω = 0, l = 1, . . . , k + κk − 1

(these convergences are along some infinitely small sequence {εj}j∈N). The last orthog-
onality conditions contradict the way of constructing the monotone sequence (1.9), i.e.,
in (2.83) we should replace the inequality sign > by ≤. Looking through the eigenvalues
λ0
k−1, λ

0
k−2, . . . , λ

0
1 one by one, we conclude that n(k) = k and κ(k) = κk.

Thus, the eigenvalues located in the cεd−1-neighborhood of an eigenvalue λ0
k of mul-

tiplicity κk (the case of κk = 1 is not excluded) are precisely λε
k, . . . , λ

ε
k+κk−1. This

completes the proof of Theorem 2.1. Moreover, the following statement has been estab-
lished.

Theorem 2.2. The rate of convergence in (2.66) is O(εd−1), and in the case of (2.33)
we have

(2.84) |λε
k − λ0

k| ≤ Ckε
d−1, |λε

p − λ0
k| ≤ ckε

d, p = k + 1, . . . , k + κk − 1.

2.8. Full asymptotic expansions. If λ0
k is a simple eigenvalue of problem (1.10), then

the role of approximate solutions of the abstract equations (2.53) will be played by

tεkN =

(
1 + λ0

k +
N∑

j=d−1

εjλ
(j)
k

)−1

and Uε
kN = ‖Uε

kN ;Hε‖−1Uε
kN ,

where N is an arbitrary fixed integer, and

Uε
kN (x) =

N∑
j=1

εj(v
(j)
k (x) + εw

(j)
k (ε−1x)) + ε1+N

rwε
kN (ε−1x).

Here, the v
(j)
k and w

(j)
k are the smooth type and boundary layer type summands con-

structed in Subsections 2.2 and 2.3, and rwε
kN is a small correction (cf. formulas (2.76)

and (2.69)). Repeating with clear modifications the calculations made in the preceding
subsection, we deduce the estimate

δεkN = ‖T εUε
kN − tεkNUε

kN ;Hε‖ ≤ CkNεN+1,

which means, by Lemma 2.4, that the segment
[
tεkN−CkNεN+1, tεkN+ckNεN+1

]
contains

an eigenvalue of the operator T ε. By Theorem 2.2, this eigenvalue is τ εk = (1 + λε
k)

−1.
Consequently,

|(1 + λε
k)

−1 − tεkN | ≤ CkNεN+1
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or

(2.85)

∣∣∣∣λε
k − λ0

k −
N∑

j=d−1

εjλ
(j)
k

∣∣∣∣ ≤ CkNεN+1 for ε ∈ (0, εkN ].

Now we put

δ∗ =
1

2
min

{
1

1 + λ0
k

− 1

1 + λ0
k+1

,
1

1 + λ0
k−1

− 1

1 + λ0
k

}
and apply the second part of Lemma 2.4. Again by Theorem 2.2, for small ε the segment
[tεkN−δ∗, t

ε
kN+δ∗] contains precisely one eigenvalue τ εk of T ε, i.e., formula (2.59) reshapes

to

‖Uε
kN − bεku

ε
k;Hε‖ ≤ 2δ−1

∗ δεkN ≤ c∗kNεN+1,

where |bεk| = 1. Thus, for uε
k = bεk‖Uε

kN ;Hε‖uε
k we obtain the estimate

(2.86)

∥∥∥∥uε
k −

N∑
j=0

εj(v
(j)
k + εw

(j)
k );H1(Ω(ε))

∥∥∥∥ ≤ CkNεN+1.

Note that the smallness of the error term εN+1
rwε
kN has allowed us to remove it from the

asymptotic construction.
We state the result

Theorem 2.3. Let λ0
k be a simple eigenvalue of problem (1.10). For any natural N ≥

d − 1, there exist positive quantities εkN and ckN , CkN such that for ε ∈ (0, εkN ] the
eigenvalue λε

k of problem (1.1), (1.2) and the corresponding eigenfunction uε
k, which is,

in general, not normalized, but is such that

‖uε
k;L

2(∂Ω)‖ = ‖v0k;L2(∂Ω)‖+O(ε) = 1 +O(ε),

satisfy inequalities (2.85) and (2.86).

Under condition (2.33), suppose that N terms of the series (2.1) for the eigenval-
ues λε

k, . . . , λ
ε
k+κk−1 have been constructed; then relations of the form (2.85) are ful-

filled for them. The situation with eigenfunctions is more complicated because of the
possible uncertainty in the choice of the coefficients of the linear combinations (2.34),
p = k, . . . , k + κk − 1, see Subsection 2.4. However, in the case where (2.42) is supple-
mented by the requirement v0k+1(0) = 0 (cf. the restriction (2.46)), estimates of the form
(2.86) are fulfilled, but to completely identify the partial sums of the series involved one

needs to calculate the summands v
(N+1)
p , v

(N+2)
p , and w

(N+1)
p , p = k, k + 1.

We do not present precise statements concerning the case of multiple eigenvalues of
the limiting problem (1.10): these statements are bulky, but fairly traditional.

§3. Asymptotics in the high-frequency range

3.1. External Steklov problem. The variational version of problem (1.13) appeals to
the integral identity [20]

(3.1) (∇w,∇v)Rd\ω = μ(w, v)∂ω,

in which, under the adopted restriction d ≥ 3, the test functions can be taken in the
space H obtained by completion from the linear set C∞

c (Rd \ω) (infinitely differentiable
functions with compact support) in the Dirichlet norm ‖∇w;L2(Rd\ω)‖. It is well known
and not hard to check with the help of the one-dimensional Hardy inequality (2.49) that
the space H consists of all functions w ∈ H1

loc(R
d \ω) with finite weighted Sobolev norm

(3.2)
(
‖∇w;L2(Rd \ ω)‖2 + ‖ρ−1w;L2(Rd \ ω)‖2

)1/2
.
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Recall that O ∈ ω, i.e., the weight factor ρ−1 in the last summand is bounded in Rd \ω.
In the Hilbert space H we introduce the scalar product6

(3.3) 〈w, v〉 = (∇w,∇v)Rd\ω + (w, v)∂ω

and the “trace” operator T ,

(3.4) 〈Tw, v〉 = (w, v)∂ω, w, v ∈ H.

Obviously, T is a positive and continuous symmetric operator; hence, T is selfadjoint.
Since ∂ω is a bounded surface, the operator T is compact, because so is the embedding
H ⊂ L2(∂ω) (see, e.g., [20, Chapter 1]). Thus, in accordance with Theorems 10.1.5 and
10.2.2 in [21], the spectrum of T consists of the essential spectrum σe(T ) = {τ = 0} and
the discrete spectrum σd(T ) forming an infinitely small positive sequence

(3.5) τ1 ≥ τ2 ≥ τ3 ≥ . . . ≥ τk ≥ . . . → +0,

where the eigenvalues are listed with regard to multiplicity. The root subspace of T
is {w ∈ H : w = 0 ∂ω}, i.e., τ = 0 is an eigenvalue of infinite multiplicity. The
eigenvectors w1, w2, w3, . . . , wk, . . . corresponding to the normal eigenvalues (3.5) can be
chosen so as to satisfy the orthogonality and normalization conditions

(3.6) 〈wk, wl〉 = δk,l, k, l ∈ N.

By the definitions (3.4) and (3.3), the integral identity (3.1) is equivalent to the ab-
stract equation

(3.7) Tw = τw in H,

and the spectral parameters are related to each other by the formula

(3.8) τ = (1 + μ)−1.

In accordance with (3.8), the spectrum of the variational problem (3.1) (or (1.13) in
the differential form) coincides with a shift of the image of the set σd(T ) \ {0} under
inversion: the point τ = 0 is taken to infinity and, of course, cannot affect the spectrum
of the external Steklov problem. The sequence (3.5) is transformed to the unbounded
monotone positive sequence (1.12), and μ0

k = τ−1
k − 1. For the role of the eigenfunctions

w0
1, w

0
2, w

0
3, . . ., w

0
k, . . . ∈ H we take w0

l = τ
−1/2
l wl, l ∈ N. Relations (3.6)–(3.8), (3.4),

(3.1) show that

(3.9) (w0
k, w

0
l )∂ω = 〈Tw0

k, w
0
l 〉 = τ

1/2
k τ

−1/2
l 〈w0

k, w
0
l 〉 = δk,l, k, l ∈ N.

Being solutions of an elliptic boundary-value problem in a domain with smooth bound-
ary, the eigenfunctions are infinitely differentiable everywhere in Rd \ ω. The harmonic
functions w0

k decay at infinity by the finiteness of the weight norm (3.2); therefore, they
can be represented as in (2.5), (2.7). Finally, the strong maximum principle implies that
the first eigenvalue μ0

1 is simple and that the corresponding eigenfunction can be taken
positive.

6For d ≥ 3, the form (∇w,∇v)
Rd\ω (without the last term in (3.3)) remains a scalar product in H,

but it is not so in the planar case, see Subsection 5.2.
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3.2. Algorithm of constructing the asymptotics. We adopt the following asymp-
totic Ansätze:

λε
κ(ε) ∼

1

ε

∞∑
j=0

εjμ
(j)
k ,(3.10)

uε
κ(ε)(x) ∼

∞∑
j=0

εj
(
w

(j)
k (ξ) + εd−2v

(j)
k (x)

)
,(3.11)

where the μ
(0)
k = μ0

k are the eigenvalues of problem (1.13), and the w
(0)
k = w0

k are
the corresponding eigenfunctions. The remaining ingredients in (3.10), (3.11) are to be
determined. It should be emphasized that, since the factor ε−1 is large, the eigenvalue
(3.10) lies in the high-frequency range of the spectrum and, therefore, has no permanent
order number in (1.5). Note that as the main component in the asymptotics of the
eigenvalue (3.10), we have a summand of boundary layer type, but, in essence, this does
not influence iteration processes, because the limiting problems on the domains Ω and
Rd \ sω, finite and infinite, are in fact of equal value within the framework of the method
of matching asymptotic expansions (see explanations in Subsection 6.1).

Assuming that μ0
k is a simple eigenvalue, we repeat with minor modifications the as-

ymptotic procedure described in Subsection 2.2 and form the boundary-value problems

for the functions w
(j)
k and v

(j)
k that satisfy relations (2.4), (2.6) and (2.5), (2.7) (these

expansions will need a posteriori verification). We plug the Ansätze (3.10) and (3.11) in
problem (1.1), (1.2) and collect the coefficients of the same powers of the small parame-
ter ε, written in the slow variables x and the fast variables ξ. The boundary layer type
terms solve the interior Steklov problems

(3.12) −Δξw
(j)
k (ξ) = 0, ξ ∈ R

d \ sω, ∂νw
(j)
k (ξ)− μ0

kw
(j)
k (ξ) = g

(j)
k (ξ), ξ ∈ ∂ω,

with the right-hand sides

g
(j)
k (ξ) =

j∑
q=1

μ
(q)
k w

(j−q)
k (ξ)−

j+2−d∑
l=0

∂ν
(
ρlV

(j−l+2−d)
kl (ϑ)

)
+

j+2−d∑
q=0

μ
(q)
k

j−q+2−d∑
l=0

ρlV
(j−q−l+2−d)
kl (ϑ).

(3.13)

Note that the factor ε−1 in (3.10) makes the orders of the expressions ∂n = ε−1∂ν and
λε = ε−1με equal, i.e., it is responsible for the arising of the Steklov boundary conditions
in problems (1.13) and (3.12). For the same reason, the summand λε

κ(ε)u
ε
κ(ε)(x) dominates

∂nu
ε
κ(ε) on the exterior part ∂Ω of the boundary ∂Ω(ε). Therefore, the regular type terms

v
(j)
k can be found as solutions of the following Dirichlet problem for the Laplace equation:

(3.14) −Δxv
(j)
k (x) = 0, x ∈ Ω, v

(j)
k (x) = f

(j)
k (x), x ∈ ∂Ω,

where

f
(j)
k (x) =

1

μ0
k

(
∂nv

(j−1)
k (x)−

j∑
q=1

μ
(q)
k v

(j−q)
k (x) +

j−1∑
l=0

∂n
(
r2−d−lW

(j−1−l)
kl (ϑ)

)
+

j∑
q=0

μ
(q)
k

j−q∑
l=0

r2−d−lW
(j−q−l)
kl (ϑ)

)
.

(3.15)

Writing (3.13) in the form

(3.16) g
(j)
k (ξ) = μ

(j)
k w

(0)
k (ξ) + g

(j)
k (ξ),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ASYMPTOTIC EXPANSIONS 295

we observe that, first, the remainder g
(j)
k depends on the collections of quantities

(3.17) μ
(0)
k , . . ., μ

(j−1)
k ; w

(1)
k , . . ., w

(j−1)
k ; v

(0)
k , . . ., v

(j+2−d)
k ,

and, second, a single compatibility condition for problem (3.12) (simple eigenvalue plus
the Fredholm alternative) looks like this:

(3.18) μ
(j)
k = −(g

(j)
k , w0

k)∂ω.

The said above allows us to determine μ
(j)
k and w

(j)
k in (3.10) and (3.11) as soon as the

quantities (3.17) are known. Since the harmonic function w
(j)
k ∈ H decays at infinity, it

admits the expansion (2.5), (2.7), and the arbitrariness in its choice is eliminated by the
orthogonality condition

(w
(j)
k , w0

k)∂ω = 0, j ∈ N.

Now all the ingredients of the sum (3.15) have become known, and the solution v
(j)
k ∈

C∞(sΩ) of problem (3.14) (it exists and is unique for clear reasons) satisfies (2.4) and
(2.6).

We have finished the description of the asymptotics. It is quite transparent and needs
no inductive decoration.

3.3. Specific formulas. Since the first eigenfunction w0
1 of problem (1.13) is positive,

so is the coefficient B0
1 in the formula

(3.19) w0
1(ξ) = B0

1Φ(ξ) +O(|ξ|1−d), |ξ| → +∞,

(cf. (2.25)). Indeed, if B0
1 = 0, then the harmonic function w0

1 expands in a convergent
series

(3.20)
∞∑
l=1

ρ2−d−lW 0
1l(ϑ)

in spherical functions, each of which (for l ≥ 1) necessarily changes its sign on the unit
sphere Sd−1 (see, e.g., the book [23]). Thus, no leading term in (3.20) can ensure that
w0

1(ξ) be positive for large |ξ|, so that all terms must be zero, which is surely impossible.
This allows us to think of the case where B0

k �= 0 as typical, restricting to it when
deducing specific formulas. Note that for a multiple eigenvalue we can always arrange
that only one eigenfunction satisfy the above requirement (see Subsection 3.4).

Lemma 3.1. We have

μ
(1)
k = · · · = μ

(d−3)
k = 0, w

(1)
k = · · · = w(d−3) = 0,(3.21)

μ
(d−2)
k = −(B0

k)
2G0(0, 0) ≥ 0,(3.22)

where G0 is the regular part of the Green function of the Dirichlet problem for the Laplace
operator in Ω

(3.23) G(x, y) = Φ(x− y) +G0(x, y).

Proof. Formulas (3.13) show that

g
(j)
k (ξ) =

j−1∑
q=1

μ
(q)
k w

(j−q)
k (ξ), j = 1, . . . , d− 3,

and we get (3.21) by easy arguments (cf. the first part of the proof of Lemma 2.1). As
a result, formulas (3.16) and (3.13) for j = d− 2 take the form

(3.24) g
(d−2)
k (ξ) + μ

(d−2)
k w0

k(ξ) = g
(d−2)
k (ξ) = μ0

kv
(0)
k (0) + μ

(d−2)
k w

(0)
k (ξ)
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in accordance with (2.9), j = 0, and ∂ν(ρ
0V

(0)
k0 (ϑ)) = 0. As before (see the verification

of formula (2.22) in Lemma 2.1), we apply the Green formula in the domain Bd
R \ sω and

calculate the quantity (3.18) with the index j = d− 2:

μ
(d−2)
k = −μ0

kv
(0)
k (0)

∫
∂ω

w0
k(ξ) dξ = v

(0)
k (0)

∫
∂ω

(∂ν1− μ0
k1)w

0
k(ξ) dsξ

= v
(0)
k (0) lim

R→∞

∫
∂Bd

R

∂w0
k

∂ρ
(ξ) dsξ = −v

(0)
k (0)B0

k.

(3.25)

The function v
(0)
k itself is a solution of problem (3.14) with the right-hand side

(3.26) f
(0)
k (x) = −(μ0

k)
−1μ0

kr
2−dW

(0)
k0 (ϑ) = −B0

kΦ(x).

Consequently, the representation (3.23) of the Green function ensures the identity

(3.27) v
(0)
k (x) = B0

kG0(x, 0).

Now, using (3.22), we get the desired relation (3.25). �

By the maximum principle, the regular part G0(x, 0) = G(x, 0) − Φ(x) of the Green
function is a negative smooth function on sΩ; hence, the quantity (3.22) is positive. In
other words, if the domain (1.3) is viewed as a result of truncation of the space Rd with
a small hole (1.4) by the surface ∂Ω, then under the condition B0

k �= 0, the eigenvalue
ε−1μk of the external Steklov problem in the domain Rd\Ďωε acquires a positive increment
of order of εd−3.

3.4. A multiple eigenvalue. Suppose that for the sequence (1.12) we have

(3.28) μ0
m−1 < μ0

m = . . . = μ0
m+κm−1 < μ0

m+κm
,

i.e., μ0
m is an eigenvalue of multiplicity κm > 1 for problem (1.13). The coefficients in

expansions of the form (3.19) for the corresponding eigenfunctions w0
m, . . ., w0

m+κm−1 ∈ H
will be denoted by B0

m, . . ., B0
m+κm−1. In the Ansatz (3.11) we put

(3.29) w(0)
p (ξ) = a(0)p,mw0

m(ξ) + . . .+ a
(0)
p,m+κm−1w

0
m+κm−1(ξ)

and, accordingly, write the representations

(3.30) B(0)
p = a(0)p,mB0

m + . . .+ a
(0)
p,m+κm−1B

0
m+κm−1(ξ),

with unknown rows of coefficients (2.35). We assume the orthogonality and normalization
conditions (2.41) and (3.9). Repeating the calculations of the preceding subsection, we

see that, first, the regular type summand v
(0)
p (x) can be found by formula (3.27) with

the coefficient (3.30) and the regular part of the Green formula (3.23), and second, the
compatibility conditions

(g(d−2)
p , w0

q)∂w = 0, q = m, . . . ,m+ κm − 1,

for problem (3.12) with the right-hand side g
(d−2)
p as in (3.24) turn into the algebraic

system

(3.31) μ(d−2)
p a

(0)
(p) = P (m)a

(0)
(p) in R

κm .

Here, the symmetric positive matrix P (m) with the entries

(3.32) P (m)
pq = −B(0)

p B(0)
q G0(0, 0)

has rank at most 1, so that its eigenvalues satisfy

(3.33) 0 = μ(d−2)
m = . . . = μ

(d−2)
m+κm−2 ≤ μ

(d−2)
m+κm−1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ASYMPTOTIC EXPANSIONS 297

The corresponding eigenvectors provide the coefficients of the linear combinations (3.29).
Preserving the orthogonality and normalization conditions (3.9), we can fix the eigen-
functions of problems (1.13) so that

(3.34) B0
m = . . . = B0

m+κm−2 = 0.

If B0
m+κm−1 �= 0, then on the list (3.33) we find the positive eigenvalue

μ
(d−2)
m+κm−1 = −(B0

m+κm−1)
2G0(0, 0) > 0

(cf. (3.22)), but if B0
m+κm−1 = 0, then the matrix P (m) and all its eigenvalues (3.33) are

zero.
Finally, observe that, at that stage of the asymptotic procedure, we can fully fix the

rows a(m) = (0, 1) and a
(m)
(m+1) = (1, 0) only in the case where

(3.35) κm = 2, μ
(d−2)
m+1 > 0

(cf. (2.42)). If at least one of the conditions (2.23) is violated, then some arbitrariness
in the choice of the vectors of the matrix P (m) survives. One can try to remedy this by
constructing lower asymptotic terms (cf. Subsection 4.2), but we shall not go this way,
because the information obtained above suffices for detecting the eigenvalues with stable
asymptotics (1.11).

3.5. Justification of the asymptotics of eigenvalues. As in Subsection 2.7, we
apply Lemma 2.4 about the “near-eigenvalues” and “near-eigenfunctions” of the opera-
tor T ε. Unfortunately, modification of the asymptotic structure requires the introduction
of the new scalar product

(3.36) 〈uε, vε〉ε = (∇uε,∇vε)Ω(ε) + ε−1(uε, vε)∂Ω(ε)

in the same Hilbert space Hε = H1(Ω(ε)) (see Lemma 2.3). The corresponding changes
touch the trace operator T ε defined as in (2.51), the scalar product (3.36), and the
sequence (1.7) of its eigenvalues, which are now related to the eigenvalues (1.5) of prob-
lem (1.1), (1.2) by the formula

(3.37) τ εk = (ε−1 + λε
k)

−1 = ε(1 + ελε
k)

−1.

Combining the previous notation of §3 with the new content makes no ambiguity, but
allows us to use some formulas from Subsections 2.5 and 2.7.

Assuming (3.28), we take the following approximate solutions of the abstract spectral
equation (2.53):

tεp = ε
(
1 + μ0

m + εd−2μ(d−2)
p

)−1
, Uε

p = ‖Uε
p ;Hε‖−1Uε

p ,(3.38)

Uε
p (x) = w(0)

p (ε−1x) + εd−2w(d−2)
p (ε−1x) + εd−2v(0)p (x) + εd−2

rvεp(x).(3.39)

Here p = m, . . . ,m + κm − 1, w
(0)
p is the linear combination (3.29) the column of coef-

ficients of which is the eigenvector a
(0)
(p) of the matrix P (m) with the entries (3.32) that

corresponds to its eigenvalue μ
(d−2)
p . Also, v

(0)
p is the solution of the Dirichlet prob-

lem (3.14) with the indices j = 0, k = p and with the right-hand side (3.26), and w
(d−2)
p

is the solution of the exterior Steklov problem (3.12) with the indices j = d−2, k = p and
with the right-hand side (3.24) – the compatibility conditions for that problem were re-
shaped to the algebraic system (3.31). Finally, rvεp is a function harmonic in Ω, satisfying
the estimate

(3.40) |rvεp(x)|+
∣∣∇rvεp(x)

∣∣ ≤ cpε
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and fixed in what follows in such a way that

(3.41) Uε
p (x) = O(εd−1), x ∈ ∂Ω.

We repeat the arguments of Subsection 2.7 with some modifications and considerable
simplifications. First, we check that

(3.42) |〈Uε
p , U

ε
q 〉ε − εd−2(1 + μ0

p)δp,q| ≤ cpqε
3(d−2)/2, p, q = m, . . .,m+ κm − 1.

For this, observe that, first, by (3.41), the expression ε−1|(Uε
p , U

ε
q )∂Ω| does not exceed

cpqε
−1+2(d−1) ≤ Cpqε

d−1, and second, the estimate (2.7) for the rate of decay of w
(0)
l and

also the orthogonality and normalization conditions (3.9), (2.41) show that(
∇xw

(0)
p ,∇xw

(0)
q

)
Ω(ε)

+ ε−1(w(0)
p , w(0)

q )∂ωε

= εd−2
(
(∇ξw

(0)
p ,∇ξw

(0)
q )Rd\ω + (w(0)

p , w(0)
q )∂ω

)
+O

(∫
Rd\Ω

ε−2|ξ|2(1−d) dx

)
= εd−2(μ0

p + 1)δp,q +O(ε2(d−2)).

Here, we have made the coordinate dilation x 	→ ξ and referred to the integral identity

(3.1) with w = w
(0)
p , v = w

(0)
q , and μ = μ0

p. Now inequality (3.42) is ensured by the
simple estimates∥∥εd−2∇xw

(d−2)
l ;L2(Ω(ε))

∥∥2 + ∥∥εd−2w
(d−2)
l ;L2(∂ωε)

∥∥2 ≤ clε
2(d−2),∥∥εd−2∇x(v

(0)
l + rvεl );L

2(Ω(ε))
∥∥2 + ∥∥εd−2(v

(0)
l + rvεl );L

2(∂ωε)
∥∥2 ≤ clε

2(d−2).

At the next step of justification of the asymptotics we deal with the quantities occur-
ring in Lemma 2.4:

δεp = ‖T εUε
p − tεpUε

p ;Hε‖ = sup |〈T εUε
p − tεpUε

p , V
ε〉ε|

= ‖Uε
p ;Hε‖−1tεp sup

∣∣ε−1
(
1 + μ0

m + εd−2μ(d−2)
p

)
(Uε

p , V
ε)∂Ω(ε)

− (∇xU
ε
p ,∇xV

ε)Ω(ε) − ε−1(Uε
p , V

ε)∂Ω(ε)

∣∣
= ‖Uε

p ;Hε‖−1tεp sup
∣∣(∇xU

ε
p ,∇xV

ε)Ω(ε)+ ε−1
(
μ0
m+ εd−2μ(d−2)

p

)
(Uε

p , V
ε)∂Ω(ε)

∣∣
≤ cε1−d/2ε sup

∣∣(ΔxU
ε
p , V

ε)Ω(ε)+
(
∂nU

ε
p − ε−1(μ0

m+ εd−2μ(d−2)
p )Uε

p , V
ε
)
∂Ω(ε)

∣∣.
(3.43)

Here the supremum is over all V ε ∈ Hε such that ‖V ε;Hε‖ = 1, and for the last passage
we have used (3.42), (3.38), and the Green formula on Ω(ε). Since all terms in (3.39) are
harmonic functions, we see that (ΔxU

ε
p , V

ε)Ω(ε) = 0.
The correction term rvεp in (3.39) is chosen so that, besides (3.41), to ensure the relation

(3.44) ∂nU
ε
p (x)− ε−1(μ0

m + εd−2μ(d−2)
p )Uε

p (x) = O
(
ε(3d−5)/2

)
, x ∈ ∂Ω.

Then we shall have the following inequality, needed in the sequel:∣∣(∂nUε
p − ε−1(μ0

m + εd−2μ(d−2))Uε
p , V

ε
)
∂Ω

∣∣
≤ cpε

(3d−5)/2‖V ε;L2(∂Ω)‖ ≤ cpε
−2+3d/2‖V ε;Hε‖ = cpε

−2+3d/2.
(3.45)
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On the surface ∂Ω we have

∂nU
ε
p (x)− ε−1

(
μ0
m + εd−2μ(d−2)

p

)
Uε
p (x)

= − ε−1μ0
mεd−2

(
v(0)p (x) +B(0)

p Φ(x)
)

+ εd−2
(
∂nrvεp(x)− ε−1(μ0

m + εd−2μ(d−2)
p )rvεp(x)− rgεp(x)

)
,

(3.46)

rgεp(x) = ε−1μ0
mε2−d

(
w(0)

p (ξ)−B(0)
p Φ(ξ)

)
+ ε−1μ(d−2)

p

(
w(0)

p (ξ) + εd−2w(d−2)
p (ξ) + εd−2v(0)p (x)

)
− ∂n

(
ε2−dw(0)

p (ξ) + w(d−2)
p (ξ) + v(0)p (x)

)
+ ε−1μ0

pw
(d−2)
p (ξ).

(3.47)

The first term on the right in (3.46) vanishes due to the boundary condition in problem

(3.14), (3.26) for v
(0)
p . Thus, to eliminate the expression (3.46) completely, we need to

solve the problem

−Δxrvεp(x) = 0, x ∈ Ω,

ε∂nrvεp(x)− (μ0
m + εd−2μ(d−2)

p )rvεp(x) = εrgεp(x), x ∈ ∂Ω.
(3.48)

Because of the small parameter at the derivative ∂n and the “incorrect” sign of the free
term, we cannot claim that this problem is uniquely solvable. However, relation (3.44)
only requires an approximate solution, which can be found easily with the help of iterated
solutions of the Dirichlet problem for the Laplace equation in Ω, because the right-hand
side of (3.47) is smooth and satisfies |∇j

srgεp(x)| ≤ cjp for j ∈ N0, in accordance with

formulas (2.5), (2.7), and (3.27) for w
(d−2)
p , w

(0)
p , and w

(0)
p . Note that inequality (3.40)

for the approximate solution is ensured precisely by those estimates and by the coefficient
ε of rgεp in the boundary condition (3.48).

So, the exponent of the power of ε occurring on the right in (3.44) can be made as large
as we wish, but the arising of O(εd−1) in (3.41) is dictated by the requirement (3.40) and

also the fact that w(d−1)(ξ) = O(εd−2) and w
(0)
p (ξ)+ εd−2v

(0)
p (x) = w

(0)
p (ξ)−B

(0)
p Φ(ξ) =

O(εd−1) on ∂Ω.
Now we work with the last scalar product in the chain (3.43), restricted to the inner

part ∂ωε of the surface ∂Ω(ε). Recalling the Steklov conditions in problems (1.13) and

(3.12), (3.24) for w
(0)
p and w

(d−2)
p , we see that on ∂ωε we have

∂nU
ε
p (x)− ε−1

(
μ0
m + εd−2μ(d−2)

p

)
Uε
p (x) = ε−1

(
∂νw

(0)
p (ξ)− μ0

mw(0)
p (ξ)

)
+ εd−3

(
∂νw

(d−2)
p (ξ)− μ0

mw(d−2)
p (ξ)− μ(d−2)

p w(0)
p (ξ)− μ0

mv(0)p (0)
)

+ εd−2∂n
(
v(0)p (x) + rvεp(x)

)
− εd−3μ0

m

(
v(0)p (x)− v(0)p (0) + rvεp(x)

)
− ε2d−5μ(d−2)

p w(d−2)
p (ξ)− ε2d−5μ(d−2)

p

(
v(0)p (x) + rvεp(x)

)
.

Here, the first two expressions on the right-hand side vanish, and the moduli of the

other terms are dominated by cpε
d−2, which follows from the Taylor formula for v

(0)
p and

estimate (3.40) for rvεp. As a result,∣∣(∂nUε
p − ε−1(μ0

m + εd−2μ(d−2)
p )Uε

p , V
ε
)
∂ωε

∣∣
≤ cpε

d−2(measd−1 ∂ωε)
1/2‖V ε;L2(∂ωε)‖

≤ cpε
d−2ε(d−1)/2ε1/2‖V ε;Hε‖ = cpε

−2+3d/2.

(3.49)

We summarize. By (3.45) and (3.49), the quantity (3.43) admits the estimate

δεp ≤ cpε
1−d/2εε−2+3d/2 = cpε

d.
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Hence, by Lemma 2.4, there is an eigenvalue τ εMε(p) of the operator T ε such that

|τ εMε(p) − tεp| ≤ cpε
d.

We transform this relation, substituting formulas (3.37) and (3.38) in it, to obtain∣∣λε
Mε(p) − ε−1(μ0

m + εd−2μ(d−2)
p )

∣∣
≤ εdε−1

(
1 + μ0

m + εd−2μ(d−2)
p

)
(ε−1 + λε

Mε(p)) ≤ Kpε
d−2(1 + ελε

Mε(p)).
(3.50)

In particular, it follows that

λε
M(p) ≤ ε−1(μ0

m + εd−2μ(d−2)
p ) +Kpε

d−2(1 + ελε
Mε(p)),

i.e., for ε ∈ (0, εp], where εp = (Kp/2)
1/(d−1), we have the inequality λε

Mε(p) ≤ cpε
−1,

which brings formula (3.50) to the form

(3.51)
∣∣λε

Mε(p) − ε−1
(
μ0
m + εd−2μ(d−2)

p

)∣∣ ≤ Cmεd−2 for ε ∈ (0, εp].

The next (and last) step in the justification procedure for our asymptotics consists
of applying the second part of Lemma 2.4, and then verifying the fact that at least
κm distinct eigenvalues of problem (1.1), (1.2) satisfy inequality (3.51), possibly, with a
slightly larger majorant, i.e., with the change Cm 	→ Dm > Cm. Note that this step is
not needed in the case of a simple (κm = 1) eigenvalue or in the case where (3.33) is
fulfilled for p = m+ κm − 1. In the case of (3.33) for p = m, . . . ,m+ κm − 2, or if

(3.52) B0
m = . . . = B0

m+κm−1 = 0 and μ(d−2)
m = . . . = μ

(d−2)
m+κm−2 = 0,

the arguments are similar; therefore, as in Subsection 2.7, we restrict ourselves to con-
sidering the harder case (3.52) of the complete degeneration of the matrix P (m).

We take the number (2.78) and use Lemma 2.4 to find normalized rows

b(p) = (b
(p)
Nε(m), . . ., b

(p)
Nε(m)+Kε(m)−1),

for which, by (2.59), we have

(3.53)

∥∥∥∥∥Uε
p −

Nε(m)−Kε(m)−1∑
j=Nε(m)

b
(p)
j uε

j : Hε

∥∥∥∥∥ ≤ 2
δεp
δε∗

≤ 2
Cm

Dm
.

Here, uε
Nε(m), . . ., u

ε
Nε(m)+Kε(m)−1 are the eigenvectors of the operator (the eigenfunc-

tions of problem (1.1), (1.2)) orthonormal in the space Hε with the scalar product (3.36)
and corresponding the eigenvalues τ εj that satisfy

(3.54) τ εj ∈
[
ε(1 + μ0

m)−1 − εdDm, ε(1 + μ0
m)−1 + εdDm

]
.

Now, we can calculate as in (2.81) and employ formula (3.42), which is implied by (2.82),
to deduce that, for ε small and Dm large, the rows b(m), . . ., b(m+κm−1) ∈ Rκ

m are “almost
orthonormal”, i.e.,∣∣∣∣∣

Nε(m)+Kε(m)−1∑
j=Nε(m)

b
(p)
j b

(q)
j − δp,q

∣∣∣∣∣ ≤ Cm

(
εd/2 +D−1

m

)
,

which is possible only if Kε(m) ≥ κm.
We have proved the following statement.

Theorem 3.1. If μ0
m is an eigenvalue of multiplicity κm for problem (1.13) (cf. (3.28)),

then in the sequence (1.5) of eigenvalues of problem (1.1), (1.2) there exist elements
λε
Mε(m), . . ., λ

ε
Mε(m+κm−1) with strictly increasing indices that satisfy (3.5).
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Observe that formula (3.53) with large Dm shows that the projections of the approxi-
mate solutions Uε

m, . . .,Uε
m+κm−1 to the linear hull of the eigenfunctions of problem (1.1),

(1.2) with the eigenvalues (3.54) have norms 1 +O(D−1
m ).

Finally, for a simple eigenvalue μ0
k, the iteration processes of Subsection 3.2 have led to

constructing the full formal asymptotic series (3.10). Repeating the calculations before
Theorem 3.1 with minor compilations, we arrive at the central claim of this section.

Theorem 3.2. Let μ0
k be a simple eigenvalue of the exterior Steklov problem (1.13) (or

(3.1) in the variational setting). For any N ∈ N we can find two quantities εkN > 0 and
ckN > 0 such that, for ε ∈ (0, εkN ], the singularly perturbed Steklov problem (1.1), (1.2)
has an eigenvalue λε

Mε(k) such that∣∣∣∣λε
Mε(k) − ε−1μ0

k −
N∑

j=d−2

εj−1μ
(j)
k

∣∣∣∣ ≤ ckNεN .

Here the μ
(j)
k are the coefficients of the formal asymptotic series (3.10) given by formu-

las (3.18), and the number Mε(k) of the element λε
Mε(k) in the sequence (1.5) grows

unboundedly as ε → +0.

§4. Asymptotics of eigenvalues of surface waves

4.1. Limiting problems. Since the construction of asymptotic expansions for solutions
of the spectral problem (1.14)–(1.16) of the linear theory of surface waves, as stated
in Subsection 1.2, does not differ in essence from the procedures described in §§2 and
3, we only outline the presentation in this section. In particular, below we indicate
only the principal asymptotic correction terms in the case of simple eigenvalues. In
the low-frequency range, the higher-order terms can be found as before without any
complications, but in the high-frequency range we cannot even construct the higher-
order terms, because new effects of boundary layer type arise (see Subsections 4.4 and
5.3).

As ε → +0, the ice-hole in Ω disappears, giving rise to the limiting problem

−Δv(x) = 0, x ∈ Ξ, ∂nv(x) = 0, x ∈ Υ ∪ Ω,(4.1)

∂zv(x) = λv(x), x ∈ Σ := Σ1 ∪ · · · ∪ ΣJ ,(4.2)

the spectrum of which is known to be discrete, this is a positive, nonbounded, and
monotone sequence of eigenvalues of the form (1.9). The corresponding eigenfunctions
v01 , v

0
2 , . . ., v

0
k, . . . ∈ H1(Ω) can be chosen so as to satisfy the orthogonality and normal-

ization conditions

(4.3) (v0k, v
0
l )Σ = δk,l, k, l ∈ N.

It should be mentioned especially that the eigenfunctions v0j are not smooth everywhere

in sΞ, but may have singularities on the contours Γ1, . . .,ΓJ where the type of boundary
conditions changes.

The coordinate dilation

(y, z) = x 	→ ξ = (η, ζ) = (ε−1y, ε−1z)

and the formal passage to ε = 0 transform the domains Ξ and Ω(ε), ωε to the half-space
R3

− and the sets ∂R3
− \ sω and ω on its surface.

The second limiting problem looks like this:

−Δξw(ξ) = 0, ξ ∈ R
3
−, ∂zw(η, 0) = 0, η ∈ R

2 \ sω,(4.4)

∂zw(η, 0) = μw(η, 0), η = (η1, η2) ∈ ω.(4.5)
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Since the spectral parameter μ is involved in the Steklov boundary condition (4.5) on a
finite part of the boundary, we can repeat the arguments of Subsection 3.1 to make sure
that the variational setting of problem (4.4), (4.5), i.e.,

(4.6) (∇ξw,∇ξv)R3
−
= μ(w, v)ω, v ∈ H,

is realized on the weighted space with the norm

‖w;H‖ =
(
‖∇ξw;L

2(R3
−)‖2 + ‖(1 + ρ)−1w;L2(R3

−)‖2
)1/2

.

Moreover, problem (4.6) has discrete spectrum, the sequence (1.12) of eigenvalues, and
the eigenfunctions w0

1, w
0
2, . . ., w

0
k, . . . ∈ H can be chosen so as to satisfy the orthogonality

and normalization conditions

(w0
k, w

0
l )ω = δk,l, k, l ∈ N.

4.2. Asymptotics of the low eigenfrequencies. Let λ0
k > 0 be a simple eigenvalue

of problem (4.1), (4.2). The corresponding eigenfunction v0k satisfies equation (1.14) and
the Neumann condition (1.15), but leaves a discrepancy in the Steklov spectral condition
(1.16) on the small ice-hole ωε. Since the function v0k is locally smooth in a neighborhood
of the coordinate origin O, into which the sets ωε collapse as ε → +0, we see that the
function vk is locally smooth and obeys the Taylor formula

(4.7) v0k(x) = v0k(0) + x · ∇xv
0
k(0) +O(|x|2).

We have ∂zv
0
k(0) = 0 by the Neumann condition at the point O ∈ Ω, i.e., the second

summand on the right in (4.7) is equal to y · ∇yv
0
k. Thus, the leading part of the dis-

crepancy in the Steklov condition (1.16) on ωε takes the form λ0
kv

0
k(0), and the summand

εw0
k(ξ) of the boundary layer type that compensates for this discrepancy can be found

with the help of the following Neumann problem on the half-space:

−Δξw
0
k(ξ) = 0, ξ ∈ R

3
−,(4.8)

∂ζw
0
k(η, 0) = 0, η ∈ R

2 \ sω, ∂ζw
0
k(η, 0) = λ0

kv
0
k(0), η ∈ ω.(4.9)

Observe that the spectral parameter has disappeared from (4.9) because

∂zw
0
k(ε

−1x)− λεw0
k(ε

−1x) = ε−1(∂ζw
0
k(ξ)− ελεw0

k(ξ)),

which means, in accordance with the natural asymptotic Ansatz

(4.10) λε
k = λ0

k + ε2λ′
k + . . . ,

that the derivative ∂ζw
0
k(η, 0) dominates the term ελεw0

k(η, 0).
Problem (4.8), (4.9) has a unique solution, which decays at infinity and admits the

representation

(4.11) w0
k(ξ) = B0

k(2πρ)
−1 +O(ρ−2), ρ → +∞.

The function w0
k is smooth everywhere except for the contour ∂ω, on which the right-

hand side of (4.9) has a first kind discontinuity, so that w0
k �∈ H2

loc

(
ĎR3
−
)
. Nevertheless, we

can differentiate (4.11) outside of a ball B3
Rω

of large radius, assuming that ∇ξO(ρ−l) =

O(ρ−l−1). The constant B0
k is calculated by the formula

λ0
kv

0
k(0)meas2 ω =

∫
ω

∂ζw
0
k(ξ) dsξ

= − lim
R→∞

∫
S
2−
R

∂ρw
0
k(ξ) dsξ =

B0
k

2π
lim

R→∞

∫
S
2−
R

dsξ
ρ2

= B0
k,

(4.12)

because the area of the half-sphere S
2−
R = {ξ : ρ = R, ζ < 0} is equal to 2πR2.
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Since

(4.13) εw0
k(ε

−1x) = ε2B0
k(2πr)

−1 +O(ε3r−2),

the boundary layer leaves discrepancies of order of ε2 in the Neumann boundary condi-
tions (1.15) on the bottom Υ and the Steklov condition (1.16) on the clearings Σ1, . . . ,ΣJ .
Note that the sets Υ and Σj are at a positive distance from the point O, i.e., in (4.13)
we have r ≥ r0 > 0, and that there is no discrepancy on the set Ω, which contains O. As
a result, using the asymptotic Ansatz (4.10), we can write the following boundary-value
problem for determining the leading correction term ε2v′k(x) of regular type:

−Δxv
′
k(x) = 0, x ∈ Ξ,

∂nv
′
k(x) = −B0

k

2π
∂n

1

r
, x ∈ Υ, ∂zv

′
k(y, 0) = 0, y ∈ Ω,

∂zv
′
k(y, 0)− λ0

kv
′
k(y, 0) = λ′

kv
0
k(y, 0)− (∂z − λ0

k)
B0

k

2πr
, y ∈ Σ.

(4.14)

The eigenvalue λ0
k is simple, and the Fredholm alternative yields a compatibility condition

for problem (4.14):

λ′
k

∫
Σ

|v0k(y, 0)|2 dy −
∫
Σ

v0k(y, 0)(∂z − λ0
k)

B0
k

2πr
dy −

∫
Υ

v0k(x)
∂

∂n

B0
k

2πr
dsx = 0.

Using the normalization (4.3) and the Green formula in the domain Ξ \ Ď

B3
δ with a small

spherical cavity, we get the identity

λ′
k = λ′

k

∫
Σ

|v0k(y, 0)|2 dy =

∫
Σ

v0k(y, 0)(∂z − λ0
k)

B0
k

2πr
dy +

∫
Υ

v0k(x)
∂

∂n

B0
k

2πr
dsx

=
B0

k

2π
lim
δ→0

∫
S
2−
δ

(
v0k(x)

∂

∂r

1

r
− 1

r

∂v0k
∂r

(x)

)
dsx = −B0

kv
0
k(0).

Now, relation (4.12) leads to the final formula

λ′
k = −λ0 meas2 ω|v0k(0)|2 ≤ 0.

Similar calculations are also possible in the case where the eigenvalue λ0
k has multi-

plicity κk (cf. the requirement (2.33)); we need to distinguish the situations (2.46) and
(2.40). We formulate a result on asymptotics, which is obtained in the same way as
Theorems 2.1 and 2.2.

Theorem 4.1. Suppose that the multiplicity of an eigenvalue λ0
k of the first limiting

problem (4.1), (4.2) is equal to κk (see condition (2.33)). There exist two positive quan-
tities εk and ck such that, for ε ∈ (0, εk], the eigenvalues λ

ε
k, . . . , λ

ε
k+κk−1 of the singularly

perturbed problem (1.14)–(1.16) satisfy the inequalities∣∣λε
k − λ0

k + ε2λ0
k meas2 ω|v0k(0)|2

∣∣ ≤ ckε
3,∣∣λε

p − λ0
k

∣∣ ≤ ckε
3, p = k + 1, . . . , k + κk − 1.

(4.15)

4.3. Asymptotics of the high eigenfrequences. We choose an eigenvalue μ0
m of the

second limiting problem (4.4), (4.5) and, first, suppose that it is simple (e.g., take μ0
1).

The corresponding eigenfunction w0
m can be written as in (4.11) with some coefficient B0

m.
Thus, the discrepancy of the term w0

m(ε−1x) in the Neumann condition (1.15) on Υ is
O(ε). Therefore, an asymptotic regular type correction term should be sought in the
form εv′m(x), and it must satisfy the relations

−Δxv
′
m(x) = 0, x ∈ Ξ,

∂nv
′
m(x) = −B0

m

2π
∂n

1

r
, x ∈ Υ, ∂zv

′
m(y, 0) = 0, y ∈ Ω.

(4.16)
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To find the boundary conditions on Σ1, . . . ,ΣJ , we take an asymptotic Ansatz

(4.17) λε
Mε(m) = ε−1μ0

m + μ′
m + . . . ,

similar to (1.11) and (3.10), for the eigenvalue in question. Since the large factor ε−1 is
multiplied by μ0

m, the Steklov condition (1.16) on Σ turns into the Dirichlet condition

(4.18) v′m(x) = −B0
m

2πr
, x ∈ Σ1 ∪ · · · ∪ ΣJ ,

and the terms ε(μ0
m)−1∂zv

′
m(x) and ε(μ0

m)−1B0
m∂n(2πr)

−1 are assumed to be small (see
the discussion in the next subsection).

For the solution of problem (4.16), (4.18) we obtain the formula

(4.19) v′m(x) = B0
mG0(x, 0),

where G0(x, y
′) = G(x, y′)− 1

2π (|y − y′|2 + z2)−1/2 is the regular part of the generalized
Green function (see [24]), i.e., the distributional solution of the mixed boundary-value
problem

−ΔxG(x, y′) = 0, x ∈ Ξ, ∂nG(x, y′) = 0, x ∈ Υ,

G(x, y′) = 0, y′ ∈ Σ, ∂zG(y, 0, y′) = δ(y − y′), y ∈ Ω,

with the Dirac δ-function on the flat part Ω of the boundary ∂Ξ. As is well known, G0 is
a negative function smooth everywhere except for the contours Γ and Γ1, . . . ,ΓJ . There-
fore, the principal part of the discrepancy of the sum w0

m(ξ) + εv′m(x) in the boundary
condition (1.16) on ωε is compensated by the correction term εw′

m(ξ) of the boundary
layer type. Thus, taking the expansion (4.17) into account, we arrive at the problem

−Δξw
′
m(ξ) = 0, ξ ∈ R

3
−, ∂ζw

′
m(η, 0) = 0, η ∈ R

2 \ sω,

∂ζw
′
m(η, 0)− μ0

mw′
m(η, 0) = μ′

mw0
m(η, 0) + μ0

mv′m(0), η ∈ ω.
(4.20)

The only compatibility condition∫
ω

w0
m(η, 0)

(
μ′
mw0

m(η, 0) + μ0
mv′m(0)

)
dη = 0

for problem (4.20) takes the form

μ′
m = μ′

m

∫
ω

|w0
m(η, 0)|2 dη = −μ0

mv′m(0)

∫
ω

w0
m(η, 0) dη

=

∫
ω

w0
m(η, 0)(∂ζ − μ0

m)v′m(0) dη

= v′m(0) lim
R→∞

∫
S
2−
R

∂w0
m

∂ρ
(ξ) dsξ = −v′m(0)B0

m = −(B0
m)2G0(0, 0).

We have used identity (4.19). Thus, the correction μ′
m ≥ 0 in the asymptotics of a simple

eigenvalue has been found.
Similar calculations are needed also in the case of an eigenvalue μ0

m of multiplicity
κm under the additional requirement B0

m+κm−1 �= 0. However, if B0
m+κm−1 = 0, and,

by (3.34), the coefficients B0
p in the expansions (4.11) of the eigenfunctions w0

p, p =
m, . . .,m+κm−1, vanish, then all the correction terms μ′

p in the Ansätze (4.17) become
zero. We formulate a result that can be obtained by an approach similar to that in
Subsection 3.5, but with modifications described in the next subsection and caused by
singularities of solutions on the contours where the boundary condition changes its type.
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Theorem 4.2. Suppose that an eigenvalue μ0
m of problem (4.4), (4.5) has multiplicity

κm (see (3.28)). There exist two positive quantities εm and Cm such that, for ε ∈ (0, εk],
in the sequence (1.5) of eigenvalues of the singularly perturbed problem (1.14)–(1.16)
there are terms λε

Mε(m), . . ., λ
ε
Mε(m+κm−1) for which∣∣λε

Mε(p) − ε−1μ0
m

∣∣ ≤ Cmε−1/2, p = m, . . . ,m+ κm − 2,∣∣λε
Mε(m+κm−1) − ε−1μ0

m + (B0
m)2G0(0, 0)

∣∣ ≤ Cmε−1/2,
(4.21)

where B0
m is the coefficient in (4.11), G0(0, 0) < 0 is the value taken by the regular

part of the Green function at the origin, and the indices Mε(m) < Mε(m + 1) < . . . <
Mε(m + κm − 2) < Mε(m + κm − 1) of the eigenvalues occurring in the asymptotic
formulas (4.21) grow unboundedly as ε → +0.

4.4. On the smoothness of asymptotic terms. As has already been mentioned,

the eigenfunctions v0k and w0
m are not infinitely differentiable everywhere in sΞ and Ď

R3
−,

but acquire singularities on the contours Γ,Γ1, . . . ,ΓJ and γ = ∂ω, respectively. For
example, the results of [25, 26, 27, 28] (see also [29, Chapter 9]) give the following
asymptotic formulas near Γj , j = 1, . . . , J , for the solution of the first limiting problem:

v0k(x) = v
(00)
k (sj) + v

(01)
k (sj)rj cosϕj

− π−1λ0
kv

(00)
k (s)rj

(
ln rj cosϕj + (ϕj− π) sinϕj

)
+O(r2j | ln rj |2),

rj → +0,

(4.22)

where sj is the arc length on the smooth contour Γj , (rj , ϕj) ∈ R+ × (0, π) is the polar

coordinate system in the planes orthogonal to Γj , and the functions v
(00)
k and v

(01)
k are

of class C∞(Γj). Formula (4.22) shows that v0k does not belong to the Sobolev class H2

because of the logarithmic singularities of the gradient. The same function v0k has weaker
singularities also on the edge Γ. Namely, denoting by θ(s) ∈ (0, π) the angle under which
the surface Υ intersects the plane ∂R3

− at the point s ∈ Γ and using the same results as
above, we get

v0k(x) = v
(00)
k (s) + v

(01)
k (s)rπ/θ(s) cos

(
πθ(s)−1ϕ

)
+O(r1+π/θ(s)), r → +0.

The notation here is similar to that in (4.21). It is easily seen that the second derivatives
∇2

xv
0
k belong to the Lebesgue class L2 in a neighborhood of Γ, but not to the Sobolev

class H1 for 2θ(s) > π.
All the listed singularities make no obstruction to the realization of the asymptotic

procedure of Subsection 3.2 for problem (1.14)–(1.16), because it is based exclusively on
the local smoothness of solutions – the expansions (2.4), (2.6) are written near the point
O, i.e., at a positive distance from Γ and Γ1, . . . ,ΓJ . Moreover, the solutions of the
Neumann problem (4.8), (4.9) and of similar problems turn out to be smooth outside of
the ball B3

Rω
� ξ and therefore give rise to smooth discrepancies in the Steklov boundary

conditions on Σj and in the Neumann ones on Υ. Finally, the summands λ
(j)
k v

(j−q)
k

occurring in (2.12) belong to the Sobolev–Slobodetskĭı space H1/2(Σ), and hence, the
mixed – with the Steklov and Neumann boundary conditions — problems of the form
(4.14) have solutions in H1(Ξ) that are infinitely differentiable far from Γ and Γ1, . . .,ΓJ .

The facts mentioned above show that, in the case of a simple eigenvalue λ0
k of problem

(4.1), (4.2), the direct repetition of the procedure described in Subsection 2.2 ensures
the construction of formal asymptotic series (2.1) and (2.2) for the eigenvalue λε

k and the
corresponding eigenfunctions of problem (1.14)–(1.16).

The situation is different for the full asymptotic series (3.10) and (3.11). On the one
hand, the eigenfunction w0

m of problem (4.4), (4.5) admits a representation similar to
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(4.22) near Γ, which does not affect the asymptotic procedure, because w0
m is infinitely

differentiable outside the ball B3
Rω

⊃ sω, and, consequently, the right-hand sides of prob-
lem (4.16), (4.15) are smooth. On the other hand, the solution v′m of this mixed problem,
with the Neumann and Dirichlet boundary conditions, acquires a singularity,

(4.23) v′m(x) = v(1/2)m (sj)r
1/2
j sin(ϕj/2) +O(r

3/2
j ), rj → +0,

on the contours Γ1, . . . ,ΓJ , where the type of the boundary condition changes. The
Dirichlet condition (4.18) was obtained from the Steklov condition (1.16), by using the
Ansatz (4.17) and under the assumption that the expression ε(μ0

m)−1∂zv
′
m(y, 0) is small,

but the formula

(4.24) (μ0
m)−1∂zv

′
m(y, 0) = (2μ0

m)−1v(1/2)m (sj)r
−1/2
j + O(r

1/2
j ), rj → +0,

implied by (4.23), means that the above expression grows unboundedly near Γj . Thus,
the next regular type asymptotic term ε2v′′m(x) cannot belong to H1(Ξ), because it
satisfies the Dirichlet conditions

v′′m(y, 0) = (μ0
m)−1∂zv

′
m(y, 0) + f ′′

m(y), y ∈ Σ1 ∪ · · · ∪ ΣJ ,

with a smooth component f ′′
m. Moreover, we cannot fix the summand v′′m even allow-

ing for the growth O(r
−1/2
j ), because the homogeneous problem (4.16), (4.18) has an

uncountable collection of solutions with such singularities (see [30] and, e.g., [29, Chap-
ter 12]).

This situation can be remedied only by the investigation of a new boundary layer, see
Subsection 5.3.

The lack of lower asymptotic terms does not prevent us from justifying the leading

term; however, the error estimate becomes worse because of the O(r
−1/2
j )-singularities

of ∇xv
′
m(x), which is reflected in the statement of Theorem 4.2.

Once again, we turn the reader’s attention to the fact that in §3 the outer part ∂Ω of
the boundary ∂Ω(ε) is assumed to be C∞-smooth. The full asymptotic series (3.10) and
(3.11) are not available without this assumption. However, the full asymptotic series (2.1)
and (2.2) can be constructed as in §2 also for a Lipcshitz surface ∂Ω. The smoothness of
the inner part ∂ωε of the boundary ∂Ω(ε) is not of principal value for both asymptotic
constructions.

§5. Specifics of asymptotics in the planar case

5.1. Low-frequency range of the Steklov problem spectrum. For d = 2, the
Neumann problem (2.13) loses unique solvability in the class of function that decay at

infinity. Note that there is a solution w
(j)
k growing logarithmically as ρ → +∞ and

determined up to a constant summand. In other words, problem (2.13) with the right-

hand side g
(j)
k ∈ C∞(∂ω) has a unique solution

(5.1) w
(j)
k (ξ) = C

(j)
k

1

2π
ln

1

ρ
+

N∑
p=1

ρ−pW
(j)
kp (ϑ) + rw

(j)
kN (ξ),

where N is an arbitrary positive integer, and the remainder term rw
(j)
kN satisfies estimate

(2.7). Observe the restriction p ≥ 1, implying the absence of the term O(1). The
functions (5.1) fail to possess a natural property of a boundary layer: they do not decay
at infinity, but the slow (compared to power-like) growth of the first summand on the
right in (5.1) presents no obstruction to the realization of the asymptotic procedure
described in §2. However, some modifications are needed.
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First, the identity ln ρ = ln r − ln ε, which accompanies the coordinate change ξ 	→ x,
leads to a polynomial dependence of the formal asymptotic terms on ln ε, i.e., in formulas
(2.1) and (2.2) we should make the changes

λ
(j)
k 	→ λ

(j)
k (ln ε), v

(j)
k (x) 	→ v

(j)
k (x; ln ε), w

(j)
k (ξ) 	→ w

(j)
k (ξ; ln ε).

Second, the right-hand sides f
(j)
k and g

(j)
k of problems (2.11) and (2.13) take the form

f
(j)
k (x; ln ε) =

j∑
q=1

λ
(q)
k (ln ε)v

(j−q)
k (x; ln ε)−

j−1∑
l=1

∂n
(
r−1W

(j−1−l)
kl (ϑ; ln ε)

)
+

j−1∑
q=0

λ
(q)
k (ln ε)

j−1−q∑
l=1

r−lW
(j−1−q−l)
kl (ϑ; ln ε)

− C
(j−1)
k

2π
∂n ln

1

r
+

j−1∑
q=0

λ
(q)
k (ln ε)

C
(j−1−q)
k

2π

(
ln

1

r
+ ln ε

)
,

(5.2)

g
(j)
k (ξ; ln ε) =

j−1∑
q=0

λ
(q)
k (ln ε)w

(j−1−1)
k (ξ; ln ε)

+

j−1∑
q=0

λ
(q)
k (ln ε)

j−q∑
l=0

ρlV
(j−q−l)
kl (ϑ; ln ε)−

j+1∑
l=1

∂ν

(
ρlV

(j+1−l)
kl (ϑ; ln ε)

)
.

(5.3)

As before, the function f
(j)
k given by (2.16) and (5.2) depends on the quantities (2.17), and

the function (5.3) depends on the quantities (2.15). As a result, this order of finding the
terms of the series (2.1) and (2.2), as described in Subsection 2.2, remains the same. The
polynomial dependence of the above functions on ln ε is specified in the next statement.

Lemma 5.1. If λ0 > 0 is a simple eigenvalue and v0k(0) �= 0, then the degrees of the

polynomials ln ε 	→ w
(j)
k (ξ; ln ε), ln ε 	→ v

(j)
k (x; ln ε), and ln ε 	→ λ

(j)
k (ln ε) are equal to j,

j − 1, and j − 2, respectively.

Proof. For d = 2, the constant C
(0)
k in the expansion (5.1) of the solution w

(0)
k of problem

(2.18) is calculated by the formula

λ0
kv

0
k(0)meas1 ∂ω =

∫
∂ω

(
λ0
kv

0
k(0)− ∂ν(ξ · ∇xv

0
k(0))

)
dsξ

=
C

(0)
k

2π
lim

R→∞

∫
∂B2

R

∂

∂ρ
ln

1

ρ
dsξ = C

(0)
k ,

so that the function ln ε 	→ f
(1)
k (x; ln ε) is linear, and

f
(1)
k (x; ln ε)− λ(1)

q (ln ε)v0k(x) = f
(1)
k (x; ln ε) = f̂

(1)
k (x) + λ0

k(2π)
−1C

(0)
k ln ε.

On the other hand, invoking the orthogonality condition (2.19) with l = 0 and v01(x) =
(meas1 ∂Ω)

−1/2, we see that that the quantity (2.20) with j = 1 does not depend on ln ε,

i.e., λ
(1)
k (ln ε) = λ

(1)
k . However, ln ε 	→ v

(1)
k (x; ln ε) is a linear function. Therefore, so

is the right-hand side of (5.3) with j = 1, because of the summand ∂ν
(
ρ1V

(1)
k1 (ϑ; ln ε)

)
.

The calculations made in the proof of Lemma 2.2 (they remain valid also for d = 2;

cf. [19, Appendix G]) demonstrate that the factor C
(1)
k in (5.1) with j = 1 does not

depend on ln ε, but the angle part W
(1)
k1 (ϑ; ln ε) does depend, provided the gradient

∇xv
(1)
k (0; ln ε) possesses this property. Thus, the previous argument establishes that λ

(2)
k
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does not depend on the logarithm, but the right-hand side f
(3)
k involves the expression

λ0
kr

−1W
(1)
k1 (ϑ; ln ε) and if no geometrical symmetry is present, then we have no reason to

think that the expression is L2(∂Ω)-orthogonal to the trace of the eigenfunction v0k.
The proof can be finished by induction the base of which has been prepared above. �
Note that, for many reasons, in particular, if the requirement v0k(0) �= 0 is violated,

the degrees of the polynomials in question may happen to be smaller than in Lemma 5.1.
We leave the discussion of this topic incomplete.

The third modification of the material of §2 caused by the passage to the case of d = 2
concerns the justification procedure. Note that the norms

‖uε;V 1
0 (Ω(ε))‖ and ‖uε;H1(Ω(ε))‖

mentioned in Lemma 2.3 are no longer equivalent, because the Hardy inequality (2.49)
fails for α = d− 2 = 0, and we should replace it with the following new version of it7

(5.4)

∫ 1

δ

1

t
| ln t|−2|U(t)|2 dt ≤ 4

∫ 1

δ

t|dU
dt

(t)|2 dt, U ∈ C∞
c [δ, 1).

This implies the weighted inequality

(5.5) ‖r−1(1 + | ln r|)−1uε;L2(Ω(ε))‖ ≤ c‖uε;H1(Ω(ε))‖,
which can serve as a substitute of the estimate used in the proof of Lemma 2.3. The
factor (1 + | ln r|)−1 arising on the left-hand side in (5.5), which vanishes as r → 0,
does not affect significantly the deduction of estimates in Subsections 2.5–2.7, but brings
additional coefficients of the form | ln ε|m because, since O ∈ ω, on the domain Ω(ε) we
have r−1(1 + | ln r|)−1 ≤ cr−1(1 + | ln ε|)−1, i.e.,

(5.6) ‖uε;H1(Ω(ε))‖ ≤ c‖uε;V 1
0 (Ω(ε))‖ ≤ C(1 + | ln ε|)‖uε;H1(Ω(ε))‖.

Now we formulate a theorem on the asymptotics of solutions of the spectral problem
(1.1), (1.2) in a singularly perturbed planar domain (1.3); this theorem is obtained with
the help of inequality (5.6), playing the role of a substitute of Lemma 2.3.

Theorem 5.1. 1) The theorem on the relationship between the sequences (1.5) and (1.9)
remains valid for d = 2, but the majorants ckε

d−1 and ckε
d in (2.84) should be replaced

with ckε| ln ε| and ckε
2| ln ε|, respectively.

2) Theorem 2.3 on the perturbation of a simple eigenvalue of problem (1.10) re-
mains valid, but the majorants CkNεN+1 in (2.85) and (2.86) should be replaced by
CkN (β)εN+β, where β is an arbitrary number in (0, 1), and CkN (β) → +∞ as β → 1−0.

5.2. High-frequency range of the Steklov problem spectrum. It is well known
that for d = 2 any constant function in Rd \ sω can be approximated, in the norm
‖·;H‖ given by the scalar product (3.3), by functions of class C∞

c (Rd \ω); consequently,
a constant lies in H, and, in contrast to the many-dimensional situation, the external
Steklov problem (3.1) acquires the zero eigenvalue μ0

0 = 0 with the eigenfunction w0
0(ξ) =

(meas1 ∂ω)
1/2. The fact that 1 ∈ H is confirmed by the version (5.4) of the Hardy

inequality, yielding the following equivalent weighted norm in H:(
‖∇w;L2(R2 \ ω)‖2 + ‖ρ−1(1 + | ln ρ|)−1w;L2(R2 \ ω)‖2

)1/2
.

Moreover, the eigenfunctions w0
1, w

0
2, . . . , w

0
m, . . . ∈ H corresponding to the positive eigen-

values (1.12) may lose the key property of decaying at infinity, because the bounded
harmonic function w0

m admits the expansion

(5.7) w0
m(ξ) = B0

m +O(ρ−1), ρ → +∞,

7This is obtained from (2.49) with α = 0 by the change r �→ t = e1/r .
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and it may happen that B0
m �= 0.

The constant B0
m �= 0 in (5.7) changes crucially the asymptotics of eigenvalues and

eigenfunctions of problem (1.1), (1.2). Assuming that μ0
m is a simple eigenvalue, we

follow [17, 31] (see also [1, §9.1]) to indicate a modified algorithm for constructing the
asymptotics. In comparison with the original problem treated in [17], the limiting prob-
lems in the domains Ω and R2 \ sω interchange their roles; the possibility itself of such an
exchange without heavy consequences is discussed in Subsection 6.1.

The eigenvalues and eigenfunctions are sought in the form

λε
Mε(m) = ε−1(μ0

m +mm(z)) + . . . ,(5.8)

uε
Mε(m)(x) = w0

m(ξ) +wm(ξ; z) + v′m(x; z) + . . . ,(5.9)

where mm(z) and wm(z) are small corrections, of order of z = | ln ε|−1, and the dots
replace the remainder terms of order of O(εβ) with β ∈ (0, 1). Thus, from the outset we
associate the asymptotic Ansätze (5.8) and (5.9) with a power-like accuracy of approxi-
mation. At the same time, it is not hard to construct a series in the inverse powers of the
large parameter | ln ε|, but the approach suggested in [17] and employed in this section
allows us to sum such series.

The smooth type solution v′m(x; z) is designed to compensate for the discrepancy of
the summand w0

m(ξ) in the boundary condition (1.2) on ∂Ω, replaced by the Dirichlet
condition for the reason mentioned in Subsection 3.2. As a result, we get the problem

(5.10) −Δxv
′
m(x; z) = 0, x ∈ Ω \ O, v′m(x; z) = −B0

m, x ∈ ∂Ω.

Following the approach of [17], for the role of the solution of (5.10) we take the expression

v′m(x; z) = −B0
m + 2πzB0

mG(x, 0),

which needs comment. First, G(x, y) is the Green function of the Dirichlet problem for
the Laplace operator in Ω, admitting the representation (3.23) with the fundamental
solution Φ(x) = −(2π)−1 ln r. In other words, problem (5.10) is posed in the punctured
domain Ω \ O, and its solution is sought in the Lebesgue class L2(Ω). Second, the
coefficient of G, which cannot be arbitrary in general, is chosen so that

v′m(x; z) = −B0
m +B0

m| ln ε|−1(− ln r + 2πG0(0, 0)) +O(zr)

= −B0
m +B0

m| ln ε|−1(− ln ρ− ln ε+ 2πG0(0, 0)) +O(zερ)

= B0
m| ln ε|−1(− ln ρ+ 2πG0(0, 0)) +O(ε| ln ε|−1) for x = εξ ∈ ∂ωε,

i.e., the function v′m is made small on ∂ωε. Finally, if we ensure that the form wm of the
boundary layer type decays at infinity, then the smallness of the total discrepancy of the
asymptotic summands in the Ansätze (5.8) and (5.9) acquires a power-like nature.

The problem for the corrections mm(z) and wm(ξ; z) looks like this:

−Δξwm(ξ; z) = 0, ξ ∈ R
2 \ sω,

∂νwm(ξ; z)− μ0
mwm(ξ; z) = fm(ξ; z) := mm(z)wm(ξ; z) +mm(z)w0

m(ξ)

+B0
mz

(
∂ν ln ρ− (μ0

m +mm(z))(ln ρ− 2πG0(0, 0))
)
, ξ ∈ ∂ω.

(5.11)

Suppose for the moment that the right-hand side fm depending on mm(z) and wm(·; z)
is fixed. Since μ0

m is a simple eigenvalue of problem (1.13), the formulas

(5.12) fm(·; z) ∈ H1/2(∂ω),
(
fm(·; z), w0

m

)
∂ω

= 0

guarantee the existence of a solution wm(·; z) = Rmfm(·; z) ∈ H of problem (5.11), which
is determined up to a summand Cmw0

m, and hence, is fixed uniquely by the requirement
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of decay at infinity:

(5.13) wm(ξ; z) = O(ρ−1), ρ → +∞.

The possibility to ensure (5.13) follows from two observations: a particular solution
w0

m(·; z) ∈ H, being a harmonic function, can be written as

w
0
m(ξ; z) = c

0
m(z) +O(ρ−1), ρ → +∞,

and taking cm(z) = −(B0
m)−1c0m(z) we see that the sum w0

m(ξ; z) + cm(z)w0
m(ξ) satisfies

(5.13).
Observe that∫

∂ω

w0
m(ξ)

(
∂ν ln ρ− μ0

m ln ρ
)
dsξ = lim

R→∞

∫
∂B2

R

(
ln ρ

∂w0
m

∂ρ
(ξ)− w0

m(ξ)
∂

∂ρ
ln ρ

)
dsξ

= −B0
m lim

R→∞

∫
∂B2

R

1

ρ
dsξ = −2πB0

m.

Now, by formulas (5.12) with k = 0,m and l = m, the last identity in (3.9) takes the
form

(5.14) mm(z) = 2π(B0
m)2z−B0

mzmm(z)(ln ρ, w0
m)∂ω −mm(z)(wm(·; z), w0

m)∂ω.

On the other hand, problem (5.11) transforms to the abstract nonlinear equation

(5.15) wm(·; z) = RmFm(z,mm(z),wm(·; z)),

where Fm(z,mm(z),wm(·; z)) is the new form of writing the right-hand side of problem
(5.11). Relation (5.14) and (5.15) form a system of nonlinear equations for the pair
{mm(z),wm(·; z)} ∈ R × H. The presence of the small parameter z = | ln ε|−1 and the
polynomial dependence on z, mm(z), and wm(·; z) show that for z ∈ (0, z0] and some
z0 > 0 there exists a unique small solution of system (5.11),

|mm(z)|+ ‖wm(·; z);H‖ ≤ cz,

which, moreover, turns out to be a real analytic function of the variable z (see, e.g., [32]),
i.e., the series

(5.16) mm(z) =
∞∑
j=1

zjm(j)
m , wm(ξ; z) =

∞∑
j=1

zjw(j)
m (ξ)

converge. Substituting formulas (5.16) in (5.14) and collecting the coefficients of z =

| ln ε|−1, we see that m
(1)
m = 2π(B0

m)2 > 0. Thus, mm(z) > 0 if z > 0 is small.
The justification of the asymptotics is done along the standard lines. Before stating

the results, observe that, in the case of an eigenvalue μ0
m of problem (1.13) of multiplicity

κm (see (3.28)), the corresponding eigenfunctions w0
m, . . . , w0

m+κm−1 can be fixed so as
to satisfy (3.9) and (3.34). Consequently, these eigenfunctions decay at infinity, and their
discrepancies in the boundary condition (1.2) are compensated by the smooth type sum-
mands εv′p(x). As a result, the iteration processes of constructing the asymptotics fully
follow the algorithm described in §3 and there is no need to introduce the logarithmically
small correction mp(| ln ε|−1) and wp(ξ; | ln ε|−1). If the coefficient B0

m+κm−1 is also zero,
then the above complications of asymptotic constructions are not needed any longer for
w0

m+κm−1, but if B0
m+κm−1 �= 0, then the Ansätze (5.8) and (5.9) are required indeed,

with the replacement m 	→ m+ κm − 1.
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Theorem 5.2. If d = 2 and μ0
m is a positive eigenvalue of multiplicity κm for problem

(1.13) (cf. (3.28)), then in the sequence (1.5) of eigenvalues of problem (1.1), (1.2) there
exist terms λε

Mε(m), . . . , λ
ε
Mε(m+κm−1) such that∣∣λε

Mε(p) − ε−1μ0
m

∣∣ ≤ cm(β)ε−β, p = m, . . . ,m+ κm − 2,∣∣λε
Mε(m+κm−1) − ε−1

(
μ0
m +mm+κm−1(| ln ε|−1)

)∣∣ ≤ cm(β)ε−β,
(5.17)

where β ∈ (0, 1), and the factor cm(β) is independent of ε ∈ (0, εm] for some εm > 0, but
cm(β) → +∞ as β → 1 − 0. Moreover, z 	→ mm+κm−1(z) is a real-analytic function in
a neighborhood of the point z = 0, mm+κm−1(0) = 0, and the term mm+κm−1(| ln ε|−1)
disappears from the second formula in (5.17) whenever B0

m+κm−1 = 0.

5.3. On fast oscillation of surface waves in clearings. Under the passage to the
case of d = 2, the asymptotic procedure of Subsection 4.1, pertaining to the low-frequency
range of the spectrum of problem (1.14)–(1.16), requires only minor repair, which was
already discussed in detail in Subsection 5.1. In contrast, in the case of high-frequency
range of the spectrum of the two-dimensional problem (1.14)–(1.16), complications of two
types arise, as described in Subsections 5.2 and 4.4. For the first of them, determining the
corrections mm(| ln ε|−1) and wm(ξ; | ln ε|−1) in the Ansätze (5.8) does not meet any new
difficulty. Therefore, we return to discussing the singularities found in the expansions
(4.23) and (4.24). For an eigenvalue λε = ε−1μ0+o(ε−1), the Steklov boundary condition
in the leading part takes the form

ε∂nu
ε(x)− μ0uε(x) = . . .

thereby acquiring the small parameter at the highest derivative. Within the framework
of the Vishik–Lyusternik method, modified in [33, 34] to cover the case of singularly
perturbed elliptic boundary-value problems in domains with corner (conic) points on the
boundary, the phenomenon of a two-dimensional boundary layer arises near a point where
the boundary condition changes its type (we mean the Neumann and Steklov conditions
in our case). In problem (1.14)–(1.16), the coordinate dilation in ε−1 times also leads to
a new limiting problem in the lower half-plane:

−Δξv(ξ) = g(ξ), ξ ∈ R
2
−,

∂ζv(η, 0) = 0, η < 0, ∂ζv(η, 0)− μv(η, 0) = 0, η > 0.
(5.18)

Should the coefficient μ be negative, the results of [35] would show that the solution

of problem (5.18) with the right-hand side g ∈ C∞
c ( Ď

R2
−) decays at infinity with the

rate O(ρ−1), so that there would be no obstruction to constructing the asymptotics (cf.
[34, 35, 36, 37], etc.). However, μ = μ0

m > 0 and therefore the properties of the solutions
of problem (5.18) change radically: no solution decays at infinity, and in the expansion
of a bounded solution an oscillating wave arises. Namely, the following representation
is known (see, e.g., the book [13]):

(5.19) v(ξ) = χ+(η) Re
(
ceμ(ζ+iη)

)
+O((1 + ρ)−1/2), ρ → +∞,

where c ∈ C is a constant, and χ+ ∈ C∞(R) is a cut-off function, χ+(η) = 1 for η > 2
and χ+(η) = 0 for η < 1. The first summand on the right in (5.19) decays exponentially
as ζ → −∞, representing indeed a surface wave. In the initial coordinates (y, z) it takes
the form

(5.20) eμz/ε Re(ceiμy/ε).

Since the first factor decays rapidly when we move down the free surface of liquid {x =
(y, z) : z = 0}, the function (5.20) can be viewed as a boundary layer, but the fast
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oscillation of the second factor

cos(μy/ε) Re c− sin(μy/ε) Im c

does not allow us to apply the Vishik–Lyusternik method. The author knows of no
method for treating the asymptotic components like (5.20) and leaves open the question
how to construct a boundary layer for smoothing the above-mentioned singularities of
solutions. It is plausible that such rapidly-oscillating asymptotic components will lead
to new formulas for eigenvalues and eigenfunctions, which will differ from those studied
in the present paper.

§6. Versions and generalizations

6.1. The Kelvin transformation. Suppose R = 1, i.e., the set sω is contained in the
unit ball Bd

1. The coordinate change

x 	→ x′ = ε|x|−2x

(inversion plus contraction) transforms the domain Ω(ε) to the domain Ω′(ε) = Ω′ \ Ďω′
ε

of the same type, with

(6.1) Ω′ = {x′ ∈ R
d : |x′|−2x′ �∈ sω}, ω′ =

{
x′ : |x′|−2x′ �∈ sΩ

}
.

For d ≥ 3, the Kelvin transformation

(6.2) u(x) 	→ u′(x′) = |x′|2−du(ε|x′|−2x′)

(see, e.g., [38, §11.2]) leaves a function harmonic, i.e., the image u′ of a solution u of
problem (1.1), (1.2) satisfies the Laplace equation

(6.3) −Δx′u′(x′) = 0, x′ ∈ Ω′(ε).

We find how the Steklov boundary conditions (1.2) are transformed.
Suppose that, locally, the boundary ∂Ω is given by the formula F (x) = 0, so that the

derivative along the normal takes the form

∂n = |∇xF (x)|−1∇xF (x) · ∇x.

We introduce the dilated coordinates ξ′ = ε−1x′ = |x|−2x. Since x = |ξ′|−2ξ′, the
equation for ∂ω′ looks like this:

F (ξ′) := F (|ξ′|−2ξ′) = 0.

Lemma 6.1. We have

(6.4) ∇x = |ξ′|2J (ϑ)∇ξ′ ,

where J (ϑ) = I − 2Θ(ϑ) is an orthogonal matrix, ϑ = |ξ′|−1ξ′ ∈ Sd−1, I is the unit
(d× d)-matrix, and the matrix Θ(ϑ) is formed by the products ϑjϑk, j, k = 1, . . . , d.

Proof. Identity (6.4) is obvious, and the orthogonality of the matrix J (ϑ) is checked as
follows:

(1− 2ϑ2
j )

2 + 4

( d∑
p=1

ϑ2
jϑ

2
p − ϑ4

j

)
= 1,

−2ϑjϑk(1− 2ϑ2
j)− 2ϑjϑk(1− 2ϑ2

k) + 4

( d∑
p=1

ϑjϑkϑ
2
p − 4ϑjϑk(ϑ

2
j + ϑ2

k)

)
= 0, j �= k.

�
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Thus, the derivative along the inner (relative to ω′) normal is calculated by the formula

|∇ξ′F
′(ξ′)|−1∇ξ′F

′(ξ′) · ∇ξ′ = |ξ′|2|J (ϑ)∇xF (s)|−1∇xF (x) · ∇x = aω(ξ
′)∂n,

where

aω(ξ
′) = |ξ′|2|J (|ξ′|−1ξ′)∇xF (|ξ′|−2ξ′)|−1|∇xF (|ξ′|−2ξ′)|.

Consequently, the boundary condition (1.2) restricted to the outer surface ∂Ω reshapes
to the following condition on the function u′ (see (6.2)):

(6.5) ε∂n′(|ξ′|d−2u′(x′)) = λaω(ξ
′)|ξ′|d−2u′(x′), x′ ∈ ∂ω′.

Similar calculations show that the boundary condition (1.2) restricted to the inner surface
∂ωε gives rise to the condition

(6.6) ∂n′(|x′|d−2u′(x′)) = ελ′aΩ(x
′)|x′|d−2u′(x′), x ∈ ∂Ω′.

In the resulting spectral problem (6.3), (6.5), (6.6), the Steklov boundary conditions
on ∂ω′

ε and ∂Ω′
ε acquired respectively the variable densities aω(x

′) and also the free
terms (d− 2)∂n′(ξ)|ξ′| and (d− 2)∂n′(x′)|x′|. This modification of the problem does not
affect the general procedures of constructing the asymptotics, as presented in §§2 and
3, but now the limiting problems (1.10) and (1.13) interchange their roles: after the
Kelvin transformation, problem (1.13) is posed in the bounded domain Ω′ and describes
the asymptotic terms of smooth type, while the transformed problem (1.10) acts in the
unbounded domain Rd \ sω′, typical of the boundary layer. Precisely this observation ex-
plains the equivalence of the two limiting problems for asymptotic constructions within
the framework of composite expansions method, which was already mentioned in Sub-
sections 3.2 and 5.2; see also the book [1], where this equivalence was used repeatedly.

Observe that the small factor ε is present on the left and right parts of the bound-
ary conditions (6.5) and (6.6), respectively8. Precisely for this reason, the (positive)
eigenvalues λ0

2, λ
0
3, λ

0
4, . . . of the modified outer Steklov problem in R

d \ sω′ describe the
asymptotics in the high-frequency range of the spectrum of the singularly perturbed
problem in Ω′(ε), while the eigenvalues 0, μ0

1, μ
0
2, . . . of the modified Steklov problem in

Ω′ describe the asymptotics in the low-frequency range. In the new interpretation of
problem (1.1), (1.2), only the zero eigenvalue, which is of little interest, has changed its
range.

6.2. Other boundary conditions on the cavity surface. As was already mentioned
in Subsection 2.3, the increments

(6.7) λε
k − λ0

k = εd−1λ
(d−1)
k +O(εd)

and

(6.8) λε
k − λ0

k = εdλ
(d)
k +O(εd+1),

calculated by formulas (2.22) and (2.29), respectively, under the assumptions v0k(0) �= 0
and v0k(0) = 0, ∇xv

0
k(0) �= 0 ∈ Rd, turn out to be negative. At the same time, in the

high-frequency range of the spectrum the increment

(6.9) λε
Mε(m) − ε−1μ0

m = εd−2μ
(d−2)
k +O(εd−1)

8Note that in (6.5) the small parameter arose at the highest derivative, implying that the standard
asymptotic procedures (see, e.g., [22]) require that precisely the boundary ∂ω′ be smooth, i.e., require
the smoothness of the initial boundary, ∂Ω, by the definition (6.1).
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becomes positive provided B0
k �= 0 (see (3.22)). The different signs of the quantities (6.7),

(6.8), and (6.9) mean that there are no a priori relationship between the terms of the
sequences (1.5) and (1.9). However, the eigenvalues of the mixed spectral problem

−Δuε(x) = 0, x ∈ Ω(ε), ∂nu
ε(x) = λεuε(x), x ∈ ∂Ω,(6.10)

uε(x) = 0, x ∈ ∂ωε,(6.11)

and the eigenvalues (1.9) of the Steklov limiting problem (1.10) satisfy

(6.12) λε
k > λ0

k.

Inequality (6.12) can be deduced easily from the minimax principle (see, e.g., [21, The-
orem 10.2.2]) applied to the trace operator T ε in Hε = H1

0 (Ω(ε); ∂ωε) defined by the
formulas

(6.13) 〈uε, vε〉ε = (∇uε,∇vε)Ω(ε)+(uε, vε)∂Ω, 〈T εuε, vε〉ε = (uε, vε)∂Ω, uε, vε ∈ Hε

(cf. (2.47) and (2.51)); here H1
0 (Ω(ε); ∂ωε) is the subspace of functions in the Sobolev

class H1(Ω(ε)) that vanish on ∂ωε.
Note that λε

0 > 0 due to the Dirichlet condition (6.11). For d ≥ 3, the procedure of
constructing the asymptotics for solutions of the spectral problem (1.10), (6.11) differs
little from that presented in §2; in particular, it is not difficult to obtain the representation

λε
k = λ0

k + εd−2 capd ω|v0k(0)|2 +O(εd−1),

where λ0
k is a simple eigenvalue, v0k is the corresponding L2(∂Ω)-normalized eigenfunction

of problem (1.10), and capd ω stands for the harmonic capacity of the set sω ⊂ Rd.
In the planar case, the asymptotic constructions complicate, as was mentioned in

Subsection 5.2 in another context. A full description of asymptotic procedures can be
found in the paper [17] (see also [1, Chapter 9]), the material of which needs only minor
modification when we pass to the Steklov spectral condition on ∂Ω.

If we replace the Dirichlet conditions (6.11) with the Neumann conditions

(6.14) ∂nu
ε(x) = 0, x ∈ ∂ωε,

then, as before, we can apply the max-min principle (see [21, Theorem 10.2.2])

(6.15) −τ εk = max
Eε

k

inf
uε∈Eε

k\{0}

〈−T εuε, uε〉ε
〈uε, uε〉ε

to the trace operator9 −T ε (with the minus sign) given by formulas (6.13) with Hε =
H1(Ω(ε)). In (6.14) Eε

k, is an arbitrary subspace in H1(Ω(ε)) of codimension k − 1, i.e.,
dim(H1(Ω(ε))� Eε

k) = k − 1; in particular, Eε
1 = H1(Ω(ε)).

For any k ∈ N, there exists εk > 0 such that, for ε ∈ (0, εk], the restrictions to
Ωε = Ω \ Ďωε of the eigenfunctions v01 , . . . , v

0
k ∈ C∞(sΩ) of problem (1.10) remain linearly

independent, and therefore, every subspace Eε
k as in (6.15) includes a nontrivial linear

combination

vεk =

N∑
l=1

a
Eε

N

l v0l ,

N∑
l=1

∣∣aEε
N

l

∣∣2 = 1.

9When deducing (6.12), we apply the minimax principle (6.15) for ε = 0 to the trace operator −T 0

corresponding to the Steklov problem (1.10) in the limiting domain Ω.
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Thus, using (6.13) and (2.10), we obtain

−τ εk ≤ max
Eε

−(vεk, v
ε
k)∂Ω

(∇vεk,∇vεk)Ω(ε) + (vεk, v
ε
k)∂Ω

= max
Eε

k

−1

1 + (∇vεk,∇vεk)Ω − (∇vεk,∇vεk)ωε

= max
Eε

k

−1

1 +
∑k

l=1 λ
0
l

∣∣aEε
N

l

∣∣2 − ‖∇vεk;L
2(ωε)‖2

≤ −1

1 + λ0
k

.

(6.16)

Recalling the relationship (2.54) between the eigenvalues of the operator T ε and those
of problem (6.10), (6.14), we see that (6.16) implies the relation

(6.17) λ0
k ≥ λε

k.

It can be checked that inequality (6.17) is strict for k > 0.
It is easily seen that, in the case of the Steklov spectral problem (1.1), (1.2), no

manipulations with the max-min principle can be a success, because both the numerator
and denominator of the Rayleigh ratio are perturbed.

Following the general approach of [1, Chapter 9], applied in §§2 and 3 to the Steklov
problem (1.1), (1.2), we can construct full asymptotic series (2.1) and (2.2) for the
solutions of the spectral problem (6.10), (6.14). Note that asymptotic constructions for
small cavities with the Neumann boundary conditions were presented, e.g., in [39]. The
author knows of no asymptotic expansions in the high-frequency range of the spectrum
of problems (6.10), (6.11) and (6.10), (6.14).

Typically, a continuous spectrum arises in problems concerning wave propagation on
the surface of a liquid that fills an infinite channel with immersed or half-immersed
obstacles. Nevertheless, the introduction of the trace operator T and transformation of
problems in question into abstract equations of the form [16] made it possible to present
elementary proofs of the known facts about the arising of trapped waves that decay
exponentially at infinity and correspond to points of the discrete spectrum located below
the continuous spectrum (see [10, 40, 41] and also the surveys [11, 12] and, e.g., the book
[13]), as well as to give new sufficient conditions for the trapping of waves (see [42, 43, 44]
and other publications). All these results together with various comparison principles
are deduced from the general formula (6.15).

6.3. Other boundary conditions on the outer surface and on a cavern. The
Laplace equation

(6.18) −Δuε(x) = 0, x ∈ Ω(ε),

supplied by the Steklov spectral conditions

(6.19) ∂nu
ε(x) = λεuε(x), x ∈ γε,

on the inner boundaryγε = ∂ωε, and also by the Dirichlet conditions

(6.20) uε(x) = 0, x ∈ Γ,

or the Neumann conditions

(6.21) ∂nu
ε(x) = 0, x ∈ Γ,

on the exterior boundary Γ = ∂Ω, can be studied with the help of the procedure described
in §3; in contrast to problem (1.1), (1.2), we can find the full asymptotic series (3.10) and
(3.11) also in the case where ∂Ω and ∂ω are Lipschitz surfaces. The iteration processes
still go well in the situation where the point O to which the sets (1.4) are shrinking is
located on ∂Ω (see Figure 2a), i.e., the domain Ω(ε) = Ω\Ďωε in equation (6.18) has a small
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cavern (Figure 2c), the boundary conditions (6.19) are posed on its surface γε = ∂ωε∩Ω,
and the boundary conditions (6.20) and (6.21) are restricted to Γ(ε) = ∂Ω \ Ďωε.

In essence, the asymptotic analysis of the low-frequency range of the spectrum of the
Steklov problem (1.1), (1.2) reduces to the iteration processes of §2 (cf. [45, 46]), but the
high-frequency range requires absolutely new ideas, because the continuous spectrum of
the Steklov problem in the infinite domain Rd

− \ sω (Figure 2b) fills the entire half-axis
[0,+∞).

The author is grateful to the anonymous reviewer for invaluable help in correcting the
misprints in the text.
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