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Asymptotic Expansions for Product Integration

By Frank de Hoog and Richard Weiss*

Abstract. A generalized Euler-Maclaurin sum formula is established for product

integration based on piecewise Lagrangian interpolation. The integrands considered may

have algebraic or logarithmic singularities. The results are used to obtain accurate con-

vergence rates of numerical methods for Fredholm and Volterra integral equations with

singular kernels.

1. Introduction. A widely used technique for the evaluation of integrals of the

form

/.(/) =   f  8(s)f(s) ds,
Jo

where/(/) is "smooth" and g(t) is absolutely integrable on 0 ^ / ^ 1, is product

integration. This technique consists of replacing Iff) by If]), where /(/) is an approx-

imation to /(/) such that Iff) can be calculated in a simple manner. In this paper,

we shall consider a class of such quadrature rules for the case where g(t) may have

a finite number of algebraic or logarithmic singularities. These types of singularities

are encountered in many applications.

The quadrature rules considered are obtained in the following way: Let

0 = ux < u2 < ■ ■ ■ < un ^ 1

be a fixed set of points and define

tt = Ih,        I = 0, ■ ■ ■ , m; h = 1/zzz,

and

(1.1) ttk = ti + ukh,        k = 1, • • • , n; I = 0, • • • , zzz — 1.

The approximation /(/) on /¡ ^ / < /¡+1, / = 0, ■ ■ • , zzz — 1, is taken to be the

(zz — l)th degree polynomial interpolating tof(ttk), k = 1, ■ - - , n.

The main aim of the paper is to establish a generalized Euler-Maclaurin sum

formula for the above methods. In Section 2, we describe the quadrature rules in

more detail and prove a basic lemma. An Euler-Maclaurin sum formula is established

for "smooth" and weakly singular g(t) in Sections 3 and 4, respectively. In Section 5,

we apply these results to obtain accurate convergence rates of numerical schemes for

Fredholm and Volterra integral equations with singular kernels.
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296 FRANK DE  HOOG  AND  RICHARD  WEISS

2. The Product Integration Rule.    Define

n

«(o = n (f - «ot-i
and the Lagrangian polynomials

Lk(t) = w(/)/(co'(zzt)(/ - uk)),       k = 1, ■■■ ,n.

On /, ^ / < /,+,, / = 0, • • • , zzz — 1, the approximation to/(/) is

Ko = Z Lk{^)fitlk),

and, hence,

Iff) =  Z /        &)fc) ds
¡-0  •'il

(2.1) = E ¿ K'.*) ff gtozJ*-^) A

m—1      n î»1

=  Z Z */('») /   8(ti + sh)Lkis) ds.
¡-0   k-l Jo

This is the zzzzz point quadrature rule with which this paper is concerned. The weights

are calculated by evaluating the integrals analytically. The error functional for this

rule is

(2.2) EM) = I.O) - Iff) = 1.0 - 1).

In the following lemma, an expression for the error functional is obtained.

Lemma 2.1.   Iff(t) E C+1[0, T\,p\>n, then

■p—n /*\ m— 1

(2.3) E.(f) =  Z h"+r /   «r(*)A Z Sin + sh)f{n+r\ti + sh) ds + Oihp+\
r-0 Jo !-0

where

(2.4) wr(0 = wit)prit)

and p ft) is a polynomial of degree r.

Proof.   It is clear that

m — 1      /»l

(2.5) £,(/) = h Z       ífti + **){/(/« + sA) - /(ii + **)} ds.
i-o Jo

For 0 s; s ^ 1, it follows from (1.1) and Taylor's theorem that

lUlk) = /(/, +sh- is - uk)h)

_ £ K (-ms-uky (r)   + s ,

r-o r!

rc=l,.-.,zz;/=0,.-.,zzi— 1.

Hence,
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(2.6)

/(/, + Sh) - fiti +Sh)=   Z {/('<*) - Ktl + sh)}Lkis)
*=i

=  Z hT t—i- f'Xh + sh) ¿ (s - uk)rLkis) + 0(/zp+'),
r-i ri t_,

I = 0, ••• , m - 1-

Since

n n

(2.7) Z (* - UkYLkis) = u(s) Z (s - uky-l/w'iuk)
k-l k-l

and

n

Z «IM«*) =0,        q = 0, ■■■  ,n- 2,
t-i

it follows that

n

(2.8) Z (« - UkYLkis) = 0,        r = 0, ■■■ ,n - 1.
k-l

For r ^ zz — 1,

n       • \r r        /    \ n
zz*

• ̂    q\ A = l w   \"t/ « = U     >Vf' fc = l   w   VWaJ

= Z ±(r)(-iy-^s'-°.
.-T-i ÍTÍ \ql co (zvt)

Substitution of (2.7), (2.8) and (2.9) into (2.6) yields

n im #'< + sh) - fit, + sh) =  Z hn+rf\ti + sh)w(s)PAs) + 0(hp+1),

/   =   0,   • • •    ,   ZZ1   -   1 ,

where

— 1)     v^ v^ In + r  — 1\ „_, uk r_0

(zz + z-)!  ÍTÍ tTx \n + q - 1/ co («*)

The result follows on substituting (2.10) into (2.5). D

Remark.   Clearly, aft), r = 0, • • - , p — n, also depend on uk,k = I, ■■■ ,n.

In addition, it should be noted that Lemma 2.1 is valid for any absolutely integrable

g(t).

For fixed s, 0 ^ s g 1, the sum

(2.11) h Z S(ti + sh)f{n+r)itl + sh)
1=0

is a generalized Euler approximation to J0 g(s)f<n+r)(s) ds.

Summation formulae for (2.11) have been investigated by Lyness and Ninham [4]

and the application of their results to (2.3) is the basis of Section 4.
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(3.2)

3. Smooth g(t).   Let/(/) E Cp+1[0, T],p^n andg(t) E Cp-"+1[0, T]. Applying
the Euler-Maclaurin sum formula to git)f"+r)(t), we find

m — 1 n\

h Z i(h + xh)f+T)(ti +xh)=   /   gis)fn+r)is) ds
i-o Jo

(3.1) i V*        U" + 1   B.+ lJx)      d      ,„/t\A«+r), y. tf"      ■•   /,\-i<n + r>/'A\
+   S   *   (,7TT)!L^(g(0/    W).-1""5?(,W    (i))U
+ 0(AP—r + I),        z-= 0, ••• ,p- n,

where #„(.*), q = 1, 2, •• -, are the Bernoulli polynomials. Substituting (3.1) into (2.3)

and collecting powers of h, we obtain

Eff) = h" [ o>ois) ds [  gis)fn)is) ds
Jo Jo

+ "'t! hn+r + 4f œr+fs) ds f gis)f+r+1)is) ds
r-0 WO •'0

+ Ztt^1-^, \Ç^(g(t)t+l\t))\
fTo (1 + r — /)! \_dt I«,!

- ^y (g(t)f+l)(t))\t      j |o   W¡W51 + r-;(5) Zi5|

+ 0(hv+1).

The above equation is a generalized Euler-Maclaurin expansion for the error func-

tional.

If uk, k = 1, ••• , zz, are chosen such that

(3.3) /   srwis) ds = 0,        r = 0,1, ■■■  , q < n,
Jo

it is clear from (2.4) that

/   s!cor(s) ds = 0,        r = 0, 1, ■ ■ ■  , q; I = 0, • • •  , q — r,
Jo

and, hence, the first q + 1 terms in (3.2) vanish. This may be expected since, for

g(t) = 1, (3.2) reduces to the Euler-Maclaurin sum formula for the corresponding

composite interpolatory quadrature rule (see, for instance, Baker and Hodgson [2]).

In the case that g(t) = 1 and a symmetric rule is used, the coefficients of the odd

powers of h are zero, and so the expansion is in integer powers of h2. It should be

noted that, for general g(t), this does not happen, as, in general, the rule is not sym-

metric.

4. Singular g(t).   In this section, we shall consider the case where g(t) has a finite

number of algebraic or logarithmic singularities.

Firstly, we shall establish an Euler-Maclaurin sum formula when

(4.1)       git)= tßü - ty \t -vk\y sgnit -o,)\t -Vi\s,       fi,u.y,i>-i.
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As in Section 3, expansions for sums of the form

m-l

h Z S('i + xh)ziti + xh),
¡-0

where z(t) is a smooth function, are required. Such expansions have been derived by

Lyness and Ninham [4] who use Lighthill's procedure to obtain asymptotic expansions

for the integral terms in Poisson's sum formula [4, Eq. (3.13)],

m—1 z*l

h Z S(ti + xh)z(ti + xh) -   /    g(s)z(s) ds
Z-0 «"0

+ =» /.l

(4.2) =   Z' (-1)" exp(-7rz(2* - l)q)  /   g(s)zis) exp(2wiqms) ds
q——m Jq

+ <" nl

=   Z' exP(—2iriqx)  I    gis)zis) expi2iriqs/h) ds.
q = -oo Jo

Applying the results of Lyness and Ninham [4, Eq. (8.1)] to g(t)fn+r)(t), we find that

h Z git i + xh)fin+r)iti +xh)=   f  gis)f("+r)is) ds + "~22  ^T
¡-0 ^0 a=o     q-

■{hßU-ß- <7,*)tó'(0)

+ /z"(-l)af(-«- 9,1 -x)ti?il)

+ hyHi-y - q, x - zzu,,) + (-l)af(~7 - <?, rnvk - x))tà\vk)

+ /zs(f(-5 - q, x - mvd - i-ini-h - q, mv, - x))tf£(d<)}

(4.3)

where

+ 0(A--"-r+I),        z- = 0, •••,/>- zz,

tor«) = /(B+r)(i)d - 0" V - vk\y sgn(/ - v.) \t - Vi\s,

iiÁt) = fn+r)itV \t - v„\y sgn(i - v.) \t - Dt\'.

iMO = f+T)it)tßü - t)a sgn(/ - zz,) |/ - vA',

KO) = /(n+r)(r)Ai - 0" |i - Dir,

and f(a, x) is the periodic generalized zeta function. The periodic generalized zeta

function is defined by

f(a, x) = f(a, x),        x — x = integer,        0 < x ^ 1,

where f(a, x) is the generalized Riemann zeta function (see, for instance, Whittaker

and Watson [6]).

Substitution of (4.3) into (2.3) yields
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ds

Eff) =  Z h"" f *>r(i) * /   g(s)f+r\s) ds
r=0 J0 0

+ Z hn+r+ß+1 Z tM? /   »>(^-ß -r+l,s)ds
r-0 1-0    V    —    '^'     -»O

I       \">   ,n+r + u + l    V>   (~1) Wll (O    / , nC, 111 \
+ 2-, h 1-,-~<-ñ\- 1   "iWfí-w - z- + /, 1 - s)

r=0 ¡-0 V   ~    ')■ JO

(4.4) + Z A"+r + T + 1 Z f-^W Í "MM-y -r+Ks- mvk)
r-0 ¡-0    V    —    1)1      >>o

+ (-l)r_!f(-7 - r + l, mvk- s)] ds

+ g A"+r+5+1 Z ~--)Jrf f U<W&- S~r+l,s- mv.)
r-0 ¡-0    V   —   I)'.     Jo

- (-l)r_1f(-5 - r + l, mv, - s)] ds

+ 0(/V+').

This is the desired Euler-Maclaurin expansion for g(t) given by (4.1). For the important

case of endpoint singularities (i.e., g(t) = tß(l — /)")> terms of the form JJ ufs)-

f(a, s) ds and JJ u,(s)f(a, 1 — s) ds can be reduced to sums of ordinary zeta functions

by the relations

/    f(a, s) ds = 0,        a < 1,
■»o

and

|  s'f(«, s) <fe = y^ (f(a - 1) - r f  s'-'tia - 1, s) ds J ,

z- =  1, 2, -..  ;a < 1.

\î uk,k — 1, •-. , zz, are chosen such that

(4.5) [ uis) ds = 0,
Jo

the first term in (4.4) is deleted. However, in general, (3.3) does not lead to higher

order convergence. From (4.4) it is clear that the conditions required depend on git).

To illustrate this, we take g(t) = r~1/a and determine the conditions necessary for

optimal convergence in the cases « = 2 and zz = 3.

If zz = 2, we require (4.5) and

( «(i)f(l,
Jo

(4.6) w(s)f(J, s) ds = 0.

Numerical calculation yields

(4.7) «, =  .1182506123,        u2 =  .7182932992.

For zz = 3, we require (4.5), (4.6) and

1   sa>is) ds = 0.
Jo
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Numerical calculation yields

(4.8)     ux =  .04456270208,        u2 =  .3909749362,        u3 =  .8537066313.

The quadrature formulae with the points given by (4.7) and (4.8) have been applied to

x),/2■»-r*?dx =  1 + zr/2.

Numerical results for various stepsizes are tabulated in Table 1. The order of con-

vergence can be seen to be three and four and a half, respectively.

Remark. All computations were done in double-precision arithmetic on the

IBM 360/50 computer at the Australian National University.

The extension of (4.4) to a git) which includes terms of the form In /, ln(l — /),

In \t — vk\ and sgn (/ — v¡) In \t — v¡\ can be made by differentiation with respect to

ß, co, y and 5, respectively. To illustrate this, we consider the case when

Then

E,

git) = In |/ - vk\ = — (\t - vk\y)

aois)ds /    g(s)r\s)ds

0 < vk < 1.

.if) = A" f  co„(s) ds f

+ '"f hn+'Af wr+xis) ds f gis)f+'+1)is) ds
r-0 W0 Jo

+ Zr— ™    ̂ =í(íf(0/c"+,,(0)        f »id)fí-r+ I.s)dB
i-o (r — i): [_at |(_o J0

+ (-iri^iî(g(o/(B+,,(f))

(4.9)
• /    co,
Jo

(s)íi-r + I, 1 - s) sd

+  Z /<"+"(^"+r + 1   In A Z
W (r - /)! /      CO;

Jo
(i)(f( —z- + /, s — mt)t)

h (-l)r"'f(-z-+ /, mv„ - s))ds

s — mvk)+  Z 7-—^  Í  »i(»Xf'(-r + /.
l-o tZ* —   ()!  J0

+ (-l),_'f'(-r+ /, mu, - s))ds

+ 0(/V+I),

where

fia, s) = -aft«, s)/a«.
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This expansion can be simplified slightly by substitution of the relations

f(-<?, s) = -Bq+xis)/iq + 1),       q = 0,1,2, ■■■ .

Again, if (4.5) holds, the first term in (4.9) is deleted.

Table 1

Stepsize               zz = 2                     zz = 3

_h_Eff)_Eff)

0.2 6.008 E-6 3.025 E-9
0.1 7.004 E-7 1.505 E-10
0.05 8.287 E-8 6.956 E-'12
0.025 9.933 E-9 3.013 E-13

5. The Application to Integral Equations. Atkinson [1] considers the numerical

solution of linear Fredholm integral equations of the second kind with singular

kernels

(5.1) yit) = Git) + X  f   Kit, s)yis) ds,        0 g / g  1,
Jo

where

(5.2) Kit, s) =  Z PÁt, *)Qk(t, s),        r^l,
i-i

and Pk(t, s), Qft, s), k = 1, ■ • • , r, satisfy

(i) Qk(t, s) is continuous on 0 ^ s, t ^ 1;

(ii) fl \Pk(t, s)\ ds is bounded;
(iii) lim|(,_Í2|_0 Jo \Pk(U, s) — Pk(t2, s)\ ds = 0 uniformly in tx and t2.

Important cases of Pft, s) are

(5.3) |/ - s\y, \v - s\y,    0>7>-l.    hi |i - s\, In |d - s\,      OScál.

For illustrative purposes, it is sufficient to consider the case

Kit, s) = Pit, s)Qit, s).

The application of product integration to the integral term in (5.1) yields the numerical

scheme

(5.4)

where

Yu = Git,,) + X Z Z Wlkitu)Qitii, tlk)Ylk,
1-0   k-l

j = 1, • ■ • , zz; i = 0, • • • , zzz — 1,

Wikit) = f" Pit^^-Y^jds

and 7,, denotes the numerical approximation to yit{j). Atkinson has shown that
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if X is not an eigenvalue of (5.1), then (5.4) has a unique solution for sufficiently

small h and

max \yitit) -  Yu\ = £>(£),
3=1, * * •,n; t — 0, • • • ,m— 1

where

E = max
,r   c\ 1-1. •••■n;t-0, ...,m-l    I 1=0    fc-1

Z Z  WtJfuWtu, tn)y(tik)

-  f   KiUi, s)yis) ds
Jo

We shall now indicate how the results of Section 4 can be extended to obtain

accurate estimates for (5.5). It will be assumed that Q(t, s)y(s) is p + 1 times con-

tinuously differentiable with respect to s.

The direct application of the results in Section 4 yields the following estimates

for£:

(i) E = 0\hn j <a(s) ds) + Oihn+1 + y)    for Pit, s) = \v - s\y

and

(ii) E = o(hn J uis) ds) + 0(/z"+1 In h)    for Pit, s) = In \v - s\.

However, for the case when P(t, s) = \t — s\y or In \t — s\, (4.4) and (4.9) are no

longer valid since vk takes the values /,-,•, j = 1, • • ■ , n; i = 0, ■ • • , m — 1, and thus

depends on h. The extension of the results of Section 4 to these cases is obtained in

the following way. First, the integral terms in (4.2) are rewritten as

J   gis)zis)exp[-J[~J ds = /,, J   g(f,,5)z(z„5)exp(^ vl^iiSj ds

(5.6) + (1 - fii)exp(^Äj f g((l - z„> + z,,)z((l - /„> + /,,)

• exp(2in'<7(l — tu)s/h)ds,

j = 1, ■ ■ ■ , n;        i = 0, ■ ■ ■ , m — 1.

For

(5.7) g{t) = \t„ - t\\       0 < tti < 1,

Eq. (5.6) becomes

£ gis)zis)exp(^) = t\V [ (1 - s)yzitiiS)exp(^f) ds

(5.8) + (1 - fi,)^exp(^) f\yziil - til)s + i,)exp(^) *,

0 < ta < 1,
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where

h = h/ta,       h = A/(l - /„■).

The singularities of the integrands on the right-hand side of (5.8) are now endpoint

singularities independent of /¡, and so asymptotic expansions in h and h, respectively,

for the corresponding integrals can be calculated in a similar way to [4] by Lighthill's

procedure.

Define

Giita, f) =   /   (1 - s)yzitas)expi2irifs)
Jo

ds

and

where

Gtita, t) =   /   syziil - /,,■> + /ij)exp(2zrzfi) ds
Jo

f = q/h;    t = q/h;    q = 0, 1,2, ■■•  .

Clearly, G,(/,,, t) and G2(/,,, r) are the Fourier transforms of the generalized functions

*,(/,„ s) = (1 - s)yzitus)His)HH - s)

and

<b2ita, s) = syziil - ti:)s + ta)His)HH - s)

where H is the Heaviside step function defined by

1,       s > 0,

s = 0,

lO,        s < 0.

His)

For k ^ 0, let

and

Mu, a) = (1 - i)Yz(/irs),

W.f, í) = syz((l - ti,)s + ta),

Riita,s) =  22-,^Tr0a,0yHis),
o-o q\   os

R*ita,s) =  ¿^^z("(/,,)(1 - S)'+Tff(l - s),
a=o      q.

RÂta,s) =   Z0 ~/"rzu)(/,,)5g^/?(5)
a=o        q'

RtOa, s) =  Z ^-T" IPr (»«. D(l - *)'#(! - 5).
„.o     q\       as
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Then it follows from Lighthill's theorem that

(5.9)    dita, f)=]       {RiUa, «) + «.(/,,, s)}exp(2zrifs) ds + Odtf*-1)

and

{Rsita, s) + RAjtt, s)}expi2iriTs) ds + Oflfr*"1).

The generalized Fourier transforms in (5.9) and (5.10) can be evaluated by the standard

integrals given in [4, Eq. (6.14)]. Substituting the resulting asymptotic expansions for

Gx(ta, q/h) and G2(tih q/h), q = 0, 1, • • • , into (4.2), we obtain in the same way

as [4]

A Z \h + xh - taVxiU + xh) =   f   |s - taV z(s)
i-o Jo

+ ¿Ç{?<-</.*);£(If- tu\yzit))
a-o   q'    K "»

ds

+ i-lT!i-q,l - x)jfA\t- taV z(t))

+ Z ^T~ (f(-7 -o,x- «,) + (-l)'f(-7 - q, 1 + K, - x)}zMita)
o-o       c/!

+ oitayhk+1) + 0((1 - f„)1+rÄ*+1),       0 < r,{ < 1, * 2 o.

Hence, it is easy to verify that for g(t) defined by (5.7), Eq. (4.4) remains valid if the

order term is replaced by

0(A*+1A™) + 0(AP+I/(1 - tarn-y).

In a similar way, it can be shown that for git) = In |/ — /i;| the order terms in (4.9)

have to be replaced by

Oilnitii)h^/ta'n) + 0(ln(l - ta)hp+1/(l - ttiT*).

We thus obtain the estimates

(iii) E = oí A" J w(s) ds) + 0(A"+1 + 7)    for Pit, s) - \t - s\y,

and

(iv) E = oí A" j co(s) c/sj + 0(A"+1ln A)    for P(t, s) = ln|i - s\.

As an example, consider the equation

At) = 1 +   I     Z PkO, s)Qkit, s)yis) ds,        0 ^ / ^ 7T,
Jo       k-l
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where

n (t  A- fan«/ - s)/2)\      J     sin((/ + s)/2)
QÁh S) -\iit- s)/2) I + % + S)0 -t-s).

P2it, s) = ln|i - s\, P3it, s) = ln(2zr - t — s),

Pt(t, s) = ln(7 + s), Px = Q2 = Q3 = 04= 1,

which has the solution

yit) = 1/(1 + t In 2).

Atkinson [1] has applied the product Simpson rule (ux = 0, u2 = \, u3 = 1, J0 co(s) ds

= 0) to this equation. Although the rate of convergence was observed to be approxi-

mately 0(h*), only 0(h3) convergence was established. The above estimates yield

0(h4 In h) convergence.

The above can also be extended to Volterra integral equations of the second kind

with singular kernels. Linz [3] applies a product Simpson and a product block by

block method based on the points ux = 0, zz2 = \, u3 = 1 to the equation

yit) = Git) + f f^# *,      / £ o,
Jo     (/ — s)

and estimates order three convergence. The correct order for both methods is three

and a half.

Remark. The extension of (4.4) (and hence (5.1)) to the general case with sin-

gularities of the form (4.1) where vk, pJ may depend linearly on h can be made by a

splitting similar to the above and a similar analysis to that given in Ninham and

Lyness [5]. The details of such an analysis however are beyond the scope of this paper.
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