
ASYMPTOTIC EXPANSIONS FOR SOME SEMIPARAMETRIC 
PROGRAM EVALUATION ESTIMATORS* 

 
by 
 

Hidehiko Ichimura 
University College, London 

 
Oliver Linton 

London School of Economics and Political Science 
 
 
 

 
 
 
 
Contents: 
Abstract 
1. Introduction 
2. The Model and the Estimator 
3. Main Results 
4. Some Numerical Results 
5. Conclusions 
Appendix 
References 
Figures 
 
 
 
 
 
 
 
 
 
     The Suntory Centre 
     Suntory and Toyota International Centres for 
     Economics and Related Disciplines 
     London School of Economics and Political Science 
Discussion Paper   Houghton Street 
No.EM/03/451   London WC2A 2AE 
May 2003    Tel.: 020 7955 6698 
 
 

* We would like to thank Tom Rothenberg, two referees, and seminar participants for helpful 
comments, and David Jacho-Chavez for research assistance. We are grateful to the 
National Science Foundation, to CEMMAP, and to the Economic and Social Research 
Council for financial support. 



 
Abstract 

 
We investigate the performance of a class of semiparametric estimators of the 

treatment effect via asymptotic expansions. We derive approximations to the first two 

moments of the estimator that are valid to 'second order'. We use these 

approximations to define a method of bandwidth selection. We also propose a 

degrees- of-freedom like bias correction that improves the second order properties of 

the estimator but without requiring estimation of higher order derivatives of the 

unknown propensity score. We provide some numerical calibrations of the results. 
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1 Introduction

In a series of classic papers Tom [Rothenberg (1984abc,1988)] introduced Edgeworth expansions to
a broad audience. His treatment of the generalized least squares estimator (1984b) in particular
was immensely in‡uential because it dealt with an estimator of central importance and the analysis

was both deep and precise, but comprehensible. This is in contrast with some of the more frenzied
publications about Edgeworth expansions that had hitherto appeared in econometrics journals. The
use of Basu’s theorem in that paper to establish the independence of the correction terms from the
leading term is a well-known example of his elegant work. The review paper (1984a) was also very

in‡uential and highly cited.
It is our purpose here to present asymptotic expansions for a class of semiparametric estima-

tors used in the program evaluation literature. We have argued elsewhere, Linton (1991,1995) and

Heckman, Ichimura, Smith and Todd (1998), that the …rst-order asymptotics of semiparametric
procedures can be misleading and unhelpful. The limiting variance matrix of the semiparametric
procedure § does not depend on the speci…c details of how the nonparametric function estimator
bg is constructed, and thus sheds no light on how to implement this important part of the proce-
dure. Speci…cally, bandwidth choice cannot be addressed by using the …rst-order theory alone. Also,
the relative merits of alternative …rst-order equivalent implementations, e.g., one-step procedures,
cannot be determined by the …rst-order theory alone. Finally, to show when bootstrap methods

can provide asymptotic re…nements for asymptotically pivotal statistics requires some knowledge of
higher-order properties ¡ see Horowitz (1995). This motivates the study of higher-order expansions.
Carroll & Härdle (1989) was to our knowledge the …rst published paper that developed second-order

mean squared error expansions for a semiparametric, i.e., smoothing-based but root-n consistent,
procedure, in the context of a heteroskedastic linear regression. Härdle, Hart, Marron, & Tsybakov
(1992) developed expansions for scalar average derivatives which was extended to the multivariate
case, actually only the simpler situation of density-weighted average derivatives, by Härdle & Tsy-

bakov (1993); these papers used the expansions to develop automatic bandwidth selection routines.
This work was extended to the slightly more general case of density-weighted averages by Powell &
Stoker (1996). In the second author’s PhD thesis [Linton (1991)], written under Tom’s supervision,

the second author developed expansions for a variety of semiparametric regression models including
the partially linear model and the heteroskedastic linear regression model; some of this work was
later published in Linton (1995, 1996a). The Linton (1995) paper also provided some results on the

optimality of the bandwidth selection procedures proposed therein. Xiao & Phillips (1996) worked
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out the same approximations for a time series regression model with serial correlation of unknown
form; Xiao & Linton (2001) give the analysis for Bickel’s (1982) adaptive estimator in the linear
regression model; Linton & Xiao (1997) works out the approximations for the nonlinear least squares
and pro…le likelihood estimators in a semiparametric binary choice model. Nishiyama & Robinson

(2000) proved the validity of an Edgeworth approximation to the distribution of the density weighted
average derivative estimator. Linton (2001) derived an Edgeworth approximation to the distribution
of the standardized estimator and a Wald statistic in a semiparametric instrumental variables model.

In this paper, we develop asymptotic expansions for an estimator of the treatment e¤ect recently
proposed in Hirano, Imbens, & Ridder (2000), henceforth HIR. Propensity Score matching is a
nonexperimental method for estimating the average e¤ect of social programs.1 The method compares

average outcomes of participants and nonparticipants conditioning on the propensity score value.
When averaged over the propensity score, the average measures the average impact of a program
if the conditioning on the observable variables makes the choice of the program conditionally mean
independent from the potential outcomes. This methodology has received much attention recently

in econometrics. While the method used often in practice uses the nearest match in either regressors
or estimated propensity score to compare the treatment and the comparison groups, the asymptotic
distribution theory for these methods have not been developed. The asymptotic distribution theory

has been developed by Heckman, Ichimura & Todd (1998) for the kernel based matching method.
HIR considers reweighting estimator that estimates the treatment e¤ect as well. Both methods
require choosing smoothing parameters but optimal methods to choosing the smoothing parameter

have not been discussed. In this paper we consider optimal bandwidth selection for the reweighting
estimator.

2 The Model and Estimator

We investigate a class of estimators for the treatment e¤ect, studied by HIR. Let Y1 and Y0 denote
potential outcome for an individual with and without ‘the treatment’. De…ne

Y = Y1 ¢ T + Y0 ¢ (1 ¡ T ) ;

where T is an indicator variable denoting the presence of treatment, i.e.,

T =

8
<
:

1 if treated
0 if untreated.

1See Cochran (1968), Rosenbaum & Rubin (1983), and Heckman, Ichimura, & Todd (1998).
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LetX be a vector of covariates or pre-treatment variables. Actually, for convenience we will takeX to
be a scalar and to have a continuous density f bounded away from zero on its compact support. We
will also assume that Y possesses many …nite moments. We are interested in the average treatment
e¤ect parameter

¿0 = E(Y1) ¡ E(Y0):
We shall assume the following identifying conditions:

E[Y1jX; T = 1] = E[Y1jX;T = 0]

E[Y0jX; T = 1] = E[Y0jX;T = 0]

0 < p (X) < 1

with probability one in X; where

p(x) = Pr[T = 1jX = x] = E(T jX = x)

is the propensity score. The …rst two assumptions are that treatment and potential outcome are

mean independent given covariates; the …nal assumption is that there are at least some unobserved
in‡uences on the probability of receiving the treatment. See Rosenbaum and Rubin (1983) and Heck-
man et al. (1998). Clearly under these assumptions E[Y1jX = x; T = 1] = E[Y1jX = x] = m1 (x)
and E[Y0jX; T = 0] = E[Y0jX = x] = m0 (x). Furthermore, the following observable regressions are

related to the unobservable regressions:

g1(x) ´ E[Y ¢ T jX = x] =m1(x) ¢ p(x); and

g0(x) ´ E[Y ¢ (1 ¡ T ) jX = x] = m0(x) ¢ (1 ¡ p(x)):

It now follows that the average treatment e¤ect parameter ¿ 0 satis…es

¿0 = E(Y1) ¡ E(Y0) = E[m1 (X)] ¡ E[m0 (X)]

= E
"
g1(X)
p(X)

#
¡E

"
g0(X)

1 ¡ p(X)

#
= E

"
E(Y ¢ T jX)
p(X)

#
¡ E

"
E(Y ¢ (1 ¡ T ) jX)

1 ¡ p(X)

#

= E
"
Y ¢ T
p(X)

#
¡E

"
Y ¢ (1 ¡ T )
1 ¡ p(X)

#
;

where the last line follows from the law of iterated expectations. The last line is the relation that

HIR use to suggest an estimator. Suppose now that we observe a sample fZi; i = 1; : : : ;ng; where
Zi = (Yi; Ti; Xi): The HIR estimator is

b¿ = 1
n

nX

i=1

"
Yi ¢ Ti
bp(Xi)

¡ Yi ¢ (1 ¡ Ti)
1 ¡ bp(Xi)

#
;
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where bp(Xi) was a nonparametric estimate of p(Xi); in fact they chose series estimates.
We allow a slightly greater degree of generality; in particular, we consider the estimator b¿ of ¿0

to be any sequence that solves

1p
n

nX

i=1
ª(Zi; ¿ ; bp(Xi)) = op(n¡5=4); (1)

where

ª(Zi; ¿ ; bp(Xi)) =
Yi ¢ Ti
bp(Xi)

¡ Yi ¢ (1 ¡ Ti)
1 ¡ bp(Xi)

¡ ¿ (2)

and
bp(Xi) =

nX

j=1
wijTj;

where wij are smoothing weights that only depend on the covariates X1; : : : ;Xn:2 As we mentioned
earlier, HIR used series estimates. The bias correction method we propose below can also be applied
to series estimates and indeed to any linear smoother, but detailed discussion of smoothing bias
terms requires that we use kernel or local polynomial estimators. We will also adopt the leave-one-

out paradigm that is used in many semiparametric estimates. To be speci…c we let the parameter
vector (b®0(Xi); b®1(Xi)) minimize the criterion function

X

j 6=i
K

µXj ¡Xi
h

¶
fTj ¡ ®0 + ®1(Xj ¡Xi)g2; (3)

with respect to (®0;®1); whereK is a di¤erentiable probability density function symmetric about zero

with support [¡1; 1]; while h = h(n) is a positive bandwidth sequence. Then let bp(Xi) = b®0(Xi) and
let wij be the corresponding smoothing weights. We have taken the …xed bandwidth leave-one-out
local linear kernel smoother as our estimator of the regression function. This estimator is preferable

to the local constant kernel estimator because of its superior bias properties both at interior and
boundary regions, see Fan and Gijbels (1996).

3 Main Results

HIR showed that the standardized estimator T =
p
n(b¿ ¡ ¿ 0) satis…es

T =
1p
n

nX

i=1
½i + op(1) = T0 + op(1); (4)

2The precise magnitude of the error of (1) is su¢cient for both of our higher order expansions in Theorems 1 and
2 below. It is certainly much smaller than is needed for root-n consistency.
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where ½i = ª(Zi; ¿0; p(Xi)) + sp(Xi)"i; where "j = Tj ¡ p(Xj) and

sp(x) = E[ªp(Zi; ¿ 0; p(Xi))jXi = x] = ¡
"
m1(x)
p(x)

+
m0(x)

1 ¡ p(x)

#
:

Here, the derivatives ofª with respect to p are denoted by ªp;ªpp etc. Therefore, T is asymptotically
normal with …nite variance

v0 = E
h
(ª(Zi; ¿ 0; p(Xi)) + sp(Xi)"i)2

i
: (5)

In fact, they rewrote the asymptotic variance in the more interpretable form

v0 = var [E (Y1 ¡ Y0jX)] +E
"
var(Y1jX)
p(X)

#
+ E

"
var(Y0jX)
1 ¡ p(X)

#
:

They also established that this estimator is semiparametrically e¢cient, i.e., it has the smallest
asymptotic variance amongst the class of all feasible estimators.

We are interested in the higher order properties of their estimator. We derive a stochastic ex-
pansion for T by Taylor expanding ª(Zi; ¿ ; bp(Xi)) around ª(Zi; ¿; p(Xi)); thereby obtaining the
representation

T = T0 + T1 + R = T ¤ +R; (6)

where the leading term T0 is as de…ned in (4), T1 contains the ‘second order’ terms, while R is a

remainder term that is of smaller order in probability. To be speci…c, we show that R = op(n¡®)
in probability for some ® > 0; where ® is determined by the order of magnitude of the bandwidth
and of course by how many terms in the Taylor expansion we retain. The magnitude op(n¡®) is

determined to ensure that our results in Theorems 1 and 2 below are sensible. The random variable
T ¤ has …nite moments to various orders and indeed it is a linear combination of certain U-statistics.
We shall calculate the moments of T ¤ and interpret them as if they were the moments of T : This
methodology has a long tradition of application in econometrics following Nagar (1959).3 The two

largest [in probability] second order terms in T1 are both non-zero mean and are

Op(h2
p
n) + Op(n¡1=2h¡1): (7)

3When supn E[T 2] < 1, we might reasonably expect that E[T 2] = E[T ¤2] + o(n¡®); but see Srinavasan (1970)
for a cautionary tale in this regard. In any case, our T does not necessarily have uniformly bounded moments.
Therefore, some additional justi…cation for examining the moments of the truncated statistic must be given. With
some additional work and regularity conditions it is possible to establish the stronger regularity that T and T ¤ have
the same distribution to order n¡®, which requires some restrictions on the tails of R; see the discussion in Rothenberg
(1984a). In this case our moment approximations can be interpreted as the moments of the approximating distribution.
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In T1 there are also mean zero random variables of order h2 and order n¡1=2h¡1=2: However, according
to the criterion of mean squared error, these stochastic terms are dominated by the bias terms, and
the optimal thing to do is to minimize the size of (7) by choosing h appropriately. The optimal
bandwidth is therefore of order h ³ n¡1=3; in which case both terms in (7) are the same magnitude,

and indeed are both of order n¡1=6: Thus, the second order terms are very large and are mostly bias
related. This suggests that the usual (…rst order) asymptotic approximation may not be very well
located. We shall now assume that a bandwidth of the optimal order h ³ n¡1=3 has been chosen so

as to simplify the discussion of the results. De…ne the functions

¯(x) = p00(x)

spp(x) = E[ªpp(Zi; ¿ 0; p(Xi))jXi = x] = 2
"
m1(x)
p(x)2

¡ m0(x)
(1 ¡ p(x))2

#

¹2(K) =
Z
u2K(u)du=2 ; kKk2 =

Z
K(u)2du:

Theorem 1. Under some regularity conditions, as n! 1; R = op(n¡1=3) in (6) and:

E(T ¤) ' p
nh2bn1 +

1p
nh
b2 + o(n¡1=3)

var(T ¤) ' v0 + o(n¡1=3);

where bn1 is deterministic and satis…es bn1 ! b1 with

b1 = ¹2(K)E [sp(Xi)¯(Xi)] ; b2 = kKk2E
"
spp(Xi)

p(Xi)(1 ¡ p(Xi))
2f(Xi)

#
:

The leading smoothing bias term b1 can take either sign, since it depends on the covariance
between the smoothing bias quantity ¯(X) and on the conditional expectation sp(X): When p is
a standard normal c.d.f., p00(x) < 0 for all x and the smoothing bias function is always negative;

in this case the direction of the bias is e¤ectively determined by the sign of the treatment e¤ect.
The term b2 can also take either sign depending on the sign of spp(x). Suppose there is a constant
treatment e¤ect ¿ independent of X; that p(x) = 1=2 for all x; and that f is uniform with range

one. Then b2 = kKk2 £ ¿ ; and the sign of b2 is determined by the direction of the treatment e¤ect.
The correction term in the variance is clearly of smaller order than the squared bias no matter what
bandwidth is chosen.

De…ne the asymptotic mean squared error of the estimator to be [apart from a factor of order

n¡1]
AMSE(b¿ ) = E(T ¤2) = var(T ¤) + E2(T ¤); (8)
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and de…ne an optimal bandwidth hopt to be a sequence that minimizes AMSE(b¿). By Theorem 1,

AMSE(b¿) = v0 +
Ãp
nh2b1 +

1p
nh
b2

!2

+ o(n¡1=3)

and it su¢ces to minimize the size of the term inside the brackets. If the biases have opposite signs
then the optimal bandwidth is going to set

p
nh2b1 +

1p
nh
b2 = 0;

and this second order bias will then be of smaller order. Otherwise, the optimal bandwidth will
minimize this second order bias and there will be an interior solution to the optimization problem
that can be found by calculus. To summarize, we have

hopt =

8
>>>><
>>>>:

³
¡b2
b1

´1=3
n¡1=3 if sign(b2) 6= sign(b1)

³
b2
2b1

´1=3
n¡1=3 if sign(b2) = sign(b1):

A feasible bandwidth selection method can be de…ned based on estimates of the quantities bj; j = 1; 2,

either nonparametric estimates or parametric estimates suggested from some sort of Silverman’s rule
of thumb idea.4

In some semiparametric estimators it has been shown that by using leave-one-out estimators and

other devices one can eliminate the degrees of freedom bias terms of order n¡1=2h¡1, see for example
Hall and Marron (1987) and Linton (1995). Indeed, we have used a leave-one-out estimator here.
Unfortunately, it has not completely eliminated the degrees of freedom bias. Instead, we de…ne an

explicit bias correction method and show that it does indeed ‘knock’ this term out and therefore
permits a smaller bandwidth and a better AMSE. Speci…cally, we de…ne the bias-corrected estimator

b¿ bc = b¿ ¡ bbn2; (9)

where
bbn2 =

1
n

nX

i=1

nX

j=1
j 6=i

"
Yi ¢ Ti
bp(Xi)3

¡ Yi ¢ (1 ¡Ti)
[1 ¡ bp(Xi)]3

#
w2
ijb"

2
j ;

where b"j = Tj ¡ bp(Xj): Note that the way we have de…ned the bias correction can be applied to any

linear smoother with weights wij : This bias correction is similar conceptually to using n¡ 1 instead
4This would require a model for mj; p; and f: See Fan and Gijbels (1996, p111) for the solution to a similar problem.
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of n in estimating a population variance; signi…cantly, in this context we do not need to estimate
higher derivatives of the unknown functions, and it follows that the sampling properties of this bias
estimator should be relatively good.5

The stochastic expansion for b¿bc is the same as that for b¿ except for the additional bias correcting

term bb: On computing the moments of the leading terms of this expansion however we …nd that the
bias term b2 has been eliminated; we therefore end up with a better trade-o¤ in the mean squared
error of this estimator. The largest terms are a squared bias of order h4n and a variance of order

n¡1h¡1: This trade-o¤ leads to an optimal bandwidth h / n¡2=5 and mean squared error of n¡3=5:
Let

³ i = ªp(Zi; ¿ 0; p(Xi)) ¡ E[ªp(Zi; ¿0; p(Xi))jXi]

(K ¤K )(t) =
Z
K(t)K(t¡ u)du

hf; gi =
Z
f(t)g(t)dt:

Let now T =
p
n(b¿ bc ¡ ¿ 0) and obtain the stochastic expansion T = T ¤ + R as in (6).

Theorem 2. Under some regularity conditions, as n! 1; R = op(n¡3=5) in (6) and:

E(T ¤) '
p
nh2b1 + o(n¡3=5)

var(T ¤) ' v0 +
1
nh
v1 + o(n¡3=5);

where

v1 = kKk2 £
(
E

"
E("2j jXj)E(³2j jXj )

f(Xj )

#
+ 2E

"
E2("j³jjXj)
f (Xj )

#)

+ kK ¤ Kk2 £ E
"
3s2pp(Xj )E

2("2j jXj)
4f (Xj)

#

+ hK;K ¤Ki £ E
"
3spp(Xj)E("2j jXj)E("j³jjXj)

f (Xj)

#
:

5E¤ectively, we are estimating the quantity b2=nh: We could alternatively estimate b2 itself by

bb2 = kKk2 1
n

nX

i=1

bspp(Xi)
bp(Xi)(1 ¡ bp(Xi))

2bf(Xi)
:

This is just a sample average of nonparametric estimators, and is similar in this respect to a weighted average
derivative [in our case second derivatives] estimator. Therefore, under some regularity conditions we can expect it to
satisfy

p
n(bb2 ¡ b2) = Op(1).
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This shows that the bias correction can lead to improved mean squared error properties.6 In this
case,

AMSE(b¿ bc) = v0 + nh4b21 +
1
nh
v1 + o(n¡3=5)

and the optimal bandwidth is

hopt =
Ã
v1
4b21

!1=5

n¡2=5;

since b21; v1 are both non-negative. This bandwidth is smaller in magnitude than is optimal for the
raw estimator b¿: A feasible bandwidth selection method can be de…ned based on estimates of the
quantities b1; v1, either nonparametric estimates or parametric estimates suggested from some sort
of Silverman’s rule of thumb idea.

The degrees of freedom bias correction has been analyzed before in other contexts. For example,
Jones and Sheather (1991) investigated squared density derivatives, the situation of Hall and Marron
(1987). They argued against doing the degrees of freedom bias correction by itself in this case. Their

reasoning was that the leading smoothing bias term was always negative, while the degrees of freedom
bias term was always positive. Therefore, by a judicious choice of bandwidth one could cancel these
terms out. If we applied their method successfully to our problem we would end up with [assuming

that h ³ n¡1=3]

AMSE(b¿ JS) ' v0 +
³p
nh4b11

´2
+

1
nh
v1;

say, where b11 is a higher order smoothing bias term [assuming that the underlying functions are
smooth enough]. In this case, the correction term is of order n¡2=3; which is even smaller than the
order n¡3=5 obtained with our degrees of freedom bias correction. The catch is that in our more

complicated model, the signs of the two bias terms are not necessarily opposite and so the Jones and
Sheather method is not guaranteed to work and the resulting correction term is then larger than
ours. In any case, the Jones and Sheather method requires estimation of higher order derivatives of
the regression function and is: (a) unlikely to work well in practice, and (b) against the spirit of our

approach.
6We are happy to report that this …nding is partly in agreement with Rothenberg (1984a, p909) who says:

“This suggests that correction for bias may be more important than second order e¢ciency consideration
when choosing among estimators.”

In our case, correction for bias improves mean squared error.
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We have just presented results concerning the moments of the estimators, but this can also be
extended to distributional approximations. In fact, to the relevant order b¿ is normally distributed,
i.e.,

Pr
hp
n(b¿ ¡ ¿ 0) · x

i
= ©

0
@x¡ p

nh2b1 + 1p
nhb2p

v0

1
A + o(n¡1=3):

The approximation for
p
n(b¿ bc¡¿ 0) is more complicated because if we require an error rate consistent

with our mean squared error [i.e., of order n¡3=5] then we will have to include the skewness terms of
order n¡1=2;7 in this case the approximate distribution is not normal in general but can be expressed
in terms of the Edgeworth signed measures and the …rst three cumulant approximations. See Linton

(2001) for a computation of this type.
Finally, we remark that the standard errors of b¿ also depend on the nonparametric estimator bp(¢);

and there are similar concerns about the small sample properties of these quantities. These standard
errors also su¤er from a degrees of freedom bias problem, which can be corrected in the same way

as we have done for the estimator of ¿ :

4 Some Numerical Results

For comparison we present the optimal rates associated with a variety of semiparametric models that

have been studied before. These are all for the univariate case with second order kernels or similar
method.

TABLE 1
Rates of Convergence for Bandwidth and Mean Squared Error Correction

7 In both cases
E[fT ¤ ¡ E(T ¤)g3] ' O(n¡1=2);

which is the same magnitude as in parametric models.
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Model Optimal Bandwidth Optimal MSE Correction

1. Average Derivative n¡2=7 n¡1=7

2. Variance Estimation n¡1=5 n¡3=5

3. Partially Linear Model n¡2=9 n¡7=9

4. Heteroskedastic Linear Regression n¡1=5 n¡4=5

5. Variance a Function of Mean n¡2=11 n¡5=11

6. Symmetric Location n¡1=7 n¡4=7

7. HIR n¡1=3 n¡1=3

8. HIR with Bias Correction n¡2=5 n¡3=5

Notes. M ode ls 2-6 are given in L in ton (19 91, C hap te r 3) . The re sul t for M odel 1 i s tak en fro m Härd le, Hart, M arron, & Tsy bakov (1992) .

The optimal bandwidth for nonparametric regression is of order n¡1=5 and has a consequent MSE
of order n¡4=5: Table 1 shows that there is quite a variety of magnitudes for the optimal bandwidth
in semiparametric estimation problems; sometimes the optimal bandwidth is bigger but usually it is

smaller than the optimal rates for nonparametric estimation. These di¤erent rates re‡ect di¤erent
magnitudes for bias and variance in these semiparametric functionals.

We investigate the magnitudes of the second order e¤ects in Theorems 1 and 2 and the optimal

bandwidth size. We compute the theoretically optimal bandwidths and mean squared errors for the
following model.

Design.

X » U [¡0:5; 0:5] ; T = 1 (¯X + ± > 0)

m0(x) = x ; m1(x) = ¿ +m0(x)

Y0 = m0(X) + ´ ; Y1 = y0 + ¿;

where ´; ± » N(0; 1) and are mutually independent. We vary the parameters ¿ and ¯ with ¿ 2
f¡2;¡1; 0; 1; 2g and ¯ 2 f1; 2;3g:8

We compute the quantities in Theorem 1 and 2 by simulation methods. Note that v0 changes

substantially with ¯ and less with ¿ : For example, when (¯; ¿ ) = (1;¡2); v0 = 4:28; while when
(¯; ¿ ) = (1;+2); v0 = 4:31: However, when (¯; ¿ ) = (3;¡2); v0 = 29:57 and when (¯; ¿ ) = (3;+2);
v0 = 42:86: By contrast, b1 and b2 are quite small in absolute terms. For (¯; ¿ ) = (1; 2); (b1; b2) =

8The regression R2 of ¯X + ± on X is R2 = 2¯2=(2¯2 +3) and of Yj on X is given by the same formula with ¯ = 1;
i.e., R2 = 0:4:
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(0:031; 0:484); while for (¯; ¿ ) = (3;¡2); (b1; b2) = (12:88;¡3:59): In most cases b1 and b2 have
opposite signs. The constant v1 is very large when ¯ = 3:When (¯; ¿ ) = (1; 0); v1 = 0:5; while when
(¯; ¿ ) = (3;¡2); v1 = 110:36:

We report the relative root mean squared error against bandwidth [RRMSE =
q
AMSE=v0] in

the …gures below for a sample size of n = 100 and n = 1000. The solid line is for the raw estimator
and the dashed line is for the bias corrected estimator.

***Figures 1-2 here***

The e¤ects of bandwidth on performance are quite clear from these pictures. As discussed earlier
there is a bandwidth in this case for which the RRMSE of b¿ is exactly equal to one, but this never
happens for b¿bc: This gives the misleading impression that the un-corrected estimator is better. But

of course the error in the expansion for b¿bc is of much smaller order than in b¿ - for a meaningful
comparison we should include more terms in expansion of b¿: It is clear from the pictures that b¿ bc has
better RRMSE when h is small, but that the estimators have similar RRMSE when h is large.

Note that the Silverman’s rule of thumb bandwidth [for Gaussian kernels] hrot = 1:06¾n¡1=5 is
for n = 100; hrot = 0:35; n = 200; hrot = 0:30; n = 500; hrot = 0:25; n = 1000; hrot = 0:22; and
n = 10;000; hrot = 0:14: Another common bandwidth choice is just 0:2 £ range; which in this case

would result in h = 0:2: For the small sample size these bandwidths rarely do dreadfully, but such
large bandwidths can have disastrous e¤ects in the larger samples.

5 Conclusions

Our asymptotic expansions revealed some facts about the HIR estimator. The main thing is that its

properties are dominated by bias: one bias term is related to the curvature of the function p and the
covariate density f; and would naturally be called a smoothing bias; the second bias term is what we
have called a degrees of freedom bias. The magnitude of the bias terms can be quite large and their

signs are unknown in general. We proposed a simple bias correction that eliminates the degrees of
freedom bias term, thereby permitting a smaller bandwidth and consequently better mean squared
error.

12



6 Appendix

Su¢cient conditions for consistency and asymptotic normality of semiparametric estimators can be
found in numerous places for a variety of nonparametric estimators and estimation criteria. See for
example Andrews (1994), Newey & McFadden (1994), Bickel, Klaassen, Ritov, & Wellner (1993) etc.

Linton (1996b) develops higher order asymptotic expansions for a general class of semiparametric
estimators. We will clearly require smoothness conditions on p;f: We require that both p and f be
bounded away from zero on the compact support of X: We also need some moment conditions on
Yji: The conditions should imply at least that

sup
x2C

jbp(x) ¡ p(x)j = op(n¡1=4); (10)

where C is the support of X: Su¢cient conditions for this can be found in Masry (1996a,b), who

actually shows that

sup
x2C

jbp(x) ¡ p(x)j = Op(h2) +Op
0
@

s
logn
nh

1
A ; (11)

which is Op
³
n¡1=3plog n

´
when h ³ n¡1=3 and Op

³
n¡3=10plog n

´
when h ³ n¡2=5; in either case

this magnitude is op(n¡1=4) as required. We also use the decomposition

bp(Xi) ¡ p(Xi) =
X

j 6=i
wij"j + ¯n(Xi); (12)

where wij are the smoothing weights that just depend on the covariates X1; : : : ; Xn; while ¯n(Xi) =
E[bp(Xi)jX1; : : : ; Xn]¡p(Xi) is the conditional smoothing bias that also just depends on the covariates

X1; : : : ; Xn: It can be shown that h¡2¯n(x) !p ¯(x) and that this convergence is uniform, see for
example Masry (1996a,b). In fact,

E[(bp(Xi) ¡ p(Xi))2jX1; : : : ; Xn]

' 1
nh

jjKjj2 p(Xi)(1 ¡ p(Xi))
f (Xi)

+
h4

4
¹22(K)¯2(Xi) ´Mn(Xi):

See the book of Fan and Gijbels (1996) for more discussion.
Proof of Theorem 1. By a geometric series expansion

p
n(b¿ ¡ ¿0) =

1p
n

nX

i=1
ª(Zi; ¿ 0; p(Xi)) +

1p
n

nX

i=1
ªp(Zi; ¿ 0; p(Xi))(bp(Xi) ¡ p(Xi))

13



+
1

2
p
n

nX

i=1
ªpp(Zi; ¿ 0; p(Xi))(bp(Xi) ¡ p(Xi))2

+
1

6
p
n

nX

i=1
ªppp(Zi; ¿0; p(Xi))(bp(Xi) ¡ p(Xi))3

+
1

24
p
n

nX

i=1
ªpppp(Zi; ¿ 0; p(Xi))(bp(Xi) ¡ p(Xi))4 + op(n¡3=4): (13)

The magnitude of the remainder in (13) follows from (10) and because the derivatives of ª with

respect to p are dominated by a function with …nite moment [since p is bounded away from zero].
When h ³ n¡1=3 and we only require an expansion out to order n¡1=3; we can further drop the

cubic and quartic terms to obtain

p
n(b¿ ¡ ¿ 0) =

1p
n

nX

i=1
ª(Zi; ¿ 0; p(Xi)) +

1p
n

nX

i=1
sp(Xi)(bp(Xi) ¡ p(Xi))

+
1p
n

nX

i=1
³ i ¢ (bp(Xi) ¡ p(Xi)) +

1
2
p
n

nX

i=1
spp(Xi)(bp(Xi) ¡ p(Xi))2

+
1

2
p
n

nX

i=1
»i ¢ (bp(Xi) ¡ p(Xi))2 + op(n¡1=3)

´ J1 + J2 + J3 + J4 + op(n¡1=3);

where the random variables ³ i = ªp(Zi; ¿ 0; p(Xi)) ¡E[ªp(Zi; ¿ 0; p(Xi))jXi] and
»i = ªpp(Zi; ¿0; p(Xi))¡E[ªpp(Zi; ¿ 0; p(Xi))jXi] are both i.i.d. and conditional mean zero given Xj :

We then write

J1 =
1p
n

nX

i=1
sp(Xi)(bp(Xi) ¡ p(Xi))

=
1p
n

nX

j=1
sp(Xj)"j +

1p
n

nX

j=1
"j

2
4X

i 6=j
wijsp(Xi) ¡ sp(Xj)

3
5 +

1p
n

nX

i=1
sp(Xi)¯n(Xi) (14)

´ J11 + J12 + J13;

where J11 = Op(1) and asymptotically normal [also jointly asymptotically normal with the leading

term in our expansion, n¡1=2 Pn
i=1ª(Zi; ¿ 0; p(Xi))]; the term J12 is mean zero and has variance of

the same magnitude as E[
P
i 6=j wijsp(Xi) ¡ sp(Xj)]2; this we expect to be O(h4): The reason is

that wij are approximately symmetric [see Linton (2001b)] and so
P
i6=j wijsp(Xi) ¡ sp(Xj ) is rather

like
P
i 6=j wjisp(Xi) ¡ sp(Xj ) in terms of its magnitude, and this latter quantity is just the bias

function from smoothing sp(Xi) against Xi: Therefore, J12 = Op(h2): The term J13 is a bias term
with magnitude h2

p
n and variance also h4: This term contributes to the second approximation of

14



Theorem 1, speci…cally

h¡2 1
n

nX

i=1
sp(Xi)¯n(Xi) !p b1

as stated.
We next turn to the term

J2 =
1p
n

nX

i=1
³ i ¢ (bp(Xi) ¡ p(Xi))

=
1p
n

nX

i=1
³ i

X

j 6=i
wij"j +

1p
n

nX

i=1
³ i¯n(Xi) ´ J21 + J22; (15)

where J21 is a second order degenerate U-statistic that has mean zero and variance of order n¡1h¡1;

it is also uncorrelated with the leading terms. The second term, J22; is mean zero and Op(h2) and
hence of smaller order.

We next turn our attention to the term J3: First,

J3 =
1p
n

nX

i=1
spp(Xi)(bp(Xi) ¡ p(Xi))2

=
1p
n

nX

i=1
spp(Xi)E[(bp(Xi) ¡ p(Xi))2jX1; : : : ; Xn] +Op(n¡1=2h¡1=2) (16)

=
1
h
p
n
jjKjj2 1

n

nX

i=1
spp(Xi)

p(Xi)(1 ¡ p(Xi))
f(Xi)

+ Op(h4
p
n) + Op(n¡1=2h¡1=2);

where we have substituted in the expression for E[(bp(Xi) ¡ p(Xi))2jX1; : : : ;Xn]: Finally, taking
probability limits

h
p
nJ3 = b2 + op(1)

using the fact that h5n ! 0: The omitted term in (16) is mean zero and uncorrelated with the

lead, so only its variance, which is of order n¡1h¡1 contributes to the mean squared error; with the
bandwidth magnitude of Theorem 1, it is of smaller order. To make clearer the claim in (16); and
in anticipation of the proof of Theorem 2 where this term is important, we give another argument
here. Using (12), we can write

J3 =
1p
n

nX

i=1
spp(Xi)

2
4X

j 6=i
wij"j + Op(h2)

3
5
2

=
1p
n

nX

i=1
spp(Xi)[

X

j 6=i
wij"j]2 + Op(h4

p
n)
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' 1p
n

nX

i=1
spp(Xi)

X

j 6=i
w2
ijE("

2
j jXj) +

1p
n

nX

i=1
spp(Xi)

X

j 6=i
w2
ij ["

2
j ¡ E("2j jXj )]

+
1p
n

nX

i=1
spp(Xi)

X

j 6=i

X

l 6=i
j 6=l

wijwil"j"l ´ J31 + J32 + J33:

The …rst term J31 is the leading bias term of order h¡1n¡1=2 analyzed above. The second term J32
is mean zero and is of order n¡1h¡1 in probability so is insigni…cant in both Theorem 1 and 2. The

third term, J33; is mean zero and Op(n¡1=2h¡1=2): We can rewrite this term

1p
n

nX

i=1
spp(Xi)

X

j 6=i

X

l 6=i
j 6=l

wijwil"j"l =
X X

j 6=l

Ã
1p
n

nX

i=1
spp(Xi)wijwil

!
"j"l

' 1
n
p
nh

XX

j 6=l
(K ¤K)

µXj ¡Xl
h

¶ spp(Xj )
f(Xj)

"j"l;

where K ¤K(u) =
R
K(t¡ u)K(t)dt: See Linton (1995) for a similar calculation. This term does not

feature in the expansion of Theorem 1 [but does contribute in Theorem 2, see below].
Finally, it is easy to see that

J4 =
1

2
p
n

nX

i=1
»i ¢ (bp(Xi) ¡ p(Xi))2 = Op(h4 + n¡1h¡1):

Speci…cally, because we are using a leave-one-out estimator, » i is independent of bp(Xi) ¡ p(Xi)
conditional on Xi: Therefore, this term is mean zero and its order in probability is the same as

EMn(Xi):
In conclusion we have

p
n(b¿ ¡ ¿0) ' 1p

n

nX

i=1
ª(Zi; ¿ 0; p(Xi)) + sp(Xi)"i [= Op(1)] (17)

+
1p
n

nX

j=1
"j

2
4X

i 6=j
wijsp(Xi) ¡ sp(Xj)

3
5

h
= Op(h2)

i

+
X X

i 6=j
'n(Zi; Zj)

h
= Op(n¡1=2h¡1=2)

i

+
1p
n

nX

i=1
sp(Xi)¯n(Xi)

h
= Op(h2

p
n)

i

+
1

2
p
n

nX

i=1
spp(Xi)Mn(Xi)

h
= Op(h4

p
n) + Op(n¡1=2h¡1)

i
;
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where

'n(Zi; Zj) =
1

nh
p
n

1
f (Xi)

·
K

µXi ¡Xj
h

¶
³ i"j +

1
2
(K ¤K)

µXi ¡Xj
h

¶
spp(Xi)"i"j

¸
:

Clearly, E['n(Zi; Zj)jZi] = E['n(Zi; Zj)jZj] = 0 and
P P
i 6=j
'n(Zi; Zj ) is a degenerate weighted U-

statistic of the stated order in probability. Because this term is uncorrelated with the leading term

it does not contribute to the mean squared error expansion of Theorem 1. Likewise the Op(h2) term
does not contribute because it is mean zero. Therefore, the leading terms in the mean squared error
expansion come from

p
n(b¿ ¡ ¿ 0) ' 1p

n

nX

i=1
[ª(Zi; ¿0; p(Xi)) + sp(Xi)"i]

+
1p
n

nX

i=1
sp(Xi)¯n(Xi) +

1
2
p
n

nX

i=1
spp(Xi)Mn(Xi):

Proof of Theorem 2. In this case we have h / n¡2=5 and require a mean squared error

expansion upto order n¡3=5:
Write bb2 = h

p
nbbn2; where recall the target quantity

b2 = jjKjj2E
"
spp(Xi)

p(Xi)(1 ¡ p(Xi))
2f (Xi)

#
:

First of all we suppose that

p
n(bb2 ¡ b2) =

1p
n

nX

i=1
Ã(Xi) + op(1); (18)

where EÃ(Xi) = 0 and var(Ã(Xi)) <1: This can be justi…ed by a lengthy argument using standard
techniques of semiparametric estimation, see for example Andrews (1994), Newey and McFadden
(1994) etc. The consequence of (18) is that

p
n(b¿ bc ¡ ¿ 0) =

p
n(b¿ ¡ ¿ 0) ¡ b2

h
p
n
(1 +Op(n¡1=2))

=
p
n(b¿ ¡ ¿ 0) ¡ b2

h
p
n
+ Op(n¡3=5);

where the Op(n¡3=5) term is mean zero. Furthermore, this remainder term is uncorrelated with

the leading term because E[ª(Zi; ¿ 0; p(Xi)) + sp(Xi)"ijXi] = 0; and therefore this term does not
contribute to the mean squared error expansion.
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We must examine (13) again because the bandwidth magnitude is di¤erent from Theorem 1. The
term

1
6
p
n

nX

i=1
ªppp(Zi; ¿ 0; p(Xi))(bp(Xi) ¡ p(Xi))3 = Op(n¡2=5(log n)3=2);

and in principle must be analyzed in this case. It can be shown that it does not contribute to the
mean squared error because essentially the correlations with leading terms are of smaller order [the
square of this term is obviously n¡3=5]:

In conclusion,

p
n(b¿ bc ¡ ¿ 0) ' 1p

n

nX

i=1
ª(Zi; ¿0; p(Xi)) + sp(Xi)"i

+
XX

i 6=j
'n(Zi;Zj) +

1p
n

nX

i=1
sp(Xi)¯n(Xi);

where omitted terms do not contribute to the mean squared error to order n¡3=5: Finally,

var

2
4X X

i 6=j
'n(Zi; Zj)

3
5 = n(n¡ 1)E['2n(Zi; Zj)] + 2n(n¡ 1)E['n(Zi; Zj)'n(Zj; Zi)];

where by the law of iterated expectations

E['2n(Zi;Zj)] =
1
n3h2

E
"

1
f2(Xi)

K2
µXi ¡Xj

h

¶
E[³2i jXi]E["2j jXj ]

#

+
1

4n3h2
E

"
1

f 2(Xi)
(K ¤ K)2

µXi ¡Xj
h

¶
s2pp(Xi)E["

2
i jXi]E["2j jXj]

#

+
1
n3h2

E
"

1
f2(Xi)

(K ¤ K) £K
µXi ¡Xj

h

¶
spp(Xi)E[³ i"ijXi]E["2j jXj]

#

E['n(Zi;Zj)'n(Zj; Zi)] =
1
n3h2

E
"

1
f (Xi)f (Xj)

K2
µXi ¡Xj

h

¶
E[³ i"ijXi]E[³ j"jjXj]

#

+
1

4n3h2
E

"
spp(Xi)spp(Xj)
f (Xi)f(Xj)

(K ¤ K)2
µXi ¡Xj

h

¶
E["2i jXi]E["2j jXj]

#

1
n3h2

E
"
spp(Xi)
f (Xi)f (Xj)

(K £ (K ¤K))
µXi ¡Xj

h

¶
E[³ i"ijXi]E["2j jXj]

#
:

We use the fact that K ¤ K is symmetric. Then take expectations with respect to Xj and use the

localizing operation of K and K ¤ K to see that

n(n¡ 1)E['2n(Zi; Zj)] ' 1
nh

kKk2E
"
E[³2i jXi]E["2i jXi]

f (Xi)

#
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+
1

4nh
kK ¤Kk2E

"
s2pp(Xi)E2["2i jXi]

f (Xi)

#

+
1
nh

hK;K ¤ KiE
"
spp(Xi)E[³ i"ijXi]E["2i jXi]

f (Xi)

#

2n(n¡ 1)E['n(Zi; Zj )'n(Zj ;Zi)] =
2
nh

kKk2E
"
E2[³ i"ijXi]
f (Xi)

#

+
1

2nh
kK ¤ Kk2E

"
s2pp(Xi)E

2["2i jXi]
f (Xi)

#

2
nh

hK;K ¤KiE
"
spp(Xi)E[³ i"ijXi]E["2i jXi]

f (Xi)

#
:

Therefore, the result is as stated.
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7 Figures

The …gures show the relative root mean squared error against bandwidth [RRMSE =
q
AMSE=v0].

The solid line is for the raw estimator and the dashed line is for the bias corrected estimator.The
…gures show RRMSE against bandwidth h. Figure 1 is for n = 100 and Figure 2 is for n = 1000
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