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Given any ZeJ'y, there is a global rotation o0’ (V) with spinor norm 1
sueh thut oZed%.
Here

¢ = {Zedyp: Z,e2(V,)for all (finite & infinite) spots p}.

Tor any spot p, 0'(V,) always equals to £{V,) except when p is
discrete, non-dyadic and V, is the unique four dimensional anisotropic
space. See 61C, 93:1, [7]. Thus, we may suppose dim(V) =4. Let

={p: X4 Q(Vp)} and let X be the remaining real and non-dyadic
gpots at which V is anisotropic. We may suppose T' is not empty. By
sealing, we may further assume V represents 1. Fix a unit 4, of quadratic
defect 40p, and a prime element m, at each peT. The Weak Approxi-
mation Theorem gives us two elements «, § in the global field ¥ such
that: « is close to 4, at peT, and close to 1 at peX; § is close to =, ab
peT, and close to 1 at peX. Then, «f is close to A m, at peT and to 1 at
peX. Locally, V, (being 4-dimensional) is mniversal for every non-real
spot p and of course also at all the real spots with ¥V, isotropie. On the
other hand, ¥, is positive definite for the 1emam1ng real spots. Thus,
the Local- Grloba,l Representation Theorem gives us vecbors w,v,weV
such that Q{u) = a, G(v) = §, and @¢(w) = af. Choose we V with Q(a:) =1,
and puf o = 8,;8,8,8,. One sees that o lies in O (V) and oX,e 2(V,)
at every p, see 95 : 1a, [7]..Hence, oXcJ%.
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Asymptotic expansions of finite theta series

by
'H. FiEDLEE, W. JurEar® and 0. KornEr (Ulm)

Dedicated lo Th. Schneider on his 65th birthday

1. Introduction. We are mterested in the approximate evaluation
of sums like :

N
—_ v rin?z
L.Jg

f=1

Sy ()

{z real).

For instance we shall prove {zsee Remark 2):

THEoRENM 1. )
. N -
(1) Bylr) =alp, ) [ "+ 0(Vg)
]
for '
@ o= 1X  r<l. 0<g<4i¥, (p,9—1.
q q? é:N H H ?

Here a{p, ¢} is an arithmetical function of p and g, whose modulus

is zero or 1/}@ according as pg is odd or even. The exact order of magnitude

of the integral in (1) is known (see (9)) to be

M
T Vg NVE

Hence the main term in (1) is zero for odd pg and dominates ]/& for even pg
in the permitted range. (The symbols O } and = are explained at the
beginning of the next section.)

By Dirichlet’s box principle one can find for any given pair 2, Na triple
7, 4, £ satisiying (2). Therefore (1) is applicable to every real # and evalu-

ates Sy(z) up to an error 0 l/ﬂ) at most. (Obsmve that VN is the exact

order of the Ly-mnorm of §y(%).)

* The research of the second anthor was supporfed in part by the National
Soience Foundation.
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Sums of the above type were treated by Hardy and Littlewood ([4], [5])
by means of their approximate functional equation. It became clear that
the rational approximations of # (or the continued fraction of z) play
an important role (see also Behnke [1], [2], Koksma [6], Ostrowski [7]
and Waltisz [11], [12]). Those investigations were concerned with upper
and lower extimates of |8yl Particularly successful with regards to upper
estimates is & combination of Weyl's and Vinogradov’s method, but the
result ean still be improved npon (see Th. 6 and the discussion preceding
it). It i3 remarkable that one can actually isolate a main term in §(x)
as given in (1). Of course in the immediate neighborhood of rational

pointsﬁ(the so-called major ares) this represents no problem, and the
q :

precise form of it is given e.g. in Vinogradov’s book [9] (chapt. ITI, p. 57)
with an error term O{g). This form of the error term is only appropriate,
if g = O(]ﬁ\?), leaving the so-called minor arcs open for further dis-
cussion. Vinogradov obtains his error O(g) by means of Buler’s summation
formula and van der Corput’s method. By turning Euler’s sum formula
into the Poisson sum formala (by inserting the Fourier expansion of the
first Bernoulli-polynomial) Vinogradov could have improved the error
term o O(Vglogg), if he had postponed estimating terms which later
combine (cf. Lemma 2), However, the error term requires further atten-
fion: an application of the mentioned Weyl-Vinogradov method brings
the error ferm down to O(Vglogg). This still does not eliminate the minor
arcs, L.e. intervals where the error might be above V. It is remarkable
that the well-kmown (see [4], [12], [8]) iferaticn of the approximate func-
tional equation of Hardy-Littlewood can be used to estimate incomplete
Gazussian sums by O(l@) {see Lemma 4); applying this, one can improve
the estimate of the error term to 0(1/&). Consequently the minor arcs
dissappear entirely. Thus we find that the asymptotic behavior of Sy()
is controlled by a generalized approximate functional equation (see The-

orems 3, 4, b) around -g—instead of 0 with an error term of the mentioned

quality.
As an application of the asymptotic expansion (1) we shall deduce
in the last section of this paper the following

TreOREM 2. Let {g(n)}" be o non-decreasing sequence of positive
numbers. Then for dlmost all real z one haos

Su(a) == OW(I/ITg{N)) (N =1; N dinteger)

or

Sx(o) # 0,WFg(F)  (F=1; N integer),
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aceording as the series -

@ ng'(n)

converges or diverges. “Almost all” means “up to a set of Lebesque
measure zero”,

In thig notation the dependence of the O-symbols on the given
sequence g is suppressed. Since there is no minimal (max:ima,l) g(n) for
which (3) converges (diverges), 0, may be replaced by o, in Theorem 9
If, in particular, g*{n) belongs to the logarithmic geale, then Theorem 2 i

contained implicitely in results of Walfisz [11], p. 383-384, on infinite
theta series.

2. Notations. f(t) = O, .. (¢(f)), teD, for two funetions f,g means
that there is a constant ¢ > 0 depending only on the parameters a, b, ...
such that |f(1)] < elg ()] for all ¢ in the set D. If ¢ does not depend on any
parameter, i.e. if ¢ is an absolute constant, we drop the subscml?ts of
the O-symbol. If simultaneously f(t) = O{g(t)) and g(f) = O{f()) in D,
we write f(f) = g(#), teD. _ .

A prime on the sign of summation 2 has the following meaning:
T @ < b is a pair of reals and {e,} a sequence of complex numbers, then

we pub

b
N k.
’ Cp = Cp B 3
n=a asn<h

where ¢, 0T ¢, is defined to be zero, whenever & or-b is no integer. Further-
more we use the definitions

o .
ch = lim Z Cps
ki3

.S SUC Y — T
and .
M
Doy =lim Yo,
nHET M0y U
: n;éa

in cases of existence. o .
In the sequel g always denotes & positive infeger a.nd‘p a,n.mteger
relatively prime to g. For an integer N the number {3, is defined by

the conditions (¥, = N mod g, 0 < (Npg< ¢ By 3 we mean sum-

nmodg )
mation over any complete residue system modulo g. We use the abbrevi-

ations

Vi = B(1/4),

and define Vi tor real z 1o be = 0 or i]/m aceording as ¢ 2= 0 or < 0.

Ba) ==,
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3. A general approximatien. For infegers » we shall need the gen-

eralized Gaussian sums

- h?+nh

(4) EAVIES 2 E(ﬁrﬂ-?—)mg_n(p,q)-
Emod2g

The ordinary Gaussian sum ¢{p, ¢) is explicitely known (see e.g. [10},
p.13, 16) as

0 ' for  29pq,
%, 9) (%)E((q;1)2) for  2|p,
o !
i ¥ 2 f 3
) \e ot

in terms of the quadratic residue symbol (%-) For general n the sum g,.(p, ¢)

can be reduced to g,(p,q) by

Leyara 1. One has (P, 9)] =0 or 21/& according as pg-+n is odd. or
even, and in the latter case more precisely

*%2
Iulp,0) = B (iq )go(ﬁ+6q, q),

where § = 1 or 0 according as pq is’odd or even, and where
@ p* = —p(p)?
with any solution p' of the congruence p'p =1 mod g, subject to the ad-
ditional condition 4|p” if q is odd.

Proof. (a) First let pg-+n be odd: Since h+ ¢ runs through a com-
plete residue system modulo 2q if k does 50, and since

P+ g2 +n(l-+g) = ph*+uh+ (pg-+n) gmod 2q,
we have : '
_ 0 L plhtgP+alhtg)
Oa(P, 0) = E( p ) B{pg+n)g.(p,¢) = —g.(p, @),
hmod2g .

hence g,(p, g) = 0.

{b) Secondly lat pg—+n be even. .

'(by} If pg is odd, nis odd, and we have n = pp’n-+ug with some odd
integer u, hence for all integers A

PRk = (b (p'n) [2)+ ukg + (p* %*)/
and

uh = (h+(p'n)[2) = (h+ (5!9’“!@)‘,’2)2 mod 2,
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consequently
¥ ' ¥
B3 R {(p-+q)h+(pn)2)? e
yﬂ(iﬂ,g)=E( ) Z E( o) j: 2 —B{E ) gp 44, 0
42 Amod2g q dﬂ

(b,) I pq is even, n is even, and we have » = p'pn mod 2¢, hence
for all integers A:
phe+uh = p(h+(p'n)[2)*+(p"n%) 4 mod 2¢,
therefore '

*,.2

ga (P, 4) = E(ZZ )yn(:a, q). m

COROILLARY OF LEMMA 1. For integers n and 2¢ we have

*

Gotn+a) (17: Q=% (“%“( nt wn’)) J2a(Py 4)

The main objeet of this paper will be the suwm

A
]

E(n2x-+2n8),

)

n=

defined for real N, x, 8 with N > 0. Emphasizing a rational approxima- '
tion p/q of , it will be also convenient to use the abbreviation

6
i)
g q44q

Lmmaa 2. 1}31. N, &, o be real, N> 0 and A such that pg-+34 de an

even integer. Then
gz(n-ré)iﬂyq}f ( 2t{a n))dt_
: g

Prooif. Put 4 + o ~ 0. We start with the identity

Sy(p,q: & 0 =

(6) Sylp,q, & 4d+a) =

() Sy(p,¢; &0 = 3 BORNO) S
hmed2g
where . ‘

N L (V—R)2g

! n2E-2nd : £

Sy = 2 E(M) = y E((h—[—ng) +2(h_,_m94)_)
n=0 q m=—h/2g
n=hmod2g .

To Sy, We apply Poisson’s summation formula

» .
3 = 3 [ f{6) B —2nt)dt

: 2 fm)

- W=a
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valid for a, b real, a<{ b, and complex-valued functions f with a con-
tinuous derivative in [a, 5] (see [14], vol. I, chap. IT, § 13). We obtain

N—R)iag
Sya

*

fi

({h+t2q)2 +2(h+t2g)—2— —2nt) dt

n  —Rhf2q .

_2 ﬂh/gf (t25+t(2a_%))dt.
D g .

Inserting this in (7) yields

i

2 In 19, 9) f E(tﬁéTt 29—%))

1]

Sx(2,4, & 6)

Now Lemma 1 implies (6). m
For the special case p = 0, ¢ = 1 Lemma 2 contains the identity which
iz the basis of Wilton’s proof [13] of the approximate functional equa-
tion of Sy(w, 0) (see Theorem A). :
For an amalysis of the preceding formulae we introduce for complex y
the normed Fresnel integral

1 ¥
F(y) =7/70f B,

henece .

‘ F{—y) = —F(y), F(0) =0, 0) = 1/Vi.
We have , l
(8) Re(ViF(y))>0 and Im(ViF(y))>0 for y>o0,

Fleo) =1{2, F(~o0)=—1/2,

where ¥(co) and F(—oo) are defined as the limit of F(y) for y-»oo along
the positive or negative real axis respeetlvely From this we infer that

(9 Iy} =

Y
for real .
T+ y] Y

Furthermore we obtain by parbial integration (along the real axiz) of

(10} 2y) -

thatforrealy 0

() Fiy) = 280 4 L0 +o(i). ‘

2 ﬁQniy ¥

1 ¥
Fsigny- oo)—ﬁ gnfv nar

&3 )
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Note that for real » and negative &
& —
Ve Vig!

the har denoting the conjugate eomplex value.
Also the series '

2

L QY Gona)i? QY E(—2rajg)
a8 Pp.anal®) = 4i Z = r—mn

defined for me¢(—1,1) and integers r, 2a, will play an important role.
Sinee the numerators of its terms have period g, the series is convergent.
Now it is convenient to begin with éur most general approximation result.

TragoreM 3. Let £, 0 be real and N be a non-negative infeger. Define p*
by (B) and let 0 << e<{ 1/2. Choose A and B such that pg+24 ond pg+28
are even integers and that 0 = A+o, N+ 0 =B+ and (B—4)E=0
holds with |al < 1l—e, |f1<1—s Put M =B—4 ond r = (N),. Then

(@) Syp, 4,0, = g‘*‘”’f (52 a+

2N
oz ( - ) B, () =By g sla),

(b) for £ =10:
: _ (P, ) —a? « 1 _E(_A * .E))
Sx(p,q, 6, 0) = Vi E( pr )S.M;(p D T g P+ : +
, waplPy ) ( (M—G)‘*) ( i )
- B — Fl—=|—
Ve q§ Vge
o (P q) (—ag) ('a )
— - E F 4
Ve et 1" \WgE
N2E+2N, - -
+E( %"ﬁ) pqu(ﬂ) qu.;t( )+Os(§ql/4)7
where B
Viga(p, 9)

mﬂ,(pa g) = 2]/& (PQ+n even)

8 an Bq-th root of unity (see Lemma 1).

Proof. For the case & = 0 the assertion follows immediately from
Lemma 2 by evaluating the terms of the series for n 5 0. In view of the
formula ' .

A Sx(p, g, ¢, 6). = 8y(—pyq, =&, —0)
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and (12) it suffices to prove the theorem for &> 0. We start with formula (6).
There we distingnish several cases for # in the integral
N ¥

(14) f::fE(f_#———fwz{“_”))dt

0 ¢

- (a—n)ﬂ)} (3T5+a—-rb) (a_%)}
—_ ¥ RO J S 7 ad 7 —’ -

NE+a—n, hence (11) applied io

(a) Let n< 0. Then 0<a—ns<

(14} yields
N

. o & &g )
"~ DJ-KFL“LO(I aff T FEra—aP )
where :

g, -0 BN e—m)g) g 1
nf Neta—n ! " 2%t a—n

(b) Leb #> B—A. Then a—n < Né+a—n <0, then as in (a) we
obtain also formula (15). The following cases arve treated similarly.
{¢) Let 0<n<B—A4., Then ¢—n < ¢ < Nft+a—n, hence

(o ~—m) £q® £q*
J V]/— ( m) +Kn—Lﬂ+0(ta_ma + 1N§+a~—n|’*)'

(d) Let n = 6 < B—A. Then Né+a—n> 0, hence

e/ e )

(e) Let 7 = B—4 > 0. Then o« —n < 0, hence

N
-S4 [ la— B AP\ (1 (N§+a—B+A))
- Lyl T2 NS _
/ ‘/'”1/5 ()G Vai

2
~L,+0 (_L)
|a~—nl?

{f) I n =0 =8E—4, weleave (14) in the given form.
7 Inserting the results of (a)~(f) into (6) and using the corollary of
Lemmy 1, we obtain Theorem 3.
_ Remark 1. By repeated partial integration of (10) one can refine
the asymptotie relation (11) to the asymptotic expansion.

signy  E(yY) xa1-8 - (29 —3) 1-8:- (2% —1)\
B =
. (y) 5 + 1/; 2 (2m)vy20H1 +0 (2Tﬂ)ky2k+l )

»=1

) By, () =
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for real ¥ == 0 and arbitrary positive integers k. Using this, one can {as
the preceding proof ¢hows) replace the remainder term in Theorem 3 (b}
by an asymptotic series which after being chopped off after its Eth term
leaves us with the remainder 0, ,(i&g*Vg).

4. The funetion @ and incomplete Gaussian sums, Since @ = @, , . .(¥)
vanisheg for odd pg+ 2 {see Lenmna 1 and {13)), we may assume 2 I{pg +2a)
in the sequel. Farthermore the case of an odd 2a ean be reduced to the
one of an even 2¢ by

Lavva 3. For odd 2a and odd pg we have

*

»
Py gyr,aT) = E(?( "l)) PHEGT—r4, a-1j2 ()5

where as usual e{ —1, 1} and r integral.

Proof. p =p-+gmodg implies p* = (p +¢)" mod g. Since p" and
(- ¢)* are even by construction, the Iatter congruence holds also modulo
2q. This in conjunction with Lemma 1 yields

(p+a)
q

%
Al p 2 5
ointa) (p,q) =B ("_q—(""f"*‘a)ﬂ’“* (nt+a _%)d) Tatn+a—~1/2) (p+4a,q

= E( (n“'“* i)) Janta— 1[2)(1} 44, g)

for all integers . Inserting this in (13), we obtain the assertion.

For the further investigation of @ we start with a simple identity.
Bince gymeq(?, 9) has the period g with respect to the variable =, the
well-known expansion

1
neotng = E— (z == 0modl)
- Z— %

and {13) lead for & £ 0 to the identity
(16)  Ppgral®)
1 — 21 s
E( nr g2 (Ps‘ﬂ’)
2 nol

dqi

b

) Fopm+2) (P g)cot (% (m-—n)) -

nmode

in particular for integers r and «

2T

| meotne — —1.
@

This and Theorem 3 imply the “approzimate funetional equation’ of Hare
dy and Littlewood [4] which can be formulated as follows.
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THEOREM A. For all real N, x, & with N2 0, 0 <z <1 one has

1.0 1--18]
2o
Proof. Since changing ¥ info N 40 (1) yields only the error O(1/Vx)
on both sides, it suffices to prove the assertion for integral ¥. In Theorem 3
we choose p =0, g =1, ¢ =1/2 and observe that By, () = 0(1)
for [f| < 1/2 by (17). Thus we arrive immediately at the assertion. m
Now we want to estimate @ for ¢ > 1. From (16) and Lemma 1 one

infers that & = 0,(Vglog(g-+1)) for |2/ <1—& 0<z<1. In this esti-
mate one can geh rid of the factor log(g+1) by the following consider-

ViB(—6%/x)

Syle, Of= 7 Se ( -

ations (see Lemma 6). We use the following lemma on incomplete Gaunssian

sums (which we did not find in the literature and which seems to be new).
Levya 4. For all real N, 6 with N = 0 the estimate

i) -of
. holds. | .

Proof. Since the left hand side depends only on the residue classes

of p modulo 2¢ and of § modulo 1, and since Sy(—»/q, 8) = Sx(p/g, —0),
we may assume 0 < p < ¢ and {0} < 1/2. Asin [4] we employ the expan-
sion of reals #z¢(0, 1) intio a simple continued fraction

1 1 1
— e n e i) =3
? 1 b AR | v—1 7
ay 4o Tt @, -+ Ty

Where the a, are posifive Integers and 0 <C », < 1. For the rational number
=7 /q this process terminates, say after n steps,ie. z, =0, 0 < o, < 1
(v =1,...,n— 1) By Theorem A we obtain

m°= .y

0y —————
. SN('%! B) == Na:u("r’.l? 91 +0(

Vmo l/mu) _

where w, is the unimodualar number -I/iE( —@?[z,) and 6, is the real number
defined by 8, = —8/z,+a,/2mod 1 and —1/2 < #, < 1/2. Expressing
_In the same way Syzy (@1, 0;) by the sum By, (2, 0) for some Gge[ 1/2,
1/2) and so forth, and observing that z,_,2, <1/2 (v =1, #n), one
gets by this iteration as in [4], p. 212-213, the relation

(8)  Sy(a,, 0)
(‘On

' : 1
= ——___m..__SJ . —1 ”’m ‘-1"’6 i O y———————
]/500:761 T, Ny ‘En—l(( ) 7 ( ] 'n) a (']/%:L‘l - _1)!

L
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where jo,] =1 and |8,] < 1/2. Using the identity

(19) Bolly «vv Byy = (G +2,4,1) 7 {fo =1)
with the denominators g, of the convergents
» 1
%:a}_'—l— (r =1,...,n)
v 1T a, L . ) + i
3

13

of x, and observing that g = g,, we see that

B (%’ 6) - mn‘/éstg(O:(—l}nan)+O(VE)

Estimating the first sum on right hand side by the number of its terms,
we obtain the assertion. m :
A representation of @ suitable for applications is given in

LgmMa 5. For ze( -1, 1), integers r and o and even pg we have

Dy aralZ) = E(p; ){S,, (%, 0) ———go ?, q)} f@ﬂp,g”(ﬁ

where v = {r ———mp*)a and

lpp,g,r,a(m) = -

02, 9) v B(p*n+a)2 —200) g)
A 2 ( .

—_ 2
Lo ©—n)

Proof. In Theocrem 3 (a) we choose 6§ = 4 = o = 0 and note that:

D 00,0(0) = 0 because of (13) and (4). We obtain

9o(P, @)

for all integers N > 0. Applying the corollary of Lemma 1 o (13) yields

% o .o
p*a :
B (T) @p,q,r—a_p".o (w)

Since g,,4..,.(f) converges uniformly int in every compact subset of (—1,1),
it fo]_lows from (13) and Lemma 1 that .

Ppgral®) = Ppgpa 0)+ f Pp.g,r,a(t) L.

(21) (Dp,q,r,a(m) =

This, (21) for & = 0 and (20) imply the asgertion.
From Lemmas 3, 5, 4 and 1 we obtain

LeMMA. 6. For all integers v, 24 and real x with [o| <

= 0,(1@.

1—¢0 <e<1:
P, q.r(%)

3 — Acta Arithmetiea XXXIL2
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5. Special eases of Theorem 3. The behavior of elliptic theta functions
at rational points can be discussed by means of well-known transformation
formulas. There are ccdrresponding approximate functional equations,
generalizing the famous result of Hardy-Littlewood (see Theorem A),
viz. by Theorem § and Lemma 6 with the choice of & = 1/2 one cbtains

TEmorEM 4. Let N, & 6 be real with N =0, & 0. Choose A such
that pg-+24 is an even integer and 6 = A +a holds- with la] < 1/2. Then

1 ¢ .
Sy(p, 4, & 0) = ué% Q)E( 4& )SNIEl( :q’_E; "“‘“‘(AP +E“))+

1€} &
+o(— +1s0e)
ViEl avgy.
This result is usefnl, if |&| is approximately in the range [1/N, 1/q].
Estimating Sy, trivially as O(N |£]41) yields the
COROLLARY OF THEOREM 4. For real N, &, 0 with N =

0, & 5= 0 we have

Sn(p, 4, &, 0) (Nl/_+~‘/:i+iflql/_)

Now we want to show how Theorem 3 can be used to obtain asymp-
fotie expansions for Sy(w, §). We discuss the special example 4 = B,
NE&+a = f. To this we apply Lemma 6 and get immediately

TREOREM 5. Let 0 be real, I an integer > 0 and 0 < &< 1/2. Choose A
such that 7g+ 24 is an even inleger and that 6 = A - a holds with |a{ < 1/2.
Then for real & #10 with |[Né+a] <1 —¢ we have

(22}

29

- () -l

+0,(Vg(1+1819)).

If &< 1/2 the permitted range of £ is a neighborhood of zero, e.g.
N2 & /4 is permitied in case e = 1/4. Furthermore it suffices to con-
sider 0 < gL 4N, if we want to approximate Sy (w,?) for all pairy of
reals z, t. Namely, by Dirichlet’s box principle we can find %, g, & such
that (2) holds. Then we choose 4 and a such that t = (A -+ a)/g with
pg+24 even and |e| < 1/2 and apply Theorem 5 to Sy(z,1) = Sy(p, ¢, &
A+ay with & =1/4. (Of course the case £ =0 is obtained by letting
£-+0.) We see that Sy(w, 1) is evaluated up to an error 0(Vg) = O (V).
Tt is interesting that the order of the main térm can be described in terms
of simple functions. We have .. - -

) E+2
Syl 1, £, 0) = L4222 fE(t ) a0,z + i)
., _
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LevMa 7. For real ¥y, §, we have

!

1 1

[¥: .
3 'l'f Y1 y2>1 or Y1, Y “‘17
. Y1 ]/?-/1?!2
F(y) —F({y) = .
e — U4
—_—, else,
1+ lys— i :
where ¥t —y: = 2k+yp with an integer % and jp] <1

Proof, We may assume ¥, ¥, and, since F(y) is an odd function,
also that y, +y, > 0. We start with the identity

-2 | 2

(a) Let y; = 1. Integrating the right hand side of (23) twice by parts

(23) H(3s) — l {y120).

we obtain
1 [E(y) 1} 1
2B () — F (o) = —,{-———- -
_ [ (¥s) (¥ EAR? "
with
L
P! {E(y) 1 }+i f B(1)

ol g w) Am ) (iggly
Sinece

: 1| By 1 B(y) 1 ]

Gl — — = |-

! =2 9 T Y Y1 '
we obtain .

| By 1 (1 1) ly|
Fly)—F = — =l — -+ .
(yZ) (yl) yE yl yl yz . Hjlyg
(b) Tiet 0 < Yy < 1. Estimating the i*f;&l or imaginary part of
A
e,
H t+y§

according as 93—t < 1/4 or > 1/4 yields

Yz —Y1 _
T4 {g~—y4

Yrom this the assertion follows, since apparently -

yl)) '

(' Yo —U1
T4 (ys—

O(F(ys) —F(yy)-

Py —Fly) =
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() In the remaining case 0 < ¥1~+Yar ¥ < 0 (and therefore g, > 0),
and this impHes
Ya—
By =
Fys)—Fly) = P ()l Fy)l = 77—
in view of (8) and (9). n
Now we are in a position to prove for

r- 2l o (L) () -2 )
VE g8 Vot Ve&
(with the notation of Theorem 5) the
COROLLARY OF THEOREM 5. Let 0< |8 <1/(4N), O <<g<4W

o = asign &, |a’| £1/2, (N2|§|+2Na’)/q_=2k+y for some integer k
and |y| < 1. Then

N
SRS —NIEI——V <o «EI
08 T Var ¥V E ’
) a I/E( Vel -+ _!_ﬂ,_), otherwise.
o (Nl +e) Vo' (N [E+a)

In particular: T = 0(Vq), if '] = in all other

cases: Vg = 0(T)
Proof. (24) is an immediate consequence of Lemma 7 and (12).
(a) Let |o'| >3VN |&. Then [NE/a'|<1/6, hence o =< N|&|+a’
= N£[+2a' = {2k+4y}g/N, hence

ﬂ—lle ) with
i2k+7lq
Therefore ' = O 1/_) it || < |k|g/N, and l/— 0 {T) otherwige.

(b) Tt VqlE < o < 3VN & or —-BI/N|§|<a < —N|£|—Vq|El then
Ni&|/{e (W& 4a')) = 2/21, hence Vg = O(T

BVEIE and | < o1

Tx}@'(wr 0<P<1.

-N S ———
1/_+N1/?

{¢) In the remaining case T = ;%, ginece q < 4N

and [£] < 1/(4N).
Remark 2. From Theorem 5 (with ¢ = 1/4) and its corollary we

deduce Theorem 1 by observmg that we are in the case 6 = 0. Therefore -

we may choose a = A = 0 for even pg and a = A= mgz 2 for odd P

In the latter case o' (N |§|+a') =< 1, and 12 =d'< I/M, then g < ¥.
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Looking for an upper estimate of Sy(z, 0), one obtains by combining
Weyl’s and Vinogradov’s method ([9], chapter I, lemma 8a}), as is well
known, that

SN(w,'e)ZO(% +(V1~_*+v’E)Vlogq) for |z —pfgl<1/g
i . .

That the factor ¥log g can be removed is shown by Theorem 6. Of course VN
may be dropped also, and the resulting estimate is optimal under these
general conditions.

TurorEM 6. Let & be real with

1
m———Z—Ié_?—. Then for any real N, 8

with N = 0 we have(*)

N _
Sylz, 0) =0 (—_ +1/q)-
Vq
Proof. We may assume ¥ to be integral. Put § = gr—p. Note

that then always }£ < 1/g. If [N & > 1/4, then the assertion is clear by
the corollary of Theorem 4. If |N£] < 1/4, then Theorem 5 with ¢ = 1/4
N

implies the assertion, where g, , is estimated by Lemma 1 and JasO(N). =
¢

Remark 3. There is another proof of Theorem 5 for 6 = 0, using
Theorem 3 only in the special case p =0, ¢ =1, |Nz] < 1/2. We sketch

such a proof for the case 2|pg, g < N, 0 < [£] < 1/(2N). Put z, = —% é

_ Assume 0 < i, < 1. From the theory of continued fractions one knows

that p = p,, ¢ = ¢, TOr some convergent p,/q, of =, (see notation for (18))
and that @, = (§+ #n0,_1) | This, {18) and (19) yield

p £ Y e '

SN (E +_q’) = wu}/g'}‘“{cﬂgnml SN](Q+:cnq,,,_1) ((q +mHQn—~1) E; ‘Ug;n) + O(]/é)
with ¢ = sign & Now applying Theorem 3 in the mentioned special case
and computing w, and 6,, we cbtain Theorem 5. (Observe that 6, o,
are independent of N and that, e.g., 6, can only equal 0, —1/2, or ,[2,
where fhe alternatives do not depend upon £.)

(1) Obvionsly sums of the kind

NiL
> B(n?z)
n=L

are then also O(N/Vg+Vq).

= E(L%z)8x{x, Lx}) (L integer)
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6. An application. We want to prove Theorem 2. Apparently its
first part is a special case of

LEmwa 8. Let {g(n)}° be a non-decreasing sequence of positive numbers
such that ‘

1

converges. Then for oll real 8 and almost all reol @
Sy(@, 6) = 0,(VFg(X)) .

Proof, We may restrict ourselves to irrational » in (0, 1). Let p,/q,
{r =1,2,...) be the convergents of # (see proot of Lemma 4). According

(N =1, N integer).

to a well-known theorem of EKhintchine {see [3], Theorem I, p. 120) for -

almost all @

(25) gz —p,0> ¢ g~ g} for all v >,

“where », is a4 positive integer depending on @ Take any positive

‘integer N. Tt Ng(N)<g,, We have |8y(z, 0)< N < Vg, VNg(N),
hence the desired estimate. Xow let Ng~*(N) = [/ and let » be the index

>, with ¢, < Ng~°(¥) < g,,5. From the theory of continued fractions
one knows that

(26) 18,8 — .l < g3y < N7Hg(N).

From the Corollary of Theorem 4 for the case p = p,, ¢ = ¢, and from
(26) and (26) it follows that (note that g(n)s oo for m-—soo) for all
sufficiently large N:

Sy(@, 6) = OVN g(N) +Vqg" () + ¢*(F
= 0V N g(N)+Vag* (@)
= O(/Ng(N)+VNg (N g (g)) = O(YNg(¥)}. m

For the proof of the second part of Thecrem 2 we use
Lemnta 9. et {p(n)} be a non-increasing sequence of positive numbers

Yyt ql/_)

such that D'y (n) diverges. Then for almost all real o the inequality
1 .

gz —pl < (q)
has infinitely many solutions p, ¢ with 2|g {end (p, q) = 1 as usual).

Of course it suffices tio show that for almost all irrational » the ine-
quality 7@ —s! < (r) has infinitely many solutions r, s with even r > 0
and odd s. Without the condition 2j¢ Lemma 9 is a well-known. theorem
of Khintchine (see [3], Theorem I, p. 120). Under the additional condition
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that u(n)/w(2n) be bounded, Lemma 9 is essentially equivalent to a result
of Walfisz [11]. A proof of Lemma 9 can be obtained by slight medifi-
eations of the proof given in [3] for the second part of Theorem I, chap.
VII. First one observes that

N kY

p(@n)y _ 1 @ (1) -
2 22 222 7 (=1,
n=1 =1

where ¢{ ) denotes Euler’s funection. Then, as in [3] there exists a sequence
z(n)->0 and a set & of positive measure such that for yeF there are infi-
nitely many p, g satisfying

lgy —pi < t(@ylg);, 2lg-

Next we observe, analogously to [3], Corollary, p. 126, that for almost
all # there exist integers T(x) > 0, z(x}, and an element y(x)eE such
that @ = Ty +#, where T is odd. Then we have

lge — (T'p -+ ge)] = Tlgy —p} < Tr{g)p{g) < »(®)

for infinitely many p, ¢ with 2|g. Since p must be odd, so iss = Tpi-¢x A
Proof of the second part of Theorem 2. Let {g{n)}1 be any

non-decreasing sequence of positive numbers such that 2%’1 —*(n) = oo.

It smifices to prove the result in the case g(n)-+oo for n—oo. Take any
sequence {h(n)} of positive numbers such that k(z)/g(n) is monotone

and tends to oo for n—oco and such that still Yo7 h~%(n) = oo. By Cau-
1

chy’s condensation theorem we infer that 3 h~*(2¥)= co, hence > h™*(2%)
kel k=1
= oo, hence Yn 'R (n) = oo. Put f(n) = h(»’). By Lemma 9 for al-
1 .
most all real z the conditions
27) lgr—pl< g f g,  2lg

have infinitely many solutions p, ¢. By (27) and by Khintchine’s theorem,
already used for Lemma 8, we may assume that these pairs p, g satisfy
the additional condition

(28) 1< fHe) <
Apply Theorem 1 to these pairs with & = qr—p, ¥ = [¢f3(q) 1], then
for some abgolute constants ¢, ¢, ¢; > 0 and all sufficiently large ¢

N o
(29) Sy(@)i > 6, —= —e¥gq = eV NFflg)

— eV > eV NF(Q)
Vg : _
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Beeause of g < N and (28) we have
72 (V1)) > N —=1)g* = (F —1)f(q) [V =
for all sufficiently large ¢, hence by (29) it follows that

V¥ +1]

cal/fk(N).. [}

Remark 4. Another proof of Lemma 8 and Theorem 2 can be given
by means of formuls (18), Theorem 3 in the special ease p = 0, ¢ =1,
and by more extensive use of continned fractions (see Remark 3).

Sy (@) > oV Nf([VN +1]) = eV Nh([VN+1]%) >
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ACTA ARITHMETICA
XXXIT (1977)

Der Satz von Erdés und Fuchs in reell-quadratischen
Zahlkdrpern

WERNER SCHAAL {Marburg)

Herrn Prof. Dr. Th. Schneider sum 65. Geburtémg gewidmel:

By sel K ein reell-quadratischer Zahlkérper mit der Diskriminante-
d > 0. Es bezeichne A4 eine unendliche Folge von ganzen Zahlen a;e K
mit a; & 0, d.h., es sei sowohl ;2> 0 als anch die zu «; konjugierte Zahl
a; 2 0; ferner sel (ed. Fir ganze Zahlen £eK werde erklart:

F(&) = Z 1;

(.0
2yt 2=, oy, oged

In f(&) werden fiir i # § demnach sowohl die Zerlegung o, ¢; als auch
die Zerlegung o;+ e; gezdhlt. Pir reelle Zahlen 2> 0, 4’ = 0 sefze man

D, f(a.

Ol
0’ <T’

Uher die Folge A werde vorausgesetzt:

2

Flz, o) =

(1) . Fla, &) = a-a0’ +r(x, 8'), a>0;

r{, #') hinge nur vom Produkt -2 ab, und es gelte #{z, ') = O{za’).
Unter dieser Voraussetzung wird in der vorliegenden Arbeit gezeigt:c
SArz, Es gili:

Um |r(z, ) (zz)""log(2x') > 0.

& 00

Eine Anwendung des Satzes liefert das Krelspmblem des Kﬁrpers K
{[3], [4]). In dem Falle ist

= {a?; acK ganz},

wobel also fiir o %0 a® und (—a)® verschiedene Hlemente der Folge A
sind. Die Bedingung (1) ist erfiillt. o
In [3] wird zwar das schirfere Resultat

(@, ) # of(z'))



