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ASYMPTOTIC EXPANSIONS OF SOLUTIONS

OF THE SIXTH PAINLEVÉ EQUATION

A. D. BRUNO AND I. V. GORYUCHKINA

Abstract. We obtain all asymptotic expansions of solutions of the sixth Painlevé
equation near all three singular points x = 0, x = 1, and x = ∞ for all values of
four complex parameters of this equation. The expansions are obtained for solutions
of five types: power, power-logarithmic, complicated, semiexotic, and exotic. They
form 117 families. These expansions may contain complex powers of the independent

variable x. First we use methods of two-dimensional power algebraic geometry to
obtain those asymptotic expansions of all five types near the singular point x = 0
for which the order of the leading term is less than 1. These expansions are called
basic expansions. They form 21 families. All other asymptotic equations near three
singular points are obtained from basic ones using symmetries of the equation. The
majority of these expansions are new. Also, we present examples and compare our
results with previously known ones.

Introduction

In 1884–1885 L. Fuchs [47] and H. Poincaré [70, 71, 72] suggested looking for dif-
ferential equations whose solutions do not have movable critical points and cannot be
expressed in terms of previously known functions. In 1889 S. Kovalevskaya [36] had
shown that the absence of movable critical points of solutions allows one to construct
solutions analytically.

A singular point x = x0 of a function y(x) of a complex variable x is called a critical
singular point if the value of the function y(x) changes as x moves along the path sur-
rounding x0. A movable singular point of a solution of a differential equation is a singular
point such that its position depends on initial conditions of the problem. For example
for the solution y = 1/

√
x− x0, where x0 is an arbitrary constant, the point x = x0 is

a movable critical point. By a meromorphic function we mean a function whose only
singularities in the finite part of the complex place are poles.

In 1887 E. Picard [68] suggested studying the following class of second order equations:

(1) y′′ = F (x, y, y′),

where the function F is rational in y and y′ and meromorphic in x, and to find, among
equations (1), those that have only immovable critical singular points. At the beginning
of the 20th century P. Painlevé [65, 66, 67], and his students B. Gambier [49] and R.
Garnier [50, 51] solved the problem formulated by Fuchs and Picard. They have found
50 canonical equations of the form (1) whose solutions have no movable critical singular
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2 A. D. BRUNO AND I. V. GORYUCHKINA

points. Solutions of 44 of these equations could be expressed in terms of known (elemen-
tary or special) functions, and solutions of the remaining six equations determine new
special functions, which are now called Painlevé transcendents.

The sixth Painlevé equation first appeared in the paper by R. Fuchs [48]. In has the
form

y′′ =
(y′)2

2

(

1

y
+

1

y − 1
+

1

y − x

)

− y′
(

1

x
+

1

x− 1
+

1

y − x

)

+
y(y − 1)(y − x)

x2(x− 1)2

[

a+ b
x

y2
+ c

x− 1

(y − 1)2
+ d

x(x− 1)

(y − x)2

]

,

(2)

where a, b, c, d are complex parameters, x and y are complex variables, y′ =
dy

dx
. It

has three singular points x = 0, x = 1 and x = ∞, and is usually denoted P6. E. Picard
[69] has found solutions of this equation in an explicit form for special values of four
parameters: a = b = c = 0, d = 1

2 . R. Garnier [51] was studying solutions of this
equation without any restrictions on parameters.

A new wave of interest to Painlevé equations occurred in the 1970s after M. Ablowitz,
A. Ramani, and H. Segur [1, 42, 43] discovered that integrable nonlinear partial differen-
tial equations are related to Painlevé equations (see also [35, 37]). For example, the sixth
Painlevé equation is a reduction of the Ernst equation in general relativity. Nowadays,
the followng problems for the Painlevé equations are being studied: asymptotic behavior
of solutions near singular points, local and global properties of solutions, rational and
algebraic solutions, discretization, applications of Painlevé equations (mainly in physics).

In the present paper we study asymptotic expansions of solutions of the sixth Painlevé
equation at the singular points x = 0, 1, ∞. Expansions in nonsingular points were
described in [54, § 46], and, using power geometry, in [13, 24]. Similar studies were
performed by many authors. S. Shimomura [73]–[76], M. Jimbo [61], H. Kimura [62],
K. Okamoto [64] proved, using a variety of methods, existence and convergence of two-
parameter families of expansions for solutions of the sixth Painlevé equation. In the book
[54, § 46] by I. V. Gromak, I. Laine, and S. Shimomura the authors describe asymptotic
expansions of solutions in integer powers of the independent variable. For some special
values of parameters of the sixth Painlevé equation, B. Dubrovin and M. Mazzocco
[46, 63], and also D. Guzzetti [55] obtained several initial terms of nonpower and exotic
expansions. A comparison of these results with ours is presented at the end of the
Introduction and in Section 2 of Chapter 4.

The study of asymptotic extensions and asymptotic properties of solutions of Painlevé
equations near singular points consists of the following three main steps.

Step 1. To find formal solutions in the form of asymptotic expansions

(3) y =
∞
∑

k=0

ϕk(x),

where ϕk+1(x) = o(ϕk(x)), and formal asymptotics

(4) y ∼
m
∑

k=0

ϕk(x),

where the remainder is o(ϕm(x)).

Step 2. To prove the existence of a solution with asymptotic expansion (3) or asymptotic
behavior (4). Such a solution may be nonunique.
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Step 3. To find a relation between asymptotic behavior of the same solution near different
singular points of the equation, and more specifically, between arbitrary constants of
families of asymptotic expansions.

The main result of the present paper can be expressed as follows. For all values of the
four complex parameters a, b, c, d we find all those formal solutions (3) of equation (2)
near three singular points x = 0, 1, ∞ that can be otained using two-dimensional power
geometry.

According to [21]–[23] three-dimensional power geometry also allows us to find asymp-
totic behavior of the first four Painlevé equations (in particular, elliptic asymptotics) that
cannot be found using the two-dimensional power geometry. This may also be the case
for P6. However, this is a subject of another paper.

The problem of existence of a solution with a given formal expansion is discussed in
Section 7 of Chapter 1 from a general point of view. This is also a subject of a separate
paper. Currently, not for every formal solution (3) the corresponding actual solution is
found. However, there are no examples of a formal solution (3) for which it is known
that the corresponding actual solution does not exist.

For the majority of formal or asymptotic solutions of Painlevé equations found earlier
by ad hoc methods, the existence of actual solutions is known (also with the help of ad
hoc methods).

The present paper does not address the problem of the relation of asymptotic prop-
erties of a solution of the equation P6 at different singular points (i.e., Step 3). This is
also a topic for another paper.

Everywhere below by an asymptotic expansion of a solution of equation (2) we mean
the expansion of its formal solution.

For x → 0 let us consider asymptotic expansions of solutions of equation (2) of the
form

(5) y = crx
r +

∑

s

csx
s,

where the exponents r and s are complex numbers, Re s > Re r, and Re s increases.
We distinguish three types of expansion (5) (we assume that the number of exponents

s with the same real part Re s is finite):

Type 1. cr and cs are constant (power expansions).
Type 2. cr is constant, cs are polynomials in lnx (power-logarithmic expan-
sions).
Type 3. cr and cs are power series in decreasing powers of lnx (complicated
expansions).

Furthermore, we will distinguish three types of expansions of the form

(6) y =
∑

ρ

cρx
ρ +

∑

s

csx
s,

where all Re ρ are equal, Re ρ < Re s, the first sum contains more than one summand,
and the coefficients cρ and cs are polynomials in lnx:

Type 4. The first sum in (6) contains a finite number of summands. For the
largest and the smallest value of Im ρ the coefficients cρ are constant. In such
expansions the number of exponents s with the same real part Re s is finite
(semiexotic expansions).
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4 A. D. BRUNO AND I. V. GORYUCHKINA

Let min(Im ρ) in (6) be reached at ρ = ρ∗, and max(Im ρ) at ρ = ρ∗. A semiexotic
expansion (6) has two inverse expansions

(7) (y−1)∗ = c−1
ρ∗

x−ρ∗

(

∑

σ

bσx
σ +

∑

t

btx
t

)

and

(8) (y−1)∗ = c−1
ρ∗ x−ρ∗

(

∑

σ

b̃σx
σ +

∑

t

b̃tx
t

)

,

where Reσ = 0.

Type 5. The first sum in (6) contains an infinite number of summands, but Im ρ
is bounded either from above or from below. For the largest and the smallest
value of Im ρ we have cρ = const ∈ C (exotic expansions).

The inverse to an exotic expansion (6) is one of the expansions (7) or (8).

Type 6. The first sum in (6) contains an infinite number of summands and the
values Im ρ are unbounded at both ends (superexotic expansions).

We note that expansions of Type 6 do not occur for the Painlevé equation P6.
Moreover, we assume that the argument of the complex variable x is bounded from

both sides.
One can similarly define types of asymptotic expansions as x → 1 and x → ∞.
Equation (2) has three symmetries that map singular points into one another. There-

fore, we first solve the problem near x = 0, and then, using symmetries, obtain asymptotic
expansions near x = ∞ and x = 1.

The paper consists of five chapters. In Chapter 1 we present methods and results of
two-dimensional power geometry [2]–[26], [44] that are used in the paper. The leading
term of the asymptotic expansion (5) is computed using the reduced equation that is
formed by those terms of the initial equation that are leading terms for this expansion
(make the largest contribution near the point under consideration). These equations are
studied using graphs. The exponents s of other terms of the expansion csx

s are found
algorithmically. Coefficients are computed consecutively. In § 1 we describe methods to
distinguish reduced equations and to compute power asymptotic expansions for solutions
of the initial equation. In § 2 we present methods to compute exponents of all terms of
an asymptotic expansion with a power function as a leading term, and to determine the
coefficients of such an expansion. In § 3 we consider the existence of nonpower asymptotic
expansions for solutions of the original equation and describe an algorithm to find such
expansions. In § 4 we present a method to compute complicated expansions (expansions
with nonpower asymptotics). In § 5 we determine exotic and semiexotic expansions and
describe methods to compute these expansions. In § 6 we present exponential asymptotic
expansions and additional terms in expansions of Types 1, 2, 4 that do not occur in the
case of equation P6. In § 7 we present results about the existence of an actual solution
with a given formal solution as the asymptotic expansion. We also formulate a general
theorem about the convergence of a power expansion and prove it in a special case.

In Chapter 2 we look for asymptotic expansions of all five types for the sixth Painlevé
equation as a · b �= 0, x → 0, and x → ∞. In § 1 equation (2) is written as a differential
sum. To do this we multiply it by 2x2(x − 1)2y(y − 1)(y − x) and move the right-hand
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Figure 1. The polygon of equation (9) and notation for families of
expansions corresponding to its vertices and edges for a · b �= 0.

side to the left. We obtain the equation

f(x, y)
def
= 2y′′x2(x− 1)2y(y − 1)(y − x)

− (y′)2
[

x2(x− 1)2(y − 1)(y − x) + x2(x− 1)2y(y − x) + x2(x− 1)2y(y − 1)
]

+ 2y′
[

x(x−1)2y(y−1)(y−x) + x2(x−1)y(y−1)(y−x) + x2(x−1)2y(y−1)
]

−
[

2ay2(y − 1)2(y − x)2 + 2bx(y − 1)2(y − x)2

+ 2c(x− 1)y2(y − x)2 + 2dx(x− 1)y2(y − 1)2
]

= 0.

(9)

Then we study the main properties of equation (9): the polygon of the equation,
symmetries, and exceptional solutions I1 : y = 0 as b = 0, I2 : y = 1 as c = 0, I3 : y = x
as d = 1

2 , I4 : y = ∞ as a = 0. The polygon of equation (9) and the notation for families
of expansions corresponding to vertices and edges of this polygon are shown in Figure 1.

In § 2 we study those asymptotic expansions (5) of solutions near zero that correspond
to the vertices of the polygon. It is shown that such solutions exist only for the vertex
with coordinates (q1, q2) = (0, 3). The main result in Chapter 2 is as follows.

Theorem 2.2.1. For x → 0 there exists a two-parameter (in cr and r) family of solutions
with constant coefficients given by the formula

(2.2.6) A0 : y = crx
r +

∑

s

csx
s,

where the complex exponents are as follows: r is arbitrary with Re r ∈ (0, 1), s ∈
{r + lr + m(1 − r); l,m ≥ 0; l + m > 0; l,m ∈ Z}, and the complex coefficients are
as follows: cr is an arbitrary complex constant, and the other cs are uniquely defined
constants.

Expansions (2.2.6) converge for small |x|. The family A0 and its convergence were
known earlier; see [60]–[62], [64], and [73]–[78]. The family A0 exists for all values of the
parameters and exhausts all expansions corresponding to the vertex (0, 3).

Throughout the article, ln means log.
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6 A. D. BRUNO AND I. V. GORYUCHKINA

In § 3 we analyze asymptotic expansions near zero that correspond to the left vertical
edge of the polygon (see Figure 1). For the reader’s convenience, the main result can be
formulated as follows (in more detail than in Chapter 2).

Theorem 2.3.1. (a) For x → 0 and a �= 0 there exist two two-parameter (in C11 and
ρ) families of exotic expansions of solutions with constant coefficients; these families are
given by the formula

Bτ
0 : y =

ρ2

β cos2[ln(C11x)γ ] + α sin2[ln(C11x)γ ]
+

∑

Re s≥1

csx
s

= xρ
(

cρ +
∞
∑

k=1

c̃kx
kρ
)

+
∑

Re s≥1

csx
s,

(2.3.4)

where ρ �= 0 is an arbitrary purely imaginary constant, s ∈ {ρ+ lρ+m(1− ρ); l,m ≥ 0;

l+m > 0; l,m ∈ Z}, τ = sgn(Im ρ), α+β = ρ2−2c+2a
2a , αβ = ρ2

2a , 2γ = iρ, and cρ and C11

are arbitrary nonzero complex constants related to one another, c̃k and cs are uniquely
determined constants. The families of inverse expansions y−1(x) for the families B+

0 and
B−
0 coincide.
(b) For 0 �= a �= c �= 0 and x → 0 there exist one-parameter families of expansions Bi

and Bτ
i , i = 1, 2, τ = ±1 that are given by one of the formulas (2.3.14), (2.3.18), (2.3.19)

below, depending on the values of complex numbers θ1 =
√
2c−

√
2a and θ2 =

√
2c+

√
2a.

Namely, if Re θi = 0, then the families Bτ
i are given by the formula (see (2.3.14),

(2.3.40))

Bτ
i : y = c0i +

∑

s

csix
s =

c0i
1− C7 xτθi

+
∑

Re s≥1

csix
s,

where s ∈ {l + mτθi; l,m ∈ Z; l,m ≥ 0; l + m > 0}, the complex coefficients c0i are
given by

(2.3.6) c0i = 1 + (−1)i
√

c

a
,

C7 is an arbitrary constant, and other constants csi are uniquely determined.
Now let Re θi �= 0 and ki = θi · sgn(Re θi).
If Re θi �= 0 and θi �∈ Z, then the family Bi is given by the formula

(2.3.18) Bi : y = c0i +
∑

s

csix
s,

where s runs over the set {l + mki; l,m ∈ Z, l,m ≥ 0, l + m > 0}, and the complex
coefficients are as follows: c0i is given by formula (2.3.6), ckii is arbitrary, and the
remaining csi are uniquely determined constants.

If θi ∈ Z\{0}, then the family Bi is given by the formula

(2.3.19) Bi : y = c0i +

∞
∑

s=1

csi(lnx) x
s,

where the coefficients are as follows: c0i is given by formula (2.3.6), csi with s < ki are
constants, ckii = αkii + βkii lnx, αkii is an arbitrary constant, the coefficient βkii is a
uniquely determined constant, and the remaining csi with s > ki are uniquely determined
polynomials in ln x.

In the case C7 = 0 expansions (2.3.14) are integral, i.e., s ∈ Z; the family of these
expansions is denoted Bi. It coincides with a subfamily of the family (2.3.18) for ckii = 0,
i.e., for m = 0.

The family B2 exists for a = c �= 0 as well.
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(c) For a · c �= 0 and x → 0 there exist one-parameter families of complicated expan-
sions, namely,

• the family B3, which exists for a �= c and is given by the formulas

(2.3.30) B3 : y = ψ0 +

∞
∑

σ=1

ψσx
σ,

where

(2.3.28) ψ0 =
2

c− a

1

ln2 x
+

c−3

ln3 x
+

∞
∑

s=4

c−s

lns x
=

2(c− a)

(c− a)2(lnx+ C3)2 − 2a
,

and the complex coefficients are as follows: c−3 and C3 are arbitrary complex constants
and the remaining c−s are uniquely determined constants; ψσ are series in decreasing
powers of logarithms;

• the families B4 and B5, which exist for a = c �= 0 and are given by the formulas

(2.3.58) B3+j : y = ψ0j +

∞
∑

σ=1

ψσjx
σ, j = 1, 2,

where

(2.3.57) ψ0j = (−1)j
1√
2a

1

lnx
+

c−2j

ln2 x
+

∞
∑

s=3

c−sj

lns x
=

(−1)j√
2a lnx+ C3

, j = 1, 2,

with the following complex coefficients: c−2j (i.e., C3) is an arbitrary constant and the
remaining c−sj are uniquely determined constants; ψσj are series in decreasing powers
of logarithms.

(d) For a �= 0, c = 0 and x → 0 there exist one-parameter families of expansions B6,
Bτ
6 , τ = ±1, given by the formula

(2.3.71) y = 1 + cρx
ρ +

∑

s

csx
s,

where ρ =
√
2a with Re

√
2a > 0 (the family of power expansions B6) or with Re

√
2a = 0

(families of exotic expansions Bτ
6 ), where s runs over the set {ρ+ lρ+m; l,m ≥ 0; l +

m > 0; l,m ∈ Z}, cρ is an arbitrary nonzero constant, and all cs are arbitrary nonzero
constants.

The families Bτ
6 with τ = sgn(Im ρ) can also be written in the form

y =
1

1− cρxρ
+

∑

Re s≥1

csx
s.

The families (2.3.18) and (2.3.71) converge for sufficiently small |x|. The families B1–
B6, Bτ

0 , Bτ
1 , Bτ

2 , Bτ
6 with τ = ±1 exhaust all expansions corresponding to the left vertical

edge of the polygon in Figure 1. For families B1, B2, only subfamilies with constant
coefficients and integer exponents were known before [54]. The families Bτ

0 , Bτ
1 , Bτ

2 , Bτ
6 ,

B3–B6 are new. The families A0, B1–B6, Bτ
0 , Bτ

1 , Bτ
2 , Bτ

6 are basic families. Using the
main symmetries of equation (2), one can obtain from them other families of expansions.
In § 4 we use symmetries to obtain from the basic families B1–B6, Bτ

0 , Bτ
1 , Bτ

2 , Bτ
6 the

families H1–H6, Hτ
0 , Hτ

1 , Hτ
2 , Hτ

6 (as x → 0) corresponding to the lower inclined edge of
the polygon in Figure 1). In § 5 another symmetry is applied to asymptotic expansions (as
x → 0) forming the families A0, B1–B6, Bτ

0 , Bτ
1 , Bτ

2 , Bτ
6 , H1–H6, Hτ

0 , Hτ
1 , Hτ

2 , Hτ
6 , which

results in families A∞, G1–G6, Gτ
0 , Gτ

1 , Gτ
2 , Gτ

6 , D1–D6, Dτ
0 , Dτ

1 , Dτ
2 , Dτ

6 of asymptotic
expansions as x → ∞.

In Chapter 3 we are looking for asymptotic expansions of all five types (power, power-
logarithmic, complicated, semiexotic, and exotic) for the sixth Painlevé equation with
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8 A. D. BRUNO AND I. V. GORYUCHKINA

Figure 2. The polygon of the equation (9) and notation for families of
expansions corresponding to vertices and edges of this polygon for a = 0,
b �= 0.

a = 0, b �= 0 and a �= 0, b = 0. In § 1 in each of the cases a = 0, b �= 0 and a �= 0, b = 0 we
discuss properties of the equation related to the polygon and symmetries. For example,
in the case a = 0, b �= 0 the polygon of the equation is shown in Figure 2.

In § 2 we consider the case a = 0, b �= 0 and study asymptotic expansions of solutions
near zero (different from those in the case a · b �= 0) corresponding to the vertex (0, 4).
The main result is as follows.

Theorem 3.2.1. For a = 0, c �= 0 there exists a one-parameter family C∞
0 of power

expansions (as x → 0) of solutions determined by the formula

(3.2.8) C∞
0 : y = crx

r +
∑

s

csx
s,

where r =
√
2c with Re

√
2c < 0, s runs over the set {r − lr +m; l,m ≥ 0; l +m > 0;

l,m ∈ Z}, cr is an arbitrary nonzero complex constant, and all cs are uniquely determined
constants.

The family C∞
0 exhausts all expansions corresponding to the vertex (0, 4) in Figure 2.

In § 3 we show that for a = 0, b �= 0 there are no asymptotic expansions near zero
corresponding to the horizontal edge in Figure 2. In § 4 we study the case a = 0, b �= 0
and consider asymptotic expansions near zero different from expansions corresponding to
the vertical edge and different from the expansions that are present in the case a · b �= 0.
Here the main result is as follows.

Theorem 3.4.1. (a) For x → 0 and a = 0 there exist two two-parameter (in C11 and
ρ) families of exotic expansions of solutions with constant complex coefficients

(3.4.3) Bτ
7 : y =

ρ2

2c− ρ2
1

sin2 [ln (C11x)
γ
]
+

∑

Re s≥1

csx
s,

where ρ is an arbitrary purely imaginary constant, ρ2 �= 2c, τ = sgn(Im ρ), s ∈ {ρ+ lρ+
m(1− ρ), l,m ≥ 0; l+m > 0; l,m ∈ Z}, 2γ = iρ, C11 is an arbitrary nonzero constant,
and cs are uniquely determined constants. The families of inverse expansions y−1(x) for
families B+

7 and B−
7 coincide.
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ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF THE SIXTH PAINLEVÉ EQUATION 9

Table 1. Dependence of the existence of basic families B and C on the
values of parameters a and c.

0 �= a �= c �= 0 a = c �= 0 a �= 0 = c a = 0 �= c a = c = 0
Bτ
0 Bτ

0 Bτ
0 Bτ

7 Bτ
7

B1, Bτ
1 B4 I2 C∞

0 , I4 I2
B2, Bτ

2 B2, Bτ
2 B6, Bτ

6 B8, B9 I4
B3 B5 B3 B3 B10

(b) For x → 0 and a = 0, c �= 0 there exist two one-parameter families of power
expansions of solutions:

(3.4.6) B8,9 : y = cρx
ρ +

∑

Re s≥1

csx
s,

where ρ is a purely imaginary constant, ρ2 = 2c, Im ρ > 0 for the family B8 and Im ρ < 0
for the family B9, s ∈ {ρ + l(1 − ρ) + m, l,m ≥ 0; l + m > 0; l,m ∈ Z}, and the
complex coefficients are as follows: cρ is an arbitrary nonzero constant and cs are uniquely
determined constants.

(c) For x → 0 and a = c = 0 there exists a one-parameter family of expansions with
constant complex coefficients

(3.4.22) B10 : y = c0 +

∞
∑

s=1

csx
s,

where c0 �= 0, 1 is an arbitrary constant and cs are uniquely determined constants.

For a = 0 �= c there exists a one-parameter family of complicated expansions B3. The
families B3, B8–B10, Bτ

7 exhaust all expansions corresponding to the left vertical edge in
Figure 2. The series (3.2.8) and (3.4.22) converge for sufficiently small |x|. The C∞

0 for
integer values of r and the family B10 were known earlier [54].

The families C∞
0 , B8–B10, Bτ

7 are also basic. Using symmetries of equation (2) the
21 basic families A0, C∞

0 , B1–B6, B8–B10, Bτ
0–Bτ

2 , Bτ
6 , Bτ

7 yield all other families of
expansions near all three singular points. Near each point we have 20 ·2+1 = 41 families
of expansions, this resulting in 3 · 41 = 123 families. However, among these expansions
there are three occurrences (near x = 0, 1,∞) of families of inverse expansions y−1(x)
to expansions Bτ

0 and Bτ
7 . According to Theorems 2.3.1 (a) and 3.4.1 (a) these inverse

expansions form one family for each of two values of τ . Therefore, the number of different
families decreases by 6, i.e., becomes 117.

Table 1 shows how the existence of the basic families C∞
0 , B1–B6, B8–B10, Bτ

0– Bτ
2 ,

Bτ
6–Bτ

7 depends on the parameters of the equation. In § 5 we consider the case a = 0,
b �= 0 and apply the symmetries to the basic families C∞

0 , B1–B6, B8–B10, Bτ
0– Bτ

2 ,
Bτ
6–Bτ

7 obtaining the families C∞
∞ , G1–G6, G8–G10, Gτ

0 – Gτ
2 , Gτ

6 –Gτ
7 of asymptotic expan-

sions of solutions near infinity (different from families that exist in the case a · b �= 0)
that correspond to a vertex or to the inclined edge. In § 6 we summarize and discuss
the results obtained for the case a = 0, b �= 0. In § 7 we apply one of the symmetries of
equation (2) to obtain expansions of the solution in the case b = 0, a �= 0.

In Chapter 4 we consider the case a = b = 0 of the sixth Painlevé equation. It does
not contain any new results. In § 1 we list asymptotic expansions that survive from the
cases a = 0, b �= 0 and a �= 0, b = 0. In § 2 we present examples, compare our results
with those of Mazzocco [63], and point out to an error in Mazzocco’s paper.

In Chapter 5 we use symmetries of equation P6 to obtain, starting from asymptotic
expansions in a neighborhood of zero, asymptotic expansions in a neighborhood of 1.
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10 A. D. BRUNO AND I. V. GORYUCHKINA

Here we obtain all “flat” asymptotic expansions of solutions of equation (9) because
either each “flat” reduced equation is solved explicitly, or one can prove that it has no
appropriate solutions; this yields all possible asymptotics of solutions that can be ob-
tained using methods of two-dimensional power geometry. Each asymptotics is expanded
in all possible ways.

Let us present a brief survey of previously known results and compare them with
the results of the present paper formulated above. In 1982 Shimomura [74] proved the
existence and convergence of expansions from the family A0 in sectors of the complex
plane, and Jimbo [61] deduced formulas relating the families A0, A1 and A∞ for generic
values of the parameters a, b, c, d. In 2000, Dubrovin and Mazzocco [46] considered the

case b = c = d − 1
2 = 0, a = (2µ−1)2

2 , 2µ �∈ Z and found relations for the family A0. In

2001, Mazzocco [63] considered the case b = c = d− 1
2 = 0, a = (2µ−1)2

2 , 2µ ∈ Z and found
the family A0 and asymptotics for a part of the families Bτ

0 (as Picard solutions), as well
as logarithmic asymptotic behavior of the complicated family B3 (as Chazy solutions).
For more details see § 2 in Chapter 4. For these asymptotics she indicated the relation
formulas. In 2001, Guzzetti [55] considered the case b = c = d − 1

2 = 0, a ∈ C. He
introduced his “elliptic representation” of solutions of P6 and showed that all previous
results by Dubrovin and Mazzocco can be obtained using elliptic representation. In 2002
Guzzetti [56] used elliptic representation for all values of the parameters a, b, c, d to
obtain asymptotics of the families A0 and Hτ

0 and the corresponding relation formulas.
In 2006 Guzzetti [57] showed that all previous results of Shimomura, Jimbo, Dubrovin,
and Mazzocco can be obtained using elliptic representation. In [58, Theorem 1] he found
all solutions that can be expanded in a Taylor series. In our notation they are contained
in families B1, B2, B6, and B10 for special relations between parameters of the equations
and for zero values of some arbitrary constants.

In 2008 Guzzetti [59] found logarithmic asymptotics from the families H3, H4 and H5

and the relation formulas for these asymptotics.
Some of the results of this paper were announced in [12, 14, 15, 25, 30] and in abstracts

[28, 29, 31, 32, 41, 52, 53]. Detailed exposition of the main results of the paper can
be found in preprints [16]–[20] and [26, 33]. In the present paper the decomposition
into families, the number of families, and the notation differ from those in previous
publications since here we use a different definition of an exotic expansion (following
preprint [11]; here it is § 5 in Chapter 1). In particular, now all exotic expansions are
related to edges, whereas in earlier papers some of them were related to vertices.

The numbering of lemmas, theorems, corollaries, remarks, and formulas renews in
each chapter: the first component indicates the chapter, the second the section. Tables
and figures are numbered consecutively throughout the paper.

Chapter 1. Computation of asymptotic expansions for solutions

of ordinary differential equations

In this chapter we present those methods and results of the two-dimensional power
geometry [2]–[27] and [44] that are used in this paper. Power geometry methods can be
applied to a rather wide class of equations and systems, of which the Painlevé equations
represent a rather narrow subclass with their own special properties. These special prop-
erties imply, in particular, that power asymptotic expansions of solutions have at most
one critical number and the expansion does not contain iterated logarithms. Therefore,
in this chapter we present only the results related to the case where there is at most one
critical number and only simple logarithm.
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ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF THE SIXTH PAINLEVÉ EQUATION 11

1. Power asymptotics of solutions

1.1. Main definitions and formulations of the problem. Let x be an independent
variable and y a function of x, where x, y ∈ C. Denote X = (x, y).

A differential monomial a(X) is the product of a usual monomial

(1.1.1) cxr1yr2 ,

where c = const ∈ C, R = (r1, r2) ∈ R
2, and a finite number of derivatives of the form

(1.1.2)
dly

dxl
, l ∈ N.

A sum of differential monomials

(1.1.3) f(X) =
∑

ai(X)

is called a differential sum.
Suppose we are given an ordinary differential equation

(1.1.4) f(X) = 0,

where f(X) is a differential sum containing only integral powers of y. We set

(1.1.5) ω =

{−1 if x → 0,

1 if x → ∞.

Let x → 0 or x → ∞ and a solution of equation (1.1.4) have the form

(1.1.6) y = crx
r + o

(

|x|r+ε
)

,

where cr = const ∈ C, cr �= 0, r, ε ∈ R and ωε < 0. Then the expression

(1.1.7) y = crx
r, cr �= 0

is a power asymptotics of equation (1.1.6).

Problem 1.1. For a given equation (1.1.4) find all power asymptotics (1.1.7) of its
solutions of the form (1.1.6).

Power geometry provides the theory and algorithms for solving Problem 1.1 based on
the extraction of reduced equations.

1.2. Extraction of reduced equations. With each differential monomial a(X) we
associate its (vector) exponent Q(a) = (q1, q2) ∈ R2 defined by the following rules. For
a monomial of the form (1.1.1) we set Q(cXR) = R, i.e., Q(cxr1yr2) = (r1, r2); for the
derivative (1.1.2) we set Q(dly/dxl) = (−l, 1); the exponent of a product of differential
monomials is the (vector) sum of the exponents of factors: Q(a1a2) = Q(a1) + Q(a2).
The set S(f) of exponents Q(ai) of all differential monomials ai(X) in a differential sum
(1.1.3) is called the support of the sum f(X). Clearly, S(f) ∈ R

2. By fQ(X) we denote
the sum of those monomials ai(X) in (1.1.3) that satisfy Q(ai) = Q. Then the differential
sum (1.1.3) can be written in the form

f(X) =
∑

fQ(X) (sum over Q ∈ S(f)).

The closure of the convex hull Γ(f) of the support S(f) is called the polygon of the

sum f(X). The boundary ∂Γ(f) of the polygon Γ(f) consists of vertices Γ
(0)
j and edges

Γ
(1)
j . Together, they are called generalized faces Γ

(d)
j ; here the superscript indicates the

dimension of the face, and the subscript indicates its index. To each face Γ
(d)
j we associate

the reduced sum

(1.1.8) f̂
(d)
j (X) =

∑

ai(X) (the sum over Q(ai) ∈ S(f) ∩ Γ
(d)
j ).
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12 A. D. BRUNO AND I. V. GORYUCHKINA

Let the plane R2
∗ be dual to the plane R2, so that for P = (p1, p2) ∈ R2

∗ and Q =

(q1, q2) ∈ R
2 we have the inner product 〈P,Q〉 def

= p1q1 + p2q2. To each face Γ
(d)
j in the

plane R2
∗ one associates the corresponding normal cone

U
(d)
j =

{

P : 〈P,Q〉 = 〈P,Q′〉, Q,Q′ ∈ S
(d)
j ,

〈P,Q〉 > 〈P,Q′′〉, Q′′ ∈ S(f) \ S(d)
j

}

.

Let the vector Nj be the outer normal to the edge Γ
(d)
j (vectors are denoted by capital

letters). The normal cone of an edge Γ
(1)
j is the ray generated by the vector Nj and

directed outside of the polygon Γ(f). For a vertex Γ
(0)
j the normal cone U

(0)
j is an open

sector (angle) on the plane R2
∗ with the vertex at the origin P = 0 bounded by the rays

that are normal cones of the edges adjacent to the vertex Γ
(0)
j .

So, to each face Γ
(d)
j we have associated the normal cone U

(d)
j in R2

∗ and the reduced
equation

(1.1.9) f̂
(d)
j (X) = 0.

Theorem 1.1.1 ([3, Ch. VI, Theorem 1.1]). Equation (1.1.4) has a solution (1.1.6), and

ω(1, r) ∈ U
(d)
j , the reduction (1.1.7) of the solution (1.1.6), is a solution of the reduced

equation (1.1.9).

Therefore, to find all reduced solutions (1.1.7) of equation (1.1.4) one should compute

the following data: the support S(f), the polygon Γ(f), all its faces Γ
(d)
j , normal cones

of edges U
(1)
j , and normal cones of vertices U

(0)
j . Then for each rescued equation (1.1.8),

(1.1.9) one should find all solutions (1.1.7) for which one of the vectors ±(1, r) lies in the

normal cone U
(d)
j . For d = 0 this means that one of the vectors ±(1, r) lies in U

(d)
j . For

d = 1 this property always holds.

1.3. Solving the reduced equation. We consider separately the case of a vertex Γ
(0)
j

and of an edge Γ
(1)
j . To a vertex Γ

(0)
j = {Q} there corresponds a reduced equation (1.1.9)

with d = 0 whose support consists of one point Q. Set g(X)
def
= X−Qf̂

(0)
j (X). Then

solution (1.1.7) of equation (1.1.9) satisfies the equation g(X) = 0. Substituting y = cxr

in g(X) we obtain that g(x, cxr) does not depend on x and c and is a polynomial in r,
i.e., g(x, cxr) ≡ χ(r), where χ(r) is the characteristic polynomial of the differential sum

f̂
(0)
j (X). Therefore, for a solution (1.1.7) of equation (1.1.9) the exponent r is a root of
the characteristic equation

(1.1.10) χ(r)
def
= g(x, xr) = 0,

and the coefficient cr is arbitrary. Among the roots ri of equation (1.1.10) one should
choose those for which one of the vectors ω(1, r), where ω = ±1, is in the normal cone

U
(0)
j of the vertex Γ

(0)
j . Here the value of ω is determined uniquely. The corresponding

expressions (1.1.7) with an arbitrary constant cr are candidates to being reduced solutions
of equation (1.1.4).

A reduced equation (1.1.9) is called algebraic if it does not contain derivatives.

Remark 1.1.1 ([3]). If the reduced equation (1.1.9) with d = 0 is algebraic, then it has
no solutions of the form (1.1.7). Therefore we may disregard reductions consisting of one
algebraic monomial.
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To an edge Γ
(1)
j there corresponds the reduced equation (1.1.9) with d = 1 such that

its normal cone is the ray U
(1)
j in {λNj , λ > 0}. The inclusion ω(1, r) ∈ U

(1)
j uniquely

determines the exponent r of the reduced equation (1.1.7) and the value ω = ±1 in
(1.1.5). To determine the coefficient cr one should substitute (1.1.7) in the reduced
equation (1.1.9). After canceling a power of x we obtain the algebraic determining
equation for the coefficient cr:

(1.1.11) f̃(cr)
def
= x−sf̂

(1)
j (x, crx

r) = 0.

To each root cr = cri �= 0 of this equation there corresponds the expression (1.1.7) that is
a candidate to the role of the reduced solution of equation (1.1.4). According to (1.1.5),

if in the normal cone U
(1)
j we have p1 < 0, then x → 0, and if p1 > 0, then x → ∞.

So each reduced equation (1.1.9) has several appropriate solutions (1.1.7) with ω(1, r)

⊂ U
(d)
j . Let us combine them in families that are continuous in ω, r, cr, and parameters

of the equation (1.1.4).
If we are interested not in all solutions (1.1.6) of equation (1.1.4) but only those for

which ω(1, r) is in some given cone K, then K is called the cone of the problem [3,
Chapter I, § 6]. For example, for the reduced equation (1.1.9) the cone of the problem is

the normal cone U
(d)
j provided that there are no other restrictions.

1.4. Critical numbers of the reduced solution. If the reduced solution (1.1.7) is
found, then the change of variables

(1.1.12) y = crx
r + z

transforms (1.1.4) to the form

(1.1.13) f̃(x, z)
def
= f(x, cxr + z) = 0,

where f̃(x, z) is a differential sum such that all points Q = (q1, q2) in its support S(f̃)
have an integral nonnegative coordinate q2. To equation (1.1.13) one can apply the
computations described above (i.e., to compute the support, the polygon, the reductions,
etc.) and obtain for (1.1.6) the next term of the expansion ck0

xk0 with k0 > r if x → 0
and k0 < r if x → ∞. Hence, we have Problem 1.1 for equation (1.1.13) with the cone
of the problem now being

(1.1.14) K =

{

k =
p2
p1

: kω < rω, p1ω > 0

}

.

However, in many cases the differential sum f̃(x, z) has a special form, thus allowing us
to simplify the computation of expansions (1.1.6). Let us assume that equation (1.1.13)
has the form

(1.1.15) f̃(x, z)
def
= L(x)z + h(x, z) = 0,

where L(x) is a linear differential operator and the support S(Lz) consists of one point

(v, 1) that is a vertex Γ̃
(0)
1 of the polygon Γ(f̃). Then for all points Q = (q1, q2) in the

support S(h), the coordinate q2 is nonnegative, and there is no point Q = (v, 1) such

that the normal cone of the vertex Γ̃
(0)
1 contains a vector P = (p1, p2) with p1ω > 0.

Similarly to the well-known in functional analysis Fréchet derivative [40], we introduce

the formal Fréchet derivative (or the first variation) δf(x,y)
δy of the differential sum f(x, y)
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14 A. D. BRUNO AND I. V. GORYUCHKINA

that has the following properties (and is uniquely determined by these properties):

δ(cxq1yq2)

δy
= cq2x

q1yq2−1,
δ(dly/dxl)

δy
=

dl

dxl
,

δ(f + g)

δy
=

δf

δy
+

δg

δy
,

δ(fg)

δy
=

(

δf

δy

)

g + f

(

δg

δy

)

.

According to the second property, the first variation is a linear functional operator, i.e.,
an operator of the form

(1.1.16)

l
∑

k=0

gk(x, y)
dk

dxk
,

where gk(x, y) are differential sums.

Theorem 1.1.2 ([44, 4]). Let (1.1.7) be a solution of the reduced equation (1.1.9) with

ω(1, r) ∈ U
(d)
j . Then for equation (1.1.15) we have

(1.1.17) L(x) =
δf̂

(d)
j (x, y)

δy
for y = crx

r;

i.e., the operator L(x) is equal to the first variation computed at the solution (1.1.7).

Furthermore, S(Lz) = (v, 1), where v = 〈Q1, (1, r)〉 − r with Q1 ∈ Γ
(d)
j .

Therefore, substitution (1.1.13) transforms equation (1.1.4) to the form (1.1.15) pro-
vided

L(x) �≡ 0.

Let ν(k) be the characteristic equation of the differential sum L(x)z, i.e.,
(1.1.18) ν(k) = x−v−kL(x)xk.

If ν(k) �≡ 0, then the roots k1, . . . , ks of the polynomial ν(k) are called eigenvalues of the
reduced solution (1.1.7). Those real eigenvalues ki that lie in the cone of the problem,
i.e., satisfy inequalities (1.1.14), are called critical numbers. As will be shown in § 2, they
play an important role in finding expansions of the solution (1.1.6).

Remark 1.1.2. The power solution (1.1.7) of the algebraic reduced equation (1.1.9) with
d = 1 does not have eigenvalues and critical numbers since for such a solution,

ν(k) ≡ ν0 = const =
∂f̂

(1)
j

∂y
(1, cr).

If cr is a simple root of equation (1.1.11), then ν0 �= 0. If cr is a multiple root of equation
(1.1.11), then ν0 = 0.

If L(x) �≡ 0, then ν(k) �≡ 0. If L(x) ≡ 0, then one should compute the solution of
equation (1.1.13) (taking into account the cone of the problem (1.1.14)) as described in
§§1.2, 1.3.
1.5. Asymptotics with complex exponents. Consider solutions of the form

(1.1.19) y = cρx
ρ + o

(

|x|r+ε
)

, cρ �= 0

with a complex exponent ρ = r + is, where εω < 0. The asymptotics of such a solution
is of the form

(1.1.20) y = cρx
ρ, cρ �= 0.

All the facts from previous subsections are true for such solutions as well if we set
r = Re ρ.
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We only mention that solutions of the form (1.1.20) of the reduced equation (1.1.9)

occur only for vertices Γ
(0)
j , i.e., only in the case d = 0. In this case the characteristic

equation (1.1.10) can have complex roots, which we will denote ρ1, . . . , ρl. A root ρi is

appropriate if one of the vectors ±(1, Re ρi) is in the normal cone U
(0)
j . If, instead of

(1.1.12), we make the change

(1.1.21) y = cρx
ρ + z,

then the differential sum f̃(x, z)
def
= f(x, cρx

ρ + z) will contain the usual monomials of
the form cxr1zr2 with complex r1. Theorem 1.1.2 remains valid provided we compute
the first variation on the solution (1.1.20). The characteristic polynomial ν(k) is again
defined by (1.1.18). Its roots ki again are eigenvalues of the reduced solution (1.1.20).
Those roots ki for which Re ki is in the cone of the problem, i.e., satisfies inequalities
(1.1.14), are called critical numbers of the reduced solution (1.1.20).

For the reduced equation (1.1.9) corresponding to an edge Γ
(1)
j we are looking for

solutions (1.1.7) with real exponent r; this exponent is determined uniquely by the normal
vector to the edge. Solutions of the form (1.1.20) with complex ρ, Re ρ = r, Im ρ �= 0
will be considered later in § 5.

In what follows we restrict ourselves to the case where there is at most one critical
number.

2. Power and power-logarithmic expansions

2.1. Formulation of the problem. Consider equation (1.1.15) with ν(k) �≡ 0. When
looking for power series solutions of this equation,

(1.2.1) z =
∑

ckx
k, ωk < ωr,

with ck = const ∈ C, we see that according to [4] such an expansion exists only under
certain conditions, with the main condition being the absence of critical values. In the
case where we do not impose these conditions, we get expansions of the form (1.2.1),
where the ck are polynomials in lnx.

Consider the equation (1.1.15), i.e.,

(1.2.2) f̃(x, z)
def
= L(x)z + h(x, z) = 0,

where f̃(x, z) is a differential sum with z entering in integer nonnegative powers and
L(x) is a linear differential operator.

Problem 2.1. For the solutions of the equation (1.2.2), find all expansions of the form

(1.2.3) z =
∑

βk(lnx)x
k,

where βk are polynomials in lnx with complex coefficients and exponents k or Rek lie in
the cone of the problems (1.1.14) provided it exists.

2.2. The support of the expansion of a solution. To be specific, we will impose the
following conditions to the summands in equation (1.2.2).

Condition 2.1. The point (v, 1) is a vertex of the polygon Γ(f̃). The only corresponding

term in the sum f̃(x, z) is L(x)z.
If (1.2.2) is obtained from (1.1.4) and L(x) �≡ 0, this condition is satisfied automati-

cally. If this condition is satisfied, then the differential sum L(x)z has the characteristic
polynomial (1.1.18) and ν(k) �≡ 0.

Let us shift the support S(f̃) by the vector (−v,−1). Then the vertex (v, 1) corre-
sponding to the term L(x)z moves to the origin. Let a number r be such that for each
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point Q′ ∈ S′ def
= S(f̃) − (v, 1) we have 〈ωR,Q′〉 ≥ 0, where R = (1, r). Let k1 be a

real number satisfying the inequality k1ω < rω in (1.1.14). Finally, let S′
+(k1) be the set

consisting of finite sums of vectors Q′ ∈ S′ and the vector (k1,−1). Denote

(1.2.4) K(k1) = S′
+(k1) ∩ {q2 = −1}.

Proposition 1.2.1 ([8]). If the support S(f̃) does not have accumulation points in R2,
then the set K(k1) does not have accumulation points in R.

Proposition 1.2.2 ([8]). Let Γ
(0)
j be a vertex of the polygon Γ(f) of the equation

(1.1.4) such that the corresponding reduced equation (1.1.9) has a solution (1.1.7) with

ω(1, r) ∈ Ū
(0)
j and all points of the shifted support S(f) − Γ

(0)
j are represented in the

form
∑n

i=1 liMi, with integers li ≥ 0, and some vectors Mi ∈ R2. Then for the set K of
equation (1.2.2) we have

K ⊂
{

k = r +
n
∑

i=1

liti, integers li ≥ 0,
n
∑

i=1

li > 0

}

,

where ti = 〈(1, r),Mi〉, i = 1, . . . , n. Here Ū
(0)
j denotes the closure of the cone U

(0)
j .

Proposition 1.2.3 ([8]). If the set K has the form

K =

{

k = r +

n
∑

i=1

liti, integers li ≥ 0,

n
∑

i=1

li > 0

}

,

then the set (1.2.4) has the form

(1.2.5) K(k1) =

{

k = r +
n
∑

i=1

liti +m(k1 − r), integers li,m ≥ 0,
n
∑

i=1

li +m > 0

}

.

2.3. Computation of expansions.

Theorem 1.2.1 ([8]). If equation (1.2.2) satisfies Condition 2.1, then it has a formal
solution

(1.2.6) z = z∗(x)
def
=

∑

βk(lnx)x
k, k ∈ K(k1),

where βk(lnx) are polynomials in lnx and k1 is a critical number of the reduced solution
(1.1.7).

The set K(k1) is the maximal possible (theoretical) support of expansion (1.2.6). The
actual support is a subset of this set.

Indeed, moving along the points k of the set (1.2.4) in the direction of increase of
−ω(k − r), for each coefficient βk in (1.2.6) we get a linear equation

(1.2.7) L(x)βkx
k + θkx

k+v = 0,

where θk is a polynomial in the coefficients βj and their derivatives with −ω(j − r) <
−ω(k − r), i.e., −ωj < −ωk. Furthermore, the coefficient θk depends on the coefficients
in the sum h in (1.2.2). In fact, θk is the coefficient at xk+v in the sum

(1.2.8) h

(

x,
∑

−ωr<−ωj<−ωk

βjx
j

)

.

Let the conclusion of the theorem hold for all βj with −ωj < −ωk. Then θk is a

polynomial in ξ
def
= lnx.
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Lemma 1.2.1 ([8]). Equation (1.2.7) is equivalent to the linear differential equation

(1.2.9) Nk(ξ)βk(ξ) + θk(ξ)
def
=

∑ 1

m!
ν(m)(k)β

(m)
k (ξ) + θk(ξ) = 0,

where ν(m)(k) =
dmν(q)

dqm

∣

∣

∣

∣

q=k

, β
(m)
k =

dmβk(ξ)

dξm
, m = 0, 1, 2, . . . .

Let µ(k) be the smallest m such that ν(m)(k) �= 0, and λ(k) the degree of the polyno-
mial θk(ξ); we agree that λ(k) = −1 if θk ≡ 0.

Lemma 1.2.2 ([8]). Let θk(ξ) be a polynomial of degree λ(k). Then equation (1.2.9) has
a solution βk(ξ) that is a polynomial of degree µ(k) + λ(k) and contains µ(k) arbitrary
coefficients.

Remark 1.2.1. If we know the operator L(x) and the support K(k1) of an expansion
(1.2.6), we can compute the coefficients of this expansion using the initial equation
f(x, y) = 0; indeed, the coefficient at xk in the sum (1.2.8) coincides with the coeffi-
cient at xk+v in the sum

f

(

x, crx
r +

∑

−ωr<−ωj<−ωk

βjx
j

)

.

Therefore, computing the initial terms of the expansion

y = crx
r +

∑

βjx
j

and substituting them in f(x, y) we obtain the function θk in equation (1.2.9). In com-
plicated cases this equation can be solved as explained in Lemma 1.2.2.

We say that a critical number k1 satisfies the compatibility condition if for k = k1 in
equation (1.2.7) we have θk ≡ 0.

Corollary 1.2.1. Let in equation (1.2.7) θk be a polynomial of degree λ(k) in lnx.
If in equation (1.2.7) the number k is not critical and θk = const, then equation (1.2.7)

can be reduced to the equation

(1.2.10) ν(k)βk + θk = 0,

which has a solution βk = − θk
ν(k) .

Similarly, if θk is a polynomial of degree λ(k) in ln x and ν(k) �= 0, then there exists
a solution of equation (1.2.7) such that βk is a polynomial in lnx of degree λ(k).

If in equation (1.2.7) the number k is the only simple (nonmultiple) critical number
and θk = const, then we look for βk in the form βk = αk + γk lnx and equation (1.2.7)
takes the form

(1.2.11) ν′(k)γk + θk = 0.

This equation has a solution γk = − θk
ν′(k) . Here αk is an arbitrary number. If θk = 0

(i.e., the compatibility condition is satisfied), then γk = 0 and βk = αk is an arbitrary
constant. Therefore, in this case, logarithms do not occur.

Usually one can compute not the entire expansion (1.2.6) but just a number of its
initial terms. It is usually desirable that these terms contain a critical value k1. If this
is the case, they contain all arbitrary constants of the expansion.
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18 A. D. BRUNO AND I. V. GORYUCHKINA

2.4. Powers of logarithms in the expansion. It is clear that degree ordβk(ξ) of the
polynomial βk increases as −ω(k − r) grows. Let us estimate this degree from above.

Denote æ(j) = µ(j)
|j−r| and q∗ = max q2 for (q1, q2) ∈ S(f̃).

Theorem 1.2.2 ([8]). If the equation (1.2.2) contains no logarithms, then for the solution
(1.2.6) we have

(1.2.12) ordβk ≤ q∗|k − r|
∑

0<−ω(j−r)<−ω(k−r)

æ(j),

where j, k ∈ K(k1).

Remark 1.2.2. Under the conditions of Theorem 1.2.2 the decomposition (1.2.6) may
contain the logarithm lnx only in two cases: a) if the set K contains a critical number
k1 that does not satisfy the compatibility condition; b) if k1 is a multiple critical number
(this does not occur in our case). This agrees with results in [4].

2.5. The lattice of the support of an expansion. A discrete subset Z in Rn is called
a lattice if it is closed under vector addition and subtraction. Vectors B1, . . . , Bn form a
base of a lattice Z if each point Q ∈ Z can be represented in the form

Q = m1B1 + · · ·+mnBn, mi ∈ Z.

Theorem 1.2.3 ([4]). If the set S′ def
= S(f)− (v, 1) and the point (k1,−1) lie in a lattice

Z, then

K(k1) ⊂ Z ∩ {q2 = −1}.

2.6. Computation of the second approximation. Assume that we know the reduced
equation (1.1.9), an appropriate solution (1.1.7), and the critical number k1. Let us show
how to find the point s0 ∈ K closest to r. Let the vector P = ω(1, r), ω = ±1 (see (1.1.5)),

and µ′ = max〈P,Q′〉, where Q ∈ S
(d)
j , Q′ ∈ S(f)\S(d)

j , and S
(d)
j = S(f) ∩ Γ

(d)
j .

Theorem 1.2.4 ([14]). The closest to r point s0 satisfies

|s0 − r| = µ− µ′.

If the critical number k1 does not exist or if it is such that |k1 − r| > µ − µ′, we can
compute the coefficient cs0 as follows. In the differential sum f(x, y) we separate the
second approximation

ˆ̂
f =

∑

fQ(x, y) (the sum over Q : 〈P,Q〉 = µ′),

substitute y = crx
r + cs0x

s0 in the sum

(1.2.13) f̂
(d)
j +

ˆ̂
f

and reduce similar terms. Making the coefficient at xµ′ω in the sum (1.2.13) equal to

zero, we obtain a linear equation ν(s0)cs0 + bs0 = 0, where bs0 is the coefficient at xµ′ω

in the sum
ˆ̂
f (x, crx

r).
If there exists a critical number k1 such that |k1 − r| < µ − µ′, then s0 = k1 and the

coefficient cs0 is arbitrary.
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2.7. Complex exponents. Let k1 be a complex number such that its real part Re k1
is in the cone of the problem (1.1.14), i.e., ωRe k1 < ωr. In this case the set S′

+(k1)
contains points Q = (q1, q2) such that q1 ∈ C, q2 ∈ Z. Also let K be a subset of the
complex plane q1 ∈ C. Then Theorem 1.2.1 remains true, but under the expansion (1.2.6)
exponents k are partially ordered by the growth of −ω(Re k − r). All other results of
§§2.2–2.5 also remain true.

If in equation (1.2.2) there is a term xr1 with a complex exponent r1, then the support

S(f̃) lies in the direct sum C ⊕ R. However, when constructing the polygon Γ(f̃) one

should take into account only Re q1, i.e., Re S(f̃). All further constructions and results
hold true. Expansions of solutions (1.2.1) with complex exponents k were considered
in [45].

3. Nonpower asymptotics of solutions

3.1. Main definitions and formulation of the problem. Let x → 0 or x → ∞. Two
functions ϕ(x) and ψ(x) are said to be weakly (asymptotically) equivalent if

ψ(x)

ϕ(x)
→ 1.

In this case the function ϕ(x) is a weak asymptotics of the function ψ(x) and vice versa.

Denote by exp(k) x and ln(k) x the k-th iterate of the exponential function and of the
logarithmic function, respectively, i.e.,

exp(k) x
def
= exp

(

exp(. . . {exp(x)} . . .)
)

and ln(k) x
def
= ln(ln(. . . (lnx) . . .)).

Problem 3.1. For solutions of equation (1.1.4), where f(x, y) is a differential sum, find
all (weak) asymptotics of the form

(1.3.1) y = cxr(expx)s1 . . . (exp(k) x)sk(lnx)t1 . . . (ln(l) x)tl ,

where c = const ∈ C, c �= 0; r, si, ti = const ∈ R or C.

In § 1 we have presented a method of computing all power asymptotics, i.e., of asymp-
totics of the form (1.1.7). Therefore here we concentrate on the computation of all
nonpower asymptotics, of solutions of (1.3.1), i.e., asymptotics of the form different from
(1.1.7).

The order of a function ϕ(x) is the number

r = lim
ln |ϕ(x)|
ln |x| ∈ [−∞,+∞],

provided the limit exists. It is clear that two weakly equivalent functions have the same
order.

Two functions ϕ(x) and ψ(x) are strongly (asymptotically) equivalent if

ϕ(x) = ψ(x)
[

1 + o
(

|x|ωε|ψ(x)|ω2ε
)]

for some ε < 0, where

ω2 =

⎧

⎪

⎨

⎪

⎩

−1 if ψ(x) → 0,

0 if ψ(x) → const �= 0,

1 if ψ(x) → ∞.

In this case the function ϕ(x) is a strong asymptotics of the function ψ(x) and vice versa.
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Let y = ϕ(x) be a solution of equation (1.1.4) and let ϕ(x) have order r. The normal
cone u of this solution is the ray

u =

⎧

⎨

⎩

λ(0, −1) if r = −∞,
λω(1, r) if −∞ < r < +∞,
λ(0, 1) if r = +∞,

where λ > 0. The notion of the cone of a solution can be used for solutions with the
normal cone u defined in such a way.

Theorem 1.3.1 ([3, ChpaterVI, Theorem 1.1]). If a solution y = ϕ(x) of equation

(1.1.4) has a normal cone u, then the reduced equation (1.1.9) for which u ⊂ U
(d)
j has a

weakly asymptotically equivalent solution y = ψ(x).

Therefore, to compute all (weak) asymptotics of solutions of equation (1.1.4) one needs
to identify all reduced equations and their normal cones, which leads to a finite number
of problems of the following type.

Problem 3.2. For a reduced equation (1.1.9) find all (weak) asymptotics of solutions

y = ψ(x) of the form (1.3.1) with u ∈ U
(d)
j .

According to §1.1, to equation (1.1.4) there correspond the polygon Γ(f), and to the

reduced equation (1.1.9), an edge or a vertex Γ
(d)
j of this polygon. Below we consider

separately three methods of treating Problem 3.2: two for an edge (depending on the
slope of the edge) and one for a vertex.

Remark 1.3.1. The algebraic reduced equation (1.1.9) does not have appropriate non-
power solutions; i.e., it does not produce nonpower asymptotics of solutions of (1.1.4).

3.2. The case of a vertical edge Γ
(1)
j . If the edge Γ

(1)
j is vertical, then its normal cone

is

(1.3.2) U
(1)
j = λω(1, 0), λ > 0,

and all points Q = (q1, q2) ∈ Γ
(1)
j have the same coordinate q1. Let

(1.3.3) g(x, y) = x−q1 f̂
(d)
j (x, y).

Then the support S(g) lies on the coordinate axis q1 = 0. According to (1.3.2) all power

solutions (1.1.7) with ω(1, r) ∈ U
(1)
j are constants y = y0 = const, where y0 is a root of

the equation

(1.3.4) g̃(y)
def
= g(0, y) = 0.

A root y0 of (1.3.4) is called a multiple root if the derivative d g̃(y)
dy vanishes at y0.

To find nonpower solutions of equation (1.1.9) we make the logarithmic transform

(1.3.5) ξ
def
= lnx.

According to Theorem 2.4 in [3, ChapterVI], (1.3.5) transforms the differential sum

g(x, y) into the differential sum h(ξ, y)
def
= g(x, y) and equation (1.1.9) takes the form

(1.3.6) h(ξ, y) = 0.

From (1.3.5) we see that ξ → ∞ as x → 0 and as x → ∞ because both ξ and x are
complex; i.e., for equation (1.3.6) we get Problem 3 with the cone

(1.3.7) p1 ≥ 0.
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Theorem 1.3.2 ([8, § 5]). Finite limit values y0 �= 0 of nonconstant solutions of (1.3.6)
are multiple solutions of equation (1.3.4).

Let an edge Γ
(1)
j join two vertices Γ

(0)
j−1 = (q′1, q

′
2) and Γ

(0)
j = (q′1, q

′′
2 ), where q′2 < q′′2

are integers. We say that equation (1.3.4) has a root at infinity if the degree of the
polynomial in (1.3.4) is less than q′′2 , and that it has a root at zero if the smallest degree
in y of the polynomial in (1.3.4) is greater than q′2.

Theorem 1.3.3 ([8, § 5]). If equation (1.3.4) does not have a root at infinity (at zero)
then equation (1.3.6) does not have solutions that tend to infinity (to zero).

Therefore, if equation (1.3.4) does not have multiple roots, as well as roots at infinity
and at zero, then equation (1.1.9) does not have appropriate nonpower solutions; i.e., we
do not need to make the transformation (1.3.5). In the opposite case, we need to make
the transformation (1.3.5) and to consider equation (1.3.6).

Let us note that the reduction of equation (1.3.6) with respect to the vector (1, 0) is

equation (1.3.4), i.e., g̃(y) ≡ ĥ(ξ, y). To find solutions of equation (1.3.6) with infinite
and zero limit values of y one should select in this equation the reduced equations cor-
responding to the cone of the problem (1.3.7). To find solutions of equation (1.3.6) with
finite limit values, one should find all multiple roots of equation (1.3.4). Let y0 be such
a root. Then we need to make the parallel shift y = y0 + z that will put this solution to
the origin. Then equation (1.3.6) takes the form

(1.3.8) h̃(ξ, z)
def
= h(ξ, y0 + z) = 0.

Now one should consider all reduced equations of equation (1.3.8) with the cone p1 ≥ 0,
p2 ≤ 0. This is again Problem 3.1.

So, for a vertical edge we have described a step that allows us to find all power solutions
of equation (1.1.9) and reducing, in the case of nonpower asymptotics, Problem 3.2 to a
finite number of cases of Problem 3.1.

An edge with nonzero slope can be transformed to a vertical edge using a power
transform [8, § 5].

3.3. The case of a horizontal edge Γ
(1)
j . In this case all points Q = (q1, q2) of the

edge Γ
(1)
j have the same coordinate q2. Set

(1.3.9) g(x, y)
def
= y−q2 f̂

(1)
j (x, y)

and make the logarithmic transform

(1.3.10) η =
d ln y

dx
.

According to Theorem 2.4 in [3, ChapterVI] under this transform the differential sum

g(x, y) becomes the differential sum h(x, η)
def
= g(x, y) and equation (1.1.9) becomes

(1.3.11) h(x, η) = 0.

Now for equation (1.3.11) we have Problem 3.1 with the cone

p1 + p2 ≥ 0.

The sum of orders of all derivatives entering a differential monomial a(x, y) is called the
total differential order of the monomial a(x, y); it is denoted by Δ(a). For a differential
sum (1.1.3) the total differential order is defined by

Δ(f) = max
i

Δ(ai).
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Let Ωj be the degree of the characteristic polynomial χj(r) of the vertex Γ
(0)
j . Let the

edge Γ
(1)
j join the vertices Γ

(0)
j−1 = (q′1, q

′
2) and Γ

(0)
j = (q′′1 , q

′
2) with q′1 < q′′1 .

Theorem 1.3.4 ([8, § 5]). If Ωj−1 = Δ
(

f̂
(0)
j−1

)

= Δ
(

f̂
(1)
j

)

(or Ωj = Δ
(

f̂
(0)
j

)

=

Δ
(

f̂
(1)
j

)

), then equation (1.3.11) does not have appropriate solutions as x → 0 (or as

x → ∞).

Therefore, if Ωj−1 = Δ
(

f̂
(0)
j−1

)

= Δ
(

f̂
(1)
j

)

= Δ
(

f̂
(0)
j

)

= Ωj , then transformation

(1.3.10) and subsequent analysis can be omitted.

3.4. The case of a vertex Γ
(0)
j . Let Γ

(0)
j = {Q}. Set

(1.3.12) g(x, y)
def
= X−Qf̂

(0)
j (x, y).

Then S(g) = {0}. A power solution y = cxr of equation g(x, y) = 0 contains an arbitrary
constant c and the exponent r that satisfies the characteristic equation

(1.3.13) χ(r)
def
= g(x, xr) = 0.

To find nonpower solutions we make the logarithmic transform

(1.3.14) ξ = lnx, η =
d ln y

d lnx
.

According to Theorem 2.4 in [3, ChapterVI] the differential sum g(x, y) becomes the

differential sum h(ξ, η)
def
= g(x, y) and equation (1.1.9) takes the form

(1.3.15) h(ξ, η) = 0.

From (1.3.14) one sees that ξ → ∞, i.e., p1 ≥ 0. Therefore, for equation (1.3.15) we have
Problem 3.1 with the cone p1 ≥ 0, p1 + p2 ≥ 0. Now we note that, according to (1.3.14),
to a power solution (1.1.7) of equation (1.1.9) there corresponds the constant solution

(1.3.16) η = r = const

of equation (1.3.15).

Theorem 1.3.5 ([8, § 5]). Finite limit values η0 �= 0 of nonconstant solutions of (1.3.15)
are multiple roots of equation (1.3.13).

Let Δ(g(x, y)) = k. Denote by g∗(x, y) the sum of all differential monomials in the
sum g(x, y) that have the total differential order k, i.e., the maximal order among all
monomials in g(x, y). By coef (g∗) we denote the sum of all numeric coefficients in
differential monomials in the sum g∗(x, y).

Theorem 1.3.6 ([8, § 5]). If the differential sum g(x, y) in (1.3.12) contains a nonzero
constant (or if coef (g∗) �= 0), then equation (1.3.15) does not have solutions that tend to
zero (or to infinity).

We say that a polynomial χj(r) does not have a root at infinity for a vertex Γ
(0)
j if

the fact that one if the vectors ±(0, 1) belongs to U
(0)
j implies that Ωj = Δ(f̂

(0)
j ).

Corollary 1.3.1. If the characteristic polynomial χj(r) for the vertex Γ
(0)
j does not have

multiple roots r such that at least one of the vectors ±(1, r) is in the normal cone U
(0)
j and

does not have a root at infinity, then there are no nonpower asymptotics corresponding

to the vertex Γ
(0)
j .
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Therefore, if the characteristic equation for f̂
(0)
j (x, y) does not have multiple roots,

the sum g(x, y) has a nonzero free term, and coef (g∗) �= 0, then equation (1.1.9) does
not have appropriate nonpower solutions.

Let us note that the reduction of equation (1.3.15) with respect to the vector (1, 0) is

equation (1.3.13), i.e., χ(η) ≡ ĥ(ξ, η). To find solutions of equation (1.3.15) with infinite
and zero limit values one should select those reduced equations for equation (1.3.15) for
which the normal cone is not disjoint from the cone of the problem p1 ≥ 0, p1 + p2 ≥ 0,
and then solve Problem 3.2 for these equations. To find solutions of equation (1.3.15)
with finite nonzero limit values one should find all multiple roots of equation (1.3.13).
Let η0 be such a root. Using the parallel shift η = η0 + ζ one should put it at the origin.
Equation (1.3.15) becomes

(1.3.17) h̃(ξ, ζ)
def
= h(ξ, η0 + ζ) = 0.

Now one should select reductions of equation (1.3.17) with the cone p1 ≥ 0, p2 ≤ 0. This
is again Problem 3.1.

4. Complicated expansions

4.1. Formulation of the problem. Earlier we have shown how to find nonpower so-
lutions

(1.4.1) y = xrϕr(lnx), r ∈ R,

of the reduced equation (1.1.9). These solutions can serve as nonpower asymptotics of
solutions of the full equation (1.1.4). Here ϕr is expanded in a series in powers of lnx:

(1.4.2) ϕr = γρ(lnx)
ρ +

∑

γσ(lnx)
σ, σ < ρ,

where γρ = const and the coefficients γσ are either constants or polynomials in iterated
logarithms (which does not occur in our case).

Problem 4.1. For nonpower asymptotics (1.4.1), (1.4.2) that is a solution of the reduced

equation (1.1.9) and satisfies the condition ω(1, r) ∈ U
(d)
j , find the expansion of the

corresponding solution of the full equation (1.1.4)

(1.4.3) y = ϕrx
r +

∑

ϕsx
s, ωs < ωr,

where ϕs are series in decreasing powers of logarithms.

Here we present a solution of this problem in the case where the reduced equation
(1.1.9) corresponds to a vertex or to a nonhorizontal edge and satisfies certain conditions
(does not produce critical numbers for the solution (1.4.1), (1.4.2)). In this case we
will show how to obtain expansion (1.4.3) with coefficients ϕs expanding in series in
decreasing powers of the logarithm of the form

(1.4.4) ϕs =
∑

ϕst(lnx)
t, t ≤ T (s),

where the coefficients ϕst are constant.

4.2. Computation of critical numbers. Consider the first variation (1.1.16). This
is a linear differential operator M(x, y) whose coefficients are differential sums. Let us
make the transformation

(1.4.5) y = xrz,

where c is the same as in (1.4.1). We obtain the operator

(1.4.6) N (x, z)
def
= M(x, y).
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Now we make the logarithmic change of variables

(1.4.7) ξ = lnx.

Then

(1.4.8) N (x, z)
def
= xvÑ (ξ, z),

where v is the degree of the operator N in x and Ñ =
∑m

l=0 πl(ξ, z)(
dl

dξl
) is a differential

operator in ξ whose coefficients are differential sums in ξ and z. According to (1.4.2) let
us substitute, in each coefficient πl, z = ϕr(ξ) and consider the terms with the highest
degree of ξ. Let n be this highest degree, i.e.,

(1.4.9) πl(ξ, ϕr(ξ)) = αlξ
n + · · · , αl = const, l = 0, 1, . . . ,m,

m
∑

l=0

|αl| �= 0.

Let us set

(1.4.10) Ñn = ξn
m
∑

l=0

αl
dl

dξl
.

Then Ñ = Ñn + · · · . The polynomial

(1.4.11) ν(k)
def
=

m
∑

l=0

αlk
l

is called the characteristic polynomial for the reduced solution (1.4.1), (1.4.2). Its roots
k1, . . . , km are the eigenvalues of the solution (1.4.1), (1.4.2). Those eigenvalues that lie
in the cone of the problem, i.e., satisfy ωki < ωr, are the critical numbers of the reduced
solution (1.4.1), (1.4.2).

4.3. Computation of the support of an expansion. Let us recall that if a power
asymptotics (1.1.7) with r ∈ R does not have critical numbers, then the exponents s in
the expansion (1.1.6) run over a set K ⊂ R. For a nonpower asymptotics (1.4.1), by K
we will understand the same set as in the case of the power asymptotics.

Theorem 1.4.1 ([9]). If a reduced solution (1.4.1), (1.4.2) does not have critical num-
bers, then to this solution there corresponds a unique expansion (1.4.3), (1.4.4). In this
expansion, the exponents s run over the set K and (1.4.3), (1.4.4) do not contain iterated
logarithms provided there are no iterated logarithms in (1.4.1), (1.4.2).

Theorem 1.4.2 ([9]). If under the hypotheses of Theorem 1.4.1 expansion (1.4.2) does
not contain iterated logarithms, then in expansions (1.4.3), (1.4.4) we have T (s) ≤
s(ρq − n), where ρ is from (1.4.2) q = max q2 for points (q1, q2) in the support S(f),
and n is from (1.4.9).

Hence, in the case of a power asymptotics the coefficients βs in the corresponding
expansion (1.1.6) of a solution of the original equation (1.1.4) are at most polynomials
in lnx. In the case of a nonpower asymptotics of the form (1.4.1), (1.4.2) the coefficients
βs in the corresponding expansion (1.1.6) are power series in decreasing powers of lnx
and the exponents are unbounded from below.

Remark 1.4.1. As a rule, finding the entire expansion (1.4.2) requires an infinite number
of steps, and the same is true for expansion (1.4.4). However, one can always compute
initial terms of expansion (1.4.2) and several initial expansions (1.4.4) in a finite number
of steps.
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5. Exotic expansions

5.1. Series with purely imaginary exponents. We assume that the complex variable
x runs over the universal cover, i.e., x = exp(ρ + iϕ), ρ + iϕ = Lnx, where i2 = −1,
ρ, ϕ ∈ R, ρ = ln |x|. Let α = β + iγ be a complex number, where β, γ ∈ R and γ �= 0.
Then the power function is given by

zα = exp
[

(ρ+ iϕ)(β + iγ)
]

= exp
[

ρβ − ϕγ + i(ργ + ϕβ)
]

and

(1.5.1) |xα| = exp(ρβ − ϕγ).

The real linear function ϕ = aρ + b, where a, b = const ∈ R, determines a line on the
universal cover. On this line,

|xα| = exp
[

ρ(β − γa)− bγ
]

,

and as ρ → −∞ we have

lim[ρ(β − γa)− bγ] =

⎧

⎪

⎨

⎪

⎩

−∞ if β − γa > 0,

−bγ if β − γa = 0,

+∞ if β − γa < 0.

Therefore,

lim |xα| =

⎧

⎪

⎨

⎪

⎩

0 if β − γa > 0,

const ∈ R if β − γa = 0,

∞ if β − γa < 0.

We have lim |x| = 0 and lim |xα| = ∞ if β < γa, i.e., sgn a = sgn βγ and |a| > |β|
|γ| . This

means that for each γ �= 0 and β there is a path ϕ = aρ+ b on the universal cover such
that |x| → 0 and |xα| → ∞. In particular for β = 0 the equality sgn a = sgn γ suffices.

Therefore, the power function xα with a complex exponent α has a rather complicated
behavior if ϕ = arg x is unbounded both from above and from below. Therefore in this
paper we will assume that ϕ is bounded from at least one side.

Now we consider the series

(1.5.2) η(x) =
∞
∑

k=0

ckx
iγk,

where ck = const ∈ C and γ = const ∈ R. If γ > 0, then, according to (1.5.1),

|xiγk| = exp(−ϕγk) =
[

exp(−ϕγ)
]k
.

Therefore, for ϕγ > 0 the series (1.5.2) converges absolutely together with the corre-
sponding power series. By the Cauchy formula, this happens whenever

(1.5.3) exp(−ϕγ) <
1

limk→∞ k
√

|ck|
def
= δ.

If δ > 0 and γ > 0, then inequality (1.5.3) holds for −ϕγ < ln δ, i.e., for

(1.5.4) ϕ > −γ−1 ln δ.

Let us note that the convergence region of the series (1.5.2) and xAη(x) is the same
for all A = const ∈ C provided we have excluded the points x = 0 and x = ∞. Therefore,
in all the examples below these points are assumed to be excluded.
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Figure 3. Vertical angles V τ
σ .

Consider the following generalization of the series (1.5.2):

(1.5.5) ζ(x) =
∞
∑

k=0

ckx
sk ,

where ck, sk = const ∈ C, Re sk = 0, | Im sk+1| > | Im sk| ≥ 0, sk do not have accumula-
tion points and all Im sk have the same sign. For the region of absolute convergence of
this series we have

(1.5.6) ϕ sgn(Im s2) > sgn(Im s2) lim
k→∞

ln |ck|
|sk|

.

For the one-sided series (1.5.5) with all Im sk of the same sign, the convergence region
is either ϕ > ϕ0 if Im sk ≥ 0, or ϕ < ϕ0 if Im sk ≤ 0. We say that the series (1.5.5)
belongs to the class P+ if Im sk ≥ 0 and to the class P− if Im sk ≤ 0. Similarly, the
series xAζ(x) is said to belong to subclass P+ or P− depending on the class of the series
ζ(x) in (1.5.5).

5.2. Exotic series. Suppose we are given the following two lines on the complex plane
with coordinates Re s, Im s, both passing through the origin s = 0: the imaginary axes
Im s and a different from it inclined line (see Figure 3). These two lines divide the plane
into four sectors V τ

σ , σ, τ = ±1 (see Figure 3). We will assume that each sector is closed,
i.e., contains its boundary. Here the subscript σ in the notation of the angle V τ

σ indicates
the sign of Re s on the inclined part of the boundary, whereas the superscript τ indicates
the sign of Im s on the vertical part of the boundary. The power series

(1.5.7) ξ(x) =
∑

csx
s (sum over s ∈ K),

cs = const ∈ C, is said to belong to the class Pτ
σ if for its support we have K ⊂ V τ

σ .
Furthermore, any power series of the form xAξ(x) is assumed to belong to the same class.
We will consider only those series of the form (1.5.7) for which the support K does not
have limit points in the complex plane s. The series (1.5.7) of the class Pτ

σ are called
exotic. According to §5.1, the convergence region on the universal cover Pτ

σ can be of
the form

(1.5.8) σρ < σρ0, τϕ < τϕ0,
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Figure 4. Horizontal sectors.

where ρ0 and ϕ0 are some real constants. The series (1.5.7) of class Pτ
σ is asymptotic as

|x|σ → 0 and ϕ → τ∞ because in this case |xα| ≥ |xβ| for σReα ≤ σReβ, τ Imα ≤
τ Imβ, which yields an ordering of monomials xα by the exponents α.

5.3. Existence of exotic expansions of solutions. Let us have an ordinary differen-
tial equation

(1.5.9) f(x, y) = 0,

where f is a differential sum, and y = y(x) is a solution of this equation. We are looking
for exotic expansions of y as |x| → 0 and |x| → ∞,

(1.5.10) y = crx
r +

∑

csx
s (sum over s ∈ K, s �= r),

where the support K lies in the vertical sector r+ V τ
σ with the vertex at the point r. In

the case of an ordinary expansion (1.5.10), where the set K − r lies in one “horizontal
angle” between two inclined half-lines (see Figure 4), a procedure for finding them was
described in Chapter 1, § 2. Such expansions belong to both classes P±

σ simultaneously.
If an exotic expansion (1.5.10) belongs to class Pτ

σ , then σ = −ω.
Let us write an exotic expansion of a solution of (1.5.9) in the form

(1.5.11) y =
∑

ρ

cρx
ρ +

∑

s

csx
s,

where Re ρ = r, ωr > ωRe s and the first sum contains more than one summand.

Lemma 1.5.1. If expansion (1.5.11) is a formal expansion of a solution of the full

equation (1.5.9) and ω(1, r) ∈ U
(d)
j , then the reduced solution

(1.5.12) y =
∑

ρ

cρx
ρ

is a solution of the reduced equation

(1.5.13) f̂
(d)
j (X) = 0.

According to §1.2, to equation (1.5.9) there corresponds the polygon Γ(f) with the

boundary ∂Γ consisting of generalized faces Γ
(d)
j , and to each such face there corresponds
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Figure 5. Complex normal cones.

a (real) normal cone U
(d)
j ; to the side face there also corresponds a particular value

ω = ω
(d)
j .

By the complex normal cone Ŭ
(d)
j of a face Γ

(d)
j we mean the set of points ρ ∈ C,

where ω
(d)
j (1,Re ρ) ∈ U

(d)
j . Complex normal cones Ŭ

(d)
j can be represented in two

complex planes Lω depending on the sign ω = ω
(d)
j = ±1. For an edge Γ

(1)
j , the complex

normal cone Ŭ
(1)
j is the line Re ρ = rj ; for a vertex, it is the strip rj < Re ρ < rj+1

(shaded in Figure 5).
When looking for power-logarithmic expansions of the form (1.5.10) we assumed that

ωRe r > ωRe s; i.e., after substituting y = crx
r+z for z we took the cone of the problem

K = {s : ωRe s < ωRe r}. Therefore in formula (1.2.5) we have only those ti and k1 − r
for which ωRe ti < 0 and ωRe(k1 − r) < 0. Now in formula (1.2.5) we allow for the
presence of purely imaginary ti and k1 − r. In this case the set K(k1) may contain
infinitely many points k (or s) with fixed Re k (or Re s) and the expansion with such
support is exotic.

Let Γ
(1)
j be an edge of the polygon Γ(f) adjacent to a vertex Γ

(0)
k and let Nj = (1, rj)

be the real normal to this edge. Then the vector Mj = (−rj , 1) is directed along the edge

Γ
(1)
j and tj = r−rj . This last number is purely imaginary if Re r = rj and Im r �= 0. This

means that the complex number r lies in the complex normal cone Ŭ
(1)
j of the edge Γ

(1)
j .

Furthermore, the complex number r is a root of the characteristic equation χk(r) = 0 of

the vertex Γ
(0)
k . Therefore, there are exotic expansions corresponding to a vertex Γ

(1)
j if

one of the adjacent vertices Γ
(0)
k has a root r of the characteristic equation belonging to

the complex normal cone Ŭ
(1)
j of the edge Γ

(1)
j . The purely imaginary difference k1 − r

occurs in the cases where the power asymptotics y = crx
r has an eigennumber k1 such

that Re k1 = Re r and k1 �= r. Therefore, for the extended expansion we have two cones
of the problem:

Kτ = {s : either ωRe s < ωRe r or Re s = Re r and sgnRe(s− r) = τ}.

For each side edge Γ
(1)
j there are two adjacent vertices Γ

(0)
k and Γ

(0)
k+1, one being the

top vertex, and another, the bottom vertex for this edge.
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Hence, to each face Γ
(d)
j of the polygon Γ(f) there corresponds a complex normal cone

Ŭ
(d)
j . With this notation, Theorem 1.1.2 can be generalized as follows.

Theorem 1.5.1. Exotic expansions of solutions (1.5.10) of equation (1.5.9) correspond
only to side edges of the polygon Γ(f), and this happens in the following two cases (here

(1, rj) is the normal vector to the edge Γ
(1)
j ):

1. For a vertex Q
(0)
k adjacent to the side edge Γ

(1)
j the characteristic equation χk(ρ)

= 0 has a root ρ = rj + iγ with γ �= 0.

2. The defining equation f̃j(c) = 0 corresponding to the edge Γ
(1)
j has a root c0 with

the eigenvalue of the form λ = rj + iγ, γ �= 0.
Here τ = sgn γ in Case 2 and for the bottom vertex in Case 1, and τ = − sgn γ

for the top vertex in Case 1.

Exotic solutions corresponding to a vertex Γ
(0)
k = Q

(0)
k exist only in the following case:

3. The reduced solution y = crx
r has a critical number k1 with Re k1 = Re r and

k1 �= r.

For the equation P6, Case 3 does not happen and all exotic solutions correspond to
edges.

In all cases in Theorem 1.5.1 the value of τ is determined and the cone of the problem
K is unique. Therefore, critical numbers are determined uniquely. In other cases there
are two cones Kτ and each cone has its own set of critical numbers. Critical numbers
kj with Re kj > ωRe r are common for both K+ and K−, whereas critical points with
Re kj = Re r are different for different τ .

With these definitions all constructions and results in § 2 remain valid when ki is a
complex critical number.

Now Theorem 1.2.1 about solutions of equation (1.5.9) allows us to obtain exotic
expansions (1.5.10), where the cs are polynomials in lnx. The exponents s in expansion
(1.5.10) can be ordered as follows. According to Propositions 1.2.2 and 1.2.3 the set
K(k1) − r lies in some central sector V with vertex at the origin such that either at
least one of the sides of the angle lies on an inclined line, or one of the sides lies on the
axis Im s, i.e., the angle V is of the form V τ

σ . Let the vectors P1 and P2 be exterior
normals to the sides of the angle V . Denote P = P1 + P2 = (p1, p2). Then for each
point s = s′ + is′′ ∈ C, set ‖s‖ = p1s

′ + p2s
′′. We say that a point s ∈ C precedes

a point t ∈ C if ‖s‖ > ‖t‖. Expansion (1.5.10), i.e., the coefficients cs for s ∈ K are
computed consecutively following this ordered sequence of exponents s as was described
in Lemmas 1.2.1 and 1.2.2.

Let us note that the support and the coefficients of an exotic expansion are computed
by the same formulas as for power-logarithmic expansions.

For the complex normal cones shown in Figure 5 the position of the angles V τ
σ is shown

in Figure 6 depending on Re r: a) for Re r = 0, b) for 0 < Re r < 1, c) for Re r = 1.

Remark 1.5.1. In the cases described in Theorem 1.5.1, solution (1.5.10) has an infinite
series of the form

(1.5.14) y =

∞
∑

k=1

ckx
r+kiγ ,

which is a solution of the reduced equation

f̂
(1)
j (x, y) = 0,
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Figure 6. The sector V of expansion (2.2.6) for (a) Re r = 0; (b)
Re r ∈ (0, 1); (c) Re r = 1.

corresponding to the edge Γ
(1)
j . However, it may happen that this series consists of just

one term

(1.5.15) y = c1x
r+iγ .

In this case (1.5.15) is a root of each summand fQ(x, y) in the differential sum

f̂
(1)
j (x, y) =

∑

fQ
(

sum over Q ∈ S
(

f̂
(1)
j

))

.

The complex support of the differential sum L(x)z consists of several points, which cor-

respond to points Q of the support S(f̂
(1)
j ). The two extremes of these points correspond

to the vertices of the edge Γ
(1)
j . To each of these two vertices there corresponds its own

support: KT to the top vertex and KB to the bottom vertex. However, in this case the
support of the expansion (1.5.10) is K = KT ∩ KB, so it is power-logarithmic rather
than exotic.

5.4. Semiexotic expansions. An expansion (1.5.11) for which the first sum contains
a finite number (but more than one) of summands is called semiexotic. Let min(Im ρ)
in (1.5.11) be achieved at ρ = ρ∗, and max(Im ρ) at ρ = ρ∗. Let K∗ be the support of
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an exotic expansion containing the point ρ∗, and K∗ the support of the exotic expansion
with the point ρ∗.

Theorem 1.5.2. The support of a semiexotic expansion (1.5.11) is K∗ ∩K∗.

Consider a Laurent polynomial with real exponents

(1.5.16) y(x) =

n
∑

k=m

ckx
k,

where ck ∈ C and m �= n. The inverse function y−1 has two different power expansions:
near zero, x = 0,

(1.5.17) y−1
0 = c−1

m x−m
(

1 +
∞
∑

k=1

bkx
k
)

and near infinity, x = ∞,

(1.5.18) y−1
∞ = c−1

n x−n
(

1 +

∞
∑

k=1

b̃kx
−k

)

,

where bk and b̃k ∈ C.
Similarly, we have the following result.

Theorem 1.5.3. The semiexotic expansion (1.5.11) has two inverse exotic expansions

(1.5.19) (y−1)∗ = c−1
ρ∗

x−ρ∗

(

∑

σ

bσx
σ +

∑

t

btx
t

)

and

(1.5.20) (y−1)∗ = c−1
ρ∗ x−ρ∗

(

∑

σ

b̃σx
σ +

∑

t

b̃tx
t

)

,

where Reσ = 0.

According to Theorem 1.5.2 the semiexotic expansion (1.5.11) belongs to both classes
P+ and P−, and each of two exotic expansions (1.5.19) and (1.5.20) belongs to just one
of the classes P+ or P−, and the signs of their classes are opposite to one another.

Expansion (1.5.11) for which Im ρ is not bounded from above is called superexotic.
However, Painlevé equations do not have superexotic expansions.

6. Other types of asymptotics and expansions

6.1. Formulation of the problem. Two-dimensional power geometry [8, § 5] allows us
to find nonpower (exponential) asymptotics of solutions

y ∼ exp

(

crx
r +

∑

s

csx
s

)

,

corresponding to a horizontal edge. However, equation P6 does not have asymptotics of
this type.

Similarly, power geometry [8, § 7] allows us to find exponential small additional terms
to power and power-logarithmic expansions. However, equation P6 does not have addi-
tional terms of this type either.
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7. Nonformal solutions

At present, we have the following general results about the existence of an actual
solution with the previously found formal solution as its asymptotic expansion.

Theorem 1.7.1 ([38]). If a system

(1.7.1)
dX

dt
=

F (X)

g(X)
,

where F (X) and g(X) are real and analytic near zero (F is a vector), F (0) = 0, g(0) = 0,

has a real formal solution
◦
X (t), with the expansion containing only real powers of t,

iterated logarithms of t, or exponents, and if all coefficients are real, then this system

has an actual solution X(t). The formal expansion
◦
X (t) is an asymptotic expansion for

X(t), i.e.,
∣

∣

∣

∣

X(t)−
m
∑

k=0

Φk(t)

∣

∣

∣

∣

= o(Φm(t)), m = 1, 2, . . . ,

where
◦
X (t) =

∑∞
k=0 Φk(t). Here X, F , and Φ are n-dimensional vectors.

Equation (2) can be reduced to the system (1.7.1) by setting

ẋ = 1, ẏ = z, ż = h(x, y, z),

where h is the right-hand side of (2) and z = y′, provided that we consider real values
of a, b, c, d only. In this case Theorem 1.7.1 shows that there exist actual solutions
corresponding to real formal solutions. It is reasonable to expect that Theorem 1.7.1 can
be generalized to complex formal solutions if the latter are considered on a line through
the origin t = 0 in the complex plane t.

In the case where all parameters a, b, c, d of the sixth Painlevé equation are real,
Theorem 1.7.1 can be applied to the following families of basic formal solutions of types
1–3 (with real arbitrary constants) listed in the Introduction: the family A0 with real
r ∈ (0, 1); the families Bi with Re θi �= 0 and ckii = 0 in the case Im θi �= 0, i = 1, 2; the
family B3; the families B4, B5 and B6 with a > 0; the families C∞

0 , B8, B9 with c > 0;
the family B10.

In the case of equation (1.2.2), if expansion (1.2.6) converges for sufficiently small
|x|−ω, then there is a solution of (1.2.2) corresponding to this equation. The maximal
order of derivatives in a differential sum f(x, z) is called the differential order and is
denoted by π(f).

Theorem 1.7.2 ([8, Theorem 3.4]). The power expansion (1.2.1) of a solution of equa-

tion (1.2.2), where f̃ is a differential sum, converges for sufficiently small |x|−ω and
|arg x− µ0|, where µ0 = const ∈ [0, 2π], provided that

(1.7.2) π(L(x)z) = π(f̃).

Here we prove this theorem in the case where the power expansion (1.2.1) contains
only integral powers. The case of rational exponents with the finite common denominator
m can be reduced to this one using a substitution x̃ = x1/m. The restriction on arg x is
used only in the case of expansions (1.2.1) with irrational or complex exponents, and in
our case it can be omitted.

Proof. We prove the theorem in a neighborhood of the point x = 0, so that ω = −1. Let
equation (1.2.2) have a formal solution in the form of a power series

(1.7.3) y =

∞
∑

k=k0

ckx
k
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with constant coefficients ck ∈ C. In equation (1.2.2) make the change of variables

(1.7.4) y =

km
∑

k=k0

ckx
k + u,

where km ≥ k0. As a result, the equation takes the form

(1.7.5) f1(x, u)
def
= L(x)u+ g(x, u, u′, . . . , u(n)) = 0,

where L(x) is a linear differential operator. The function f1 contains integral powers of x,
and u, u′, . . . , u(n) contain integral nonnegative powers of x. Equation (1.7.5) can also be
multiplied by the minimal power of x. Therefore, we will assume that f1 is a polynomial
in the variables x, u, u′, . . . , u(n). Equation (1.7.5) has the following properties:

(1.7.6)

1. S(L(x)u) = (v, 1);

2. (v, 1) is a vertex of the polygon Γ(f1);

3. S(f1) ⊂ {q2 ≥ 0};
4. S(g) ∩ {q2 = 1} ⊂ {q1 > v};
5. S(g) ∩ {q2 = 0} ⊂ {q1 ≥ v + km + 1}.

Equation (1.7.5) has a formal solution

(1.7.7) u(x) =
∞
∑

k=km+1

ckx
k.

The linear differential operator L(x) has the eigenvalues λ1, . . . , λn, which can be
ordered by the increase of the real part Reλ1 ≤ Reλ2 ≤ · · · ≤ Reλn.

For the vertex (v, 1) of the polygon Γ(f1), let Γ
(1)
1 be the upper adjacent edge and

−(1, r) the corresponding outward normal vector (see Figure (7) (a)). Denote by [r] the
integral part of r if r > 0 and 0 if r ≤ 0.

In (1.7.4), let

(1.7.8) km : km > Reλn and km > [r] + 1 + 2n.

The expansion (1.7.7) is unique, where all ck are constant and uniquely determined. The

edge Γ
(1)
1 and the corresponding reduced equation do not depend on km (see Figure 7 (b)).

If the support S(f1) of equation (1.7.5) has points to the left of the line q1 = v, we
apply to equation (1.7.5) the following power transformation:

(1.7.9) u = xαw with α = [r] + 1 + n.

As a result, we obtain an equation with the support lying in the set {q1 ≥ v, q2 ≥ 0}
and satisfying properties (1.7.6), where on the right-hand side in Property 5 we have

{q1 ≥ v+n+1}. The transformed polygon Γ̃(f1) is drawn by dashed lines in Figure 7 (b).
We assume that equation (1.7.5) itself is such that the support S(f1) belongs to the set
{q1 ≥ v, q2 ≥ 0} and Property 5 in (1.7.6) with n instead of km holds.

Next we use majorization and also a certain new trick. Consider the series

(1.7.10) ϕ(x) =
∞
∑

k=km+1

Ckx
k ,

where Ck ∈ R, Ck ≥ 0. The series (1.7.10) majorizes the series (1.7.7), in the case where

(1.7.11) Ck ≥ |ck|, k = km + 1, . . . .

Let us construct the equation

(1.7.12) σϕ(n) = xG
(

x, ϕ(n)
)

, σ = const ∈ R, σ > 0,
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Figure 7. (a) The left part of the polygon of equation (1.2.2); (b) the
support and the polygon of equation (1.7.5) before (solid line) and after
(dashed line) transformation (1.7.9).

with expansion (1.7.10) serving the role of a formal solution and also majorizing the
solution (1.7.7) of equation (1.7.5). To do this, we write equation (1.7.5) in the form

(1.7.13) L(x)u = −g
(

x, u, u′, . . . , u(n)
)

.

In the characteristic polynomial ν(k) of the differential sum L(x)u, let the coefficient νn
in the term of highest power kn be different from 1. By condition (1.7.2) we have νn �= 0.
Dividing the equation by νn, we obtain an equation for which νn = 1. We will assume
that this holds already for the initial equation (1.7.5). Then for k > n we have

(1.7.14) |ν(k)| ≥ σk(k − 1) · · · (k − n+ 1),

where σ is a positive number. Since L(x)xk = xk+vν(k), for x > 0 and k > n we have

|L(x)xk| ≥ σxv+n dn

dxn
xk.

Using the function −g we construct a function G∗(x, u(n)) as follows. Replace all
coefficients βi of the polynomial −g(x, u, u′, . . . , u(n)) with their absolute values |βi|.
Next, replace the function u and all its derivatives u(k) with expressions xn−ku(n). Let
us note that if u = xr, then u(k) = r(r − 1) · · · (r − k + 1) xr−k, and xn−ku(n) =
r(r − 1) · · · (r − n + 1) xr−k, i.e., in the second case the coefficient is not smaller than
in the first case. Therefore, the support of S(−g) coincides with the support of S(G∗).

Since for the support S(g) we have q1 ≥ v+1 the ratio G∗(x,u(n))
xv+n+1

def
=G(x, u(n)) is a poly-

nomial in x and u(n). Indeed, according to the above property, all the monomials u(k)xl
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entering the polynomial g satisfy the condition l − k ≥ v + 1. After replacements are
made, such a monomial becomes the monomial u(n)xn−kxl with n − k + l ≥ v + 1 + n.
For monomials of the second degree in u the situation is even simpler: the polynomial g
contains only monomials u(j)u(k)xl with l−k−j ≥ v+1, and after the replacements this

monomial becomes the monomial
(

u(n)
)2

xn−kxn−jxl with 2n− k − j + l ≥ v + 1 + 2n.
For monomials of higher degree in u, inequalities are even stronger. For monomials that
do not contain u the exponents can be made arbitrarily large by increasing the length
of the initial part of the expansion of solution (1.7.3). For terms that are nonlinear in
u the degree in x can be made arbitrarily large using a power transform. The terms
that are linear in u are the only ones that cannot be improved using these methods.
However, these terms already possess the necessary property: G∗(x, u(n))/xv+n+1 is a
polynomial in x and u(n). Hence, we have constructed equation (1.7.12) starting with
equation (1.7.5).

Now we prove that solution (1.7.10) of equation (1.7.12) majorizes solution (1.7.7) of
equation (1.7.5). The proof is by induction in k. Let us assume that inequalities (1.7.11)
hold for k < j and prove that they hold for k = j.

First we note that according to Subsection 2.3 in Chapter 1, when substituting the
series (1.7.7) in equation (1.7.13), for each coefficient ck we obtain an equation of the
following form:

(1.7.15) L(x)ckxk = −bkx
k+v, k ≥ km + 1,

where the coefficients bk depend on the coefficients ck with k < j and on the coefficient
of equation (1.7.13). According to Corollary 1.2.1, the system (1.7.15) can be rewritten
in the form

(1.7.16) ν(k)ck = −bk, k ≥ km + 1.

In a similar way, for equation (1.7.12) we obtain the equalities

(1.7.17) σk(k − 1) · · · (k − n+ 1)Ck = Bk, k ≥ km + 1,

where the coefficients Bk are found using equation (1.7.12) in the same way as the
coefficients bk are found using equation (1.7.5). Here Bj is a polynomial with positive
coefficients in Ck and Bk with k < j. Using the induction hypotheses and the above
construction we see that Bj ≥ |bj |. Furthermore,

∣

∣x−(v+j)L(x)xj
∣

∣ = |ν(j)| ≥ σj(j − 1) · · · (j − n+ 1).

Therefore

Cj =
Bj

σj(j − 1) · · · (j − n+ 1)
≥ |cj | =

|bj |
|ν(j)| .

The statement for the start of the induction is obvious. Therefore, solution (1.7.10) of
equation (1.7.12) majorizes solution (1.7.7) of equation (1.7.5).

Now we recall the analytic version of the Cauchy implicit function theorem; see [34].
Let a function f(x, z) be analytic at zero, x = z = 0 (i.e., f can be expanded in a power

series in x and z), f(0, 0) = 0, and ∂f
∂z �= 0 for x = z = 0. Then equation f(x, z) = 0 has

a unique solution

z =

∞
∑

k=1

dkx
k

that is analytic near the point x = 0; i.e., the series converges for sufficiently small |x|.
We apply this Cauchy theorem to equation (1.7.12) with x = x, z = ϕ(n), and

f(x, z) = σϕ(n) − xG(x, ϕ(n)) = σz − xG(x, z). Here the function f(x, z) is a poly-
nomial; hence it is analytic at the point x = z = 0. Furthermore, f(0, 0) = 0 and
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∂f/∂z = σ �= 0 at the point x = z = 0. Therefore, all the hypotheses of the Cauchy
theorem are satisfied. According to this theorem, equation (1.7.12) has a unique solution

(1.7.18) z = ϕ(n) =
∞
∑

k=km−n+1

dkx
k,

which is analytic; i.e., the series converges for sufficiently small |x|.
Solution (1.7.10) is obtained by integrating solution (1.7.18) n times; therefore, it

is also analytic for small |x|. Finally, it majorizes solution (1.7.7) of equation (1.7.5).
Therefore, solution (1.7.7) is analytic as well. �

It is clear that π(f1) = π(f). However, in general, π(Lu) ≤ π( f̂ ), although a strong
inequality occurs only in degenerate cases. For other conditions for the convergence of
the formal solution (1.7.3) of (1.2.2), see [4, 44].

Theorem 1.7.2 can be applied to the following families of basic formal solutions of
Type 1 of the sixth Painlevé equation listed in the Introduction: the family A0; the
families Bi with θi �∈ Z, i = 1, 2; the families B6, C∞

0 , B10.
Currently, we do not have a general theory of convergence of exotic expansions (of Type

4 or 5). We only know some cases where such expansions sum to a particular function.
For the P6 equation such cases were listed in the Introduction when we described basic
families of formal solutions of the P6 equation.

Chapter 2. Expansions of solutions of P6 near zero and infinity

in the case a · b �= 0

1. General properties of the equation

1.1. Formulation of the problem. The sixth Painlevé equation [39] has the form

y′′ =
(y′)2

2

(

1

y
+

1

y − 1
+

1

y − x

)

− y′
(

1

x
+

1

x− 1
+

1

y − x

)

+
y(y − 1)(y − x)

x2(x− 1)2

[

a+ b
x

y2
+ c

x− 1

(y − 1)2
+ d

x(x− 1)

(y − x)2

]

,

(2.1.1)

where a, b, c, d are complex parameters, x and y are complex variables, y′ = dy
dx . This

equation has three singular points x = 0, x = ∞ and x = 1.
For all values of the parameters of the equation, we are looking for asymptotics ex-

pansions of solutions of this equation that have the following form as x → 0 or x → ∞:

(2.1.2) y = crx
r +

∑

s

csx
s,

where the exponents r and s are complex numbers. According to (1.1.5), ω = −1 if
x → 0 and ω = 1 if x → ∞. In expansions (2.1.2) we have ωRe s < ωRe r and ωRe s
decreases. We distinguish three types of expansions (2.1.2) depending on the form of the
complex coefficients cr and cs:

1. cr and cs are constant coefficients (power expansion).
2. cr is a constant coefficient and cs are polynomials in lnx (power-logarithmic

expansions).
3. cr and cs are power series in decreasing powers of lnx (complicated expansions).

Furthermore, we look for those asymptotic expansions of solutions of equation (2.1.1)
that for x → 0 or for x → ∞ have the form

(2.1.3) y =
∑

r

crx
r +

∑

s

csx
s,
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Figure 8. (a) The support of equation (2.1.4), its polygon, edges, and
vertices; (b) normal cones of edges and vertices.

where all Re r are equal and ωRe s < ωRe r, the first sum contains more than one
summand, and the coefficients cr and cs are polynomials in lnx. We distinguish three
types of expansions (2.1.3) depending on the structure of the first sum:

4. The first sum in (2.1.3) contains a finite number of terms and for the extreme
values of Im r the coefficients cr are constants (semiexotic expansions).

5. The first sum in (2.1.3) contains infinitely many terms but Im r is bounded from
one side. For the extreme value of Im r the coefficient cr is constant (exotic
expansions).

6. The first sum in (2.1.3) contains an infinite number of terms and Im r is un-
bounded either from below or from above (superexotic expansions).

We also assume that arg x is bounded from both sides.

Remark 2.1.1. Since the support of equation (2.1.1) is real and power asymptotics crx
r

of solutions of the equation have at most one critical value, all coefficients in exotic
expansions (2.1.3) of solutions of equation (2.1.1) are constant.

Let us represent equation (2.1.1) as a differential sum. To do this, we multiply it by
2x2(x− 1)2y(y − 1)(y− x) and move the right-hand side of the equation to the left. We
obtain the equation

f(x, y)
def
= 2y′′x2(x− 1)2y(y − 1)(y − x)

− (y′)2[x2(x− 1)2(y − 1)(y − x) + x2(x− 1)2y(y − x) + x2(x− 1)2y(y − 1)]

+ 2y′[x(x−1)2y(y−1)(y−x) + x2(x−1)y(y−1)(y−x) + x2(x−1)2y(y−1)]

− [2ay2(y − 1)2(y − x)2 + 2bx(y − 1)2(y − x)2

+ 2c(x− 1)y2(y − x)2 + 2dx(x− 1)y2(y − 1)2 ] = 0.

(2.1.4)

1.2. The support and the polygon. The support of the left-hand side of equation
(2.1.4), i.e., the set of exponents of all entering monomials, is

S(f) =
{

Q = (q1, q2) : q1 = 0, 1, 2, 3, q2 = 3− q1 + k, k = 0, 1, 2, 3
}

.

The support S(f) and its convex hull Γ(f) are shown in Figure 8(a).
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Figure 9. The polygon of equation (2.1.4) (a) after the substitution
(2.1.6) and (b) after the substitution (2.1.8).

Since a, b �= 0, the polygon Γ(f) is the parallelogram with vertices Γ
(0)
j = Qj , where

Q1 = (3, 0), Q2 = (3, 3), Q3 = (0, 6), Q4 = (0, 3), and edges Γ
(1)
1 , Γ

(1)
2 , Γ

(1)
3 , Γ

(1)
4 , shown in

Figure 8 (a). The support S(f) of equation (2.1.4) is a subset of the integral lattice Z2.

1.3. Normal cones. Real normal cones U
(0)
j and U

(1)
j of vertices Γ

(0)
j and edges Γ

(1)
j

are (see Figure 8(b))

(2.1.5)

U
(0)
1 = {p2 < 0, p2 < p1}, U

(1)
1 = {p1 = p2 < 0},

U
(0)
2 = {p1 > p2 > 0}, U

(1)
2 = {p1 > 0, p2 = 0},

U
(0)
3 = {p2 > p1, p2 > 0}, U

(1)
3 = {p1 = p2 > 0},

U
(0)
4 = {p1 < p2 < 0}, U

(1)
4 = {p1 < 0, p2 = 0}.

According to Subsection 5.3 in Chapter 1, for ω = −1 the decomposition of the

complex plane L−: r ∈ C into complex normal cones Ŭ
(d)
j is as shown in Figure 5.

1.4. Symmetries. The sixth Painlevé equation has three main symmetries resulting
from changes of variables:

1) x =
1

x∗ , y =
1

y∗
; 2) x = x̌, y =

x̌

y̌
; 3) x = 1− x◦, y = 1− y◦.

Theorem 2.1.1. Equation (2.1.4) is invariant under the substitution

(2.1.6) (x, y, a, b, c, d) = (
1

x∗ ,
1

y∗
,−b∗,−a∗, c∗, d∗).

Furthermore, under this substitution the parallelogram Γ(f) reflects about the center Q =
( 32 , 3) (see Figure 9 (a)).

Proof. Substituting y = 1
y∗

we obtain y′ = − y∗′

y∗2 , y
∗′′ = 2y∗′−y∗y∗′′

y∗3 . Next, substituting

x = 1
x∗

we obtain dx∗

dx = −x∗2 and y∗′ = −x∗2ẏ∗, y∗′′ = ÿ∗x∗4 + 2ẏ∗y∗3, where the dot
denotes the derivative in x∗. Therefore,

(2.1.7) y′ = x∗2ẏ∗y∗−2, y′′ =
2x∗4ÿ∗2 − x∗4ÿ∗y∗ − 2x∗3ẏ∗y∗

y∗3
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF THE SIXTH PAINLEVÉ EQUATION 39

Substituting in (2.1.4) expressions (2.1.7), and setting x = 1
x∗

and y = 1
y∗

after cancel-

lations, reduction of similar terms, and multiplication by x∗3y∗6 we obtain an equation
of the form (2.1.4) where instead of the variables x, y we have x∗, y∗, and instead of the
parameters a, b, c, d we have −b∗,−a∗, c∗, d∗, respectively. �

Theorem 2.1.2. Equation (2.1.4) does not change under the substitution

(2.1.8) (x, y, a, b, c, d) =
(

x̌, x̌/y̌,−b̌,−ǎ,−ď+ 1/2,−č+ 1/2
)

.

In addition, the parallelogram Γ(f) reflects about the horizontal axis q2 = 3 and is de-
formed parallel to this axis (see Figure 9 (b)).

Theorem 2.1.3. Equation (2.1.4) does not change under the substitution

(2.1.9) (x, y, a, b, c, d) = (1− x◦, 1− y◦, a◦,−c◦,−b◦, d◦) .

Theorems 2.1.2 and 2.1.3 are proved similarly to Theorem 2.1.1.
The first two symmetries send the expansion of a solution near zero to the expansion

near infinity (and vice versa). Therefore, they allow us to reduce computations and to
verify the obtained results. With these symmetries, any edge can be mapped to any other

edge, and vertices Γ
(0)
3 = Q3 and Γ

(0)
4 = Q4 to vertices Γ

(0)
1 = Q1 and Γ

(0)
2 = Q2, respec-

tively (and vice versa). Therefore, computing expansions of solutions corresponding to
one edge and two vertices, we can use symmetries to obtain solutions corresponding to
the other three edges and two vertices. The third symmetry sends expansions of solutions
near zero to expansions of solutions near the point 1.

1.5. Exceptional solutions.

Theorem 2.1.4. Equation (2.1.1) has four exceptional solutions:

I1 : y(x) = 0 for b = 0;
I2 : y(x) = 1 for c = 0;
I3 : y(x) = x for d = 1

2 ;
I4 : y(x) = ∞ for a = 0.

Proof. We assume that for y = const the square of the derivative y′2 is a zero of order

2. Therefore, the expressions y′2

y for y = 0 and y′2

y−1 for y = 1 are simple zeros. Finally,

for y = x, in the equation (2.1.1) with d = 1
2 the fractions with the denominator y − x

mutually cancel. The symmetry (2.1.6) sends the case y(x) = 0 for b = 0 to the case
y(x) = ∞ for a = 0. �

2. Expansions near zero corresponding to vertices

2.1. The choice of a vertex. Since x → 0, we have ω = −1 and the cone of the
problem is given by K = {p1 < 0}. According to (2.1.5) the cone of the problem has

a nonempty intersection with real normal cones U
(0)
1 ,U

(0)
3 ,U

(0)
4 of vertices Γ

(0)
1 = Q1,

Γ
(0)
3 = Q3, Γ

(0)
4 = Q4, respectively. Consider these real normal cones one by one.

Corresponding to the vertex Γ
(0)
1 is the reduced equation f̂

(0)
1 (x, y)

def
= −2bx3 = 0,

which has no solutions.

Corresponding to the vertex Γ
(0)
3 is the reduced equation f̂

(0)
3 (x, y)

def
= −2ay6 = 0,

which has only trivial solutions.
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2.2. Expansions of solutions corresponding to the vertex Γ
(0)
4 . The vertex Γ

(0)
4

def
=

Q4 is the left bottom vertex; the corresponding value of ω is ω = −1, and the corre-
sponding reduced equation is

(2.2.1) f̂
(0)
4 (x, y)

def
= 2x2y(y′)2 − 2xy2y′ − 2x2y2y′′ = 0.

Corresponding to this reduced equation is the characteristic equation

χ(r)
def
= 2(r2 − r − r2 + r) ≡ 0;

it has an arbitrary solution r ∈ C. Therefore, the solution of (2.2.1) is

(2.2.2) y = crx
r

with arbitrary complex constants cr and r.

The real normal cone is given by U
(0)
4 = {p1 < p2 < 0}. According to subsection 5.3

in Chapter 1, the complex normal cone is Ŭ
(0)
4 = −(1, r), where

(2.2.3) r : r ∈ C, 0 < Re r < 1.

Let us compute the critical numbers. The first variation is

δf̂
(0)
4 (x, y)

δy
= 2x2(y′)2 + 4x2yy′

d

dx
− 4xyy′ − 2xy2

d

dx
− 4x2yy′′ − 2x2y2

d2

dx2
.

At the reduced solution y = crx
r the first variation yields the following linear differential

operator:

L(x) def
= 2c2rx

2r

(

r2 + 2rx
d

dx
− 2r − x

d

dx
− 2r(r − 1)− x2 d2

dx2

)

.

The characteristic equation

(2.2.4) ν(k)
def
= 2c2r(k

2 − 2rk + r2) = 0

has a root k1,2 = r of multiplicity 2.
The cone of the problem is

K = {Re k > Re r} .
Since the numbers k1,2 are not in the cone of the problem, K, they are not critical
numbers. According to Subsection 2.2 in Chapter 1, the support of the expansion of
solutions (2.1.2) is of the form

(2.2.5) K = {s = r + lr +m(1− r); l,m ≥ 0; l +m > 0; l,m ∈ Z}.
To the solution (2.2.2) of the reduced equation (2.2.1) there correspond the following

expansions of solutions of the full equation (2.1.4):

(2.2.6) A0 : y = crx
r +

∑

csx
s (sum over s ∈ K),

where r is given by (2.2.3), K by (2.2.5), and the complex coefficients are as follows: cr
is a nonzero complex constant; all other cs are uniquely determined constants.

Let us study expansions (2.2.6). The support (2.2.5) has two generators, r and 1− r
and on the complex plane it lies inside the sector with the vertex at the point r and with
sides parallel to the vectors (Re r, Im r) and (Re(1 − r), Im(1 − r)). For Im r > 0 the
sector V is shown in Figure 6 (b). Expansions (2.2.6) are power expansions.

Therefore, we have proved the following theorem.
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Theorem 2.2.1. For x → 0 there exists a two-parameter (with parameters cr and r)
family of expansions (with constant coefficients) of solutions given by the formula

(2.2.6) A0 : y = crx
r +

∑

s

csx
s,

where r is arbitrary with Re r ∈ (0, 1), s ∈ K = {r+ lr+m(1− r); l,m ≥ 0; l+m > 0;
l,m ∈ Z}, and the complex coefficients are as follows: cr �= 0 is an arbitrary complex
constant; all other cs are uniquely determined complex constants.

The family A0 was known before. The convergence of this family for small |x| was
proved by different methods in [62, 64, 73, 74, 75, 76]. It follows also from Theorem
1.7.2.

For Im r = 0 the support (2.2.5) of expansion (2.2.6) is real.
Consider the case where Re r �= 0, Re r �= 1 and Im r �= 0. On the plane Re q1, Im q1

draw the set K ∪ {r}. Let, for example, Im r = 1. For different values of Re r, Re r = 1
4 ,

Re r = 1
2 , Re r = 3

4 , this set is shown in Figures 10 (a), 10 (b), 10 (c) respectively. Figure

10 (b) shows that for Re r = 1
2 there are two values Im s = 0 and Im s = 2, corresponding

to Re s = 1, which is different from the case Im r = 0 (see [12, 26]).
Let us compute the second approximation (2.2.6) in the case of a complex support

(2.2.5).
In case 1 > Re r > 1

2 the second approximation to the solution is (see Figure 10 (c))

(2.2.7) y = crx
r + c1x.

The second approximation to the equation (2.1.4) is
ˆ̂
f

(0)
4 (x, y) = −x3(y′)2 + 2x3yy′′ −

2(b− d)xy2. The coefficient c1 equals c1 = − b1
ν(1) , where

b1
def
= x−2r−1 ˆ̂f

(0)
4 (x, crx

r) = c2r(−2(b− d)− 2r + r2),

ν(1) = 2c2r(r − 1)2. We obtain

(2.2.8) c1 =
2(b− d)− (r − 1)2 + 1

2(r − 1)2
.

In case 0 < Re r < 1
2 the second approximation to the solution is (see 10 (a))

(2.2.9) y = crx
r + c2rx

2r.

The second approximation to the equation (2.1.4) is
ˆ̂
f

(0)
4 (x, y) = −3x2y2(y′)2+2xy3y′+

2x2y3y′′ − 2ay4 + 2cy4. The coefficient c2r is equal to −b2r/ν(2r), where b2r
def
=

x−4r ˆ̂f
(0)
4 (x, crx

r) = −c4r(2(a− c) + r2), ν(2r) = 2c2rr
2. We obtain

(2.2.10) c2r = c2r
2(a− c) + r2

2r2
.

In case Re r = 1
2 , Im r �= 0 the second approximation to the solution is (see Figure

10 (b)) y = crx
r + c1x + c2rx

2r, where the coefficients c1 and c2r are given by formulas
(2.2.8) and (2.2.10) respectively.

In case r = 1
2 the second approximation to the solution is (see Figure 10 (b)) y =

c 1
2

√
x+ c1x, where c 1

2
is an arbitrary constant, and the coefficient

(2.2.11) c1 =
3 + 8(b− d) + c21

2

+ 8c21
2

(a− c)

2

is the sum of (2.2.8) and (2.2.10).
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Figure 10. The support of expansion (2.2.6) for (a) r = 1/4 + i ; (b)
r = 1

2 + i; (c) r = 3/4 + i.

Let us compute nonpower solutions of equation (2.2.1). Transform this equation as
follows:

(2.2.12) g(x, y)
def
= y−3f̂

(0)
4 (x, y) = 2x2 (y

′)2

y2
− 2x

y′

y
− 2x2 y

′′

y
= 0,

S(g) = {0}. Set g∗
def
= 2x2 (y′)2

y2 − 2x2 y′′

y . Then coef(g∗) = 2 − 2 = 0. According to

Theorems 1.3.5 and 1.3.6 there may exist nonpower solutions of equation (2.2.1) that tend
to infinity. In equation (2.2.12), make the logarithmic transform ξ = lnx, η = d ln y/dξ.
Denoting the derivative with respect to ξ by the dot, after the substitution ξ = lnx we
have

(2.2.13) y′ =
ẏ

x
, y′′ =

ÿ − ẏ

x2
.

Equation (2.2.12) takes the form

(2.2.14) 2
ẏ2 − ÿy

y2
= 0.

In the expression (2.2.14), make the transform η = d ln y
dξ . Then

(2.2.15) ẏ = ηy, ÿ = (η̇ + η2)y.

We obtain the equation −2η̇ = 0. It has a solution η = const, and the corresponding
solution of the reduced equation (2.2.1) is the power solution y = c̃xη, c̃ = const, i.e.,
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(2.2.2); there are no other solutions of the reduced equation (2.2.1). Therefore, there are
no complicated expansions of solutions of (2.1.4) corresponding to this vertex.

3. Expansions near zero corresponding to the edge Γ
(1)
4

3.1. Preliminary analysis. The edge Γ
(1)
4 is the left vertical edge, with the correspond-

ing value ω = −1, r = 0, and the reduced equation

f̂
(1)
4 (x, y)

def
= 2x2y(y′)2 − 3x2y2(y′)2 − 2xy2y′ + 2xy3y′ − 2x2y2y′′

+ 2x2y3y′′ − 2ay4 + 2cy4 + 4ay5 − 2ay6 = 0.
(2.3.1)

The real normal cone is U
(1)
4 = {−λ (1, 0), λ > 0}.

The characteristic equation χ(ρ) ≡ 0 corresponding to the bottom vertex Q4 = (0, 3)

of the edge Γ
(1)
4 has the root ρ = r + iγ with r = 0, γ ∈ R, γ �= 0. The vector ω(1,Re ρ)

lies in U
(1)
4 . According to Case 1 of Theorem 1.5.1, there exist two families of exotic

expansions Bτ
0 with τ = sgn γ corresponding to the eigenvalue ρ = iγ.

According to Subsection 5.3 in Chapter 1, the reduced equation (2.3.1) has a solution
in the form of the series

(2.3.2) y = cρx
ρ +

∞
∑

k=2

c̃k−1x
kρ,

where the first term y = cρx
ρ of this series is the solution of the reduced equation

(2.2.1) corresponding to the vertex Q4; this equation was analyzed in Subsection 2.2
in Chapter 1. The characteristic equation (2.2.4) has a root k1,2 = ρ. According to
Subsection 5.3 in Chapter 1, the cone of the problem is K = {Re k = Re ρ, τ Im k >
τ Im ρ}. The numbers k1,2 = ρ do not belong to the cone of the problem, so there are no
critical numbers.

According to Subsection 2.2 in Chapter 1, the support of expansions of solutions
(2.1.3) is

(2.3.3) K = {r = kρ, k ≥ 2; s = ρ+ lρ+m(1− ρ); l ≥ 0; m ≥ 1; k, l,m ∈ Z} .
We obtain two families of exotic expansions:

(2.3.4) Bτ
0 : y = cρx

ρ +
∑

s

csx
s = xρ

(

cρ +
∞
∑

k=1

c̃kx
kρ

)

+
∑

Re s≥1

csx
s,

where ρ �= 0 is an arbitrary purely imaginary constant, r and s run over the set (2.3.3),
and the complex coefficients are as follows: cρ �= 0 is an arbitrary constant, and c̃k and
cs are uniquely determined constants.

The families Bτ
0 exist for a �= 0. For more explicit formulas for the series (2.3.2), see

(2.3.50) and (2.3.85).
Since r = 0, we are looking for power solutions of the reduced equation (2.3.1) of the

form y = c0 �= 0, c0 = const. Compute c0. The defining equation is

(2.3.5) f̃(c0)
def
= c−3

0 f̂
(1)
4 (x, c0)

def
= −2ac0(c

2
0 − 2c0 + 1− c/a) = 0.

The height of the edge equals three. Equation (2.3.5) has order three. It does always
have the root c0 = 0. According to Subsection 3.2 of Chapter 1, we should distinguish
the case where equation c20−2c0+1−c/a = 0 has a zero root, a root at infinity, or where
it has multiple roots. The equation never has a root at infinity, but it has a zero root
c0 = 0 for a = c and a root c0 = 1 of multiplicity 2 for c = 0. Therefore, we consider
separately three cases: a �= c �= 0, a = c �= 0 and a �= 0, c = 0.
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Remark 2.3.1. For the main value of the square root of a complex number we take the
principal value, so that the square root of a complex number z can be written in the
form ±√

z.

3.2. Expansions of solution in the case a �= c �= 0. First we compute power, power-
logarithmic, and exotic expansions of solutions of equation (2.1.4) corresponding to the

edge Γ
(1)
4 .

Equation (2.3.5) has two nonzero roots

(2.3.6) c0i = 1 + (−1)i
√

c

a
, i = 1, 2.

The first variation is given by

δf̂
(1)
4 (x, y)

δy
= 2x2(y′)2 + 4x2yy′

d

dx
− 6x2y(y′)2 − 6x2y2y′

d

dx
− 4xyy′

− 2xy2
d

dx
+ 6xy2y′ + 2xy3

d

dx
− 4x2yy′′ − 2x2y2

d2

dx2

+ 6x2y2y′′ + 2x2y3
d2

dx2
− 8ay3 + 8cy3 + 20ay4 − 12ay5.

(2.3.7)

The linear differential operator is

L(x) = −2xc20i
d

dx
+ 2xc30i

d

dx
− 2x2c20i

d2

dx2
+ 2x2c30i

d2

dx2
− 8ac30i

+ 8cc30i + 20ac40i − 12ac50i.

(2.3.8)

The characteristic equation is

(2.3.9) ν(k)
def
= 2c20i

(

k2(c0i − 1)− 4c0i(c− a) + 10ac20i − 6ac30i
)

= 0.

Taking into account c0i in (2.3.6) we see that the characteristic equation has two roots
for each i = 1, 2:

(2.3.10) ki = τ
(
√
2c+ (−1)i

√
2a

)

, i = 1, 2, τ = ±1.

According to Subsection 5.3 in Chapter 1, for each i = 1, 2 there are two cones of the
problem

(2.3.11) Kτ
i = {s : Re s ≥ 0 if Re s = 0, then τ Im s > 0}.

Let us set θi =
√
2c+ (−1)i

√
2a. For a fixed i = 1, 2 we will distinguish three cases.

Case 1. Re θi = 0. In this case, for each of the cones of the problem Kτ
i there is one

critical number. Let, for example, Im θi > 0. Then θi ∈ K+
i and −θi ∈ K−

i . The support
of expansions of solutions is

(2.3.12) K =
{

s = l, l ∈ N
}

.

Taking into account the critical numbers ki
def
= τθi we have two sets:

(2.3.13) K(τθi) = {s = l +mτθi; l,m ∈ Z; l,m ≥ 0; l +m > 0}.
Since the critical numbers τθi do not belong to K, according to Subsections 2.2 and 2.3
in Chapter 1, to these numbers there correspond two families of expansions

(2.3.14) Bτ
i : y = c0i +

∑

s

csix
s, i = 1, 2,

where s ∈ K(τθi), and the complex coefficients are as follows: c0i is as in (2.3.6), csi
with s = τθi is an arbitrary complex constant, and the other csi are uniquely determined
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constants. The support K(τθi) of each of the expansions (2.3.14) lies in the following
quarter of the complex plane: V τ

+ = {Re s ≥ 0, τ Im s ≥ 0}.
Expansions (2.3.14) are exotic if csi with s = τθi is a nonzero constant.
In the case csi = 0 with s = τθi, expansions (2.3.14) are expansions in integral powers

of x. Families of such expansions will be denoted by Bi, i = 1, 2.
In the case csi = 0 with s = τθi, expansion (2.3.14) (in integral powers of x) was

known; see [54, § 46]. According to Theorem 1.7.2 it converges for sufficiently small |x|.
In the case csi = 0 with s = τθi, the second approximation in expansions of solutions

(2.3.14) is y = c0i+c1ix. Let us compute the coefficient c1i which, according to Subsection
2.6 in Chapter 1, is determined from the equation c1i = − b1i

ν(1) . The second approximation

of equation (2.1.4) corresponding to the given edge is

ˆ̂
f

(1)
4 (x, y) = −2(b− d)xy2 + 2x3y′′y + 4(a+ b− c− d)xy3 + 6x2y′y2

+ 2x3y′′y2 − x3(y′)2 − 2x3(y′)2y − 2(4a+ b+ c− d)xy4

− 6x2y′y3 − 4x3y′′y3 + 6x3(y′)2y2 + 4axy5.

The coefficient b1i is given by
(2.3.15)

b1i
def
= x−1 ˆ̂f

(1)
4 (x, c0i) = 2c20i(−b+ d+2(a+ b− c− d)c0i +(−4a− b− c+ d)c20i +2ac30i).

According to (2.3.9), ν(1) = 2c20i(c0i− 1− 4c0i(c−a)+10ac20i− 6ac30i). Finally, taking
into account (2.3.5) and (2.3.6) we obtain

(2.3.16) c1i = (−1)i
√

c

a

(√
a+ (−1)i

√
c
)2

+ b− d

1− 2 (
√
a+ (−1)i

√
c)

2 .

Denote ki = θi if Re θi > 0 and ki = −θi if Re θi < 0.

Case 2. Re θi �= 0, θi �∈ Z. In this case both cones of problem Kτ
i contain the common

critical number ki. Using ki we obtain that the support of expansions of solutions of
(2.1.4) is

(2.3.17) K(ki) = {s = l +mki; l,m ∈ Z; l,m ≥ 0; l +m > 0}.
Since ki does not belong to the setK defined by formula (2.3.12), according to Subsection
2.2 in Chapter 1 we obtain a family of power expansions of solutions of (2.1.4) given by
the formula

(2.3.18) Bi : y = c0i +
∑

csix
s (sum over s ∈ K(ki)), i = 1, 2,

where K(ki) is as in (2.3.17), and the complex coefficients are as follows: c0i is defined
by formula (2.3.6), ckii is arbitrary, and the other csi are uniquely determined constants.

Expansion (2.3.18) was known before [54, § 46] only in the case where ckii = 0. By
Theorem 1.7.2 it converges for sufficiently small |x|.

The second approximation of expansions of solutions (2.3.18) depends on the number
Re ki. If Re ki > 1, then the second approximation is y = c0i + c1ix, which is similar to
the case Re θi = 0. The coefficient c1i is given by formula (2.3.16). If 0 < Re ki < 1, then
the second approximation of solutions is y = c0i + ckiix

ki , where the coefficient ckii is
arbitrary. If Re ki = 1, then the second approximation is y = c0i + c1ix+ ckiix

ki , where
the coefficients are as follows: ckii is arbitrary and c1i is defined by formula (2.3.16).

Case 3. θi ∈ Z\{0}. In this case both cones of the problem contain the same criti-
cal number ki. Since the number ki lies in the set K defined by formula (2.3.12), by
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Subsection 2.2 in Chapter 1 the family of expansions of solutions is

(2.3.19) Bi : y = c0i +

∞
∑

s=1

csi(lnx)x
s, i = 1, 2,

with the following coefficients: c0i is defined by formula (2.3.6), ckii = αkii + βkii lnx,
αkii is an arbitrary constant, the coefficient βkii is a uniquely determined constant, and
the remaining csi are uniquely determined polynomials in lnx.

The second approximation of expansions of solutions (2.3.14) depends on the number
ki. If ki = 1, then the second approximation takes the form y = c0i + c1ix. According to
Corollary 1.2.1 the coefficient c1i is given by c1i = α1i+β1i lnx, where α1i is an arbitrary
constant and β1i is given by the formula β1i = − b1i

ν′(1) . The coefficient b1i was computed

earlier and is given by formula (2.3.15), ν′(1) = 4c20i(c0i−1). Taking into account (2.3.6)
we obtain

(2.3.20) c1i = α1i + (−1)i
√

c

a

(√
a+ (−1)i

√
c
)2

+ b− d

2
lnx.

If (
√
a + (−1)i

√
c)2 + b − d = 0, then a compatibility condition is satisfied and the

coefficients in expansion (2.3.19) are as follows: c1i is an arbitrary constant, and the
other csi are uniquely determined constants.

Expansion (2.3.19) was known [54, § 46] only in the case where the compatibility
condition is satisfied and all coefficients csi are constant. According to Theorem 1.7.2 it
converges for sufficiently small |x|. Expansions (2.3.14) are exotic, expansion (2.3.17) is
power, and (2.3.19) is power-logarithmic.

Now according to Subsection 3.2 in Chapter 1 we compute nonpower solutions of
equation (2.3.1) corresponding to the zero solution of the defining equation (2.3.5).

In the defining equation, we make a logarithmic transformation ξ = lnx; under this
transformation, y′ and y′′ are transformed by formulas (2.2.13). We obtain the equation

(2.3.21) ϕ(ξ, y)
def
= f̂

(1)
4 (ξ, y) = 2ÿy2(y−1)+ ẏ2y(2−3y)+2(c−a)y4+4ay5−2ay6 = 0.

The support S(ϕ), its convex hull, and faces Φ
(d)
j , d = 0, 1, j = 1, 2, 3, 4, are shown in

Figure 11 (a), whereas the real normal cones U
(d)
j , d = 0, 1, j = 1, 2, 3, 4 corresponding

to the faces are shown in Figure 11 (b).
Since ξ = lnx → ∞ as x → 0, the cone of the problem is given by K = {p1 ≥ 0}

and ω = 1. Furthermore, y �= const. The cone of the problem has nonempty intersection

with real normal cones U
(0)
1 , U

(0)
2 , U

(0)
3 , U

(1)
1 , U

(1)
2 . Consider the corresponding faces

one by one.

The vertex Φ
(0)
1 . The corresponding reduced equation is

(2.3.22) ϕ̂
(0)
1 (ξ, y)

def
= −2ÿy2 + 2ẏ2y = 0.

The real normal cone is U
(0)
1 = {p2 < 0, p2 < −2p1}. We are seeking solutions of

equation (2.3.22) in the form y = crξ
r, cr �= 0, where cr is an arbitrary constant. The

characteristic equation χ(r)
def
= r = 0 has a unique solution r = 0. Since P = ω(1, r) =

(1, 0) �∈ U
(0)
1 ∩ K, there are no appropriate solutions.

The vertices Φ
(0)
2 and Φ

(0)
3 . The corresponding reduced equations are ϕ̂

(0)
2 (ξ, y)

def
=

2(c − a)y4 = 0 and ϕ̂
(0)
3 (ξ, y)

def
= −2ay6 = 0. Since these equations are algebraic,

according to Remark 1.1.1 there are no appropriate solutions.

The edge Φ
(1)
1 . The corresponding reduced equation is

(2.3.23) ϕ̂
(1)
1 (ξ, y)

def
= −2ÿy2 + 2ẏ2y + 2(c− a)y4 = 0.
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Figure 11. Data for equation (2.3.21): (a) the support, the polygon,
and its faces; (b) the normal cones of faces.

The real normal cone is U
(0)
1 = {λ(1, −2), λ > 0}. We are looking for solutions of

equation (2.3.23) in the form y = c−2ξ
−2, c−2 �= 0. The defining equation ϕ̃(c−2)

def
=

2c3−2

(

c−2(c− a)− 2
)

= 0 has a nonzero solution

(2.3.24) c−2 =
2

c− a
.

Let us compute critical numbers. The first variation is

δϕ̂
(1)
1 (ξ, y)

δy

def
= 2ẏ2 + 4yẏ

d

dξ
− 4yÿ − 2y2

d2

dξ2
+ 8(c− a)y3.

The linear differential operator is

(2.3.25) L(ξ) = −2c2−2

1

ξ6

(

ξ2
d2

dξ2
+ 8 + 4ξ

d

dξ
− 4(c− a)c−2

)

.

The characteristic polynomial ν(k) = −2c2−2(k
2 + 3k) has two roots k1 = 0, k2 = −3.

The cone of the problem is

K = {Re k < −2 or Re k = −2, Im k �= 0}.

The number k2 = −3 is the only number that belongs to the cone of the problem
K; i.e., k2 is the only critical number. The support of the expansion of solutions is
K = {s = −2 − 2l; l > 0}. Taking into account k2 we see that the support is given by
the formula

(2.3.26) K(k2) = {s = −2− l; l > 0}.

The expansion of solutions is

(2.3.27) y =
2

c− a

1

ξ2
+

∞
∑

s=3

c−s

ξs
.

Since k2 �∈ K, the compatibility condition is satisfied automatically; i.e., the complex
coefficient c−3 can be an arbitrary constant. By Theorem 1.7.2, the expansion (2.3.27)
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converges for sufficiently small 1
ξ . Making the inverse substitution ξ = lnx in (2.3.27)

we obtain the asymptotics of a solution of equation (2.1.4):

(2.3.28) y
def
= ψ0 =

2

c− a

1

ln2 x
+

c−3

ln3 x
+

∞
∑

s=4

c−s

lns x
,

where the complex coefficients are as follows: c−3 is an arbitrary constant, and the
remaining c−s are uniquely determined constants.

Following Subsection 4.2 of Chapter 1, let us compute the critical numbers of the
reduced solutions (2.3.28). The first variation is given by formula (2.3.7). Denote it by
M(x, y). Let us make the logarithmic substitution ξ = lnx in M(x, y) and denote the
derivative with respect to ξ by a dot. In view of (2.2.13), for the operator M(x, y) we
obtain

M(x, y)
def
= 2ẏ2 + 4yẏ

d

dξ
− 6yẏ2 − 6y2ẏ

d

dξ
− 4yẏ − 2y2

d

dξ
+ 6y2ẏ

+ 2y3
d

dξ
− 4y(ÿ − ẏ)− 2y2

(

d2

dξ2
− d

dξ

)

+ 6y2(ÿ − ẏ)

+ 2y3
(

d2

dξ2
− d

dξ

)

− 8ay3 + 8cy3 + 20ay4 − 12ay5
def
= N (ξ, y).

(2.3.29)

For solutions (2.3.27) we have y = 2ξ−2

c−a + · · · . Therefore, in the operator N the largest

exponent n in terms with ξn is n = −4, and the terms with ξ−4 form the operator N−4 =

−2y2 d2

dξ2 , where y = 2ξ−2

c−a . The corresponding critical polynomial is ν(k) = −8k2

(c−a)2 ;

this polynomial has the root k = 0 of multiplicity 2. The cone of the problem is K =
{Re k > 0}. Since k = 0 does not belong to the cone of the problem, there are no critical
numbers. The support of the expansion of solutions has the form K = {s = l, l ∈ N}. By
Theorem 1.4.1, there is a unique expansion for solutions of the original equation (2.1.4),
which forms the family

(2.3.30) B3 : y = ψ0 +
∞
∑

σ=1

ψσx
σ,

where ψ0 is as in (2.3.28) and the ψσ are series in decreasing powers of the logarithm.
By Theorem 1.4.2, the powers of the logarithms in ψσ do not increase −8σ.
Expansions (2.3.30) and (2.3.28) are new.

The vertex Φ
(1)
2 . The corresponding reduced equation is

ϕ̂
(1)
2 (ξ, y)

def
= −2ay6 + 4ay5 + 2(c− a)y4 = 0.

This equation has only constant solutions y = 1 + (−1)i
√

c
a , i = 1, 2. We do not need

these solutions since they are solutions of the full equation (2.3.21) and coincide with the
already studied solutions (2.3.6).

Now we solve equation (2.3.1) explicitly. To so this, we set ẏ = p in (2.3.21) and view

p as a function in y. Then ÿ = ( dpdy )p and equation (2.3.21) takes the form

(2.3.31) 2
dp

dy
py(y − 1) + p2(2− 3y) + 2(c− a)y3 + 4ay4 − 2ay5 = 0.

Taking p2 = q we obtain a linear nonhomogeneous equation

(2.3.32)
dq

dy
y(y − 1) + q(2− 3y) + 2(c− a)y3 + 4ay4 − 2ay5 = 0.
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The corresponding homogeneous equation

dq

dy
y(y − 1) + q(2− 3y) = 0

has a solution q = C1y
2(y − 1), where C1 is an arbitrary constant. Using the method of

variation of this constant, we obtain from (2.3.32) the following equation for C1:

(y − 1)2C ′
1 + 2(c− a) + 4ay − 2ay2 = 0,

i.e., C ′
1 = − 2c

(y−1)2 + 2a. This equation has a solution C1 = 2c
y−1 + 2ay+C2, where C2 is

an arbitrary constant. Therefore,

q
def
= C1y

2(y − 1) =

(

2c

y − 1
+ 2ay + C2

)

y2(y − 1)

and

(2.3.33)
dy

dξ

def
= p

def
= ±√

q = ±
√

(

2c

(y − 1)
+ 2ay + C2

)

y2(y − 1).

Integration of equation (2.3.33) depends on the value of C2 and of parameters a and
c. Let us consider three cases of different values of C2.

The case C2 = 2c. In this case equation (2.3.33) takes the form

(2.3.34)
dy

dξ
= ±

√
2ay

√

y2 +

(

c

a
− 1

)

y.

Let t2 = 1 + (c/a− 1) /y. Then

(2.3.35) y =
c/a− 1

t2 − 1

and equation (2.3.34) takes the form dt
dξ = ±

√
2a/2( ca − 1). Solutions of this equation

are t = ±
√
2a/2 (c/a− 1) (ξ +C3), where C3 is an arbitrary constant. From (2.3.35) we

obtain

(2.3.36) y
def
= ψ0 =

1
c−a
2 (ξ + C3)2 − a

c−a

.

As ξ → ∞, formula (2.3.36) yields the Laurent expansion in powers of ξ:

(2.3.37) y =
2

c− a

1

ξ2

∞
∑

k=0

(−1)k
(

C4

ξ
+

C5

ξ2

)k

,

where C4
def
= −2C3 is an arbitrary constant and C5

def
= −C3+

2a
(c−a)2 . Taking into account

that ξ = lnx, we obtain an explicit form (2.3.36) of expansion (2.3.28).
The case C2 = −2(

√
a±√

c)2 + 2c. In this case equation (2.3.33) takes the form

(2.3.38)
dy

dξ
= ±

√
2a y

(

y −
(

1∓ c

a

))

.

The integral of this equation is

(2.3.39)
y − (1 + (−1)i

√

c
a )

y
= exp

(

±
√
2(
√
a+ (−1)i

√
c)ξ + C6

)

,

where i = 1, 2 and C6 are arbitrary constants.
Taking into account that ξ = lnx, formula (2.3.39) implies that

(2.3.40) y =
1 + (−1)i

√

c/a

1− C7x
±θi

,
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where i = 1, 2, θi =
√
2
(√

a+ (−1)i
√
c
)

, and C7 is an arbitrary constant.
Let, for example, Re θi ≥ 0, θi �= 0. Then for x → 0 the function (2.3.40) can be

expanded in a series in powers of C7x
θi :

(2.3.41) y =

(

1 + (−1)i
√

c

a

) ∞
∑

k=0

(−1)k(C7x
θi)k,

where i = 1, 2 and C7 is an arbitrary constant. Depending on the value of θi the series
(2.3.41) is an explicit form of one of the expansions (2.3.14), (2.3.18), (2.3.19), and the
function (2.3.40) is the sum of the expansion.

The case C2 �= 2c, C2 �= −2(
√
a ± √

c)2 + 2c. Let us write equation (2.3.33) in the
form

(2.3.42)
dy

dξ
= ±

√
2a

√

y2
(

y2 +
C2 − 2a

2a
y +

2c− C2

2a

)

.

Equation y2 + C2−2a
2a y + 2c−C2

2a = 0 has two distinct nonzero roots α and β, and

(2.3.43) α+ β = −C2 − 2a

2a
, α · β =

2c− C2

2a
.

The Euler substitution

(2.3.44) t2 =
y − β

y − α
, y =

αt2 − β

t2 − 1

transforms equation (2.3.33) into the form

±2 dt√
2a (αt2 − β)

= dξ.

The integral of this equation is

(2.3.45) ± 1√
2aαβ

ln
t−

√

β/α

t+
√

β/α
= ξ + C8,

where C8 is an arbitrary constant. Taking into account (2.3.43) and (2.3.45) we obtain

t−
√

β/α

t+
√

β/α
= C9 exp

(

±
√

2c− C2ξ
)

,

where C9 is an arbitrary constant. Hence,

(2.3.46) t = −
√

β

α

(

1− 2

1− C9 exp(±
√
2c− C2 ξ)

)

.

Set

(2.3.47) ϕ = C9 exp
(

±
√

2c− C2ξ
)

.

Then (2.3.44) and (2.3.46) imply that

(2.3.48) y =
4αβ

β
(
√

1/ϕ+
√
ϕ
)2 − α

(
√

1/ϕ−√
ϕ
)2 .

Set 2iψ = lnϕ
def
= ±√

2c− C2 (ξ +C10), where C10 is an arbitrary constant. Taking into
account that ξ = lnx we have

ψ = ±i

√
2c− C2

2
(lnx+ C10).
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Then (2.3.48) takes the form

(2.3.49) y =
αβ

β cos2 ψ + α sin2 ψ
.

According to (2.3.47), y can be expanded in a series in powers of ϕ = (C11x)
±
√
2c−C2 ,

where C11 is an arbitrary constant.

If 2c − C2 is a real negative number, then i
√
2c− C2

def
= 2γ is real. In this case

ψ = γ ln(C11x) and, according to (2.3.43) and (2.3.49),

(2.3.50) y =
2c− C2

2a

1

β cos2
[

ln(C11x)γ
]

+ α sin2
[

ln(C11x)γ
] .

Formula (2.3.49) shows that y can be expanded in a series in integral powers of x2γi,
thus yielding the series (2.3.2) in purely imaginary powers of x. According to (2.3.48),
y−1 is a sum of the form c1x

2iγ + c0+ c−1x
−2iγ , where c0 and c±1 are complex constants

independent of the sign of γ. On the other hand, in families Bτ
0 we have τ = sgn γ = ±1

(see (2.3.4)). According to Subsection 5.4 in Chapter 1, the families B+
0 and B−

0 have
the common family of inverse expansions y−1.

The series (2.3.2) with ρ = ±√
2c− C2, 2c − C2 ∈ R, 2c − C2 < 0, is the function

(2.3.50), which is a solution of the reduced equation (2.3.1) corresponding to the edge

Γ
(1)
4 .

Moreover, for the vertex Γ
(0)
4 the subsum of the sum (2.2.6) corresponding to m = 0

in (2.2.5) is the solution (2.3.49) of the reduced equation (2.3.1) corresponding to the

edge Γ
(1)
4 .

3.3. Expansions of solution for a = c �= 0. First we compute power, power-logarith-
mic, and exotic expansions of solutions of equation (2.1.1) corresponding to the edge

Γ
(1)
4 . In this case the defining equation (2.3.5) has two zero solutions and one nonzero

solution c02 = 2 from (2.3.6). To this nonzero solution there correspond two eigenvalues

k2 = ±2
√
2a from (2.3.10). For θ2 we take the value k2 for which Re k2 ≥ 0.

To the value c02 there correspond families of expansions B2 or Bτ
2 ; for these families,

all formulas correspond to power, power-logarithmic, or exotic expansions from the case
a �= c �= 0. Similarly to that case, here we also have three possibilities depending on
the value of θ2. Namely, Case 1 (Re θ2 = 0, and expansion of solutions is determined
by formula (2.3.14)), Case 2 (Re θ2 �= 0, θ2 �∈ Z, and expansion of solutions is determined
by formula (2.3.18)), and Case 3 (θ2 ∈ Z\{0}, and expansion of solutions is determined
by formula (2.3.19)).

Now we compute nonpower solutions of equation (2.3.1) corresponding to the mul-
tiplicity 2 zero solution of the defining equation (2.3.5). In this case equation (2.3.21)
takes the form

(2.3.51) φ(ξ, y)
def
= f̂

(1)
4 (ξ, y)

def
= 2ÿy2(y − 1) + ẏ2y(2− 3y)− 2ay6 + 4ay5 = 0.

The support S(φ), its convex hull, faces Φ
(d)
j , d = 0, 1, j = 1, 2, 3, 4, are shown in

Figure 12 (a), real normal cones U
(d)
j , d = 0, 1, j = 1, 2, 3, 4 corresponding to faces are

shown in Figure 12 (b).
The cone of the problem is given by K = {p1 ≥ 0}, i.e., ω = 1. Furthermore, y �= const.

The cone of the problem has nontrivial intersections with the real normal cones U
(0)
1 ,

U
(0)
2 , U

(0)
3 , U

(1)
1 , U

(1)
2 . Consider the corresponding faces separately.

The reduced equation corresponding to the vertex Φ
(0)
1 is (2.3.22). The real normal

cone is U
(0)
1 = {p1 < 0, p2 < −p1}. The vector P = (1, 0), obtained earlier in the case
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Figure 12. For equation (2.3.51) we show (a) the support, polygon,
and its faces; (b) normal vectors to these faces.

a �= c, does not belong to the normal cone U
(0)
1 . Therefore, there are no appropriate

solutions.

The reduced equations corresponding to the vertices Φ
(0)
2 and Φ

(0)
3 are φ̂

(0)
2 (ξ, y)

def
=

4ay5 = 0 and φ̂
(0)
3 (ξ, y)

def
= −2ay6 = 0 respectively. These equations are algebraic, and

according to Remark 1.1.1 these equations do not yield appropriate solutions.

The reduced equation corresponding to the edge Φ
(1)
1 is

(2.3.52) φ̂
(1)
1 (ξ, y)

def
= −2ÿy2 + 2ẏ2y + 4ay5 = 0.

The real normal cone is U
(0)
1 = {λ(1,−1), λ > 0}. We look for solutions of (2.3.52) of

the form y = c−1ξ
−1, c−1 �= 0. The defining equation φ̃(c−1)

def
= −2c3−1(2ac

2
−1 − 1) = 0

has two nonzero solutions

(2.3.53) c−1 =
(−1)j√

2a
, j = 1, 2.

Let us compute critical numbers. The first variation is

δφ̂
(1)
1 (ξ, y)

δy

def
= 2ẏ2 + 4yẏ

d

dξ
− 4yÿ − 2y2

d2

dξ2
+ 20y4.

The linear differential operator is

(2.3.54) L(ξ) = −2c2−1ξ
−4

(

ξ2
d2

dξ2
+ 2ξ

d

dξ
+ 3− 10ac2−1

)

.

The characteristic polynomial ν(k) = −2c2−1(k
2 + k− 2) has two roots, k1 = 1, k2 = −2.

The cone of the problem is

K = {Re k < −1 or Re k = −1, Im k �= 0}.
The number k2 = −2 belongs to the cone of the problem K; i.e., k2 is the only critical
number. The initial support of the expansion of solutions is K = {s = −1 − 2l; l > 0}.
Taking into account k2, the support of the expansion of solutions becomes

(2.3.55) K(k2) = {s = −1− l; l > 0}.
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Expansions of solutions are

(2.3.56) y = (−1)j
ξ−1

√
2a

+

∞
∑

s=2

c−sjξ
−s, j = 1, 2.

Since k2 �∈ K, the compatibility condition is satisfied automatically; i.e., the complex
coefficient c−2j is an arbitrary constant.

Making the inverse substitution ξ = ln x in (2.3.56) we obtain two families of asymp-
totics of solutions of equation (2.1.4),

(2.3.57) Fj : y
def
= ψ0j = (−1)j

1√
2a

1

lnx
+

c−2j

ln2 x
+

∞
∑

s=3

c−sj

lns x
, j = 1, 2,

where the complex coefficients are as follows: c−2j is an arbitrary constant, and the
remaining c−sj are uniquely determined constants.

By Theorem 1.7.2, the expansions (2.3.56) converge for sufficiently small 1
ξ .

Following Subsection 4.2 of Chapter 1, let us compute the critical numbers of the
reduced solutions (2.3.57). The operator N (ξ, y) is determined by formula (2.3.29). For

solutions of (2.3.56) we have y = (−1)j ξ−1

√
2a

+ · · · . Therefore among all terms with ξn

in the operator N the highest exponent n is n = −2, and the terms with ξ−2 form

the operator N−2 = −2y2 d2

dξ2 , where y = (−1)j ξ−1

√
2a
. The corresponding characteristic

polynomial ν(k) = −k2

2a has a double root k = 0. The cone of the problem is K =
{Re k > 0}. Since k = 0 does not belong to the cone of the problem, there are no critical
numbers. The support of the expansion of solutions is of the formK = {s = l, l ∈ N}. By
Theorem 1.4.1, solutions of the original equation (2.1.4) have unique expansions forming
the families

(2.3.58) B3+j : y = ψ0j +

∞
∑

σ=1

ψσjx
σ, j = 1, 2,

where ψ0j is from (2.3.57) and ψσj are the series in decreasing powers of logarithms.
By Theorem 1.4.2, powers of logarithms in ψσj do not exceed −4σ.
Expansions (2.3.58) and (2.3.57) are new.

The reduced equation corresponding to the edge Φ
(1)
2 is φ̂

(1)
2 (ξ, y)

def
= −2ay6+4ay5 = 0.

It has the constant solution y = 2. This solution is not appropriate since it is a solution
of the full equation (2.3.51) and coincides with the solution c02 we have studied at the
beginning of this subsection.

Let us find explicit solutions of equation (2.3.1) for a = c �= 0. To do this, we consider
equation (2.3.33).

Integration of equation (2.3.33) is carried out differently in different cases depending
on the values of C2 and a. We consider three cases of the value of C2.

Case C2 = 2a. In this case equation (2.3.33) takes the form

(2.3.59)
dy

dξ
= ±

√
2a y2.

Equation (2.3.34) has a solution

(2.3.60) y = ± 1√
2a ξ + C3

,

where C3 is an arbitrary constant.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



54 A. D. BRUNO AND I. V. GORYUCHKINA

Recall that x → 0, i.e., ξ
def
= lnx → ∞ (x and ξ are complex). Then (2.3.60) can be

expanded in the Laurent series in ξ:

(2.3.61) y = ± 1√
2a

1

ξ

∞
∑

k=0

(−1)k
1

(C4ξ)k
,

where C4
def
= ±C3/

√
2a is an arbitrary constant.

Taking into account that ξ = lnx, we obtain the following explicit form of expansion
(2.3.57):

(2.3.62) y
def
= ψ0j = ± 1√

2a

1

lnx

∞
∑

k=0

(−1)k
1

(C4 lnx)k
def
= ± 1√

2a lnx+ C3

.

Case C2 = −6a. In this case equation (2.3.33) has a solution

(2.3.63) y =
2

1− C5x
θ2
,

where i = 1, 2, θ2 = 2
√
2a, and C5 is an arbitrary constant.

For Re θ2 ≥ 0, θ2 �= 0 and x → 0 the function (2.3.63) can be expanded in a series in
powers of C5x

θ2 :

(2.3.64) y = 2

∞
∑

k=0

(−1)k
(

C5x
θ2
)k
,

where i = 1, 2 and C5 is an arbitrary constant. Depending on the value of θ2 the series
(2.3.64) is an explicit form of expansions (2.3.14), (2.3.18), or (2.3.19) and the function
(2.3.63) is the sum of these expansions.

Case C2 �= 2a, C2 �= −6a. In this case equation (2.3.33) has the solution (2.3.49) coming
from the case a �= c �= 0.

3.4. Expansion of solutions for a �= 0, c = 0. First we compute power, power-
logarithmic, and exotic expansions of solutions of equation (2.1.1) corresponding to

the edge Γ
(1)
4 . Equation (2.3.5) has the double root c0 = 1. According to (2.3.8),

for a �= 0, c = 0, the corresponding linear operator satisfies L(x) ≡ 0.
To analyze equation (2.1.4) in this case, make the substitution y = 1 + u. We obtain

the equation
(2.3.65)

g(x, u)
def
= f(x, u+ 1)

def
= ((2u+ 1)u′2 − 2(u+ u2)u′′)x5

+
(

(−3− 8u− 3u2)u′2 − 2(u+ u2)u′ + 2(4u2 + u3 + 3u)u′′)x4

+ ((10u+ 6u2 + 3)u′2+ 2(5u2 + 2u3 + 3u)u′− 2(5u2 + 3u+ 2u3)u′′− 2bu2)x3

+ ((−3u2 − 4u− 1)u′2 − 6(2u2 + u+ u3)u′ + 2(u3 + 2u2 + u)u′′

− 2(d+ a)u4 − 4(a+ d− b)u3 + (2(u3 + 2u2 + u)u′

+ 4au52(6a− b+ d)u4 − 4(b− 3a− d)u3 − 2(b− d− 2a)u2)x

− 8au3 − 12au4 − 2au2 − 8au5 − 2au6 = 0.

The support S(g), its convex hall Γ(g), and the faces G
(d)
i , d = 0, 1, i = 1, 2, 3, 4, are

shown in Figure 13 (a). Real normal cones U
(d)
i , d = 0, 1, i = 1, 2, 3, 4, are shown in

Figure 13 (b).
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Figure 13. Data for equation (2.3.65): (a) the support, the polygon,
and the faces; (b) the corresponding normal cones.

Equation (2.3.65) has the trivial solution u = 0 of multiplicity 2. The corresponding
exceptional solution of (2.1.4) is

I2 : y = 1.

By Theorem 2.1.4 this solution is a multiplicity one exceptional solution of the initial
equation (2.1.1); the double multiplicity of y = 1 resulted from the multiplication of
equation (2.1.1) by the factor 2x2(x−1)2y(y−1)(y−x) containing the subfactor (y−1).

The cone of the problem is K = {p1 ≤ 0, p2 < 0}, so that ω = −1. Furthermore,
u(x) �= const. Real normal cones with nonempty intersection with the cone of the problem

are U
(0)
1 and U

(1)
1 .

The reduced equation corresponding to the vertex G
(0)
1 is

(2.3.66) ĝ
(0)
1 (x, u)

def
= 2u′′ux2 − u′2x2 + 2u′ux− 2au2 = 0.

The real normal cone is U
(0)
1 = {p1 < 0, p2 < 0}. The first approximation to the

solution has the u = cρx
ρ, where cρ is an arbitrary nonzero constant. The exponent ρ is

determined from the characteristic equation

(2.3.67) χ(ρ)
def
= ρ2 − 2a = 0,

which yields ρ1, 2 = ±
√
2a.

According to Subsection 5.3 in Chapter 1, the complex normal cone is Ŭ
(0)
1 = −(1, ρ),

where

(2.3.68) ρ : ρ ∈ C, Re ρ > 0.

Let us compute critical numbers. The first variation is

∂ĝ
(0)
1 (x, u)

∂u
= 2u′′x2 + 2

d2

dx2
ux2 − 2u′ d

dx
x2 + 2u′x+ 2

d

dx
ux− 4au.

The linear differential operator is given by the formula

L(x) = 2cρx
ρ

(

ρ(ρ− 1) +
d2

dx2
x2 − ρ

d

dx
x+ ρ+

d

dx
x− 2a

)

.

The characteristic equation ν(k)
def
= 2cρk(k − ρ) = 0 has two roots k1 = 0, k2 = ρ.
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According to Subsection 5.3 of Chapter 1, the cone of the problem is K = {Re k > Re ρ
or Re k = Re ρ, | Im k| > | Im ρ|, sgn(Im k) = sgn(Im ρ)}. Since k1,2 �∈ K, there are no
critical numbers.

The support of expansions of solutions is

(2.3.69) K = {s = ρ+ lρ+m; l,m ≥ 0; l +m > 0; l,m ∈ Z}.
The expansion of solution has the form

(2.3.70) u = cρx
ρ +

∑

csx
s (sum over s ∈ K).

The support of expansion (2.3.70) in the complex plane s lies in the sector with vertex
at ρ spanned by the points s = 2ρ and s = ρ+ 1.

After the inverse substitution y = 1 + u, expansions (2.3.70) yield the family

(2.3.71) B6 : y = 1 + cρx
ρ +

∑

s

csx
s,

where ρ = ±
√
2a satisfies (2.3.68), s runs over the set (2.3.69), and the complex co-

efficients are as follows: cρ is a nonzero constants, and all cs are uniquely determined
constants. According to Theorem 1.7.2, expansion (2.3.71) converges for sufficiently small
|x|. In the case Re ρ = 0 expansions (2.3.71) are exotic. We denote the corresponding
families by Bτ

6 where τ = sgn(Im ρ).

The families B6 and Bτ
6 are new. If

√
2a ∈ N, then, by (2.3.69) all exponents s are

integers.
Let us compute the second approximation of solutions (2.3.70) for Re ρ > 0.
In case Re ρ > 1 the second approximation is u = cρx

ρ + cρ+1x
ρ+1. The second ap-

proximation to equation (2.3.65) is

ˆ̂g
(0)
1 (x, u) = 3u′2x3 − 6uu′′x3 − 6uu′x2 + 2xu2(2a− b+ d).

Furthermore, cρ+1 = −bρ+1/ν(ρ+1), where bρ+1
def
= x−2ρ−1 ˆ̂g

(0)
1 (x, cρx

ρ) = 2c2ρ(d−b−a),
ν(ρ+ 1) = 2cρ(ρ+ 1); hence

(2.3.72) cρ+1 = cρ
a+ b− d

ρ+ 1
.

In case 0 < Re ρ < 1 the second approximation to solutions is u = cρx
ρ+ c2ρx

2ρ. The
second approximation to equation (2.3.65) is

ˆ̂g
(0)
1 (x, u) = −4uu′2x2 + 4u2u′′x2 + 4u2u′x− 8au3.

Furthermore, c2ρ = − b2ρ
ν(2ρ) , where b2ρ

def
= x−3ρ ˆ̂g

(0)
1 (x, cρx

ρ) = −8ac3ρ, ν(2ρ) = 8acρ.

Therefore,

(2.3.73) c2ρ = c2ρ.

In case Re ρ = 1, Im ρ �= 0 the second approximation of solutions is u = cρx
ρ +

cρ+1x
ρ+1+ c2ρx

2ρ, where the coefficients cρ+1 and c2ρ are given by formulas (2.3.72) and
(2.3.73) respectively.

In case ρ = 1, i.e., a = 1
2 , the second approximation to solutions is u = c1x + c2x

2,
where c1 is an arbitrary constant and

(2.3.74) c2 = c1
a+ b− d+ 2c1

2

is the sum of (2.3.72) and (2.3.73).
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Let us compute nonpower solutions of equation (2.3.66) in case they exist. Transform
this equation as follows:

(2.3.75) h(x, u)
def
= u−2ĝ

(0)
1 (x, u)

def
= 2

u′′

u
x2 − u′2

u2
x2 + 2

u′

u
x− 2a = 0,

so that S(h) = {0}. Equation h(x, u) = 0 contains a nonzero constant −2a,

(2.3.76) h∗ = 2
u′′

u
x2 − u′2

u2
x2, coef(h∗) = 2− 1 = 1 �= 0.

Since a �= 0, equation (2.3.67) does not have multiple roots, i.e., by Theorems 1.3.5
and 1.3.6 there are no nonpower solutions of equation (2.3.66). Therefore, there are no

complicated solutions of equation (2.1.4) corresponding to the vertex G
(0)
1 .

The reduced equation corresponding to the edge G
(1)
1 is

ĝ
(1)
1 (x, u)

def
= 2u′′ux2 − u′2x2 + 2u′ux− 2au2 − 6u′′ux3 + 3u′2x3 − 6u′ux2

− 2(b− d− 2a)u2x6u′′ux4 − 30u′2x4 + 6u′ux3

− 2(d+ a− 2b)u2x2 − 2u′′ux5 + u′2x5 − 2u′ux4 − 2bu2x3 = 0.

(2.3.77)

The edge G
(1)
1 is horizontal. Equation (2.3.77) has no power solutions, i.e., no power

or power-logarithmic expansions of solutions. It can happen that equation (2.3.77) has

nonpower solutions. The reduced equation corresponding to the left vertex G
(0)
1 = (0, 2)

of this edge is (2.3.66). Since for both these equations (2.3.66) and (2.3.77) the total

differentiation order is Δ(ĝ
(1)
1 ) = Δ(ĝ

(0)
1 ) = 2, Theorem 1.3.4 shows that equation (2.3.77)

has no nonpower solutions as x → 0.
As in the case a �= c �= 0, to the solution c0 = 0 of the defining equation (2.3.5) there

corresponds a family of complicated expansions B3 from (2.3.30).
Solve equation (2.3.1) for a �= 0, c = 0 explicitly. To do this, consider equation

(2.3.33). It is integrated differently depending on the constant C2 and the parameter a.
Consider three cases of the value of C2.

Case C2 = 0. In this case equation (2.3.33) takes the form

(2.3.78)
dy

dξ
= ±

√
2a y

√

y(y − 1).

It has a solution

(2.3.79) y = − 2

a(ξ + C3)2 − 2
,

which coincides with (2.3.36) for c = 0. As ξ → ∞, (2.3.79) yields the following Laurent
expansion in powers of ξ:

(2.3.80) y = −2

a

1

ξ2

∞
∑

k=0

(−1)k
(

C4

ξ
+

C5

ξ2

)k

,

where C4
def
= −2C3 is an arbitrary constant and C5

def
= −C3 − 2.

Taking into account that ξ = lnx, we obtain the explicit form (2.3.79) of expansion
(2.3.28).

Case C2 = −2a. In this case equation (2.3.33) takes the form

(2.3.81)
dy

dξ
= ±

√
2a y (y − 1).
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The integral of this equation is

(2.3.82)
y − 1

y
= exp(±

√
2aξ + C6),

where C6 is an arbitrary constant.
Taking into account that ξ = lnx, from (2.3.82) we obtain

(2.3.83) y =
1

1− C7x
ρ ,

where ρ =
√
2a and C7 is an arbitrary constant.

For Re ρ ≥ 0, ρ �= 0 and x → 0 the function (2.3.83) can be expanded in the following
series in powers of C8x

ρ:

(2.3.84) y =

∞
∑

k=0

(−1)k
(

C8x
ρ
)k
,

where C8 is an arbitrary constant. The series (2.3.84) is an explicit form of expansions
(2.3.71), and the function (2.3.83) is the sum of these expansions.

Case C2 �= 0, C2 �= −2a. In this case equation (2.3.33) has the solution (2.3.49) coming
from the case a �= c �= 0.

In the case a �= 0, c = 0 formula (2.3.50) becomes

(2.3.85) y = −C2

2a

1

β cos2
[

ln(C11x)γ
]

+ α sin2
[

ln(C11x)γ
] ,

where γ = i
√−C2, C2 is an arbitrary positive number, and α and β are as in (2.3.43),

i.e., α = 1, β = −C2

2a .

3.5. Summary of results and discussion.

Theorem 2.3.1. There are six families of expansions of types 1–3 corresponding to the

edge Γ
(1)
4 :

B1, which exists for 0 �= a �= c �= 0, is given by formulas (2.3.18), (2.3.19) and
has 1 parameter;
B2, which exists for a �= 0, c �= 0, is given by formulas (2.3.18), (2.3.19) and has
1 parameter;
B3, which exists for 0 �= a �= c, is given by formulas (2.3.30), (2.3.28), (2.3.36)
and has 1 parameter;
B4 and B5, which exist for a = c �= 0, are given by formulas (2.3.58), (2.3.57),
(2.3.62) and have 1 parameter;

B6, which exists for c = 0, ρ = ±
√
2a, Re ρ > 0, is given by formulas (2.3.71),

(2.3.69) and has 1 parameter;

and four pairs of exotic expansions of type 5 with τ = ±1:

Bτ
0 , which exist for a �= 0, are given by formula (2.3.4) with first approxima-

tion (2.3.2) of the form (2.3.50) and have 2 parameters; the families of inverse
expansions y−1 for B+

0 and B−
0 coincide;

Bτ
1 , which exists a �= c �= 0, Re(

√
2c−

√
2a = 0), are given by formulas (2.3.14),

(2.3.13) with first approximation (2.3.40) and have 1 parameter;

Bτ
2 , which exist for a �= 0, c �= 0, Re(

√
2c +

√
2a) = 0, are given by formulas

(2.3.14), (2.3.13) with first approximaton (2.3.40) and have 1 parameter;

Bτ
6 , which exist for a �= 0, c = 0, Re

√
2a = 0, are given by formulas (2.3.71),

(2.3.69) with first approximation (2.3.83) and have 1 parameter.
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The families B3, B4, B5 are complicated; B1, B2, B6 are power or power-logarithmic.

Remark 2.3.2. The families B+
j and B−

j have the property that complex exponents in

their expansions are complex conjugate. If an expansion in the family B+
j coincides

with the complex conjugate of an expansion in B−
j , then to these two equations there

corresponds the same real function. Therefore, it may happen that to an expansion in
B+
j and an expansion in B−

j there corresponds the same function. Usually, this happens

when all parameters a, b, c, d in equation (2.1.1) are real. Since we do not assume that
all these parameters are real, we view B+

j and B−
j as different families.

Remark 2.3.3. The height of the edge Γ
(1)
4 equals three. The defining equation (2.3.5) has

degree three. It turns out that in all cases to each root of this equation there corresponds
a family of expansions (or a pair in the case of exotic families).

Remark 2.3.4. Families A0, B1–B6, Bτ
0 , Bτ

1 , Bτ
2 , Bτ

6 are called basic families. Other
families of expansions are obtained from basic ones using symmetries (2.1.6), (2.1.8) and
(2.1.9) of equation P6.

The existence of families B1–B6, Bτ
0 , Bτ

1 , Bτ
2 , Bτ

6 for various values of the parameters
is shown in the first three columns of Table 1 on page 9. The basic family A0 exists for
all values of the parameters a, b, c, d of equation (2.1.1).

4. Expansions near zero corresponding to the edge Γ
(1)
1

Families of expansions Hi, Hτ
i corresponding to the edge Γ

(1)
1 are obtained from fam-

ilies of expansions Bi, Bτ
i corresponding to the edge Γ

(1)
4 using the symmetry (2.1.8). To

do this, we need to make the substitution (2.1.8) on the expansion corresponding to the

edge Γ
(1)
4 , to compute expansions with a checkmark corresponding to the edge Γ

(1)
1 , and

to delete the checkmarks. The three cases a �= c �= 0, a = c �= 0 and a �= 0, c = 0 that we

have considered for the edge Γ
(1)
4 become the cases b �= d − 1

2 �= 0, b = d − 1
2 �= 0, and

b �= 0, d = 1
2 for the edge Γ

(1)
1 .

4.1. Expansions of solutions for b �= 0. Consider the expansions Bτ
0 , defined by

formula (2.3.4) and corresponding to the edge Γ
(1)
4 . Using the symmetry (2.1.8) we send

them to the expansions Hτ
0 corresponding to the edge Γ

(1)
1 .

Making the substitution x = x̌, y = x̌/y̌ in formula (2.3.4) and expressing y̌ we obtain
the fraction

(2.4.1) y̌ =
x̌

cρx̌ρ +
∑

s csx̌
s
.

As x̌ → 0 the expression (2.4.1) can be expanded in a formal series

(2.4.2) y̌ =
x̌1−ρ

cρ

∞
∑

n=0

(

−
∑

s

cs
cρ

x̌s−ρ

)n

.

Writing out the first two terms of the series (2.4.2) we obtain the expansion

(2.4.3) y̌ =
x̌1−ρ

cρ
−
∑

s

cs
c2ρ

x̌s+1 + · · · .

Set

(2.4.4) ρ̌ = 1− ρ, čρ̌ =
1

cρ
, čš = − cs

c2ρ
, š = s+ 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



60 A. D. BRUNO AND I. V. GORYUCHKINA

Since y̌ = xy−1(x) and, according to Theorems 1.5.3 and 2.3.1, the families of inverse
expansions y−1(x) for families B+

0 and B−
0 coincide, we see that the families H+

0 and H−
0

coincide, forming a single family H0. Therefore we obtain one two-parameter family of
semiexotic expansions

(2.4.5) H0 : y̌ = čρ̌x̌
ρ̌ + č1x̌+ č2−ρ̌x̌

2−ρ̌ +
∑

š

čšx̌
š + · · · ,

where ρ̌ − 1 is an arbitrary purely imaginary constant, š runs over the set {ρ̌ + lρ̌ +
m(1− ρ̌); l,m ∈ Z; l ≥ 1; m ≥ 0}∩{2− ρ̌+ l(2− ρ̌)+m(ρ̌−1); l,m ∈ Z; l ≥ 1; m ≥ 0}
= {l + k(ρ̌ − 1); l, k ∈ Z; l ≥ 2; |k| ≤ l} (according to (2.3.3), (2.3.48), (2.4.4), and
Theorem 1.5.2), and the complex coefficients are as follows: čρ̌ is an arbitrary constant,
and the other coefficients č1, č2−ρ̌, and čš are uniquely determined constants.

4.2. Expansions of solutions for b �= d − 1
2 �= 0. Consider the expansions Bi, Bτ

i ,

i = 1, 2, corresponding to the edge Γ
(1)
4 . Using the symmetry (2.1.8), we transform these

expansions to expansions Hi, Hτ
i , i = 1, 2, corresponding to the edge Γ

(1)
1 .

Set θ̌i =
√
1− 2d+ (−1)i

√
−2b, i = 1, 2. For each i one of three cases is possible.

Case 1. Re θ̌i = 0. In this case the expansions Bi, i = 1, 2, are given by formula (2.3.14).
Substituting x = x̌, y = x̌

y̌ and expressing y̌ we obtain the fraction

(2.4.6) y̌ =
x̌

c0i +
∑

s
csix̌s

.

As x̌ → 0 expression (2.4.6) can be expanded in the formal series

(2.4.7) y̌ =
x̌

c0i

∞
∑

n=0

(

−
∑

s

csi
c0i

x̌s

)n

.

Writing out the first two cases of the series (2.4.7) we obtain the expansion

(2.4.8) y̌ =
x̌

c0i
−
∑

s

csi
c20i

x̌s+1 + · · · .

Set

(2.4.9) č1i =
1

c0i
, čši = − csi

c20i
, š = s+ 1.

Therefore, for each value of i we obtain two families of exotic expansions

(2.4.10) Hτ
i : y̌ = č1ix̌+

∑

š

čšix̌
š + · · · , i = 1, 2, τ = ±1,

where, according to (2.3.13) and (2.4.9), š runs over the set {1+l+mτθ̌i, l,m ∈ Z, l,m ≥
0, l +m > 0}, and the complex coefficients are as follows: č1i is obtained from (2.1.8),
(2.3.6) and (2.4.9) by the formula

(2.4.11) č1i =
2b+ (−1)i

√
4bd− 2b

2b− 2d+ 1
,

čši with š = 1 + τ θ̌i is an arbitrary constant, and the other coefficients čši are constant
and uniquely defined.

In the case čši = 0 with š = 1 + τ θ̌i the second approximation to the expansion of
solutions (2.4.10) is y̌ = č1ix̌+ č2ix̌

2. According to (2.1.8) and (2.3.16) we have

(2.4.12) č2i = (−1)i
√

1− 2d

−2b

(√
−2b+ (−1)i

√
1− 2d

)2 − 2a+ 2c− 1

2− 2
(√

−2b+ (−1)i
√
1− 2d

)2 .
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Expansions (2.4.10) are exotic if čši with š = 1+ τ θ̌i is an arbitrary nonzero constant.
In the case čši = 0, where š = 1 + τ θ̌i, expansions (2.4.10) are expansions in integral

powers of x. Families of such expansions are denoted by Hi, i = 1, 2.
Set ki = 1 + θ̌i if Re θ̌i > 0, and ki = 1− θ̌i if Re θ̌i < 0.

Case 2. Re θ̌i �= 0, θ̌i �∈ Z. Similarly to the above, using (2.1.8) and (2.4.9), from (2.3.18)
we obtain the following one-parameter family of power expansions:

(2.4.13) Hi : y̌ = č1ix̌+
∑

š

čšix̌
š + · · · , i = 1, 2,

where š ∈ {1 + l +mki, l,m ∈ Z, l,m ≥ 0, l +m > 0} and the complex coefficients are
as follows: č1i is determined by formula (2.4.11), čkii is an arbitrary constant, and the
remaining čši are uniquely determined constants.

The second approximation to the expansion of solutions of (2.4.13) depends on Re ki.
For Re ki > 2, the second approximation has the form y̌ = č1ix̌+ č2ix̌

2, which is similar
to the case Re θ̌i = 0. For 1 < Re ki < 2, the second approximation to solutions takes
the form y̌ = č1ix̌ + čkiix̌

ki , where čkii is an arbitrary coefficient. For Re ki = 2, the
second approximation of solutions takes the form y̌ = č1ix̌ + č2ix̌

2 + čkiix̌
ki , where the

coefficients are as follows: čkii is arbitrary and č2i is given by formula (2.4.12).

Case 3. θ̌i ∈ Z\{0}. We have a one-parameter family of power-logarithmic expansions

(2.4.14) Hi : y̌ = č1ix̌+

∞
∑

š=2

čši(ln x̌)x̌
š + · · · , i = 1, 2,

where the coefficient č1i is given by formula (2.4.11), čkii = α̌kii + β̌kii ln x̌, α̌kii is an
arbitrary constant, β̌kii is a uniquely determined constant, and the remaining čši are
uniquely determined polynomials in ln x̌.

The second approximation to the expansion of solution (2.4.14) depends on the value
of ki. If ki = 2, then the second approximation takes the form y = č1ix̌+č2ix̌

2. According
to (2.1.8) and (2.3.20), we have

(2.4.15) č2i = α̌2i + (−1)i
√

1− 2d

−2b

(√
−2b+ (−1)i

√
1− 2d

)2 − 2a+ 2c− 1

4
ln x̌,

where α̌2i is an arbitrary constant.

If
(√

−2b + (−1)i
√
1− 2d

)2 − 2a + 2c − 1 = 0, then the compatibility condition is
satisfied and expansion (2.4.14) does not contain logarithms.

Similarly, using symmetry (2.1.8) we obtain from (2.3.30) the following one-parameter
system of complicated expansions:

(2.4.16) H3 : y̌ = ϕ̌1x̌+
∞
∑

σ̌=2

ϕ̌σ̌x̌
σ̌,

where

(2.4.17) ϕ̌1 =
1 + 2b− 2d

4
ln2 x̌+ č1ln x̌+

∞
∑

š=0

č−šln
−š x̌,

and the complex coefficients are as follows: č1 is arbitrary, the remaining č−š are uniquely
determined constants, and the ϕ̌σ̌ are complex series in decreasing powers of logarithms.
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4.3. Expansion of solutions for b = d − 1
2 �= 0. Expansions (2.3.58) yield two one-

parameter families of complicated expansions

(2.4.18) H3+j : y̌ = φ̌1j x̌+

∞
∑

σ̌=2

φ̌σ̌j x̌
σ̌, j = 1, 2,

where

(2.4.19) φ̌1j = (−1)j
√
−2b ln x̌+ č0j +

∞
∑

š=1

č−šj ln
−š x̌, j = 1, 2,

and the complex coefficients are as follows: č0j is an arbitrary constant, the remaining
č−šj are uniquely determined constants, and the φσ̌j are series in decreasing powers of
logarithms.

The families of expansions H2 and Hτ
2 are coming from the case b �= d− 1

2 �= 0. For

the value of θ̌2 we take 2
√
−2b with Re θ̌2 ≥ 0. Depending on this value, the following

three cases are possible: Case 1 (Re θ̌2 = 0, families of exotic expansions Hτ
2 are given by

formula (2.4.10)), Case 2 (Re θ̌2 �= 0, θ̌2 �∈ Z, one-parameter family of power expansions
H2 is given by formula (2.4.13)), Case 3 (θ̌2 ∈ Z\{0}, one-parameter family of power-
logarithmic expansions H2 is given by formula (2.4.14)).

4.4. Expansion of solutions for d = 1
2 , b �= 0. In the case Re

√
−2b > 0 we have a

one-parameter family of power expansions

(2.4.20) H6 : y̌ = x̌+ čρ̌x̌
ρ̌ +

∑

š

čšx̌
š,

where čρ̌ �= 0, čρ̌ is an arbitrary constant, ρ̌ = 1 +
√
−2b, š runs over the set {ρ̌ +

l(ρ̌ − 1) +m; l,m ≥ 0; l +m > 0; l,m ∈ Z}, and the remaining complex coefficients čš
are uniquely determined constants.

For Re ρ̌ > 2 the third approximation to expansion (2.4.20) is y̌ = x̌ + čρ̌x̌
ρ̌ +

čρ̌+1x̌
ρ̌+1. The coefficient is given by

(2.4.21) čρ̌+1 = −čρ̌
2b+ 2a− 2c+ 1

2ρ̌
.

For 1 < Re ρ̌ < 2 the third approximation to expansion (2.4.20) is y̌ = x̌ + čρ̌x̌
ρ̌ +

č2ρ̌−1x̌
2ρ̌−1. The coefficient is given by

(2.4.22) č2ρ̌−1 = −č2ρ̌.

For Re ř = 2, Im ρ �= 0 the third approximation to expansion (2.4.20) is given by y̌ =
x̌+ čρ̌x̌

ρ̌ + čρ̌+1x̌
ρ̌+1 + č2ρ̌−1x̌

2ρ̌−1, where the coefficients čρ̌+1 and č2ρ̌−1 are defined by
formulas (2.4.21) and (2.4.22) respectively. In the case ρ̌ = 2 the third approximation
to expansions (2.4.20) is y̌ = x̌ + č2x̌

2 + č3x̌
3. The coefficients are as follows: č2 is an

arbitrary constant and č3 = −č2
(2b+2a−2č+1+4č2)

4 is the sum of (2.4.21) and (2.4.22).

In the case Re
√
−2b = 0 we have two one-parameter families of exotic expansions

(2.4.23) Hτ
6 : y̌ = x̌+ čρ̌x̌

ρ̌ +
∑

š

čšx̌
š, τ = ±1,

where ρ̌ = 1+
√
−2b, š runs over the set {ρ̌+ l(ρ̌−1)+m; l,m ≥ 0; l +m > 0; l,m ∈ Z},

and the complex coefficients are as follows: čρ̌ is an arbitrary nonzero constant and the
remaining čš are uniquely determined constants.

There is also a one-parameter family H3 given by formulas (2.4.16), (2.4.17).
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4.5. Summary of results and discussion.

Theorem 2.4.1. There are 6 families of expansions of types 1–3 corresponding to the

edge Γ
(1)
1 :

H1 = B̌1, which exists for b �= d− 1
2 �= 0, is given by formulas (2.4.13), (2.4.14),

and has 1 parameter;
H2 = B̌2, which exists for d �= 1

2 , is given by formulas (2.4.13), (2.4.14), and has
1 parameter;
H3 = B̌3, which exists for b �= d− 1

2 , is given by formulas (2.4.16), (2.4.17) and
has 1 parameter;
H4 = B̌4 and H5 = B̌5, which exist for b = d− 1

2 , are given by formulas (2.4.18),
(2.4.19), and have 1 parameter;
H6 = B̌6, which exists for d = 1

2 , is given by formula (2.4.20) and has 1 param-
eter;

one family of semiexotic expansions:

H0 = B̌τ
0 , which exists for b �= 0, is given by formula (2.4.5), and has 2 parame-

ters;

and 3 pairs of families of exotic expansions of solutions with τ = ±1:

Hτ
1 = B̌τ

1 , which exist for b �= d− 1
2 �= 0, Re(

√
1− 2d−

√
−2b) = 0, are given by

formula (2.4.10), and have 1 parameter each;
Hτ

2 = B̌τ
2 , which exist for b �= 0, d �= 1

2 , Re(
√
1− 2d +

√
−2b) = 0, are given by

formula (2.4.10), and have 1 parameter;
Hτ

6 = B̌τ
6 , which exist for b �= 0, d = 1

2 , Re
√
−2b = 0, are given by formula

(2.4.23), and have 1 parameter.

Here B̌i is the family obtained from Bi by applying the symmetry (2.1.8).
Families H3, H4, H5 are complicated; families H1, H2, H6 are power or power-

logarithmic.

5. Expansions near infinity

Starting with expansions of solutions of equation (2.1.1) as x → 0 we use the symmetry
(2.1.6) to obtain expansions of solutions of this equation as x → ∞. To do this, in
expansions as x → 0 we make the substitution (2.1.6), compute expansions with asterisks
as x → ∞ and then remove the asterisks.

Let us consider in detail how to transform the expansion corresponding to the vertex

Γ
(0)
4 to the expansion corresponding to the vertex Γ

(0)
2 . The remaining expansions near

infinity, which correspond to the edges Γ
(1)
2 and Γ

(1)
3 , will be just listed.

5.1. Expansions corresponding to the vertex Γ
(0)
2 . These expansions will be ob-

tained from expansions in the family A0 corresponding to the vertex Γ
(0)
4 and de-

fined by formula (2.2.6), where the exponent r is any number satisfying the condition
0 < Re r < 1, s runs over the set (2.2.5), and the complex coefficients are given as fol-
lows: cr is an arbitrary constant and the remaining cs are uniquely determined constants.
Substituting in (2.1.2) x = 1

x∗
, y = 1

y∗
and expressing y∗ we obtain the fraction

(2.5.1) y∗ =
1

crx∗−r +
∑

s
csx∗−s

,

where cr �= 0 is an arbitrary constant, the remaining coefficients cs are uniquely deter-
mined constants, the exponent r is arbitrary with 0 < Re r < 1, and s runs over the set
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(2.2.5). As x∗ → ∞, (2.5.1) can be expanded in a formal series

(2.5.2) y∗ =
x∗r

cr

∞
∑

n=0

(

−
∑

s

cs
cr

x∗−s+r

)n

.

Taking the first two terms of series (2.5.2) we obtain the expansion

(2.5.3) y∗ =
1

cr
x∗r −

∞
∑

s

cs
c2r

x∗−s+2r + · · · .

Set

(2.5.4) c∗r =
1

cr
, c∗s∗ = − cs

c2r
, s∗ = −s+ 2r.

Finally, taking into account (2.2.5) and (2.5.4) we obtain the expansion

(2.5.5) y∗ = c∗rx
∗r +

∑

s∗

c∗s∗x
∗s∗,

where the exponent r is arbitrary with 0 < Re r < 1, s∗ ∈ {r − lr + m(r − 1);
l,m ≥ 0; l + m > 0; l,m ∈ Z}, and the complex coefficients are as follows: c∗r is
an arbitrary nonzero constant, and the remaining c∗s∗ are uniquely determined constants.

Therefore, as x∗ → ∞, we have a two-parameter (with parameters c∗r and r) family of
expansions A∞ defined by formula (2.5.5).

Let us compute the second approximation to the expansion. We consider four cases.
In case 1

2 < Re r < 1 the second approximation to the solution is y∗ = c∗rx
∗r +

c∗2r−1x
∗2r−1. The coefficient is given by the following formula:

(2.5.6) c∗2r−1 = c∗2r
2(a+ d) + (r − 1)2 − 1

2(r − 1)2
.

In case 0 < Re r < 1
2 the second approximation to the solution is y∗ = c∗rx

∗r+c∗0. The
coefficient is given by the following formula:

(2.5.7) c∗0 =
2(b+ c)− r2

2r2
.

In case r = 1
2 the second approximation to the solution is y∗ = c∗1

2

√
x∗ + c∗0, where c∗1

2

is an arbitrary constant and the coefficient is given by the formula

c∗0 =

(

−1 + 8(b+ c)− 3c∗21
2

+ 8c∗21
2

(a+ d)
)

2
.

In case Re r = 1
2 , Im r �= 0 the second approximation to the solution is y∗ = c∗rx

∗r +
c∗0 + c∗2r−1x

∗2r−1, where the coefficients c∗2r−1 and c∗0 are defined by formulas (2.5.6) and
(2.5.7) respectively.

5.2. Expansions of solutions corresponding to the edge Γ
(1)
2 . Here we consider

four cases: b �= 0, −b �= c �= 0, −b = c �= 0 and b �= 0, c = 0.

Expansions of solutions for b �= 0. We have one two-parameter family of exotic
expansions

(2.5.8) D0 : y∗ = c∗ρ∗x∗ρ∗

+ c∗0 + c∗−ρ∗x∗−ρ∗

+
∑

s∗

c∗s∗x
∗s∗,

where ρ∗ �= 0 is an arbitrary purely imaginary constant, s∗ runs over the set {l+kρ∗; l ≤
−1; |k| ≤ |l|+1; l, k ∈ Z} and the complex coefficients are as follows: c∗ρ∗ is an arbitrary
nonzero constant, and c∗0, c

∗
−ρ∗ , and c∗s∗ are uniquely determined constants.
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Expansions of solutions for −b �= c �= 0. We set θ∗i
def
=

√
2c + (−1)i

√
−2b, i = 1, 2.

For a fixed i there are three possible cases depending on the value of θ∗i .

Case 1. Re θ∗i = 0. We have two one-parameter families of semiexotic expansions

(2.5.9) Dτ
i : y∗ = c∗0i +

∑

s∗

cs∗ix
∗s, τ = ±1,

where s∗ ∈ {−l +mτθ∗i ; l,m ≥ 0; l +m > 0; l,m ∈ Z} and the complex coefficients are
given as follows: c∗s∗i with s∗ = τθ∗i is an arbitrary constant, and c∗0i is obtained from
(2.1.6), (2.3.6), and (2.5.4) by the formula

(2.5.10) c∗0i =
b+ (−1)i

√
−bc

b+ c
, i = 1, 2.

The remaining c∗s∗i are uniquely determined constants.
If c∗s∗i = 0 with s∗ = τθ∗i , then the second approximation to the expansions of solutions

(2.5.9) is y∗ = c∗0i + c∗−1ix
∗−1. Formulas (2.1.6), (2.3.16), and (2.5.4) imply that the

coefficient is given by the following formula:

(2.5.11) c∗−1i = (−1)i
√

−c

b

(√
−b+ (−1)i

√
c
)2 − a− d

1− 2
(√

−b+ (−1)i
√
c
)2 .

In the case c∗s∗i = 0 with s∗ = τθ∗i expansions (2.5.9) are expansions in integral powers
of x. Families of such expansions are denoted by Di, i = 1, 2.

Let ki = θ∗i if Re θ∗i < 0 and ki = −θ∗i if Re θ∗i > 0.

Case 2. Re θ∗i �= 0, θ∗i �∈ Z. We have the one-parameter family of power expansions

(2.5.12) Di : y∗ = c∗0i +
∑

s∗

c∗s∗ix
∗s∗, i = 1, 2,

where s∗ ∈ {−l + mki; l,m ∈ Z; l,m ≥ 0; l + m > 0}, and the complex coefficients
are as follows: c∗0i is defined by formula (2.5.10), c∗kii

is arbitrary, and the remaining c∗s∗i
are arbitrary constants. The second approximation to expansions of solutions (2.5.12)
depends on the number Re ki. If Re ki < −1, then the second approximation of solutions
has the form y∗ = c∗0i + c∗−1ix

∗−1, where the coefficient c∗−1i is given by formula (2.5.11).

If −1 < Re ki < 0, then the second approximation is of the form y∗ = c∗0i + c∗kii
x∗ki ,

where the coefficient c∗kii
is arbitrary. If Re ki = −1, then the second approximation is

of the form y∗ = c∗0i + c∗−1ix
∗−1 + c∗kii

x∗ki , where the coefficients are as follows: c∗kii
is

arbitrary and c∗−1i is given by formula (2.5.11).

Case 3. θ∗i ∈ Z\{0}. We have a one-parameter family of power-logarithmic expansions

(2.5.13) Di : y∗ = c∗0i +
+∞
∑

s∗=1

c∗−s∗i(lnx
∗)x∗−s∗, i = 1, 2,

where the coefficients are as follows: c∗0i is given by formula (2.3.6); c∗kii
= α∗

kii
+β∗

kii
lnx∗

with an arbitrary constant α∗
kii

, the coefficient β∗
kii

is constant and uniquely determined,
and the complex coefficients c∗s∗i are uniquely determined polynomials in lnx∗. The
second approximation to the expansion of solution (2.5.13) depends on the value of ki.
If ki = −1, then the second approximation takes the form y∗ = c∗0i + c∗−1ix

∗−1. The
coefficient is given by the following formula:

(2.5.14) c∗−1i = α∗
−1i + (−1)i

√

−c

b

(√
−b+ (−1)i

√
c
)2 − a− d

2
lnx∗,

where α∗
−1i is an arbitrary constant.
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We also have a one-parameter family of complicated expansions

(2.5.15) D3 : y∗ = ϕ∗
0 +

∞
∑

σ∗=1

ϕ∗
−σ∗x−∗σ∗

,

where

(2.5.16) ϕ∗
0 =

b+ c

2
ln2 x∗ + c∗1lnx

∗ +
∞
∑

s∗=0

c∗−s∗ ln
−s∗ x∗,

and the complex coefficients are as follows: c∗1 is an arbitrary constant, c∗−s∗ are uniquely
determined constants, and ϕ∗

−σ∗ are series in decreasing powers of lnx∗.

Expansions of solutions for −b = c �= 0. In this case there exist two one-parameter
families of complicated expansions

(2.5.17) D3+j : y∗ = φ∗
0j +

∞
∑

σ∗=1

φ∗
−σ∗jx

∗−σ∗

, j = 1, 2,

where

(2.5.18) φ∗
0j = (−1)j

√
−2b lnx∗ + c∗0j +

∞
∑

s∗=1

c∗−s∗j ln
−s∗ x∗, j = 1, 2,

and the complex coefficients are as follows: c∗0j is an arbitrary constant, c∗−s∗j are uniquely
determined constants, and φ∗

−σ∗j are series in decreasing powers of lnx∗.
The families of expansions D2 and Dτ

2 described for the case −b �= c �= 0 remain in
the present case as well. For θ∗2 we take 2

√
−2b with Re

√
−2b ≤ 0. Depending on

the value of θ∗2 three cases are possible, namely, Case 1 (Re θ∗2 = 0, two one-parameter
families of exotic expansions Dτ

2 are given by formula (2.5.9)), Case 2 (Re θ∗2 �= 0, θ∗2 �∈ Z,
one-parameter family of power expansions D2 is determined by formula (2.5.12)), Case 3
(θ∗2 �∈ Z, a one-parameter of power-logarithmic expansions D2 is determined by formula
(2.5.13)).

Expansion of solutions for b �= 0, c = 0. For Re
√
−2b < 0 we have a one-parameter

family of power expansions

(2.5.19) D6 : y∗ = 1 + c∗ρ∗x∗ρ∗

+
∑

s∗

c∗s∗x
∗s∗,

where ρ∗ =
√
−2b, s∗ runs over the set {ρ∗ + lρ∗ − m; l,m ≥ 0; l + m > 0; l,m ∈ Z},

and the complex coefficients are as follows: c∗ρ∗ is an arbitrary nonzero constant, and the
remaining c∗s∗ are uniquely determined constants.

If Re ρ∗ < −1, then the third approximation to expansion (2.5.19) is y = 1+c∗ρ∗x∗ρ∗

+

c∗ρ∗−1x
∗ρ∗−1. The coefficient is given by the formula

(2.5.20) c∗ρ∗−1 = c∗ρ
a+ b+ d

ρ∗ − 1
.

If −1 < Re ρ∗ < 0, then the third approximation to expansion (2.5.19) is y∗ = 1 +
c∗ρ∗x∗ρ∗

+ c∗2ρ∗x∗2ρ∗

. The coefficient is given by the formula

(2.5.21) c∗2ρ∗ = −c∗2ρ .

If Re ρ∗ = −1, Im ρ∗ �= 0, then the third approximation to expansion (2.5.19) is y∗ =
1+ c∗ρ∗x∗ρ∗

+ c∗ρ∗−1x
∗ρ∗−1 + c∗2ρ∗x∗2ρ∗

, where the coefficients c∗ρ∗−1 and c∗2ρ∗ are given by
formulas (2.5.20) and (2.5.21) respectively. If ρ∗ = −1, then the third approximation to
expansion (2.5.19) is y∗ = 1 + c∗−1x

∗−1 + c∗−2x
∗−2. The coefficients are as follows: c∗−1 is
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an arbitrary nonzero constant, and c∗−2 = −c∗−1
(a+b+d+2c∗

−1)

2 is the sum of (2.5.20) and
(2.5.21).

For Re
√
−2b = 0 there exist two one-parameter families of exotic expansions

(2.5.22) Dτ
6 : y∗ = 1 + c∗ρ∗x∗ρ∗

+
∑

s∗

c∗s∗x
s∗,

where ρ∗ =
√
−2b, s∗ runs over the set {ρ∗ + lρ∗ − m; l,m ≥ 0; l + m > 0; l,m ∈ Z},

τ = ±1, and the complex coefficients are as follows: c∗ρ∗ is an arbitrary nonzero constant,
and all c∗s∗ are uniquely determined constants.

Also there exists a one-parameter family of complicated expansions D3 given by for-
mulas (2.5.15), (2.5.16).

5.3. Expansions of solutions corresponding to the edge Γ
(1)
3 . Here we also consider

four cases: a �= 0, a �= −d+ 1/2 �= 0, a = −d+ 1/2 �= 0 and d = 1/2, a �= 0.

Expansion of solutions for a �= 0. We have two two-parameter families of exotic
expansions:

(2.5.23) Gτ
0 : y∗ = c∗ρ∗x∗ρ∗

+
∑

s∗

c∗s∗x
∗s∗, τ = sgn Im(ρ∗ − 1),

where ρ∗ − 1 is an arbitrary purely imaginary constant, s∗ runs over the set {ρ∗ − lρ∗ +
m(ρ∗ − 1); l,m ≥ 0; l + m > 0; l,m ∈ Z}, and the complex coefficients are as follows:
c∗ρ∗ is an arbitrary constant, and c∗s∗ are uniquely determined constants.

Expansions of solutions for a �= −d+ 1
2 �= 0. Set θ∗i

def
=

√
1− 2d+(−1)i

√
2a, i = 1, 2.

For each i, depending on the value of θ∗i one of the three cases is possible.

Case 1. Re θ∗i = 0. We have two one-parameter families of exotic expansions

(2.5.24) Gτ
i : y∗ = c∗1ix

∗ +
∑

s∗

c∗s∗ix
∗s∗, i = 1, 2, τ = ±1,

where s∗ ∈ {1− l+mτθ∗i ; l,m ≥ 0; l+m > 0; l,m ∈ Z}, and the complex coefficients are
as follows: c∗s∗i with s∗ = 1 + τθ∗i is an arbitrary constant, c1i is obtained from (2.1.6),
(2.4.11) and (2.5.4) by the formula

(2.5.25) c∗1i = 1 + (−1)i
√

1− 2d

2a
,

and the remaining c∗s∗i are uniquely determined constants.
If c∗s∗i = 0 with s∗ = 1+τθ∗i , then the second approximation to expansions of solutions

(2.5.24) is y∗ = c∗1ix
∗+c∗0i. Formulas (2.1.6), (2.4.12) and (2.5.4) imply that the coefficient

c∗0i is given by the formula

(2.5.26) c∗0i = (−1)i
√

1− 2d

2a

(√
2a+ (−1)i

√
1− 2d

)2
+ 2b+ 2c− 1

2− 2
(√

2a+ (−1)i
√
1− 2d

)2 .

In the case c∗s∗i = 0 with s∗ = 1 + τθ∗i expansions (2.5.24) are expansions in integral
powers of x. Families of such expansions are denoted Gi, i = 1, 2.

Set ki = 1 + θ∗i if Re θ∗i < 0 and ki = 1− θ∗i if Re θ∗i > 0.

Case 2. Re θ∗i �= 0, θ∗i �∈ Z. Here we have a one-parameter family of power expansions

(2.5.27) Gi : y∗ = c∗1ix
∗ +

∑

s∗

c∗s∗ix
∗s∗ , i = 1, 2,

where the complex coefficients are as follows: c∗1i is given by formula (2.5.25), c∗kii
is

arbitrary, and the remaining c∗s∗i are uniquely determined constants. The parameter s∗
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runs over the set {1− l+mki; l,m ∈ Z; l,m ≥ 0; l+m > 0}. The second approximation
to the expansion of solutions (2.5.27) depends on the number Re ki. If Re ki < 0, then
the second approximation is y∗ = c∗1ix

∗+c∗0i, where the coefficient c∗0i is given by formula
(2.5.26). If 0 < Re ki < 1, then the second approximation is y∗ = c∗1ix

∗ + c∗kii
x∗ki ,

where c∗kii
is an arbitrary coefficient. If Re ki = 0, then the second approximation is

y∗ = c∗1ix
∗ + c∗0i + c∗kii

x∗ki , where the coefficients are as follows: c∗kii
is arbitrary, and c∗0i

is given by formula (2.5.26).

Case 3. θ∗i ∈ Z\{0}. We have one-parameter power-logarithmic expansions

(2.5.28) Gi : y∗ = c∗1ix
∗ +

+∞
∑

s∗=0

c∗s∗i(lnx
∗)x∗s∗, i = 1, 2,

where the coefficients are as follows: c∗1i is given by formula (2.5.25), c∗kii
= α∗

kii
+

β∗
kii

lnx∗, α∗
kii

is an arbitrary constant, β∗
kii

is a uniquely determined constant, and the
remaining c∗s∗i are uniquely determined polynomials in lnx∗. The second approximation
to the expansion of solution (2.5.24) depends on the value of ki. If ki = 0, the second
approximation is y∗ = c∗1ix

∗ + c∗0i. The coefficient is given by the formula

(2.5.29) c∗0i = α∗
0i + (−1)i

√

1− 2d

2a

(√
2a+ (−1)i

√
1− 2d

)2
+ 2b+ 2c∗ − 1

4
lnx∗,

where α∗
0i is an arbitrary constant.

We also have a one-parameter family

(2.5.30) G3 : y∗ = ϕ∗
1x

∗ +
∞
∑

σ∗=0

ϕ∗
−σ∗x∗−σ∗

,

where

(2.5.31) ϕ∗
1 =

4

1− 2a− 2d

1

ln2 x∗ +
c∗−3

ln3 x∗ +
∞
∑

s∗=4

c∗−s∗

lns
∗

x∗ .

The complex coefficients are as follows: c∗−3 is an arbitrary constant, and c∗−s∗ are
uniquely determined constants. ϕ∗

σ∗ are series in decreasing powers of logarithms.

Expansions of solutions for a = −d+ 1
2 �= 0. We have two one-parameter families of

complicated expansions:

(2.5.32) G3+j : y∗ = φ∗
1jx

∗ +
∞
∑

σ∗=0

φ∗
−σ∗jx

∗−σ∗

, j = 1, 2,

where

(2.5.33) φ∗
1j = (−1)j

1√
2a

1

lnx∗ +
c∗−2j

ln2 x∗ +

∞
∑

s∗=3

c∗−s∗j

lns
∗

x∗ ,

and the complex coefficients are as follows: c∗−2j is an arbitrary constant, and c∗−s∗j are
uniquely determined constants. Also, φ∗

σ∗j are series in decreasing powers of logarithms.

The families of expansions G2 and Gτ
2 come from the case a �= −d + 1

2 �= 0. For θ∗2
we take 2

√
2a with Re

√
2a ≤ 0. Depending on the value of θ∗2 , three cases are possible:

Case 1 (Re θ∗2 = 0, one-parameter families of exotic expansions Gτ
2 are given by formula

(2.5.24)), Case 2 (Re θ∗2 �= 0, θ∗2 �∈ Z, the one-parameter family of power expansions G2 is
given by formula (2.5.27)), Case 3 (θ∗2 �∈ Z, the one-parameter family of power-logarithmic
expansions G2 is given by formula (2.5.28)).
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Expansions of solutions for d = 1
2 , a �= 0. In the case Re

√
2a < 0 we have the

following one-parameter family of power expansions:

(2.5.34) G6 : y∗ = x∗ + c∗ρ∗x∗ρ∗

+
∑

s∗

c∗s∗x
∗s∗,

where ρ∗ = 1 +
√
2a, s∗ runs over the set {ρ∗ + l(ρ∗ − 1) − m; l,m ≥ 0; l +m > 0;

l,m ∈ Z}, and the complex coefficients are as follows: c∗ρ∗ is an arbitrary nonzero con-
stant, and the remaining c∗s∗ are uniquely determined constants.

For Re ρ∗ < 0 the third approximation to expansion (2.5.34) is y = x∗ + c∗ρ∗x∗ρ∗

+

c∗ρ∗−1x
∗ρ∗−1. The coefficient is given by the formula

(2.5.35) c∗ρ∗−1 = c∗ρ∗

1− 2(a+ b+ c)

2(ρ∗ − 2)
.

For 0 < Re ρ∗ < 1 the third approximation to expansion (2.5.34) is y∗ = x∗ + c∗ρ∗x∗ρ∗

+

c∗2ρ∗−1x
∗2ρ∗−1. The coefficient is given by the formula

(2.5.36) c∗2ρ∗−1 = c∗2ρ∗ .

For Re ρ∗ = 0, Im ρ∗ �= 0 the third approximation to expansion (2.5.34) is y∗ = x∗ +

c∗ρ∗x∗ρ∗

+ c∗ρ∗−1x
∗ρ∗−1+ c∗2ρ∗−1x

∗2ρ∗−1, where the coefficients c∗ρ∗−1, and c∗2ρ∗−1 are given
by formulas (2.5.35) and (2.5.36) respectively. For ρ∗ = 0 the third approximation to
expansion (2.5.34) is y∗ = x∗ + c∗0 + c∗−1x

∗−1. The coefficients are as follows: c∗0 is an

arbitrary nonzero constant, and c∗−1 = c∗0
(−1+2(a+b+c)+4c∗0)

4 is the sum of expressions
(2.5.35) and (2.5.36).

In the case Re
√
2a = 0 there are two one-parameter families of exotic expansions:

(2.5.37) Gτ
6 : y∗ = x∗ + c∗ρ∗x∗ρ∗

+
∑

s∗

c∗s∗x
∗s∗,

where ρ∗ = 1+
√
2a, s∗ runs over the set {ρ∗+l(ρ∗−1)−m; l,m ≥ 0; l+m > 0; l,m ∈ Z},

τ = ±1, and the complex coefficients are as follows: c∗ρ∗ is an arbitrary nonzero constant,
and all c∗s∗ are uniquely determined constants.

Also, there exists a one-parameter family of complicated expansions G3. It comes from
the case a �= 1

2 − d �= 0 and is given by formula (2.5.30).

5.4. Summary of results.

Theorem 2.5.1. As x → ∞ and a ·b �= 0, equation (2.1.1) has 13 families of expansions
of solutions of Types 1–3:

A∞ = A∗
0 is given by formula (2.5.5) and has 2 parameters;

D1 = B∗
1 , which exists for −b �= c �= 0, is given by formulas (2.5.12), (2.5.13),

and has 1 parameter;
D2 = B∗

2 , which exists for c �= 0, is given by formulas (2.5.12), (2.5.13), and has
1 parameter;
D3 = B∗

3 , which exists for −b �= c, is given by the formulas (2.5.15), (2.5.16) and
has 1 parameter;
D4 = B∗

4 and D5 = B∗
5 , which exist for −b = c �= 0, are given by formulas

(2.5.17), (2.5.18) and have 1 parameter;
D6 = B∗

6 , which exists for c = 0, is given by formula (2.5.19) and has 1 parameter;
G1 = H∗

1, which exists for a �= −d+ 1
2 �= 0, is given by formulas (2.5.27), (2.5.28),

and has 1 parameter;
G2 = H∗

2, which exists for d �= 1
2 , is given by formulas (2.5.27), (2.5.28), and has

1 parameter;
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G3 = H∗
3, which exists for a �= −d+ 1

2 �= 0, is given by formulas (2.5.30), (2.5.31)
and has 1 parameter;
G4 = H∗

4 and G5 = H∗
5, which exist for a = −d + 1

2 �= 0, are given by formulas
(2.5.32), (2.5.33) and have 1 parameter;
G6 = H∗

6, which exists for d = 1
2 , is given by formula (2.5.34) and has 1 param-

eter;

one family of semiexotic expansions:

D0 = Bτ∗
0 , which exists for b �= 0, is given by formula (2.5.8) and has 2 parame-

ters;

three pairs of families of semiexotic expansions with τ = ±1:

Dτ
1 = Bτ∗

1 , which exists for −b �= c �= 0, Re(
√
2c−

√
−2b) = 0, is given by formula

(2.5.9) and has 1 parameter;

Dτ
2 = Bτ∗

2 , which exist for b �= 0, c �= 0, Re(
√
2c +

√
−2b) = 0, are given by

formula (2.5.9) and have 1 parameter;
Dτ

6 = Bτ∗
6 , which exist for b �= 0, c = 0, Re

√
−2b = 0, are given by formula

(2.5.22) and have 1 parameter;

and four pairs of exotic expansions of solutions with τ = ±1 :

Gτ
0 = Hτ∗

0 , which exist for a �= 0, are given by formula (2.5.23) and have 2
parameters;
Gτ
1 = Hτ∗

1 , which exist for a �= −d + 1
2 �= 0, Re(

√
1− 2d −

√
2a) = 0, are given

by formula (2.5.24) and have 1 parameter;

Gτ
2 = Hτ∗

2 , which exist for a �= 0, d �= 1
2 , Re(

√
1− 2d +

√
2a) = 0, are given by

formula (2.5.24) and have 1 parameter;

Gτ
6 = Hτ∗

6 , which exist for a �= 0, d = 1
2 , Re

√
2a = 0, are given by formula

(2.5.37) and have 1 parameter.

Here A∗
0, B∗

i and H∗
i denote the families obtained from A0, Bi and Hi using the

symmetry (2.1.6).
Families D1, D2, D6, G1, G2, G6 are power or power-logarithmic; families D3, D4, D5,

G3, G4, G5 are complicated.

Chapter 3. Expansions of solutions of P6 near zero and infinity

in the cases a = 0, b �= 0 and a �= 0, b = 0

1. General properties of the equation

1.1. Formulation of the problem. In this chapter we are looking for asymptotic ex-
pansions of the form (2.1.2) for solutions of the sixth Painlevé equation (2.1.1). We are
looking for expansions of all five types: power, power-logarithmic, complicated, semiex-
otic, and exotic, as x → 0 and x → ∞ in the following two cases:

1) a = 0, b �= 0, c and d are arbitrary;
2) a �= 0, b = 0, c and d are arbitrary.

1.2. Supports and normal cones. In the case a = 0 equation (2.1.4) takes the form:
(3.1.1)

f(x, y)
def
= 2y′′x2(x− 1)2y(y − 1)(y − x)

− (y′)2
[

x2(x− 1)2(y − 1)(y − x) + x2(x− 1)2y(y − x) + x2(x− 1)2y(y − 1)
]

+ 2y′
[

x(x−1)2y(y−1)(y−x) + x2(x−1)y(y−1)(y−x) + x2(x−1)2y(y−1)
]

−
[

2bx(y − 1)2(y − x)2 + 2c(x− 1)y2(y − x)2 + 2dx(x− 1)y2(y − 1)2
]

= 0.
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Figure 14. For equation (3.1.1): (a) the support, the polygon, and its
faces; (b) normal cones of faces.

In this case the support is obtained from the one shown in Figure 8 (a) by removing the
points (0, 6), (0, 5), (1, 5). The support S(fa=0) of the left-hand side of equation (3.1.1),

its convex hull Γ(fa=0), faces Γ
(0)
i

def
= Qi, i = 1, 2, 4, 5, 6, Γ

(1)
j , j = 1, 2, 5, 6, 7, are shown

in Figure 14 (a) (faces of the polygon Γ(f), faces coming from the case a · b �= 0 preserve

their numbers). Real normal cones U
(d)
i , d = 0, 1 corresponding to these are shown in

Figure 14 (b).
For ω = −1 the decomposition of the complex plane L− : r ∈ C into complex normal

cones Ŭ
(d)
j is shown in Figure 5 with the following change on notation: Ŭ

(0)
6 and Ŭ

(1)
7

should be used instead of Ŭ
(0)
3 and Ŭ

(1)
4 respectively. This decomposition is similar to

the case a �= 0.
For b = 0, equation (2.1.4) takes the form

(3.1.2)

f(x, y)
def
= 2y′′x2(x− 1)2y(y − 1)(y − x)

− (y′)2
[

x2(x− 1)2(y − 1)(y − x) + x2(x− 1)2y(y − x) + x2(x− 1)2y(y − 1)
]

+ 2y′
[

x(x−1)2y(y−1)(y−x) + x2(x−1)y(y−1)(y−x) + x2(x−1)2y(y−1)
]

−
[

2ay2(y − 1)2(y − x)2 + 2c(x− 1)y2(y − x)2 + 2dx(x− 1)y2(y − 1)2
]

= 0.

In this case the support is obtained from the one shown in Figure 8 (a) by removing
the points (3, 0), (2, 1), (3, 1). The support S(fb=0) of the left-hand side of equation

(3.1.2), its convex hall Γ(fb=0), faces Γ
(0)
i

def
= Qi, i = 2, 3, 4, 7, 8, Γ

(1)
j , j = 3, 4, 8, 9, 10,

are shown in Figure 15 (a) (the faces of the polygon Γ(f) coming from the case a · b �= 0

preserve their numbers), real normal cones U
(d)
i , d = 0, 1, corresponding to these faces

are shown in Figure 15 (b).
Using the symmetry (2.1.6) one can reduce computations. Namely, this symmetry

sends the case a = 0 to the case b = 0. Under this symmetry, vertices Γ
(0)
i , i = 1, 2, 4, 5, 6,

and edges Γ
(1)
j , j = 1, 2, 5, 6, 7, in the case a = 0 correspond to the vertices Γ

(0)
i , i =

3, 4, 2, 7, 8, and edges Γ
(1)
j , j = 3, 4, 8, 9, 10, in the case b = 0.

Therefore, we will consider in detail only the case a = 0, and then extend the obtained
results to the case b = 0 using symmetry (2.1.6).
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Figure 15. For equation (3.1.2): (a) the support, the polygon, and its
faces; (b) normal cones of faces.

Figure 16. The support of terms of equation (2.1.4) with coefficient a.

Furthermore, the vertices Γ
(0)
1 , Γ

(0)
2 , Γ

(0)
3 , Γ

(0)
4 and the edges Γ

(1)
1 , Γ

(1)
2 , Γ

(1)
3 , and Γ

(1)
4

shown in Figures 8 (a), 14 (a), and 15 (a) were considered in the case a·b �= 0 in Chapter 2.
The terms of equation (2.1.4) with the parameter a as a factor have the support shown
by solid dots in Figure 16.

Therefore, for a = 0 the terms of equation (2.1.4) corresponding to the vertices Γ
(0)
1 ,

Γ
(0)
2 , Γ

(0)
4 and the edges Γ

(1)
1 , Γ

(1)
2 do not change, and neither do the corresponding

reduced equations. Hence the corresponding expansions retain their general structure
and may only change starting with the second term.

For b = 0, similarly to the case a = 0 the terms of equation (2.1.4) corresponding

to the vertices Γ
(0)
2 , Γ

(0)
3 , Γ

(0)
4 and the edges Γ

(1)
3 , Γ

(1)
4 do not change. Therefore the

corresponding expansions retain their general structure and may only change starting
with the second term.

Therefore, in the case a = 0 we consider the vertices Γ
(0)
5 , Γ

(0)
6 and edges Γ

(1)
5 , Γ

(1)
6 ,

Γ
(1)
7 for which the types of expansions of solutions of (2.1.1) may be new.
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Similarly, in the case b = 0 new types of expansions may only correspond to vertices

Γ
(0)
7 , Γ

(0)
8 and edges Γ

(1)
8 , Γ

(1)
9 , Γ

(1)
10 ; we obtain these expansions using the symmetry

(2.1.6) and results for the case a = 0.
Furthermore, using the symmetry (2.1.8) one can reduce computations even in the

case a = 0 since this symmetry sends expansions corresponding to the vertex Γ
(0)
5 and

the edges Γ
(1)
5 , Γ

(1)
6 to expansions corresponding to the vertex Γ

(0)
6 and the edges Γ

(1)
7 ,

Γ
(1)
6 (and vice versa).

Therefore, we need to study in detail one vertex Γ
(0)
6 and two edges Γ

(1)
6 , Γ

(1)
7 in

the case a = 0, and then using symmetries (2.1.6), (2.1.8) to pass obtained results to all
remaining cases. Namely, in the case a = 0 we use symmetry (2.1.8) to obtain expansions

of solutions corresponding to the vertex Γ
(0)
5 and the edge Γ

(1)
5 , and then use symmetry

(2.1.6) we obtain expansions for b = 0 from expansions for a = 0.
Let us recall that according to Theorem 2.1.4 in the case a = 0 there is an exceptional

solution I4: y = ∞, and in the case b = 0, solution I1: y = 0.

2. Expansions near zero corresponding to the vertex Γ
(0)
6

The vertex Γ
(0)
6

def
= Q6 = (0, 4) is the upper left vertex in Figure 14 (a), the corre-

sponding value of ω is ω = −1 and the reduced equation is

(3.2.1) f̂
(0)
6 (x, y)

def
= 2y′′x2y3 − 3y′

2
x2y2 + 2y′xy3 + 2cy4 = 0.

The real normal cone is U
(0)
6 = {p1 < 0, p2 > 0}, i.e., x → 0, y → ∞. The complex

normal cone is Ŭ
(0)
6 = −(1, r), where

(3.2.2) r : r ∈ C, Re r < 0.

2.1. Expansions of solutions with power asymptotics. A solution of equation
(3.2.1) is the expression y = crx

r, where cr is an arbitrary nonzero constant. The

exponent r is determined from the characteristic equation χ(r) = x−4r f̂
(0)
6 (x, xr) =

−r2 + 2c = 0, which has two roots

(3.2.3) r1,2 = ±
√
2c,

and from the consideration of the complex normal cone (3.2.2).
Let us compute the critical numbers. The first variation is

∂f̂
(0)
6 (x, y)

∂y
= 2

d2

dx2
x2y3 + 6y′′x2y2 − 6y′

d

dx
x2y2

− 6y′
2
x2y + 2

d

dx
xy3 + 6y′xy2 + 8cy3.

(3.2.4)

The linear differential operator is

(3.2.5) L(x) def
= 2c3rx

3r

(

d2

dx2
x2 + 3r(r − 1)− 3r

d

dx
x− 3r2 +

d

dx
x+ 3r + 4c

)

.

The characteristic polynomial

(3.2.6) ν(k) = 2c3r(k
2 − 3rk + 2r2)

has two roots k1 = 2r and k2 = r. The cone of the problem is K = {Re k > Re r}. The
numbers k1,2 do not belong to K; therefore, there are no critical numbers.

The support of the expansions of the solution is

(3.2.7) K = {s = r − lr +m; l ≥ 0, m ≥ 1; l,m ∈ Z}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



74 A. D. BRUNO AND I. V. GORYUCHKINA

Therefore, we obtain a one-parameter family of expansions

(3.2.8) C∞
0 : y = crx

r +
∑

s

csx
s,

where the exponents are as follows: r = ±
√
2c and satisfies inequality (3.2.2), s belongs

to the set (3.2.7), cr is an arbitrary nonzero constant, and all cs are uniquely determined
constants.

The support (3.2.7) has two generators −r and 1 and on the complex plane it is
located in the sector with vertex at r and sides that are parallel to vectors −(Re r, Im r)
and (1, 0).

Therefore, we have proved the following result.

Theorem 3.2.1. For x → 0 and a = 0, c �= 0, there exists a one-parameter family of
power expansions C∞

0 of solutions; this family is given by formula (3.2.8).

By Theorem 1.7.2 the series (3.2.8) converges for sufficiently small |x|.
If 2c = k2, where k is an integer, then, according to (3.2.7), expansion (3.2.8) contains

only integral powers of x, i.e., is a Laurent series. This is the only case where this family
was previously known (see [54, § 46, Theorem 46.3]).

Let us compute the second approximation to solutions.
If Re r ≤ −1, the second approximation is y = crx

r + cr+1x
r+1. Let us compute the

coefficient cr+1. The second approximation to equation (3.1.1) is

(3.2.9)
ˆ̂
f

(0)
6 (x, y) = −4y′′x3y3 + 6y′

2
x3y2 − 6y′x2y3 + 2xy4(−c+ d− b).

Since br+1 = x−4r−1 ˆ̂f
(0)
6 (x, crx

r) = 2c4r(r
2 − r − c + d − b), ν(1 + r) = 2c3r(1 − r), we

have cr+1 = cr(c+d−b−r)
(r−1) .

If −1 < Re r < 0, then the second approximation to the solution is y = crx
r + c0 and

the second approximation to equation (3.1.1) is

(3.2.10)
ˆ̂
f

(0)
6 (x, y) = −2y′′x2y2 + 2y′

2
x2y − 2y′xy2.

Since b0 =
ˆ̂
f

(0)
6 (x, crx

r) = 0, ν(0) = 4c3rr
2 �= 0, we have c0 = 0.

The case Re r = −1 will be considered together with the case Re
√
2c ≤ −1 because

the contribution of the second approximation to (3.2.10) vanishes.

2.2. Nonpower asymptotics. Let us compute nonpower solutions of equation (3.2.1)
if they exist. Let us transform this equation as follows:

(3.2.11) g(x, y) = y−4f̂
(0)
6 (x, y) =

2y′′

y
x2 − 3y′2

y2
x2 +

2y′

y
x+ 2c = 0,

S(g) = {0}. Equation g(x, y) = 0 contains a nonzero constant 2c. In the case c = 0
equation χ(r) = 0 has a double root r = 0. But P = ω(1, 0) does not belong to the

normal cone U
(0)
6 . Since Δ(g) = 2 and

(3.2.12) g∗ =
2y′′

y
x2 − 3y′2

y2
x2, coef(g∗) = 2− 3 = −1 �= 0,

by Theorems 1.3.5 and 1.3.6 there are no appropriate nonpower asymptotics.
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3. Expansions corresponding to the vertex Γ
(1)
6

The reduced equation corresponding to the edge Γ
(1)
6 is

(3.3.1)

f̂
(1)
6 (x, y)

def
= 2y′′x4y3 − 3y′

2
x4y2 + 4y′x3y3 − 2dx2y4

+ 2y′′x2y3 − 3y′
2
x2y2 + 2y′xy3 + 2cy4 − 4y′′x3y3

+ 6y′
2
x3y2 − 2xy4(c+ b− d)− 6y′x2y3 = 0.

It does produce power expansions since the edge Γ
(1)
6 is horizontal. Let us check if there

are nonpower asymptotics. The edge Γ
(1)
6 joins the vertices Q6 = (0, 4) and Q5 = (2, 4),

and the corresponding reduced equations f̂
(0)
6 (x, y)

def
= 2y′′x2y3 − 3y′2x2y2 + 2y′xy3 +

2cy4 = 0 and f̂
(0)
5 (x, y)

def
= 2y′′x4y3 − 3y′2x4y2 + 4y′x3y3 − 2dx2y2 = 0 have the order

of differentiation equal to 2. On the other hand, the order of differentiation of equation

f̂
(1)
6 (x, y) = 0 also equals 2. Therefore, by Theorem 1.3.4, required solutions do not exist
in either case x → 0 or x → ∞.

4. Expansions corresponding to the edge Γ
(1)
7

4.1. Preliminary analysis. The vertex Γ
(1)
7 is vertical. The corresponding reduced

equation is

(3.4.1) f̂
(1)
7 (x, y)

def
= 2y′′x2y3−3y′

2
x2y2+2y′xy3+2cy4+2y′

2
x2y−2y′′x2y2−2y′xy2 = 0

and r = 0. The real normal cone is U
(1)
7 = {λ(−1, 0), λ > 0}, i.e. x → 0 and ω = −1.

The reduced equation (3.4.1) is the sum of two reduced equations (2.2.1) and (3.2.1).
For ρ2 �= 2c the number ρ = r+ iγ with r = 0, γ �= 0, γ ∈ R is a root of the characteristic

equation χ(ρ) ≡ 0 corresponding to the bottom vertex Γ
(0)
4 = (0, 3). By Theorem 1.5.1

we have two families of exotic expansions Bτ
7 with τ = sgn Im ρ. The cones of the problem

are Kτ = {s : Re s ≥ 0, and Re s = 0, sgn Im s = τ}. Since the characteristic equation
(2.2.4) has the root k1,2 = ρ, which does not belong to the cone of the problem, there
are no critical numbers. The support of expansions of solutions is

(3.4.2) K = {ρ+ lρ+m(1− ρ); l,m ≥ 0; l +m > 0; l,m ∈ Z}.
Therefore, we have two families of exotic expansions

(3.4.3) Bτ
7 : y = cρx

ρ +
∑

csx
s (sum over s ∈ K),

where τ = sgn Im ρ, ρ2 �= 2c, Re ρ = 0, ρ �= 0, s runs over the set (3.4.2), cr is an arbi-
trary nonzero complex constant, and all complex coefficients cs are uniquely determined
constants.

A more precise form of these families is given in (3.4.39).
If ρ2 = 2c, Re ρ = 0, ρ �= 0, we have the case described in Remark 1.5.1. The

number ρ = r+ iγ with r = 0, γ �= 0, γ ∈ R is a root of both the characteristic equation

χ(ρ) ≡ 0 corresponding to the bottom vertex Γ
(0)
4 = (0, 3), and the characteristic equation

χ(ρ) = ρ2 − 2c = 0 corresponding to the top vertex Γ
(0)
6 = (0, 4).

According to Remark 1.5.1 here we have two families of expansions with the initial

term y = cρx
√
2c. Namely, we have the family B8 with Im

√
2c > 0 and the family B9

with Im
√
2c < 0. In both cases the cone of the problem is K = {s : Re s > 0}.

The characteristic equation (2.2.4) corresponding to the reduced solution y = cρx
ρ

and the vertex Γ
(0)
4 = (0, 3) has a double root k1,2 = ρ. Since it is not in the cone of the
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problem, there are no critical numbers. The support of expansions of solutions (2.2.6)

corresponding to the vertex Γ
(0)
4 is

(3.4.4) K1 = {ρ+ lρ+m(1− ρ); l,m ≥ 0; l +m > 0; l,m ∈ Z}.
The characteristic equation (3.2.6) corresponding to the reduced solution y = cρx

ρ and

the vertex Γ
(0)
6 = (0, 4) has two roots k1 = ρ and k2 = 2ρ. Since neither of them is in

the cone of the problem, there are no critical numbers. The support of expansions of

solutions (3.2.8) corresponding to the vertex Γ
(0)
6 is

(3.4.5) K2 = {ρ− lρ+m; l ≥ 0; m ≥ 1; l,m ∈ Z}.
According to Remark 1.5.1 we have two families of expansions

(3.4.6) B8,9 : y = cρx
ρ +

∑

Re s≥1

csx
s (sum over s ∈ K),

where ρ is a purely imaginary constant, ρ2 = 2c, Im ρ > 0 for the family B8 and Im ρ < 0
for the family B9, and s ∈ K = K1 ∩K2, i.e.,

s ∈ {ρ+ l(1− ρ) +m; l,m ≥ 0; l +m > 0; l,m ∈ Z}.
The complex coefficients are as follows: cρ is an arbitrary nonzero constant, and the cs
are uniquely determined constants.

Since r = 0, we are looking for power solutions of equation (3.4.1) in the form y = c0,
c0 �= 0. Let us compute c0. The defining equation is

(3.4.7) f̃
(1)
7 (c0)

def
= c−3

0 f̂
(1)
7 (x, c0)

def
= 2cc0 = 0.

The height of the edge Γ
(1)
7 equals 1, and the defining equation is linear. This defining

equation shows that for c = 0 any constant c0 is a solution, whereas for c �= 0 the equation
has only the zero solution c0 = 0. Therefore, we consider two cases: c �= 0 and c = 0.

4.2. Expansion of solutions in the case a = 0, b · c �= 0. In this case there are no
power solutions of equation (3.4.1). Let us find nonpower solutions of this equation.

Since the defining equation does not have multiple nonzero solutions, by Theorem
1.3.2 there are no solutions that tend to a nonzero constant.

In equation (3.4.1), let us make the logarithmic transform ξ = lnx. Then, according
to (2.2.13) and (3.4.1), we obtain the equation

(3.4.8) ϕ(ξ, y)
def
= f̂

(1)
7 (ξ, y) = 2ÿy2(y − 1) + ẏ2y(2− 3y) + 2cy4 = 0.

By Theorem 1.3.3 we are interested in only those solutions of this equation that tend
to zero as ξ → ∞. The support of the left-hand side of the equation, its convex hull,
and normal cones of all faces are shown in Figure 17. The cone of the problem is
K = {p1 ≥ 0, p2 ≤ 0}, which corresponds to the limit ξ → ∞. The real normal cones

that have nonempty intersection with the cone of the problem are U
(0)
1 , U

(0)
2 , and U

(1)
1 .

The only solution of the reduced equation ϕ̂
(0)
2 (ξ, y)

def
= 2cy4 = 0 is a trivial solution.

The reduced equation corresponding to the vertex Φ
(0)
1 is

(3.4.9) ϕ̂
(0)
1 (ξ, y)

def
= −2ÿy2 + 2ẏ2y = 0.

It has a solution y = c0 because the vector P = ω(1, r) = (1, 0) is in U
(0)
1 ∩ K. However,

the constant solution does not work in our case.
The reduced equation corresponding to the edge Φ

(1)
1 is

(3.4.10) ϕ̂
(1)
1 (ξ, y) = −2ÿy2 + 2ẏ2y + 2cy4 = 0.
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Figure 17. For equation (3.4.8): (a) the support, the polygon, and its
faces; (b) normal cones of faces.

The real normal cone is U
(1)
1 = {λ(1,−2), λ > 0}. The first approximation to a solution

of the equation ϕ(ξ, y) = 0 is y = c−2ξ
−2, c−2 �= 0. Let us compute the coefficient c−2.

The defining equation is

(3.4.11) ϕ̃
(1)
1 (c−2) = c3−2(−4 + 2cc−2) = 0,

and since c−2 �= 0, it has a solution c−2 = 2
c . Let us find critical numbers of this solution.

The first variation is

(3.4.12)
∂ϕ̂

(1)
1 (ξ, y)

∂y
= −2

d2

dξ2
y2 − 4ÿy + 4ẏ

d

dξ
y + 2ẏ2 + 8cy3.

The linear differential operator is

(3.4.13) L(ξ) = −2
d2

dξ2
c2−2

1

ξ4
− 24c2−2

1

ξ6
− 8c2−2

d

dξ

1

ξ5
+ 8c2−2

1

ξ6
+ 8cc3−2

1

ξ6
.

The characteristic polynomial ν(k) = c2−2(−2k2 − 6k), c−2 �= 0, has two roots, k1 = 0
and k2 = −3. The cone of the problem is K = {Re k < −2 or Re k = 0, Im k �= 0}. Since
k2 ∈ K, we can see that k2 is the only critical number. The support of the expansion of
the solution is K = {s = −2− 2l, l > 0}. The set K(k2) is K(k2) = {s = −2− l, l > 0}.
The second approximation to the solution of equation ϕ(ξ, y) = 0 is

(3.4.14) y = c−2
1

ξ2
+ c−3

1

ξ3
.

Since k2 �∈ K, the compatibility condition is automatically satisfied and the coefficient
c−3 is an arbitrary complex constant.

The expansion of the solution is given by the formula

(3.4.15) y =
2

c

1

ξ2
+ c−3

1

ξ3
+

+∞
∑

s=4

c−s
1

ξs
,

where c−3 is an arbitrary complex constant and c−s are uniquely determined constant
complex coefficients. By Theorem 1.7.2, the series (3.4.15) converges for sufficiently
large |ξ|. Making the inverse transformation, we obtain the asymptotics for the solution
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of equation (3.1.1),

(3.4.16) y =
2

c

1

ln2 x
+ c−3

1

ln3 x
+

+∞
∑

s=4

c−s
1

lns x
,

where c−3 is an arbitrary complex constant and the complex coefficients c−s are uniquely
determined constants.

Let us compute the critical numbers of the reduced solutions (3.4.16). The first vari-
ation is given by formula (3.4.19). Denote it by M(x, y). Let us make in M(x, y) the
logarithmic transformation ξ = lnx and denote the differentiation with respect to ξ by

a dot. Then y′ = ẏ
x , y

′′ = (ÿ−ẏ)
x2 . After the transformation, we obtain the operator

(3.4.17)

M(x, y) = 2

(

d2

dξ2
− d

dξ

)

y3 + 6(ÿ − ẏ)y2 − 6
d

dξ
ẏy2 − 6ẏ2y + 2

d

dξ
y3

+ 6ẏy2 + 4
d

dξ
ẏy + 2ẏ2 − 2

(

d2

dξ2
− d

dξ

)

y2

− 4(ÿ − ẏ)y − 2
d

dξ
y2 − 4ẏy + 8cy3

def
= N (ξ, y).

For solutions of equation (3.4.16) we have y = 2
c

1
ξ2 + · · · . Therefore, in the operator N ,

the largest exponent n in terms with ξn is n = −4, and the sum of terms with ξ−4 form
the operator

N−4 = −2y2
d2

dξ2
,

where y = 2
c

1
ξ2 . The characteristic polynomial corresponding to this operator is ν(k) =

−2
(

2
c

)2
k2. This polynomial has a double root k = 0 = r; i.e., it does not produce critical

values.
By Theorem 1.4.1 for solutions of the original equation (3.1.1) there exists a unique

expansion

(3.4.18) B3 : y = ϕ0 +

∞
∑

σ=1

ϕσx
σ,

where ϕ0 is given by (3.4.15) and ϕσ are series in decreasing powers of simple (non-
iterated) logarithms. This expansion is obtained from (2.3.30) and (2.3.28) for a = 0.

4.3. Expansion of solutions for a = c = 0, b �= 0. First, we find power and power-
logarithmic expansion.

According to (3.4.7) the coefficient c0 is an arbitrary constant. Let us compute critical
numbers. The first variation is

(3.4.19)

∂f̂
(1)
7 (x, y)

∂y
= 2

d2

dx2
x2y3 + 6y′′x2y2 − 6

d

dx
y′x2y2 − 6y′

2
x2y

+ 2
d

dx
xy3 + 6y′xy2 + 4

d

dx
y′x2y + 2y′

2
x2 − 2

d2

dx2
x2y2

− 4y′′x2y − 2
d

dx
xy2 − 4y′xy + 8cy3.

In the case c = 0 the linear differential operator is

(3.4.20) L(x) = ∂f̂
(1)
7 (x, c0)

∂y
= 2

d2

dx2
x2c30 + 2

d

dx
xc30 − 2

d2

dx2
x2c20 − 2

d

dx
xc20.
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The characteristic polynomial

(3.4.21) ν(k) = 2k2c20(c0 − 1)

has two roots which depend on c0 �= 0. If c0 = 1, then any number k is a double root of
the characteristic polynomial and L(x) ≡ 0. For any c0 �= 1 the polynomial (3.4.21) has
the double root k = 0.

The cone of the problem is K = {Re k > 0 or Re k = 0, Im k �= 0}. If c0 �= 0, 1,
then k �∈ K; i.e., there are no critical numbers and the expansion is in integral increasing
powers of x. The expansion of the solution is

(3.4.22) B10 : y = c0 +
+∞
∑

s=1

csx
s,

where the complex coefficient c0 �= 0, 1 is arbitrary, and the remaining complex coeffi-
cients cs are uniquely determined. Expansion (3.4.22) was known before (see [54, § 46,
formula (46.4)]. By Theorem 1.7.2 the series (3.4.22) converges for sufficiently small |x|.

The second approximation to the solution of the equation is y = c0+ c1x. The second
approximation to equation (3.1.1) is

ˆ̂
f7(x, y) = 2y′′x3y − y′

2
x3 − 2(b− d)xy2 + 2y′′x3y2 − 2y′

2
x3y + 6y′x2y2

− 4xy3(b− d)− 4y′′x3y3 + 6y′
2
x3y2 − 2xy4(b− d).

(3.4.23)

The coefficient c1 is given by c1 = − b1
ν(1) , where

b1 = x−1 ˆ̂f
(1)
7 (x, c0) = −2(b− d)c20(c0 − 1)2, ν(1) = 2c20(c0 − 1),

so that

(3.4.24) c1 = (b− d)(c0 − 1).

If c0 = 1, i.e., L(x) ≡ 0, we make the substitution y = 1 + u in equation (3.1.1) with
c = 0 and obtain the equation

g(x, u)
def
= u′′x2(x− 1)2(u+ 1)u(u+ 1− x)

− u′2[x2(x− 1)2u(u+ 1− x)

+ x2(x− 1)2(u+ 1)2(u+ 1− x) + x2(x− 1)2(u+ 1)u]

+ 2u′[x(x− 1)2(u+ 1)u(u+ 1− x)

+ x2(x− 1)(u+ 1)u(u+ 1− x) + x2(x− 1)2(u+ 1)

− 2bxu2(u+ 1− x)2 + 2dx(x− 1)(u+ 1)2u2] = 0.

(3.4.25)

Equation (3.4.25) has the trivial solution u = 0. The corresponding exceptional solu-
tion of equation (3.1.1) is I2: y = 1.

The cone of the problem is K = {p1 ≤ 0, p2 < 0}. The support S(g) of the left-hand

side of equation (3.4.25), its convex hull Γ(g), and the faces (vertices G
(0)
i and edges G

(1)
i ,

i = 1, . . . , 5) are shown in Figure 18 (a). The corresponding real normal cones U
(j)
i are

shown in Figure 18 (b).
Normal cones that have nonempty intersection with the cones of the problem K are

U
(0)
1 and U

(1)
1 .

The reduced equation corresponding to the vertex G
(0)
1 is

(3.4.26) ĝ
(0)
1 (x, u)

def
= 2u′′ux2 − u′2x2 + 2u′ux = 0.
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Figure 18. For equation (3.4.25): (a) the support, the polygon, and
its faces; (b) normal cones of faces.

The first approximation to a solution is u = crx
r, where cr is an arbitrary nonzero

constant. The exponent r is determined from the characteristic equation

(3.4.27) χ(r) = r2 = 0,

i.e., r1,2 = 0. Since the vector P = ω(1, r) = −(1, 0) is not in U
(0)
1 ∩ K, there are no

appropriate power solutions corresponding to the vertex G
(0)
1 . A simple analysis shows

that all solutions of equation (3.4.26) are of the form u = C1 ln
2(C0x), where C0 and

C1 are arbitrary constants. All these solutions have order p = 0; however, |u| → ∞ as
x → 0, so these solutions should be ignored.

The reduced equation corresponding to the edge G
(1)
1 is

ĝ
(1)
1 (x, u)

def
= 2u′′ux2 − u′2x2 + 2u′ux− 6u′′ux3 + 3u′2x3 − 6u′ux2

− 2(b− d)u2x+ 6u′′ux4 − 30u′2x4 + 6u′ux3

− 2(d+ 2b)u2x2 − 2u′′ux5 + u′2x5 − 2u′ux4 − 2bu2x3 = 0.

(3.4.28)

This edge is horizontal. The reduced equation corresponding to its left vertex G
(0)
1 =

(0, 2) is (3.4.26). For both equations (3.4.26) and (3.4.28) the total differentiation order

is Δ(ĝ
(1)
1 ) = Δ(ĝ

(0)
1 ) = 2. By Theorem 1.3.4, equation (3.4.28) does not have nonpower

solutions u → 0 as x → 0.
Let us compute nonpower solutions of equation (3.4.1). In our case, the determining

equation (3.4.7) has an arbitrary solution. The cone of the problem is K = {p1 ≥ 0},
and moreover, y �= const.

For c = 0 the support S(ϕ) of equation (3.4.8) consists of two points Q1 and Q3. The

convex hull of the support is the interval coinciding with the edge Φ
(1)
3 (Figure 17 (a)).

Normal cones are U
(0)
1 = {p2 < 0}, U(0)

3 = {p2 > 0}, U(1)
3 = {λ(1, 0), λ > 0}. Each of

them has a nonempty intersection with the support of the problem.

The vertex Φ
(0)
1 was considered in the case c �= 0 (see Subsection 4.2 in Chapter 3,

equation (3.4.9)). The vector P = (1, 0) is in the cone of the problem K. However,
the corresponding solution is constant, which is not suitable. Therefore, there are no

solutions corresponding to the vertex Φ
(0)
1 .
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The reduced equation corresponding to the vertex Φ
(0)
3 is

ϕ̂
(0)
3 (ξ, y)

def
= 2ÿy3 − 3ẏ2y2 = 0.

The normal cone is U
(0)
3 = {p2 > 0}. We are looking for solutions of this equation in the

form y = crξ
r, where cr �= 0 is an arbitrary constant. Let us compute the exponent r.

The characteristic equation

χ(r)
def
= ξ−4r+2ϕ̂

(0)
3 (ξ, ξr)

def
= −r2 − 2r = 0

has the roots r1 = 0 and r2 = −2. The solution corresponding to the vector P1 =
ω(1, r1) = (1, 0) is constant, so not suitable. On the other hand, the vector P2 =

ω(1, r2) = (1,−2) is not in the normal cone U
(0)
3 . Therefore, there are no solutions

corresponding to the vertex Φ
(0)
3 .

The reduced equation corresponding to the vertical edge Φ
(1)
3 is

(3.4.29) ϕ̂
(1)
3 (ξ, y)

def
= 2ÿy3 − 3ẏ2y2 − 2ÿy2 + 2ẏ2y = 0.

The root of the determining equation can be any constant. But the solution y(ξ) = const
is not suitable.

According to Subsection 3.2 of Chapter 1 we perform one more logarithmic transfor-
mation η = ln ξ. We obtain

ẏ =
1

ξ

dy

dη
, ÿ =

1

ξ2

(

d2y

dη2
− dy

dη

)

.

Equation (3.4.29) takes the form

ϕ̂
(1)
3 (ξ, y)

def
= σ(η, y)

def
= −2

(

d2y

dη2
− dy

dη

)

y2(1− y) +

(

dy

dη

)2

y(2− 3y) = 0.

The support S(σ) consists of four points Q1 = (−1, 3), Q2 = (−1, 4), Q3 = (−2, 4),
Q4 = (−2, 3). The convex hull of these points is the square with vertices at these points.
The boundary of this square consists of four vertices and four edges. The normal cones
are quadrants and coordinate planes p1, p2.

The cone of the problem is K = {p1 ≥ 0} and the solution is y(η) �= const. The
normal cones that have a nonempty intersection with the cone of the problem are those
of the left, top, and bottom edges, and of two right-side vertices.

The top and the bottom edges correspond to the vertices Φ
(0)
3 and Φ

(0)
1 , for which

the absence of suitable solutions has been established earlier. The reduced equation
corresponding to the right edge is

(3.4.30) 2
dy

dη
y2(1− y) = 0.

It has constant solutions only, which is not suitable. The reduced equations corresponding
to the two right-side vertices are parts of equation (3.4.30). Therefore, the corresponding
solutions are constant as well, and such solutions are not suitable. Therefore, there are

no solutions corresponding to the edge Φ
(1)
3 .

So, in the case c = 0 there are no nonpower solutions of equation (3.4.1).

4.4. Explicit form of solutions of (3.4.1). It is clear that equation (3.4.1) and equa-
tion (2.3.1) for a = 0 are the same equation. Therefore, we use results of Chapter 2 and
consider equation (2.3.33).

In the case a = 0 equation (2.3.33) takes the form

(3.4.31)
dy

dξ
= ±y

√

2c− C2 + C2y.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



82 A. D. BRUNO AND I. V. GORYUCHKINA

Integration of equation (3.4.31) depends on C2 and on c. Consider three cases de-
pending on the value of C2.

Case C2 = 2c. If a = 0, c �= 0, then equation (2.3.33) has a solution (2.3.36) coming
from the case a �= c �= 0. The corresponding expansion is (2.3.37).

In the case a = c = 0, equation (3.4.31) becomes dy
dξ = 0. It has a solution y = C3,

where C3 is an arbitrary constant. The corresponding family of expansions of solutions
of the complete equation is (3.4.22).

Case C2 = 0. Equation (3.4.31) takes the form

(3.4.32)
dy

dξ
= ±y

√
2c.

If a = 0, c �= 0, then equation (3.4.32) has a solution

(3.4.33) y = C4x
±
√
2c,

where C4 is an arbitrary constant.
The function (3.4.33) is a solution of the reduced equation (3.4.1) corresponding to the

edge Γ
(1)
3 . Furthermore, this function is a solution of the reduced equation corresponding

to each of the vertices Q4 = (0, 3) and Q6 = (0, 4) (Figure 14 (b)).

For Re
√
2c = 0 we obtain the initial parts (3.4.33) of expansions (3.4.6) from families

B8 with Im
√
2c > 0 and B9 with Im

√
2c < 0.

Case 0 �= C2 �= 2c. Let

(3.4.34) t2 = 2c− C2 + C2y.

Then equation (3.4.31) takes the form

(3.4.35)
dt

dξ
= ± (t2 − 2c+ C2)

2
.

Equation (3.4.35) has the integral

ln
t−√

2c− C2

t+
√
2c− C2

= ±
√

2c− C2 (ξ + C16),

where C16 is an arbitrary constant. Hence

(3.4.36)
t−√

2c− C2

t+
√
2c− C2

= exp
[

±
√

2c− C2 (ξ + C16)
] def
= σ.

Taking into account (3.4.34) and (3.4.36) we obtain

(3.4.37) y =
2c− C2

C2

4σ

(1− σ)2
.

The right-hand side of (3.4.37) can be written in the form

(3.4.38) y =
2c− C2

C2

(

2

1/
√
σ −√

σ

)2

.

Set 2iη = lnσ
def
= ±√

2c− C2(ξ + C16). Taking into account that ξ = lnx we have

η = ±i

√
2c− C2

2
(lnx+ C16).

Then equation (3.4.38) takes the form

(3.4.39) y =
C2 − 2c

C2

1

sin2 η
.
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According to (3.4.36), y can be expanded in a series in powers of σ = (C17x)
±
√
2c−C2 ,

where C17 is an arbitrary constant.

If 2c−C2 is a negative real number, then the number i
√
2c− C2

def
= 2γ is real. In this

case η = γ ln(C17x). Formula (3.4.39) shows that y can be expanded in a series in integral
powers of σ, i.e., in integral powers of x2γi, which yields a series in purely imaginary
powers of x. For a = 0 this series corresponds to families Bτ

7 of exotic expansions (3.4.3)
with Re ρ = 0 and ρ2 �= 2c. According to (3.4.38) the inverse expansion y−1 does not
depend on the sign of γ, i.e., of τ . By Theorem 1.5.3, expansions y−1 inverse to (3.4.3)
also do not depend on τ .

Hence, we have proved the following result.

Theorem 3.4.1. (a) For x → 0 and a = 0 there exist two two-parameter families of
exotic expansions of solutions with constant complex coefficients:

(3.4.3) Bτ
7 : y =

ρ2

2c− ρ2
1

sin2
[

ln(C11x)γ
] +

∑

Re s≥1

csx
s.

Here ρ is an arbitrary purely imaginary constant, ρ2 �= 2c, τ = sgn(Im ρ), 2γ = iρ,
s ∈ {ρ+ lρ+m(1− ρ) , l,m ≥ 0; l +m > 0; l,m ∈ Z}, C11 is an arbitrary nonzero con-
stant, and the cs are uniquely determined constants. The families of inverse expansions
y−1 to families B+

7 and B−
7 coincide.

(b) For x → 0 and a = 0, c �= 0 there exist two one-parameter families of power
expansions of solutions

(3.4.6) B8,9 : y = cρx
ρ +

∑

Re s≥1

csx
s,

where ρ is a purely imaginary constant, ρ2 = 2c, Im ρ > 0 for the family B8 and Im ρ < 0
for the family B9, s ∈ {ρ+ l(1− ρ) +m, l,m ≥ 0; l+m > 0; l,m ∈ Z}, and the complex
coefficients are as follows: cρ is an arbitrary nonzero constant and the cs are uniquely
determined constants.

(c) For x → 0 and a = c = 0 there exists a one-parameter family of power expansions
of solutions with constant complex coefficients

(3.4.22) B10 : y = c0 +
+∞
∑

s=1

csx
s,

where c0 �= 0, 1 is an arbitrary constant and the cs are uniquely determined constants .

5. Expansions near infinity for a = 0, b �= 0

5.1. Expansions near infinity corresponding to the vertex Γ
(0)
2 . The transforma-

tion

(3.5.1) x =
1

x∗ , y =
y∗

x∗ ,

which is the superposition of symmetries (2.1.6) and (2.1.8), sends the vertex Γ
(0)
5 = (2, 4)

to the vertex Γ
(0)
6 = (0, 4). Therefore the expansions corresponding to the vertex Γ

(0)
5 are

obtained from those corresponding to the vertex Γ
(0)
6 by applying (3.5.1). In this way,

we obtain the family

(3.5.2) C∞
∞ : y = crx

r +
∑

s
csx

s,
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where r = 1 +
√
1− 2d, Re

√
1− 2d > 0, s ∈ {r + l(1 − r) − m; l,m ≥ 0; l + m > 0;

l,m ∈ Z}, and the complex coefficients are as follows: cr is an arbitrary constant, and
the cs are uniquely determined constants.

For Re r > 2 the second approximation to the solution is y = crx
r + cr−1x

r−1, where

cr−1 = cr
(c+b+d−r)

r .
For 1 < Re r ≤ 2 the second approximation to the solution is y = crx

r + c1x, where
c1 = 0.

5.2. Expansions near infinity corresponding to the edge Γ
(1)
5 . For a = 0, b �= 0,

d = 1
2 we have the following family of power expansions G10 corresponding to the edge Γ

(1)
5

and obtained by the symmetry (3.5.1) from the family of expansions B10 corresponding

to the edge Γ
(1)
7 :

(3.5.3) G10 : y = c1x+
+∞
∑

s=0

c−sx
−s,

with the following complex coefficients: c1 �= 0, 1 is an arbitrary constant, and the c−s

are uniquely determined constants. The second approximation to the solution is given
by y = c1x+ c0, where

(3.5.4) c0 = (c1 − 1)(1− 2c− 2b).

For a = 0, d �= 1
2 we have the following family of complicated expansions corresponding

to the edge Γ
(1)
7 :

(3.5.5) G3 : y = ϕ1x+

∞
∑

σ=0

ϕ−σx
−σ,

where

(3.5.6) ϕ1 =
4

1− 2d

1

ln2 x
+ c−3

1

ln3 x
+

+∞
∑

s=4

c−s

(

1

lnx

)s

,

and the complex coefficients are as follows: c−3 is arbitrary, and the remaining c−s are
uniquely determined. Also, ϕ−σ are series in decreasing powers of simple logarithms.

For a = 0, d �= 1
2 there exist two families of exotic expansions

(3.5.7) Gτ
7 : y = cρx

ρ +
∑

s

csx
s,

where τ = sgn(ρ − 1), ρ is an arbitrary complex number such that Re ρ = 1, Im ρ �= 0,
ρ − 1 �=

√
1− 2d, s ∈ {ρ + l(ρ − 1) − mρ; l,m ≥ 0; l + m > 0; l,m ∈ Z}. Complex

coefficients are as follows: cρ is an arbitrary nonzero constant, and the cs are uniquely
determined constants.

For a = 0, d > 1
2 we have two families of expansions with ρ = 1 +

√
1− 2d, namely,

the two families of exotic expansions

(3.5.8) G8, 9 : y = cρx
ρ +

∑

Re s≤0

csx
s,

where Re ρ = 1, Im ρ �= 0, Im ρ > 0 for the family G8 and Im ρ < 0 for the family
G9, s ∈ {ρ − lρ − mρ; l,m ≥ 0; l + m > 0; l,m ∈ Z}, and the complex coefficients
are as follows: cρ is an arbitrary nonzero constant, and the cs are uniquely determined
constants.
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6. Summary of results in the case a = 0, b �= 0

Theorem 3.6.1. In the case a = 0, b �= 0, equation (2.1.1) with x → 0 has 21 families
of expansions of solutions. Of these, 15 families A0, Hi, i = 1, . . . , 6, H0, Hτ

1 , Hτ
2 , Hτ

6 ,

τ = ±1, and B3 corresponding to the vertex Γ
(0)
4 , the edge Γ

(1)
1 , and the edge Γ

(1)
4 come

from the case a · b �= 0. The remaining 6 families are new:

the family C∞
0 , which exists for c �= 0, is given by formulas (3.2.8), (3.2.7) and

has one parameter;
the families B8,9, which exist for c < 0, are given by formula (3.4.6), and have
one parameter;
the family B10, which exists for c = 0, is given by formula (3.4.22), and has one
parameter;
the family Bτ

7 , which exists for c �= 0, is given by formula (3.4.3) with first
approximation (3.4.39), and has two parameters.

Remark 3.6.1. The families C∞
0 , B8–B10, Bτ

7 are also called basic. Applying the sym-
metries (2.1.6), (2.1.8), and (2.1.9) of equation P6 we obtain the remaining families of
expansions.

The one-parameter families C∞
0 , B8–B10 are power families, Bτ

7 are exotic, and B3 is
complicated. The existence of basic families B3, C∞

0 , B8–B10, Bτ
7 for various values of the

parameters with a = 0 is shown in the last two columns of Table 1 on page 9.

Theorem 3.6.2. For a = 0, b �= 0, equation (2.1.1) has 21 families of expansions of
solutions as x → ∞. Of these families, 15 families A∞, Di, i = 1, . . . , 6, D0, Dτ

1 , Dτ
2 ,

Dτ
6 , τ = ±1, and G3 corresponding to the vertex Γ

(0)
2 , the edge Γ

(1)
2 , and the edge Γ

(1)
3

come from the case a · b �= 0. The remaining 6 families are new:

the family C∞
∞ , which exists for d �= 1

2 , is defined by formula (3.5.2), and has one
parameter;
the families G8,9, which exist for d > 1

2 , are defined by formula (3.5.8), and have
one parameter;
the family G10, which exists for d = 1

2 , is defined by formula (3.5.3), and has one
parameter;
the family Gτ

7 , which exists for d �= 1
2 , is defined by formula (3.5.7), and has two

parameters.

The sixth Painlevé equation has three symmetries, (2.1.6), (2.1.8), (2.1.9). Combining
the first two, we obtain the symmetry (3.5.1):

(3.6.1) (x, y, a, b, c, d) →
(

1

x∗ ,
y∗

x∗ , a
∗, b∗,−d∗ +

1

2
,−c∗ +

1

2

)

.

This symmetry sends families of expansions for x → 0 to families of expansions for x →
∞, with the families C∞

0 , B8–B10, Bτ
7 becoming the families C∞

∞ , G8–G10, Gτ
7 respectively

(and vice versa). Let us illustrate this by using as an example the families C∞
0 and C∞

∞ .
Applying (3.6.1) to formula (3.2.8) we obtain

(3.6.2)

y∗

x∗ = crx
∗−r +

∑

s

csx
∗−s,

y∗ = crx
∗−r+1 +

∑

s

csx
∗−s+1.
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Denote c∗r∗ = cr, r
∗ = −r + 1, c∗s∗ = cs, s

∗ = −s + 1, where s∗ runs over the set
K∗ = {s∗ = r∗ + l(1− r∗)−m; l,m > 0; l +m ≥ 0; l,m ∈ Z}. We obtain the series

y∗ = c∗r∗x
∗r∗ +

∑

s∗

c∗s∗x
∗s∗ .

From Section 2 in Chapter 3 we know that in the case 1 > |Re
√
2c| > 0 the second

approximation to the solution corresponding to the vertex Γ
(0)
6 is y = crx

r + c0, where

cr �= 0 is an arbitrary constant and r = −
√
2c. Using (3.6.1) we obtain the second

approximation to the solution corresponding to the vertex Γ
(0)
5 for 1 > |Re

√
1− 2d∗| > 0,

y∗ = c∗r∗x
∗r∗ + c∗1x

∗,

where r∗ = 1 +
√
1− 2d∗, c∗r∗ �= 0, c∗r∗ is an arbitrary constant, and c∗1 = 0.

Similarly, in the case |Re
√
1− 2d∗| ≥ 1 we obtain

y∗ = c∗r∗x
∗r∗ + c∗r∗−1x

∗r∗−1,

where r∗ = 1 +
√
1− 2d∗, c∗r∗ �= 0, c∗r∗ is an arbitrary constant, and

c∗r∗−1 = c∗r∗
(−r∗2 + r∗ + c∗ + b∗ − d∗)

r∗
.

Finally, we remove the asterisks and get

(3.6.3) C∞
∞ : y = crx

r +
∑

s

csx
s,

where the complex exponent r is given by r = 1 +
√
1− 2d, Re

√
1− 2d > 0, cr �= 0, cr

is an arbitrary complex constant, cs are uniquely determined constants, and s ∈ C runs
over the set {r + l(1− r)−m; l,m > 0; l +m ≥ 0; l,m ∈ Z}; in the case |Re

√
1− 2d|

≥ 1 the second approximation to expansion (3.6.3) is y = crx
r + cr−1x

r−1, where

cr−1 = cr
(−r2+r+c+b−d)

r , and in the case 1 > |Re
√
1− 2d| > 0 the second approxi-

mation is y = crx
r + c1x, where c1 = 0.

7. Expansions in the case a �= 0, b = 0

In this case, the polygon of equation P6 is shown in Figure 15 (a) and the normal
cones of generalized faces of this polygon are shown in Figure 15 (b).

Using symmetry (2.1.6) one can obtain expansions in the case b = 0 from expansions
in the case a = 0.

7.1. Expansions corresponding to the vertex Γ
(0)
8 = (3, 2). This vertex is symmet-

ric to the vertex Γ
(0)
6 . Therefore expansions of solutions corresponding to the vertex

Γ
(0)
8 are symmetric to expansions of solutions corresponding to the vertex Γ

(0)
6 . Let us

consider expansion (3.2.8). The symmetry (2.1.6) sends formula (3.2.8) to the following
formula:

(3.7.1)

1

y∗
= crx

∗−r +
∑

s

csx
∗−s,

y∗ =
1

cr
x∗r

(

1 +
∑

s
cs
cr
x∗−s+r

) .

Since |x∗| → ∞, expression (3.7.1) can be expanded in a formal series

(3.7.2) y∗ =
x∗r

cr

+∞
∑

n=0

(−1)n
(

∑

s

cs
cr
x∗−s+r

)n

.
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The first two terms of this series are

(3.7.3) y∗ =
x∗r

cr
−
∑

s

cs
c2r
x∗−s+2r + · · · .

Set c∗r = 1
cr
, c∗s∗ = − cs

c2r
, s∗ = −s + 2r, where s∗ runs over the set {r + lr − m;

l,m > 0; l +m ≥ 0; l,m ∈ Z}. We obtain the series

y∗ = c∗rx
∗r +

∑

s∗

c∗s∗x
∗s∗ + · · · .

The second approximation to the solution in the case Re r ≤ −1 is y∗ = c∗rx
∗r+c∗r−1x

∗r−1,

r = −
√
2c,

c∗r−1 = −cr+1

c2r
= −c∗r

c∗ + d∗ + a∗ − r

r − 1
.

In the case −1 < Re r < 0 the second approximation is

y∗ = c∗rx
∗r + c∗2rx

∗2r,

where c∗2r = 0. Finally, deleting asterisks we obtain

(3.7.4) C0
∞ : y = crx

r +
∑

s

csx
s,

where the complex exponent r =
√
2c satisfies the condition Re r < 0, and s runs over the

set {r + lr −m, l,m > 0, l +m ≥ 0, l,m ∈ Z}. The complex coefficients are as follows:
cr is an arbitrary nonzero constant, and all cs are uniquely determined constants.

In the case Re r < −1 expansion of the solution is y = crx
r + cr−1x

r−1, where

cr−1 = −cr
c+ d+ a− r

r − 1
,

and in the case −1 < Re r < 0 the second approximation to the solution of the equation
is y = crx

r + c2rx
2r, where c2r = 0. By Theorem 1.7.2 the series (3.7.4) converges for

sufficiently large |x|.

7.2. Expansions corresponding to the vertex Γ
(0)
7 = (1, 2). We have the following

one-parameter family of expansions:

(3.7.5) C0
0 : y = crx

r +
∑

s

csx
s,

where r = 1 +
√
1− 2d, Re r > 1, s ∈ {r + l(r − 1) +m; l,m > 0; l +m ≥ 0; l,m ∈ Z}

and the complex coefficients are as follows: cr is an arbitrary nonzero constant, and all
cs are uniquely determined constants. In the case Re r ≥ 2 the second approximation to
the solution is y = crx

r + c2r−1x
2r−1, c2r−1 = cr

r−c+a−d
r , and in the case 1 < Re r < 2

the second approximation is y = crx
r + c2r−1x

2r−1, c2r−1 = 0. According to Theorem
1.7.2, the series (3.7.5) converges for sufficiently small |x|.

7.3. Expansions of solutions corresponding to the edge Γ
(1)
10 . For c = 0 we have

the following one-parameter family of power expansions:

(3.7.6) D10 : y = c0 +
c−1

x
+

+∞
∑

s=2

c−s

xs
,

where the complex coefficients are as follows: c0 �= 0, 1 is an arbitrary constant, c−1 =
(d+ a)(1− c0)c0, and all c−s are uniquely determined constants.

By Theorem 1.7.2 the series (3.7.6) converges for sufficiently large |x|.
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For c �= 0 we have the following one-parameter family of complicated expansions:

(3.7.7) D3 : y = ϕ0 +

∞
∑

σ=1

ϕ−σx
−σ,

where

(3.7.8) ϕ0 =
c

2
ln2 x+ c1 lnx+

+∞
∑

s=0

c−s

(

1

lnx

)s

+ · · · ,

and the complex coefficients are as follows: c1 is an arbitrary constant, and all c−s are
uniquely determined constants; ϕ−σ are series in decreasing powers of logarithms.

For c �= 0 there exists the following family of semiexotic expansions:

(3.7.9) D7 : y = cρx
ρ + c0 + c−ρx

−ρ +
∑

s

csx
s,

where ρ is a complex constant such that Re ρ = 0, Im ρ �= 0, ρ2 �= 2c, s ∈ {l + kρ;
l ≤ −1; |k| ≤ |l|; l, k ∈ Z}. The complex coefficients are as follows: cρ is an arbitrary
nonzero constant, and c0, c−ρ, and cs are uniquely determined constants.

For c < 0 we have two families of expansions with ρ =
√
2c:

(3.7.10) D8,9 : y = cρx
ρ +

∑

Re s≤−1

csx
s,

where Re ρ = 0, Im ρ �= 0, Im ρ < 0 for the family D8 and Im ρ > 0 for the family D9,
s ∈ {ρ− lρ−m; l,m ≥ 0; l +m > 0; l,m ∈ Z}. The complex coefficients are as follows:
cρ is an arbitrary nonzero constant, and the cs are uniquely determined constants.

7.4. Expansions of solutions corresponding to Γ
(1)
8 . For d = 1

2 we have the following
one-parameter family of power expansions:

(3.7.11) H10 : y = c1x+
+∞
∑

s=2

csx
s,

where the complex coefficients are as follows: c1 �= 0, 1 is an arbitrary constant, c2 =
−c1 × (1− c1)(1− 2c+ 2a), and all cs are uniquely determined constants.

This series converges for sufficiently small |x|.
For d �= 1

2 we have the following one-parameter family of complicated expansions:

(3.7.12) H3 : y = ϕ1x+

∞
∑

σ=2

ϕσx
σ,

where

(3.7.13) ϕ1 =
1− 2d

4
ln2 x+ c1 lnx+

+∞
∑

s=0

c−s(lnx)
−s,

and the complex coefficients are as follows: c1 is an arbitrary constant, and all c−s are
uniquely determined constants; ϕσ are the series in decreasing powers of logarithms.

For d �= 1
2 there exists one family of semiexotic expansions,

(3.7.14) H7 : y = cρx
ρ + c1x+ c2−ρx

2−ρ +
∑

s

csx
s,

where the complex number ρ satisfies the conditions Re ρ = 1, Im ρ �= 0, ρ−1 �=
√
1− 2d,

s ∈ {l + k(ρ − 1); l ≥ 2; |k| ≤ l; l, k ∈ Z}.The complex coefficients are as follows: cρ is
an arbitrary complex constant, and c1, c2−ρ, and cs are uniquely determined constants.
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For a = 0, d > 1
2 we have two families of expansions,

(3.7.15) H8, 9 : y = cρx
ρ +

∑

Re s≥2

csx
s,

where Re ρ = 1, Im ρ �= 0, Im ρ < 0 for the family H8 and Im ρ > 0 for the family H9,
s ∈ {ρ+ lρ+m; m ≥ 0; l ≥ 1; l,m ∈ Z}, and the complex coefficients are as follows: cρ
is an arbitrary nonzero constant, and the cs are uniquely determined constants.

7.5. Summary of results in the case a �= 0, b = 0.

Theorem 3.7.1. In the case a �= 0, b = 0, equation (2.1.1) has 21 families of expansions
of solutions as x → 0. Of these, 16 families A0, Bi, i = 1, . . . , 6, Bτ

0 , Bτ
1 , Bτ

2 , Bτ
6 , τ = ±1,

and H3 corresponding to the vertex Γ
(0)
4 , to the edge Γ

(1)
4 , and to the edge Γ

(1)
1 come from

the case a · b �= 0. The remaining 5 families of expansions of solutions are new:

C0
0 , which exists for d �= 1

2 , is given by formula (3.7.5), and has one parameter;

H8,9, which exist for d > 1
2 , are given by formula (3.7.15), and have one param-

eter;
H10, which exists for d = 1

2 , is given by formula (3.7.11), and has one parameter;

H7, which exists for d �= 1
2 , is given by formula (3.7.14), and has two parameters.

Theorem 3.7.2. In the case a �= 0, b = 0, equation (2.1.1) has 21 families of expansions
of solutions as x → ∞. Of these expansions, 16 families A∞, Gi, i = 1, . . . , 6, Gτ

0 , Gτ
1 ,

Gτ
2 , Gτ

6 , τ = ±1, and D3, corresponding to the vertex Γ
(0)
2 , the edge Γ

(1)
3 , and the edge

Γ
(1)
2 , come from the case a · b �= 0. The remaining 5 families of expansions of solutions

are new:

C0
∞, which exists for c = 0, is given by formula (3.7.4), and has one parameter;

D10, which exists for c = 0, is given by formula (3.7.6), and has one parameter;
D8,9, which exist for c < 0, are given by formula (3.7.10), and have one param-
eter;
D7, which exists for c �= 0, is given by formula (3.7.9), and has two parameters.

The symmetry (3.6.1) maps expansions of solutions as x → 0 to expansions of solutions
as x → ∞. Expansions C0

0 , H8–H10, H7 are mapped to expansions C0
∞, D8–D10, D7

respectively (and vice versa).

Chapter 4. Expansions of solutions of P6 near zero and infinity

in the case a = b = 0

1. Expansions

In the case where the parameters in the sixth Painlevé equation (2.1.1) are a = b = 0,
c and d arbitrary, we are looking for expansions of solutions as x → 0 and x → ∞ of
the form (2.1.2) and of all five types: power, power-logarithmic, complicated, semiexotic,
and exotic.

For a = b = 0, equation (2.1.4) takes the form

f(x, y)
def
= 2y′′x2(x− 1)2y(y − 1)(y − x)

− (y′)2[x2(x− 1)2(y − 1)(y − x) + x2(x− 1)2y(y − x) + x2(x− 1)2y(y − 1)]

+ 2y′[x(x−1)2y(y−1)(y−x) + x2(x−1)y(y−1)(y−x) + x2(x−1)2y(y−1)]

− [2c(x− 1)y2(y − x)2 + 2dx(x− 1)y2(y − 1)2] = 0.

(4.1.1)
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Figure 19. The support of equation (4.1.1), its polygon, vertices, and faces.

The support S(fa=b=0) of the left-hand side of equation (4.1.1), its convex hull

Γ(fa=b=0), the faces Γ
(0)
i

def
= Qi, i = 2, 5, 6, 4, 7, 8, and the edges Γ

(1)
i , i = 5, . . . , 10,

are shown in Figure 19.
According to Figure 19 in this case there are no new families of expansions of solutions.

All families that exist in the case a = b = 0 are among the families in one of the cases
a · b �= 0; a = 0, b �= 0, and a �= 0, b = 0 and are listed in Chapters 2 and 3.

Theorem 4.1.1. In the case a = b = 0, equation (2.1.1) has 14 families of expansions
of solutions as x → 0. Of these, 3 families A0, B3 and H3 come from the case a · b �= 0.
The remaining 11 families of expansions C∞

0 , B8–B10, Bτ
7 , C0

0 , H8–H10, H7 come from
the cases a = 0, b �= 0 and a �= 0, b = 0.

Theorem 4.1.2. In the case a = b = 0, equation (2.1.1) has 14 families of expansions
of solutions as x → ∞. Of these, 3 families A∞, G3 and D3 come from the case a · b �= 0.
The remaining 11 families of expansions C∞

∞ , G8–G10, Gτ
7 , C0

∞, D8–D10, D7 come from
the cases a = 0, b �= 0 and a �= 0, b = 0.

2. Examples and comparison with previously known results

Example 2.1. In the case

(4.2.1) a = b = c = 0, d =
1

2

we obtain the following basic families of expansions:
1. Three two-parameter (with respect to cr and r) families of expansions Bτ

7 with
τ = sgn(Im r) (families of exotic expansions) and A0 (families of power expansions)
given by the formula

(4.2.2) y = crx
r +

∑

csx
s,

where the complex exponents are as follows: r satisfies the conditions Re r = 0, r �= 0 for
the family Bτ

7 , τ = sgn(Im r) and 0 < Re r < 1 for the family A0, s ∈ {r+ lr+m(1− r);
l,m ≥ 0; l+m > 0; l,m ∈ Z}. The complex coefficients are as follows: cr is an arbitrary
nonzero constant, and all cs are uniquely determined constants.
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If Re r = 0, r �= 0, then the sum of the series (4.2.2) for m = 0 is the function (3.4.39);
i.e., asymptotics are

(4.2.3) y = sin−2

[

− Im r

2
ln(C17x)

]

,

where r =
√
−C2, C2 is an arbitrary real positive number, and C17 is an arbitrary nonzero

constant.
2. A one-parameter (in c0) family of power expansions B10 is given by the formula

(4.2.4) y = c0 +
∞
∑

s=1

csx
s,

where the complex coefficients are as follows: c0 is an arbitrary constant such that

c0 �= 0, 1, c1 = (c0−1)
2 , and the remaining cs are uniquely determined constants.

Example 2.2. In the case (4.2.1), Picard [69] solved equation (2.1.1) explicitly. Some
asymptotics of Picard’s solutions can be found in [63, Lemma 2]. For x → 0 these
asymptotics are of the form

(4.2.5) y(x) ∼ a0x
r(1 +O

(

xε
)

),

where either 0 < Re r < 1, or r = 0, or r = 1, and a0 is an arbitrary nonzero constant.
In the case Re r = 0, r �= 0, asymptotics are [55]

(4.2.6) y(x) ∼ (1 +O(x))sin−2

[− Im r log(x)

2
+O(1)

]

.

Comparing formula (4.2.5) with formulas (4.2.2), (4.2.4) and formula (4.2.6) with
formula (4.2.3) we see that formulas (4.2.5) and (4.2.6) provide asymptotics of solutions
for families A0, B10 (for r = 0) and Bτ

7 respectively.

Example 2.3. For

(4.2.7) a = 2, b = c = 0, d =
1

2
,

we obtain the following basic families of expansions:
1. Three two-parameter families of expansions Bτ

0 (exotic expansions) and A0 (power
expansions) given by the formula

(4.2.8) y = crx
r +

∑

csx
s,

where the complex exponents are as follows: r is an arbitrary number satisfying Re r = 0,
r �= 0 for the family Bτ

0 and 0 < Re r < 1 for the family A0. Also s ∈ {r+ lr+m(1− r);
l,m ≥ 0; l + m > 0; l,m ∈ Z}, and the complex coefficients are as follows: cr is an
arbitrary nonzero constant, and all cs are uniquely determined constants.

In the case Re r = 0, r �= 0 the sum of the series (4.2.8) for m = 0 is the function

(2.3.85), where C2 is a real positive number, α = 1, β = −C2/4, γ =
√
C2

2 . Therefore
asymptotics of solutions are

(4.2.9) y =
β

β cos2
[√−β ln(C11x)

]

+ sin2
[√−β ln(C11x)

] ,

where β is an arbitrary real negative number, and C11 is an arbitrary nonzero constant.
2. A one-parameter family of power expansions B6 given by the formula

(4.2.10) y = 1 + c2x
2 +

c2
2
x3 +

∞
∑

s=4

csx
s,
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where the complex coefficients are as follows: c2 is an arbitrary nonzero constant, and
all cs are uniquely determined constants.

3. A one-parameter family of complicated expansions B3 with asymptotics

(4.2.11) y = − ln−2 x+ c−3 ln
−3 x+

∞
∑

s=4

c−s ln
−s x,

where the complex coefficients are as follows: c−3 is an arbitrary nonzero constant, and
all c−s are uniquely determined constants.

Example 2.4. In the case (4.2.7) the explicit form of a class of solutions (called Chazy
solutions) was found. The asymptotics of solutions of this class as x → 0 was found in
[63, Lemma 5] in the following form:

(4.2.12) y(x) ∼ − log−2 x+ b0 log
−3 x+O(log−4 x),

where b0 is an arbitrary complex number.
Formula (4.2.12) is similar to (4.2.11) in the case (4.2.7). For other solutions of (4.2.7)

(except the Chazy solutions) asymptotics have not been written out explicitly.
According to [63, Lemma 6] there exists a transformation that maps solutions in the

case (4.2.7) to solutions in the case (4.2.1). By [63, Lemma 7], all Chazy solutions are
mapped to the exceptional solution I4: y = ∞. In [63] a class of solutions (called
solutions of Picard type) was described. By [63, Lemma 8] solutions of Picard type are
not mapped to the exceptional solution y = ∞. Therefore, it is reasonable to assume
that asymptotics of solutions of Picard type have the same form as solutions in families
A0, Bτ

0 , and B6.
Let us consider the transformation from [63, Lemma 6] for expansions of solutions in

the family B6, i.e., expansions of the form (4.2.10). This transformation maps expansions
(4.2.10) to expansions of the form

(4.2.13) y =
1

1− 64c2
− 32c2

1− 64c2
x+ · · · ,

where c2 is an arbitrary complex constant from (4.2.10).
For c2 �= 1

64 expansion (4.2.13) belongs to family B10, i.e., has the form (4.2.4). How-

ever, in the case c2 = 1
64 it is an exceptional solution y = ∞. Therefore, in the case

(4.2.7), a transformation from [63, Lemma 6] maps solution (4.2.10) from the family B6

with c2 = 1
64 to the solution y = ∞. By [63, Lemma 8] this solution is not a solution

of Picard type. Since its asymptotics as x → 0 differs from the asymptotics (4.2.11) of
Chazy solutions, this solution is not a Chazy solution.

Therefore, in the case (4.2.7), there exists a solution (4.2.10) with c2 = 1
64 that is

neither a Chazy solution nor a solution of Picard type. This contradicts Theorem 4 (iii)
in [63], which claims that in the case (4.2.7) Chazy solutions and Picard type solutions
exhaust all possible solutions.

In fact, in the case (4.2.7) there are solutions of three types: 1) a two-parameter family
of solutions of Picard type, 2) one-parameter family of Chazy solutions and 3) a unique
solution (4.2.10) with c2 = 1

64 . Expansions of type 2) are limiting expansions for type
1), and the solution of type 3) is a limiting solution for types 1) and 2). In addition
to asymptotic properties, some other properties of the solution of type 3) are also quite
special.

Chapter 5. Expansions of solutions of P6 near the point x = 1

Using the symmetry (2.1.9) we obtain expansions of solutions for x → 1 from expan-
sions of solutions for x → 0. Here we formulate the results without proofs.
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1. Expansions near 1 in the case a · c �= 0

1.1. Two-parameter families of expansions. There is one two-parameter family of
power expansions of solutions

(5.1.1) A1 : y = 1 + cr(1− x)r +
∑

s

cs(1− x)s,

where the exponent r is any number satisfying the condition 0 < Re r < 1, and s ∈
{r + lr + m(1 − r); l,m ≥ 0; l + m > 0; l,m ∈ Z}, cr �= 0, cr is an arbitrary complex
constant, and the remaining coefficients cs are uniquely determined constants.

For 1 > Re r > 1
2 the third approximation to a solution is y = 1+cr(1−x)r+c1(1−x),

where

(5.1.2) c1 =
2(c+ d) + (r − 1)2 − 1

2(r − 1)2
.

For 0 < Re r < 1
2 the third approximation to a solution is y = 1+cr(1−x)r+c2r(1−x)2r,

where

(5.1.3) c2r = −c2r
2(a+ b) + r2

2r2
.

For Re r = 1
2 , Im r �= 0 the third approximation to a solution is y = 1 + cr(1 − x)r+

c1(1−x)+c2r(1−x)2r, where the coefficients c1 and c2r are given by formulas (5.1.2) and
(5.1.3) respectively. For r = 1

2 the third approximation to a solution is y = 1+c 1
2

√
1− x+

c1(1−x) where c1/2 is an arbitrary constant, and c1 = (−3+8(c+d)−c21/2−8c21/2(a+b))/2.

There exist two two-parameter families of exotic expansions Eτ
0 and one two-parameter

family of semiexotic expansions J0 that are given by the following formula:

(5.1.4) y = 1 + cr(1− x)r +
∑

s

cs(1− x)s,

where x → 1, and the complex exponents are as follows: for the families Eτ
0 with τ =

sgn(Im r) the exponent r is arbitrary with Re r = 0; for the family J0, the exponent r
satisfies Re r = 1, r �= 1 and s ∈ {l + k(r − 1); l ≥ 1; |k| ≤ l; l, k ∈ Z}. The complex
coefficients are as follows: cr is an arbitrary nonzero constant, and the cs are uniquely
determined constants.

1.2. Expansions of solutions for a �= −b �= 0. Let θi
def
=

√
2a + (−1)i

√
−2b, where

i = 1, 2. For each value of i we have one of three possible cases, depending on the value
of θi.

Case 1. Re θi = 0. In this case we have the one-parameter families of exotic expansions

(5.1.5) Eτ
i : y = c0i +

∑

s

csi(1− x)s, i = 1, 2, τ = ±1,

where s ∈ {l +mτθi; l,m ≥ 0; l +m > 0; l,m ∈ Z}, and the complex coefficients are as
follows:

(5.1.6) c0i = (−1)i
√

− b

a
,

csi with s = τθi is an arbitrary constant and the remaining csi are uniquely determined
constants.

If csi = 0 with s = τθi, then the family of power expansions (5.1.5) is denoted by Ei.
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In the case csi = 0 with s = τθi, the second approximation to expansions of solutions
(5.1.5) is y = c0i + c1i(1− x), where

(5.1.7) c1i = (−1)i
√

−b

a

c+ d− (
√
a+ (−1)i

√
−b)2

1− 2(
√
a+ (−1)i

√
−b)2

.

Let ki = θi for Re θi > 0 and ki = −θi for Re θi < 0.

Case 2. Re θi �= 0, θi �∈ Z. Here we have a family of power expansions of solutions

(5.1.8) Ei : y = c0i +
∑

s

csi(1− x)s, i = 1, 2,

where s ∈ {l + mki; l,m ∈ Z; l,m ≥ 0; l + m > 0}. The complex coefficients are
as follows: c0i is given by formula (5.1.6), ckii is arbitrary, and the remaining csi are
uniquely determined constants. The second approximation to the expansion of solution
(5.1.8) depends on the number Re ki. If Re ki > 1, then the second approximation
is y = c0i + c1i(1 − x), which is similar to the case Re θi = 0. If 0 < Re ki < 1,
then the second approximation to a solution is y = c0i + ckii(1 − x)ki , where ckii is
an arbitrary coefficient. If Re ki = 1, then the second approximation to a solution is
y = c0i + c1i(1− x) + ckii(1− x)ki , where ckii is an arbitrary coefficient, and c1i is given
by formula (5.1.7).

Case 3. Re θi ∈ N \ {0}. Here we have a family of power-logarithmic expansions of
solutions:

(5.1.9) Ei : y = c0i +

∞
∑

s=1

csi(ln (1− x))(1− x)s, i = 1, 2.

The coefficient ckii is given by the formula ckii = αkii + βkii ln (1− x), where αkii is
an arbitrary constant, βkii is a uniquely determined constant, c0i is given by formula
(5.1.6), and the remaining csi are uniquely determined polynomials in ln(1 − x). Here
expansion (5.1.9) forms a one-parameter (in αkii) family Ei. The second approximation
to the expansion of solution (5.1.9) depends on the number ki. In the case ki = 1 the
second approximation to a solution is y = c0i + c1i(1 − x). The coefficient is given as
follows:

(5.1.10) c1i = α1i + (−1)i
√

−b

a

c+ d−
(√

a+ (−1)i
√
−b

)2

2
ln (1− x),

where α1i is an arbitrary constant.
There is a family of complicated expansions

(5.1.11) E3 : y = ϕ0 +
∞
∑

σ=1

ϕσ(1− x)σ,

where ϕ0 = 1+ 2
a+b ln

−2(1−x)+c−3 ln
−3(1−x)+

∑∞
s=4 c−s ln

−s(1−x), and the complex
coefficients are as follows: c−3 is an arbitrary constant, the c−s are uniquely determined
constants, and ϕσ is a series in decreasing powers of logarithms.

1.3. Expansions of solutions for a = −b �= 0. We have two one-parameter families of
complicated expansions:

(5.1.12) E3+j : y = ϕ0j +

∞
∑

σ=1

ϕσj(1− x)σ,

where

ϕ0j = 1 + (−1)j
1√
2a

ln−1(1− x) + c−2j ln
−2(1− x) +

∞
∑

s=3

c−sj ln
−s(1− x), j = 1, 2.
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The complex coefficients are as follows: c−2j is an arbitrary constant, c−sj are uniquely
determined constants, and ϕσj are series in decreasing powers of logarithms.

The families of expansions E2 and Eτ
2 come from the case a �= b �= 0. For θ2 we take

2
√
2a with Re θ2 ≥ 0. Depending on θ2 we have three possible cases: Case 1 (Re θ2 = 0,

the one-parameter family of exotic expansions Eτ
2 is given by formula (5.1.5)), Case

2 (Re θ2 �= 0, θ̌2 �∈ Z, the one-parameter family of power expansions E2 is given by
formula (5.1.8)), and Case 3 (θ2 ∈ Z\{0}, the one-parameter family of power-logarithmic
expansions E2 is given by formula (5.1.9)).

1.4. Expansions of solutions for b = 0. By Theorem (2.1.4) in this case we have the
exceptional solution

I2 : y = 1.

We also have one family of power expansions

(5.1.13) E6 : y = cρ(1− x)ρ +
∑

s

cs(1− x)s,

where the coefficients are as follows: cρ �= 0 is an arbitrary constant, the cs are uniquely

determined constants, ρ =
√
2a, Re

√
2a > 0, and s ∈ {ρ+ lρ+m; l,m ≥ 0; l +m > 0;

l,m ∈ Z}.
If Re ρ > 1, then the second approximation to a solution is y = cρ(1 − x)ρ +

cρ+1(1− x)ρ+1 with the coefficient given as follows:

(5.1.14) cρ+1 = cρ
a− c− d

ρ+ 1
.

If 0 < Re ρ < 1, then the second approximation to a solution is y = cρ(1−x)ρ+c2ρ(1−x)2ρ

with the coefficient given as follows:

(5.1.15) c2ρ = −c2ρ.

If Re ρ = 1, Im ρ �= 0, then the second approximation to a solution is y = cρ(1 − x)ρ+
c2(1 − x)2 + c2ρ(1 − x)2ρ with coefficients c2ρ and c2 given by formulas (5.1.14) and
(5.1.15) respectively. If ρ = 1, then the second approximation to a solution is y =
c1(1 − x) + c2(1 − x)2. The complex coefficients are given as follows: c1 is an arbi-
trary constant and

c2 = c1
a− c− d− 2c1

2
is the sum of (5.1.14) and (5.1.15).

Here we have two one-parameter families of exotic expansions:

(5.1.16) Eτ
6 : y = cρ(1− x)ρ +

∑

s

cs(1− x)s,

where ρ =
√
2a, Re ρ = 0, s runs over the set {ρ+ lρ+m; l,m ≥ 0; l+m > 0; l,m ∈ Z},

τ = sgn(Im ρ), and the complex coefficients are as follows: cρ is an arbitrary nonzero
constant, and all cs are uniquely determined constants.

Also, we have a one-parameter family of complicated expansions E3 given by formula
(5.1.11).

1.5. Expansions of solutions in the case −c �= d − 1
2 �= 0. Set θi

def
=

√
1− 2d +

(−1)i
√
2c, where i = 1, 2. For each i, depending on the value of θi, three cases are

possible.

Case 1. Re θi = 0. We have the one-parameter families of semiexotic expansions of
solutions

(5.1.17) J τ
i : y = 1 + c1i(1− x)τθi +

∞
∑

s

csi(1− x)s, i = 1, 2, τ = ±1,
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where s ∈ {1 + l +mτθi; l,m ≥ 0; l +m > 0; l,m ∈ Z} and the complex coefficients are
given as follows:

(5.1.18) c1i =
−2c− (−1)i

√
−4cd+ 2c

2c+ 2ď− 1
,

the csi with s = 1 + τθi are arbitrary constants, and the csi are uniquely determined
constants.

For csi = 0 with s = 1+ τθi the family of power expansions (5.1.17) is denoted by Ji.
For csi = 0 with s = 1 + τθi the third approximation (5.1.17) is y = 1 + c1i(1− x) +

c2i(1− x)2, where

(5.1.19) c2i = (−1)i
√

1− 2d

2c

2(a+ b) + 1−
(√

2c+ (−1)i
√
1− 2d

)2

2− 2
(√

2c+ (−1)i
√
1− 2d

)2 .

Let ki = 1 + θi if Re θi > 0 and ki = 1− θi if Re θi < 0.

Case 2. Re θi �= 0, θi �∈ Z. We have the following family of power expansions of solutions:

(5.1.20) Ji : y = 1 + c1i(1− x) +
∑

s

csi(1− x)s,

where s ∈ {1 + l +mki; l,m ≥ 0; l +m > 0; l,m ∈ Z} and the complex coefficients are
as follows: c1i is given by formula (5.1.18), ckii is arbitrary, and the remaining csi are
uniquely determined constants.

The second approximation to the expansion of solution (5.1.20) depends on Re ki. If

Re ki > 2, then the second approximation to a solution is y = 1+c1i(1− x)+c2i(1− x)2,
which is similar to the case Re θi = 0. If 1 < Re ki < 2, then the second approximation

to a solution is y = 1+ c1i(1− x) + ckii(1− x)ki , where cki
is an arbitrary coefficient. If

Re ki = 2, then the second approximation to a solution is y = 1+c1i(1− x)+c2i(1− x)
2
+

ckii(1− x)ki, where ckii is arbitrary and c2i is given by formula (5.1.19).

Case 3. Re θi ∈ N \ {0}. We have the following family of power-logarithmic expansions
of solutions:

(5.1.21) Ji : y = 1 + c1i(1− x) +

∞
∑

s=2

csi(ln (1− x))(1− x)s,

where the complex coefficients are as follows: c1i is given by formula (5.1.18), ckii =
αkii + βkii ln(1− x), where αkii is an arbitrary constant, and the remaining csi and βkii

are uniquely determined constants.
The second approximation to the expansion of solutions (5.1.21) depends on ki. If

ki = 2, then the second approximation of a solution is y = 1 + c1i(1− x) + c2i(1− x)2,
where

(5.1.22) c2i = α2i + (−1)i
√

1− 2d

2c

2(a+ b) + 1− (
√
2c+ (−1)i

√
1− 2d)2

4
ln (1− x),

and α2i is an arbitrary constant.
Here we have a family of complicated expansions

(5.1.23) J3 : y = 1 + ϕ1(1− x) +

∞
∑

σ=2

ϕσ(1− x)
σ
,

where

(5.1.24) ϕ1 = −1− 2c− 2d

4
ln2 (1− x) + c1 ln(1− x) +

∞
∑

s=0

c−sln
−s(1− x),
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and the complex coefficients are as follows: c1 is an arbitrary constant, and the remaining
c−s are uniquely determined constants. Also, ϕσ are series in decreasing powers of
logarithms.

1.6. Expansions of solutions for −c = d− 1
2 �= 0. We have two families of complicated

expansions:

(5.1.25) J3+j : y = 1 + ϕ1j(1− x) +
∞
∑

σ=2

ϕσj(1− x)σ,

where

(5.1.26) ϕ1j = (−1)j
√
2c ln (1− x) + c0j +

∞
∑

s=1

c−sj ln
−s(1− x), j = 1, 2,

and the complex coefficients are given as follows: c0j is an arbitrary constant, and the
remaining c−sj are uniquely determined constants. Also, ϕσj are series in decreasing
powers of logarithms.

The families J2, J τ
2 come from the case c �= 1

2 − d �= 0. For θ2 we take 2
√
2c with

Re θ2 ≥ 0. Depending on the value of θ2 we have three cases: Case 1 (Re θ2 = 0,
one-parameter families of exotic expansions J τ

2 are given by formula (5.1.17)), Case 2
(Re θ2 �= 0, θ2 �∈ Z, one-parameter family of exotic expansions J2 is given by formula
(5.1.20)), and Case 3 (θ2 �∈ Z, one-parameter family of power-logarithmic expansions J2

is given by formula (5.1.21)).

1.7. Expansions of solutions for d = 1
2 . Here we have one family of power expansions

(5.1.27) J6 : y = x+ cρ(1− x)ρ +
∑

s

cs(1− x)s,

where cρ �= 0, cρ is an arbitrary constant, ρ = 1 +
√
2c, Re

√
2c > 0, s runs over the set

{ρ+ l(ρ− 1)+m; l,m ≥ 0; l+m > 0; l,m ∈ Z}, and the remaining complex coefficients
cs are uniquely determined constants.

In the case Re ρ > 2, the third approximation to expansion (5.1.27) is y = x +
cρ(1− x)ρ + cρ+1(1− x)ρ+1, with the coefficient given by the formula

(5.1.28) cρ+1 = −cρ
−2c+ 2a+ 2b+ 1

2ρ
.

In the case 1 < Re ρ < 2 the third approximation to expansion (5.1.27) takes the form
y = x+ cρ(1− x)ρ + c2ρ−1(1− x)2ρ−1. The coefficient is given as follows:

(5.1.29) c2ρ−1 = c2ρ.

In the case Re ρ = 2, Im ρ �= 0 the third approximation to expansion (5.1.27) is of the
form y = x + cρ(1 − x)ρ + cρ+1(1 − x)ρ+1 + c2ρ−1(1 − x)2ρ−1, where the coefficients
cρ+1 and c2ρ−1 are given by formulas (5.1.28) and (5.1.29) respectively. In the case
ρ = 2 the third approximation to expansion (5.1.27) is of the form y = x+ c2(1− x)2 +
c3(1 − x)3. The coefficients are as follows: c2 is an arbitrary nonzero constant, and

c3 = −c2
(−2c+2a+2b+1−4c2)

4 is the sum of (5.1.28) and (5.1.29).
We have two one-parameter families of semiexotic expansions

(5.1.30) J τ
6 : y = x+ cρ(1− x)ρ +

∑

s

cs(1− x)s,

where ρ = 1±
√
2c, Re ρ = 1, s sums over the set {ρ+ l(ρ− 1)+m; l,m ≥ 0; l+m > 0;

l,m ∈ Z}, τ = sgn(Im ρ), and the complex coefficients are as follows: cρ is an arbitrary
nonzero constant, and all cs are uniquely determined constants.
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According to Theorem 2.1.4 there is also an exceptional solution

I3 : y = x.

Also, there is a one-parameter family of complicated expansions J3, given by formulas
(5.1.22), (5.1.24).

2. Expansions near the point 1 for a · c = 0

For x → 1, in the case a = 0, c �= 0 the following families come from the case a · c �= 0:
A1, Ji, i = 1, . . . , 6, J0, J τ

1 , J τ
2 and J τ

6 , τ = ±1 and E3. In the case a �= 0, c = 0 the
families coming from the case a · c �= 0 are A1, Ei, i = 1, . . . , 6, Eτ

0 , Eτ
1 , Eτ

2 , Eτ
6 and J3.

2.1. Families of expansion near the point 1 that are symmetric to families C∞
0 ,

Bτ
7 , B8,9, C0

0 , H7, H8,9. For a = 0 we have the one-parameter family of expansions of
solutions

(5.2.1) C∞
1 : y = 1 + cr(1− x)r +

∑

s

cs(1− x)s,

where r =
√
−2b satisfies the condition Re

√
−2b < 0, s ∈ {r − lr + m; l,m ≥ 0;

l+m > 0; l,m ∈ Z}, with the following complex coefficients: cr is an arbitrary nonzero
constant, and the other cs are uniquely determined constants.

For −1 ≤ Re
√
−2b the second approximation to the solution is y = 1 + cr(1− x)r +

cr+1(1− x)r+1, where

cr+1 =
cr(c+ d− b− r)

r − 1
.

If 0 > Re
√
−2b > −1, then the third approximation to the solution is y = 1 +

cr(1− x)r + c0, where c0 = 0.
For a = 0 we have two two-parameter families of exotic expansions

(5.2.2) Eτ
7 : y = 1 + cr(1− x)r +

∑

s

cs(1− x)s,

where r is an arbitrary purely imaginary constant, r �=
√
−2b, τ = sgn Im r, s runs over

the set {r + lr +m(1 − r); l,m ≥ 0; l +m > 0; l,m ∈ Z}, and the complex coefficients
are as follows: cr is an arbitrary nonzero constant, and the cs are uniquely determined
constants.

For a = 0, b > 0 we have two one-parameter families of expansions of solutions:

(5.2.3) E8,9 : y = 1 + cr(1− x)r +
∑

s

cs(1− x)s,

where r =
√
−2b, Re r = 0, Im r > 0 for the family E8 and Im r < 0 for the family E9.

The exponent s runs over the set {r + l(1− r) +m; l,m ≥ 0; l +m > 0; l,m ∈ Z}. The
complex coefficients are as follows: cr is an arbitrary nonzero constant, and the cs are
uniquely determined constants.

For c = 0 we have the following expansions of solutions:

(5.2.4) C1
1 : y = 1 + cr(1− x)r +

∑

s

cs(1− x)s,

where r = 1 +
√
1− 2d satisfies the condition Re

√
1− 2d > 0, s ∈ {r + l(r − 1) + m;

l,m > 0; l + m ≥ 0; l,m ∈ Z}, and the complex coefficients are as follows: cr is an
arbitrary nonzero constant, and the cs are uniquely determined constants.

In the case Re
√
1− 2d ≥ 1 the third approximation is y = 1 + cr(1 − x)r +

c2r−1(1 − x)r+1, cr+1 = cr
(a+b−d+r)

r ; in the case 0 < Re
√
1− 2d < 1 the third ap-

proximation is y = 1 + cr(1− x)r + c2r−1(1− x)2r−1, c2r−1 = 0.
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For c = 0 we have one two-parameter family of semiexotic expansions of solutions

(5.2.5) J7 : y = 1 + cr(1− x)r + c1(1− x) + c2−r(1− x)2−r +
∑

s

cs(1− x)s,

where r − 1 is an arbitrary purely imaginary constant, r �= 1, r �=
√
2a, s runs over the

set {l+ k(r − 1); l ≥ 2; |k| ≤ l; l, k ∈ Z}, and the complex coefficients are as follows: cr
is an arbitrary nonzero constant, and c1, c2−r, and cs are uniquely determined constants.

For c = 0, d > 1
2 we have two one-parameter families of expansions

(5.2.6) J8,9 : y = 1 + cr(1− x)r +
∑

s

cs(1− x)s,

where r = 1 +
√
1− 2d satisfies the condition Re r = 1, Im r < 0 for the family J8,

Im r > 0 for the family J9, the exponent s runs over the set {r + l(1 − r) + m; l,m ≥
0; l + m > 0; l,m ∈ Z}, and the complex coefficients are as follows: cr is an arbitrary
nonzero constant, and the cs are uniquely determined constants.

2.2. Expansions of solutions in the case a = b = 0, c �= 0. We have a one-parameter
family of expansions

(5.2.7) E10 : y = c0 +
∞
∑

s=1

cs(1− x)s,

where c0 �= 0, 1 is an arbitrary complex number, and the remaining complex coefficients
cs are uniquely determined constants.

The third approximation to the expansion of a solution is y = 1+c0+c1(1−x), where

(5.2.8) c1 = −c0(c+ d).

2.3. Expansions of solutions in the case a �= 0, c = 0, d = 1
2 . We have a one-

parameter family of expansions

(5.2.9) J10 : y = 1 + c1(1− x) +

∞
∑

s=2

cs(1− x)s,

where c1 is an arbitrary complex number, c1 �= 0, 1, c2 = −c1(c1 + 1)(1 + 2a+ 2b), and
the remaining cs are uniquely determined complex constants.

2.4. Expansions of solutions in the case a = c = 0. In this case equation (2.1.1) has
14 families of expansions of solutions as x → 1. Three of these families, A1, E3 and J3,
come from the case a · c �= 0. The remaining 11 families C∞

1 , E8–E10, Eτ
7 , C1

1 , J8–J10, J7

are coming from the cases a = 0, c �= 0 and a �= 0, c = 0.

3. Summary of the results

Theorem 5.3.1. As x → 1 equation (2.1.1) has 21 families of expansions of solutions
of types 1–3 :

A1 = A◦
0, which is defined by formula (5.1.1), and has two parameters;

E1 = B◦
1 , which exists for a �= −b �= 0, is defined by formulas (5.1.5), (5.1.8),

(5.1.9), and has 1 or 0 parameters;
E2 = B◦

2 , which exists for b �= 0, is defined by formulas (5.1.5), (5.1.8), (5.1.9)
and has 1 or 0 parameters;
E3 = B◦

3 , which exists for a �= −b, is defined by formula (5.1.11), and has one
parameter;
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E4 = B◦
4 and E5 = B◦

5 , which exist for a = −b �= 0, are defined by formula
(5.1.12), and have one parameter;
E6 = B◦

6, which exists for b = 0, is defined by formula (5.1.13), and has one
parameter;
C∞
1 = C∞◦

0 , which exists for a = 0, is defined by formula (5.2.1), and has one
parameter;
E8 = B◦

8 and E9 = B◦
9, which exist for b > 0, a = 0, are defined by formula

(5.2.3), and have one parameter;
E10 = B◦

10, which exists for a = b = 0, is defined by formula (5.2.7), and has one
parameter;
J1 = H◦

1, which exists for a �= −d + 1
2 �= 0, is defined by formulas (5.1.17),

(5.1.20), (5.1.21), and has one parameter;
J2 = H◦

2, which exists for d �= 1
2 , is defined by formulas (5.1.17), (5.1.20),

(5.1.21), and has 1 or 0 parameters;
J3 = H◦

3, which exists for a �= −d + 1
2 �= 0, is defined by formula (5.1.23), and

has one parameter;
J4 = H◦

4 and J5 = H◦
5, which exist for a = −d+ 1

2 �= 0, are defined by formula
(5.1.25), and have one parameter;
J6 = H◦

6, which exists for d = 1
2 , is defined by formula (5.1.27), and has one

parameter;
C1
1 = C0◦

0 , which exists for c = 0, is defined by formula (5.2.4), and has one
parameter;
J8 = H◦

8 and J9 = H◦
9, which exist for c = 0, d > 1

2 , are defined by formula
(5.2.6), and have one parameter;
J10 = H◦

10, which exists for c = 0, d = 1
2 , is defined by formula (5.2.9), and has

one parameter;

two families of semiexotic expansions:

J0 = H◦
0, which is defined by formula (5.1.4) and has two parameters;

J7 = H◦
7, which exists for c = 0, is defined by formula (5.2.5), and has two

parameters;

five pairs of families of exotic expansions with τ = ±1:

Eτ
0 = Bτ◦

0 , which are defined by formula (5.1.4) and have two parameters;

Eτ
1 = Bτ◦

1 , which exist for a �= −b �= 0, Re(
√
2a −

√
−2b) = 0, are defined by

formula (5.1.5), and have one parameter;

Eτ
2 = Bτ◦

2 , which exist for a �= 0, −b �= 0, Re(
√
2a +

√
−2b) = 0, are defined by

formula (5.1.5), and have one parameter;

Eτ
6 = Bτ◦

6 , which exist for Re
√
2a = 0, b = 0, are defined by formula (5.1.16),

and have one parameter;
Eτ
7 = Bτ◦

7 , which exists for a = 0, is defined by formula (5.2.2), and has two
parameters;

and three pairs of families of semiexotic expansions with τ = ±1:

J τ
1 = Hτ◦

1 , which exist for −c �= d− 1
2 �= 0, Re(

√
1− 2d−

√
2c) = 0, are defined

by formula (5.1.17), and have one parameter;

J τ
2 = Hτ◦

2 , which exist for c �= 0, d �= 1
2 , Re(

√
1− 2d+

√
2c) = 0, are defined by

formula (5.1.17), and have one parameter;
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J τ
6 = Hτ◦

6 , which exist for Re
√
2c = 0, d = 1

2 , are defined by formula (5.1.30),
and have one parameter.

A◦
0,B◦

i and H◦
i denote the families obtained from families A0,Bi and Hi using sym-

metry (2.1.9). Families A1, E1, E2, E6, E8–E10, J1, J2, J6, J8–J10 are of types 1 and 2;
families E3, E4, E5, J3, J4, J5 are complicated.
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[40] Tikhomirov, V. M., Fréchet derivative. Encyclopedia Math., Sovetskaya Entsiklopediya, Moscow,
1984, vol. 5, p. 666. (Russian)

[41] Chukhareva, I. V., Singularities of solutions of the VI Painlevé equation. Intern. Youth Conf
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Paris, 1897.
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[67] , Sur les équations différentielles du second ordre et d’ordre supérieur, dont l’intégrale
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