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   0. Introduction. 

   Let us consider the initial value problem related to the following quasi-

linear positive symmetric strictly hyperbolic system : 

              a n (0
.1) Ao u u+ Av u a u+B u u =0.                ()at 

=i ()axv () 

Thus, A0(u), , An(u) are m X m symmetric matrices depending smoothly on 

uERm, and A0(u) is positive definite while B(u) may be any mX m smooth 

matrix. Strict hyperbolicity means that, for any =( 1, ..., sn} 0, the matrix 

n (0.2) M(u, ) -vAo(u)-lAv(u) 
                                                   v=1 

has m distinct real eigenvalues pl(u, ), ..• , pm(u, ). We assume some of these 

eigenvalues actually depend on u because of quasi-linearity of the system (0.1). 

   We are interested in how hyperbolicity and non-linearity interact. To begin 

with, we seek an analogy of the oscillatory initial value problem which is basic 

in linear hyperbolic equations. 

   We choose as the initial data an m-vector of the form 

(0.3) u=A1g(Ax7), x) at t=0, 

where A>0 is a large parameter, x • 1) the scalar product of x and 7)R, 7) 

being a fixed n-vector *0, and g(s, x) is a given m-vector valued smooth func-

tion with compact support in s, x, i. e., gECo(Rn+l)m. 

   The following is a convenient assumption on the initial data: 

(0.4) ~g(s, x)ds = 0. 

We may rewrite (0.3) as
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m (0.5) u = A-lg(Ax • ~, x) _ A-1 gj(Ax • ~, x)rj(0, a~) at t = 0 

with appropriate scalar functions gj(s, x). Here rj(u, ,) are eigenvectors of the 

matrix M(u, r~) corresponding to the eigenvalues p ,(u, r~), j=1, • • • , m. (0.4) 

thus means the vanishing of mean with respect to s of each gj(s, x). In pass-

ing, we recall that the initial data we have previously considered are in one, 

e.g., the first, characteristic direction so that 

(0.6) g ,(s, x) = 0, j >_ 2 

([7][8]. See [9] for a summary. See § 5 for a discussion). 

   The initial data (0.3) (0.4) can be interpreted as a certain slightly oscillatory 

infinitesimal state which is represented by A->+oo. The factor A-1 is just good 

for the balance of non-linearity and hyperbolicity. Note that such factors are 

of no significance in linear problems. The solution of the initial value problem 

should then represent a certain infinitesimal state, which presumably reflects 

essential characters of the original system provided solutions exist at least in a 

time interval independent of 2--~+ oo . Though our choice of the linear initial 

phase x • i and the requirements on g(s, x) make our discussions considerably 

simpler, we still see how quasi-linearity dictates the solution in its first order 

terms in 

   Let 

(0.7) X j = trj(u, j =1, ... , m 

be characteristic vector fields. Here t denotes the transpose and V=(0/a1, 

• • • , a/au m) is the gradient operation. We say that the system (0.1) satisfies 

Hypothesis (H) if, for each pair X,, X k, j * k, of characteristic vector fields, the 

commutator [X j, X k ] =X jX k -X kX j is a linear combination of X j and X k : 

(0.8) [X,, Xk] = ajk(u, ,'))Xj-akj(u, )X k, j, k =1, ... , m, j * k, 

ajk and a k j being smooth scalar functions. 

   REMARK. When Hypothesis (H) is satisfied, we can choose rj(u, r?), j=1, 

   m, so that ajk = a k j=0, or 

(0.9) trj(u, r)) •Durk(u, ~) = trk(u, ~J) •Qurj(u, ,), j, k =1, ... , m, j * k 

(see § 2). We will assume (0.9) whenever we discuss systems satisfying Hypo-

thesis (H) below. 

   The system of equations of the 2-D isentropic fluid flow is a standard ex-

ample of systems satisfying Hypothesis (H) (see § 1). 

   Now one of the results in the present paper is the following
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   THEOREM 1. Suppose the system (0.1) satisfies Hypothesis (H). Let n=2 or 

3 and gECo(Rn+1)m with (0.4). Then for some Al>0 and T1>0, independent of 

A>_A1, there is a uniquely determined solution u(x, t, A), xERT, 0<t<_T1, 

of the problem (0.1) (0.3) such that 

(0.10) u(•, t, A) E L°°([0, T1] ; H3(Rn))nC([0, T1] ; H"(RT )) 

and 

(0.11 a u(• t A E L°°(0 T1 • H2(Rn nC(0 T1 . HQ-1 Rn 

for any c<3. Here HP(Rn) is the Sobolev space over Rn of exponent p. 

   REMARK. The Sobolev p-norm of the initial data (0.3) is of order A ° as 

A-*oo. General discussions imply that the local solutions are expected to exist 

in a time interval of length A'' as A--~+ oo . 

   Actually, when restricted to linear phases an analogue of Theorem 1 holds 

without the restriction on n or without Hypothesis (H) (see Joly-Metivier-Rauch 

[2], Schochet [6]). As will be seen below (Theorem 2), our discussions imply 

at the same time how the solutions behave as A-~+oo in a fixed interval valid 

for all A. Our method of proof is to use an approximate solution with so nice 

an error that its Sobolev 3-norm can be evaluated (see [7] in particular). This 

method yields to the restriction on n, but is basically valid for non-linear phases 

once approximate solutions are worked out. 

   To the problem (0.1) (0.3) we have a formal asymptotic solution of the form 

m (0.12) U(x, t, A) = A-1 a;(AS;(x, t), x, t)r~(0, ~?) 
                                             9=1 

m 

                   +A-2 bi;k(ASI(x, t), AS;(x, t), x, t)rk(0, ~) 
                                                   a,j, k=1 

Here 

(0.13) S,(x, t) = -p3(0, rI )t+ x • v, j =1, ... ! m, 

are the planar phase functions, and a;(s;, x, t) are determined from the follow-

ing partial differential equations of first order (essentially of Burgers' type) : 

n ( a2 +11a1 = 0 0.14) a a1+ pcv>(0, r1)a s +(X1p1)(0, ')as
;12      at 

with 

(0.15) a;(s;, x, 0) = g;(s;, x), 

j=1, ••• , m. Here p(0, i2)=ap;(0, i)/any and 8;; are certain constants. We 
see here how non-linearity and hyperbolicity are coupled even though com-
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pactness of the support of                      g(s, x) with respect to s comes in to throw away 

non-local terms (see § 5). 

   bijk(si, s;, x, t) are also determined from simple partial differential equations 

which will be given shortly. 

   Then, in fact, U(x, t, A) is asymptotic to u(x, t, A) in the following sense 

   THEOREM 2. Suppose the system (0.1) satisfies Hypothesis (H). Let u(x, t, A) 

be the solution to the problem (0.1) (0.3) (0.4) given in Theorem 1. Then, for 

U(x, t, A) of (0.12), 

(0.16) II u(•, t, A)-U(•, t, A) S <_ KAS-3, 0 s 3 

and 

(0.17) a u(•„ tA)-ata U(• t o) < Ki,Is-2, 0 s 2       t IS 
a for A>_A1, 0<_t<T1. Here K and K1 are constants independent of A and t, and 

II • L are the Sobolev s-norms. 

   REMARK. Let r, (u, ,), j=1, • • •, m, be left (or row) eigenvectors of M(u, i) 

corresponding to the eigenvalues p;(u, ,) and normalized so that the relations 

                                                 1, j=-_k, 
(0.18) r*(u, 7~)•Yk(u, ~) = Ujk =                                    0

, j*k, 

hold. Then /3,1=r*(0, r~) • Ao(0)-1B(0)r;(0, ,~) in (0.14). If the system (0.1) satis-

fies Hypothesis (H) and r;(u, ,) are chosen to fulfill (0.9), then, in (0.13), 

(0.19) biik(si, s', x, t) = 1 I iikai(si, x, t)ai(si, x, t), 2 * j, 

and, for j ~ k, 

0.20) (P(0 )) a (b ik(s s x, t)) 

n 

            iik 1 a/sj, x, t)2+ ikai(S1, x, t)+ ajk ai(sj, x, t),                aS 2 v=1 axv 

where risk = rk (0, ~) • (X r,)(0, ii), ~;k = rk (0, ) Ao(0)-1B(0)ri(0, ,), and a;k. = 

rk (0, ).A0(O)1A(O)r(0,), i, j,, k=1, ... , m, v=1; n. The requirement (0.4) 

is called upon here to solve b j j k . 

   Finally, bkkk(sk, Sk, x;-t) are determined from 

         a n (y) a ~.. ~a (0.21) at bkkk+ pk (0, 71) a-- bkkk+(X kpk)(0, •I) a
sk (akbkkk)+J3kkbkkk = hkk,                        /1 X21 

With 

(0.22) bkkk(sk, sk, x, 0) = - biik(sk, Sk, x; 0) 
                                                 (tk l)#.(k. k)
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Here h k k = h k k (s k, x, t) are known terms computed from a k, b k k;, k *j. If, on 

the other hand, the initial data are in one characteristic direction, then only 

one a;, say a1, survives, and bti;k, i ~ j, all disappear (and thus required com-

putations are considerably simpler). 
   The equation (0.14) shows that a;(s;, x, t) develops shocks and loses smo-

othness in a finite time provided X;p;(0, , )~0. The interval [0, T1] in Theo-

rems 1 and 2 above, though uniform with respect to 2, lies within the interval 

of t where all the a;'s and hence U(x, t, 2) remain smooth. Although a;'s and 

U(x, t, 2) make sense up to t=+ °° at the expense of their regularity, say, in 

the class of BV functions and their derivatives, we are yet unable to exploit 

this fact. 

   Theorems 1 and 2 will be proved in the sequel. We have previously dis-

cussed the case of initial data in one characteristic direction, compactly supported 

in s, and satisfying (0.4), though without Hypothesis (H) ([7]). As for the system 

satisfying Hypothesis (H), we have discussed the case of the initial data in one 

characteristic direction, periodic in the phase variable ([8]). The proofs of 

Theorems 1 and 2 are in spirit quite close to those in the above cases. To 

extend our results to more general situations, it would be necessary to analyze 

formal solutions proposed by Hunter, Majda and Rosales in full detail. ([1], [3], 

[4]. See also § 5 below). 

   1. Supplementary observations on the system. 

   We begin by supplementing technical assumptions on the system : 

               A u a u+ n AL u a u+B(u u =0. (0.1) ~( ) 
at =i ( ) axy ) 

Basic assumptions are stated in § 0. The coefficient matrices Ao(v), ..•, B(v) 

depend C°° smoothly on vERm, and for a technical reason we suppose each of 

them is a sum of an m x m matrix of rapidly decreasing (8(Rm)) entries and one 

with constant entries (i.e., a constant matrix). Thus, for instance, A0(v)=Aa+ 

A o (v) with constant Ao and rapidly decreasing A o (v). Since our solutions will 

be shown to be bounded, this assumption is not quite restrictive. (For more 

details, see [7]). 

   Now A0(v), ..•, A (v) are symmetric, and A0(v) is positive definite. More 

precisely, we have positive constants r and P such that 

(1.1) ry • y < y . A0(v)y ry.                                                        • y . 

for all yERm, vERm. 

   As for the matrix M(v, ), v Rm, e E Rn, e * 0 (see (0.2)), we suppose its 

eigenvalues p 1(v, ), •.., p m(v, E) and right eigenvectors r1(v, ), ..•, rm(v, E) are
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C°° smooth in v and e * o. Similarly we suppose its left eigenvectors r*(v, ), 
• • • , r (v, ) are C°° smooth in v and ~ 0. (See also (0.18)). 

   We have stated Hypothesis (H) in § 0. If m>_3, this hypothesis is nontrivial. 

Here is a standard example. 

   EXAMPLE 1.1 (Equations of the isentropic fluid flow). Consider the equa-

tions for u=(u°, u1, , un), u0>0: 

                   u+ a ul+...+ a                                        un_o             6t 0
x1 axn 

(1.2) a 
~n a uti• uk d

a u L P(uo) = 0, k =1, ..., n,                Ut k+ ' ax
e u0 axk 

where P(u0) is a smooth scalar function satisfying 

(1.3) P'(u°) > 0 (and P"(u°) > 0). 

Physically, u° represents the density of the fluid, (u1, ..•, u n) the velocity vector, 

and P(u0) the pressure. Thus, m=n+1, 

                          U + ... +un +P'(
u°) _ ul ... - un 

                         uo u° u° 

                                  - ul 1 0 

(1.4) A°(u) = u0 

0 

                                               _ un ... 1 
                                 U0 

                                                    r2uk 0 ...... 0 1 0 ... 0 
                                         U0 

                       uk 0 (1
.5) Ak(u) = 

u° Ao(u)+1''(uo)                           o p 

1 0 

0 

k=1, n, and (1.2) takes the form (0.1). (In the second term of Ak(u), 1 

appears only in the (k+1)st place of the first column and of the first row). 

Note 

                                        of ... Sn 

                     - ul u' + 1P'(u0) u' + 1 ul ... n ui 

(1.6) M(u, E) = u0 u0 u0 u0 u0 

                    _ un u ~s +nP'(u°) ~1 un ... u ~S +n un 
                      U0 u° u° u° u°
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where u•E=u1~i++unn. Then 

(1.7) p±(u, ) = u ±II ~P'(uo), 
                                  uo 

and 

(1.8) p(u, ) = u' 
                                       uo 

are its eigenvalues (p(u, ) being (n-1)-ple if n>_3). 

                           uo/P'(uo) 

(1.9) r±(u, ) = ui/P'(uo)±1/ P'(uo) 

                        u n/P'(u0)±nl~P'(uo) I I 

and 

0 

1 (1.10) ri(u, ) = ua i =1, ..•, n-1, 

n are corresponding eigenvectors. Here c are constants satisfying 

(1.11) ci1+ ... +cnn = 0, (ci, ... , cn) * 0 

and 
                                               1 n-1          C1.. Ci i 

(1.12) *0. 
                               Cn ... ~n_1 'n 

The characteristic vector fields corresponding to our choice of eigenvectors are 

(1.13) X±- u° a uk ± k a                 P'(u
o) auo k=1 P'(uo) ~P'(uo) I e I auk 

and 

n (1.14) Xi = uo ck i = 1, ••• , n-1.                              k=1 auk 

It is immediately seen that each pair of the vector fields X1, ..•, Xn_1, X+, X_ 

commute. 

   We also have 

(1.15) Xtip=X1p±=c~~uo=0, a=1, ..., n--l, 

                     uo/P'(ua) 

1.17) X±p± = -~- I ~ I 1 uoP"(uo) ( -
uo /P'(uo) + 2P'(uo) '
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2 

(1.18) Xtp+ - ± I 1 _ uoP"(uo)                         u
o~P'(uo) 2P'(uo) 

Thus, if 

(1.19) P(u0) = co uoe-2Irdr+ci, 

                         cl > co e_2'rdr >0, 

0 then X t p+ =0. 

   REMARK. To meet our technical requirement on the system, we have to 

modify (1.4) and (1.5) for large I u I and uo near uo=0 or uo<0. But for our 

present purpose, this is not serious. On the other hand, the system (1.2) is 

strictly hyperbolic only when n=2. 

   2. Discussions on Hypothesis (H). 

   Suppose the system (0.1) satisfies Hypothesis (H). We show that we can 

then choose eigenvectors rk(v, ), k=1, • • • , m, of M(v, ) so that characteristic 

fields X1, ..•, X,, commute each other (see Example 1.1). In Appendix A, we 

will indicate certain peculiarities of such systems in case they are of conserva-

tion laws as in Example 1.1. 

   LEMMA 2.1. Suppose the vector fields X1, ..•, X,n defined by (0.7) satisfy 

the commutator relation (0.8) (with u replaced by v). Then there are non-vanishing 

smooth functions bl(v, ), ..•, b, (v, ) such that 

(2.1) X k b; = a; k b2, j, k =1, ... , m, j * k , 

hold (at least locally). 

   COROLLARY 2.2. Let 

(2.2) Y; = b;(v, e)X;, j =1, , m. 

Then, for any i, j=1, ••• , m, 

(2.3) [Yi, Y~J = = 0, i, j =1, ..., m, 

   REMARK. Y2 corresponds to the eigenvector b;(v, )r;(v, ). 

   PROOF OF LEMMA 2.1. For each j, (2.1) is an overdetermined system of 

m--1 equations for a single unknown b;. First, note the following relations 

among a; k's
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                    X iajk+akiajk = X kaji+aikaji, 

(2.4) X jaki+aijaki = X is kj+a jiak j, 

                    Xkaij+ajkaij =Xjaik+akjaik, 

i, j, k=1, •.. , m, i * j * k * i. In fact, (2.4) follows from Jacobi's identity : 

          [CX1, Xj], Xk]+[CXJ, Xk], Xi]+[CXk, X i], X2] = 0 

and (0.8) (u replaced by v). Now, for j fixed, let 

                  wi = Xibj-ajib2, i =1, ... , m, i ~ j. 

(2.4) yields to 

(2.5) X iwk+(aki-aji)wk - X kwi+(aik-ajk)wi, 

i, k=1, •••, m, i * j ~ k *i. Therefore, if wi=00 holds and if w k=0 on a hyper-

surface transversal to X1, then wk also vanishes everywhere. To fix the idea, 

let j=1, and suppose wm=0. We have to show wk-0, k=2, .•, m-1, on a 

hypersurface Sm transversal to Xm. Since the vector fields X1, ••• , Xm_1 are 

in involution, we can choose the surface Sm to be their integral manifold. Now 

if w k =0, k=2, .••, m-1, hold on Sm, then since this means the values of b1 

are known on Sm, b1 is determined by wm=0 in a neighborhood of Sm. (2.5) 

then automatically yields to w k =0 outside Sm, k=2, m-1. Similar discus-

sions are valid on Sm for the fields X1, ••• , Xm_1 and functions w2, ••• , wm_1 

restricted there. So we only need to verify the bottom case, that is, m=3. 

Let S3 be an integral surface of X1 and X2, to which X3 is transversal. Let 

C1 be an integral curve of X 1 lying on the surface S3, to which X 2 is trans-

versal. We can then determine b1 on S3 through the equation w2=X2b1-a12b1 

=0 restricted to S3 by specifying the values of b1 arbitrarily, thus non-vanish-

ing, on C1. Using thus determined values of b1 on S3, solve b1 outside S3 by 

X3b1-a13b1=0, or w3=0. By (2.5), we see w2=0 outside S3 too. 

   In the following discussions, we choose eigenvectors r1(v, ), ..•, rm(v, ) of 

the matrix M(v, ) so that their corresponding characteristic vector fields X1i 

   X m all commute each other, or X;X k =X kX j hold for j, k =i, • • • , m. In 

other words, 

(0.9) drj(v, e)[rk(v, )] = drk(v, e)[rj(v, )] 

for j, k =i, m. Here 

            d r'1(v, e)C w ] = d r'1(v + w, ) I=o = t w .7(v, (v, )                       d
s ' 

is the Frechet-Gateaux derivative of rj(v, ).
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   3. Formal solutions. 

   Let us return to the initial value problem (0.1) (0.3). The corresponding 

system of partial differential operators depending on v € Rm is given by 

(3.1 £'(v) = a -~- n Ay v a +B v                     at =i C)axy C), 
       N N 

where A9(v)=A0(v)''Ay(v), B(v)= A,(v)-1B(v)• 
   Let us choose an m-vector valued function V =V (x, t, A), roughly of order 

A'1 as A-*+oo, such that 

(3.2) V(x, 0, A) = A-lg(Ax • i1, x) 

and 

(3.3) £(V)V = F, F= F(x, t, A), 

is to be interpreted as of order A-3. More precisely, we require that V (x, t, A) 
be smooth in 

            D = Dr,, Aa = {(x, t, A) ; x E R', 0 < t < T0, A >>_ A,} 

for some To>0 and A0>0, be compactly supported with respect to x, and satisfy 

the estimates : 

(3.4) suvpA'k-~a1+lI6 d V(x, t, A)I < Ck,a < -}-°° 

for non-negative integers k and multi-indices a=(al, ••. , a,,), together with 

(3.5) s~p,i-k-s+llla~V(•, t, A), Cs < +oo 

for s>_0. Here I • II3 is the Sobolev norm of exponent s and 

                 A=AT0,Ao= {(t, A); 0<t<_Ta,A>_A0}. 

F(x, t, A), on the other hand, is required to be smooth in D, compactly supported 

with respect to x, and to satisfy slightly different estimates: 

(3.6) sDp~-k-~a~+sla~axF(x, t, A)I < Ck,a < +00 

and 

(3.7) supA-k-3+3IlarF(•, t, A)II, _< C3 < +oo. 

   Now let 

    A,(v) N N 1 N N         = Av(0)+dAy(0),[v]+ 2 d2Av(0)[v, v]+R3(Av)(0; v), v =1, ... , n~ 

and 
                       N N N N 

              B(v) = B(0)+dB(0)fv]+R,(B)(0; v)
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                               N N 

be the Taylor expansions of A(v) and B(v) around v=0. Then 

                  .C(V )V = £°(V )V +F1(x, t, A), 

where 

(3.8) £°(V )V = £(0)V+ dAv(0)[V ]+ 1 d2AL(0) V, V ] a V +dB(O)[V ]V                         v=1 2 [ ox v 

and 

(3.9) F1(x, t, A) = ~, R3(Av)(0 ; V) a V +R2(B)(0 ; V )V . 
                             v=1 axy 

F1(x, t, A) satisfies the same estimates as (3.6) (3.7) provided V (x, t, A) does (3.4) 

(3.5) (see discussions in [5]). We put 

(3.10) V (x, t, A) = A-lu1(x, t, A)+A-2u2(x, t, A)+A-3u3(x, t, A) 

with appropriate u1, u2, u 3 in order that (3.4) and (3.5) be fulfilled (see Appendix 

B). Substitute (3.10) into (3.8). We get 

    .C° V )V = A "J2 O u1+A-2 .C O u2+ dAv 0) u1 a u1+dB(O)[u1]u1 

            +A-3 .C 0 u3+ (dA2)(0)[u1 a u2+dAv(0) u2] a u1 
(3.11) 21=1 OX OX2) 

                         I n N a N N                 + 
2 dAv(0)[u1, u1] -- u1+dB(0)[u1]u2+dB(0)[u2]u1                                      i=i ox2) 

9 

             + ± A-kGk(x, t, A), 
                           k=4 

where Gk(x, t, A), k>_4, are basically known as computed from u1i u2, u3 and 

their first derivatives (see Appendix B for explicit computations). Therefore, 

our task is to choose u1, u2i u3 so that we may reduce £°(V )V -~k=4 A-kG(x, 

t, A) as far as possible. 

   Fix r2E R' , , ~ 0, and let S;(x, t)=-p(0, ;r~ )t+ x , i , j=1, , m (recall (0.15)). 

Note 

(3.12) S;,1+ p j(0, Sj, x) = 0, S,(x, 0) = x . i 

since S,, x = i for all j. We now set 

m (3.13) u1(x, t, A) = a (AS~(x, t), x, t)r~(0, ~?), 

m (3.14) u2(x, t, A) = bijk(ASI(x, t), ASj(x, t), x, t)rk(x, t), 
                                           i,/ , k=1 

m 

(3.15) u3(x, t, A) = .. cijki(ASi(x, t), 2Sj(x, t), ASk(x, t), x, t)r1(0, ~), 
                                     1j, k,1=1
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by choosing suitable functions ai(si, x, t), bijk(si, s,, x, t), Cijkl(si, s,, sk, x, t), Z, 

j, k,1=1, .., m, to be determined. Here we assume 

             bijk = bjik, Cijkl = Cjkil = Ckijl = _ ekjil = Cikjl 

for i, j, k,1=1, m. Now we can rewrite £°(V)V-4 A-kGk(x, t, ~) rather 

formally as 

9 

             £°(V)V- ± A`kGk = A-iGi+A~2G2+A-3G3 
                                      k=4 

where, at s;=AS;(x, t), j=1, , m, 

             m N 

      G~ _ {ai,t+M(0, ai,x)+a1B(0)}Yi(4, ~) 

            + 7Th ai a a •dM(0 
(3.15) ,)[r(0,7) r •(0 y2) 

m 

          + (-Yi(Q, v))+Pk(O, 1)) a
s bijk 

                   +(- (O + k O bi 'k Yk ) 

              m m N 

      GZ = aidM(0, aj, x)CYi(4, ri)]Y,(0, ')+ J aia;dB(0)[Yi(0,'2)]r,(0, i) 
                     i, j=1 t,~=1 

m 

(3.17) + 1 aia; akd2M(0,                                    i ;)CY(o, ), Y(0, )]rk(O, )                    , aI                     2 ii, k=1 sk 

m 

            -I- ai b'kl+ a b kl dM(0                                        ii)[Y1(d, i2)]Yl(0, i)                   i , j, k, l=1 as ~ as ~ ~ 

                   ~" aaz b kldM(0              rI)[Yl(0, '2)]Y(0                                                         Z, 2) 

                 m N 

           +
i; 1 {bijk, t+M(0, bijk, x)+bi;kB(O)} rk(O, , )                                   ,, k= 

                 m a 
           +

j l1(-Yi(O,'2)+Yl(O,'2)) as ci;kl+(-pj(O,'2) 

                    l Q, '2))a ci3'kl+('-Pk(O, '2)+Y(O a C k Y                                                    -1 (                            aS
~ l, ~)) aSk 2~ l l(, ~) 

and 

      1 m    G
3 2 i

, j~=1 aia;d2M(0, ak, x)Cri(O, '?), r,(0,'2)]rk(O, i) 

m (3.18) -~- {aidM(0, b;kl, x)[Yi(o, 7)]r1(0,'I)+bjkldM(0, ai, x)CYl(0,'2)1 r1(0, ~?) 
               i, j, k, l=1 

                           N N 

            +aib,kl(dB(0)[Yi(0, ')]rl(4,'2)+dB(0)[Yl(0, ')]r1(O, ~))}

,
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           m N 

      + lCijkl, t+M(0, Cijkl, x)+Cijkl ,B(0)} rl(0, ~)                i, j, k. l=1 

Now we have to choose nicely behaving a1, bijk, Cijkl which furthermore make 

G1=0 and G2=0. Note that (3.2) requires 

(3.19) u1(x, 0, A) = g(Ax.,, x), u2(x, 0, A) = 0, u3(x, 0, A) = 0. 

   Let us compute r*(0, ii). G=0, i=1, •••, m. Then 

              n 
cv~ 0

, ~)aa. , + m ~.a.+ Xa..h i)(p                                  , ~)a t ( ai 3.20) a1, + p(                                 J2J ( ~ aS
i 2 

           m a 
+m navy       + (p2(0, i) p2(0, i))rkJti a                                        as Jsk Jt J, xv 

              j, k=1 J 
                                                                   J=1 

m 
      + (-p(0, )+p1(0, ))a b'ki+(.._Pk(0, ~)+pti(0, rJ)) b'ki = 0. 

       1 ~ 1 J, ~) ~ as ~ ask ~ 

N Here a,1= r*(0, ri) • Av(0)rj(0, , ), X11= r1(0, ii) • B(0)r,(0, rj), and rkli =r*(0, i ) 

dr;(0, r))[rk(0, i~)]=r*(0, r7) • (X kr;)(0, i'). Separating functions ai, bilk, etc. ac-

cording to the phases, we stipulate 

n (3.21) a1 ,t+ p(0, 2)ai, x + iiai+(X ipi)(0, ) 1 ai = 0                                             • as 2 
                         v-1 i 

with 

(3.22) ai(si, x, 0) = gi(si, x) 

i=1, m (see (0.14) (0.15)), 

n (3.23) (-p3(0, ii)+pi(0, ~)) as . (bjl1)+ ajia1, xv+iS 1a1 
                                                           ~ v=1 

            +(p(0, ~)-p1(0, ~))rJJza ~a2 =0                   J as , 2 ~ , 

j ~ i, i, j=1, • • • , m (see (0.20)), and 

3.24 (O1(0 )) k 'i a 'ak+( k(0 i(0, )) ki a 'ak 

J 

      +2{(-P1(0, ~)+pi(0, ~))a +(-Pk(o, ~)+J'(o, )) a bkJi =0, 
                          as1 J ~ ask 

j * k, i, j, =1, , m. 

   REMARK. The Ansatz by Hunter-Ma jda-Rosales [1] does not appeal to 

separation of phases. We will discuss on the matter in § 5. 

   The results concerning the equations (3.21)-(3.24) are summarized in the 

following 

   PROPOSITION 3.1. (i) Let gi(si, x) E C u (R+1.), i = 1, ..•, m. For each i,
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there is a unique solution ai(si, x, t) to the equations (3.21) (3.22), which is smooth 

with respect to (si, x, t)ERT+1X [0, T ] for some T >O. ai(si, x, t) is compactly 

supported with respect to si, x, and furthermore 

(3.25) ai(si, x, t)dsi = 0 

provided gi(si, x)dsi=0 holds (see (0.4)). 

R 

   (ii) For each pair i, j, i~ j, there is a solution s;, x, t) to the equation 

(3.23), smooth in (s;, x, t)ERn+l X [0, TI, compactly supported with respect to x, 

while bounded in s;. Furthermore, if (3.25) holds (with i replaced by j), there 

is a unique b;;i(s;, s;, x, t) which is compactly supported with respect to s;. 

   (iii) For any pair j, k, j =/=k, there is a solution bk;i(sk, s;, x, t) to the equa-

tion (3.24), smooth in (sk, s;, x, t), compactly supported with respect to x, and 

bounded with respect to sk, s;. Furthermore, if Hypothesis (H) holds, then we 

can take bk;i=(1 /2)Yk;ia;ak (see (0.19)). 

   PROOF. Quite obvious. As for (iii), Hypothesis (H) and our choice of 

eigenvectors satisfying (0.9) imply Y k j i =Y; k i . Then (3.24) reduces to 

   {(p(0, )-pi(0, )) +(pk(0, )-pi(0, )) bk i- 1 k is k a = 0.       ~ ~ ~ as . ~ ~ ask ~ 2r~ 

J For the remaining part of (iii), we appeal to the following 

    LEMMA 3.2. Let al, aN be real and al 0. Suppose G(tl, ..•, tN) is 

smooth and uniformly bounded together with all its derivatives. If the t1-projec-

tion o f the support o f G is compact, then 

(3.26) (a1 a + ... +aN a F = G, (t1, ...' tN) E RN, 
             atl atN 

has a solution, which is bounded together with all its derivatives. 

   PROOF. We may suppose a1=1. Then 

           F(tl, ..., tN) = cl G(s, t2+a2(s-t1), ..., tN+aN(s-tl))ds 
                                                 - o0 

is a solution. Let [a, b] be a bounded interval which contains the t1-projection 

of supp G. Then F=0 for t1 a, and if t1> a, then             

IF(tl, ..., tN)I M(b-a), M= sup1G(t1, ... tN), 

Similar arguments are valid for the derivatives of F. 

   REMARKS. 1. If (X i p i)(0, ri) ~ 0, then (3.21) is essentially of Burgers' type. 

Its solution ai(si, x, t) develops shocks however smooth its initial data gi(si, x) 

may be. A non-regular solution, the entropy solution, then makes sense beyond
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shocks up to t=+oo. 

   2. If the initial data are in one characteristic direction, and g1=0, i>_2, 

then ai=0 for i>_2, biik=4, i>_2, ilk, bijk=O, i=i=j. 

   So far we have determined a i, i=1, , m, i ~ j, i, j=1, ••, m, and bJk, 

j * k, i, j, k=1, •.., m. To get a complete description of u2(x, t, 2), we still 

have to determine i=1, •••, m. We will also need to know Cijk l for con-

trolling u3(x, t, 2). Thus, suppose G2=0. 

   Separating phases as before, we then stipulate 

N (3.27) r+M(0, ri(O, ~1)+ as
2 (aib)dM(O, )[r(0,)Jri(O, ~) 

m 

     + (-pi(O, i)+pk(O, ~)) as
z (Ciiik)rk(O, ~)+f i = O,       k#i 

              m a 
(3.28) 3{(_(O, 72)+pk(O, ~)) asp (Ciijk) 

           + - O )+ k O )) Cii k rk O )+ i =0, 2 ~ , 

1 m                     6 6 
(3.29) 6 j(Pi(O, -ij)+pc(O, , D asz Cijkl+(-pj(O, ii)+pl(O, ~)) as Cijkl 

       +(-k(0, )+ l(O, )) a Ci •kl rl(O, )+f i •k =0, i ~ j ~ k i. 

Here f i= f i(si, x, t), f i;= f i;(si, s2, x, t), f i;k=f ijk(si, sj, Sk, x, t) are computed 

from so far determined functions ai, bi;k, i ~ j or i= j ~ k. (See Appendix C 

for explicit computations.) 

   As the initial data for si, x, t), we take 

                            m m 

(3.30) si, x, 0) = - bjki(si, si, x, O)- si, x, 0) 
                                              j,•k=1 j=1 

                                           ,l*k J;i 

because of (3.19). Then we solve biii from 

m (3.31) t+ p(0, -1-(X p)(0, = 
                            v=1 i 

where h=-r(0, ii *r~) • f i(s i, x, t) (see (0.21)). We also handle 

m 

a (3.32) (-pi(0, r))+pk(O,'?)) as (Ciiik)+ aikbiii,xv+~ikbiii 

a           +(p
i(0, ~)-pk(0, ~))Yiik aS (aibiii) = hik 

i for ilk, where hik=-r(0, , )• f i(si, x, t), 

(3.33) (-p(0, )+pk(O, )) a (Cii•k)+(_.p~ •(O, )+pk(O, )) a (Cii'k)=                               ~ ~1 ~1 as
; ~ ~
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for i~ j, where hi;k=-(1/3)rk (0, ri) •f i;(si, s;, x, t), and 

(3.34) (-pi(O, )+p(0, )) a ciikl+(-p(O, )+pl(O )) a ~i'kl                                ~ , ~ , 

a       +( -pk(0 , ~)+pl(O, rI)) as
k cijkl = hijkl, 

i=i=j=i=k~i, where hi;kl=-(1/6)ri(0, ii)fijk(Si, S;, x, t). 

   As for the solutions to these equations, we have the following 

   PROPOSITION 3.3. ( i ) For each i, the solution biii(si, si, x, t) to the equa-

tion (3.30) (3.31) is smooth in (si, x, t)ERn+I X [0, T], compactly supported with 

respect to x. biii is bounded with respect to si, and i f (0.4) is fulfilled, biii is 

compactly supported with respect to Si. 

   (ii) Suppose (0.4) holds. Then for each i, k, i ~ , there is a solution 

to the equation (3.32), smooth in (si, x, t)ER'1 ' X [0, T], compactly supported with 

respect to x, and bounded in si. If (0.4) fails to hold, then grows like I Si 

as I si I --°o. 

   (iii) Suppose the system (0.1) satisfies Hypothesis (H). Then for each triplet 

i, j, k, i ~ j ~ k ~ i, there is a solution to the equation (3.33), smooth in (s s;, 

x, t) E Rn+2X[0, T], compactly supported with respect to x, and bounded with 

respect to si, s;. 1 f (0.4) holds, this is also the case for 

   (iv) For each quadruplet i, j, k,1, i ~ j /= k ~ i, there is a solution ci; k l to the 

equation (3.34), smooth in (si, s;, Sk, x, t)ER' 3X[0, T], compactly supported with 

respect to x, and bounded in si, s;, sk. 

   (v) Suppose (0.6) holds. Then ck=0, i*l, j~1, and ci;kl=0, i* j~k~i. 

On the other hand, i =/=j, i or j=1, k ~ 1, can be chosen bounded with respect 

to si and S;, and compactly supported in x, k~i, are compactly supported 

in x, but grow like I si I as si I -°° (unless (0.4) holds). 

   PROOF. Obvious from Proposition 3.1 and Lemma 3.2 (see also Appendix C). 

    REMARKS. 1. In (v), i >_ 2, k t i, can be written as 

                    = Si sz bik(S, x, t)dS- sz sbik(s, x, t)ds, 
                                              -oo -oo 

where 6ik(s, x, t) are compactly supported with respect to s, x. On the other 

hand, j ~1, contains a term of the form 

          _ 1 a dpl(0, ii)[rj(0, ii)] S; 
              3 asp al p1(0, )-p(0, ) b;;;(s, s, x, t)ds . 

Note 

              S, x, t)ds = x, t)ds- S' b;(s, x, t)ds, t 1, 
               -oo -oo -oo
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with b;(s, x, t) compactly supported in s, x. 

   2. In (iii), if (0.4) fails to hold, contains terms of the form 

             - 1 df~j(O, ~)[rk(6, 7)] a . 3 biikds,                 3 k=1 pj(O, ~)-pi(0, ,) as, -~ 

which are linear in si. 

   Finally, we are content with realizing u3(x, 0, A)=0 and just solve cifrom 

n (3.35) t+ pw'(0, '7)ciiii, xy+ ~iiciiii = 0 
                                         v=1 

with 

(3.36) si, si, x, 0) = - cjkii(si, si, si, x, 0). 
                                                  (j, k, t)#(i, i, i) 

Then are smooth in (si, x, t)ER' ' x [0, T], compactly supported with 

respect to x. The behaviors of with respect to si inherit those of initial 

data, and thus when Hypothesis (H) is satisfied and (0.4) holds, are bounded 

in si. Summarizing, we have shown 

   PROPOSITION 3.4. Suppose Hypothesis (H) holds. 1 f (0.4) is satisfied, then 

we have a formal solution V (x, t, A) of the problem (3.1) (3.2) given by (3.10) 

(3.13) (3.14) (3.15). F(x, t, A) in (3.3) is given by 

9 

                F(x, t, A) = F1(x, t, A)+ A-kGk(x, t, A) 
                                                               k=3 

(Recall (3.9) (3.10) (3.18)). 

   4. Proofs of Theorems 1 and 2. 

   Theorem 1 follows from Theorem 2, and Theorem 2 is proved as in the 

previous case (see [7], § 3). Namely, for some T1>0 and Al>0, we can find 

v=v(x, t, A) valid for xERn, n=2 or 3, 0<t<T1, A>_A1, such that 

(4.1) £(V +v)(V +v) = 0, 

(4.2) v(x, 0, A)=0, 

with 

(4.3) v(•, x, A) I s LA'-3, 0 < s < 3, 

(4.4) a v(•, x, A) < L 1A'2, 0 <_ s <_ 2.                  at s -

for 0<t<T1, A>_A1, This is a consequence of estimates (3.4) (3.5) (3.6) (3.7) and 

a series of energy estimates combined with the iteration procedure : 

            .C(V +vk-1\(y+vk) = 0, vk(x, 0, A) = 0, k >_ 1
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starting from v°(x, t, A)=0. T1 and 21 are chosen so that vk converge to v in 

the metric space corresponding to (4.3) (4.4). Then for U=U(x, t, A) of (0.12) 

                            u-U=v+2_3u3 

and the estimates (0.16) (0.17) hold. We refer further details to [7] (cf. [4]). 

   5. Discussions. 

   In § 3, we have derived (3.21) (3.23) (3.24) from (3.20) by regrouping terms 

in (3.20) according to phases involved. This procedure leads to Hypothesis (H) 

to integrate bjki, j ~ k . We have applied similar separation procedures to handle 

G2=0. On the other hand, Hunter-Majda-Rosales [1], in order to ensure bounded-

ness of b; ki, proposed an equation for a j more complicated than (3.21) as in-

volving non-local interaction terms. However, since boundedness in the si's of 

a i, b j k i and ci j k l is what we need in our discussions, an eventual removal of 

Hypothesis (H) or relaxation of (0.4) would be certainly welcoming. 

   Nevertheless, requirement that a i and b; k i be compactly supported in the 

s-variables is almost identical to Hypothesis (H) together with (0.4). 

   PROPOSITION 5.1. Suppose (3.20) holds for ai and bjki which are compactly 

supported with respect to si and to s1, sk, respectively (i, j, k=1, ... , m) Then 

(3.21), (3.23) and (3.24) hold. 

    In fact, let J =/=i, and integrate (3.20) in s, from s, = - L to s, = L, L>0 

large enough. Then terms not involving s, are multiplied by 2L while terms 

containing s, are integrated to become bounded or vanishing terms. Thus, 

(3.20) reduces to the case without j = J. In this way, we obtain (3.21), and 
returning to a prior step 

                      a a; a a      j
jiaj+(pj(O, 'I)-p1(0, 'y-)) rjji aS 2 +iiii 

1                                                    aS j aiai+rlit as anal 

n 

      + ajia,x +(-p'(0, )+pi(0, )) (b..i)+ b'ii =0,                1 „ 1 a 11 a 1            y-1 S S 1 1 

for jai. Integrate this equality now in si from s1=-L to si=L, and we 

obtain (3.23). Handling a further prior step in the same way, we get (3.24). 

    In order to ensure compactness in s1 of the support of b;ji, we have 

n (5.1) x)dsj = 0, 2 * ~, 
                             v=1 y 

for i=1, m, in view of (3.21). (5.1) is somewhat weaker than (0.4) but 

much more complicated. 

    In order to ensure compactness in 5j, s k of supp bjki, j ~ k, we have
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                 k'i d a (s (8), x, t)'ak(sk(e), x, t) 
              RrJdeJJ 

d             +
rjkiaj(Si(e), x, t) de ak(Sk(B), x, k) dd = 0, 

or 

d (5
.2) (rkj_              i rjki) 

Raj(Sj(e), x, t) d8 ak(Sk(B), x, t)dO = 0. 

Here s(O)=(p,(0, ii)-p(0,))6+s;, etc. (for each fixed i). So instead of Hy-

pothesis (H) we might try to assure 

                a (S (e), x, t) d ak(Sk(e), x, t)dO = 0. 
                  R J J de 

But this is hard to realize unless all but one a;'s vanish. 

   Now we roughly recall what seems the spirit of reasonings of Hunter-Ma jda-

Rosales [1]. Let s;(d)=s;+(p;(0, )-p(0,))D, jti, for each fixed i, and replace 

s;'s by s j(6)'s in (3.20). Then the last sum in the left hand side of (3.20) turns 

out to be 

m 

                   - 
1bjki(Si(e)~ Sk(e), x, t)                        d B j, k= 

So if ~jy, k=1 bjki(s;, Sk, x, t) are bounded (or sublinear) with respect to sj and 

S k, we have 

     lim 1 / {b(s (L), Sk(L), x, t)-bjki(S3(-L/), Sk(-L'), x, t)} = 0. 
     L, L'-.+oo L + L j, k=1 

Thus, from (3.20), we obtain 

n i (5.3) ai, t+ p(0, )-_(--a)            v=1 rI v ~ rI asi 2 

        m 1 L 
     + SJ1 LlLm L+ L' _L, a;(s j(0), x, t)d e 

          J#i 
              n 1 L 

           + a11Lm L+Li -L' aJ, xy(Sj(e), x, t)d8 

     +j
1 ,rkJ'iL lim 1 L+V L L' a;(s;(B), x, t)' a k(S k(e), x, t)d e                   ..,k=,L'-.oc - d6 

          J#i#k#J 

     =0. 

If a; are known to be compactly supported in s;, then the non-local terms 

vanish, and (5.3) reduces to (3.21). Non-local terms also vanish when the initial 

data are reduced in a single characteristic direction, that is, gj(s, x)=0 except 

for j=1, say. 

    REMARK. Note that if a;(x, t)=limM, M'-•+~ M+M, -M, a;(s, x, t)d s exists,
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then 

                  1 L                li
m a;(s;(8), x, t)dO = a;(x, t) 

is independent of s;. Similarly, if j * k * i ~ j and 

L 

             W(S;, Sk) = 
LL' + L , -L,W(s;(B), Sk(e))dO                                                                    . -.~o ~--L 

for a bounded function W(s;, S k), then 

                    W(S1, Sk) = W(S1(p), Sk(p)) 

for any real p. Observe that if S;(x, t) are given by (0.15), then 

          (pk(0, ~)--pi(O, ~))S,(x, t)-(p1(O, ii)-pi(O, ~))Sk(x, t) 

          = (pk(0 , 7)-p1(O, ij))Si(x, t) 

Thus, when we admit non-local terms, we have to supplement the relations in 

the S-space : 

(5.4) (pi(0, ~)-p1(0, ~))Sk+(p1(0, ~)-pk(0, 7))si+(pk(0, 2)--pi(0,'?))S; '2));=o, 

i, j, k=1, ,.. , m. It follows s;(p)=Sk(p) if p=-(S;-sk)/(p;(0, rl)--pk(0, n)). 

   Therefore, if 

L 
(5.5) a;k((pk-p;)si, x, t) = lim a;(s;(8), x, t)ak(sk(O), x, t)d8 

makes sense, then 

                 a;k((pk-p1)Si, x, t) = ak;((pk-p1)Si, x, t) 

and since 

        S (0) (p1(O, 7)--pk(0, 7))Si + (p1(0, 7)-pi(0, 7)))Sk(B)                p
i(0, ~)--pk(0, ~) pk(0, ~I)-pi(0, ~) ' 

L (5.6) lim 1          L,L'-.oo L+L' -L' dO (ai(S1(e), x, t))' ak(Sk(e), x, t)dO 

        _ (p1-pi)(pk-P1) a a k(( k- )S ,                                      i x t),               p
k-p; aSi p p~ 

i * j ~ k ~ i (at least weakly). That is, (5.3) is a system of conservation laws 

involving non-local terms. As a consequence, we see that a(x, t) = ~m 1 a;(x, 

t)r;(0, ~) satisfies the equation 

(5.7) ~a                 a+ A~(0) a a+B(0)a = 0                        (Jt v=1 axL 

with 

(5.8) a(x, 0) =(x),
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provided 

                       1 L                  g(
x) = 

LL' g(s, x)ds                                     ,..~ L-~--L -z

exists. 

   Since, under (0.4), we only need (3.21), what is more important is to realize 

ci; k i(s i, s;, S k, x, t) bounded or at least sublinear in s i, s;, s k . In a similar 

manner to the above, we obtain from GZ = 0 (see (3.17)) equations for 

which are linear. However, since we still need precise growth estimates of 

a i, b; k i and ci; k 1, we suspend our discussions for the time being. 

   Appendix. 

   A. Hypothesis (H) and systems of conservation laws. 

   Suppose, in particular, the system (0.1) is of conservation laws: 

(A.1) A0(v)-1Ay(v)w = dQy(v)[w], w Rm, 

hold for some smooth m-vector valued functions Q (v), v Rm, u =l, • • • , n. Here 

d stands for the Frechet-Gateaux differentiation : 

                               QL(v+~w)                 dQ~(v)[w]= a                                         a~ ~=o 

Let 

n (A.2) Q(v, E) _yQv(v), E _ (1, ... , fin) Rn . 
                                         v=~ 

Then 

(A.3) dQ(v, )[w] = M(v, )w 

(A.4) d2Q(v, e)[wl, w2]=dM(v, e)[wl]w2=dM(v, e)[w2]wl 

for w, w', w 2 Rm. Note the symmetry in (A.4). 

   PROPOSITION A.1. Suppose (A.1) holds. Let eigenvectors r;(v, ) and rk(v, ), 

j ~ k, satisfy (0.9) (u, ri replaced by v, ). 1 f the corresponding eigenvalues p;(v, ) 

and pk(v, ) are distinct, then 

(A.5) d2Q[r;, rk] = dp;(v, )_[rk]r~+dpk(v, )[r1]rk 

and 

(A.6) dr;(v, )[rk] = drk(v, E)[r;] = c;kr;+ck;rk, 

where 

(A.7) c;k = c;k(v, ) _ r*.drj(v, e)[rk] = dp,(v, e)[rk]
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   PROOF. Since 

(A.8) M(v, )rJ(v, ) = p3(v, )r;(v, ), 

we have, for w Rm, 

(A.9) dM(v, e)[w]r;(v, e)+M(v, e)dr;(v, e)[wj 

             = d p;(v, )[w]rJ(v, e)+;(v, e)drJ(v, e)[w] 

Let w=rk, k ~ j, and apply (A.4) and (0.9). Then 

  dpJ(v, e)Crk]rf+pJ(v, )drJ(v, e)Crk] = dpk(v, e)CrJ]rk+pk(v, e)drk(v, e)[rJ], 

from which (A.6) (A.7) follow provided p;(v, )* pk(v, ). Combining (A.8) (A.9) 

and (A.3) (A.6) (A.7), we get (A.5). 

   REMARK. If r;(v, ) and rk(v,: ), j ~ k, correspond to the same eigenvalue 

p(v, E)=p;(v, e)=pk(v, ) (at (v, e)=(0, rl), say), then (0.9) implies dp;(0, r~)[rk(0, 

ij)]=0, dpk(0, ,)[rJ(O, i)]=O. 
   We can also compute higher order differentials such as d3Q[ri, r;, rk], 

d2pi[r3, rk] and d2ri[rJ, rk], i ~j k ~i, i, j, k=1, .:. m. 

   PROPOSITION A.2. Suppose all the eigenvalues are distinct, and (0.9) holds 

for corresponding eigenvectors. Then we have 

(A.10) d3Q(v, )Cri, r,, rk] 

          = d2pi(v, e)Crj, rk]ri+d2PJ(v, e)Crk, ri]rJ+d2pk(v, e)[ri, r;]rk, 

i ~ j * k ~ i. Furthermore, 

(A.11) d2p(v, )[r, rk] = 1 dp(v e)[rk]dpi ~(v, ra ~ p,(v, e)--pi(v,) 7, e)C 1] 

l       + 

pk(v, e)--pi(v, ) dpk(v, e)CrJ]dp1(v, e)[rk] 

     + 1             e)--pJ(v, ,(v, ~) +p e)1-pk(v, )dv, pi(e)CrJ]dpi(v, e)[rk] 
       = (pJ-pk)cikckJ+(Pk-PJ)ciJcJk+(2pi-PJ -pk)ci;cik 

   PROOF. Differentiating (A.5), we obtain 

(A.12) d3Q(v, )[w, rJ, rk]+d2Q(v, )CdrJ[w], rk]+d2Q(v, )CrJ, drk[w]] 

      = d2pJ(v E)Cw, rk]rf+dpJ(v, e)[drk[w]]rJ+dpJ(v , e)[rk]drJ[w] 

       +d2Pk(v, )[w, r;]rk+dpk(v, e)[drJ[w]]rk+dpk(v, e)[rJ]drk[w], 

w ER. Taking w =r, i * j ~ k ~ i, and applying (A.5) (A.6), together with sym-

metry in i, j, k, we have (A.10) and (A.11).
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   REMARK. In a similar manner, we have 

(A.13) d2rz(v, e)Crj(v, ), rk(v, )] 

         _ (ejictk+cjkcki-cjicjk)rj(v, e)+(ckicij+ckjcji-ckickj)rk(v, ), 

i* j*k*i. 

   On the other hand, d3Q(v, )[ri, r~, rk], i * k, or d3Q(v, e)[ri, r1, ri] do not 

admit particularly handy representations, for dri(v, )[r] does generally not 

reduce to a simple form such as (A.6). 

   B. Explicit forms of G k (x, t, 2). 

   In the construction of the formal solution to the problem (0.1) (0.3), we 

have grouped rather harmless terms in the form of ~k=4A-kGk(x, t, A) (see (3.11)). 

G k are explicitly computed as follows. 

                    1] a u3+dA(                                   ~ a u2+dAv(0)Cu3] a B.1) G4(x, t, A) = n dA(                                 y 0)Cu2                  y O)Cu c u1~ axy axy axv 

                                                    2 a ul               +En d2Ay(0)[ui, u                              1Ja u2+2d2Av(O)Cul, u ~                 2 a
xv axv 

                       N N h 

            +dB(0)[ui]u3+dB(0)[u2]u2+dB(0)[u3]ui, 

                         ]a B.2) G6(x, t, A) = n (dA(0)[u2J-u3+dA(0)[u3 y a y c u2             ~ axy axy 

              + 1 d2Ay(0)[ul' u1] a u3+d2Ay(0)[u2, u2] a ul 
                    2 y=~ axy axv 

           +2d2A(                    y O)[ui, u2]°~ u2+2d2Ay(O)[uj, u3]a ul                              ax
v axv 

                        N N 

            +dB(0)[u2]u3+dB(0)[u3]u2, 

B.3 G x t A= n dAy 0 u3 a u3+ 1 jd2A(0)[u2, yu2 a u2 

                  N a N a N 
          +2d2Av(0)Cul, u2] ax

y u3+2d2Av(0)Cu2, u3] axy ul +dB(0)Cu3]u3, 

(B.4) G7(x, t, A) = 1 n d2A(O)Cu2 u2 a u3+d2Ay(0)[u3 u3]a ul              2 ~ v ] ax
y axy 

            +2d2A(0)[u, u3]a u3+2d2A(                                        y 0)Cu2 u3] u2 ,                        v, ax
y axy 

  y 0)Cu2, u3]-_u3} (B.5) G8(x, t, A) = 1 n d2A(O)[u3, u3]a u2+2d2A( 

and 

                       = 1 n d2A O u u a (B.6) G9(x, t, A) 2 ~ v( )[C 3, 3]-----u3. 
                                    axv
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Therefore, if ul(x, t, A), u2(x, t, A), u3(x, t, A) are smooth in x~Rn, 0_<t_T0, 

A>_AO, compactly supported with respect to x, and furthermore 

(B.7) sup A-k-, a I a~axuj(x, t, A) I C k, a < ce, j =1, 2, 3 , 

D and 

(B.8) S~pA-k-slakuj(., t, A)I s <_ CS < c, 

then G(x, t, A)=lJL4 A-1G1(x, t, A) satisfies the estimates 

(B.9) sup A3- k- I a h I a~ax G(x, t, A) C k, a < °, 

D and 

(B.10) s~pA3-k-sl arG(., t, A)I s < Cs < °o. 

Here k=0, 1, 2, , a=(al, a2, , a,), a;=0, 1, 2, , and s>_0. 

   C. Explicit forms of f 1(s1, x, t), f (s1, s;, x, t) and f i;k(Sj, s;, Sk, x, t). 
   In computing G2=0 in § 3, we have remainder terms f i, f ij, f (see (3.27) 

(3.28) (3.29)). Here are their details : 

m

(C.1)

(C.2)

N 

f (s1, x, t) = {biik, t+M(0, biik, x)+biikB(0)}rk(0, , ) 
               k~i 

m 

+ ai ~
SZ (biik)dM(0, ~)[ri(0, ~)]rk(0, ~)  k

#i 

"biik a aidM(0 , )[rk(0, )]ri(0, ) 

N +aidM(0, a,)[r1(0, ~)]r1(0, ~)+aidB(0)[ri(0, ~)]ri(0, ~) 

+ 1 a (az)d2M(0, ,1)Cri(0, '7), ri(0, '7)]ri(0, '7), i =1, ..., m,  6as
i 

                 m N 

f (s, x, t) = 2 k=1 {bijk, t+M(0, bijk, x)+bijkB(O)! rk(0, ~) 

m + az a
S (bjfk)dM(0,'7)[ri(O,'7)]rk(O, ~) 

1 +a • a (biik)dM(0, '7)[r1(0, '7)]rk(0,'7)    as
i 

+bJk a aidM(0, '7)[rk(O, '7)]ri(0, '7)+biik a dM(0, '7)[rk(0, '7)]r(                                                                                                                                                                                                                                                                                                                                                                                                                     ' 0   1 a
Si aS 7 ,1, '7) 

1 m 

+2 ai a bi fk+ b • .k dM 0 r 0 rk 0
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      +a . a bi Jk+ a b~,k dM(O, ~)[r(o, ~)]rk(o            a
sj ~ asi ~ , ~) 

          aai - as j I JkdM      + a
S2 bijkdM(0, ~)[Yk(0, ~)Jri(0, )+ b                               ~ aS i~ (0, ~)[rk(0, ~)]r9(o, ~) 

J 

      +aidM(0, aj, x)Cri(0, ,7)Jrj(0, i2)+a;dM(0, ai, x)[rj(0, -i1)]ri(0, i) 
                   N N 

    +aiaj {dB(0)[ri(0, i)]rj(O, 7~)+dB(0)[rj(0, )]r(0,)} 

   + 1 a a~a j)d2M 0 ) ri(0, ) r(0, )]r(0, ) 

1 

    + a aia2)d2M(0 )[r (O, ), r'(0, )]r1(0, ) 

   -~ 1 a (aia2)d2M(0, )[r1(0, ), r (O, )]r(0, ) 

   + 1 a (a~a )d2M(0, )[r(0, ), r (O, )]r1(0, ), i * I, i, =1, ..., m,         2 as
i ' ~I ~I ' ~I ~

        i'k Si S Sk x t) = aia J a akd2M(0, )Cri(0, ), r'(0, )]rk(O, ) (0.3) f 1 ( , 3, , , 1 as 
k ~ ~ 3 

   +a'ak a aid2M(0, )[r'(0 ), rk(0, )]r(0, ) 

      +akai a a Jd2M(0, )Crk(0, ), r(0, )]r1(0, ) 

m 

     +2a      j bjkl+bjkl dM(0, )[r1(0,rl(0, ~) 
          l=1 aS j aS k 

            a La    +
ak a

Si bijl+ aS bijl dM(O, ~)[rk(0, )]r1(0,) 

     +aJ a bkil+ a bkil dM(0, )[r(0, )]rl(0, )          1 aS 
k as. 

          m aai 
   +2 ~' bjkldM(0, )[r1(0,)]ri(0, ~)+ ak bijldM(0, )[r1(0,)Jrk(0, ~) 

           l=~ asi ask 

     + aa, bkildM(0, )[r1(0, )]r1(0, i* '*k*i i k l =1 m. 

1 Thus, f = f, i=/=j, and fijk= fjki= fkij= fkjti = fikj = fjik (because of the choice 

of bijk). 

  If (0.6) and (0.10) hold, then 

(C.4) f1=0, i2,                                  ? 

(C.5) fij = 0, 2 ~ 1 * 2.
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(C.6 ii(s sl x t = a1(s1x t) a (biii(si six t))dM(0 )[r1(0, )Jri(Q, ) 

                +biii(si si x t al(sl x t)d1V1(O, )[ri(a, )]rl(O, ), 

i>_2. Furthermore, 

(C.7) f ijk(si, s~, sk, x, t) = 0, i ~ j ~ k ~ i. 

   On the other hand, if the system (0.1) is of conservation laws and thus 

(A.1) is fulfilled, then (C.1) (C.2) (C.3) are somewhat simplified. Such simplifica-

tions are not quite useful for our purpose in the present paper. 
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