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ASYMPTOTIC EXPANSIONS OF THE SOLUTIONS
TO THE HEAT EQUATIONS WITH HYPERFUNCTIONS

INITIAL VALUE

Kunio Yoshino and Yasuyuki Oka

Abstract. We will derive the asymptotic expansions of solutions of the
heat equation with hyperfunctions initial data.

1. Introduction

In [4], T. Matsuzawa characterized hyperfunctions with compact support as
the initial value of the solutions to the heat equations as follows:

Theorem 1 ([4]). Let u be a hyperfunction with compact support K. Then
U(x, t) = (u ∗ E)(x, t) satisfies

(i)
(

∂

∂t
− ∆

)
U(x, t) = 0,

(ii) U(x, t) ∈ C∞(Rd × (0,∞)),
(iii) For any a > 0, there exists Ca > 0 such that

|U(x, t)| ≤ Caea/t, x ∈ Rd , 0 < t < 1,

(iv) For any δ > 0, U(x, t) −→ 0 uniformly in {x ∈ Rd | dis(x,K) ≥ δ} as
t −→ 0 and

(v) U(x, t) → u, t → 0 in A′(K), i.e.,

(♯) ⟨u, φ⟩ = lim
t→0

∫
Rd

U(x, t)χ(x)φ(x)dx

for any entire functions φ, where E(x, t) = (4πt)−
d
2 e−

x2
4t , x ∈ Rd,

0 < t < +∞ and χ ∈ C∞
0 (Rd) such as χ = 1 in a neighborhood of K.

Conversely, if every C∞-function U(x, t) defined in Rd×(0,∞) satisfies (i), (iii)
and (iv), then there uniquely exists u ∈ A′(K) such that U(x, t) = (u∗E)(x, t).
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We analyze (♯) more precisely. Formally, we have the following formal cal-
culation:

U(x, t) =
(

1
2π

)d ∫
Û(ξ, t)eix·ξdξ

=
(

1
2π

)d ∫
û(ξ)Ê(ξ, t)eix·ξdξ

=
(

1
2π

)d ∫
û(ξ)e−tξ2

eix·ξdξ

=
(

1
2π

)d ∫
û(ξ)

∞∑
k=0

(−tξ2)k

k!
eix·ξdξ

=
(

1
2π

)d ∞∑
k=0

tk

k!

∫
û(ξ)(−ξ2)keix·ξdξ

=
∞∑

k=0

tk

k!
∆ku,

where f̂ is the Fourier transform of f . For example, we have E(x, t) ∼
∞∑

k=0

tk

k!
∆kδ, where δ is Dirac’s delta function.

As a consequence of our strict consideration on this formal calculation, we
will derive the asymptotic expansions of solutions of the heat equation with
hyperfunctions with compact support initial data as follows:

Main Theorem 1. Let U(x, t) ∈ C∞(Rd × (0,∞)) satisfying the following
conditions:

(i)
(

∂

∂t
− ∆

)
U(x, t) = 0 ,

(ii) ∀ϵ > 0 , ∃Cϵ ≥ 0 s.t. |U(x, t)| ≤ Cϵe
ε/t , 0 < t < 1 , x ∈ Rd,

(iii) ∀δ > 0, U(x, t) → 0 uniformly in {x ∈ Rd | dist(x,K) ≥ δ} as t → 0.

Then U(x, t) has the following asymptotic expansion:

U(x, t) ∼
∞∑

k=0

tk

k!
∆k

xu ,
(
u ∈ A′(K), where u = lim

t→0
U(x, t)

)
.

That is, for any entire function φ,

lim
t→0+

∣∣∣∣∣∣
∫

Rd

U(x, t)χ(x)φ(x)dx −

⟨ N
2∑

k=0

tk

k!
∆k

xu, χφ

⟩∣∣∣∣∣∣ t−
N
2 = 0,

where ∆x = ∂2
x1

+ · · · + ∂2
xd

and χ(x) ∈ C∞
0 (Rd) such as χ = 1 in a neighbor-

hood of K.
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2. Asymptotic expansions of the solutions to the heat equations
with hyperfunctions with compact support initial value

We will derive the asymptotic expansions of the solutions of the heat equa-
tions with hyperfunctions with compact support initial value in this section.
First of all, we fix some notations. We use a multi-index α ∈ Zd

+, namely,
α = (α1 · · ·αd), where αi ∈ Z and αi ≥ 0. So, for x ∈ Rd, xα = xα1

1 · · ·xαd

d and
∂α

x = ∂α1
x1

· · · ∂αd
xd

, where ∂
αj
xj = ( ∂

∂xj
)αj .

E(x, t) = (4πt)−
d
2 e−

x2
4t , x ∈ Rd , 0 < t < +∞,

is called heat kernel and has the following properties:

• E(x, t) ∈ S(Rd
x) , t > 0,

•
∫

Rd

E(x, t)dx = 1 , t > 0,

•
(

∂

∂t
− ∆

)
E(x, t) = 0 , x ∈ Rd , 0 < t < ∞.

Moreover we obtain the following estimate on the heat kernel E(x, t):

Proposition 1. For any α ∈ Zd
+, we have

|∂α
x E(x, t)| ≤ E(x, t)(α!)

1
2 (2t)−|α|(1 + |x|)α, x ∈ Rd, 0 < t ≤ 1

2
.

Proof. Since Ê(ξ, t) = e−tξ2
, we have

E(x, t) =
(

1
2π

)d ∫
Rd

e−tξ2
eix·ξdξ.

Therefore we obtain

∂α
x E(x, t) = ∂α

x

(
1
2π

)d ∫
Rd

e−tξ2
eix·ξdξ

=
(

1
2π

)d ∫
Rd

e−tξ2
(iξ)αeix·ξdξ.

Put ζ = ξ + iη, ξ, η ∈ Rd. Then by Cauchy’s integral theorem,

∂α
x E(x, t) =

(
1
2π

)d ∫
Rd

e−tξ2
(iξ)αeix·ξdξ

=
(

1
2π

)d ∫
Rd

e−t(ξ+iη)2{i(ξ + iη)}αeix·(ξ+iη)dξ.
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So we have

|∂α
x E(x, t)| =

∣∣∣∣∣
(

1
2π

)d ∫
Rd

e−t(ξ+iη)2{i(ξ + iη)}αeix·(ξ+iη)dξ

∣∣∣∣∣
≤

(
1
2π

)d ∫
Rd

e−t(ξ2−η2)(|ξ| + |η|)αe−x·ηdξ

= etη2−x·η
(

1
2π

)d ∫
Rd

e−tξ2
(|ξ| + |η|)αdξ

= et(η− x
2t )2− x2

4t

(
1
2π

)d ∫
Rd

e−tξ2
(|ξ| + |η|)αdξ.

Now we put η =
x

2t
. Then we obtain

|∂α
x E(x, t)| ≤ e−

x2
4t

(
1
2π

)d ∫
Rd

e−tξ2
(|ξ| +

∣∣∣ x

2t

∣∣∣)αdξ.(2.1)

On the other hand, we find∫
Rd

e−tξ2
(|ξ| +

∣∣∣ x

2t

∣∣∣)αdξ =
∑
β≤α

(
α

β

) ∣∣∣ x

2t

∣∣∣α−β
∫

Rd

e−tξ2
|ξ|βdξ

= 2d
∑
β≤α

(
α

β

) ∣∣∣ x

2t

∣∣∣α−β
∫

(0,∞)d

e−tξ2
ξβdξ.(2.2)

Since

∫
(0,∞)d

e−tξ2
ξβdξ =

(
1
2

)d (
1√
t

)|β|+d d∏
j=1

Γ
(

βj + 1
2

)
,

where Γ(s) is Euler gamma function. By (2.1) and (2.2), we have

|∂α
x E(x, t)| ≤ e−

x2
4t

(
1
2π

)d ∑
β≤α

(
α

β

) ∣∣∣ x

2t

∣∣∣α−β
(

1√
t

)|β|+d d∏
j=1

Γ
(

βj + 1
2

)
.

By a direct calculation, we have

d∏
j=1

Γ
(

βj + 1
2

)
≤ (β!)

1
2

(
1
2

) |β|
2

π
d
2 .
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So we obtain

|∂α
x E(x, t)| ≤ e−

x2
4t

(
1
2π

)d ∑
β≤α

(
α

β

) ∣∣∣ x

2t

∣∣∣α−β
(

1√
t

)|β|+d

(β!)
1
2

(
1
2

) |β|
2

π
d
2

≤ e−
x2
4t

(
1
2π

)d ∑
β≤α

(
α

β

) ∣∣∣ x

2t

∣∣∣α−β
(

1√
t

)|β|+d

(α!)
1
2

(
1
2

) |β|
2

π
d
2

=
(

1√
4πt

)d

e−
x2
4t (α!)

1
2

∑
β≤α

(
α

β

) ∣∣∣ x

2t

∣∣∣α−β
(

1√
2t

)|β|

= E(x, t)(α!)
1
2

(∣∣∣ x

2t

∣∣∣ +
1√
2t

)α

= E(x, t)(α!)
1
2

(
1
2t

)|α| (
|x| +

√
2t

)α

.

Therefore we have

|∂α
x E(x, t)| ≤ E(x, t)(α!)

1
2

(
1
2t

)|α|

(1 + |x|)α
, 0 < t ≤ 1

2

which proves the Proposition 1. ¤

Remark 1. The estimate in Proposition 1 is a little bit different from Mat-
suzawa’s result in [5].

Definition 1. Let K be a compact set of Rd and A(K) be the space of all real
analytic functions in some neighborhood of K. That is,

A(K) = { φ ∈ C∞ in a neighborhood of K | ∃C > 0, ∃h > 0 such that

sup
x∈K,α

|∂αφ(x)|
h|α|α!

≤ C}.

For h > 0, we put

Ah(K) = { φ ∈ C∞ in a neighborhood of K | ∃C > 0 such that

∥φ∥Ah(K) = sup
x∈K,α

|∂αφ(x)|
h|α|α!

≤ C}.

Then A(K) = lim
−→

h→∞

Ah(K). Ah(K) is Banach space and A(K) is DFS-space.

Remark 2. This norm ∥ · ∥Ah(K) is equivalent to the following norm ∥ · ∥ω. Let
ω be a complex neighborhood of K. For any φ ∈ O(ω) ∩ C(ω),

∥φ∥ω = sup
ω

|φ(ζ)|.

By Proposition 1, we immediately obtain the following Proposition 2:

Proposition 2. E(x, t) ∈ Ah(K).
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Definition 2. A′(K) denotes the dual space of A(K) and we call the element
of A′(K) hyperfunctions supported by K.

We obtain the following result.

Theorem 2. Let U(x, t) ∈ C∞(Rd × (0,∞)) satisfy the following conditions:

(i)
(

∂

∂t
− ∆

)
U(x, t) = 0,

(ii) ∀ϵ > 0 , ∃Cϵ > 0 s.t. |U(x, t)| ≤ Cϵe
ε/t , 0 < t < 1 , x ∈ Rd,

(iii) ∀δ > 0, U(x, t) → 0 uniformly in {x ∈ Rd | dist(x,K) ≥ δ} as t → 0.
Then U(x, t) has the following asymptotic expansion:

U(x, t) ∼
∞∑

k=0

tk

k!
∆k

xu ,
(
u ∈ A′(K) , where u = lim

t→0
U(x, t)

)
.

That is, for any entire function φ,

lim
t→0+

∣∣∣∣∣∣
∫

Rd

U(x, t)χ(x)φ(x) −

⟨ N
2∑

k=0

tk

k!
∆k

xu, χφ

⟩∣∣∣∣∣∣ t−
N
2 = 0,

where χ(x) ∈ C∞
0 (Rd) and χ = 1 in a neighborhood of K.

To prove Theorem 2, we need the two lemmas as follows:

Lemma 1. Let χ ∈ C∞
0 such as χ = 1 in a neighborhood of K and φ be entire

functions. Then ∂α(χφ) ∈ A(K) for any α ∈ Zd
+.

Proof.

∂α(χφ) =
∑
|β|≤α

(
α
β

)
∂βχ∂α−βφ.

Since ∂βχ∂α−βφ ∈ A(K), we obtain ∂α(χφ) ∈ A(K). ¤

Lemma 2. Let g = χφ be in Ah(K) and t > 0, where χ ∈ C∞
0 (Rd) such as

χ = 1 in a neighborhood of K and φ be entire functions. Then∫
Rd

e−z2
zα

{∫ 1

0

(1 − θ)N∂α
y g(y +

√
4tzθ)dθ

}
dz

is in Ah(K).

Proof. For y ∈ K, let given h > 0 be fixed. If g ∈ Ah(K), then by Lemma 1,
∂αg ∈ Ah(K) for any α ∈ Zd

+. If we put G(y) = ∂αg(y +
√

4tzθ), then
G(y) ∈ Ah(K). So there exists constant CG such that

sup
y∈K,β

|∂β
y G(y)|
h|β|β!

≤ CG.
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Therefore ∣∣∣∣∂β

∫
Rd

e−z2
zα

{∫ 1

0

(1 − θ)NG(y)dθ

}
dz

∣∣∣∣
h|β|β!

≤ CG

∫
Rd

e−z2
zαdz = CG

d∏
j=1

Γ(
1
2
(αj + 1)).

So we obtain∫
Rd

e−z2
zα

{∫ 1

0

(1 − θ)N∂α
y g(y +

√
4tzθ)dθ

}
dz ∈ Ah(K).

This proves the lemma. ¤

Proof of Theorem 2. By Matsuzawa’s result [4], there uniquely exists u∈A′(K)
such that U(x, t) = (u ∗ E)(x, t). Hence, for any entire functions φ,

⟨U(x, t), χ(x)φ(x)⟩ = ⟨(u ∗ E)(x, t), χ(x)φ(x)⟩
= ⟨uy, E(x, t) ∗ χφ⟩

=
⟨

uy,

∫
Rd

π− d
2 e−z2

χ(y +
√

4tz)φ(y +
√

4tz)dz

⟩
.

Put g(y +
√

4tz) = χ(y +
√

4tz)φ(y +
√

4tz). Then by Taylor’s formula,∫
Rd

π− d
2 e−z2

g(y +
√

4tz)dz

= π− d
2

N∑
|α|=0

∂αg(y)
α!

(
√

4t)|α|
∫

Rd

e−z2
zαdz

+
∫

Rd

π
−d
2 e−z2

 ∑
|α|=N+1

N + 1
α!

(
√

4tz)α

∫ 1

0

(1 − θ)N∂αg(y +
√

4tzθ)dθ

 dz.

So we obtain∣∣∣∣∣∣⟨U(x, t), χφ⟩ −

⟨ N
2∑

k=0

tk

k!
∆ku, χφ

⟩∣∣∣∣∣∣ t−
N
2

=

∣∣∣∣∣
⟨

uy,

∫
Rd

π
−d
2 e−z2

 ∑
|α|=N+1

N + 1
α!

(
√

4tz)α

∫ 1

0

(1 − θ)N∂αg(y +
√

4tzθ)dθ

 dz

⟩∣∣∣∣∣ t−
N
2 .

Therefore, by Lemma 5 and the continuity of u, we have∣∣∣∣∣∣⟨U(x, t), χφ⟩ −

⟨ N
2∑

k=0

tk

k!
∆ku, χφ

⟩∣∣∣∣∣∣ t−
N
2 ≤ Ct

N+1
2 t−

N
2 = Ct

1
2 → 0, as t → 0.

¤
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3. Asymptotic expansions of the solutions to the heat equations
with Fourier-hyperfunctions initial data

We will derive asymptotic expansions of the solutions to the heat equations
with Fourier hyperfunctions initial data in this section.

At first, we define the space of test functions F of Fourier-hyperfunctions as
follows:

Definition 3. For h, k ∈ (0,∞)d,

Fh,k = {φ ∈ C∞(Rd) | ∀δ, ρ ∈ (1,∞)d,∃Cδ,ρ ≥ 0 such that

|∂βφ(x)| ≤ Cδ,ρ(ρh)ββ! exp (−kδ|x|) , ∀β ∈ Zd
+}.

• Fh,k is a Fréchet space by semi norm

∥φ∥δ,ρ = sup
x,β

|∂βφ(x)| exp(δk)|x|
(ρh)ββ!

and F is LF-space. (F = lim
−→

h→∞
k→0

Fh,k).

Remark 3. It is known that F ∼= S1
1 [6], where S1

1 is the Gel’fand-Shilov space
[2].

On the other hand, J. Chung, S.-Y. Chung, and D. Kim characterized F via
Fourier transform as follows [1]:

Proposition 3 ([1]).

F = {φ ∈ C∞(Rd) | sup |φ(x)| exp(m|x|) < ∞,

sup |φ̂(ξ)| exp(l|ξ|) < ∞ for some l ,m > 0}.

Definition 4. F ′ denotes the dual space of F and the elements of F ′ are called
Fourier hyperfunctions.

Proposition 4. Let u be a linear form from F to C. Then the following
statements (i) and (ii) are equivalent.

(i) u ∈ F ′(Rd).
(ii) ∀h, k ∈ (0,∞)d, ∃Ch,k > 0 s.t. | ⟨u, φ⟩ | ≤ Ch,k∥φ∥δ,ρ , ∀φ ∈ Fh,k(Rd).

We obtain the following asymptotic expansions of the solutions to the heat
equations with Fourier-hyperfunctions initial data:

Theorem 3. Let U(x, t) ∈ C∞(Rd × (0,∞)) satisfy the following conditions:

(i)
(

∂

∂t
− ∆

)
U(x, t) = 0,

(ii) ∀ϵ > 0,∃Cϵ > 0 s.t. |U(x, t)| ≤ Cϵ exp[ϵ(1/t + |x|)], 0 < t < 1,
x ∈ Rd.
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Then U(x, t) has the following asymptotic expansion:

U(x, t) ∼
∞∑

m=0

tm

m!
∆m

x u ,
(
u ∈ F ′(Rd) , where u = lim

t→0
U(x, t)

)
.

That is,

lim
t→0+

∣∣∣∣∣∣
∫

Rd

U(x, t)φ(x)dx −

⟨ N
2∑

m=0

tm

m!
∆m

x u , φ

⟩∣∣∣∣∣∣ t−
N
2 = 0, φ ∈ F(Rd).

To show this, we need the following lemma:

Lemma 3. Let φ be in Fh,k(Rd) and t > 0. Then∫
Rd

e−z2
zα

{∫ 1

0

(1 − θ)N∂α
y φ(y +

√
4tzθ) dθ

}
dz

belongs to Fh,k(Rd).

Proof. ∣∣∣∣∂β
y

∫
Rd

e−z2
zα

{∫ 1

0

(1 − θ)N∂α
y φ(y +

√
4tzθ) dθ

}
dz

∣∣∣∣ exp (δk)|y|

(ρh)ββ!
.(3.1)

Since φ ∈ Fh,k, ∂α
y φ ∈ Fh,k [2]. Put g(y +

√
4tzθ) = ∂α

y φ(y +
√

4tzθ).

(3.1) =

∣∣∣∣∂β
y

∫
Rd

e−z2
zα

{∫ 1

0

(1 − θ)Ng(y +
√

4tzθ) dθ

}
dz

∣∣∣∣ exp (δk)|y|

(ρh)ββ!

≤

∫
Rd

e−z2
|z|α

{∫ 1

0

|1 − θ|N |∂β
y g(y +

√
4tzθ)| dθ

}
dz exp (δk)|y|

(ρh)ββ!

=
∫

Rd

e−z2
|z|α

{∫ 1

0

|1 − θ|N
|∂β

y g(y +
√

4tzθ)|
(ρh)ββ!

dθ

}
dz exp (δk)|y|.(3.2)

By g ∈ Fh,k,

|∂β
y g(y +

√
4tzθ)|

(ρh)ββ!
≤ Cδ,ρ exp

(
−(δk)|y +

√
4tzθ|

)
.
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So we have

(3.2) ≤
∫

Rd

e−z2
|z|αCδ,ρ exp

(
−(δk)|y +

√
4tzθ|

)
exp (δk)|y| dz

≤ Cδ,ρ

∫
Rd

e−z2
|z|α exp

(
(δk)

√
4t|z|

)
dz

≤ Cδ,ρ

∫
Rd

e−z2
|z|α exp (2(δk)|z|) dz

≤ Cδ,ρe
δ2k2 ∑

|l|≤α

(
α
l

)
(δk)α−l+1

{(
l

2

)l/2

+ Γ(
1
2
(l + 1))

}
.

Hence we obtain∫
Rd

e−z2
zα

{∫ 1

0

(1 − θ)N∂α
y φ(y +

√
4tzθ) dθ

}
dz ∈ Fh,k.

This completes the proof of Lemma 3. ¤

Proof of Theorem 3. By the result in [3], there exists Fourier-hyperfunction
u ∈ F such that U(x, t) = (u ∗ E)(x, t). For any φ ∈ Fh,k,

⟨U(x, t) , φ⟩ = ⟨(u ∗ E)(x, t) , φ⟩ .

By a similar calculation to the proof of Theorem 2, we have the following
equality:
(3.3)∣∣∣∣∣∣⟨U(x, t), φ⟩ −

N
2∑

m=0

tm

m!
⟨∆mu , φ⟩

∣∣∣∣∣∣ t−
N
2

=

∣∣∣∣∣
⟨

uy, π− d
2 (
√

4t)N+1
∑

|α|=N+1

(N + 1)
α!

∫
Rd

e−z2
zα

{∫ 1

0

(1 − θ)N∂α
y φ(y +

√
4tzθ) dθ

}
dz

⟩∣∣∣∣∣ t−
N
2 .

We obtain the following estimate by Proposition 4 and Lemma 3. For any
h, k ∈ (0,∞)d,

(3.3) ≤ Ch,k,δ,ρ,αt
N+1

2 t−
N
2 = Ch,k,δ,ρ,αt

1
2 → 0, t → 0.

This completes the proof of Theorem 3. ¤

Remark 4. In this connection, we have antecedent results on the asymptotic ex-
pansions of the solutions of the heat equations with the tempered distributions
and the distributions of exponential growth initial date (see [7]).
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