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Abstract. The high-order statistics of fluctuations in velocity gradients in the

crossover range from the inertial to the Kolmogorov and sub-Kolmogorov scales

are studied by direct numerical simulations (DNS) of homogeneous isotropic

turbulence with vastly improved resolution. The derivative moments for orders

0 � n � 8 are represented well as powers of the Reynolds number, Re, in the

range 380 � Re � 5275, where Re is based on the periodic box length Lx. These

low-Reynolds-number flows give no hint of scaling in the inertial range even when

extended self-similarity is applied. Yet, the DNS scaling exponents of velocity

gradients agree well with those deduced, using a recent theory of anomalous

scaling, from the scaling exponents of the longitudinal structure functions at

infinitely high Reynolds numbers. This suggests that the asymptotic state of

turbulence is attained for the velocity gradients at far lower Reynolds numbers

than those required for the inertial range to appear. We discuss these findings in the

light of multifractal formalism. Our numerical studies also resolve the crossover

of the velocity gradient statistics from Gaussian to non-Gaussian behaviour that

occurs as the Reynolds number is increased.
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1. Introduction

1.1. Motivation and previous work

A deep understanding of the turbulent flow field u(x, t) remains a challenging problem.

Extensions of the classical theory of turbulence by Kolmogorov [1] consider a multiplicity

of algebraic scaling exponents for moments of velocity increments δru in the inertial range of

length scales r, which are spanned roughly between the Kolmogorov dissipation scale ηK and

the outer scale of turbulence L. The longitudinal increment moments (or structure functions) are

then given as

Sn(r) ≡ (δru)n =
(

(u(x + r) − u(x))·
r

r

)n

= An

( r

L

)ζn

, (1)

where the scaling exponents ζn depend nonlinearly on the order n but not on the Reynolds number

Re, as long as the latter is sufficiently large. The dimensional coefficients An depend at most on

large-scale quantities. This nonlinear dependence of the algebraic scaling exponents ζn on the

moment order n is a manifestation of the inertial-range intermittency, which is generally agreed

to be an important feature of three-dimensional turbulence. Inertial-range intermittency was

experimentally first quantified by Anselmet et al [2]. Starting with the work of Kolmogorov [3]

and Oboukhov [4], numerous phenomenological models have been developed to study and

describe intermittency (see, for example, [5]). The most dominant underlying theme of these

models has been the multifractal formalism (MF) [6].

There is a similar intermittency in the dissipative scales. This, too, has been experimentally

characterized since [7], and many models have been developed as well (see, again, [5] for a

summary). The relation between the two intermittencies has been the subject of the so-called

refined similarity hypothesis (RSH) put forth in [3]. This hypothesis links the statistics of the

New Journal of Physics 9 (2007) 89 (http://www.njp.org/)

http://www.njp.org/


3 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

velocity increments at inertial scales with that of the velocity gradients at smaller scales where

inertial and viscous ranges match.

In [7, 8], it was recognized that dissipation intermittency implies an infinite number of

dissipative scales, η. Using this insight, Nelkin [9] worked out the Reynolds number dependence

of the moments of velocity derivatives. Frisch andVergassola [10] denoted the range of dissipation

scales spanning between ηmin and ηmax as the intermediate dissipation range. Their geometric

picture of the continuum of dissipation scales is that each element of the range would possess

a local Hölder exponent h, which characterizes the spatial roughness of subsets of velocity

increments in the inertial range. Consequently, the minimum and maximum values of the

dissipation scale would be controlled by the smallest and the largest Hölder exponents: ηmin =
η(hmin) and ηmax = η(hmax). Later, Chevillard et al [11] studied the intermediate dissipation

range within a random cascade model that takes δru as a product of a Gaussian random variable

and a positive (scale-dependent) transfer variable. They found that ln(ηmax/ηmin) ∼
√

ln Re. The

relation of the intermediate dissipation range to the decay of energy spectra was discussed recently

in the context of well-resolved shell models [12].

Efforts have also been made to obtain ζn(n) directly from the Navier–Stokes equations but

the problem has remained a great challenge. We limit ourselves here to citing the work ofYakhot

[13]—in part because of the connection to the present work and in part because the author kept

his considerations close to the dynamical equations. The theory has been extended [14, 15] to

explore the connection between the viscous and inertial range intermittencies. This extension

builds on the notion that the fluctuating dissipation scale η is to be considered a field that varies

in space and time. A relevant feature of the theory is its prediction for the scaling of velocity

gradients in terms of the exponents ζn.

Within this overall framework, the present paper accomplishes the following goals. Firstly,

we perform direct numerical simulations (DNS) of homogeneous isotropic turbulence with vastly

better spectral resolution than any previous study. As was explicitly stated by Nelkin [9], such

superfine resolutions are required to compute the derivatives accurately. Secondly, we then study

the relation between the inertial and dissipative regions within the framework of existing theories,

namely RSH and the theory of [14, 15]. After describing the theoretical basis [14, 15] and

the details of the numerical simulations (section 1), we discuss the analyticity and scaling of

the velocity increment moments in section 2 and present our findings on the velocity gradient

statistics in section 3. We also compare in section 3 our results with those of previous work, study

in detail the crossover of the statistics of the velocity gradients from Gaussian to non-Gaussian

regime and discuss our results in the light of the MF.

Perhaps the most surprising result of the present work is that, while we find no evidence

for the inertial range in the DNS data (even when examined through the extended self-similarity

(ESS)), the measured scaling exponents of velocity gradients agree well with those deduced from

the longitudinal structure functions at infinitely high Reynolds numbers. This suggests that the

asymptotic state of turbulence is attained for the velocity gradients at far lower Reynolds numbers,

well short of those required for the inertial range to appear. We conclude with a summary and

an outlook in section 4.

1.2. Numerical simulations

The Navier–Stokes equations for an incompressible Newtonian fluid u(x, t) are solved in

a periodic box of side length Lx = 2π. The pseudospectral method is applied with a 2/3
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de-aliasing for the fast Fourier transforms. Advancement in time is done by a second-order

predictor–corrector scheme. The equations are given by

∂u

∂t
+ (u · ∇)u = −∇p + ν�u + f . (2)

The kinematic pressure field is p(x, t) and ν is the kinematic viscosity. We consider flows that

are sustained by a volume-forcing f(x, t) in a statistically stationary turbulent state. This driving

is implemented in the Fourier space for the modes with the largest wavenumbers kf only, i.e.

k−1
f ≈ Lx. The kinetic energy is injected at a fixed rate ǫin into the flow. The volume forcing is

established by the expression [16, 17]

f(k, t) = ǫin

u(k, t)
∑

kf∈K |u(kf, t)|2
δk,kf

, (3)

where the wavevector subset K contains kf = (1, 1, 2) and (1,2,2) plus all permutations with

respect to components and signs. This energy injection mechanism prescribes the mean energy

dissipation rate; that is, the magnitude of the first moment of the energy dissipation rate field,

E , is determined by the injection rate, ǫin, having no Reynolds number dependence. This can

be seen as follows. Given the periodic boundary conditions in our system, the turbulent kinetic

energy balance, which results from rewriting (2) in the Fourier space, reads as:

dEkin

dt
= −ν

∑

k

k2|u(k, t)|2 +
∑

k

f(k, t)·u∗(k, t). (4)

The first term on the right-hand side of (4) is the volume average of the energy dissipation field.

Additional time averaging in combination with (3) results in

ν
∑

k

k2〈|u(k, t)|2〉t = E = ǫin =
∑

k

〈f(k, t)·u∗(k, t)〉t. (5)

The applied driving thus allows full control of the Kolmogorov scale ηK = ν3/4/E
1/4

in

comparison to the grid spacing. In contrast to the usually applied stochastic forcing, the integral

length scale L, which is defined [18] as

L =
π

2u2
x

∫ ∞

0

dk
E(k)

k
, (6)

decreases with increasing Reynolds number. Since the forcing scale in the computations is

proportional to the box size, we use the box size Lx as the relevant scale. The use of the integral

scale instead of Lx does not alter the scaling results significantly. Further details on the simulation

parameters can be found in table 1.

As already pointed out, the adequate resolution of the analytic part of structure functions

turns out to be very demanding. The resolution in the present simulations exceed those of

conventional simulations by a factor O(10). Consequently, the Reynolds numbers attained

are modest despite the relatively large computational box, very much in the spirit of [19].

In order to stress this point further, we compare the statistics of the energy dissipation field

E(x, t) = ν

2
(∂ui/∂xj + ∂uj/∂xi)

2 for our resolution and the standard case (see figure 1). At least

for the intended analysis of higher-order gradient statistics, proper resolution of the far tails turns

out to be necessary.
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Table 1. Parameters of the DNS. Here, ν is the kinematic viscosity, E is the mean

energy dissipation rate, Rλ =
√

5/(3Eν)u2
rms is the Taylor-microscale Reynolds

number. We will use the following definition for the large scale Reynolds number:

Re = urmsLx/ν where the box size Lx = 2π is taken. urms = (u2
x + u2

y + u2
z)

1/2 is

used instead of (δLu)rms. The spectral resolution is indicated by kmaxηK where

kmax =
√

2N

3
and N the number of grid points in each direction of the cube.

Run no. N ν E urms L Rλ Re kmaxηK

1 512 1/30 0.1 0.687 1.018 10 129 33.56

2 1024 1/75 0.1 0.808 0.920 24 380 33.56

3 1024 1/200 0.1 0.854 0.758 42 1074 15.93

4 1024 1/400 0.1 0.892 0.694 65 2243 9.6

5 2048 1/400 0.1 0.882 0.690 64 2218 19.2

6 2048 1/1000 0.1 0.911 0.659 107 5725 9.6

0 10 20 30 40 50

10
−6

10
−4

10
−2

10
0

P
D

F

Energy dissipation rate

N
3
=128

3

N
3
=1024

3

Figure 1. Resolution requirements in the numerical simulations. The probability

density function (PDF) of the energy dissipation field E(x, t) = ν/2(∂ui/∂xj +

∂uj/∂xi)
2 is plotted. The dissipation field is given in units of the mean energy

dissipation rate E . The case with kmaxηK = 1.2 (cyan curve), corresponding

roughly to the standard resolution in a box of size N = 128, is compared with

that of superfine resolution (blue curve, see also table 1). While the cores of both

PDFs agree, deviations are manifest in the far tails. Both runs are for Rλ = 65.

Approximately 1.7 × 108 data points were processed for the analysis in the low-

resolution run; the corresponding number for the high-resolution run was about

30 times larger.
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1.3. Theoretical basis

The theory [14, 15] starts with the exact equations for the nth order longitudinal structure

functions Sn(r) which can be directly derived from the equations of motion for the turbulent fluid

[13, 20]. For homogeneous, isotropic and statistically stationary turbulence in three dimensions

these equations take the form

∂S2n(r)

∂r
+

2

r
S2n(r) =

2(2n − 1)

r
G2n−2,2(r) + (2n − 1)δra(δru)2n−2. (7)

Here, G2n−2,2 is the mixed term containing longitudinal increments of order 2n − 2 and transverse

increments of order 2. Equation (7) is not closed because the last term on the right-hand side

is unknown. For small increment scales around the Kolmogorov length, it follows that the

expression for the Lagrangian acceleration of fluid particles is given by

δηa =
(δηu)3

ν
, (8)

recalling that the characteristic time is of the order ν/(δηu)2. In this equation, note that η is a

field and that increments are therefore taken across variable distances. The unknown term has

the form

δra(δru)2n−2 ≈
1

ν
(δηu)3(δru)2n−2. (9)

This correlation involves two scales—a locally varying dissipation scale field η in the acceleration

increment and r in the velocity increment moment—and is therefore hard to manipulate. However,

in the limit r → η one can make some progress. In this limit, we set η = η2n, where η2n is

the order-dependent matching distance between the analytic and singular parts of S2n(r) (see

figure 2). The other three terms of (7) are found to be of the same magnitude [21, 22] and are of

the order S2n/η2n. One thus obtains, for r → η, the result

S2n(η2n)

η2n

≈
S2n+1(η2n)

ν
. (10)

Now, the velocity increments have the property that, at the large scale L, their distribution

is Gaussian. It then follows from (1) that S2n(η2n) = (2n − 1)!!σ2n
L (η2n/L)ζ2n , where σL =

√

(δLu)2.4 Putting r = η2n, one obtains from (5)

(η2n

L

)ζ2n−ζ2n+1−1

=
(2n)!!

(2n − 1)!!

σLL

ν
≈

σLL

ν
. (11)

With the large scale Reynolds number Re = σLL/ν one gets

η2n ≈ LRe
1

ζ2n−ζ2n+1−1 . (12)

For the Kolmogorov scaling, ζn = n

3
and (12) yields η2n = LRe−3/4 = ηK for all orders n, as

consistency would require.

4 For example, S4(L) = 3!!σ4
L(L/L)ζ4 = 3σ4

L and S2(L) = σ2
L. It follows that, at the appropriate large scale L, the

flatness factor S4(L)/S2
2(L) = 3.
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Figure 2. The matching of the inertial and dissipative ranges. (a) In the standard

approach, the same Kolomogorov scale matches the singular (∼ rζn) and analytic

parts (∼ rn) for all orders n of the increment moments. (b) In the theory of

[14, 15], for each order of the moment Sn(r), the singular and analytic parts

match at an order-dependent scale ηn. Following (12), ηn < ηm when n > m.

To make further progress, the functional dependence of ζ2n has to be given explicitly. The

theory of [13] provides a convenient functional form

ζ2n =
2(1 + 3β)n

3(1 + 2βn)
, (13)

which, with the free fitting parameter β set to 0.05, agrees with available experimental data in

high-Reynolds-number flows (for order 10–15). We find that this relation agrees, up to order

10–15, with available measurements as well as with popular parametrizations of ζn, e.g. with the

She–Leveque model and the p-model [23, 24]. The scaling behaviour of the spatial derivative in

the analytic range of the displacement r can be calculated, in the limit r → η, as

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

n

≈
∣

∣

∣

∣

δηu

η

∣

∣

∣

∣

n

=
(δηu)2n

νn
∝ Renη

ζ2n

2n = Reρn, (14)

where we have used the fact that the ‘dynamic’ Reynolds number at the local dissipation scale

is unity, i.e. Reη = ηδηu/ν ≈ 1. The use of (12) yields

ρn = n +
ζ2n

ζ2n − ζ2n+1 − 1
. (15)

Since ζ3 = 1 [25], relation (15) gives ζ2 = (2 − 2ρ1)/(2 − ρ1). For the Kolmogorov value of

ζ2 = 2/3, we obtain ρ1 = 1/2. The anomaly that may exist in the first-order exponent ρ1

for velocity gradients is related to the second-order inertial exponent ζ2. For moments of the
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dissipation rate, one can write

En ≡ νn

(

∂ui

∂xj

)2n

≈ νn

(

(δηu)2

ν

)2n

=
(δηu)4n

νn
∝ Redn, (16)

where

dn = n +
ζ4n

ζ4n − ζ4n+1 − 1
. (17)

Thus, the second-order quantities for the dissipation rate are expressed in terms of the eighth-

order quantities involving velocity increments. In general, to accurately evaluate En, one has to

resolve the analytic range within which S4n(r) ∝ r4n. This difficulty for large n is one of the main

considerations of the theory.

Finally, we note that

d1 = 0 (18)

because E = ǫin holds in the DNS (see equation (5)). From relation (17) one immediately has

ζ5 = 2ζ4 − 1. (19)

Measurements are, in fact, in good conformity with this equation.

1.4. Velocity gradients from RSH

The RSH [3] imposes a different constraint between moment orders of the energy dissipation

and structure functions. This results in a different Reynolds number dependence compared to

(17). When taking E ∼ (δηK
u)3/ηK the relation

En ∼
S3n(ηK)

ηn
K

∼ η
ζ3n−n

K , (20)

follows. With ηK = LRe−3/4 we get

En ∼ Re3(n−ζ3n)/4. (21)

The comparison with the present data will be made later in this text (see table 2). Here, we briefly

mention that the intermittency exponent µ in the scaling E(x + r)E(x) ∼ r−µ is 0.25 from RSH

while the application of the theory of [14, 15] gives µ ≈ 0.2. Both are within the accepted range

of 0.25 ± 0.05.

1.5. Velocity gradients from the MF

Nelkin [9] predicted a Reynolds number dependence for derivative moments based on the MF.

The derivation of his expressions relied on the steepest descent approximation of resulting

integrals and input from measurements [7]. His result (which is also outlined in detail in [6],

pp 157–8) is that

ρn = p(n) − n, (22)

New Journal of Physics 9 (2007) 89 (http://www.njp.org/)
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Table 2. Comparison of scaling exponents for different velocity gradient

moments. ρn for n = 1, 3, 5, 7 (see (15)) and dn (see (17)) for n = 1, 2, 3, 4 are

listed. Results from the present DNS are compared with those from the theory

[14, 15] after inserting (13) into (15) and (17). Comparisons with the RSH and

the MF are also provided. The error bars for orders 3 and 4 of the DNS data

have been determined from lower and upper envelopes to the tails of E
np(E),

p(E) being the PDF of the energy dissipation field. The same holds for orders 5

and 7 in the case of p(|∂u/∂x|). The range of Reynolds numbers for all fits was

380 to 2243.

Theory [14] DNS RSH MF

ρ1 0.465 0.455 – 0.474

ρ3 1.548 1.478 – 1.573

ρ4 2.157 2.051 – 2.188

ρ5 2.806 2.664 ± 0.137 – 2.841

ρ7 4.203 3.992 ± 0.653 – 4.241

d1 0.000 0.000 0.000 –

d2 0.157 0.152 0.173 –

d3 0.489 0.476 ± 0.009 0.465 –

d4 0.944 0.978 ± 0.034 0.844 –

in terms of the notation used above. Here p(n) is a unique solution that follows from the

intersection of the concave curve ζp with the straight line 2n − p for a given n. With (13)

the intersection (p > 0) obeys the relation

p(n) ≈ −
4 + 3β(1 − 2n)

6β
+

1

6β

√

72βn + (3β(2n − 1) − 4)2. (23)

The resulting values of ρn are also listed in table 2.

2. Moments of velocity increments

2.1. Rescaling of higher order moments and test of analyticity

Figures 3(a) and (b) show the structure functions S2n(r)/v
2n
K plotted against r/ηK for three

Reynolds numbers for order 2 (n = 1) and 10 (n = 5). Here, vK is the Kolmogorov velocity

corresponding to the definition ηKvK/ν = 1. Two features of the graphs are worth noting. Firstly,

no inertial range can be seen at these low Reynolds numbers. Secondly, all data possess analytic

parts thus confirming that the resolution used is adequate. It is important to recognize in figure 4

that with increase of both the Reynolds number and moment order the width of the analytic

range decreases. To make this point more explicit, we plot in figure 4 the compensated structure

functions S2n/r2n (n = 1–5) for a fixed Reynolds number Rλ = 64 (left panel) and the normalized

moment S10/r10 for different Reynolds numbers (right panel). In the analytic range we expect

S2n(r)

r2n
→

(

∂u

∂x

)2n

= constant, (24)
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Figure 3. Longitudinal structure functions of the turbulent velocity field.

(a) Second-order longitudinal structure function S2(r)/v
2
K over r/ηK for the three

different runs indicated in the legend. (b) Tenth-order longitudinal structure

functions S10(r)/v
10
K over r/ηK for the same data. The inset shows that the curves

do not collapse well. Here, vK = (νE)1/4 is the Kolmogorov velocity. (c) The

tenth-order structure functions for Rλ = 24, 42, 65 collapse when r is rescaled

by the dissipation scale η10 defined by (12) and the amplitudes by the velocity

scale v10
10 (see equation (25)). The inset shows the same level of expansion as

in (b). (d) The figure shows the exponent ρn as a function of order n given by

equations (13) and (15).

i.e. independent of the increment distance r. For Rλ = 64, this range is well defined for the

moments n � 3 and just survives for n = 5. This means that, even for the present super-resolution,

the representation of moments of velocity derivatives in terms of the low-order finite differences

may be problematic for moment orders higher than 5 (although we present data for n up to 8).

In the analytic range, all curves can be expected to collapse when normalized by the

appropriate length and velocity scales. The traditional scales are the Kolmogorov length and
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Figure 4. Test of analyticity for the longitudinal structure functions S2n(r) by

compensated plots. Left panel: orders 2n = 2, 4, 6, 8, 10 are shown for run 5.

Horizontal lines indicate the exact analytical form corresponding to S2n(r) ∼ r2n.

Right panel: S10(r) is shown for runs 2, 3 and 5. The red vertical arrows indicate

the corresponding Kolmogorov scales ηK.

velocity scales ηK and vK, respectively. This scaling works well for low order moments (say 2),

as seen in figure 3(a). The same normalization is not adequate for high orders such as 10, as can be

seen in figure 3(b). However, all curves do collapse when the length scale η2n (see equation (12))

and the corresponding velocity scale

v2n =
ν

η2n

(25)

are used instead of ηK and vK (see figure 3(c)).5

How can we understand this collapse? Introducing the ‘dynamic’ Reynolds number Rer =
rδru/ν, and recalling that the only relevant parameter in the inertial range—including the interval

just above the dissipation range (r � η)—is the energy flux, we can conclude that the dynamics

of fluctuations at the scales r ≈ η are independent of the width of the inertial range (L, η). While

one cannot, in principle, rule out the existence of other fluxes corresponding to some yet unknown

integrals of motion related to structure functions of higher order than 2 [26], this possibility will

not influence the essence of the argument. If so, for r � η, the properly normalized moment of

a given order n must be independent of Re.

5 We note here parenthetically that S10 for the lowest Reynolds number (Rλ = 10) does not collapse on the common

curve. For this case, however, the velocity gradient statistics are Gaussian, in contrast to the other three cases. This

issue will be discussed in greater detail in section 3.2.
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Figure 5. ESS analysis of longitudinal structure functions. (a) Fourth-order

structure function S4(r) versus −S3(r). Structure functions are defined by equation

(1), with −S3(r) = (4/5)Er. (b) Tenth-order structure function S10(r) versus

−S3(r). The insets in both figures show the corresponding local slope χn(r) as

given by relation (27). Data for runs 2, 3 and 5 are indicated by different colours,

as noted in the legend.

2.2. Test of ESS

Since no inertial-range scaling can be observed for such low Reynolds numbers in the standard

double logarithmic plot, we tested the method of ESS by Benzi et al [27]. As is well known, the

main point of ESS is that even though there is no discernible scaling in the standard plot when

the Reynolds numbers are low, one can detect a sizeable range of scaling when arbitrary moment

orders are compared with S3:

Sn(r) ∼ (−S3(r))
ζn . (26)

The sensitive and scale-dependent measure for possible anomalous scaling is then the local slope

χn(r) =
d ln(Sn(r))

d ln(−S3(r))
. (27)

The results for our data are shown in figure 5 for the fourth- and tenth-order. In both figures we

cannot detect anomalous scaling in the ESS framework, which would result in local slopes of
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χ4(r) ≈ 1.28 and χ10(r) ≈ 2.59 [13, 23]. We conclude that only a further increase of the Reynolds

number will shift the local slope towards the asymptotic values. Thus, even the ‘backdoor’ of

ESS is not opened for our small Reynolds numbers. This confirms our statement made before

that the velocity field statistics does not have any asymptotic scaling in the inertial range. The

inset reveals an interesting feature. It can be observed that a faster relaxation towards anomalous

scaling occurs with increasing order. At this point, we can only speculate about the reason for this

feature. On one hand, the differences between the viscous scaling, χn(r) = n/3, and the inertial

scaling, χ(r) = ζn, become larger with increasing order and thus better visible in the local slope.

On the other hand, an order-dependence of the dissipation scale, ηn, might cause a slight increase

of the inertial range and the crossover between inertial and viscous ranges, respectively.

3. Velocity gradient statistics

3.1. Results and comparison with RSH

If indeed the properties of fluctuations from the interval r � η depend only upon the local

magnitude of the energy flux E and not upon the width of the inertial range (L, η), one

can hope to obtain the asymptotic values of exponents ρn(Re) → ρn(∞) in reasonably low-

Reynolds-number flows, provided that a small (even very small) constant-flux range exists for

scales r > η.

In figure 6, we plot |∂u/∂x| and En as functions of Re. Statistical convergence of both

gradient quantities is satisfactory for gradient moments of at least up to the seventh-order (see

figure 6(c)) and dissipation moments of at least up to the fourth-order (see figure 6(d)). As can

be seen from table 2, the data agree well with theoretical predictions [14, 15]. For example,

we get ρ1 = 0.455 compared to the theoretical value of 0.465. The second-order exponent ζ2 is

given by

ζ2 =
2 − 2ρ1

2 − ρ1

= 0.706, (28)

which is very close to the experimental value of ζ2 = 0.71 [24, 27]. We stress that this result was

obtained in flows with 24 � Rλ � 65, none of which has any inertial range. The moments of the

dissipation rate also agree with theoretical predictions, as shown in table 2.

In the theory outlined earlier [14], the second-, third- and fourth-order moments of E are

related to the structure functions S8(η8), S12(η12) and S16(η16), respectively. These structure

functions probe very intense, low-probability velocity fluctuations and, as a result, huge data sets

are needed to accurately evaluate their characteristics. We have seen that dissipation moments of

order 5 are barely resolved in the present simulations, while the data for the sixth-order moment

E6, corresponding to S24 have not converged well. In addition, we stress that the statistical

convergence is not sufficient for the accurate determination of structure functions: the simulations

must resolve accurately at least a fraction of the analytic range r < η4n.

Table 2 lists comparisons between theoretical considerations and the DNS data. In the case

of the dissipation field, we inserted (13) into (21); for the velocity derivative scaling exponents

from MF, we used the relation (23) which was inserted into (22). For the gradient exponents,

the DNS data are somewhat smaller than both the theory [14, 15] and the multifractal theory.
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Figure 6. The Reynolds number dependence of the moments of velocity

derivative and energy dissipation. (a) Moments of the absolute value of the

longitudinal velocity derivative ∂u/∂x for orders 1, 3, 4, 5 and 7 as functions of the

box Reynolds number Re. Only the filled data points were included in the least-

square fit, but run 6 demonstrates that the scaling continues for higher Reynolds

number. The case with the lowest Reynolds number has Gaussian statistics (as

will be described below) and is hence not turbulent in the traditional sense. (b)

Moments of order 2, 3 and 4 of the energy dissipation field E . Again, only the

filled data points were used for the fit to evaluate the exponent. (c) Statistical

convergence test for the seventh-order longitudinal velocity derivative moment

at the highest Reynolds number considered here, Rλ = 65 (run 4). The data

set contained 15 samples of the turbulent field which results in 1.6 × 1010 data

points. (d) Statistical convergence test of the fourth order moment of the energy

dissipation field. Again, data from run 4 are used.

In the case of the dissipation exponents, the DNS results are closer to the theory of [14, 15]

and somewhat larger than those of RSH. Note that the results of both theories depend on the

inertial scaling exponents obtained from measurements (or at least expressions tuned to agree

with measurements). Considering that there are issues of resolution in measurement (although

not in the same sense as in simulations), these departures may suggest that inertial exponents

may need slight revision. Of course, there might be other reasons for these differences.
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Figure 7. Statistics of the velocity gradient ∂u/∂x. (a) Plots of the PDF for runs

1–4 as indicated in the legend. The gradient is normalized by its root-mean-

square value. For comparison the Gaussian distribution is added to the figure.

(b) Corresponding skewness of the PDFs (blue symbols). (c) Corresponding

flatness of the PDFs (blue symbols). In order to highlight the transition, further

data points have been added to the data of table 1 in panels (b) and (c). These

additional numerical simulations have been conducted at a spectral resolution of

N = 256 for different kinematic viscosities. Forcing scheme and energy injection

rate are the same as before. The additional data values are plotted as cyan filled

squares.

3.2. Transition from Gaussian to non-Gaussian velocity gradient statistics

As mentioned earlier, while computing scaling exponents, run 1 was excluded from the least-

square fits. The reason is the qualitatively different nature of the velocity gradient statistics

at this lowest Reynolds number (Rλ = 10). This will be discussed now. Figure 7 illustrates the

crossover from Gaussian statistics at very low Reynolds numbers to an increasingly non-Gaussian

behaviour for moderate Reynolds numbers. In order to highlight this transition, we generated

additional DNS data at intermediate Reynolds numbers. The Gaussian values for the third- and

fourth-order normalized derivative moment are indicated by the red solid lines in panels (b) and

(c) of figure 7. The derivative moments are defined as

Mn(∂u/∂x) =
(∂u/∂x)n

(∂u/∂x)2
n/2

. (29)
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For the lowest Reynolds numbers we detected a regime which is a complex time-dependent

flow rather than a turbulent one. In this regime, the flow can be basically described by the

small number of driven modes that form a low-dimensional nonlinear dynamical system. All

other degrees of freedom are strongly damped and slaved to the driven modes. The sign of

the derivative skewness M3(∂u/∂x) there became sensitively dependent on the particular modes

that were driven. Since the non-Gaussian behaviour is related to the acceleration-velocity term

in equation (7), the experience suggests that it is difficult to pin down the behaviour of this

term near zero. The magnitudes of M3 and M4 varied, respectively, around zero and three (even

for very long-time runs). We verified this by choosing different wavevectors for driving the

flow while leaving all other simulation parameters the same, including the energy injection

rate ǫin (see equation (5)). At larger Reynolds numbers, Rλ > 10 or 15, the derivative moments

became insensitive to the particular driving. Therefore, our studies suggest that the transition to

non-Gaussian statistics is smooth with respect to the Reynolds number and that intermittency

continuously grows with the growing number of excited modes.

Figure 8 illustrates the morphological changes of the spatial distribution of the velocity

gradient that are connected with the change of the statistical properties. The increasing

intermittency of the velocity gradients is accompanied by an increasing fragmentation of the

isolevel sets.

4. Summary and discussion

Turbulence in a three-dimensional periodic box, generated by the Navier–Stokes equations

driven by a large-scale forcing, was investigated in the Taylor microscale Reynolds numbers

range 10 � Rλ � 107. The simulations were made at superfine resolution in order to resolve the

analytic part of structure functions at least up to order 16. No inertial ranges characterized by

the velocity structure functions Sn(r) ∝ rζn were detected—not even with the method of ESS. In

the range 24 � Rλ � 107, strong intermittency of the spatial derivatives was detected and their

moments were accurately described by the scaling relations |∂u/∂x|n ∝ Reρn and En ∝ Redn ,

respectively. The exponents ρn and dn were found to be essentially in agreement with the

theoretical work for high Reynolds number [14, 15]. Based on the well-resolved numerical

results, we are thus able to relate the dissipation-range exponents of the velocity gradients to

the inertial range scaling exponents of the velocity field for very high Reynolds numbers. For

instance, the DNS result ρ1 ≈ 0.455 gives ζ2 = 0.706 corresponding to the asymptotic high-

Reynolds number energy spectrum E(k) ∝ k−1.706.

The competing theoretical predictions are from RSH (for dissipation) and the multifractal

theory (for the gradients). They, too, agree with the DNS results, although somewhat less

successfully overall. It appears that the theory of [14, 15] seems to have an edge.

This last conclusion would have been more conclusive if we had been able to obtain reliable

dissipation range statistics accurately for moments of order 5 or 6. Despite the huge data sets of

≈ 1010 points, we were unable to obtain reliable data for dissipation field moments with n > 4,

certainly for n no larger than 5. The theory suggests the reason for this problem: moments of

the dissipation rate En are related to high-order structure functions S4n(η4n) probing very low

probability fluctuations evaluated on the corresponding dissipation scales.

We also conducted simulations at various Reynolds numbers to study the smooth transition

of the velocity gradient statistics from Gaussian behaviour to non-Gaussian behaviour.

New Journal of Physics 9 (2007) 89 (http://www.njp.org/)

http://www.njp.org/


17 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 8. Morphological manifestation of the crossover from Gaussian to non-

Gaussian velocity gradient statistics. Isolevel plots of snapshots of |∂u/∂x| for

run 1 at Rλ = 10 (top) and for run 4 at Rλ = 65 (bottom) are shown. Both level

sets were taken at the corresponding values of 2 × (∂u/∂x)rms. We observe a

significant increase of the spatial intermittency for the higher Reynolds number

data set.
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Our work suggests that the scaling exponents of the moments of velocity derivatives

observed in the relatively low-Reynolds-number turbulent flow, lacking even traces of the inertial

range, can be expressed in terms of the inertial-range exponents corresponding to the asymptotic

case (Re → ∞). We stress that the scaling exponents ρn and dn of the moments of velocity

derivatives and dissipation rate reach asymptotic values that are independent of large-scale

Reynolds number, even at low values of the Reynolds numbers. Thus, the dynamics of velocity

fluctuations at the scales r ≈ η are asymptotic even in relatively low-Reynolds-number flows.

This could mean that the magnitudes of inertial-range exponents (Re → ∞) are prescribed by

the matching conditions on the ultra-violet cut-offs formed in the low-Reynolds-number regimes.

The relation of the observed behaviour to fluctuations of the dissipation scale will be discussed

elsewhere.
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Hermanns (NIC) for assistance with the parallel performance analysis on the JUMP system and

Michael Rambadt (NIC) for his help with the UNICORE platform. The supercomputer time on

up to 512 CPUs was provided by a grant of the Deep Computing Initiative of the Distributed

European Infrastructure for Supercomputer Applications consortium (DEISA). We acknowledge

helpful comments and suggestions by R Benzi, L Biferale, L Chevillard, B Eckhardt, U Frisch,

T Gotoh, F de Lillo and C Meneveau.

References

[1] KolmogorovA N 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds

number Dokl. Akad. Nauk SSSR 30 9–13

[2] Anselmet F, Gagne Y and Hopfinger E J 1984 High-order velocity structure functions in turbulent shear flows

J. Fluid Mech. 140 63–89

[3] Kolmogorov A N 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a

viscous incompressible fluid at high Reynolds number J. Fluid Mech. 13 82–5

[4] Oboukhov A M 1962 Some specific features of atmospheric turbulence J. Fluid Mech. 13 77–81

[5] Sreenivasan K R and Antonia R A 1997 The phenomenology of small-scale turbulence Annu. Rev. Fluid Mech.

29 435–72

[6] Frisch U 1995 Turbulence—The Legacy of A N Kolmogorov (Cambridge: Cambridge University Press)

[7] Sreenivasan K R and Meneveau C 1988 Singularities of the equations of fluid motion Phys. Rev. A 38 6287–95

[8] Paladin G and Vulpiani A 1987 Degrees of freedom of turbulence Phys. Rev. A 35 1971–3

[9] Nelkin M 1990 Multifractal scaling of velocity derivatives in turbulence Phys. Rev. A 42 7226–9

[10] Frisch U and Vergassola M 1991 A prediction of the multifractal model—the intermediate dissipation range

Europhys. Lett. 14 439–44
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