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ASYMPTOTIC FEATURES OF VISCOUS FLOW ALONG A CORNER*
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Abstract. The asymptotic behavior of the equations governing the viscous flow
along a right-angle corner is considered. It is demonstrated that consistent asymptotic
series exist for the inner corner layer region. These expansions satisfy the corner layer
equations and associated boundary conditions. They exhibit algebraic decay of all the
flow properties into the boundary layer away from the corner, and prescribe algebraic
decay of the cross flow velocities into the outer potential flow. Of course the streamwise
velocity and vorticity are constrained to decay exponentially into the potential flow.
The form of this algebraic behavior is required in order to facilitate numerical solution
of the corner layer equations. Of particular significance is the use of symmetry as a
means of providing a boundary condition, predicting the appearance of logarithmic
terms, and specifying the occurrence of arbitrary constants. These constants can only
be determined from the complete corner layer solution.

1. Introduction. The viscous flow along a corner that is formed by the intersection
of two perpendicular flat plates has been studied by several authors and has recently
been re-examined by Rubin [1] who discusses the past efforts on this problem in some
detail. In Rubin's analysis three distinct regions were discernible (Fig. 1): an irrotational
potential flow where the coordinate gradients are in most generality, of equal order;
boundary layers where surface normal derivatives are much larger than either of the
derivatives in the plane of the surface, and the corner layer where the x-wise gradient
alone is small. Solutions for the various sectors were obtained by the method of matched
asymptotic expansions utilizing the small parameter (v/2UqX)1/2 = R~1/z. (U0 is the
velocity at x —» — ®). As is usually the case, the flow near the leading edge x = 0 cannot
be obtained in this manner and only asymptotic similarity solutions were considered.

Explicit results were presented for the first-order potential flow and first- and
second-order boundary layer flows; the corner layer solution was deferred. The
asymptotic behavior of the boundary- and corner-layer solutions for min (77, J")—*®
is directly related to the nature of the potential flow at the corner point y2 + z2 = 0.
7) and f are the stretched corner layer coordinates; 77 = yRl/2/2x, f = zR1/2/2x. In this
connection it was tacitly assumed that the potential flow is regular at y2 + z2 = 0.
However, as will be shown, this assumption is unnecessary; with the inclusion of a
singularity at the corner point (first appearing in the second-order potential flow) the
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cross-plane corner layer velocities v and w need not decay exponentially when
min (r/, f) —> , and all of the flow properties, including the vorticity, decay algebraically
for £ —» co, 17/f —* 0, or as the flow asymptotes into the boundary layer regions.

Moreover, initial numerical solutions of the corner layer equations (2.1), using
relaxation methods, strongly indicated that exponential decay into the boundary layer
and potential flow was inappropriate. As it was not practical to apply the asymptotic
formulas (f = 00) for values of f in excess of ten to twenty, more relaxed boundary
conditions were needed for this calculation. Such conditions are derived herein where
the correct algebraic decay is described. Numerical solutions are presented by Rubin
and Grossman [2],

In this paper the asymptotic behavior of the corner layer equations is considered.
It is shown that separate expansions are required for min (77, f) —* <» (corner layer to
potential flow), and f —* , 17/f —» 0 (corner layer to boundary layer) respectively,
but that the two series match perfectly in an overlap domain. In Sec. 2, the equations
governing the corner layer region are simplified by introducing modified cross flow
velocities and a modified streamwise vorticity. Asymptotic expansions in negative
integer powers of f, for f » «>, are postulated. A set of recursive partial differential
equations for the asymptotic variables, as functions of y and log f, is obtained. It will
be shown that, assuming polynomial dependence on log f, the asymptotic expansion
can be formally and consistently continued up to any order. Of course, the number
of terms to be handled increases rapidly with the order, so that the recursion developed
becomes impractical beyond a few terms. One reason for this is the appearance of con-
stants which are undeterminable from the recursion, a situation typical of asymptotic
expansions in boundary layer theory. Rubin and Grossman [2] have succeeded in ob-
taining the first unknown constant of the expansion numerically.

In Sec. 3, the asymptotic solution for min (rj, f) —> <» is discussed and an interesting
use of symmetry as a means of specifying a boundary condition as well as predicting
the appearance of logarithmic terms is described. A compact operational calculus for
the easy handling of the logarithmic terms and for reduction of the partial differential
equations to formal ordinary differential equations is applied. This technique may have
significance in the general asymptotic theory of solutions of differential equations.
(See also Pal [3].)

In Sec. 4, the recursive equations originally of sixth order in 77 are reduced to two
second-order equations resulting in a considerable simplification of the system. The
method of solution of this reduced set is described in Sec. 5 and a general outline of the
entire procedure is given in Sec. 6. In Appendix I, the impossibility of the occurrence
of fractional powers in the asymptotic expansions is proven. The existence and uniqueness
of the solution is discussed in Appendix II.

2. Asymptotic expansions. The equations governing the incompressible viscous
flow along a right angle corner (Fig. 1) have been discussed by several authors, including
Carrier [4] and Rubin [1]. Assuming that the Reynolds number R = 2Uox/v is a large
parameter, the following expansions for the velocities and pressure are appropriate
for the corner layer region:

U(x, y, z) = U0u(v, r)[l + 0(2T1/2)],

V(x, y, z) = UoR'W2v(v, f)[l + 0(iTI/2)],



ASYMPTOTIC FEATURES OF VISCOUS FLOW 93

i Z

BOUNDARY LAYER:
llll SIMILARITY COORDINATES

C £, Z/X £ Y/x

__ BOUNDARY LAYER:
OUTER FLOW ^ SIMILARITY COORDINATES
COORDINATES V , Z/X
X.Y, Z

H CORNER LAYERSIMILARITY COORDINATES

minimum
Tj —»- CD

SECTION CAB

Fig. 1. Corner flow geometry

W(x, y,z) = UoR~1/2w(v, f)[l + 0(R~1/2)],

P(x, y, z) = p0 + R-'piv, D[1 + 0(R~1/2)].

p0 denotes the ambient uniform pressure. Similarity may be assumed for the leading
nonuniform terms in the expansion on the basis of the R » 1 assumption. The stretched
similarity variables are defined by y = y{U 0/2vx)in, f = z(Ua/2vx)1/2. With the pre-
ceding expansions the Navier-Stokes equations in the region 0 < -n < f become, to
order one,
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- jjw, - fitf + V, + W; = 0,

- t]UUn - fUUr + «t, + wus = W„ + Wfr ,

- rjuv, - fUDj + W, + - UV = »„ + Vn - p„ ,

- TJUW, — tuw: + VW„ + Wf — uw — w„ + wi: — pf ,

(cf. Rubin, [1, Eqs. 36]). The appropriate boundary conditions for the corner geometry
are tt = r = w = 0oni) = 0, !">0, and from symmetry, w, = u{ , v = w on t) = f.

In addition, for 17 —> ro, ?? < f, it should be possible to match the corner layer solution
to an outer irrotational flow. The vorticity in the corner layer coordinates is

w, -vt + 0(R-1/2)~

Ru\ + 0(R°)
I -Rl/\ + 0(R°) J

so that the leading vorticity components vanish with exponential speed if

u = 1 + o(r*), w„ - vt = 0(r-v)
for any N > 0, as f —* °°. The asymptotic solutions of Eqs. (2.1) for f —> 00, jj/f —► 0
have been determined by Rubin [1] and are given in the first column of Table 1.

TABLE I
First terms of the asymptotic expansions {2.8)

Uo
2x

f'M xvf'M

vf'M ~f(r,) -xl-vT'M + 3,/'(,) +/(,)]

to. PgM* -4 xf'M*

fM x[3 vf'M + fM]

tr. f'M —PgM xlvf'M + 4/'(„)]

f'M -Pg'M xf"M[-vfM + 5]

* gM = f'M Jo(T - 0)/f"Mdr. _
** x is an unknown constant, obtainable from the numerical solution of the corner layer equations

(2.4).

The system of Eqs. (2.1) is somewhat simplified by eliminating the pressure and
introducing the velocity potentials

<p = tjw — v, \p = fw — w, (2.2)
and the modified vorticity

0 = — <Pr = — t]U{ - (w, - v:). (2.3)
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These transformed variables are similar to those defined by Pearson [5] in his analysis
of the corner region.

In terms of the functions u, 6, <p, \f/, the system (2.1) becomes

V2u -J- <pu, = 0, (2.4a)

V20 + <pd1 + \l/6{ + 2 u{0 — + 17ur) = 0, (2.4b)

<pv + = 2 u, (2.4c)

— <P[ + *Pn = 0 (2.4d)

and the boundary conditions transform to

u(0, f) = <p(Q, f) = HO, f) = 0, (2.5)
u(v, f) = 1 + oOf") if (2"6a>

«0», f) = o(t,-y) (2.6b)

<r(v,v) = >Kv,v) fromsymmetry. (2.7a)

l) = «r0?, 57) (2.7b)
The object of the following discussion is to find formal asymptotic expansions

CO CD

0 0

^ ~ Z) p.r-", ^ ~ 2 *»r"+\ (2.8)
0 0
09 CO

»~ 2 w ~ X) wnf~n+i
0 1

valid for large values of f, and arbitrary t\ < f-1 The solutions for n = 0 are related to
the Blasius solution /(>j) of the two-dimensional flat plate problem (Rosenhead [7])

Wo = /'(>?)> 8o = <Po = Kv), to = /'(ij).

The coefficients u„ , 9n , <p„ , are assumed here to depend on ij and also on f in a
weak manner. As is frequent in asymptotic expansions, we assume that they are poly-
nomials of X = log f. The necessity of (log f)4 type terms will become clear later.

Substitution of Eqs. (2.8) into (2.4) leads to the following recursive equations:

+ Kv) fr+ riv){k ~ nK + = z- ■ (2-9a>

+ Kv) *?+ f,(v)(£~n + 3)9'~2f,{v)+f,"(v)<p*+= J>• (2-9b>

*+(1 -"+o*- - ^ - "• <2-9c>
1 It i3 not evident a priori that fractional powers of £" cannot appear in the expansions (2.8). The

exclusion of noninteger powers is proven in Appendix I. For an example of the appearance of "un-
expected" powers in an asymptotic expansion, see Stewartson [6] and Pal [3].
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dij
Here /„, J„ depend on the functions uk , 9k , <pk , \//k (k = 0, 1, ■ • • , n — 1):

(2.9d)

L = ~{k ~71 + Ofe ~n + 2K* ~ %
T-= ~{k ~n + 2){k ~n + 3K* + 2" § w-<-2(l; ~^

¥>„-* ^ - fcjK , (2.10a)

- § i+Ms -4 + OK -2 S (»* - tr>-
(2.10b)

In Eqs. (2.10) any sum with an upper limit less than one is defined to be zero. The
system (2.9) is supplemented by the definitions

Vn = vu„ — <pn , (2.11a)

u>„ = un - «A„ (2.11b)
obtained from (2.2) and (2.3).

Eqs. (2.9) are partial differential equations, and formally they are not any simpler
than Eqs. (2.4) from which they were derived. However, the dependence of all unknowns
on the variable X is partially known. All quantities appearing in these equations are
polynomials in X, the coefficients of which are functions of y. This is certainly true of
Mo , 0o , <Po , to , (which do not depend on X) and can be proven by induction for all
w„ , 6n , <p„ , i//». In fact, these special solutions can be derived explicitly from the solution
of the reduced system from which the d/d\ terms are omitted. The algorithm of solving
such partial differential equations is introduced and discussed in detail elsewhere (cf.
Pal [3]).

The system (2.9) will be solved recursively, with the inductive hypothesis that the
functions uk , 6k , <pk , \f/k are known for k — 0, • • • , n — 1. In fact these functions have
been determined for k = 0, 1, 2 explicitly, in terms of the Blasius function These
expressions, listed in Table 1, can be verified by substitution into the recursive equations
and boundary conditions.

The first few terms of the asymptotic series do not depend on X, since the governing
equations and boundary conditions can be satisfied with the omission of the d/d\ terms.
The governing equations for <pi and us uncouple so that with It = J1 = 0

f\" + MvV ~ f'ivM + 2/"(„V1 = 0,
2 Mi = <p{,

<Pi(0) = <p[(0) =0, (p[ = o(rfN) as i7 —► oo, for any N > 0.

The primes denote differentiations with respect to 77. The only solution of this system
of equations and boundary condition is <pt = ux = 0 (cf. Libby and Fox [8]). Therefore
h = Jj = 0 and the first nonvanishing Ik , Jk become

13 = 2^ = -2Xv Pg1"

J3 = -ft®., + iM, - 2elUi = tocWOvf + f) + 2g'ni" - <7(5/" - »//")],
where g = g(y) = f"(ri) J" (k — /?]//"(r))dr and x is an undetermined constant.
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3. Symmetry as a boundary condition. With the boundary conditions (2.6a)
and (2.6b) and from the expansions (2.8) we must have as rj —>

un(v, X) = o(y~N) (n = 1, 2, 3, • • •), (3.1a)

On(v, x) = o(v~N) (n = 0, 1, 2, 3, • • •), (3.1b)

for any N > 0. Consequently from (2.9c) and (2.9d) it follows that

d<pn/dr) + (A — n + l)^n = o(17 N)> (3.2a)

diJdr, = (A -n + 2)^„_2 + (A = d/d\), (3.2b)

or by (3.1a), (2.11a) and (2.11b)

dvjdv + (A - « + 1 )w, = o(if"v) (ri = 1, 2, • • •) (3.3a)

-dwjdr, + (A - ft + 2)p„_2 = 0(17""), (n — 1, 2 • • •)• (3.3b)

From the asymptotic formulas for the Blasius function and the expressions of Table 1
we find that

v0(v) = P + o(ri~N), Vx{t]) = o(r]~N), (3.4a)

Wi(v) = P + 0(17""), w2(n) = — 4x + o(t;"w). (3.4b)

For n > 1, Eqs. (3.3) can be solved recursively. Thus it can be shown by induction
that

vn(v, X) = Pn(y, X) + o(t;"a), (3.5a)

wn(v, x) = Q»(tj, X) + o(jj_jv), (3.5b)

where -P„()?, X), Qn(77, X) are polynomials of 77 which satisfy the recursive equations

dPn/dv = — (A — ft + 1)Q„ , (3.6a)
dQJdr, = (A - ft + 2)P„_2 . (3.6b)

It will be assumed that P„ , Qn are polynomials of X = log f as well, of orders to be
determined later. We will call PJ:o, X), Qn(v, X) the "polynomial part" of vn(ij, X), wn(97, X).

The polynomial parts of the functions un , <p„ , \[/n , 6n can be defined similarly. By
Eqs. (3.1) the polynomial parts of u„ , 6n are identically 0, with the exception of u0
for which the polynomial part is unity. Further, because of (2.11), Pn(n, X) is the poly-
nomial part of —<pn(v, X) and Q„(ij, X) the polynomial part of X). The polynomial
parts of the variables un , vn , wn , <pn , , 9„ for n = 0, 1, 2, are listed in Table 2.

With the use of the polynomial parts, the asymptotic expansions (2.8) of the functions
v, w, can be written for large f and large 77 in the form

v ~ X)rn, (3.7a)
0

x)rn+1. (3.7b)
1

More precisely » = 23" X)f~" + o(f_m) + o(i7~'v) and similarly for w.
For t) —> 00, n < f, the functions 0 and w satisfy, by Eqs. (2.4) and (2.6),

dv/dr) + dw/d$ — —dv/d$ + dw/dr) = o(t]~n). (3.8)
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TABLE 2
Polynomial parts of u* , ■ ■ ■ 6„.

Vn

Wn

<Pn ■n ~ (3

— x(4i? — (3)

_4X

x(4t; — 0)

4x

TABLE 3
Boundary conditions obtained from the symmetry condition.

Q»(0, X) =

= P0(O, X) = -0

= 4X

= -Ps(0, X) = -/3X

= 0

= P.(0, X)

= Ps(0, X)X + x'

X arbitrary constant

P6( 0, X) = constant
x' arbitrary constant

Therefore, it may be assumed that the expansions (3.8) of v, w can be rearranged
into a series of pairwise conjugate harmonic functions. If the complex independent
variable r = e~' */4(?j + if) is introduced, then the rearranged expansion for v — iw
will consist of analytic terms. To be compatible with (3.8), we must set for i; —> <»,
T > V,

eiT/iHv, f) - iw(v, f)] ~ (2)1/2/? + £ 7"(I°,g r) , (3.9)
n-1 T

where the t»(A) are polynomials. By applying the symmetry condition

v(ih ti) = w(ti, rj) (3.10)
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to the asymptotic expansion (3.9), we find that (3.10) is equivalent to the condition
that in (3.9) all polynomials t„(A) have only real coefficients.

In order to obtain relations between the polynomial parts of vn , wn we have to re-
introduce the variables r), f into (3.9) and examine the behavior of (3.9) for 17/f —» 0.
Therefore, we substitute log r = X + 00 (77/J"), where

u(t) = itr/4 + log (1 — il). (3.11)

From here it follows by Taylor's theorem that

T»(1°gr) = T„(XMVf).

With the notation d/d\ = A, this can be written formally by the use of (3.11) in the
form

7n(log t) = exp [w(i?/f) A]7„(X) = exp [i(w/4) A](\ - i (3.12)

The last expression and

t~" = exp [—in*/4]f~n(l —

are substituted into (3.9). This yields

v — iw ~ (1 — t)0 + ^2 jexp [i(ir/4)(A — n)]^l — i jj Y»(X)ji~n.

From here by the application of the binomial series we find
CO

v — iw ~ (1 — t')j3 + XI X) — X)]f~", (3.13)
n — 1

where

P* - iQ*+1 = J2 exp ji ~ (A — n - r — l)j(A ^ n^7„_r(X)7)r (3.14)

(here A is assumed real). Series expansion of a function F(A) in powers of A is a legitimate
operation, as the operator F(A) = F{d/d\) is always applied to polynomials of X, and
therefore, the series expansion breaks off after a finite number of terms. (See also Pal [3].)

The nth order approximations Vn , W„ of the series (3.S), satisfy the asymptotic
relations

dVjdr, - dwjdt = o(v-N) + 0(rn_1), a7„/ar + ewn/dv = o(v~N) + o(r"_1).
Therefore, the right-hand sum of (3.13) formally satisfies the Cauchy-Riemann

equations and P*, Q* satisfy Eqs. (3.6). From this it follows that

Pt(v, X) = P.(„, X), Q*(77, X) = Q„(rj, X)
if and only if

P„(0, X) - iQ„+i(0, X) = P*n(0, X) - iQ*+1(0, X),
or by (3.14)

P„(0, X) - i'Q„+i(0, X) = exp [((3/aX) — n — l)t"(r/4)hr.(X),
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(n = 1, 2, • • •). From here,

Y„(\) = exp [-((d/dX) - n - l)t'(7r/4)][P„(0, X) - ,(0, X)].

The coefficients t„(X) must be real by the symmetry as discussed previously; hence

Im \ exp

= sin

i I (n + 1 - >■) - iQ—(0, x)]}

"I)]n + 1 - — P„(0, X) - cos

(3.15)

Q„+I(0, X) = 0,

and with the notations Pn(Q, X) = p„ = p„(X), Q„(0, X) = q„ = g„(X),

?n(X) = tan jj (n - J^Jp^^X) = a„p„_j(X). (3.16)

This is the boundary condition obtainable from the condition of symmetry in terms
of the polynomial parts of , Pn-\ of ypn and . The operator 3„ can be obtained
explicitly by the Taylor series expansion of the function tan (71(71-/4) — t) as follows:

*•--I*-!(!*)'-
*_1_2fe4WiAy_f(iAy +3 \4

\3

3a - (la)"' -1 (lA) ~ s (i
3,= -I-2(|a)-2(|a)!-|(|a)*-

and 3{m+, = if m, v are integers.
Clearly 3„ reduces to an at most fcth order differential operator if applied to a /cth

order polynomial in X. The first term in the expansion of 32 requires integration of the
operand, with an arbitrary integration constant. Hence Qim+2(0, X) is determined by
the symmetry condition only up to an arbitrary constant. On the other hand, the order
of Q4m+2(0, X) exceeds the order of P4ot+i(0, X) by one.

The appearance of logarithmic terms can be thus considered a necessary consequence
of the symmetry condition. Since <pL(77, X) vanishes identically, the first logarithmic
term can be expected to appear in Q6(X).

4. Reduction of the perturbation system (2.9). Substitution of (2.9c) and (2.9d)
into (2.9a) and (2.9b) leads to

<p"' + f<p" + f&<p' + 2f"(p + (5 + 1)(^" + fip' + 5/'"A) = 2/n , (4.1a)
-/V + /"V + V" + U" + 2/v + /'V

= </» + (5 + 2)[^12 + j<p'n_ , + /'(5 + 3)^„_2], (4.1b)

/ = f(v), f = <pn(v, x), - tniv, x), 5 = = A — n.

We introduce the new functions

$(17, X) = <pn(vt >0 — -Pn(v, X)> X) = ^(17, X) — Qn(?j, X), (4.2)
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so that Eqs. (4.1a), (4.1b) become

$'» + + Sf# + 2/"$ + (5 + 1)[V + /*' + a/'*] = en , (4.3a)
+ /'"# + + /*" + 2/'*' + /"* = gr, , (4.3b)

where

e„ = 21 n - 2j"P„ , (4.4a)

g. = J„ — r"Pn - Y'Qn + (5 + 2)[$::, + + (5 + 3)/'*„-j, (4.4b)
[■P* = Pk(v, X), Qk = QifcO?, x)].

The expressions (4.4) are obtained by taking (3.6) into consideration. The transformation
(4.2) has the advantage that, as can be shown by induction, the functions e„ , g„ and
the unknowns <£, \p decay exponentially, or more precisely

= 0(VM exp [- (r, - /3)2/2)], 9 = 0(v" exp [- („ ~ tf/2)],

«. = 0(t}M exp [-(„ - 0)72)], gn = 0(r,M exp [-(„ - /?)2/2)],

for t? —* <*>, where M is a positive number dependent on n alone; 0 is the familiar constant
related to the Blasius function /(?j); i.e., |3 = (vl'(v) — Kv))-

The polynomials P„(v, X), Qn(v, X) are determined by the recursive relations (3.6a),
(3.6b) up to their constant terms, since P0(v> X), • • • , P.-1(77, X); Qi(v, X), • • • , Q„-i(v, X)
are the polynomial parts of <p0 , ■ ■ ■ , <pn-i , <Ai , ■ • • , respectively and therefore
known by the inductive assumption.

The constant term qn{\) of Q„(v, X) is prescribed by the symmetry condition (3.16).
Thus the X-polynomial P„(0, X) = p„(X) is the only unknown part of (4.4a) and (4.4b),
since by (3.6a)

Pn(v, X) - Pn(0, X) = - f (A - n + l)Qn(r, X) dr m P**(l, X)
Jo

is known. Thus we may write (4.4a), (4.4b) in the form

e„ = En - 2/"(i?)pn(X), gn = Gn- f"(,)p„(X),

where En , G„ are known quantities:

E. = 27. - 2f"(r,)P**(v, X), (4 5)

<?» = «/» — 1"'(v)Pr(v, x) - f"(v)Q»(v, X), + (3 + 2)[«1, + /«_, + (6 + 3)/'*„_,].
Equation (4.3b) can be once integrated:

+ /"$ + + /*' + = Zn + C (4.6)
where

ln = Ln- /"(t?)p„(X) , Ln = - f Gn(r, X) dr. (4.7)

The integration constant C must vanish, as Ln and the left-hand side of (4.6) are both
exponentially small as r? —> °°.

We now introduce the new variable

s = + (5 - 1)*. (4.8)
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The combination of Eqs. (4.3a), (4.6) (the latter with C = 0) and (4.8) leads to

$'» + + _ (g _ = s» + fs' + fs - (S - 1 )ln (4.9)

and

(5 - l){s" + fs' + (5 + 2)fs - e„ + 2Zn) = 0. (4.10)
Multiplication of (4.10) by (5 — l)-1 and consideration of (4.5), (4.7) results in

s" + fs' + (5 + 2)fs = En - 2L„ . (4.11)
(Multiplication by (5 — 1)_1 is for n ^ la uniquely defined operation, if applied to
polynomials of X. (5 — 1)_1 satisfies the identity

(6 - l)-'(5 - 1) = (5 - 1)(5 - l)"1 = 1.)

Eq. (4.9) can be reduced to second order with the relation

-f = f(riMv, X) - P„(X) (4.12)
and the new variable

Uv, X) = t{n, X) = Q'(t,, X). (4.12a)
Thus we find that (4.9) transforms to

ft" + (//' + 3f")t' + (5f2 - ff")t = E, - (5 + 1 )Ln - (5 + l)f's. (4.13)
We note that by definition $ is obtainable from t by

*(v, X) = /'(„) f t(r, X) dr - p„(X) + k (X)/'(„). (4.14)
•'O

&„(X) is an unknown polynomial of X to be determined from the boundary conditions.
X) is obtained from $ and s by (4.8).

5. Boundary conditions and asymptotic behavior. The unknowns satisfy
at the wall ij = 0 the boundary conditions

^„(0, X) = 0, (5.1a)

rf(0, X) = 0, (5.1b)
M0, x) = 0, (5.1c)

which are equivalent to un(0, X) = i>„(0, X) = w„(0, X) = 0.
In terms of the unknowns <J>, 1P, we find by virtue of the symmetry condition that

$(0, X) = -Pn(0, X) = -pn(X), (5.2a)

*(0, X) = — Q„(0, X) = -3„pn_j(X) = — 5*(X), (5.2b)

$'(0, X) = -P:(0, X) = -(A - n + l)g„(X) = -r„(X). (5.2c)

For the unknowns s, t, considering (4.8) and (4.12), these equations become

s(0, X) = —2(A — n)g„(X), (5.3)

fc„(X) = — (1AK(X), (k = /"(0)) (5.4)
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and

lim X)] = 0. (5.5)
■n—o

It may be observed that on the basis of the analysis of the singularity of (4.13) at 17 = 0,
(5.5) may be replaced by the weaker

»i2t -» 0. (5.5*)

Now we turn our attention to the asymptotic behavior of s and t as 77 —> . By the
Prandtl-Goldstein principle it must be possible to match the corner layer equations,
up to exponentially small terms, to an irrotational and symmetrical outer flow. From
irrotationality it is necessary and sufficient that un{t), X) and 0„(j?, X) tend to 0 with
exponential speed. Equivalently, the outer flow is irrotational if and only if

Hv, X) = o(ifw), (5.6a)

¥(,, X) = oOf"). (5.6b)
In fact, if the latter conditions are satisfied, then the former are also satisfied by Eqs.
(3.6), (2.4c, d); and vice versa. The symmetry condition was expressed in terms of the
polynomials P„ , Q„ in Eqs. (3.16). It is desirable to express these boundary conditions
for t) —> 00 solely in terms of the functions s„ , tn. By Eq. (4.8)

s(n, X) = o(tj-jv), (57 —» 00). (5.7)

By (4.12) we must have

Q(v, X) = p„(X) + 0(7,"*); (5.8)

hence

t(v, X) = o(tj~x) (77 —» 00) (5.9)

is a plausible assumption. From (4.8), (4.14) and (5.4) it follows that

Hv, X) = ((T> x) dT ~~ (l/K)Pn(X)| — p„(X), (5.10)

*(V, X) = (5 - l)-'{/"(7,)[-£ t(r, X) dr + (lA)r„(X)J + s(77, X) - f („)*(„, X)} , (5.11)

where r„(X) was defined in (5.2c).
The boimdary condition (5.6b) is satisfied if (5.7), (5.8) are satisfied. (5.6a) requires that

p„(X) = f t(n, X) dv - -r,(x). (5.12)
J 0 f

(5.12) completes the set of equations required to determine the new unknowns s, t, p, ,
qn , rn . Indeed, q„ is known from (3.16), r„ from (5.2c), hence p„ can be determined
from (5.11), once t = <„ is known. It remains to see that the differential equation (4.11)
with the corresponding boimdary conditions (5.3), (5.6a) (Problem A) and (once s = s.
is known) the differential equation (4.13) with its boundary conditions (5.5),(5.6b)
(Problem B) have unique solutions. This is shown in Appendix II.

It is remarkable that neither of the problems A, B contain the polynomials p„ , qn , r.
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in their formulations. This fortunate circumstance allows the separation of the deter-
mination of pn from the solution of Problems A and B.

6. Summary of the recursive construction of the asymptotic expansion. In the pre-
ceding sections a complete set of equations and unknowns were derived for the recursive
construction of the asymptotic series of the flow velocities. For the reader's convenience
we list here the relevant unknowns and equations in the order they are required in the
construction (as opposed to the order of their derivation).

List of unknowns. Unknowns corresponding to a particular order m > 1: (All
quantities are polynomials of X = log f. Dependence on X will not be noted, in general,
explicitly. The operator d/d-q will be replaced by the symbol D and d/d\ by A.)

(a) um , vm , wm , <pm , , dm functions of tj.
(b) 3>„ , : the "asymptotic" parts of <pm , .

(A function h(ri) defined in (0, °°) will be termed "asymptotic" if a k > 0 exists such
that |A(?j)| = 0(vk exp [— (ij — jS)2/2]) as v~* <».) — Pm = <pm — <£„ , —Q„ = —
are the polynomial parts of <p„ and respectively.

(c) The constants Pm , qm , rm are defined by the equations p„ = P„(0), qm = <2„(0),
rm = p^( 0),

(d) sm(ij) = 4?^ + (A — m — l)*m , tm(rj) = D ($„//')•
(e) Auxiliary functions; Am , Bm , Em , Gm , Im , J„ , L„ .

These quantities are known for to = 1, 2. If they are assumed known for m =
1, — , n — 1, then they can be obtained for n — m by the following steps:

List of equations and sequence of solutions.
1. Evaluate the auxiliary functions /„ , J„ , which depend only on um , vm , wm , <pm ,
, dm for m = 0, 1, • • • , n — 1 by the use of Eqs. (2.10); Im , Jm are asymptotic.
2. Evaluate the constants

5, = -cot [[ir/4](n - A)]P„_, , r„ = (A - n + l)g, ,
and the polynomials

Qniv) = (A — n + 2) f Ph-2(t) dr + q. ,
Jo

P**(v) = — (A — n + 1) f Q„(t) dr.
Jo

(3.6)

3. Calculate the asymptotic functions

e.(v) = 2i. - 2fpr, (45)

G.(v) = J. - f'P** - f"Qn + (A - n - 2)[$-2 + /$^_2 + (A - n + 3)/'$..,]

LJji) = — f G„(t) dr
J V

(4.7)
An(v) = 2In - 2f"P** - 2L„

4. Problem A. Solve the equation
si' + M + (A - n + 2)f's„ = An (4.11)

subject to the boimdary conditions:
s„(0) = — 2r„ , s„ asymptotic. (5.3), (5.7)

Obtain B„ — En — (A — n + 1 )(L„ — /'s„)(P„(??) is asymptotic).
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5. Problem B. Solve the equation

1X' + (//' + 31"K + [(A - n)f - //"]<„ = Bn (4.13)
subject to the boundary conditions

lim rjtjji) = 0, tn asymptotic. (5.5), (5.9)
v~*o

6. Evaluate the constant

P„ = f Uv) dv - (1A)r„ (« = /"(0)) (5.12)
•>0

and set P„(ij) = P**(t?) + p„ ■
7. Evaluate

*(u) = -fin) f <»(f) dt - pu[ 1 - /'(,)], (4.12), (4.12a), (5.8)

v(v) = (A - n - l)_1[s„(i?) - $:(i?)], (4.8)

*>.(ij) = $(l) + ?»(>)), (4.2)

= *0?) + Qn(v), (4.2)
= M<p'n(y) + (A - n + 1)^,(17)], (2.9c)

8n(v) = — (A — n + 2)s£>„_2(7)), (2.9d)

= <Pn(v) ~ vuJ.v), (2.11a)

W»(l) = Mn(l?) — &X17). (2.11b)

7. Summary. It is demonstrated that apart from a sequence of arbitrary constants
a unique asymptotic series of the type (2.14) exists which satisfies the corner layer
equations (2.1) and the appropriate boundary conditions of the corner geometry. This
series is continuable to arbitrary order by use of the operator calculus that has been
introduced herein. The algebraic decay of all the corner flow properties into the boundary
layers (f —* «>, ij/f —* 0) is established, as is the algebraic decay of the crosswise ve-
locities into the potential flow (17 —► =», 17 < f). This asymptotic behavior is important
in the numerical solution of the corner layer equations presented by Rubin and Gross-
man [2], The use of symmetry as a boundary condition and the appearance of logarithmic
terms is formally demonstrated.

Appendix I. Exclusion of the possibility of fractional powers in the asymptotic expan-
sions. We assume that the unknowns u, v, w, <p, ip, 6 have asymptotic expansions of
the form

u ~ /'(>?) + 2 «» r",
1

#~ */'(*) - Kv) + Z«r,
1

W ~ 2
1
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<P ~ f(v) + Z)
0

i ~ f/'(>?) + S
0

0~r/%?) + E to1--,i
where {jut} is an increasing sequence such that as fc —> <». Suppose that there
are noninteger values fik , and nT = m is the smallest among them, n must be greater
than or equal to one, since 0 < ^ = Mi < 1 would imply by (2.2) that the leading term
of the expansion of w is of order f1-*, where 1 — n > 0. u„ , 6n , <pn , \f/n satisfy the Eqs.
(2.9) with the following modifications:

(1) substitute n = r,
(2) /„ , Jn , (pn_2 are replaced by zero;
(3) the term d/dX — n is everywhere replaced by d/d\ — ix.

Since the expansion of does not contain a f1-" term and that of ^ a f2~" term, we find
from the modified equation (2.9d) Qr(y, X) = —q(X) and from the modified Eq. (2.9c)

Pr(v, X) = -(3/dX - n + l)g(X) - p(X).
By the modified Eq. (3.16) then

Qr(0, X) = p(X) = 0.
This condition obviously assures that the 0(|t|~"+i) term of the external field is sym-
metric.

The variables $ = <pn — P„ , # = — Qn can be introduced as before and then
they satisfy the modified homogeneous equations (4.3a) and (4.6) (in which e„ = 0,
ln + C = 0 and 5 in (4.3a) has the meaning d/d\ — /x). If the variables S, I are introduced
by equations analogous to (4.8) and (4.12) (with p„(X) — 0), and (4.12a) then §, ?satisfy
the modified, homogeneous system (4.11) and (4.13), i.e.,

S" + fS' + (d/d\ — n + 2 )f's = 0, (1.1)
f'l" + (//' + 3j")V + [(5/ax - M)f2 - //"]? = s" + fs' + fs. (1.2)

The corresponding boundary conditions are also homogeneous:
«r(0, X) = 0, (I

X) = 0(lf'V) (V —> «),

Ir(i), X) = 0(jf') (t? —■» 0), ^ ^
lr(V, X) = 0(T)~") (V ~* 00 )•

3 and I are assumed to be polynomials of X. Let the highest order terms of these poly-
nomials be denoted by 5(77), t(.v)- Then s, t satisfy (1.1) and (1.2) in which the d/dX
terms are omitted.

Suppose first that s(j?) does not vanish identically. Then s(77) satisfies the eigenvalue
problem (1.1), (1.3) where d/d\ is replaced by 0 in (1.1). Since 2 — n is the lowest eigen-
value by assumption, the corresponding eigenfunction, 5(77) 9^ 0 for 0 < 17 < <». (See
Courant and Hilbert [10].) We may assume s(n) > 0 without restriction of generality.

From (1.1) we derive by integration

(ji — 1) f /'(v)s(v) drj - [$'(„) + f(y)s(v)]o = —s'(0).
Jo
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The left-hand integral is positive, since s(?/) > 0 for tj > 0. For the same reason S'(0) >0.
Therefore m < 1 follows. But n < 1 is unacceptable, so that §(n) must vanish identically.
Thus, all solutions of the eigenvalue problem (I.l)-(1.4) must be of the form ,5 = 0
and therefore also 5 = 0. The leading term i(ri) of i(r), X) must then satisfy by (1.2)

ft" + (if + 3f')V - (nf2 + ff')t = 0
with the homogeneous boundary conditions (1.4). However, Libby and Fox [8] have
shown that this eigenvalue problem does not have any positive eigenvalues n. Thus
also i = 0 and thus 1=0. Substitution of 2 = 0, I = 0 leads to un = 0, 6„ = 0, <pn = 0,
yf/n = 0, a contradiction to the assumption of the existence of a noninteger eigenvalue.

Appendix II. Existence and uniqueness of the solutions of Problems A and B.
Problem A. We first note that both Eq. (4.11) and the boundary conditions (5.3)

are inhomogeneous. By a substitution s = S + aj" + /3/"' with properly chosen con-
stants a, j3 Problem A can be brought into the form

S" + fS' — (n — A — 2 )fS = a(v) (II. 1)
S(0) =0, S asymptotic. (II.2)

Furthermore, the inhomogeneous term a(?j) may satisfy the boundary conditions

a(0) = 0, a(ri) asymptotic. (II.3)
Then the transformation s = (f'/f)1/2<7 will take the equation into the formally self-
adjoint form

La — (n — A — 2)<r = a(/'/")"1/2 = A (v) (II.4)
where

L = (j"/f)W2D[(l/f')D[(l/f")D(J"/fy/2]].
The operator L is defined over the dense subspace 3D' of £2(0, ») characterized as follows:
u belongs to 2D' if and only if u is twice differentiate in [0, <=) and

(a) u G £2(0, »),
(b) (frW2m'7f)1/2u] E £2(0, «>),
(c) Lu E £2(0, °=),
(d) lim,_0 (r,~1/2u) = 0.

Then it can be shown by application of the theory of closed operators in a Hilbert space
(cf. Dunford and Schwartz, [10, Vol. 2, Chaps. XII, XIII]) that L can be extended
into a strictly self-adjoint operator over a space 3D such that SD'c2Dc£2(0, <=°).

The operator L is negative, i.e. for any u in 3D

(u, Lu) = f (f'/f)U2u D[(l//") D(/"//')w] dr,
Jo

= - r (!//"){D[(/"//')U]}2 dv < 0.
Jo

Therefore, the spectrum of L is a subset of the closed negative half-axis. Consequently
the resultant R„ of the operator L (i.e. the inverse of L —/xI) is a bounded operator for
any n > 0. can be expressed with the Green's function (?„(?), f) of the differential
operator L — /J subject to the conditions (a) and (d): = J" Gm(t}, f)w(f)df. The
operator R„ can be obtained by series expansion if R„ is known, for values of n which
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do not belong to the spectrum of L. In fact, by the binomial series

R„_a = (L - id - AI)"1 = S (L - Ml)"1"1 a1 = Er4;1 a'.
0 0

The right-hand series is always finite for A = d/d\, if the left-hand operator is applied
to polynomials of X; therefore the equation is rigorously valid.

The solution of Problem A can be stated thus as

<r = ± Ri+J2(d/d\) "A(v, X), s = (f'/f)l/V + aj" + Pf".
Jfc-0

This solution is by virtue of its derivation unique.
Problem B. The method of solution is based on a construction similar to the one

applied to Problem A. First a transformation t = T + af + /?/'" is applied so that the
new inhomogeneous term is 0(-q2) for 17 —» 0. Then a transformation T = (f")1/2(f)~2r
brings the differential equation (4.13) into the formal self-adjoint form Mr —
(n — A)t = B where

mz ^ [(/")1/2/(/o2]D s [(f3)//"]d[- [(/")1/2/(/')2]z] - vr/urw,
and B is square integrable in (0, °°). M is defined over the space I)"c£2(0, °°) of all
functions 2(77) which have in [0, =°] piecewise continuous second derivatives and are
such that

(a) 2 £ £2(0, <»),
(b) m3/2/(J")1/2)T>l((nU2/(J')2)z] E £2(0, co),
(c) Mii£ £2(0, ®).

(A boundary condition at 77 = 0 is not necessary, because (b) implies by Schwarz's
inequality that ri~1/2z(r]) —* 0 as 77 —» 0. Thus the function z(j]) defined by (II.4) satisfies
2(77) = 0(v~3/2), a boundary condition stronger than (5.5*).)

Again M can be extended into a self-ad joint operator over a dense subspace
S of £2(0, ») and the spectrum of M can be shown to consist of nonpositive real values.
Therefore the solution of the equation [M — (n — A)]r = B, r £ £), can be written
for any n > 0 in the form r = R'+1 A*B where R„ is the resolvent of M.
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