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Abstract: In this short note, we recover by a different method the new result due to Attouch, Chbani, Peyrouqget, and

Redont concerning the weak convergence as t — 400 of solutions z(t) to the second-order differential equation

#(8) + ol (1) + V(a(r) = 0,

where K > 3 and ® is a smooth convex function defined on a Hilbert space H. Moreover, we improve their result on

the rate of convergence of ®(z(t)) — min ®.
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1. Introduction and statement of the result
Let ‘H be a real Hilbert space with inner product and norm respectively denoted by (.,.) and ||.||. In a very

recent work [1], Attouch et al. considered the following second-order differential equation:

2 () + ()2’ (t) + VO(z(t)) = 0, (1.1)

where ~(t) = % with K as a nonnegative constant and ® : H — R is a convex continuously differentiable

function. By developing a method due to Su et al. [5], they proved the following result:

Theorem 1.1 (Attouch, Chbani, Peypouquet, and Redont) Assume that K > 3 and the set argmin ® =
{r eH: ®(x) <P(y) Yy € H} is nonempty. Let x : [tg, +oo[— H be a solution to (1.1). Then x(t) converges

weakly in ‘H as t — 400 to some element of argmin ®. Moreover, the energy function
1., 2 .
W(t) = 3 l="(t)||” + @(x(t)) — min @ (1.2)

satisfies W (t) = O(t™2) as t — +oo.

In this note, we establish, by using a different method, a slightly improved version of the previous theorem.

Precisely, we prove the following result.
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Theorem 1.2 Assume that K >3 and argmin® # (. Let x : [tg, +oo[— H be a solution to (1.1). Then x(t)

converges weakly in H as t — 400 to some element of argmin ®. Moreover, W (t) = o(t™2) as t — +oo.

Remark 1.1 In [3], we studied the asymptotic behavior as t — 4o of the solution to Fquation (1.1) when

the damping term ~(t) behaves, for t large enough, like tﬁa with K > 0 and a € [0,1]. We proved that
if argmin® # @ then every solution to (1.1) converges weakly in H to some element of argmin ®. Hence,

Theorem 1.1 and Theorem 1.2 extend this result to the limit case corresponding to av=1.

2. Proof of Theorem 1.2

We will prove Theorem 1.2 in a more general setting. Indeed, we will assume that the damping term ~ in

Equation (1.1) is a real function defined on [to, +-o0c[ that belongs to the class W' ([to, +oo[,R) and satisfies:

K
There exists K > 3 such that v(¢) > - Yt > to, (2.1)
and
+oo
/ [(ty(t))'] . dt < +o0, (2.2)
to

where [(t7(t))'], = max{(ty(t))’,0} is the positive part of (tv(t))".

Typical examples of functions « satisfying (2.1) and (2.2) are y(t) = GLH with ¢ € R and K > 3.

Proof [Proof of Theorem 1.2]We will use a modified version of a method introduced by Cabot and Frankel in

[2] and recently developed in [3].

Let 2* € argmin ® and define the function & : [ty, +oo[— RT by h(t) = 1 |lz(t) — 2*||>. By differentiating, we

have
W(t) = (@'(t), x(t) — "),

W) = |2 (07 + (2" (), 2 (1) — 7).
Combining these last equalities and using Equation (1.1), we get
@)+ (OF (8) = ' @)]° + (V((t)), 2" — (1)) (2.3)
Using now the convexity inequality
O(z") > ®(z) + (VO(2),z" — x), (2.4)
and the definition (1.2) of the energy function W, we obtain
W(t) < 5 /()7 — () A (1) (25)

On the other hand, in view of (1.1),
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Hence
(PW () = 20W (1) — £25(8) [/ ()] (2:)
Using now assumption (2.1), we get
3 2 3 / 2
e < 2
S < (o) (1)
3 3 /9 ’
= EtW(t) ~ 3K (W) . (2.7)
Multiplying (2.5) by ¢ and using inequality (2.7), we obtain
(1— i)tW(t) + 3 (t2W(t))’ < —th”"(t) — ty(t)h' (t)
K 2K - '
Integrating this last inequality on [tg,t], we get after simplification
3. (" 3 5 ,
(1— =) [ sW(s)ds+ =— (?W(t)) < Co — th'(t) + (1 — ty(t))h(t)
K’ Jy, 2K
t
—|—/ (sv(s))'h(s)ds, (2.8)
to
where Cy = 5= (3W (to)) + toh/(to) — h(to).
Let & > 0 such that K > 3 + 3¢. By using (2.1), we obtain from the inequality (2.8)
3. (° 3
(1- 7)/ SW(s)ds + — (W () + <h(t) < Co — th'(t) — (K — 1 — £)h(?)
K’ /i, 2K
t
+ [ s b
to
Using now the fact that
I ()] < tlla' (@) o) — 27|
< 24/ 8B2W(t)\/h(t),
and applying the elementary inequality
b2
Va > 0vb,z € R, —az?+br < —
4a
with & = \/h(t), we get
t t
A / SW(s)ds + BEEW (1) + eh(t) < Co + / [(59())'], h(s)ds, (2.9)
t() tO
where A =1— % and B = % — K_ll_e.
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Since K > 3 + 3¢, the constants A and B are positive; then
t
£h(t) < Cot [ [(52(5)], hls)is.
to

Hence, by using Gronwall’s inequality and the assumption (2.2), we deduce that the function h is bounded,

more precisely, we get

+oo
suph(t) < Lexp(2 [ [(s9(5))], ).

t>t0 € € Jio

Therefore, we infer from (2.9) that

sup t2W (t) < +oo0, (2.10)
t>to
+oo
/ sW(s)ds < +o0. (2.11)
to

Combining (2.6) and (2.11) yields that the positive part [(tQVI/'(t))’]+ of (2W(t)" belongs to L!([tg, +oo[, R);
hence m := limy_, o t*W(t) exists. This limit m must be equal to 0, since otherwise tW () ~ 2 as ¢t — 400,
which contradicts (2.11). It remains to prove the weak convergence of x(t) as ¢ — +o00. Let us note that (2.10)
implies that ®(z(¢)) — min® as ¢t — +o00. Hence by using the weak lower semicontinuity of the function ®, we
deduce that if z(t,,) = T weakly in H with t,, = +oo then ®(Z) < min ®, which is equivalent to Z € arg min ®.
On the other hand, from the convex inequality (2.4) we deduce that (V®(x),z* — z) < 0 for every = € H.
Then Equation (2.3) implies

() + (R (1) < |2/ ()]

Multiply this last equation by el (#t0) where T'(t, s) = f: v(7)dt, and integrate between tg and ¢, and we obtain

t
B (t) < e TEIp/ (1) + / e TGN |12 (1) || dr. (2.12)

to

In view of the assumption (2.1), a simple calculation gives

S

+o0 (t.5)
Vs > to, / e Tts) g <
. K

Hence by using (2.12) and Fubini Theorem, we get

400 ’ +o0
to [ (to)] 1 / 2
R ()].dt < + 72" (D))" dr.
[ < el s [ )

—+oo

Thanks to (2.11), the right-hand side of the last inequality is finite; thus [,

[/ (t)]+dt < +00, which implies
that lim;_, 4o h(t) exists. Hence, for every z* € argmin ®, the limit of ||x(¢) — 2*|| as ¢ = 400 exists. There-
fore, Opial’s lemma [4], which we recall below, guarantees the required weak convergence of z(t) in H to some

element of arg min ®. O
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Lemma 2.1 (Opial’s lemma) Let x : [tg, +oo[— H. Assume that there exists a nonempty subset S of H
such that:

i) If t, = +oo and z(t,) = = weakly in H, then x € S.

i) For every z € S, limy_, 40 ||x(t) — 2| exists.

Then there exists zoo € S such that x(t) — 2o, weakly in H as t — +oo.

3. Conclusion

In this paper, we have proved that if the damping term ~(¢) behaves at infinity like % with K > 3, then every
solution z(t) of the equation (1.1) converges weakly as ¢ — +0o to a minimizer of ® and the energy function
W (t) is o(t=2). However, two important questions remain open. The first one is on the behavior of the solution
x(t) in the limit case K = 3 and the second one is about the effect of the constant K on the convergence rate

of the associated energy function W (t).
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