Turk J Math
(2017) 41: $681-785$
(C) TÜBİTAK
doi:10.3906/mat-1512-28

Asymptotic for a second-order evolution equation with convex potential and vanishing damping term

Ramzi MAY*
Department of Mathematics and Statistics, College of Sciences, King Faisal University, Al Ahsaa, Saudi Arabia

| Received: 07.12 .2015 | Accepted/Published Online: 27.06 .2016 | \bullet | Final Version: 22.05 .2017 |
| :--- | :--- | :--- | :--- | :--- |

Abstract: In this short note, we recover by a different method the new result due to Attouch, Chbani, Peyrouqet, and Redont concerning the weak convergence as $t \rightarrow+\infty$ of solutions $x(t)$ to the second-order differential equation

$$
x^{\prime \prime}(t)+\frac{K}{t} x^{\prime}(t)+\nabla \Phi(x(t))=0
$$

where $K>3$ and Φ is a smooth convex function defined on a Hilbert space \mathcal{H}. Moreover, we improve their result on the rate of convergence of $\Phi(x(t))-\min \Phi$.

Key words: Dynamical systems, asymptotically small dissipation, asymptotic behavior, energy function, convex function, convex optimization

1. Introduction and statement of the result

Let \mathcal{H} be a real Hilbert space with inner product and norm respectively denoted by $\langle.,$.$\rangle and \|$.$\| . In a very$ recent work [1], Attouch et al. considered the following second-order differential equation:

$$
\begin{equation*}
x^{\prime \prime}(t)+\gamma(t) x^{\prime}(t)+\nabla \Phi(x(t))=0 \tag{1.1}
\end{equation*}
$$

where $\gamma(t)=\frac{K}{t}$ with K as a nonnegative constant and $\Phi: \mathcal{H} \rightarrow \mathbb{R}$ is a convex continuously differentiable function. By developing a method due to Su et al. [5], they proved the following result:

Theorem 1.1 (Attouch, Chbani, Peypouquet, and Redont) Assume that $K>3$ and the set $\arg \min \Phi \equiv$ $\{x \in \mathcal{H}: \Phi(x) \leq \Phi(y) \forall y \in \mathcal{H}\}$ is nonempty. Let $x:\left[t_{0},+\infty[\rightarrow \mathcal{H}\right.$ be a solution to (1.1). Then $x(t)$ converges weakly in \mathcal{H} as $t \rightarrow+\infty$ to some element of $\arg \min \Phi$. Moreover, the energy function

$$
\begin{equation*}
W(t) \equiv \frac{1}{2}\left\|x^{\prime}(t)\right\|^{2}+\Phi(x(t))-\min \Phi \tag{1.2}
\end{equation*}
$$

satisfies $W(t)=O\left(t^{-2}\right)$ as $t \rightarrow+\infty$.
In this note, we establish, by using a different method, a slightly improved version of the previous theorem. Precisely, we prove the following result.

[^0]Theorem 1.2 Assume that $K>3$ and $\arg \min \Phi \neq \emptyset$. Let $x:\left[t_{0},+\infty[\rightarrow \mathcal{H}\right.$ be a solution to (1.1). Then $x(t)$ converges weakly in \mathcal{H} as $t \rightarrow+\infty$ to some element of $\arg \min \Phi$. Moreover, $W(t)=\circ\left(t^{-2}\right)$ as $t \rightarrow+\infty$.

Remark 1.1 In [3], we studied the asymptotic behavior as $t \rightarrow+\infty$ of the solution to Equation (1.1) when the damping term $\gamma(t)$ behaves, for t large enough, like $\frac{K}{t^{\alpha}}$ with $K>0$ and $\alpha \in[0,1[$. We proved that if $\arg \min \Phi \neq \emptyset$ then every solution to (1.1) converges weakly in \mathcal{H} to some element of $\arg \min \Phi$. Hence, Theorem 1.1 and Theorem 1.2 extend this result to the limit case corresponding to $\alpha=1$.

2. Proof of Theorem 1.2

We will prove Theorem 1.2 in a more general setting. Indeed, we will assume that the damping term γ in Equation (1.1) is a real function defined on $\left[t_{0},+\infty\left[\right.\right.$ that belongs to the class $W_{l o c}^{1,1}\left(\left[t_{0},+\infty[, \mathbb{R})\right.\right.$ and satisfies:

$$
\begin{equation*}
\text { There exists } K>3 \text { such that } \gamma(t) \geq \frac{K}{t} \forall t \geq t_{0} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t_{0}}^{+\infty}\left[(t \gamma(t))^{\prime}\right]_{+} d t<+\infty \tag{2.2}
\end{equation*}
$$

where $\left[(t \gamma(t))^{\prime}\right]_{+} \equiv \max \left\{(t \gamma(t))^{\prime}, 0\right\}$ is the positive part of $(t \gamma(t))^{\prime}$.
Typical examples of functions γ satisfying (2.1) and (2.2) are $\gamma(t)=\frac{K}{a+t}$ with $a \in \mathbb{R}$ and $K>3$.
Proof [Proof of Theorem 1.2] We will use a modified version of a method introduced by Cabot and Frankel in [2] and recently developed in [3].
Let $x^{*} \in \arg \min \Phi$ and define the function $h:\left[t_{0},+\infty\left[\rightarrow \mathbb{R}^{+}\right.\right.$by $h(t)=\frac{1}{2}\left\|x(t)-x^{*}\right\|^{2}$. By differentiating, we have

$$
\begin{aligned}
h^{\prime}(t) & =\left\langle x^{\prime}(t), x(t)-x^{*}\right\rangle \\
h^{\prime \prime}(t) & =\left\|x^{\prime}(t)\right\|^{2}+\left\langle x^{\prime \prime}(t), x(t)-x^{*}\right\rangle
\end{aligned}
$$

Combining these last equalities and using Equation (1.1), we get

$$
\begin{equation*}
h^{\prime \prime}(t)+\gamma(t) h^{\prime}(t)=\left\|x^{\prime}(t)\right\|^{2}+\left\langle\nabla \Phi(x(t)), x^{*}-x(t)\right\rangle \tag{2.3}
\end{equation*}
$$

Using now the convexity inequality

$$
\begin{equation*}
\Phi\left(x^{*}\right) \geq \Phi(x)+\left\langle\nabla \Phi(x), x^{*}-x\right\rangle \tag{2.4}
\end{equation*}
$$

and the definition (1.2) of the energy function W, we obtain

$$
\begin{equation*}
W(t) \leq \frac{3}{2}\left\|x^{\prime}(t)\right\|^{2}-h^{\prime \prime}(t)-\gamma(t) h^{\prime}(t) \tag{2.5}
\end{equation*}
$$

On the other hand, in view of (1.1),

$$
\begin{aligned}
W^{\prime}(t) & =\left\langle x^{\prime}(t), x(t)\right\rangle+\left\langle\nabla \Phi(x(t)), x^{\prime}(t)\right\rangle \\
& =-\gamma(t)\left\|x^{\prime}(t)\right\|^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left(t^{2} W(t)\right)^{\prime}=2 t W(t)-t^{2} \gamma(t)\left\|x^{\prime}(t)\right\|^{2} \tag{2.6}
\end{equation*}
$$

Using now assumption (2.1), we get

$$
\begin{align*}
\frac{3}{2} t\left\|x^{\prime}\right\|^{2} & \leq \frac{3}{2 K} t^{2} \gamma(t)\left\|x^{\prime}(t)\right\|^{2} \\
& =\frac{3}{K} t W(t)-\frac{3}{2 K}\left(t^{2} W(t)\right)^{\prime} \tag{2.7}
\end{align*}
$$

Multiplying (2.5) by t and using inequality (2.7), we obtain

$$
\left(1-\frac{3}{K}\right) t W(t)+\frac{3}{2 K}\left(t^{2} W(t)\right)^{\prime} \leq-t h^{\prime \prime}(t)-t \gamma(t) h^{\prime}(t)
$$

Integrating this last inequality on $\left[t_{0}, t\right]$, we get after simplification

$$
\begin{align*}
\left(1-\frac{3}{K}\right) \int_{t_{0}}^{t} s W(s) d s+\frac{3}{2 K}\left(t^{2} W(t)\right) & \leq C_{0}-t h^{\prime}(t)+(1-t \gamma(t)) h(t) \\
& +\int_{t_{0}}^{t}(s \gamma(s))^{\prime} h(s) d s \tag{2.8}
\end{align*}
$$

where $C_{0}=\frac{3}{2 K}\left(t_{0}^{2} W\left(t_{0}\right)\right)+t_{0} h^{\prime}\left(t_{0}\right)-h\left(t_{0}\right)$.
Let $\varepsilon>0$ such that $K>3+3 \varepsilon$. By using (2.1), we obtain from the inequality (2.8)

$$
\begin{aligned}
\left(1-\frac{3}{K}\right) \int_{t_{0}}^{t} s W(s) d s+\frac{3}{2 K}\left(t^{2} W(t)\right)+\varepsilon h(t) & \leq C_{0}-t h^{\prime}(t)-(K-1-\varepsilon) h(t) \\
& +\int_{t_{0}}^{t}\left[(s \gamma(s))^{\prime}\right]_{+} h(s) d s
\end{aligned}
$$

Using now the fact that

$$
\begin{aligned}
t\left|h^{\prime}(t)\right| & \leq t\left\|x^{\prime}(t)\right\|\left\|x(t)-x^{*}\right\| \\
& \leq 2 \sqrt{t^{2} W(t)} \sqrt{h(t)}
\end{aligned}
$$

and applying the elementary inequality

$$
\forall a>0 \forall b, x \in \mathbb{R}, \quad-a x^{2}+b x \leq \frac{b^{2}}{4 a}
$$

with $x=\sqrt{h(t)}$, we get

$$
\begin{equation*}
A \int_{t_{0}}^{t} s W(s) d s+B t^{2} W(t)+\varepsilon h(t) \leq C_{0}+\int_{t_{0}}^{t}\left[(s \gamma(s))^{\prime}\right]_{+} h(s) d s \tag{2.9}
\end{equation*}
$$

where $A=1-\frac{3}{K}$ and $B=\frac{3}{2 K}-\frac{1}{K-1-\varepsilon}$.

Since $K>3+3 \varepsilon$, the constants A and B are positive; then

$$
\varepsilon h(t) \leq C_{0}+\int_{t_{0}}^{t}\left[(s \gamma(s))^{\prime}\right]_{+} h(s) d s
$$

Hence, by using Gronwall's inequality and the assumption (2.2), we deduce that the function h is bounded, more precisely, we get

$$
\sup _{t \geq t_{0}} h(t) \leq \frac{C_{0}}{\varepsilon} \exp \left(\frac{1}{\varepsilon} \int_{t_{0}}^{+\infty}\left[(s \gamma(s))^{\prime}\right]_{+} d s\right)
$$

Therefore, we infer from (2.9) that

$$
\begin{array}{r}
\sup _{t \geq t_{0}} t^{2} W(t)<+\infty \\
\int_{t_{0}}^{+\infty} s W(s) d s<+\infty \tag{2.11}
\end{array}
$$

Combining (2.6) and (2.11) yields that the positive part $\left[\left(t^{2} W(t)\right)^{\prime}\right]_{+}$of $\left(t^{2} W(t)^{\prime}\right.$ belongs to $L^{1}\left(\left[t_{0},+\infty[, \mathbb{R})\right.\right.$; hence $m:=\lim _{t \rightarrow+\infty} t^{2} W(t)$ exists. This limit m must be equal to 0 , since otherwise $t W(t) \simeq \frac{m}{t}$ as $t \rightarrow+\infty$, which contradicts (2.11). It remains to prove the weak convergence of $x(t)$ as $t \rightarrow+\infty$. Let us note that (2.10) implies that $\Phi(x(t)) \rightarrow \min \Phi$ as $t \rightarrow+\infty$. Hence by using the weak lower semicontinuity of the function Φ, we deduce that if $x\left(t_{n}\right) \rightharpoonup \bar{x}$ weakly in \mathcal{H} with $t_{n} \rightarrow+\infty$ then $\Phi(\bar{x}) \leq \min \Phi$, which is equivalent to $\bar{x} \in \arg \min \Phi$. On the other hand, from the convex inequality (2.4) we deduce that $\left\langle\nabla \Phi(x), x^{*}-x\right\rangle \leq 0$ for every $x \in \mathcal{H}$. Then Equation (2.3) implies

$$
h^{\prime \prime}(t)+\gamma(t) h^{\prime}(t) \leq\left\|x^{\prime}(t)\right\|^{2}
$$

Multiply this last equation by $e^{\Gamma\left(t, t_{0}\right)}$, where $\Gamma(t, s)=\int_{s}^{t} \gamma(\tau) d t$, and integrate between t_{0} and t, and we obtain

$$
\begin{equation*}
h^{\prime}(t) \leq e^{-\Gamma\left(t, t_{0}\right)} h^{\prime}\left(t_{0}\right)+\int_{t_{0}}^{t} e^{-\Gamma(t, \tau)}\left\|x^{\prime}(\tau)\right\|^{2} d \tau \tag{2.12}
\end{equation*}
$$

In view of the assumption (2.1), a simple calculation gives

$$
\forall s \geq t_{0}, \quad \int_{s}^{+\infty} e^{-\Gamma(t, s)} d t \leq \frac{s}{K-1}
$$

Hence by using (2.12) and Fubini Theorem, we get

$$
\int_{t_{0}}^{+\infty}\left[h^{\prime}(t)\right]_{+} d t \leq \frac{t_{0}\left|h^{\prime}\left(t_{0}\right)\right|}{K-1}+\frac{1}{K-1} \int_{t_{0}}^{+\infty} \tau\left\|x^{\prime}(\tau)\right\|^{2} d \tau
$$

Thanks to (2.11), the right-hand side of the last inequality is finite; thus $\int_{t_{0}}^{+\infty}\left[h^{\prime}(t)\right]_{+} d t<+\infty$, which implies that $\lim _{t \rightarrow+\infty} h(t)$ exists. Hence, for every $x^{*} \in \arg \min \Phi$, the limit of $\left\|x(t)-x^{*}\right\|$ as $t \rightarrow+\infty$ exists. Therefore, Opial's lemma [4], which we recall below, guarantees the required weak convergence of $x(t)$ in \mathcal{H} to some element of $\arg \min \Phi$.

MAY/Turk J Math

Lemma 2.1 (Opial's lemma) Let $x:\left[t_{0},+\infty[\rightarrow \mathcal{H}\right.$. Assume that there exists a nonempty subset S of \mathcal{H} such that:
i) If $t_{n} \rightarrow+\infty$ and $x\left(t_{n}\right) \rightharpoonup x$ weakly in \mathcal{H}, then $x \in S$.
ii) For every $z \in S, \lim _{t \rightarrow+\infty}\|x(t)-z\|$ exists.

Then there exists $z_{\infty} \in S$ such that $x(t) \rightharpoonup z_{\infty}$ weakly in \mathcal{H} as $t \rightarrow+\infty$.

3. Conclusion

In this paper, we have proved that if the damping term $\gamma(t)$ behaves at infinity like $\frac{K}{t}$ with $K>3$, then every solution $x(t)$ of the equation (1.1) converges weakly as $t \rightarrow+\infty$ to a minimizer of Φ and the energy function $W(t)$ is $\circ\left(t^{-2}\right)$. However, two important questions remain open. The first one is on the behavior of the solution $x(t)$ in the limit case $K=3$ and the second one is about the effect of the constant K on the convergence rate of the associated energy function $W(t)$.

Acknowledgment

The author wishes to thank Prof Adel Trabelsi for his comments, which were very useful to improve the representation of the paper.

References

[1] Attouch H, Chbani Z, Peypouquet J, Redont P. Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity. Math Program Ser B 2016: 1-53.
[2] Cabot A, Frankel P. Asymptotics for some semilinear hyperbolic equations with non-autonomous damping. J Differ Equations 2012; 252: 294-322.
[3] May R. Long time behavior for a semilinear hyperbolic equation with asymptotically vanishing damping term and convex potential. J Math Anal Appl 2015; 430: 410-416.
[4] Opial Z. Weak convergence of the sequence of successive aproximation for nonexpansive mapping. Bull Amer Math Soc 1967; 73: 591-597.
[5] Su W, Boyd S, Candes E J. A differential equation for modeling Nestrov's accelerated gradient method: Theory and Insights. Neural Information Proceeding Systems (NIPS). 2014.

[^0]: *Correspondence: rmay@kfu.edu.sa

