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Abstract: In this short note, we recover by a different method the new result due to Attouch, Chbani, Peyrouqet, and

Redont concerning the weak convergence as t → +∞ of solutions x(t) to the second-order differential equation

x
′′(t) +

K

t
x
′(t) +∇Φ(x(t)) = 0,

where K > 3 and Φ is a smooth convex function defined on a Hilbert space H. Moreover, we improve their result on

the rate of convergence of Φ(x(t))−minΦ.

Key words: Dynamical systems, asymptotically small dissipation, asymptotic behavior, energy function, convex
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1. Introduction and statement of the result

Let H be a real Hilbert space with inner product and norm respectively denoted by ⟨., .⟩ and ∥.∥ . In a very

recent work [1], Attouch et al. considered the following second-order differential equation:

x′′(t) + γ(t)x′(t) +∇Φ(x(t)) = 0, (1.1)

where γ(t) = K
t

with K as a nonnegative constant and Φ : H → R is a convex continuously differentiable

function. By developing a method due to Su et al. [5], they proved the following result:

Theorem 1.1 (Attouch, Chbani, Peypouquet, and Redont) Assume that K > 3 and the set argminΦ ≡

{x ∈ H : Φ(x) ≤ Φ(y) ∀y ∈ H} is nonempty . Let x : [t0,+∞[→ H be a solution to (1.1). Then x(t) converges

weakly in H as t → +∞ to some element of argminΦ. Moreover, the energy function

W (t) ≡
1

2
∥x′(t)∥

2
+Φ(x(t))−minΦ (1.2)

satisfies W (t) = O(t−2) as t → +∞.

In this note, we establish, by using a different method, a slightly improved version of the previous theorem.

Precisely, we prove the following result.
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Theorem 1.2 Assume that K > 3 and argminΦ ̸= ∅. Let x : [t0,+∞[→ H be a solution to (1.1). Then x(t)

converges weakly in H as t → +∞ to some element of argminΦ. Moreover, W (t) = ◦(t−2) as t → +∞.

Remark 1.1 In [3], we studied the asymptotic behavior as t → +∞ of the solution to Equation (1.1) when

the damping term γ(t) behaves, for t large enough, like K
tα

with K > 0 and α ∈ [0, 1[. We proved that

if argminΦ ̸= ∅ then every solution to (1.1) converges weakly in H to some element of argminΦ. Hence,

Theorem 1.1 and Theorem 1.2 extend this result to the limit case corresponding to α = 1 .

2. Proof of Theorem 1.2

We will prove Theorem 1.2 in a more general setting. Indeed, we will assume that the damping term γ in

Equation (1.1) is a real function defined on [t0,+∞[ that belongs to the class W
1,1
loc ([t0,+∞[,R) and satisfies:

There exists K > 3 such that γ(t) ≥
K

t
∀t ≥ t0, (2.1)

and
∫ +∞

t0

[(tγ(t))′]+ dt < +∞, (2.2)

where [(tγ(t))′]+ ≡ max{(tγ(t))′, 0} is the positive part of (tγ(t))′.

Typical examples of functions γ satisfying (2.1) and (2.2) are γ(t) = K
a+t

with a ∈ R and K > 3.

Proof [Proof of Theorem 1.2]We will use a modified version of a method introduced by Cabot and Frankel in

[2] and recently developed in [3].

Let x∗ ∈ argminΦ and define the function h : [t0,+∞[→ R
+ by h(t) = 1

2 ∥x(t)− x∗∥2 . By differentiating, we

have

h′(t) = ⟨x′(t), x(t)− x∗⟩,

h′′(t) = ∥x′(t)∥
2
+ ⟨x

′′

(t), x(t)− x∗⟩.

Combining these last equalities and using Equation (1.1), we get

h′′(t) + γ(t)h′(t) = ∥x′(t)∥
2
+ ⟨∇Φ(x(t)), x∗ − x(t)⟩. (2.3)

Using now the convexity inequality

Φ(x∗) ≥ Φ(x) + ⟨∇Φ(x), x∗ − x⟩, (2.4)

and the definition (1.2) of the energy function W, we obtain

W (t) ≤
3

2
∥x′(t)∥

2
− h′′(t)− γ(t)h′(t). (2.5)

On the other hand, in view of (1.1),

W ′(t) = ⟨x′(t), x(t)⟩+ ⟨∇Φ(x(t)), x′(t)⟩

= −γ(t) ∥x′(t)∥
2
.

682



MAY/Turk J Math

Hence

(t2W (t))′ = 2tW (t)− t2γ(t) ∥x′(t)∥
2
. (2.6)

Using now assumption (2.1), we get

3

2
t ∥x′∥

2
≤

3

2K
t2γ(t) ∥x′(t)∥

2

=
3

K
tW (t)−

3

2K

(

t2W (t)
)′
. (2.7)

Multiplying (2.5) by t and using inequality (2.7), we obtain

(1−
3

K
)tW (t) +

3

2K

(

t2W (t)
)′

≤ −th′′(t)− tγ(t)h′(t).

Integrating this last inequality on [t0, t], we get after simplification

(1−
3

K
)

∫ t

t0

sW (s)ds+
3

2K

(

t2W (t)
)

≤ C0 − th′(t) + (1− tγ(t))h(t)

+

∫ t

t0

(sγ(s))′h(s)ds, (2.8)

where C0 = 3
2K

(

t20W (t0)
)

+ t0h
′(t0)− h(t0).

Let ε > 0 such that K > 3 + 3ε. By using (2.1), we obtain from the inequality (2.8)

(1−
3

K
)

∫ t

t0

sW (s)ds+
3

2K

(

t2W (t)
)

+ εh(t) ≤ C0 − th′(t)− (K − 1− ε)h(t)

+

∫ t

t0

[(sγ(s))′]+ h(s)ds.

Using now the fact that

t |h′(t)| ≤ t ∥x′(t)∥ ∥x(t)− x∗∥

≤ 2
√

t2W (t)
√

h(t),

and applying the elementary inequality

∀a > 0∀b, x ∈ R, − ax2 + bx ≤
b2

4a

with x =
√

h(t), we get

A

∫ t

t0

sW (s)ds+Bt2W (t) + εh(t) ≤ C0 +

∫ t

t0

[(sγ(s))′]+ h(s)ds, (2.9)

where A = 1− 3
K

and B = 3
2K − 1

K−1−ε
.
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Since K > 3 + 3ε, the constants A and B are positive; then

εh(t) ≤ C0 +

∫ t

t0

[(sγ(s))′]+ h(s)ds.

Hence, by using Gronwall’s inequality and the assumption (2.2), we deduce that the function h is bounded,

more precisely, we get

sup
t≥t0

h(t) ≤
C0

ε
exp(

1

ε

∫ +∞

t0

[(sγ(s))′]+ ds).

Therefore, we infer from (2.9) that

sup
t≥t0

t2W (t) < +∞, (2.10)

∫ +∞

t0

sW (s)ds < +∞. (2.11)

Combining (2.6) and (2.11) yields that the positive part
[

(t2W (t))′
]

+
of (t2W (t)′ belongs to L1([t0,+∞[,R);

hence m := limt→+∞ t2W (t) exists. This limit m must be equal to 0, since otherwise tW (t) ≃ m
t

as t → +∞ ,

which contradicts (2.11). It remains to prove the weak convergence of x(t) as t → +∞. Let us note that (2.10)

implies that Φ(x(t)) → minΦ as t → +∞. Hence by using the weak lower semicontinuity of the function Φ, we

deduce that if x(tn) ⇀ x̄ weakly in H with tn → +∞ then Φ(x̄) ≤ minΦ, which is equivalent to x̄ ∈ argminΦ.

On the other hand, from the convex inequality (2.4) we deduce that ⟨∇Φ(x), x∗ − x⟩ ≤ 0 for every x ∈ H.

Then Equation (2.3) implies

h′′(t) + γ(t)h′(t) ≤ ∥x′(t)∥
2
.

Multiply this last equation by eΓ(t,t0), where Γ(t, s) =
∫ t

s
γ(τ)dt, and integrate between t0 and t , and we obtain

h′(t) ≤ e−Γ(t,t0)h′(t0) +

∫ t

t0

e−Γ(t,τ) ∥x′(τ)∥
2
dτ. (2.12)

In view of the assumption (2.1), a simple calculation gives

∀s ≥ t0,

∫ +∞

s

e−Γ(t,s)dt ≤
s

K − 1
.

Hence by using (2.12) and Fubini Theorem, we get

∫ +∞

t0

[h′(t)]+dt ≤
t0 |h

′(t0)|

K − 1
+

1

K − 1

∫ +∞

t0

τ ∥x′(τ)∥
2
dτ.

Thanks to (2.11), the right-hand side of the last inequality is finite; thus
∫ +∞

t0
[h′(t)]+dt < +∞ , which implies

that limt→+∞ h(t) exists. Hence, for every x∗ ∈ argminΦ, the limit of ∥x(t)− x∗∥ as t → +∞ exists. There-

fore, Opial’s lemma [4], which we recall below, guarantees the required weak convergence of x(t) in H to some

element of argminΦ. ✷
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Lemma 2.1 (Opial’s lemma) Let x : [t0,+∞[→ H. Assume that there exists a nonempty subset S of H

such that:

i) If tn → +∞ and x(tn) ⇀ x weakly in H , then x ∈ S.

ii) For every z ∈ S, limt→+∞ ∥x(t)− z∥ exists.

Then there exists z∞ ∈ S such that x(t) ⇀ z∞ weakly in H as t → +∞.

3. Conclusion

In this paper, we have proved that if the damping term γ(t) behaves at infinity like K
t

with K > 3, then every

solution x(t) of the equation (1.1) converges weakly as t → +∞ to a minimizer of Φ and the energy function

W (t) is ◦(t−2) . However, two important questions remain open. The first one is on the behavior of the solution

x(t) in the limit case K = 3 and the second one is about the effect of the constant K on the convergence rate

of the associated energy function W (t) .
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