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Abstract We describe likelihood-based statistical tests for
use in high energy physics for the discovery of new phenom-
ena and for construction of confidence intervals on model
parameters. We focus on the properties of the test proce-
dures that allow one to account for systematic uncertainties.
Explicit formulae for the asymptotic distributions of test sta-
tistics are derived using results of Wilks and Wald. We moti-
vate and justify the use of a representative data set, called the
“Asimov data set”, which provides a simple method to ob-
tain the median experimental sensitivity of a search or mea-
surement as well as fluctuations about this expectation.

1 Introduction

In particle physics experiments one often searches for
processes that have been predicted but not yet seen, such as
production of a Higgs boson. The statistical significance of
an observed signal can be quantified by means of a p-value
or its equivalent Gaussian significance (discussed below). It
is useful to characterize the sensitivity of an experiment by
reporting the expected (e.g., mean or median) significance
that one would obtain for a variety of signal hypotheses.

Finding both the significance for a specific data set and
the expected significance can involve Monte Carlo calcula-
tions that are computationally expensive. In this paper we
investigate approximate methods based on results due to
Wilks [1] and Wald [2] by which one can obtain both the
significance for given data as well as the full sampling dis-
tribution of the significance under the hypothesis of different
signal models, all without recourse to Monte Carlo. In this
way one can find, for example, the median significance and
also a measure of how much one would expect this to vary
as a result of statistical fluctuations in the data.

A useful element of the method involves estimation of the
median significance by replacing the ensemble of simulated
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data sets by a single representative one, referred to here as
the “Asimov” data set.1 In the past, this method has been
used and justified intuitively (e.g., [4, 5]). Here we provide
a formal mathematical justification for the method, explore
its limitations, and point out several additional aspects of its
use.

The present paper extends what was shown in [5] by giv-
ing more accurate formulas for exclusion significance and
also by providing a quantitative measure of the statistical
fluctuations in discovery significance and exclusion limits.
For completeness some of the background material from [5]
is summarized here.

In Sect. 2 the formalism of a search as a statistical test is
outlined and the concepts of statistical significance and sen-
sitivity are given precise definitions. Several test statistics
based on the profile likelihood ratio are defined.

In Sect. 3, we use the approximations due to Wilks and
Wald to find the sampling distributions of the test statis-
tics and from these find p-values and related quantities for
a given data sample. In Sect. 4 we discuss how to deter-
mine the median significance that one would obtain for
an assumed signal strength. Several example applications
are shown in Sect. 5, and numerical implementation of the
methods in the RooStats package is described in Sect. 6.
Conclusions are given in Sect. 7.

2 Formalism of a search as a statistical test

In this section we outline the general procedure used to
search for a new phenomenon in the context of a frequen-
tist statistical test. For purposes of discovering a new signal
process, one defines the null hypothesis, H0, as describing
only known processes, here designated as background. This

1The name of the Asimov data set is inspired by the short story Fran-
chise, by Isaac Asimov [3]. In it, elections are held by selecting the
single most representative voter to replace the entire electorate.
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is to be tested against the alternative H1, which includes both
background as well as the sought after signal. When setting
limits, the model with signal plus background plays the role
of H0, which is tested against the background-only hypoth-
esis, H1.

To summarize the outcome of such a search one quanti-
fies the level of agreement of the observed data with a given
hypothesis H by computing a p-value, i.e., a probability,
under assumption of H , of finding data of equal or greater
incompatibility with the predictions of H . The measure of
incompatibility can be based, for example, on the number of
events found in designated regions of certain distributions
or on the corresponding likelihood ratio for signal and back-
ground. One can regard the hypothesis as excluded if its p-
value is observed below a specified threshold.

In particle physics one usually converts the p-value into
an equivalent significance, Z, defined such that a Gaussian
distributed variable found Z standard deviations above2 its
mean has an upper-tail probability equal to p. That is,

Z = Φ−1(1 − p), (1)

where Φ−1 is the quantile (inverse of the cumulative distrib-
ution) of the standard Gaussian. For a signal process such as
the Higgs boson, the particle physics community has tended
to regard rejection of the background hypothesis with a sig-
nificance of at least Z = 5 as an appropriate level to con-
stitute a discovery. This corresponds to p = 2.87 × 10−7.
For purposes of excluding a signal hypothesis, a threshold
p-value of 0.05 (i.e., 95% confidence level) is often used,
which corresponds to Z = 1.64.

It should be emphasized that in an actual scientific con-
text, rejecting the background-only hypothesis in a statistical
sense is only part of discovering a new phenomenon. One’s
degree of belief that a new process is present will depend in
general on other factors as well, such as the plausibility of
the new signal hypothesis and the degree to which it can de-
scribe the data. Here, however, we only consider the task of
determining the p-value of the background-only hypothesis;
if it is found below a specified threshold, we regard this as
“discovery”.

It is often useful to quantify the sensitivity of an experi-
ment by reporting the expected significance one would ob-
tain with a given measurement under the assumption of var-
ious hypotheses. For example, the sensitivity to discovery of
a given signal process H1 could be characterized by the ex-
pectation value, under the assumption of H1, of the value of
Z obtained from a test of H0. This would not be the same as
the Z obtained using (1) with the expectation of the p-value,

2Some authors, e.g., [6], have defined this relation using a two-sided
fluctuation of a Gaussian variable, with a 5σ significance correspond-
ing to p = 5.7 × 10−7. We take the one-sided definition above as this
gives Z = 0 for p = 0.5.

however, because the relation between Z and p is nonlinear.
The median Z and p will, however, satisfy (1) because this
is a monotonic relation. Therefore in the following we will
take the term ‘expected significance’ always to refer to the
median.

A widely used procedure to establish discovery (or ex-
clusion) in particle physics is based on a frequentist signifi-
cance test using a likelihood ratio as a test statistic. In addi-
tion to parameters of interest such as the rate (cross section)
of the signal process, the signal and background models will
contain in general nuisance parameters whose values are not
taken as known a priori but rather must be fitted from the
data.

For the significances obtained to be valid it is necessary
that the model predictions for data distributions represent
accurately the underlying theory being tested. That is, any
errors due to approximations, e.g., in detector modeling or
in methods used to relate observable quantities to the funda-
mental theories, should be negligible for some point in the
full parameter space. By including additional parameters in
the model one can approach this ideal situation more closely.
However, the additional flexibility introduced to parameter-
ize systematic effects results, as it should, in a loss in sensi-
tivity. To the degree that the model is not able to reflect the
truth accurately, an additional systematic uncertainty will be
present that is not quantified by the statistical method pre-
sented here.

To illustrate the use of the profile likelihood ratio, con-
sider an experiment where for each selected event one mea-
sures the values of certain kinematic variables, and thus the
resulting data can be represented as one or more histograms.
Using the method in an unbinned analysis is a straightfor-
ward extension.

Suppose for each event in the signal sample one measures
a variable x and uses these values to construct a histogram
n = (n1, . . . , nN). The expectation value of ni can be written

E[ni] = μsi + bi, (2)

where the mean number of entries in the ith bin from signal
and background are

si = stot

∫
bin i

fs(x; θ s) dx, (3)

bi = btot

∫
bin i

fb(x; θb) dx. (4)

Here the parameter μ determines the strength of the sig-
nal process, with μ = 0 corresponding to the background-
only hypothesis and μ = 1 being the nominal signal hypoth-
esis. The functions fs(x; θ s) and fb(x; θb) are the proba-
bility density functions (pdfs) of the variable x for signal
and background events, and θ s and θb represent parameters
that characterize the shapes of pdfs. The quantities stot and
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btot are the total mean numbers of signal and background
events, and the integrals in (3) and (4) represent the prob-
abilities for an event to be found in bin i. Below we use
θ = (θ s , θb, btot) to denote all of the nuisance parameters.
The signal normalization stot is not, however, an adjustable
parameter but rather is fixed to the value predicted by the
nominal signal model.

In addition to the measured histogram n one often makes
further subsidiary measurements that help constrain the nui-
sance parameters. For example, one may select a control
sample where one expects mainly background events and
from them construct a histogram of some chosen kinematic
variable. This then gives a set of values m = (m1, . . . ,mM)

for the number of entries in each of the M bins. The expec-
tation value of mi can be written

E[mi] = ui(θ), (5)

where the ui are calculable quantities depending on the pa-
rameters θ . One often constructs this measurement so as to
provide information on the background normalization para-
meter btot and also possibly on the signal and background
shape parameters.

The likelihood function is the product of Poisson proba-
bilities for all bins:

L(μ, θ) =
N∏

j=1

(μsj + bj )
nj

nj ! e−(μsj +bj )

M∏
k=1

u
mk

k

mk! e
−uk . (6)

To test a hypothesized value of μ we consider the profile
likelihood ratio

λ(μ) = L(μ,
ˆ̂
θ)

L(μ̂, θ̂)
. (7)

The numerator of this ratio is the profile likelihood func-

tion (see, e.g., [7]). The quantity ˆ̂
θ denotes the value of θ

that maximizes L for the specified μ, i.e., it is the condi-
tional maximum-likelihood (ML) estimator of θ (and thus
is a function of μ). The denominator is the maximized (un-
conditional) likelihood function, i.e., μ̂ and θ̂ are their ML
estimators. The presence of the nuisance parameters broad-
ens the profile likelihood as a function of μ relative to what
one would have if their values were fixed. This reflects the
loss of information about μ due to the systematic uncertain-
ties.

In many analyses, the contribution of the signal process
to the mean number of events is assumed to be non-negative.
This condition effectively implies that any physical estima-
tor for μ must be non-negative. Even if we regard this to be
the case, however, it is convenient to define an effective es-
timator μ̂ as the value of μ that maximizes the likelihood,
even this gives μ̂ < 0 (but providing that the Poisson mean
values, μsi + bi , remain nonnegative). This will allow us in

Sect. 3.1 to model μ̂ as a Gaussian distributed variable, and
in this way we can determine the distributions of the test sta-
tistics that we consider. Therefore in the following we will
always regard μ̂ as an effective estimator which is allowed
to take on negative values.

2.1 Test statistic tμ = −2 lnλ(μ)

From the definition of λ(μ) in (7), one can see that 0 ≤
λ ≤ 1, with λ near 1 implying good agreement between the
data and the hypothesized value of μ. Equivalently it is con-
venient to use the statistic

tμ = −2 lnλ(μ) (8)

as the basis of a statistical test. Higher values of tμ thus
correspond to increasing incompatibility between the data
and μ.

We may define a test of a hypothesized value of μ by
using the statistic tμ directly as measure of discrepancy be-
tween the data and the hypothesis, with higher values of tμ
correspond to increasing disagreement. To quantify the level
of disagreement we compute the p-value,

pμ =
∫ ∞

tμ,obs

f (tμ|μ)dtμ, (9)

where tμ,obs is the value of the statistic tμ observed from the
data and f (tμ|μ) denotes the pdf of tμ under the assump-
tion of the signal strength μ. Useful approximations for this
and other related pdfs are given in Sect. 3.3. The relation
between the p-value and the observed tμ and also with the
significance Z are illustrated in Fig. 1.

When using the statistic tμ, a data set may result in a low
p-value in two distinct ways: the estimated signal strength μ̂

may be found greater or less than the hypothesized value μ.
As a result, the set of μ values that are rejected because their
p-values are found below a specified threshold α may lie to
either side of those values not rejected, i.e., one may obtain
a two-sided confidence interval for μ.

2.2 Test statistic t̃μ for μ ≥ 0

Often one assumes that the presence of a new signal can only
increase the mean event rate beyond what is expected from
background alone. That is, the signal process necessarily has
μ ≥ 0, and to take this into account we define an alternative
test statistic below called t̃μ.

For a model where μ ≥ 0, if one finds data such that
μ̂ < 0, then the best level of agreement between the data
and any physical value of μ occurs for μ = 0. We therefore
define

λ̃(μ) =

⎧⎪⎪⎨
⎪⎪⎩

L(μ,
ˆ̂
θ(μ))

L(μ̂,θ̂)
, μ̂ ≥ 0,

L(μ,
ˆ̂
θ(μ))

L(0,
ˆ̂
θ(0))

, μ̂ < 0.

(10)
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Fig. 1 (a) Illustration of the relation between the p-value obtained
from an observed value of the test statistic tμ. (b) The standard nor-
mal distribution ϕ(x) = (1/

√
2π) exp(−x2/2) showing the relation be-

tween the significance Z and the p-value

Here ˆ̂
θ(0) and ˆ̂

θ(μ) refer to the conditional ML estimators
of θ given a strength parameter of 0 or μ, respectively.

The variable λ̃(μ) can be used instead of λ(μ) in (8) to
obtain the corresponding test statistic, which we denote t̃μ.
That is,

t̃μ = −2 ln λ̃(μ) =

⎧⎪⎪⎨
⎪⎪⎩

−2 ln L(μ,
ˆ̂
θ(μ))

L(0,
ˆ̂
θ(0))

, μ̂ < 0,

−2 ln L(μ,
ˆ̂
θ(μ))

L(μ̂,θ̂)
, μ̂ ≥ 0.

(11)

As was done with the statistic tμ, one can quantify the
level of disagreement between the data and the hypothesized
value of μ with the p-value, just as in (9). For this one needs
the distribution of t̃μ, an approximation of which is given in
Sect. 3.4.

Also similar to the case of tμ, values of μ both above and
below μ̂ may be excluded by a given data set, i.e., one may
obtain either a one-sided or two-sided confidence interval
for μ. The statistic defined here as t̃μ is also discussed for
the case without nuisance parameters in [8] and including
nuisance parameters in [7]. In these references, however, the
estimator of the parameter of interest is assumed to remain
within the allowed range of the parameter. Here in contrast
we treat μ̂ as an effective estimator that can be negative even
if the physical model requires μ ≥ 0. As shown below in

Sect. 3, this allows us to apply large-sample approximations
to find the distribution of t̃μ.

2.3 Test statistic q0 for discovery of a positive signal

An important special case of the statistic t̃μ described above
is used to test μ = 0 in a class of model where we assume
μ ≥ 0. Rejecting the μ = 0 hypothesis effectively leads to
the discovery of a new signal. For this important case we
use the special notation q0 = t̃0. Using the definition (11)
with μ = 0 one finds

q0 =
{−2 lnλ(0), μ̂ ≥ 0,

0, μ̂ < 0,
(12)

where λ(0) is the profile likelihood ratio for μ = 0 as defined
in (7).

We may contrast this to the statistic t0, i.e., (8), used to
test μ = 0. In that case one may reject the μ = 0 hypothesis
for either an upward or downward fluctuation of the data.
This is appropriate if the presence of a new phenomenon
could lead to an increase or decrease in the number of events
found. In an experiment looking for neutrino oscillations,
for example, the signal hypothesis may predict a greater or
lower event rate than the no-oscillation hypothesis.

When using q0, however, we consider the data to show
lack of agreement with the background-only hypothesis only
if μ̂ > 0. That is, a value of μ̂ much below zero may indeed
constitute evidence against the background-only model, but
this type of discrepancy does not show that the data con-
tain signal events, but rather points to some other systematic
error. For the present discussion, however, we assume that
the systematic uncertainties are dealt with by the nuisance
parameters θ .

If the data fluctuate such that one finds fewer events than
even predicted by background processes alone, then μ̂ < 0
and one has q0 = 0. As the event yield increases above the
expected background, i.e., for increasing μ̂, one finds in-
creasingly large values of q0, corresponding to an increas-
ing level of incompatibility between the data and the μ = 0
hypothesis.

To quantify the level of disagreement between the data
and the hypothesis of μ = 0 using the observed value of q0

we compute the p-value in the same manner as done with tμ,
namely,

p0 =
∫ ∞

q0,obs

f (q0|0) dq0. (13)

Here f (q0|0) denotes the pdf of the statistic q0 under as-
sumption of the background-only (μ = 0) hypothesis. An
approximation for this and other related pdfs are given in
Sect. 3.5.
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2.4 Test statistic qμ for upper limits

For purposes of establishing an upper limit on the strength
parameter μ, we consider two closely related test statistics.
First, we may define

qμ =
{

−2 lnλ(μ), μ̂ ≤ μ,

0, μ̂ > μ,
(14)

where λ(μ) is the profile likelihood ratio as defined in (7).
The reason for setting qμ = 0 for μ̂ > μ is that when set-
ting an upper limit, one would not regard data with μ̂ > μ

as representing less compatibility with μ than the data ob-
tained, and therefore this is not taken as part of the rejection
region of the test. That is, the upper limit is obtained by test-
ing μ against the alternative hypothesis consisting of lower
values of μ. From the definition of the test statistic one sees
that higher values of qμ represent greater incompatibility be-
tween the data and the hypothesized value of μ.

One should note that q0 is not simply a special case of
qμ with μ = 0, but rather has a different definition (see (12)
and (14)). That is, q0 is zero if the data fluctuate downward
(μ̂ < 0), but qμ is zero if the data fluctuate upward (μ̂ > μ).
With that caveat in mind, we will often refer in the follow-
ing to qμ with the idea that this means either q0 or qμ as
appropriate to the context.

As with the case of discovery, one quantifies the level
of agreement between the data and hypothesized μ with p-
value. For, e.g., an observed value qμ,obs, one has

pμ =
∫ ∞

qμ,obs

f (qμ|μ)dqμ, (15)

which can be expressed as a significance using (1). Here
f (qμ|μ) is the pdf of qμ assuming the hypothesis μ. In
Sect. 3.6 we provide useful approximations for this and
other related pdfs.

2.5 Alternative test statistic q̃μ for upper limits

For the case where one considers models for which μ ≥ 0,
the variable λ̃(μ) can be used instead of λ(μ) in (14) to ob-
tain the corresponding test statistic, which we denote q̃μ.
That is,

q̃μ =
{

−2 ln λ̃(μ), μ̂ ≤ μ

0, μ̂ > μ

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2 ln L(μ,
ˆ̂
θ(μ))

L(0,
ˆ̂
θ(0))

, μ̂ < 0,

−2 ln L(μ,
ˆ̂
θ(μ))

L(μ̂,θ̂)
, 0 ≤ μ̂ ≤ μ,

0, μ̂ > μ.

(16)

We give an approximation for the pdf f (q̃μ|μ′) in Sect. 3.7.

In numerical examples we have found that the differ-
ence between the tests based on qμ (14) and q̃μ usually
to be negligible, but use of qμ leads to important simpli-
fications. Furthermore, in the context of the approximation
used in Sect. 3, the two statistics are equivalent. That is, as-
suming the approximations below, qμ can be expressed as
a monotonic function of q̃μ and thus they lead to the same
results.

3 Approximate sampling distributions

In order to find the p-value of a hypothesis using (13) or
(15) we require the sampling distribution for the test sta-
tistic being used. In the case of discovery we are testing
the background-only hypothesis (μ = 0) and therefore we
need f (q0|0), where q0 is defined by (12). When testing a
nonzero value of μ for purposes of finding an upper limit we
need the distribution f (qμ|μ) where qμ is defined by (14),
or alternatively we require the pdf of the corresponding sta-
tistic q̃μ as defined by (16). In this notation the subscript
of q refers to the hypothesis being tested, and the second
argument in f (qμ|μ) gives the value of μ assumed in the
distribution of the data.

We also need the distribution f (qμ|μ′) with μ �= μ′ to
find what significance to expect and how this is distributed
if the data correspond to a strength parameter different from
the one being tested. For example, it is useful to characterize
the sensitivity of a planned experiment by quoting the me-
dian significance, assuming data distributed according to a
specified signal model, with which one would expect to ex-
clude the background-only hypothesis. For this one would
need f (q0|μ′), usually with μ′ = 1. From this one can find
the median q0, and thus the median discovery significance.
When considering upper limits, one would usually quote the
value of μ for which the median p-value is equal to 0.05,
as this gives the median upper limit on μ at 95% confidence
level. In this case one would need f (qμ|0) (or alternatively
f (q̃μ|0)).

In Sect. 3.1 we present an approximation for the profile
likelihood ratio, valid in the large sample limit. This allows
one to obtain approximations for all of the required distribu-
tions, which are given in Sects. 3.3 through 3.6. The approx-
imations become exact in the large sample limit and are in
fact found to provide accurate results even for fairly small
sample sizes. For very small data samples one always has
the possibility of using Monte Carlo methods to determine
the required distributions.

3.1 Approximate distribution of the profile likelihood ratio

Consider a test of the strength parameter μ, which here
can either be zero (for discovery) or nonzero (for an up-
per limit), and suppose the data are distributed according to
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a strength parameter μ′. The desired distribution f (qμ|μ′)
can be found using a result due to Wald [2], who showed
that for the case of a single parameter of interest,

−2 lnλ(μ) = (μ − μ̂)2

σ 2
+ O

(
1/

√
N

)
. (17)

Here μ̂ follows a Gaussian distribution with a mean μ′
and standard deviation σ , and N represents the data sam-
ple size. The standard deviation σ of μ̂ is obtained from the
covariance matrix of the estimators for all the parameters,
Vij = cov[θ̂i , θ̂j ], where here the θi represent both μ as well
as the nuisance parameters (e.g., take θ0 = μ, so σ 2 = V00).
In the large-sample limit, the bias of ML estimators in gen-
eral tend to zero, in which case we can write the inverse of
the covariance matrix as

V −1
ij = −E

[
∂2 lnL

∂θi∂θj

]
, (18)

where the expectation value assumes a strength parame-
ter μ′. The approximations presented here are valid to the
extent that the O(1/

√
N) term can be neglected, and the

value of σ can be estimated, e.g., using (18). In Sect. 3.2 we
present an alternative way to estimate σ which lends itself
more directly to determination of the median significance.

If μ̂ is Gaussian distributed and we neglect the O(1/
√

N)

term in (17), then one can show that the statistic tμ =
−2 lnλ(μ) follows a noncentral chi-square distribution for
one degree of freedom (see, e.g., [10, 11]),

f (tμ;Λ) = 1

2
√

tμ

1√
2π

×
[

exp

(
−1

2

(√
tμ + √

Λ
)2

)

+ exp

(
−1

2

(√
tμ − √

Λ
)2

)]
, (19)

where the noncentrality parameter Λ is

Λ = (μ − μ′)2

σ 2
. (20)

For the special case μ′ = μ one has Λ = 0 and −2 lnλ(μ)

approaches a chi-square distribution for one degree of free-
dom, a result shown earlier by Wilks [1].

The results of Wilks and Wald generalize to more than
one parameter of interest. If the parameters of interest can
be explicitly identified with a subset of the parameters θ r =
(θ1, . . . , θr ), then the distribution of −2 lnλ(θ r ) follows a
noncentral chi-square distribution for r-degrees of freedom
with noncentrality parameter

Λr =
r∑

i,j=1

(θi − θ ′
i ) Ṽ −1

ij (θj − θ ′
j ), (21)

where Ṽ −1
ij is the inverse of the submatrix one obtains from

restricting the full covariance matrix to the parameters of
interest. The full covariance matrix is given from invert-
ing (18), and we show an efficient way to calculate it in
Sect. 3.2.

3.2 The Asimov data set and the variance of μ̂

Some of the formulae given require the standard deviation
σ of μ̂, which is assumed to follow a Gaussian distribution
with a mean of μ′. Below we show two ways of estimating
σ , both of which are closely related to a special, artificial
data set that we call the “Asimov data set”.

We define the Asimov data set such that when one uses it
to evaluate the estimators for all parameters, one obtains the
true parameter values. Consider the likelihood function for
the generic analysis given by (6). To simplify the notation in
this section we define

νi = μ′si + bi. (22)

Further let θ0 = μ represent the strength parameter, so that
here θi can stand for any of the parameters. The ML esti-
mators for the parameters can be found by setting the deriv-
atives of lnL with respect to all of the parameters equal to
zero:

∂ lnL

∂θj

=
N∑

i=1

(
ni

νi

− 1

)
∂νi

∂θj

+
M∑
i=1

(
mi

ui

− 1

)
∂ui

∂θj

= 0. (23)

This condition holds if the Asimov data, ni,A and mi,A, are
equal to their expectation values:

ni,A = E[ni] = νi = μ′si(θ) + bi(θ), (24)

mi,A = E[mi] = ui(θ). (25)

Here the parameter values represent those implied by the
assumed distribution of the data. In practice, these are the
values that would be estimated from the Monte Carlo model
using a very large data sample.

We have not proved that the Asimov data set as defined
above always exists, and there may be pathological cases
where it does not. This issue is not expected to be relevant
in practice, and indeed for an analysis of the binned type
outlined above, the Asimov data set can always be found
using the expectation values as in (24) and (25). Note also
that an unbinned likelihood can always be interpreted as a
limiting case of a binned likelihood when the bin size goes
to zero, so (24) and (25) can be applied to such cases as well.
Furthermore the Asimov data set is not strictly unique, and
if this is the case then any one may be used.

We can use the Asimov data set to evaluate the “Asimov
likelihood” LA and the corresponding profile likelihood ra-



Eur. Phys. J. C (2011) 71: 1554 Page 7 of 19

tio λA. The use of non-integer values for the data is not a
problem as the factorial terms in the Poisson likelihood rep-
resent constants that cancel when forming the likelihood ra-
tio, and thus can be dropped. One finds

λA(μ) = LA(μ,
ˆ̂
θ)

LA(μ̂, θ̂)
= LA(μ,

ˆ̂
θ)

LA(μ′, θ)
, (26)

where the final equality above exploits the fact that the esti-
mators for the parameters are equal to their hypothesized
values when the likelihood is evaluated with the Asimov
data set.

A standard way to find σ is by estimating the matrix of
second derivatives of the log-likelihood function (cf. (18)) to
obtain the inverse covariance matrix V −1, inverting to find
V , and then extracting the element V00 corresponding to the
variance of μ̂. The second derivative of lnL is

∂2 lnL

∂θj ∂θk

=
N∑

i=1

[(
ni

νi

− 1

)
∂2νi

∂θj ∂θk

− ∂νi

∂θj

∂νi

∂θk

ni

ν2
i

]

+
M∑
i=1

[(
mi

ui

− 1

)
∂2ui

∂θj ∂θk

− ∂ui

∂θj

∂ui

∂θk

mi

u2
i

]
. (27)

From (27) one sees that the second derivative of lnL is linear
in the data values ni and mi . Thus its expectation value is
found simply by evaluating with the expectation values of
the data, which is the same as the Asimov data. One can
therefore obtain the inverse covariance matrix from

V −1
jk = −E

[
∂2 lnL

∂θj ∂θk

]
= −∂2 lnLA

∂θj ∂θk

=
N∑

i=1

∂νi

∂θj

∂νi

∂θk

1

νi

+
M∑
i=1

∂ui

∂θj

∂ui

∂θk

1

ui

. (28)

In practice one could, for example, evaluate the derivatives
of lnLA numerically, use this to find the inverse covariance
matrix, and then invert and extract the variance of μ̂. One
can see directly from (28) that this variance depends on the
parameter values assumed for the Asimov data set, in par-
ticular on the assumed strength parameter μ′, which enters
via (22).

Another method for estimating σ (denoted σA in this sec-
tion to distinguish it from the approach above based on the
second derivatives of lnL) is to find the value that is nec-
essary to recover the known properties of −λA(μ). Because
the Asimov data set corresponding to a strength μ′ gives
μ̂ = μ′, from (17) one finds

−2 lnλA(μ) ≈ (μ − μ′)2

σ 2
= Λ. (29)

That is, from the Asimov data set one obtains an estimate
of the noncentrality parameter Λ that characterizes the dis-
tribution f (qμ|μ′). Equivalently, one can use (29) to obtain
the variance σ 2 which characterizes the distribution of μ̂,
namely,

σ 2
A = (μ − μ′)2

qμ,A
, (30)

where qμ,A = −2 lnλA(μ). For the important case where
one wants to find the median exclusion significance for the
hypothesis μ assuming that there is no signal, then one has
μ′ = 0 and therefore

σ 2
A = μ2

qμ,A
, (31)

and for the modified statistic q̃μ the analogous relation
holds. For the case of discovery where one tests μ = 0 one
has

σ 2
A = μ′2

q0,A
. (32)

The two methods for obtaining σ and Λ—from the Fisher
information matrix or from qμ,A—are not identical, but
were found to provide similar results in examples of prac-
tical interest. In several cases that we considered, the distri-
bution based on σA provided a better approximation to the
true sampling distribution than the standard approach based
on the Fisher information matrix, leading to the conjecture
that it may effectively incorporate some higher-order terms
in (17).

This can be understood qualitatively by noting that un-
der assumption of the Wald approximation, the test statistics
q0, qμ and q̃μ are monotonically related to μ̂, and there-
fore their median values can be found directly by using the
median of μ̂, which is μ′. But monotonicity is a weaker
condition than the full Wald approximation. That is, even
if higher-order terms are present in (17), they will not al-
ter the distribution’s median as long as they do not break
the monotonicity of the relation between the test statistic
and μ̂. If one uses σA one obtains distributions with medi-
ans given by the corresponding Asimov values, q0,A or qμ,A,
and these values will be correct to the extent that monotonic-
ity holds.

3.3 Distribution of tμ

Consider first using the statistic tμ = −2 lnλ(μ) of Sect. 2.1
as the basis of the statistical test of a hypothesized value
of μ. This could be a test of μ = 0 for purposes of estab-
lishing existence of a signal process, or non-zero values of
μ for purposes of obtaining a confidence interval. To find
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the p-value pμ, we require the pdf f (tμ|μ), and to find the
median p-value assuming a different strength parameter we
will need f (tμ|μ′).

The pdf f (tμ|μ′) is given by (19), namely,

f (tμ|μ′) = 1

2
√

tμ

1√
2π

×
[

exp

(
−1

2

(√
tμ + μ − μ′

σ

)2)

+ exp

(
−1

2

(√
tμ − μ − μ′

σ

)2)]
. (33)

The special case μ = μ′ is simply a chi-square distribution
for one degree of freedom:

f (tμ|μ) = 1√
2π

1√
tμ

e−tμ/2. (34)

The cumulative distribution of tμ assuming μ′ is

F(tμ|μ′) = Φ

(√
tμ + μ − μ′

σ

)
+ Φ

(√
tμ − μ − μ′

σ

)
− 1,

(35)

where Φ is the cumulative distribution of the standard (zero
mean, unit variance) Gaussian. The special case μ = μ′ is
therefore

F(tμ|μ) = 2Φ
(√

tμ
) − 1. (36)

The p-value of a hypothesized value of μ for an observed
value tμ is therefore

pμ = 1 − F(tμ|μ) = 2
(
1 − Φ

(√
tμ

))
, (37)

and the corresponding significance is

Zμ = Φ−1(1 − pμ) = Φ−1(2Φ
(√

tμ
) − 1

)
. (38)

If the p-value is found below a specified threshold α (often
one takes α = 0.05), then the value of μ is said to be ex-
cluded at a confidence level (CL) of 1 − α. The set of points
not excluded form a confidence interval with CL = 1 − α.
Here the endpoints of the interval can be obtained simply
by setting pμ = α and solving for μ. Assuming the Wald
approximation (17) and using (37) one finds

μup/lo = μ̂ ± σΦ−1(1 − α/2). (39)

One subtlety with this formula is that σ itself depends at
some level on μ. In practice to find the upper and lower
limits one can simply solve numerically to find those values
of μ that satisfy pμ = α.

3.4 Distribution of t̃μ

Assuming the Wald approximation, the statistic t̃μ as defined
by (11) can be written

t̃μ =
⎧⎨
⎩

μ2

σ 2 − 2μμ̂

σ 2 , μ̂ < 0,

(μ−μ̂)2

σ 2 , μ̂ ≥ 0.
(40)

From this the pdf f (t̃μ|μ′) is found to be

f (t̃μ|μ′) = 1

2

1√
2π

1√
t̃μ

exp

[
−1

2

(√
t̃μ + μ − μ′

σ

)2]

+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

1√
2π

1√
t̃μ

exp[− 1
2 (

√
t̃μ − μ−μ′

σ
)2],

t̃μ ≤ μ2/σ 2,

1√
2π(2μ/σ)

exp[− 1
2

(t̃μ− μ2−2μμ′
σ2 )2

(2μ/σ)2 ],
t̃μ > μ2/σ 2.

(41)

The special case μ = μ′ is therefore

f (t̃μ|μ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√
2π

1√
t̃μ

e−t̃μ/2, t̃μ ≤ μ2/σ 2,

1
2

1√
2π

1√
t̃μ

e−t̃μ/2

+ 1√
2π(2μ/σ)

exp[− 1
2

(t̃μ+μ2/σ 2)2

(2μ/σ)2 ],
t̃μ > μ2/σ 2.

(42)

The corresponding cumulative distribution is

F(t̃μ|μ′) = Φ

(√
t̃μ + μ − μ′

σ

)

+
⎧⎨
⎩

Φ(

√
t̃μ − μ−μ′

σ
) − 1, t̃μ ≤ μ2/σ 2,

Φ(
t̃μ−(μ2−2μμ′)/σ 2

2μ/σ
) − 1, t̃μ > μ2/σ 2.

(43)

For μ = μ′ this is

F(t̃μ|μ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2Φ(

√
t̃μ) − 1,

t̃μ ≤ μ2/σ 2,

Φ(

√
t̃μ) + Φ(

t̃μ+μ2/σ 2

2μ/σ
) − 1,

t̃μ > μ2/σ 2.

(44)

The p-value of the hypothesized μ is given by one minus
the cumulative distribution, under assumption of the para-
meter μ,

pμ = 1 − F(t̃μ|μ). (45)

The corresponding significance is Zμ = Φ−1(1 − pμ).
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A confidence interval for μ at confidence level CL =
1 − α can be constructed from the set μ values for which
the p-value is not less than α. To find the endpoints of this
interval, one can set pμ from (45) equal to α and solve for μ.
In general this must be done numerically. In the large sample
limit, i.e., assuming the validity of the asymptotic approxi-
mations, these intervals correspond to the limits of Feldman
and Cousins [8] for the case where physical range of the pa-
rameter μ is μ ≥ 0.

3.5 Distribution of q0 (discovery)

Assuming the validity of the approximation (17), one has
−2 lnλ(0) = μ̂2/σ 2. From the definition (12) of q0, we
therefore have

q0 =
{
μ̂2/σ 2, μ̂ ≥ 0,

0, μ̂ < 0,
(46)

where μ̂ follows a Gaussian distribution with mean μ′ and
standard deviation σ . From this one can show that the pdf of
q0 has the form

f (q0|μ′) =
(

1 − Φ

(
μ′

σ

))
δ(q0)

+ 1

2

1√
2π

1√
q0

exp

[
−1

2

(√
q0 − μ′

σ

)2]
. (47)

For the special case of μ′ = 0, this reduces to

f (q0|0) = 1

2
δ(q0) + 1

2

1√
2π

1√
q0

e−q0/2. (48)

That is, one finds a mixture of a delta function at zero and a
chi-square distribution for one degree of freedom, with each
term having a weight of 1/2. This distribution is also found
in [9]. In the following we will refer to this mixture as a half
chi-square distribution or 1

2χ2
1 .

From (47) the corresponding cumulative distribution is
found to be

F(q0|μ′) = Φ

(√
q0 − μ′

σ

)
. (49)

The important special case μ′ = 0 is therefore simply

F(q0|0) = Φ
(√

q0
)
. (50)

The p-value of the μ = 0 hypothesis (see (13)) is

p0 = 1 − F(q0|0), (51)

and therefore using (1) for the significance one obtains the
simple formula

Z0 = Φ−1(1 − p0) = √
q0. (52)

3.6 Distribution of qμ (upper limits)

Assuming the validity of the Wald approximation, we can
write the test statistic used for upper limits, (14) as

qμ =
{

(μ−μ̂)2

σ 2 , μ̂ < μ,

0, μ̂ > μ,
(53)

where μ̂ as before follows a Gaussian centred about μ′ with
a standard deviation σ .

The pdf f (qμ|μ′) is found to be

f (qμ|μ′) = Φ

(
μ′ − μ

σ

)
δ(qμ)

+ 1

2

1√
2π

1√
qμ

exp

[
−1

2

(√
qμ − μ − μ′

σ

)2]
,

(54)

so that the special case μ = μ′ is a half-chi-square distribu-
tion:

f (qμ|μ) = 1

2
δ(qμ) + 1

2

1√
2π

1√
qμ

e−qμ/2. (55)

The cumulative distribution is

F(qμ|μ′) = Φ

(√
qμ − μ − μ′

σ

)
, (56)

and the corresponding special case μ′ = μ is thus the same
as what was found for q0, namely,

F(qμ|μ) = Φ
(√

qμ

)
. (57)

The p-value of the hypothesized μ is

pμ = 1 − F(qμ|μ) = 1 − Φ
(√

qμ

)
(58)

and therefore the corresponding significance is

Zμ = Φ−1(1 − pμ) = √
qμ. (59)

As with the statistic tμ above, if the p-value is found be-
low a specified threshold α (often one takes α = 0.05), then
the value of μ is said to be excluded at a confidence level
(CL) of 1 − α. The upper limit on μ is the largest μ with
pμ ≤ α. Here this can be obtained simply by setting pμ = α

and solving for μ. Using (53) and (58) one finds

μup = μ̂ + σΦ−1(1 − α). (60)

For example, α = 0.05 gives Φ−1(1 − α) = 1.64. Also as
noted above, σ depends in general on the hypothesized μ.
Thus in practice one may find the upper limit numerically as
the value of μ for which pμ = α.
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3.7 Distribution of q̃μ (upper limits)

Using the alternative statistic q̃μ defined by (16) and assum-
ing the Wald approximation we find

q̃μ =

⎧⎪⎪⎨
⎪⎪⎩

μ2

σ 2 − 2μμ̂

σ 2 , μ̂ < 0,

(μ−μ̂)2

σ 2 , 0 ≤ μ̂ ≤ μ,

0, μ̂ > μ.

(61)

The pdf f (q̃μ|μ′) is found to be

f (q̃μ|μ′) = Φ

(
μ′ − μ

σ

)
δ(q̃μ)

+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

1√
2π

1√
q̃μ

exp[− 1
2 (

√
q̃μ − μ−μ′

σ
)2],

0 < q̃μ ≤ μ2/σ 2,

1√
2π(2μ/σ)

exp[− 1
2

(q̃μ−(μ2−2μμ′)/σ 2)2

(2μ/σ)2 ],
q̃μ > μ2/σ 2.

(62)

The special case μ = μ′ is therefore

f (q̃μ|μ) = 1

2
δ(q̃μ) +

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

1√
2π

1√
q̃μ

e−q̃μ/2,

0 < q̃μ ≤ μ2/σ 2,

1√
2π(2μ/σ)

exp[− 1
2

(q̃μ+μ2/σ 2)2

(2μ/σ)2 ],
q̃μ > μ2/σ 2.

(63)

The corresponding cumulative distribution is

F(q̃μ|μ′) =
⎧⎨
⎩

Φ(
√

q̃μ − μ−μ′
σ

), 0 < q̃μ ≤ μ2/σ 2,

Φ(
q̃μ−(μ2−2μμ′)/σ 2

2μ/σ
), q̃μ > μ2/σ 2.

(64)

The special case μ = μ′ is

F(q̃μ|μ) =
⎧⎨
⎩

Φ(
√

q̃μ), 0 < q̃μ ≤ μ2/σ 2,

Φ(
q̃μ+μ2/σ 2

2μ/σ
), q̃μ > μ2/σ 2.

(65)

The p-value of the hypothesized μ is as before given by one
minus the cumulative distribution,

pμ = 1 − F(q̃μ|μ), (66)

and therefore the corresponding significance is

Zμ =
⎧⎨
⎩

√
q̃μ, 0 < q̃μ ≤ μ2/σ 2,

q̃μ+μ2/σ 2

2μ/σ
, q̃μ > μ2/σ 2.

(67)

As when using qμ, the upper limit on μ at confidence
level 1 − α is found by setting pμ = α and solving for μ,
which reduces to the same result as found when using qμ,
namely,

μup = μ̂ + σΦ−1(1 − α). (68)

That is, to the extent that the Wald approximation holds, the
two statistics qμ and q̃μ lead to identical upper limits.

3.8 Distribution of −2 ln(Ls+b/Lb)

Many analyses carried out at the Tevatron Collider (e.g.,
[12]) involving searches for a new signal process have been
based on the statistic

q = −2 ln
Ls+b

Lb

, (69)

where Ls+b is the likelihood of the nominal signal model
and Lb is that of the background-only hypothesis. That is,
the s+b corresponds to having the strength parameter μ = 1
and Lb refers to μ = 0. The statistic q can therefore be writ-
ten

q = −2 ln
L(μ = 1,

ˆ̂
θ(1))

L(μ = 0,
ˆ̂
θ(0))

= −2 lnλ(1) + 2 lnλ(0). (70)

Assuming the validity of the Wald approximation (17),
q is given by

q = (μ̂ − 1)2

σ 2
− μ̂2

σ 2
= 1 − 2μ̂

σ 2
, (71)

where as previously σ 2 is the variance of μ̂. As μ̂ follows a
Gaussian distribution, the distribution of q is also seen to be
Gaussian, with a mean value of

E[q] = 1 − 2μ

σ 2
(72)

and a variance of

V [q] = 4

σ 2
. (73)

That is, the standard deviation of q is σq = 2/σ , where
the standard deviation of μ̂, σ , can be estimated, e.g., us-
ing the second derivatives of the log-likelihood function
as described in Sect. 3.1 or with the methods discussed in
Sect. 3.2. Recall that in general σ depends on the hypothe-
sized value of μ; here we will refer to these as σb and σs+b

for the μ = 0 and μ = 1 hypotheses, respectively.
From (72) one sees that for the s + b hypothesis (μ = 1)

the values of q tend to be lower, and for the b hypothesis
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(μ = 0) they are higher. Therefore we can find the p-values
for the two hypothesis from

ps+b =
∫ ∞

qobs

f (q|s + b)dq = 1 − Φ

(
qobs + 1/σs+b

2/σs+b

)
,

(74)

pb =
∫ qobs

−∞
f (q|b)dq = Φ

(
qobs − 1/σb

2/σb

)
, (75)

where we have used (72) and (73) for the mean and variance
of q under the b and s + b hypotheses.

The p-values from (74) and (75) incorporate the effects
of systematic uncertainties to the extent that these are con-
nected to the nuisance parameters θ . In analyses done at the
Tevatron such as in [12], these effects are incorporated into
the distribution of q in a different but largely equivalent way.
There, usually one treats the control measurements that con-
strain the nuisance parameters as fixed, and to determine the
distribution of q one only generates the main search mea-
surement (i.e., what corresponds in our generic analysis to
the histogram n). The effects of the systematic uncertainties
are taken into account by using the control measurements as
the basis of a Bayesian prior density π(θ), and the distri-
bution of q is computed under assumption of the Bayesian
model average

f (q) =
∫

f (q|θ)π(θ) dθ . (76)

The prior pdf π(θ) used in (76) would be obtained from
some measurements characterized by a likelihood function
Lθ (θ), and then used to find the prior π(θ) using Bayes’
theorem,

π(θ) ∝ Lθ (θ)π0(θ). (77)

Here π0(θ) is the initial prior for θ that reflected one’s
knowledge before carrying out the control measurements. In
many cases this is simply take as a constant, in which case
π(θ) is simply proportional to Lθ (θ).

In the approach of this paper, however, all measurements
are regarded as part of the data, including control measure-
ments that constrain nuisance parameters. That is, here to
generate a data set by MC means, for a given assumed
point in the model’s parameter space, one simulates both
the control measurements and the main measurement. Al-
though this is done for a specific value of θ , in the asymp-
totic limit the distributions required for computing the p-
values (74) and (75) are only weakly dependent on θ to the
extent that this can affect the standard deviation σq . By con-
trast, in the Tevatron approach one generates only the main
measurement with data distributed according to the averaged
model (76). In the case where the nuisance parameters are
constrained by Gaussian distributed estimates and the ini-
tial prior π0(θ) is taken to be constant, the two methods are
essentially equivalent.

Assuming the Wald approximation holds, the statistic q

as well as q0 from (12), qμ from (14) and q̃μ from (16) are
all monotonic functions of μ̂, and therefore all are equivalent
to μ̂ in terms of yielding the same statistical test. If there are
no nuisance parameters, then the Neyman–Pearson lemma
(see, e.g., [7]) states that the likelihood ratio Ls+b/Lb (or
equivalently q) is an optimal test statistic in the sense that
it gives the maximum power for a test of the background-
only hypothesis with respect to the alternative of signal plus
background (and vice versa). But if the Wald approxima-
tion holds, then q0 and qμ lead to equivalent tests and are
therefore also optimal in the Neyman–Pearson sense. If the
nuisance parameters are well constrained by control mea-
surements, then one expects this equivalence to remain ap-
proximately true.

Finally, note that in many analyses carried out at the
Tevatron, hypothesized signal models are excluded based
not on whether the p-value ps+b from (74) is less than a
given threshold α, but rather the ratio is compared to α.
We do not consider this final step here; it is discussed in,
e.g., [14, 15].

4 Experimental sensitivity

To characterize the sensitivity of an experiment, one is inter-
ested not in the significance obtained from a single data set,
but rather in the expected (more precisely, median) signifi-
cance with which one would be able to reject different val-
ues of μ. Specifically, for the case of discovery one would
like to know the median, under the assumption of the nom-
inal signal model (μ = 1), with which one would reject the
background-only (μ = 0) hypothesis. And for the case of
setting exclusion limits the sensitivity is characterized by
the median significance, assuming data generated using the
μ = 0 hypothesis, with which one rejects a nonzero value of
μ (usually μ = 1 is of greatest interest).

The sensitivity of an experiment is illustrated in Fig. 2,
which shows the pdf for qμ assuming both a strength para-
meter μ and also assuming a different value μ′. The distribu-
tion f (qμ|μ′) is shifted to higher value of qμ, corresponding
on average to lower p-values. The sensitivity of an experi-
ment can be characterized by giving the p-value correspond-
ing to the median qμ assuming the alternative value μ′. As
the p-value is a monotonic function of qμ, this is equal to
the median p-value assuming μ′.

In the rest of this section we describe the ingredients
needed to determine the experimental sensitivity (median
discovery or exclusion significance). In Sect. 3.2 we intro-
duced the Asimov data set, in which all statistical fluctua-
tions are suppressed. This will lead directly to estimates of
the experimental sensitivity (Sect. 4.1) as well as providing
an alternative estimate of the standard deviation σ of the es-
timator μ̂. In Sect. 4.2 we indicate how the procedure can be
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Fig. 2 Illustration of the p-value corresponding to the median of qμ

assuming a strength parameter μ′ (see text)

extended to the case where several search channels are com-
bined, and in Sect. 4.3 we describe how to give statistical
error bands for the sensitivity.

4.1 The median significance from Asimov values of the
test statistic

By using the Asimov data set one can easily obtain the me-
dian values of q0, qμ and q̃μ, and these lead to simple ex-
pressions for the corresponding median significance. From
(52), (59) and (67) one sees that the significance Z is a
monotonic function of q , and therefore the median Z is sim-
ply given by the corresponding function of the median of q ,
which is approximated by its Asimov value. For discovery
using q0 one wants the median discovery significance as-
suming a strength parameter μ′ and for upper limits one is
particularly interested in the median exclusion significance
assuming μ′ = 0, med[Zμ|0]. For these one obtains

med[Z0|μ′] = √
q0,A, (78)

med[Zμ|0] = √
qμ,A. (79)

When using q̃μ for establishing upper limits, the gen-
eral expression for the exclusion significance Zμ is some-
what more complicated depending on μ′, but is in any case
found by substituting the appropriate values of q̃μ,A and σA

into (67). For the usual case where one wants the median
significance for μ assuming data distributed according to the
background-only hypothesis (μ′ = 0), (67) reduces in fact to
a relation of the same form as (59), and therefore one finds

med[Zμ|0] =
√

q̃μ,A. (80)

4.2 Combining multiple channels

In many analyses, there can be several search channels
which need to be combined. For each channel i there is a
likelihood function Li(μ, θ i ), where θ i represents the set of

nuisance parameters for the ith channel, some of which may
be common between channels. Here the strength parameter
μ is assumed to be the same for all channels. If the channels
are statistically independent, as can usually be arranged, the
full likelihood function is given by the product over all of
the channels,

L(μ, θ) =
∏
i

Li(μ, θ i ), (81)

where θ represents the complete set of all nuisance parame-
ters. The profile likelihood ratio λ(μ) is therefore

λ(μ) =
∏

i Li(μ,
ˆ̂
θ i )∏

i Li(μ̂, θ̂ i )
. (82)

Because the Asimov data contain no statistical fluctua-
tions, one has μ̂ = μ′ for all channels. Furthermore any
common components of θ i are the same for all channels.
Therefore when using the Asimov data corresponding to a
strength parameter μ′ one finds

λA(μ) =
∏

i Li(μ,
ˆ̂
θ)∏

i Li(μ′, θ)
=

∏
i

λA,i (μ), (83)

where λA,i (μ) is the profile likelihood ratio for the ith chan-
nel alone.

Because of this, it is possible to determine the values of
the profile likelihood ratio entering into (83) separately for
each channel, which simplifies greatly the task of estimating
the median significance that would result from the full com-
bination. It should be emphasized, however, that to find the
discovery significance or exclusion limits determined from
real data, one needs to construct the full likelihood function
containing a single parameter μ, and this must be used in a
global fit to find the profile likelihood ratio.

4.3 Expected statistical variation (error bands)

By using the Asimov data set we can find the median, as-
suming some strength parameter μ′ of the significance for
rejecting a hypothesized value μ. Even if the hypothesized
value μ′ is correct, the actual data will contain statistical
fluctuations and thus the observed significance is not in gen-
eral equal to the median.

For example, if the signal is in fact absent but the number
of background events fluctuates upward, then the observed
upper limit on the parameter μ will be weaker than the me-
dian assuming background only. It is useful to know by how
much the significance is expected to vary, given the expected
fluctuations in the data. As we have formulae for all of the
relevant sampling distributions, we can also predict how the
significance is expected to vary under assumption of a given
signal strength.
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It is convenient to calculate error bands for the median
significance corresponding to the ±Nσ variation of μ̂. As μ̂

is Gaussian distributed, these error bands on the significance
are simply the quantiles that map onto the variation of μ̂ of
±Nσ about μ′.

For the case of discovery, i.e., a test of μ = 0, one has
from (46) and (52) that the significance Z0 is

Z0 =
{

μ̂/σ, μ̂ ≥ 0,

0, μ̂ < 0.
(84)

Furthermore the median significance is found from (78), so
the significance values corresponding to μ′ ± Nσ are there-
fore

Z0(μ
′ + Nσ) = med[Z|μ′] + N, (85)

Z0(μ
′ − Nσ) = max

[
med[Z|μ′] − N,0

]
. (86)

For the case of exclusion, when using both the statistic qμ

as well as q̃μ one found the same expression for the upper
limit at a confidence level of 1 − α, namely, (60). Therefore
the median upper limit assuming a vstrength parameter μ′ is
found simply by substituting this for μ̂, and the ±Nσ error
bands are found similarly by substituting the corresponding
values of μ′ ± Nσ . That is, the median upper limit is

med[μup|μ′] = μ′ + σΦ−1(1 − α), (87)

and the ±Nσ error band is given by

bandNσ = μ′ + σ
(
Φ−1(1 − α) ± N

)
. (88)

The standard deviation σ of μ̂ can be obtained from the Asi-
mov value of the test statistic qμ (or q̃μ) using (30).

5 Examples

In this section we describe two examples, both of which are
special cases of the generic analysis described in Sect. 2.
Here one has a histogram n = (n1, . . . , nN) for the main
measurement where signal events could be present and one
may have another histogram m = (m1, . . . ,mM) as a control
measurement, which helps constrain the nuisance parame-
ters. In Sect. 5.1 we treat the simple case where each of these
two measurements consists of a single Poisson distributed
value, i.e., the histograms each have a single bin. We refer
to this as a “counting experiment”. In Sect. 5.2 we consider
multiple bins for the main histogram, but without a control
histogram; here the measured shape of the main histogram
on either side of the signal peak is sufficient to constrain the
background. We refer to this as a “shape analysis”.

5.1 Counting experiment

Consider an experiment where one observes a number of
events n, assumed to follow a Poisson distribution with an
expectation value E[n] = μs + b. Here s represents the
mean number of events from a signal model, which we take
to be a known value; b is the expected number from back-
ground processes, and as usual μ is the strength parameter.

We will treat b as a nuisance parameter whose value is
constrained by a control measurement. This measurement is
also a single Poisson distributed value m with mean value
E[m] = τb. That is, τb plays the role of the function u for
the single bin of the control histogram in (5). In a real analy-
sis, the value of the scale factor τ may have some uncertainty
and could be itself treated as a nuisance parameter, but in this
example we will take its value to be known. Related aspects
of this type of analysis have been discussed in the literature,
where it is sometimes referred to as the “on-off problem”
(see, e.g., [13, 16]).

The data thus consist of two measured values: n and m.
We have one parameter of interest, μ, and one nuisance pa-
rameter, b. The likelihood function for μ and b is the product
of two Poisson terms:

L(μ,b) = (μs + b)n

n! e−(μs+b) (τb)m

m! e−τb. (89)

To find the test statistics q0, qμ and q̃μ, we require the
ML estimators μ̂, b̂ as well as the conditional ML estimator
ˆ̂
b for a specified μ. These are found to be

μ̂ = n − m/τ

s
, (90)

b̂ = m

τ
, (91)

ˆ̂
b = n + m − (1 + τ)μs

2(1 + τ)

+
[
(n + m − (1 + τ)μs)2 + 4(1 + τ)mμs

4(1 + τ)2

]1/2

. (92)

Given measured values n and m, the estimators from
(90), (91) and (92) can be used in the likelihood function
(89) to find the values of the test statistics q0, qμ and q̃μ.
By generating data values n and m by Monte Carlo we can
compare the resulting distributions with the formulae from
Sect. 3.

The pdf f (q0|0), i.e., the distribution of q0 for under the
assumption of μ = 0, is shown in Fig. 3(a). The histograms
show the result from Monte Carlo simulation based on sev-
eral different values of the mean background b. The solid
curve shows the prediction of (48), which is independent of
the nuisance parameter b. The point at which one finds a sig-
nificant departure between the histogram and the asymptotic
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Fig. 3 (a) The pdf f (q0|0) for the counting experiment. The solid
curve shows f (q0|0) from (48) and the histograms are from Monte
Carlo simulation using different values of b (see text). (b) The distri-
butions f (q0|0) and f (q0|1) from both the asymptotic formulae and
Monte Carlo simulation based on s = 10, b = 10, τ = 1

formula occurs at increasingly large q0 for increasing b. For
b = 20 the agreement is already quite accurate past q0 = 25,
corresponding to a significance of Z = √

q0 = 5. Even for
b = 2 there is good agreement out to q0 ≈ 10.

Figure 3(b) shows distributions of q0 assuming a strength
parameter μ′ equal to 0 and 1. The histograms show the
Monte Carlo simulation of the corresponding distributions
using the parameters s = 10, b = 10, τ = 1. For the distribu-
tion f (q0|1) from (47), one requires the value of σ , the stan-
dard deviation of μ̂ assuming a strength parameter μ′ = 1.
Here this was determined from (32) using the Asimov value
q0,A, i.e., the value obtained from the Asimov data set with
n → μ′s + b and m → τb.

We can investigate the accuracy of the approximations
used by comparing the discovery significance for a given
observed value of q0 from the approximate formula with the
exact significance determined using a Monte Carlo calcula-
tion. Figure 4(a) shows the discovery significance that one
finds from q0 = 16. According to (52), this should give a
nominal significance of Z = √

q0 = 4, indicated in the fig-

Fig. 4 (a) The discovery significance Z0 obtained from Monte Carlo
simulation (points) corresponding to a nominal value Z0 = √

q0 = 4
(dashed line) as a function of the expected number of background
events b, in the counting analysis with a scale factor τ = 1. (b) The
median of q0 assuming data distributed according to the nominal sig-
nal hypothesis from Monte Carlo simulation for different values of s

and b (points) and the corresponding Asimov values (curves)

ure by the horizontal line. The points show the exact signif-
icance for different values of the expected number of back-
ground events b in the counting analysis with a scale factor
τ = 1. As can be seen, the approximation underestimates
the significance for very low b, but achieves an accuracy of
better than 10% for b greater than around 4. It slightly over-
estimates for b greater than around 5. This phenomenon can
be seen in the tail of f (q0|0) in Fig. 3(b), which uses b = 10.
The accuracy then rapidly improves for increasing b.

Figure 4(b) shows the median value of the statistic q0 as-
suming data distributed according to the nominal signal hy-
pothesis from Monte Carlo simulation (points) and the value
based on the Asimov data set as a function of b for different
values of s, using a scale factor τ = 1. One can see that the
Asimov data set leads to an excellent approximation to the
median, except at very low s and b.

Figure 5(a) shows the distribution of the test statistic q1

for s = 6, b = 9, τ = 1 for data corresponding to a strength
parameter μ′ = 1 and also μ′ = 0. The vertical lines indicate
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Fig. 5 (a) The pdfs f (q1|1) and f (q1|0) for the counting experiment.
The solid curves show the formulae from the text, and the histograms
are from Monte Carlo simulation using s = 6, b = 9, τ = 1. (b) The
same set of histograms with the alternative statistic q̃1. The oscillatory
structure evident in the histograms is a consequence of the discreteness
of the data. The vertical line indicates the Asimov value of the test
statistic corresponding to μ′ = 0

the Asimov values of q1 and q̃1 assuming a strength parame-
ter μ′ = 0. These lines correspond to estimates of the median
values of the test statistics assuming μ′ = 0. The areas under
the curves f (q1|1) and f (q̃1|1) to the right of this line give
the median p-values.

For the example described above we can also find the
distribution of the statistic q = −2 ln(Ls+b/Lb) as defined
in Sect. 3.8. Figure 6 shows the distributions of q for the hy-
pothesis of μ = 0 (background only) and μ = 1 (signal plus
background) for the model described above using b = 20,
s = 10 and τ = 1. The histograms are from Monte Carlo
simulation, and the solid curves are the predictions of the as-
ymptotic formulae given in Sect. 3.8. Also shown are the p-
values for the background-only and signal-plus-background
hypotheses corresponding to a possible observed value of
the statistic qobs.

Fig. 6 The distribution of the statistic q = −2 ln(Ls+b/Lb) under the
hypotheses of μ = 0 and μ = 1 (see text)

5.1.1 Counting experiment with known b

An important special case of the counting experiment above
is where the mean background b is known with negligible
uncertainty and can be treated as a constant. This would cor-
respond to having a very large value for the scale factor τ .

If we regard b as known, the data consist only of n and
thus the likelihood function is

L(μ) = (μs + b)n

n! e−(μs+b). (93)

The test statistic for discovery q0 can be written

q0 =
{−2 ln L(0)

L(μ̂)
, μ̂ ≥ 0,

0, μ̂ < 0,
(94)

where μ̂ = n − b. For sufficiently large b we can use the
asymptotic formula (52) for the significance,

Z0 = √
q0 =

⎧⎨
⎩

√
2(n ln n

b
+ b − n), μ̂ ≥ 0,

0, μ̂ < 0.
(95)

To approximate the median significance assuming the
nominal signal hypothesis (μ = 1) we replace n by the Asi-
mov value s + b to obtain

med[Z0|1] = √
q0,A =

√
2
(
(s + b) ln(1 + s/b) − s

)
. (96)

Expanding the logarithm in s/b one finds

med[Z0|1] = s√
b

(
1 + O(s/b)

)
. (97)

Although Z0 ≈ s/
√

b has been widely used for cases where
s + b is large, one sees here that this final approximation is
strictly valid only for s � b.
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Fig. 7 The median, assuming μ = 1, of the discovery significance Z0
for different values of s and b (see text)

Fig. 8 The background mass distribution for the shape analysis (see
text)

Median values, assuming μ = 1, of Z0 for different val-
ues of s and b are shown in Fig. 7. The solid curve shows
(96), the dashed curve gives the approximation s/

√
b, and

the points are the exact median values from Monte Carlo
simulation. The structure seen in the points is due to the dis-
crete nature of the data. One sees that (96) provides a much
better approximation to the true median than does s/

√
b in

regions where s/b cannot be regarded as small.

5.2 Shape analysis

As a second example we consider the case where one is
searching for a peak in an invariant mass distribution. The
main histogram n = (n1, . . . , nN) for background is shown
in Fig. 8, which is here taken to be a Rayleigh distribution.
The signal is modeled as a Gaussian of known width and
mass (position). In this example there is no subsidiary his-
togram (m1, . . . ,mM).

If, as is often the case, the position of the peak is not
known a priori, then one will test all masses in a given

Fig. 9 (Color online) The distributions f (qμ|0) (red) and f (qμ|μ)

(blue) from both the asymptotic formulae and Monte Carlo histograms
(see text)

range, and appearance of a signal-like peak anywhere could
lead to rejection of the background-only hypothesis. In such
an analysis, however, the discovery significance must take
into account the fact that a fluctuation could occur at any
mass within the range. This is often referred to as the “look-
elsewhere effect”, and is discussed further in [17].

In the example presented here, however, we will test all
values of the mass and μ using the statistic qμ for purposes
of setting an upper limit on the signal strength. Here, each
hypothesis of mass and signal strength is in effect tested in-
dividually, and thus the look-elsewhere effect does not come
into play.

We assume that the signal and background distributions
are known up to a scale factor. For the signal, this fac-
tor corresponds to the usual strength parameter μ; for the
background, we introduce an analogous factor θ . That is,
the mean value of the number of events in the ith bin is
E[ni] = μsi + bi , where μ is the signal strength parameter
and the si are taken as known. We assume that the back-
ground terms bi can be expressed as bi = θfb,i , where the
probability to find a background event in bin i, fb,i , is
known, and θ is a nuisance parameter that gives the total
expected number of background events. Therefore the like-
lihood function can be written

L(μ, θ) =
N∏

i=1

(μsi + θfb,i )
ni

ni ! e−(μsi+θfb,i ). (98)

For a given data set n = (n1, . . . , nN) one can evaluate
the likelihood (98) and from this determine any of the test
statistics discussed previously. Here we concentrate on the
statistic qμ used to set an upper limit on μ, and compare the
distribution f (qμ|μ′) from (47) with histograms generated
by Monte Carlo simulation. Figure 9 shows f (qμ|0) (red)
and f (qμ|μ) (blue).

The vertical line in Fig. 9 gives the median value of qμ

assuming a strength parameter μ′ = 0. The area to the right
of this line under the curve of f (qμ|μ) gives the p-value of
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Fig. 10 (Color online) The distributions f (qμ|0) (red) and f (qμ|μ)

(blue) as in Fig. 9 and the 15.87% quantile of f (qμ|0) (see text)

Fig. 11 Distribution of the upper limit on μ at 95% CL, assuming data
corresponding to the background-only hypothesis (see text)

the hypothesized μ, as shown shaded in green. The upper
limit on μ at a confidence level CL = 1−α is the value of μ

for which the p-value is pμ = α. Figure 9 shows the distrib-
utions for the value of μ that gave pμ = 0.05, corresponding
to the 95% CL upper limit.

In addition to reporting the median limit, one would like
to know how much it would vary for given statistical fluctu-
ations in the data. This is illustrated in Fig. 10, which shows
the same distributions as in Fig. 9, but here the vertical line
indicates the 15.87% quantile of the distribution f (qμ|0),
corresponding to having μ̂ fluctuate downward one standard
deviation below its median.

By simulating the experiment many times with Monte
Carlo, we can obtain a histogram of the upper limits on μ

at 95% CL, as shown in Fig. 11. The ±1σ (green) and ±2σ

(yellow) error bands are obtained from the MC experiments.
The vertical lines indicate the error bands as estimated di-
rectly (without Monte Carlo simulation) using (87) and (88).
As can be seen from the plot, the agreement between the for-
mulae and MC predictions is excellent.

Figures 9 through 11 correspond to finding an upper limit
on μ for a specific value of the peak position (mass). In a

Fig. 12 (Color online) The median (central blue line) and error bands
(±1σ in green, ±2σ in yellow) for the 95% CL upper limit on the
strength parameter μ (see text)

search for a signal of unknown mass, the procedure would
be repeated for all masses (in practice in small steps). Fig-
ure 12 shows the median upper limit at 95% CL as a func-
tion of mass. The median (central blue line) and error bands
(±1σ in green, ±2σ in yellow) are obtained using (87) and
(88). The points and connecting curve correspond to the up-
per limit from a single arbitrary Monte Carlo data set, gen-
erated according to the background-only hypothesis. As can
be seen, most of the plots lie as expected within the ±1σ

error band.

6 Implementation in RooStats

Many of the results presented above are implemented or
are being implemented in the RooStats framework [18],
which is a C++ class library based on the ROOT [19] and
RooFit [20] packages. The tools in RooStats can be used
to represent arbitrary probability density functions that in-
herit from RooAbsPdf, the abstract interfaces for proba-
bility density functions provided by RooFit.

The framework provides an interface with minimization
packages such as Minuit [21]. This allows one to obtain
the estimators required in the profile likelihood ratio: μ̂, θ̂ ,

and ˆ̂
θ . The Asimov dataset defined in (24) can be determined

for a probability density function by specifying the Ex-
pectedData() command argument in a call to the gen-
erateBinnedmethod. The Asimov data together with the
standard HESSE covariance matrix provided by Minuit
makes it is possible to determine the Fisher information ma-
trix shown in (28), and thus obtain the related quantities
such as the variance of μ̂ and the noncentrality parameter
Λ, which enter into the formulae for a number of the distri-
butions of the test statistics presented above.

The distributions of the various test statistics and the re-
lated formulae for p-values, sensitivities and confidence in-
tervals as given in Sects. 2, 3 and 4 are being incorporated
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as well. RooStats currently includes the test statistics tμ,
t̃μ, q0, and q , qμ, and q̃μ as concrete implementations of
the TestStatistic interface. Together with the Asimov
data, this provides the ability to calculate the alternative esti-
mate, σA, for the variance of μ̂ shown in (30). The noncen-
tral chi-square distribution is being incorporated into both
RooStats and ROOT’s mathematics libraries for more gen-
eral use. The various transformations of the noncentral chi-
square used to obtain (33), (41), (47), (54), and (62) are also
in development in the form of concrete implementations of
the SamplingDistribution interface. Together, these
new classes will allow one to reproduce the examples shown
in Sect. 5 and to extend them to an arbitrary model within
the RooStats framework.

7 Conclusions

Statistical tests are described for use in planning and car-
rying out a search for new phenomena. The formalism al-
lows for the treatment of systematic uncertainties through
use of the profile likelihood ratio. Here a systematic uncer-
tainty is included to the extent that the model includes a suf-
ficient number of nuisance parameters so that for at least
some point in its parameter space it can be regarded as true.

Approximate formulae are given for the distributions of
test statistics used to characterize the level of agreement be-
tween the data and the hypothesis being tested, as well as
the related expressions for p-values and significances. The
statistics are based on the profile likelihood ratio and can
be used for a two-sided test of a strength parameter μ (tμ),
a one-sided test for discovery (q0), and a one-sided test for
finding an upper limit (qμ and q̃μ). The statistic t̃μ can be
used to obtain a “unified” confidence interval, in the sense
that it is one- or two-sided depending on the data outcome.

Formulae are also given that allow one to characterize
the sensitivity of a planned experiment through the median
significance of a given hypothesis under assumption of a dif-
ferent one, e.g., median significance with which one would
reject the background-only hypothesis under assumption of
a certain signal model. These exploit the use of an artificial
data set, the “Asimov” data set, defined so as to make esti-
mators for all parameters equal to their true values. Methods
for finding the expected statistical variation in the sensitivity
(error bands) are also given.

These tools free one from the need to carry out lengthy
Monte Carlo calculations, which in the case of a discovery at
5σ significance could require simulation of around 108 mea-
surements. They are particularly useful in cases where one
needs to estimate experimental sensitivities for many points
in a multidimensional parameter space (e.g., for models such
as supersymmetry), which would require generating a large
MC sample for each point.

The approximations used are valid in the limit of a large
data sample. Tests with Monte Carlo simulation indicate,
however, that the formulae are in fact reasonably accurate
even for fairly small samples, and thus can have a wide
range of practical applicability. For very small samples and
in cases where high accuracy is crucial, one is always free to
validate the approximations with Monte Carlo simulation.
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