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Abstract. We consider a two-point boundary value problem associated with an
ordinary differential equation defined over the unit interval and containing the two
parameters A and p. If for each real p. we denote the zzith eigenvalue of our system by
Am(/j.), then it is known that Am(/j.) is real analytic in — co <zj.<go. In this paper we
concern ourselves with the asymptotic development of Am(/¿) as p. —> co, and indeed
obtain such a development to an accuracy determined by the coefficients of our
differential equation. With suitable conditions on the coefficients of our differential
equation, the asymptotic formula for ¡\m(p) may be further developed using the
methods of this paper. These results may be modified so as to apply to A„,(/j.) as
p.-*— co if the coefficients of our differential equation are also suitably modified.

1. Introduction.    Here we shall consider the linear system in the two parameters
A and p,

(1.1) y"(x) + (X + paix)+q(x))y(x) = 0,       Oáxíl,    ' = dfdx,
yiAA) cos a— y'(0) sin a = 0,       0 á a < it,

(    > XI) cos /3-/(l) sin ß = 0,       0 < ß $ Tf,

and for the moment we shall assume that both a(x) and q(x) are real-valued,
continuous functions in [0, 1]. Then for each real p., the eigenvalues of (1.1-2) are
real and form a countably infinite set denoted by {A„(/j.)}™=0, with A0(ju.) < XAA) < • • •,
limn_co Xn(p) = co, and where an eigenfunction corresponding to An(/2,) has precisely
«zeros in (0, 1). For « = 0, 1,..., A„(zx)isa real analytic function of pi, —co<p<co;
so that in the real (p, A)-plane the sets {(p., An(zx)), — oo </¿<oo}, « = 0, 1,..., form
a countably infinite number of disjoint analytic curves called the eigenvalue curves.
A great deal of literature is devoted to the study of these eigenvalue curves, and we
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2 M. FAIERMAN [June

refer to [1], [2], [3, Chapter 3], [4, Chapter 2], [5] and the references listed therein
for further information.

We shall from now on in this paper assume that a(x) e C4[0, 1] and attains its
absolute maximum in [0, 1] at only a finite number of points, and at each such
point a'(x) — 0, a"(x) < 0. Then in the sequel we shall always assume that p. is real and
concern ourselves with the asymptotic behaviour of the eigenvalue curves as p, -*■ co.
Indeed, if we now agree to fix the integer mäO and put ^f = sup0SxS1 a(x), then it
is the purpose of this paper to prove that there are numbers {AUm}f=1 such that

(1.3) Am(/X)  =  -M+M1,2^l.m+/>1,^2,m + ^3,m + 0(l)      HS p. -> CO.

We shall also give simple methods for determining the Ai¡m, 7= 1, 2, 3.
Before proceeding, we remark that if we assume a(x) e CJO, 1] and attains its

absolute minimum in [0, 1] at only a finite number of points, and at each such
point a'(x) = 0, a"(x)>0, then the asymptotic development of Am(zx) as p.-*-— oo
can be obtained directly once the validity of (1.3) has been established. For we
need only consider the analogue of (1.3) for the system

y"(x) + (\ + rb(x)+q(x))y(x) = 0,        0 á x S 1,

and (1.2), where b(x)= —a(x), 0^x^ 1, and t= — p..
Now in order to explain our problem in more detail, we first point out the

motivation behind this paper. In his investigation of the asymptotic behaviour of
the eigenvalues associated with the generalized Hill equation, Strutt [5, §13]
reduces the problem of the asymptotic integration of this equation in an interval
containing two transition points in its interior, to the problem of the asymptotic
integration of this equation in two subintervals, with each containing precisely one
simple transition point in its interior (see [6], [7]) and then matching his solutions
in value at the meet and at the two remaining end points of the subintervals. Since
in the limit the two transition points coalesce, a little reflection soon shows that the
method employed by Strutt is not valid.

To show the connection between the problem considered here and the work of
Strutt, we make use of the fact (see §2) that with m as above and p. > 0, Am(p.)
= (Am(/x) + p.A)lp/12 is positive and bounded for all p. sufficiently large. Hence if
0</z<l and a(h) = A, then for each p. sufficiently large the equation A— a(x)
= p,~ll2Am(pA has in a neighbourhood of h precisely two solutions (transition
points) which coalesce to h as p. -> oo. If h = 0 or h = 1, then of course we have only
one transition point. Hence if we now refer to (1.1) with X = Xm(a) as (l.l.m), then
we see that an investigation of the asymptotic behaviour of Am(/x) as p. -*■ oo will
in some way involve the asymptotic integration of (l.l.m) in intervals containing
transition points of the kind discussed by Strutt.

This last remark is best elucidated by a description of the procedure followed in
this paper. If a(h) = A and 0<h< 1, then we let h be the midpoint of a suitably
chosen closed subinterval of [0, 1] whose length tends to zero as p. -*■ oo and such
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1972] TWO-PARAMETER ORDINARY DIFFERENTIAL EQUATIONS 3

that for all p sufficiently large the two transition points associated with h (as
explained above) are contained in the interior of this subinterval. If a(h) = A and
/¡ = 0 or h=l, then of course we let h be the fixed end point of such a subinterval.
For p large, we add to the points of the partition of [0, 1], induced by the end
points of the above subintervals, the points x = 0 and ,v= 1, if they are not already
included; and if a(x) = A in more than one point, and if hx and h2 are two consecu-
tive points for which a(/¡i) = a(h2) —A, then we also add to the points of our partition
the point (h1 + h2)¡2. Hence for each large p we arrive at a final partition of [0, 1]
which induces a subdivision of this interval into a finite number (independent of/n)
of closed, nonoverlapping subintervals whose end points are consecutive points of
our partition, and with the property that each such subinterval contains precisely
two, one, or no transition points.

Now, unlike Strutt, we strive for uniform asymptotic formulae for the solutions
of (1.1.m) as well as their first derivatives in each of the aforementioned sub-
intervals. This is accomplished by using the usual techniques employed in the
asymptotic integration of differential equations in intervals of the kind described
above. That is to say, in an interval containing transition points we approximate
il.l.m) by means of Weber's equation, express a solution in terms of a parabolic
cylinder function and a correcting term, establish the integral equation for this
correcting term by means of the variation-of-constants method, and from this
integral equation obtain estimates for our correction; similarly for an interval not
containing transition points we proceed as above, but using the modified Bessel
equation and modified Bessel function in place of Weber's equation and parabolic
cylinder function, respectively. For further information we refer to [8], [9], [10], [11].
If for large p we now match our solutions in value and in value of the first derivative
at the meet of two adjacent subintervals, and consider a solution in the subinterval
containing x = 0 which satisfies the first statement of (1.2), and a solution in the
subinterval containing x=l which satisfies the second statement of (1.2), then we
arrive at a certain equation involving Am(p), which we shall call our main equation,
that enables us to verify (1.3).

As can be seen from our above remarks, no great difficulty is encountered in
arriving at our main equation, although the task is quite laborious. Similarly, by
arguing with our main equation, it is not difficult to show that there exist numbers
A¡,m, i= 1, 2, 3, such that Xm(pi) exhibits the asymptotic development given in (1.3).
Where the difficulties do arise is in determining the AUm. Before pointing out these
difficulties, we first wish to remark that the determination of A1¡m depends only
upon m and the value of a"(x) at each of the points in [0, 1] at which a(x) = A.
Now let aix) = A at precisely the finite set of points hr, r=l,.. .,p, p^l, 0^/zj
<h2< ■ ■ ■ <hp-¿l, and put br= —%xd2a(hr)ldx2, r= 1,...,/?. Ifp=\, or if p> 1
and if for i,j= I,..., p and iV/, (b¡/b,)112 is not the quotient of two odd integers,
then A1¡m can be readily determined by the standard technique of investigating the
asymptotic behaviour of an eigenfunction of (1.1-2) corresponding to Am(/n).
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4 M. FAIERMAN [June

Moreover, for these cases, no more than a knowledge of Ax,m is required for the
determination of A2.m and A3-m. However, if p> 1, and if for some pair (/,/), I4=j,
(b¡/bAllz is the quotient of two odd integers, then we are immediately faced with
certain difficulties. Firstly, the technique used above in determining Ax¡m is no
longer applicable. Secondly, a knowledge of A1¡m does not necessarily supply us
with all the information that is required to determine A2,m and A3¡m. Indeed to
elaborate on this second point, we shall show in the sequel that if hx > 0 and hp < 1,
then a knowledge of Ax_m always determines (1) a nonnegative integer p* not
exceeding (p— 1), (2) numbers wt, i = 0,.. .,p*, which are not necessarily distinct,
and (3) a set P(m) of (p*+ 1) consecutive nonnegative integers containing m, and
such that for each NeP(m), {Kip) + pA-p.ll2AXim} tends to precisely one element
of B as p. -> oo, where B is the subset of the reals whose elements are precisely the
w(. This shows that A2,m = 0; but if p*>0 and at least two of the w{ are distinct,
then in order to determine A3_m, we must first answer the question: how can we
distinguish between different eigenvalues as p. -> co?

We shall now give an outline of the work done in this paper, and in the process
show how the problems stated above have been resolved. In §2 we introduce
certain preliminary results and terminology. In §3 we consider the case where a(.x)
attains its absolute maximum in [0, 1] at precisely the point hx, where 0<h,< 1.
Then for large p. we construct a fundamental set of solutions for (l.l.m) in each of
the intervals 0^x^h,-H(pA, hx-H(p.)^x^hx + H(p.), and A,+#(/*)== x == 1,
where H(p.) = p.~3lie/(4bx)lli; and in'the manner explained above we obtain the
asymptotic development of each such solution and its first derivative at the end
points of its relevant interval.

In §4 we consider the case where a(x) = A at precisely the points hr, r= 1,...,/?,
^==1,0</71< ••• </ip<l; and for p. > 0 and br as before, we put

Vr(p.) = {( Am(p)l2(bry>2) - J},       r = 1,..., p.

Then using the results of §3, we establish our main equation, which is just (4.1) if
p=\, and (4.3) ifp> 1. In Theorem 4.1 we consider the case/?= 1; and since it is
known that limu^œ vx(p) = m, we then argue with (4.1) and the inverse function
theorem to determine the ALm. Assuming now that/7> 1, and using the fact that
the vr(p) are linearly related (see (4.2)) we then argue with (4.3) in Theorem 4.2 to
show that as p. -> oo, vr(pA tends to a finite limit, denoted by vr(co), r= 1,..., p, and
at least one such limit is an integer. Now from the definition of the vr(pA, it follows
that the (/Jr)1,2W°o) + i), r= 1, ...,p, are all equal and ^1,m = 2(/jr)1/2(vr(co) + i);
hence once the vr(oo) are determined, then so is Ax,m. In Theorem 4.3 we consider
the case where for /', /= 1,.. .,p and i^j, (btfb^112 is not the quotient of two odd
integers. For this case precisely one element of the set {i-r(oo)}?=1 is an integer, as
can be seen from the linear relationship connecting the vr(oo). Hence we can deter-
mine the vr(oo) from the known properties of the real zeros of the parabolic cylinder
functions, since for arbitrarily large values of u the m zeros of an eigenfunction of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] TWO-PARAMETER ORDINARY DIFFERENTIAL EQUATIONS 5

(1.1-2) corresponding to Am(/n) which lie in the interval (0, 1) must all be arbitrarily
near the hr, and about each hr this eigenfunction may be approximated by a
parabolic cylinder function. Indeed in Theorem 4.3 we show how the vr(co) may be
determined by solving certain equations in integers. With the vr{co) determined,
and using the fact that only one such element is an integer, we then argue with
(4.3) and the inverse function theorem to determine A2,m and A3¡m.

For the remainder of §4 it is assumed that for at least one pair of integers (/',/),
i^j, ibijbjj112 is the quotient of two odd integers. Since now more than one element
of the set {vr(<x>)}?=i may be an integer, the technique used in Theorem 4.3 to deter-
mine the vr(oo) is no longer valid. In Theorem 4.4 we show how the iv(oo) may still
be determined. Here we replace aix) in (1.1) by a suitable function a(x, /), t>0,
chosen so as to ensure that for all t sufficiently small precisely one element of the
set {yr(oo, z*)}?=i lS an integer, where vr(co, t) is the analogue of vr(oo) for our new
system. Then arguing as in Theorem 4.3, we determine the >v(oo, t) for all t suffi-
ciently small. The zv(oo) are then determined from the vr(œ, /) by considering the
limiting process as / -> 0. Also in Theorem 4.4, as in Theorem 4.3, we show how the
vr(<x>) may be determined by solving certain equations in integers. With the 12,(00)
determined, we consider in Theorem 4.5 the case where only one such element is
an integer; here we argue with (4.3) as before to determine A2,m and A3¡m. In
Theorem 4.6 we state how A2,m and A3ttn are determined for the case where (p* + 1 )
elements of the set {vT(cxi)}f=1 are integers, and where l£p*£(p—l)', and the
remainder of §4 is taken up with the proof of this theorem.

Now in order to prove Theorem 4.6, we can no longer restrict ourselves to the
investigation of the asymptotic behaviour of just Xm(p). To see this, we introduce
the (//■* +1) numbers w¡, where M^M^á ■ • • any, which are completely deter-
mined by the rr(oc>), the d'a(hr)/dx', j=2, 3, 4, and the qiK), r= 1,.. .,p. If we
denote by B the subset of the reals whose elements are precisely the w¡, then we
show in Lemmas 4.1, 4.2, and the first part of Theorem 4.7, that there exists the
set P(m) of (/>*+ 1) consecutive nonnegative integers containing m, and such that
for each NeP(m), {XN(p.) + pA — pll2A1 >m} tends to precisely one element of B as
p -> 00. This shows that A2.m = 0, and we can also determine A3ttn if all the h>¡ are
equal ; but if at least two of the wt are distinct, then we cannot determine A3ym until
we have first shown how to distinguish between different eigenvalues. This is
precisely the problem that is taken up in Theorem 4.7; indeed if we denote the set
P(m) by {N-.+ßflo, then we assert in this theorem that M,(pL) = XNi + j(p,) + pA
— pll2A1-m = wj + o(l) as p^-co, y'=0,. A.,p*. To prove this theorem, we first
consider the case where the w¡ are all distinct, and establish asymptotic formulae
for the eigenfunctions corresponding to XN(pc), N e P(m). Then by utilizing the
orthogonal properties of the eigenfunctions, we show that the Mj(co) are all distinct,
where M,{co) = lim,,^ Mj(p),j=0,...,p*. Since M0(co)g M^cc)á • • • á Mp.{oo),
our theorem is proved for this case. If the wt are not all distinct, we replace q(x) in
(1.1) by a suitable function q(x, t), t>0, chosen so as to ensure that for all t suffi-
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6 M. FAIERMAN [June

ciently small, w0(t)<wx(t)< ■ ■ ■ <wp.(t), where w¡(t) is the analogue of w, for our
new system and lim^o wi(t)=wi, i = 0,.. .,/>*. If for each N eP(m) we denote by
K(p, t) the analogue of XN(p.) for our new system, then from above we see that for
7 = 0,.. .,p*, ANi + j(/j,, t) + p-A— p}l2Ax¡m = Wj(t)A-o(l) as p, -> oo for all / sufficiently
small. The proof of Theorem 4.7 is completed by considering the limiting process
as / -> 0.

In §5 we assume that a(x) = A at precisely the points h„ r = 0, 1,...,/?, where
p ä 0 and 0 = h0 < hx < ■ ■ ■ <hp<l. The case a = 0 is treated in subsection 5.1 and the
case a#0 in subsection 5.2. The arguments employed here are similar to those of §4.

In §6 we assume that a(x) = A at precisely the points h„ r = 0,..., (pA-1), where
p^O and 0 = ho<hx< ■ ■ ■ <hv+x = l. The case a = 0, ß = rr is treated in subsection
6.1 and the case a = 0, ß^/r in subsection 6.2; while the case a^O, ß + rr is treated
in subsection 6.3 and the case a=40,ß = ir in subsection 6.4. The arguments em-
ployed here are similar to those of §4.

Referring to (1.3), we wish now to state that essentially five different forms of
this equation appear in the analysis. In one form A2,m = 0 and A3_m does not depend
upon a nor ß; and this is always the case if a(0)<A and a(l)<,4. If a(0) = A and
a(l)<A, then another two forms may appear, one for the case a = 0 and another
for the case a # 0. Finally if a(0) = A and a( 1 ) = A, then two more forms may appear,
one for the case ß = ir and another for the case ßj^rr.

We wish also to state that (1.3) is valid as an asymptotic formula, that is to say,
with suitable conditions on the coefficients of the differential equation (1.1), we
may use the methods of this paper to further develop this formula. Indeed we assert
that Am(/x) can always be developed to an accuracy determined by the coefficients
of our differential equation. To see this, we first observe that the asymptotic
formulae for the solutions of (l.l.m) given in §3 may be further developed for
suitable a(x) and q(x). If for simplicity we now restrict ourselves to the discussion
of the case considered in §4, then this last remark implies that the expressions on
the left-hand side of (4.1) and (4.3) may be further developed for suitable a(x) and
q(x). Hence if p= 1, or if p> 1 and precisely one element of the set {vr(co)}f=1 is an
integer, then our assertion concerning XJp.) follows directly from an application
of the inverse function theorem. Referring to Theorem 4.7, we see that if p> 1 and
at least two elements of the set {vr(oo)}? = x are integers, then our assertion concerning
Am(/i) can also be demonstrated either by arguing directly with our eigenfunctions
(if certain conditions are satisfied) or by replacing (1.1) by (4.23) and considering
the limiting process. In this latter case, of course, the choice of the function q(x, t)
given in (4.23) will depend upon the accuracy to which we are developing Am(/u.).

We now compare our results for system (1.1-2) with the known results for the
Mathieu equation (see [12, pp. 111-112 and p. 126]). If wetakea(x)= — 2-rr2 cos 2-n-x
and a=ß = n/2, then the eigenvalues, {an(n-)}n = o> of the Sturm-Liouville problem
for the even Mathieu functions are given by an(p) = 'n'~2KirÀ, n = 0, 1,... ; hence
from Theorem 4.1 we see that am(p)= -2p. + 2(2m-r-l)M1,2-(2m2 + 2m + l)/4 + o(l)
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1972] TWO-PARAMETER ORDINARY DIFFERENTIAL EQUATIONS 7

as /x -> oo. If we take aix) = — (tt2/2) cos tt( 1 — x), a = 0, and ß = 77-/2, then the eigen-
values, {a2n+Ap)}n = o, of the Sturm-Liouville problem for the even, half-periodic
Mathieu functions are given by a2n+Ap) = 7r~2Kip), « = 0, 1,... ; hence from Theo-
rem 5.1.1 we see that a2m + 1(pi)= -2pi + 2(4m + 3)p,ll2-(i]m2+l2m + 5)/4 + o(l) as
p^-oo. If we take a(x) = — (-rr2j2) cos tt(1—x) and a = /3 = -?r/2, then the eigenvalues,
{fl2n(lu)}r?= 0) of the Sturm-Liouville problem for the even, periodic Mathieu func-
tions are given by a2n(p) = Jn~~z\iip), n = 0, 1,...; hence from Theorem 5.2.1 we
see that a2m(pt)=-2p + 2(4m+l)pli2-(clm2 + Am+l)/4 + o(l) as p^oo. In all
cases our results are in agreement with the known results.

Finally, the author wishes to express his gratitude to Professor F. V. Atkinson
for his criticisms and suggestions.

2. Preliminary results and notation. As stated in the introduction, we shall in
the sequel consider the nonnegative integer m fixed (unless otherwise stated) and
concern ourselves in this paper with the behaviour of Xm(p) as p. —> co. For /x>0,
we put as before Am(/x) = (Am(zx) + px.A)¡u112, where A=sup0SxS1 aix); then there
are numbers p.m and Am, both greater than one, such that for p. ä pim, 0 < Am(p) < Am
([3, Chapter 3], [4, p. 135]). We also remark that here and in the sequel positive
roots of positive numbers are always taken.

If r is a nonnegative integer, 0^/zr^ 1, and a(hr) = A, then we shall put

br = -é2\hr)¡2,       b* = (é3\hr)l6br)2fi2,       b\ = a^(hr)/l92br,
bf = -i2y>2a«xhr)ii2(Abry\    cr = bf/i2bry2,    dr = -b\nbry2,

and for p>0, vr(/x) = {(Am(/x)/2(/3r)1/2)-i}, where au\hr) = dia(hr)/dxi,j=2, 3, 4. In
the sequel we shall for convenience of notation frequently omit ¡x and write vr in
place of vr(/x); we also note from above that vr is bounded and greater than —\ for
/xä/xm. For /> 0 let xF*(/) = ,F(r + i)-T'(i), where *F(f) is the logarithmic derivative
of the Gamma function, 1\/) (see Appendix I). Then for nonnegative integer n and
0<y<77, we shall also put

Gy1(r,n) = (bryi2(2n+1),
Gy2(r,n) = -[2z3*(30n2 + 30«+ll) + 6¿>Í(2n2 + 2n+l)+í7(/ír)],
G2,Ar,ri) = (bry>2(4n + 3),
G2,2(r,n) = (32bfßrr)ir(n + 3/2)/n\)(4n + 3),
G2,3ir,n) = -[2b*(120n2 + mn + 71) + 6b¡(8n2+12n + 5)+q(hr)

- (512bf{4n + 3)/9rr2)(r(n + 3/2)/« !)2<4 + (4w + 3)<F*(« +1 )>],
GW,n) = ibryi2{4n+l),

GsAr, n, y) = (4/w)(r(B+ l/2)/«!)[(i.f/3)(32«2+ l6n + 3) + ((bryi/2) cot y],
G3,3ir,n,y) = -[2bf {I20n2+ 60n+II)+ 6bfr(cln2+4n+I) A-q(hr)

-(8/7r2(èr)i'2)(r(« + i)/n!)2

x <(8#/3)(4« +1 ) - (i){(z3#/3)(32/z2 +16« + 3) + (Wß) cot y}
xF(n+i))

x <i(bf/3)(32«2 +16« + 3) + ((z3r)1/4/2) cot y>].
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8 M. FAIERMAN [June

3. Asymptotic representation of solutions.
3.0. Introduction. In this section we shall consider the differential equation (1.1)

not only under the conditions stated in the introduction, but with the further
restriction that a(x) attains its absolute maximum in [0, 1] at only the point hx,
where 0 < /7X < 1. Furthermore, throughout this section, we shall keep the non-
negative integer m fixed (see above) and consider (1.1) with A = Am(/t). Indeed in the
sequel we shall refer to (1.1) with A = Am(/x) as (l.l.m). For convenience of notation
we shall drop throughout this section also subscripts and write h for hx, b for bx,
c for cx, d for dx, and v for vx (see §2).

We now define on [0, 1] the function 9(x), obtained by putting

9(x) = {(A-a(x))f(x-hfb)

if x/=h, and 0(A) = 1. Then 9(x)=l +ex(x-h)A-X(x)(x-li)2 in [0,1], where
X(h) = e2, ex=4c(4b)m, and <?2 = 8z/(/J)1/2; we observe that X(x) e C [0, 1 ] and
9(x) e C2[0, 1]. For the remainder of this section it will be assumed that

¡x è /** = max{Mm, (/z74/3)1/4)-16, 3(è-2 + 6-12)(24AmÔ-5'4[l+4ôt])32},

where p.m and Am are defined in §2,

9 =    inf   9(x),
OSiäl

0+ = f sup   |0'(*)l+  sup   9(x)\
|0SxSl OSxSl     r'

¡V = min {A/8, (l-A)/8}.

Finally, here we shall concern ourselves with the integration of (l.l.m), and shall
proceed in the manner as explained in the introduction; we might observe that we
are now dealing with a problem involving precisely two transition points, both
lying in the interval \x — h\ <p,~3lie/(4b)lli. In subsection 3.1 we construct a funda-
mental set of solutions, yx(x, p.) and y2(x, p.), for (l.l.m) in the interval \x—h\
^/n-3,16/(4ô)1/4, and obtain asymptotic formulae for these solutions and their first
derivatives at the end points of this interval. In subsection 3.2 we construct for all /x
sufficiently large a fundamental set of solutions, z3(x, p.) and z4(x, p), for (l.l.m)
in the interval h + pi~3llsf(4b)lli^xSl, and obtain asymptotic formulae for these
solutions and their first derivatives at the end points of this interval. And in sub-
section 3.3, we construct for all p, sufficiently large a fundamental set of solutions,
zx(x, p) and z2(x, p.), for (l.l.m) in the interval 0Si^/i-ii"3'16/(4è)1'4, and obtain
asymptotic formulae for these solutions and their first derivatives at the end points
of this interval. And as explained in the introduction, it is precisely these results
which will be used in the sequel to verify (1.3).

3.1. The interval \x—h\ Sp,~3ll6f(4b)íli. We shall now construct a fundamental
set of solutions for (l.l.m) in the interval \x—h\ ¿p,^3llG/(4b)lli, and obtain asymp-
totic formulae for these solutions and their first derivatives at the points x = h
±p,~3ll6/(4b)lli; we shall also throughout this section use the results of Appendix I.
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1972] TWO-PARAMETER ORDINARY DIFFERENTIAL EQUATIONS 9

(3.1.1)

To this end, we fix our interval by putting ^ = (4b)lli(x — h)p.3116,   Y(£)=y(x),
<f>(£)=6(x), qAO=q(x)- Then (l.l.m) becomes

Y'm+((»+i2)pm-pviei4) y(o = ./u, p.) y(o,
-l=i=I,    ' = d/dÇ,

where/(7 m)=-?i(Om"3'72(/3)1,2 + P/x1/4(</,(í)-1)/4. From Appendix I, we are
led to consider a fundamental set of solutions of (3.1.1) in the form,  Y2($, p.)
= the complex conjugate of Yx(£, p.),

YxU, p) = W"f, v)[l+ Ul(t p.)],       -láí^l,
Wl(0, p.) = hí(0, ft) = 0.

We will now consider the interval Ogf^l. Then on substituting (3.1.2) into
(3.1.1) we have

(3.1.2)

(3.1.3) u'x(i, p.) = C/rV'ui> ")     At, p)miPmBt, v)(l +«,(/, fx)) dt,
•'o

and hence ux($, pA satisfies the Volterra integral equation

(3.1.4) uM, fO = I   K(i, t, p.) dt+ I   K(i, t, p)ux(t, pAdt,       Oáfál,
.'o .'o

where
K(ê, t, p,) = f-mtñU p)[UApm% v)U3(p}^t, v)

- U3(uA^è, v)U2x(pA'^t, v)fUx(p}'^è, v)\.

From Appendix I it is readily seen that \K(£, t, p)\ á ATinOá/^^á 1, iz^ti*, where
K is a positive constant; and so it follows that for ft sift* equation (3.1.4) has a
unique solution in this interval which may be obtained by the usual method of
successive approximations. We will then represent itx(£, p.) by the convergent series
Ui(e,p) = Iñ=o L\(i, p.), 0á£ál, where v0(Ç, /7=J'o K(è, L rí dt, and, for n = 0, I,
2,..., vn+1(£, /7=Jo K(Ç, t, p)vn(t, p) dt, and pass to the asymptotic representation
of «,(l,fO. Putting s = p.inei, we have, for O^s^p,1116,

v0(ê,P-) = -(u-ll2f2(by2)     q2(t)
Jo

Ux(t,v)U3(t,v)- UÁS, V)   7,27,       \ dt

+C/7.-1'4 f
■JO

+dp,-112

ualvW^lv^^^uklv)

.MàJÙ. u2(t viUx(s,v)UÁt'V>Ux(t,v)U3(t,v)-

dt

dt

+ (fx-1'2/8(A)1'2)     iXx(t)-e2)t' Ux(,,v)U3(t,v)-^^U2x(t,v) dt,

where q2(t)=q(x), Xx(t) = X(x), and t = (4bri)lli(x — h). So from Appendix I we see
that, as ft-*-co, v0(Ç, fi) = 0(ft~1/16), uniformly in 0^|á 1,

Rl v0(l,p.) = cp,-lließ + 2cvp.-3n6 + [(3d-4cAx(v))/12]p.-lliA-o(p.-lli),
Im c0(l, ft) = cA2(v)p,-^f3 + [E2(v)q(li)/2(b)ll2-dB2(v)]p,-^2 + o(p.-112).
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10 M. FAIERMAN

With the same notation as above we also have

vM, p) = cdp-3"^ t*UAt, v)U3(t, „)(£ r3Ux(r, v)U3ir, v) dr\ dt

[June

+ cV 1/2  I
^0

Ui(t,y)Ua(t,V)-
Vtis, v)

UAr,^)U3(r,v)-^Alu?(r,V) dt + RH,p),uAt, v)
where, as /*->- oo, R(C,p) = 0(u~5/ie) uniformly in O^zf ¡g 1 andIm/?(l,ta) = o(/¿_1/2);
hence, as p.—*- oo, v±(i;, p.)=0(p.~lia), uniformly in O^fá 1,

Rl Vj.(l,¡i) = c2pi-llB/lc] + c2iclv-A)p-1!i/l2 + o(iJ.-lli),
Im vAlUp) = c2A2(v)p-5ll6/9 + 2c2uA2(v)p-'7ll6l3

Hc^c^-AMAAvW+cdA&yn^-^+oip-112).
In a similar manner it is readily seen that, as p->co, vfê, p.) = 0(p~ii + 1V16),
uniformly in 0á ¿fá 1, j=2,..., 8; and

Rl v2(l,p) = cV-3,17162 + o(/x-1'*),
Im»2(l,fz) = c3A2(v)p.-3l8/54 + c3ic]v-3)A2(v)p-ll2ß6 + oip-112),
Rl v3(\,p) = cip-llil8x35 + oipL-lli),

Im v3(l,p) = c*daWr*-T'"/2x3"+<<Ar';*'"),
Imt>4(l,^) = ^2(v)/í-1'2/8x36 + o(íi-1'2),

and
lmvi(l,p) = o(p-112),       j= 5,6,7.

From above we see that there is a 2^1 such that for pT^pi, \vB(£, p,)\ ̂ Ktp~9lie,
uniformly in 0^|g 1, and where K1 is a positive constant; hence we see that for
p^p1 and 0<¡¿ál, |»B(f,ít)|áJasriíí»",'1*s and in general, for »£8, |p»(Í,/*)I
S ^/x-eil6(KÇ)n-8/(« - 8)!, and so 2"= e I»»(£, m)I ¿ #i<?V"9/16- Thus referring back
to our interval |x —/z| g/x"3,16/(4A)1'4, and taking here as our fundamental set of
solutions for (1.1 .m), yAx, A) = YA£, p), A>AX, p) — the complex conj ugate of y Ax, p),
we have, as p^co,

y1ih+p-3ll6/(4byii,p)

= /y.-(v + 1>'16exp{-zV^+l)/2 + /x1,8/4}
x [< 1 + cp -1,16/3 + (9v2 + 27iz +18 + c2)p - 1/8/l 8

+ c(27i22 + 405i2 + 54 + c2)/x - 3/16/l 62
+ [c4/8 x 35 + c\v2 + 21 v-7)/36 - cAx{y)ß + dj4 + (v +1 )4/8]/x"1/4

+ o(/x-1,4)>

-r-iXc^2(v)/x-1'V3 + c2^2(v)M-5'179 + c^2(v)(9v2 + 27i-+18 + c2V-3'8/54
+ c2 A2(v)(21v2 + 405v + 54 + c2)p.~ 7,16/486
+ [c5v42(v)/8 x 36 + c3/l2(v)(v2 + 27v - 7)/108

- c^A^A^v) - 9Ca(v))/9 + c^a(v)(v+1)4/24 + crf.4a(v)/12
- (<«a(zv) - q(h)E2(v)l2(by<2)]p -u* + ofr-1/2)>],
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and similarly

yi(h-p,-3^f(4byi\p)
= u^v + DZie eXp {Í7r(V+l)l2A-p.ll8/4}

x[<l-Cft-1'16/3+(V + 27y+18 + c2)ft-1'8/18
-c(27v2 + 405v + 54 + c2)ft-3/16/162
+ [c4/8 x 35 + (v2 + 27v - 7)c2/36 + cA 1(v)/3 + d/4 + (v +1 )4/8]ft-1/4

+ 0(ft"1'4)>

+ /<c/l2(v)ft-1'4/3-c2^2(v)ft-5'16/9 + c^2W(9v2 + 27v+18 + c2)ft-3'8/54
- c2^2(v)(27^2 + 405^ + 54 + c2)ft - 7/16/486
+ [c5.4»/8 x 36 + c3A2(v)(v2 + 21 v- 7)/108

+ c2(Ax(v)A2(v)-9C2(v))¡9 + cA2(v)(v+l)J24A-cdA2(v)fl2
+ (dB2(v) -q(h)E2(v)f2(by'2)]p.-4'2 + o(/x- »*)>].

We now find the asymptotic expression for the derivative y'x(x, ft) at x = A
+ ft-3/16/(4z5)1'4. Put

Wo(f, /*) = Í /(*, P)UKpm% v) dt,
■>0

wtt, p.) = I  f(t, riWQWt, v)Vi.x(t, p.) dt,       / = 1, 2,.

then from (3.1.3) and the above results we have

k'AUp) = Q(iA+Ul2(p-llls, v) J w, (1, ft),

where Q(p) = 0(p. 7/16) as fi -> co. It is readily seen that, as p. -> oo,

ft-1/16w'0(l,ft) = /x-(,, + 1)/8exp{-/77(v+l) + ft1/8/2}

x[<Cft-1'8 + 0(f,-1'4)> + /<0(ft-1'2)>],
p,-lll6wx(l,p.) = ft-(v + 1)'8exp{-/7r(v+l) + ft1'8/2}

x[/c2pi-3llB¡3A-0(p.-lli)yA-Kc2A2(v)p,-3líi/3 + 0(p,"112)-)],

p.-lll6w2(l,p.) = ft-(v + 1)'8exp{-Z7r(l7+l) + ft1'8/2}

x[Oí>-1'*)+í<<?8^a(i')M"7'179+0(/*-l'a)>J,

and

Rlift-^MLft)} = OO"1'*),      Imift-^^d.ft)} = Oift-1'2),      i = 3,..., 7;

thus

u'x(1,p) = ^'"Kc/t-^^cV^VS + OO-1'4))
+ /<c2^(2Wft-3'8/3 + c3^2(v)f,-7'16/9 + 0(ft-1'2)>].
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12 M. FAIERMAN [June

Hence we see that, as p ->■ oo,

yAh+p-^liW\lA
= |(4¿z)1'V"(v"4>'16 exp {-iir(y+ l)/2-f-/x1/8/4}

x[<l+c/1x-1,16/3 + (9i22-9i2-18 + c2V-1'7l8
+ c(27i22 + 297v + 270 + c2)p " 3/16/l 62
+ [c4/8 x 35 + c2(f2 + 23v-r- l3)l36-cA1(v)ß + dj4 + (v-4){v +1)3/8]/*-"*

+ OÍP-1")}
+ ¡(.cA.^p-^ß + c2A2(v)p.-5ll6l9 + cA2(v)(9v2 - 9v-18 + c>-3/8/54

+ c2^(2(iz)(27i22 + 297i2 + 270 + c> " 7/16/486
+ VA A 2(k)/8 x 36 + c3^2(iz)(v2 + 23v +13)/108

-c2(/i1(^2(>2)-9C2M)/9 + c/(2(lz)(v-4)(v+l)3/24 + c^2(lz)/l2
- (i/fiaM -qW&)ßQ>)m)]p.-m + oip-112)}],

and similarly

^(/¡-^-3,16/W'V)
= -i(46)1'V"(v"4),lfi exp {*<*+ l)/2-r-it1,B/4}

x[<l-cJa-1,16/3 + (9iz2-9v-18 + c2V-1'8/18
- c(27.z2 + 297v + 270 + c2)//-- 3'16/162
+ [c4/8 x 35 + c V + 23v +13)/36 + cA Ay)ß + d/4+(y- 4)(v +1 )3/8]/* -1'*

+o(/*-1M)>
+ KcA2(v)p-lliß-c2A2ii>)p-5ll6l9 + cA2(v){9v2-9x>-lcl + c2)p-3l6/54

- c2^2(v)(27i22 + 297* + 270 + c2)p " 7/16/486
-r[c5A2(x7)ßx3e + c3A2(i>)iv2+ 23x7+13)1108

+ c2(A1(v)A2(v)-9C2iv))l9 + cA2(x7)(x7-4)iv+l)3ß4 + cdA2(v)ll2
+ (dB2(v)-q(h)E2(v)/2(by'2)h-il2 + oip-1'2)}].

3.2. The interval (/¡ + /iz.-3/17(4z3)1,4)S.vá 1. We shall now construct a funda-
mental set of solutions for (l.l.m) in the interval (h + p.~3ll6/(4b)lli)^xS 1 for all
sufficiently large values of p. and obtain asymptotic formulae for these solutions
and their first derivatives at the points x = h + p-3lie/(4b)lli and x= 1; we shall also
throughout this section use the results of Appendix II. To this end put xx(p)
= h + p-3ll6l(4b)ll\ x2(p) = h + p-lll6l(4byi\ and for each p, let x0(p) be the
unique point such that bix0(p) — h)26(x0(p.)) = p,~ll2Am(p.), h <x0(/¿)<x^p.); and
for the interval x0(jjl)¿x^Í, put r(x, p) = (x-h)29(x)-p~il2Am(p)lb, /(x, pA
= lxXoWrll2(t,p)dt, and w(x, p) = (4b)lliIll2(x, p.); and for the interval x^)
úxúl, put f(x,px.)=q(x) + (w'(x,p.)yl2d2[iw'(x,px.))-li2]jdx2, ' = d\dx. Writing
(l.l.m) in the form

„ , u     fix) + ipll2AM - ptb(x - hfd(x)+q(x) -f(x, p))yix) = -fix, p)yix),
^ A) xx(p) ûxûl,

we are led from Appendix II to consider a solution z3(x, p.) of (3.2.1) in the form

(3 2 2) zsix, p) = iw'ix, p^-^UAp^wix, p))H+uAx, p)),
uAxAp), p) = u'AxAp), p) = 0.
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Substituting (3.2.2) into (3.2.1) we have

u'x(x, ft)

(3.2.3) = _ w,(x> ̂ rj- 20xizMX; M)) T    M m^ m)) -1 ufoWy^ ¡¿ft du
■Jxx(u)

and hence ux(x, ft) satisfies the Volterra integral equation

J.x ¡.X
K(x, t, p,)dt+\       K(x, t, p)ux(t, ft) dt,    xx(p) ^ x -¿ 1,

Xi(U) •>x1(.u)

where

K(x, t, ft) = -ft"1'4/,/, ft)(w'(/, p.))-1
x[W'V^fO)W'Mf.¿<0)

- C/3(ft1,4w(x, p))U2x(p^w(t, pAAlUx(p>>*w(x, ft))].

Since

f(t, pAfw'(t, ft) = (8(4¿»)1'4)-1[/1'2(í, p)<l6(r(t, n))-liaq(t)+5(r(t, ft))"5'2
x (r'(t, pA)2-4(r(t,pA)-3<2r"(t,p)y

-3(r(t, pAf'2(I(t, p))-3'2],
' = d/dt,

and for xx(p)^x^l and ft S ft*, ax(t-hf^r(t, p)úa2(t-hf, a3(t-h)2^I(t, p.)
^aA/t — hf, and \r'(t, p.)\ ̂ a5(t — h), \r"(t, p)\ ^a6, where a, is a positive constant
z'=l,...,6, we see from Appendix II that \K(x, t, p) | == R(t, p) = Bp~lli(h-1)~2,
in xx(p) á í á x á 1, ftäft*, and where ß is a positive constant, and where we also
observe that JllM R(t, p) dt r£ Bf for ft 3: ft*, where Bf is a positive constant. Hence
it follows that for each pi equation (3.2.4) has a unique solution in this interval
which may be obtained by the usual method of successive approximations. We will
then represent ux(x, p.) by the convergent series ux(x, p) = 2™= o vn(x, p),xx(p)^x^l,
where v0(x, p)=¡xXlill) K(x, t, p) dt, and for « = 0, 1,...,

fn+ i(x, p) = K(x, t, p)vn(t, p) dt,

and pass to the asymptotic representation of ¡^(l, ft).
First, it is readily deducible that, as p -> oo,

2(x-h)-2I(x,p) = l-(z3)-1/2(v+l/2)(x-/z)-2
x<l + 2Iog(.v-/z) + log2 + (logft)/2-log((f + l/2)/(è)1/2)>ft-1'2
+ ex(x- h)/3 + (v+l¡2)2(x-h)-íp- 1ßb
+ ex(v+l ¡2)(x - h) - V - M/ib)11* - (e2x - 4e2)(x - h)2f 16
+((H-1 /2)f(b)ll2)3(x - h) - V - 3/2/4 + o((x - h)2),
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14 M. FAIERMAN [June

uniformly in x-,(p)Sx^x2(p);

mI(l,p)= f  (^í-aíx^í/x-av+l^^/Lz.-^log/x
Ja

-<((v+l/2)/2) f  Ö-3'2(x)e'(x) log ix-h) dx
Jh

+ (v+ll2)il-h)(bl(A-a(l))yi2 log (1 -h) + (iv+1/2)/2)
x [1 -log (v+ l/2) + log 2 + (log b)/2]}p-112

+ o(j"-3'4);

5(r(x, p))-5'\r\x, p))2-4(r{x, /*))-3'V(x, p)+ 16(/(x, p)yll2qix)
= 12(x-h)-3 + 16(iv+1 ß)libyi2)(x-h)-5p-ll2 + 0(ix-h)-2),

uniformly in x1(p)^x^x2(p); and

3(r(x,p)y>2I-2ix,p.) = 12(x-h)-3+l2((v+l/2)/(by2)
x <l + 4 log (x-h) + 2 log 2 + log p.-2 log ((v +1/2)/(6)1,2)>
x/x - 1/2(x - Ä) -5 + 0((x -/z) -2),

uniformly in XjX/x) ̂ x ^ x2(/x).
We will now proceed with the calculations for v0(l, p). First, put

I¿x, p) = -pc~^ f    UA^'Mt, ?» WM*, p))(f(t, p)/w'(t, n)) dt;

then, for Xl(p)^x^x2(p),

h(x, p.) = -(m"1/2/32(¿z)1'2) f    8(4/3)1'4/-1'2(r, „)(/(/, ^'(r, /*)) zi/
•Z*i(iz)

-/x-1'4 f    [U,(^w(t, p,))U9(jA»wit, p))-\jipwwit, lA)-1]

x if it, p)/w'it, p)) dt.

Hence from above and Appendix II we see, as p -> oo,

hix,p)= -ip-il2/32(by2)

[l2(t-ri)-3 + 76(v+lß)(t-h)-5p.-ll2libyi2]dt

+3ir1(x,p)-i-íix1(ljt),p)) + oip'lli),

uniformly in x1(p)^x^x2(p); thus Ix(x, p) = 0(jj,-ll4: log p), uniformly in xx(p)^x
^x2ip), and

hix2ip), p)
= i3ß2)(v+lß)p-^ log ,x-((v+l/2)/8)[13 + 6 log 0+ l^)^"1'*-!-©^-1'*).
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For x2(ft)¿xá 1, it is readily observed that Ix(x, p) = Ix(x2(p), p)A-o(p~lli) as
ft -> oo, uniformly in x2(ft)^xá 1. Now put

/2(x,ft) = pi-^(U3(p^w(x, p))IUx(p^w(x, p)))

x f    U2x(p^w(t, P))(AU pW(t, ft)) dt;
•>x,(u)

then from above and Appendix II we see that there is a ft! such that, for p^px,
\hix, p)\ úBxp~ll2F(x, ft), x1(ft)=Sxá 1, where Bx is a positive constant, and

F(x, ft) = exp {-2(bpy2I(x, p)} f      exp {2(bp)V2I(t, p)}(t-h)'3 dt.
JxtUH

Integration by parts shows that F(\, p.) = 0(p~112) as ft -> oo; and also we see that
sup^oosxsi F(x, ft) = 0(ft1'4) as ft -» oo. Therefore, as ft -> co, I2(x, ft) = 0(ft"1/4),
uniformly in x1(ft)¿xál, and I2(l, p) = 0(p~1)- Hence since v0(x, p) = Ix(x, p)
A-I2(x, p.), we have, as ft -> oo, tj0(x, p.) = 0(p~lli log ft), uniformly in xx(p)^x^ 1,
and

v0(l, p) = P^Xv + ijft-1'4 log ft-((, + i)/8)(13 + 6 log (v + i))p-^ + o(p-^).

From the above and Appendix II we see that there is a ft2 such that for p}tp2,
| K(x, t, ft) | ^ 52ft - "a(r - h) - 3 in xx(p) ^ t g x â 1, | v0(t, ft) | ^ B3pt "1/4 log ft in xx(f7.)
S/^1,  and where B2 and 53 are positive constants; hence for fiïïfi2 and

Xx(p)^X^l,

\vx(x,pi)\ Ú Äaft-1'4 logfti^ft"1'2 f    (t-h)-3dt) = ÄgJi^^ft-^logM,

and for n ä 2,

|rB(*. ft)| ^ 2V1'* log ft7"(x, ft)/«!,

and, therefore,

oo

2 k(x, ft)| ^ ßsft"1'4 log ft(e'<*-<"-1) = 0(ft-3'8 log ft)   as ft ̂  oo,
n=l

uniformly in xx(p)^x^ 1. We thus have, as ft-»-oo,

z3(h+p-3'i6/(4byi\p)
= (r(3/4)/(7r)1'2(4/3)1'8)F1(^)ft-1'18

x[l+cft1/16/3 + (9i72 + 27v+18 + c2)ft-1'8/18
+ c(27v2 + 405v + 54 + c2)ft-3,16/162 + (3/64)(2iz+l)ft"1/4 log ft

+ Hx(p)p-^A-o(p-^)],

z3(l, ft) = (r(3f4)l(2rry2)(A-a(l)r^Gx(f,)lJi-^(JAp) + oip-lli)),
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where

FAp) = p-^í6 exp {-(v + i)ß + p^/4 + i(v+i)ß)log(v + i)},
di/*) = /x-W4((4z3)1/4exp{(l-/zXz3/(^-ö(l)))1/2log(l-/z)})-(v + 1'2)

xexpj((v + i)/2) log (v + |) + /x1/2 f  (^-fl(x))1'2 ¿/x

-(0-+¿)/2) J   ö"3'2(x)ö'W log ix-h) dx-(v+$ß\,

H^p.) = ( 1 /1152) [ 144v4 +1440v3 + (5040 + 32c>2 + (5328 + 864c2> +16c4/27
- 224c2 + 288i/+ 2520 - 864(v + i) log (v +£)],

J.ip.) = 1+(3/64X2.2+IV"1'4 log zx-(26>2+13+ 12(v + i) log (v + i))zx-1/4/16.

We will now pass to z3(x, p). From (3.2.3), and proceeding as in the calculations
for 7a(x, p), we see that «i(J, p) = Oip.~112) as p. -> oo. Hence, as /x -»■ oo,

z3{h+p-3^n4by\p)
= (r(3/4)/2(7r)1'2)(46)1'8F1(/x)/x1'4

x[l+c/x-1/16/3 + (9v2-9v-18 + c2)/x-1,8/18
+ c(27j22 + 297>2 + 270 + c2)zx-3,16/162 + (3/64X2v+ l)/*"1'4 log p.

+ H2(p)p-i'2 + oip-^)],

z3(l,p) = (r(3/4)/(27r)1'2)(^-fl(l))1'4G1(,x)/x1'4(y1(M) + o(/x-1'4)),

where

H2ip) = (l/1152)[144v4 + 288i23-(1872-32c>2-(7344-736c2>+16c4/27
+ 416c2 + 288rf- 4392 - 864(v + i) log (v +±)].

As a second solution to equation (3.2.1) we consider

z4(x, p) = (w'(x, p))-1»U&1'*w(x, /x))(l + w2(x, p)),
W2(l,/x) = W2(l,/x) = 0,

and proceeding precisely as above we have, as p -> oo,

z4(/2 + /x-3,16/(4è)1'4,/x)

= 2(2/^)1'2(r(5/4)/(4è)i'8)Ff1(,x)
x[l-c/x-1'16/3-(9i'2-9i'-c2)zx-1'8/18

+ c(27l22-35lI2-324-c2V^3/16/162 + //3(/x)/x-1'4 + o(/x-1,4)],
z'Ah+p-^HWAp)

= - (2/77)1'2(4z3)1'8^(5/4)F'^1(^5,16
x [l-c/x-1/16/3-(9v2 + 27v-c2)ix-1,8/18

+ c(27>z2 - 243v - c2)p. - 3,16/162 + //4(/x)/x -1/4 + o(/x " »*)],
z4(l,/x) = (2r(5/4)/(7r)1'2X^-fl(l))-1/4Gr1M(l+o(/x-1'4)),
4(1,/*) = -(2r(5/4)/(7r)1'2)(^-fl(i))1'4cr1(M)M1,2(i+o(i*-1'4)),
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where
H3(p) = (l/1152)[144v4-864i73 + (1584-32c>2

- (864 - 800c> + 16c4/27 + 1056c2 - 288t/],
HAp) = (l/1152)[144v4 + 288v3-(1872 + 32c2>2

+ (1440+ 672c2>+16c4/27 +288c2-288t/].
If W denotes the Wronskian, we see that W(z3, zA(p)= -plli(Jx(p) + o(p-1!i))

as ft -> oo ; and hence for all sufficiently large values of ft, z3(x, p.) and z4(x, ft) form
a fundamental set of solutions for (3.2.1).

3.3. The interval Ogiá(A-p.~3ll6/(4b)Vi). Here we can proceed precisely as in
subsection 3.2 and for all sufficiently large values of ft introduce a fundamental set
of solutions, zx(x,p) and z2(x, p), for the differential equation (l.l.m) in the
interval 0gx^(/z — p~3lief(4b)lli). Then with the same notation as in subsection
3.2, we have, as ft -» oo,

Zit/z-ft-3'16/^/.)1'4,^)

= (r(i)/(7r)1'2(4è)1'8)JF1(ft)ft-1'16

x[l-cft-1/16/3 + (9^2 + 27v+18 + c2)ft-1'8/18
- c(27«72 + 405v + 54 + c2)ft " 3/16/l62 + (3/64)(2v +1 )p" w log ft

+ //1(ft)ft-1'4 + 0(ft-1'4)],
zi(A-ft-3'16/(4/3)1/4,ft)

= -(r(|)/2(^)1'2)(4/3)1'8F1(ft)ft1'4
x[l-cft-1,173 + (9v2-9v-18-t-c2)ft-1/8/18

- c(21v2 + 297v + 270 + c2)ft-3/16/l62 + (3/64)(2v +1 )ft -1/4 log ft
+ //2(ft)ft-1'4 + 0(ft-1'4)],

Zl(0,f,) = (r(i)f(2rryi2)(A-a(0))-^G2(p)p-^(Ji(p) + o(p-lli)),
z'x(0,p) = -(r(i)l(2^m)(A-a(Q))^G2(p)p^(Ji(p) + o(p~lli)),

where
G2(ft) = ft-v'4((4z3)1/4exp{/!(/3/(^-a(0)))1/2log/7})-(v + 1/2)

xexp |((v + l)/2) log (v + ^ + ft1'2 Ç (A-a(x))112 dx

+ (("+è)/2) j  9-3'2(x)9'(x) log (h-x) dx-(v + \)llX-

z2(/7-ft-3'16/(4z3)1'4,ft)

= 2(2/7r)1'2(ra)/(4/3)1'8)/-r1(ft)
x[l+cp.-llie/3-(9v2-9v-c2)p-llB/l&

-c(27f2-351v-324-c2)ft-3,16/162 + //3(ft)ft-1'4 + o(ft-1/4)],
z'^h-p-^Wby^p)

= (2/7r)1'2(4z5)1'8r(|)Fr1(ftV5'16
x[l+cft-1/16/3-(9v2 + 27v-c2)ft-1'8/18

-c(27v2-243l'-c2)ft-3'16/162 + //4(ft)ft-1'4 + o(ft-1/4)],
z2(0,ft) = (2r(|)/(7r)1'2)(^-a(0))-1'4G2-1(ft)(l+o(^-1'4)),
z2(0,ft) = (2r(|)/(w)1'2)(yl-a(0))1'4G2-1(ft)ft1'2(l+o(ft-1'4)).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



18 M. FAIERMAN [June

4. Main results for the case ai<A)<A and a(l)</l. In this section we consider
the case where aix) = A at precisely the finite set of points {/zr}?=i, where p^ 1 and
0</¡! < • ■ • </îp< 1. Then throughout this section, unless otherwise stated, we shall
consider the integer in fixed as before and use the results of §3 to verify (1.3). We
shall see in the sequel the important role played in the analysis by the functions
i2r = i2r(/x), r= I,.. .,p (see §2). Finally, throughout this section, as well as in §§5 and
6, the terminology of §2 will be used; and also in the sequel when we refer to the
set R we shall mean the subset of the rationals defined in Appendix III.

Theorem 4.1. If p=l, then (1.3) is valid with Alt
A3,m = Git2{\,m).

= G1,i(l,m), A2_m = 0, and

Proof. We will write h for hu b for blf c for cu d for du v for vu and apply
directly the results of §3. Then for /xä/x* (see §3), put

yAx, p) = [-cos czza(0, /x) + sin az'2iO, p)]zAx, p)
+ [cos rxz^O, /x)-sin azi(0, /x)]z2(x, /x),

yAx,p) = [-cos ßzti l,p) + sin /3z4(l,zx)]z3(x,/x)
+ [cos /3z3(l, /x)-sin /3z3(l, /x)]z4(x, /x).

Hence for an eigenfunction we must have, for all sufficiently large values of p.,

yAh~,p) yAh~,p) yAJi~,p)       o
y'¡ih~,p) y'Ah~,p) y'2Íh',p)       o

0 yiih + ,p) y2ih+,p) ynih\p)
0 y'Ah + ,p) y'AhAp) y'AhAiA

0

where h~ =/í-/x-3,16/(4¿)1'4, h+ =/z + /x-3/16/(4è)1'4. If we refer to the formulae of
subsections 3.1, 3.2, and 3.3 and put Wix) = 2c2C2ix)-2dB2ix)+qih)E2ix)Hb)112,
then this gives

(4.1) sinrr(v+l)-pi-ll2(Wiv)+f(p))cOS7r(V+l) = 0,

where/(/x) = o(l) as p -> oo. Hence we see that as p -> oo, 12 must tend to an integer,
which is nonnegative from our condition on v, and this integer must be m ([4, p. 136],
[15, Theorems 2.1 and 2.2]). Putting v(/x) = m + e(p), we have for all p sufficiently
large, tan 7re(zx) = /x-1,2(H/(/72 + £(/x))+/(/x)). For /x>0 put wie, p) = tan ne —
P~ll2W{m + è); we observe that (1) for p fixed, w(e, p) is analytic in |e|^i and
{w(e, p) — w(0, p)} has precisely one zero in this disc if p is sufficiently large, (2)
(3vv(0, p)/de = it + Oip-ll2) as p-> 00, and (3) on the circle \e\= -zt/256, | wie, p) — w(0, p)\
>7T2/768 for all p sufficiently large. Hence for all sufficiently large values of/x we
may apply the inverse function theorem, and since bounds for the coefficients in
the expansion

•0*) = 2 gMip-ll2fip)-H0,p)T
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may be obtained independently of ft, we see that, as ft->oo, ire(jj) = fi-ll2lV(m)
A-o(p~112), and our theorem follows from Appendix I and §2.

From now on in this section we shall always assume that p > 1. Then we observe
from §2 that vr is bounded and greater than — \ for p^pm, r—\,...,p, and, for
ft>0,

(4.2) (bxy2(vx+i) = (z7)1,2("r + i),       r=l,...,p.

Theorem 4.2. As p -> oo, vr tends to a finite limit, r= 1,...,/?, and at least one
such limit is an integer.

Proof. For r=l,.. .,p the results of §3 may be modified in an obvious way so
as to apply to the intervals (hr_xA-hA/2^x^(hr-Hr(p)), (hr — Hr(p))^x^
(hr + Hr(p)),(K + Hr(pi))úxú(K + hr+x)l2, where HrUA = p-3'™f(4bry<\ h0=-hx,
and /7P+1 = 2 — hp. Then proceeding as in Theorem 4.1, but now matching our
solutions in value and in value of the first derivative at the points (hT±Hr(p)),
r=l,...,p, (hT+x-r-hT)/2, r=l,...,(p-l), we obtain

(4.3) n^W = o(exp{-Aft1'2})   as fz. -co.

where

Kr(p) = [sin 7T(Vr+l)-pL-^(Wr(vr)+fr(p)) cos tKzv+1)],
(4.4)        fi(p) = o(l)   as ft-> oo,

Wr(x) = 2c2C2(x)-2drB2(x)+q(hr)E2(x)l(bTyi2,        r = 1,. . .,p,

C2(x), B2(x), E2(x) as defined in Appendix I, and A is a positive constant.
Now assume that our theorem is false; then with lim infH_„o vx =kx, Iim sup«.,« vx

= k2, we have kx<k2. Choose e so that 0<e<(k2-kx)/S and denote by Xx (pos-
sibly empty) the set of integers lying in [kx — e, k2 + e], and by Xr (possibly empty)
the set of points x lying in [kx — e, k2 + e] for which {(bx/br)ll2(x+^) —-J-} is an
integer, r=2.p. Since (Jr = i %r is at most a finite set, there is an x0 such that
x0 e [kxA-e, k2 — e] — (J?=, Xr. Thus, since vi(ft) is a continuous function of p for
ft>0, there is a sequence of values of ft, {p.^=x, 0<ft!<ft2< • •-, lim^oo ^ = 00,
such that v1(fti) = x0, i—i, 2,..., and therefore l~[?=xs'm-n-(vr(p.i)A-l) = k, f=l,
2,..., where k is a nonzero constant; but this is incompatible with (4.3), and hence
limWJC0 v, exists and is finite, /•= 1,.. .,p, and clearly (4.3) implies that at least one
such limit is an integer. This proves the theorem.

From now on we shall denote lim^«, v,. by vr(oo), r= 1,.. .,p; and we observe
from §2 that if >v(oo) is an integer, then it must be a nonnegative integer.

Theorem 4.3. If (bdb,) $ R for i,j= 1,.. .,p and i=/=j, then the elements of the
set {vr(oo)}?=, can be determined. Moreover, precisely one element of this set is an
integer, and if we denote this element by v(°°) and put vT.(co) = n*, then (1.3) is valid
with Ax¡m = Gx¡1(r*, n*), A2¡m = 0, and A3¡m = Gx¡2(r*, n*).
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Proof. From (4.2) we see that

(4.5) (è1)1'2(.1(ao) + i) = (6r)1'2(.zr(ao) + i),        r=l,...,p,

and hence the conditions of our theorem imply that precisely one element of the
set {vr(co)}f=1 is an integer. We shall, as stated above, denote this element by
jzr.(co) and put vr.(co) = «*.

We now assert that in order to determine the tuple (/*, «*), we need only put
ar = br, r=\,.. .,p, in subsection III. 1 of Appendix III, and with fr(n) given by
equation (III.1.1), solve for iA,^) the equation /,(«) = m (see Theorem III.1.1);
and then we must have r* = A, n* = nf. With (/•*, «*) determined we can then use
(4.5) to determine vr(co), r=l,.. .,p. Since v(°°) is the only element of the set
{vr(co)}?=1 which is an integer, we can now argue with (4.3) in precisely the same
way as we did with (4.1) to verify the last statement of our theorem.

We shall now prove the above assertion. First, we observe from (4.2), (4.3), and
(4.5) that (vr-vr(co)) = 0(p~112) as /x-> oo, r=\,.. .,p. Then fof r==l,.. .,p, and
with h0=-h1,hp+1=2-hp, put Jr = {x | (/zr_1 + /zr)/2^x^(/zr + /zr+1)/2}, Br{x)
= HA-aix))Jix-hrfbT) for xeJr-{hr}, 6r(hr)=l, and 6r=mfxeJ, 6r(x). Let
0 = min1SrSp 0„ A = min1SrSp br, and ß = supos*gi |<?(x)|; then for the remainder
of this proof we shall assume that /x ̂ /x+= max {/xm, HAm+Q)/bh26)2}, where
/z = min0SrSp ihr+1— hr)ß, h0 = 0, hp+1 = l and all other terms are defined in §2.
Hence if ~8(p) = p-^(iAm+Q)fb6y2 and /r(/x) = {x | \x-hr\ ^o(p)}, r=l,...,p,
then Am(/x) + /xu(x)+(?(x)<0 in [0, l]-lj?-i Up).

For ix^/x+ and 1 ̂ v¿p consider now the mapping of Jr into the i-axis c'efined by

(4.6) s = {4pbry\x-hr),       xeJr;

and denote by Jrip) and I, the image on the 5-axis of Jr and I,ip), respectively. We
note that Ir is just the interval \s\^Sr, where or = (4èr)1/4((Am+0//30)1'2. Let
yix, p) be the eigenfunction of (1.1-2) corresponding to Xm(p) and satisfying
y(0, zx) = sin a, y'(0, p) = cos a, where ' = d\dx; and for —oo<i<co, we introduce
the functions

Klir(i) = A-,(»)C0,
V2,As) = DM„A-s)    if r # r*,

V2,r.(s) = Aßi)[expiirm*l2)U,is,n*)-exp (-inn*/2)U2is,n*)],

and where all terms are defined in Appendix I. Let kr= rV(V1¡r, V2_r){s), where W
denotes the Wronskian; then we observe from [13, pp. 347-348] that kr =
-(2/7r)1'2r(l +vr(oo)) sin ttv/co) if:T#i*, and kr.= -1. Hence if

kUp) = ikr)-1

ktrip) = ik,)-1

y(hr, p) K2,,(0)

(4/xz3r)-i'4/(/zr,/x)    K2>r(0)

V1>r(0) yihr, p)

vim i^pbry^yihr,p)
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where Vj,r(0) = dVj¡r(0)fds, 7= 1,2, then (ktr(p))2A-(ktr(p))2>0. Finally, let
Ar(/x)=±((A:î,r(ft))2 + (A:*r(ft))2)-1'2, where, with z7>)=Ar(,x)/v*.r(ft) and k2j(p)
=Ar(p)k*Ap), the sign of Ar(ft) is chosen so that (1) if r*> 1 and ltkr<r*, then
either k2iT(p.)>0 or k1¡r(p)=l, (2) either zt1>r.(ft)>0 or k2j.(p)= 1, and (3) if r*<p
and r* <r^p, then either kx¡r(p)>0 or k2j(p) = 1.

Put vr(s, ft)=Ar(ft)y(x, ft), re/,; then

(4.7)    v"(s,p) + (vr(co)-ri-s2/4)vr(s,p.) = Fr(s,p)vr(s,p),        sejr(p.),    ' = dfds,

where Fr(s, ft) = -(qr(s)f2(bryi2)n-il2 + s2(<pr(s)-l)/4 + (vr(ao)-vA, qr(s)=q(x) and
<f>r(s) = 6r(x) for x eJr, and from the above remarks and the introduction to §3 we
also know that, as p -> 00, Fr(s, p) = 0(p~1,i), uniformly in any bounded subset of
the i-axis. Hence from (4.7) we see that

vr(s, ft) = kx,r(p)Vx,r(s) + k2^(p)V2¡r(s)+ i K(s, t)FT(l, p.)vr(t, ft) dt,
(4.Î3) Jo

seJr(pA,

where Kr(s,t) = (kry1[VXj(t)V2j(s)-VXj(s)V2j(t)], and all other terms are de-
fined above. We note from our previous remarks that (kXyr(p))2-\-(k2j(pA)2=l and
(1) if r*> 1 and 1 Sr<r* then Är2>r(ft)ä0, (2) kx,r.(p)^0, and (3) if r*<p and
r*<r-¿p then zV1>r(fi)==0. Also if S is any bounded subset of the s-axis and if
S^Jr(p) for p¡íp*, then an application of the Gronwall lemma to (4.8) shows that
\vr(s, p)\ is uniformly bounded for s e S and fts=ft*.

We now assert that limH_œ k2r.(p.) = 0. For if this is not the case, then from
(4.8), the above remarks, and the properties of the parabolic cylinder functions,
we see that there is an s*, s* $ Ir., and a sequence of values of ft, {ft,};" 1, where
Pf<px <p2< ■ ■ -, lim^œ ft, = co, such that |fr.(í*, fi¡)| >2 supse7r, \vr.(s, pf)\ for all
/ sufficiently large. But, on the other hand, we know [15, Theorems 2.1 and 2.2]
that for all ft sufficiently large the absolute maximum of \vr.(s, p)\ in Jr.(p) is
attained in /,..

We also assert that if r*> 1, then lim^» kX-r(p) = Q for r=l,..., (/•* — 1). For
t-=1 the argument follows as above if we make use of the fact [15, Theorem 2.1]
that for all sufficiently large values of ft, the absolute maximum of \vx(s, p)\ in the
interval {s \ s ¿0, j eJx(p.)} is attained in Ix. Now we can choose sx >0, sx <£ Ix so
that all the real zeros (if any) of £)Vl(œ)( — s) are less than sx and vx(sx, p)v'x(sx, p)>0
for all ft sufficiently large (this follows from [13, pp. 347-349] and (4.8)). Hence if
for large ft we denote by xx(p) the image of sx under the transformation (4.6)
(with r= 1) then y(x, p)y'(x, p.) is positive in the interval [xx(p), h2 — b(p)] for all ft
sufficiently large ([17, p. 110]); so if 2<r*, then the same argument as before shows
that lim„_00 /c1>2(ft) = 0. If 2sjj<r* and lim^..^, zí:1>r(ft) = 0, r= 1,.. .,j, then we can
choose Sj>0, Sj $ Ij, so that all the real zeros (if any) of Dv¡r<c)( — s) are less than s¡
and Vj(Sj, pWfej, p) > 0 for all ft sufficiently large. Hence if for large ft we denote
by x,(fi) the image of s¡ under the transformation (4.6) (with r=j) theny(x, ft)y'(^. p)
is positive in the interval [xj(p), hj+x — 8(p.)] for all ft sufficiently large; so if (/+1)
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<r*, then the above argument also shows that lim,,..,», k1J+1ip) = 0. Our assertion
now follows by induction.

In a similar manner we can show that if r*<p, then lim„_„o k2r(p) = Ç) for
z" = (/•*+ 1),.. .,p. Here for r = (/•*+ 1),.. .,p, we choose sr < 0, sr $ Ir, so that all the
real zeros (if any) of DVrim)(s) are greater than sr and vr(sr, p)v'risr, p)<0 for all p
sufficiently large. Hence if for large p we denote by xr(/x) the image of sr under the
transformation (4.6), then y(x, p)y'ix, p) is negative in the interval [hr _ t + S(/x),
xr(/x)] for all p sufficiently large.

Now we first note from [15, Theorem 2.1] that_y(x, p) has no zeros in the intervals
0<xS/z1 — 8(/x) and hp + 8(p)^x<l for all p sufficiently large. Then for rj^r*
denote by Nr the number of real zeros of DVr(00)(s); and for each /xä/xf denote also
by J*ip) the interval obtained by deleting from JAp) its left-hand end point, by
J*ip) the interval obtained by deleting from JPip) its right-hand end point, and if
p > 2 put J*ip) =Jrip) for r = 2,..., (p - 1 ). Hence if r * > 1 and \-¿r<r*, then the
above arguments show that for all p sufficiently large vr{s, p) has precisely NT zeros
in J*ip) and all these zeros lie in the interval [— Sr, sr]; here we have used the fact,
which follows directly from (4.8) and our above remarks, that in any bounded
subset of the i-axis vr(s, p) and v'As, p) tend uniformly to V2j{s) and K2>r(i),
respectively, as p -> oo. Similarly if r*<p and r* <r^p, then for all p sufficiently
large vris, p) has precisely Nr zeros in J*ip) and all these zeros lie in the interval
[sr, Sr]. Also for all p sufficiently large vr.is, p) has precisely n* zeros in J*ip) and
all these zeros lie in the interval Jr.. But then we must have «* + 2f=1;r#r. Nr = m,
or from [14, p. 126], n* + 2?= i;r*r* [J'r(00)+ \]* = m, where [x]* is the greatest
positive integer less than x or zero if such a positive integer does not exist. Finally,
from (4.5) we see that

(4.9) n*+   2    t(*r-/Ar)1,2(«* + i) + i]* = m.
r=l:r*r'

Now referring to subsection III. 1 of Appendix III, and putting ar = br,r= 1,.. .,p,
we then see from (4.9) that (/*,«*) renders soluble the equation f,in) = m. But
Theorem III.1.1 states that this equation has a unique solution, namely (r+, nf);
hence r* = r*, n* = «+, and this completes the proof of our theorem.

Theorem 4.4. Ifib.fbA e Rfor at least one pair of integers ii,j), where 1 ̂  i,j^p
and i^=j, then the elements of the set {vr{oo)}%= j can be determined.

Proof. Let (1.1) be replaced by the perturbed equation

(4.10) /'(x) + (A + /xö(x, t) + q(x))y(x) = 0,       0 é X S 1,    t > 0,
where a(x, i) = a(x) — rg(x),

g(x) = ((Äl + h2)ß-x)5(x-hfg,,       0 ^ x ^ (A + /z2)/2,
(4.11) = (x-(/zr + /zr_J/2)m+i+/0/2-x)5(x-/*r)2gr,

(/zr + /zr_1)/2 ^ x ^ ihr+1+hr)/2,   r = 2,..., (p-1),

(4.12) = (x - (A, + A, _ i.)/2)5(x - /zp)2gp,       (A, + Ap _ J/2 ¿ x á 1,
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and with g* m((h2 -hx)f2fgx, g* = ((hr+x -K)l2f((h7 - hr _x)f2fgr, r = 2,..., (p -1),
g* = iihp — hr>-x)/2)!igp, the positive constants g*, r=l,...,p, are chosen in the
following way. If all the bT, r=l,...,p, are equal, we choose the g* so that
g*>g*> ■ ■ ■ >g$>0- If bra,D = bra,2)= • ' ■ =bra.i1)<br{2.i) = bn2,2)= • • ■ =bT(2j2)
< <Ar«.i) = ¿r(i,2) = ■ • • =br(uo> where /;> Ly'fä 1 for i=l,...,/, J!i=xji=p, and
hr(i,v<nm,2)< • ■ ■ <hT(ij0 if ji> 1 for /= 1,..., /, then the positive constants g*,
r=l,...,p, are chosen so that g*x.D>g*i.2)> ■ ■ ■ >g*ijo, and for i=2,...,/,
737(1-1,7i-i)>S'r(t,l)>z?r(i,2) > - ' - >grU,i,)-

Putting br(t)= —(%) d2a(hr, t)/dx2 = br + tg*, r=l,...,p, it is now a simple
matter to verify that if 1 tkhjfkp and i^j, then (bi(t)/bj(t)) is continuous, positive,
and either strictly increasing or strictly decreasing for t ^ 0.

Let i?*={x | x = ((2jA- l)[(2k+1))2, where j and k are integers, j=0,..., k and
zV = 0,..., (m + 2)}. If 1^/, j^p, i^j, and (1) (A,/Ay) $ R*, then denote by duj the
minimum distance between (z3,/z7) and the points of R*, and choose the positive
number tu so that \(bi/bj)-(bi(t)/bJ(t))\<diJ2 for 0í(ííu; (2) (¿»¡/Ay) e /?*, then
denote by t/the minimum distance between the points of R*, and choose the positive
number fM so that \(bi/bj)-(bi(t)/bi(t))\<dl2 for 0g/^/i>;. Hence putting

i, =      min      {/¡.y},
l£i,j£p;t*i

we conclude that if 1 S z, /SJ/> and /#/, then (6¡(r)/A>(0) £ Ä* for 0< /á fx.
Let Am(ft, f) be the mth eigenvalue of system (4.10), (1.2), and for p>0 put

Am(^t) = ((Uf,,t) + M)lpll2Ur(p,t) = {(Am(p,t)/2(br(t)y'2)-i},r = l,.. „/».Then
it is clear that we may argue with Am(ft, t) in precisely the same way as we did with
Am(ft), and indeed by modifying (4.3) and Theorem 4.2 so as to apply to system
(4.10), (1.2), we then know that vr(ft, /) tends to a finite limit as ft -*• oo, r=l,.. .,p,
and at least one such limit is an integer. We shall denote lim/i_tX) vr(ft, /) by »v(co, /),
r=l,...,p.

We remark now that if 0 < t £ tx, then precisely one element of the set {vr(cc, ;")}?=,
is an integer; and we shall denote this element by vrt(()(oo, 0 and put ivt(i)(co, /)
= nt(/). To see this, we return to the proof of Theorem 4.3, modify (4.6) and the
results given in the paragraph preceding this equation so as now to apply to system
(4.10), (1.2) and Xm(p, t), and let the eigenfunction y(x, p) now correspond to
Am(ft, /)■ Putting vr(s, p)=y(x, p.), x eJT, r= 1,.. .,p, we consider the analogue of
(4.7) and argue with Sturm's fundamental theorem to show that vr(oo, t)^mA-2,
r=\,.. .,p. Hence if i=£j, and ^(oo, /) = «¿, vy(oo, t) = n¡, where n¡ and n¡ are in-
tegers, then (see (4.5)) (Ai(/))1,2(«¡ + i) = (¿y(/))1'2(«y+-1r) and either (A.(i)/*/0) or
(bj(t)/bi(t)) is a member of R%, which is impossible.

We now assert that if 0<C¿tx, then the tuple (/+(0> K+(?)) is c'etermined by
putting ar = b¿t), r=\,.. .,p, in subsection III. 1 of Appendix III, and with/r(n)
given by equation (III. 1.1), solving for (/■*, w+) the equation fr(n) = m (see Theorem
III. 1.2) then we must have rf(t) = rf, «f(i) = «+. To see this, we make use of the fact
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that vrim(co, t) is the only element of the set {z2r(co, /)}?=i which is an integer and
hence we may argue precisely as in the proof of Theorem 4.3 to show that

(4.13) n\t) +      2       [ibrUt)lbrit)y2in\t)+\) + W = m,
r=l;r#rt(t)

where as before [x]* is the greatest positive integer less than x or zero if such a
positive integer does not exist. Now referring to subsection III. 1 of Appendix III
and putting ar = br(t), r= 1,.. .,p, we then see from (4.13) that (r*{t), n\t)) renders
soluble the equation f(n) = m; but Theorem III. 1.2 states that this equation has a
unique solution, namely (rf, nf), and hence Ait) = r't, «+(z') = /7t.

We now arrive at our fundamental result, i.e. if we put r = A(tA and ñ = n+(?i),
then vr-(oo, t) = ñ for 0</^/1. To see this, we fix an r, l^r^p, r^r, and put
<Prit) = {ibfit)/brit)y2íñ+i)-^} for /SO; we remark that d>r(t) is continuous and
either strictly increasing or strictly decreasing for r^O. We also observe from (4.13)
and the remarks immediately preceding (4.9) that cpr(t1) = vr(co, tx), and for some
nonnegative integer j not exceeding m we have [^r(z'1)+ l]*=j and j— 1 <cj>r{ti)<j.
We now assert that [</>r(t ) +1 ] * =j for 0 < / á t-,. For if this is not the case, then there
is a t2, 0<t2<t1, such that <j>r(t2) = k, where k=j or j— 1; but this implies that
(M'2))1,2(«+i) = (M/2))1'2(Â: + i) and therefore either ibf(t2)lbr(t2)) or (A^/M'a))
belongs to R%, which is impossible. Since r is arbitrary, we therefore conclude from
(4.1.3) that

(4.14) ñ+   J     libfit)lbrit))ll2iñ+i)+i]* = m   forO < t £ tt.
r = l:r±f

Now referring to subsection III. 1 of Appendix III, we see from (4.14) that if
0</<r1 and ar = brit), r=l,.. .,p, then (r, ñ) renders soluble the equation/r(«) = m.
But as we have stated above, this equation has the unique solution iA(t), n\t)),
and hence A(t) = r, n+(i) = «, O^gzV

Referring back to our original system (1.1-2), we now assert that vf(o3) = ñ, and
hence from (4.5) we can determine zzr(oo), r=l,...,p. Our assertion follows
immediately from the fact that lim^^ {Am(/x, r) — Am(p)} = Oit) as r->0 [15,
Theorem 3.1] and hence {(z3r-(0)1/2("+i)-(M1/2WQo)+i)} = 0(i) asI^O. This
proves the theorem.

Theorem 4.5. Let ibjb,) e R for at least one pair of integers (i,j), where 1 ̂ i,
jf^p and i^j. From the set ofintegers {r}f=1, let the subset X be formed by demanding
that r e X iffvr(oo) is an integer. Then X contains at least one element, and moreover,
if X contains precisely one element, and if we denote this element by r* and put
vr.(co) = n*, then (1.3) is valid with A1¡m = G1Air*,n*), A2>m = 0, and A3¡m =
Gi,2ir*,n*).

Proof. That X contains at least one element follows from Theorem 4.2. Referring
to the proof of Theorem 4.4 we see that if X contains precisely one element, then
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it must be r and hence vf(co) = « is the only element of the set {i2r(oo)}?=1 which
is an integer. Our theorem now follows by putting r* = r, n* = ñ and arguing with
(4.3) in precisely the same way as we did with (4.1).

From now on in this section we shall always assume that ib^bf) e R for at least
one pair of integers (i,j), where 1^/, j£p and zV./. Then in order to extend
Theorem 4.5 to the case where X contains more than one element, we can no
longer restrict ourselves to the investigation of the asymptotic behaviour of just
Xm(p). Hence for nonnegative integer zV#/w and p>0 put AN(p) = (XN(p) + pA)/p112,
and vr(p, N) = {iAN(p)ßibr)112)—-J}, r=l,...,p; and as in §2 we also note that
there are constants pN and A„, both greater than one, such that 0 < Aw(/x) < AN for
P¡ípN. Now it is clear that we may argue with Aw(/x) in precisely the same way as
we did with Xm(p), and by modifying (4.3) and Theorem 4.2 so as to apply to XN(p),
we then know that vríp, N) tends to a finite limit as p-> oo, /-= 1,...,/?, and at
least one such limit is an integer. We shall in the sequel denote lim„_00 vr(p, N) by
vr(oo, N), r=\,. . .,p (we remark that this notation will only be used if N^m; for
N=m we maintain our old notation, namely rr(co), r= I,.. .,p). We can then
argue with (4.10) in precisely the same way as we did in the proof of Theorem 4.4
and determine the tuple íríN), ñ(N)) satisfying vf,N)(co, N) = n~iN) and hence from
the analogue of (4.5) determine the set {>v(oo, N)}f=1.

Now returning to Theorem 4.5, denote the elements of the set A'by {r,)f=0, where
C>úp*úp— 1, and put vr¡i<x)) = nj, j=0,.. .,/»*. Here if/?* = 0, then r0 = r and n0 = ñ
(Theorem 4.4), while if/»*>0, then we shall always assume in the sequel, unless
otherwise stated, that the r¡, j=0,.. .,/»*, are arranged so that

(4.15) GU2(r0, n0) g GU2{ru ttx) á • • ■ £ G1>2(rp., np.),

where if ölj2(/"f_i, "j-i) = <Jli2(rj, nj) for 1 iWiwWp*, then Ar,_1<Ar,.

Theorem 4.6. Under the hypothesis of Theorem 4.5 assume that X contains at
least two elements. Let the elements of X be denoted by {r}}f= 0, where 1 £/>* ¿p— 1,
and put vrj(co) = nj: j=0,. . .,/?*; here the /-;,/'=0,. . .,p*, are arranged so that(4.15)
is satisfied. Let s = m — Nx, where ifm = 0, or if m>0 and vx(oo, m— l)<z21(oo), then
N1 = m, while if m>0 and j'1(oo, m— l) = v1(co), then Nx is the smallest integer
satisfying vi(co, N1) = vi(co). ThenQ^s^p*, andil.3) is valid with Altm = G1A(rs, ns),
A2,m = 0, and A3_m = G1_2irs,ns).

We shall not prove Theorem 4.6 directly; indeed this theorem follows immedi-
ately from Lemma 4.2 and Theorem 4.7.

In order to establish the validity of Theorem 4.6 we shall have to analyse (4.14)
in greater detail. To this end we return to the proof of Theorem 4.4 and write
(4.14) in the form

(4.16) /z + S! + S2 = m   for 0 < t £ tx,
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where

Sx =     2     tëryiO + l]*      it'P* > 0, Sx = 0   otherwise,
/-Oîryt'f

p
•S'a =     2     [^(O + Ll*        ifp*<p-l,       S2 = 0   otherwise,

r = l;r*X

and all other terms are defined in the proof of Theorem 4.4. Here we have sup-
pressed the t, and have written Sx for Sx(t) and S2 for S2(t), since we know from
the proof of Theorem 4.4 that both Sx(t) and S2(t) are constant in 0 < / ;£ tx. More-
over, we also know that S2(t) is constant in [0, tx]; for if p* </> — 1 and r $ X, then
4>r(0) = vr(oo) is not an integer, and so from the proof of Theorem 4.4 we see that
</>,(/) cannot assume integral values in the interval [0, tx]. Similarly if p*>0,
0¿/g/7*, and 7-y#7% then we know that </>r/0) = «,- and </>,//) does not assume
integral values in 0<raz"1 and is either strictly increasing or strictly decreasing in
[0, tx]; hence [<t>r,(t)+l]* = nj or «y + 1 for 0<tStx, and since j is arbitrary we see
that if.„ Hf^ñ+Si£p* + 2f.o »y.

Let P(m) denote the set of integers {Nx+j}jl0, where Nx = '2f=0njA-S2; we
observe from (4.16) and the above remarks that m eP(m).

Lemma 4.1. For each N e P(m) there is precisely one k, O^k^p*, such that

(4.17) N = nk+     J     [ibrk(t)lbr(t)y>2(nk + \) + W
r=l;r*rk

for all positive t sufficiently small.

Proof. If/?*=0, then m is the only member ofP(m) and r0 = ris the only member
of Xand our lemma follows directly from (4.16) (with « = «0 and Sx = 0).

We now consider the case p*>0. Then in order to avoid a proliferation of
notation, assume for the remainder of this proof that the elements of the set X
have been relabelled (if necessary) so that the bTj, j=0,.. .,p*, now satisfy the
relationship bro^bn^ ■ ■ ■ èbrpt, where if, for 1 ¡íifíp*, bri_1=br¡, then Ari_x<Ari.
Also from the definition of the functions {br(t)}?=1 given in the proof of Theorem
4.4, it is a simple matter to verify that if 1 ̂ i,j^p and i^j, then in the interval
/s=0, (bi(t)/b,(t)) is (1) strictly increasing if bj>b¡, (2) strictly increasing if bj = b{ and
hj > hi, (3) strictly decreasing if b¡ = b¡ and h¿ < h¡, and (4) strictly decreasing if b, < bt.

Now for O^kSp*, 1 Srâp, and r+r%, put <f-k,r(t) = {(brk(t)fbr(t)yi2(nk + i)-±;}
for /^0. We observe that ?7,r(/) is continuous and either strictly increasing or
strictly decreasing in r^O. If p*<p— 1 and r <f X, then we also know that f/7,r{0)
= (f>r(0) = vr(oo), which is not an integer (see (4.16)), and so for all / sufficiently small

2 [&.rO+i]*= 2 Mo+ir-s»
r = l;rtX r=l;rtX
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If k<p* and k<j^p*, then <pk¡riit) is strictly increasing for räO (see the remarks
above) and cf>krj(0) = nJ. If Âr>0 and 0^j<k, then <pk¡r¡it) is strictly decreasing for
/SO and <pk,r¡iíA) = nj. We therefore conclude that

nk +     2      [<M0+1]* = kA- 2 "jA-S2 = k + N,
r=l;r*rk i = 0

for all positive / sufficiently small. This proves the lemma.
Referring to the remarks immediately following Theorem 4.5, it is then clear

that for nonnegative integer N=£m we may argue with XN(p) as above and define
the set of integers PiN) in an analogous fashion to Pirn). We then have

Lemma 4.2. (1) If N eP(m) and A# m, then vr(oo, N) = v,(<x>)for r=l, ...,p and
the sets PiN) and P(m) are identical.

(2) Pirn) is precisely the set of integers which contains m and all integers N=£m
for which vr(co, N) = vr(oo) for r=\,. . .,p. Hence the integers N^m for which
i2r(co, A) = i2r(co) for r=l,.. .,p form together with m a set of(p* + l) consecutive
integers.

(3) If m>0 and 0^N<m, then vr(co, N)^vr(<x>, N+ l)S ■ ■ ■ â>r(oo, m— 1)
¿jzr(co) for r= 1,. . .,/?; and if for at least one r, 1 fírSp, Vri00, A) = zv(oo), then
N, ÍN+1),..., (m-1) mil belong to Pirn).

Proof. If N e P(m) and N=£m, then the arguments used in the proof of Theorem
4.4 show immediately that the analogue of (4.14) for XN(p) is precisely (4.17). So
we conclude from the proof of Theorem 4.4 that fiN) = rk, ñ(/V) = Mfc, vrJco, N)
= vr (oo), and hence from (4.5) and its analogue for XN(p), we see that vr(co, 7V) =
vT(ca),r=l,...,p.

We now show that if N is a nonnegative integer, N^m, and if for at least one r,
l^rfHp, vr(co, N) = vr(co), then NeP(m).. First, we observe from (4.5) and its
analogue for XN(p), that our hypothesis implies vr(co, 2V) = izr(oo), r=l,.. .,p. Then
the arguments used in the proof of Theorem 4.4 show that for precisely one k,
OázVá/z*, r(N) = rk, ñ(N) = nk, and (4.17) is valid for this k for all positive t suffi-
ciently small. Hence from Lemma 4.1 we conclude that NeP(m).

These results, together with our definition of Pirn), prove part (2) of our lemma.
Since part (2) can be modified to apply to PiN), part (1) of our lemma also follows.

To prove part (3), assume that there is ay', 1 èjûp, for which v/co, A)>iz;(oo).
Then (4.5) and its analogue for XN(p) imply that vr(oo, N)>vr(cc) for r= 1,.. .,p.
Now from (4.14) we see that 2?=i M°°, t)+l]*=m for 0<t^t1, where z2r(oo, t)
is continuous in [0, ij and »v(oo, 0) = »v(oo), r= 1,.. .,p. The analogue of this for
Av(/-0 (obtained by replacing ñ by ñ(N) and r by r(N) in (4.14) for all / sufficiently
small) is 2?= 1 Woo, N, t) + 1 ]* = N for 0 < / ^ t2 for some t2 > 0, where vr(oo, A7, t)
is continuous in [0, t2] and zzr(oo, N, 0) = zzr(oo, N), r=l,.. .,p. If 1 Sr^p, then
(vr(co, N, t)+])>(vr(oo, 0+1) and [vr(oo, N, 0+1]*è [^(00, 0+1]* for all t suffi-
ciently small. Thus 2?=i W00, A, 0+1]* = m> A for all t sufficiently small, which
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is impossible; hence vr(oo, N)^vr(co), r—\,...,p. We can also argue in the same
way to show that vT(co, N)^vr(co, N-\- l)g • • • fívr(co, m— l)gvr(oo), r=l,.. .,p,
and so part (3) of our lemma follows from the above results.

The connection between the set P(m) = {Nx+j}f=0 and the eigenvalues of (1.1-2)
is demonstrated in the following theorem. Since the case p* = 0 has already been
considered in Theorem 4.5, we shall only consider the case p*>0. We might also
point out that in this theorem particular attention must be paid to the ordering
described in (4.15).

Theorem 4.7. If p*>Q, then

Ki+iip) = ~pA + 2(briy<2(nj + \Ap"2 + GU2(rj,nA + o(l)

as ft -> oo, 7=0,. ..,/?*.

Proof. For convenience of notation we shall in this proof write w} for Gli2(r;, n¡),
j=0,..., p*, and denote by B the subset of the reals whose elements are precisely
the numbers whj=0,..., p*. Then returning to our investigation of the asymptotic
behaviour of Am(ft), we continue with the arguments which terminated with (4.15).
Referring to (4.3), we see that there is a ft+>0 such that for each ft^ft+,

|tfr»/cos 77(^ + 1)1 < exp{-WKP* + l)}

for at least one k, Ofikr^p*. Hence from (4.4), Appendix I, and by arguing with
our inverse function theorem as in the proof of Theorem 4.1, we see that for any
£>0 there is a p.(e)>0 such that for each ftïïft(e), \p}l2g(p) — wk\<e for at least
one k, where g(p.) = 2(bToyi2(vro(p)-n0) = 2(briyi2(ur¡(p.)-nj), j=0,.. .,p*. Since e
is arbitrary and g(p.) is continuous for ft>0, we therefore conclude that p.ll2g(p.)
tends to precisely one element of B as ft -> oo. But from §2 this implies that
{Am(ft) + pA— pll2g0] tends to precisely one element of B as ft -> oo, where

g0 = 2(A0)1/20,0 + i) = 2(briy2(nj + i),      j = 0,...,p*.

On the other hand, we see from part (1) of Lemma 4.2 that if N e P(m) and
N^m, then the above arguments applied to the analogue of (4.3) for AY(/x) lead to
the conclusion that {xN(p)A-pA—pll2ga} tends to precisely one element of B as
ft —> oo.

Hence for each j, Oá/á/7*, we conclude that My(ft) = {AJVl + y(ft) + ft^l— ft1,2g0}
tends to precisely one element of B as ft -> oo. If B contains precisely one element,
that is to say, all the w¡,j=0, ...,p*, are equal, then our theorem is proved for
this case. So from now on we shall assume that B contains at least two elements.
Since M0(p)<Mx(p)< ■ ■ ■ <Mp,(pA for ft>0, we see that if we put lim„^œ Mj(p)
= My(oo),y = 0, ...,/>*, then

(4.19) iW0(oo) ̂  Mx(co) g • • • á Mp,(co).

It only remains to show that My(oo)=Wy,/'=0,.. .,p*.
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Assume now that the wf, j=Q,.. ,,p*, are all distinct; then for each Ne P(m)
there is precisely one integer k(N), where 0^k(N)^p*, such that

(4.20) MN.Nliœ) = wkm.

Putting r* = rk<m) and n*=nk{m), we will proceed to the eigenfunctions corresponding
to Xm{p).

If in applying the results of §3 to our present section we replace yx{x, p) by
y1>r(x, ft) and y2(x, p) by y2,r(x, p), \x-hr\ á/*"8'18/^)1'4. r=l,...,p (see Theo-
rem 4.2) and if we denote by F(x, p) an eigenfunction of (1.1-2) corresponding to
Xm(p), then an investigation of the determinant which gives rise to (4.3), together
with the results stated in [18, Theorem 24.1, p. 124] and [13, pp. 347-348], shows
that for all sufficiently large values of p,

Y(x, p) = K1Jip)y1<r{x, p) + K2¡rÍp)y2,rix, p)
in \x-hr\ g p-3llsl(4bry\   for r=l, ...,p   and    r # r*,

(4'2I) = Kip)[«2rry2/n* \)Dn,i£)i> +Ci,m(l, f*))+P" 1!A2,M, ^t/xif, »•)]
in |x-/zr.| g p-15m/(4br.y*,

where f = (4/xèr.)1,4(x-Ar.), £>„.(£), C/^f, «*) are defined in Appendix I, and as
,"^oo, t'1.m(z'/x1'64,/x) = 0(/x-13'64), r2,m(i/x1-'64,/x) = C)(l), uniformly in |i|Sl, and
(KUr(p)/K(p)) = 0(exp {-Ay2}), «'=1,2, r=l,...,/», r#r*, where A+ is a positive
constant.

Put A = maxNe/,(m) {AN} (see §2 and the remarks immediately following Theorem
4.5), b* = max1Érñp {br}, S+ = ((A+ Q)/b6y2, S* = (4/3*)1,4St, and choose the positive
constants S and zx+ so that S> S* and /x.+ >max {2, ((4A)1/4A) - 61/15, S64} (and where
all terms that are not defined above are defined in the proof of Theorem 4.3). If
<j>m(x, p) is the eigenfunction of (1.1-2) corresponding to Am(/x)such that \10<f>2Ax,p)dx
= 1, then (4.21), the results of subsection 3.1, and [15, Theorem 2.1] show that the
absolute maximum of \<j>mix, p)\ in [0, 1] is attained in the interval \x — hr.\ g/x^1,4S+
for all sufficiently large values of p. Hence from (4.21) and [15, Theorem 2.3 and
the remarks immediately preceding Theorem 2.5], we see that there exists a sequence
of values of p, {/x,}™=1, pf <p1<p2< ■ ■ -, lim,^ /x, = co, such that for all sufficiently
large values of / and with <f>m(x, ix,)=Zm(£, pj), £ = i4plbr.)lli(x-hr.),

z»(f, pt) = kjp^DAW+ih.M, pA)+ín*ili2iry2)prlliv2¡M, pAUAè, »*)],
-S â i á S,

(4.22.W) = km(fJLi)DAm+V3Mj ft)]j        s < ^ ^
= AB(/a,)Z)B.(í)[l +»4.«(f, w)],        ~lAm á £ = -s,

and
((Zm(^r'64, zx¡))2 + /x1'2(Z;(W64, zx,))2)1'2 = 0(exp {-A*pI>32})

as /-> oo, uniformly in |r| = 1 (and of course t is restricted so that Os=xá 1), where
' = d/d£, A* is a positive constant, i/i.m(f, /x¡), i'2.m(£ Mi) as above, vUm(tp}m, p,)
= 0(zxr13'64) as /-^oo, uniformly in ^-1/64< J/|á 1, 1=3,4, and

rrwkji*d = ii4b,.yAi2rry2(n*\)y2[i+oipr13l6i)]  as /->oo.
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If for each N e P(m) and N=£m we denote by <f>N(x, p.) the eigenfunction of (1.1-2)
corresponding to XN(p) and satisfying JJ 4>N(x, p) dx=l, then by a selection of a
subsequence of the ft,, 1=1,2,..., and relabelling suitably (see the remarks
immediately preceding (4.22.777)) we can also assume that (4.22.zV) (obtained from
(4.22.m) by replacing r* by rMN), n* by nWN), and m by jV) is valid for <f>N(x, p).

Now we know from (4.19) and (4.20) that wkWl)^wkiNi + X)^ ■ ■ ■ ̂ wkiNl + p,¡. On
the other hand, from the orthogonal properties of the eigenfunctions, we see from
equations (4.22.Nx),. .., (4.22.Nx+p*), [13, pp. 350-351], and [15, proof of Theo-
rem 2.5] that the k(N), N—Nx,..., (Nx+p*) must all be distinct. Since w0<wx
< ■ • ■ <wp., we therefore conclude that k(NxA-j)=j, j=0,.. .,p*. Hence M/co)
= wk(N1 + j) = wj,j=0, ■ ■ -,P*, and our theorem is proved for this case.

To prove our theorem for the case where the Wj,j = 0,. . .,p*, are not all distinct,
we replace (1.1) by the perturbed equation

(4.23)    y"(x) + (\ + pta(x)+q(x, t))y(x) = 0,        0 S x S 1,    ' = dfdx,    t > 0,

where q(x, t) = q(x) — tx. If for N e P(m) we denote the M h eigenvalue of system
(4.23), (1.2) by XN(p, '). and denote by B(t) the subset of the reals whose elements
are precisely the wj(t) — wjA-thrpj=0,.. .,p* (see (4.4) and Appendix I), then our
above calculations tell us that MN_Nl(p,, t) = {XN(p, t) + pA—pll2g0} tends to
precisely one element of B(t) as ft-*- oo. On the other hand, for all / sufficiently
small we see from (4.15) that w0(t)<wx(t)< ■ ■ ■ <wp.(t); and so from above we
conclude that lim,,.,«, Mj(p, t) = Wj(t),j = 0, ■ ■ -,p*, for all t sufficiently small.

Consider now the differential equation in the two parameters y and ft,

(A ja\ y"(x) + (y+g0píl2-p(A-a(x))+q(x))y(x) = 0,
K      ' 0 á x <t 1,    ' = dfdx,   ft > 0,

and where all terms are as previously defined. For each positive ft denote the
eigenvalues of (4.24), (1.2) by {yn(p)}ñ=o, where y0(p.)<yx(p.)< ■■■, limn^G0 yn(p)
= co, and where an eigenfunction corresponding to yn(ft) has precisely n zeros in
(0, 1). Now it is clear that fory'=0,.. .,p*, yN,+j(p) = Mf(p), and hence

lim yNl + j(p) = My(oo).

If N* = (Nx+p*A-1), then we may also argue with A^íjn) in the same way as we
did with Am(ft) to show that {XN.(p.) + pA —2(bxp)ll2(vx(oo, A'*)-!-^)} tends to a finite
limit as ft —> oo. Then by arguing as in the proof of part (3) of Lemma 4.2, it is a
simple matter to verify that ^(co, N*)^vx(co); and since TV* $P(m), we conclude
from this lemma that vx(ao, N*)>vx(co). Since

y NAP) = [AJv.(ft) + M-2(/J1f,)1'2(,1(a), 7V*) + i) + 2(7ft)1'2(v1(c», N*)-vx(œ))],

we therefore conclude that lim^..^ yN.(p.) = co. Similarly if Nx >0, then we can also
show that lim,,..«, yN,-i(p)= -**>•
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With z7(x, /) as defined in (4.23), replace (4.24) by the perturbed equation

(A ™ y"(x) + (y+g0pll2-p(A-a(x))+q(x, t))y(x) = 0,

{ ■   ' Qúx =\,    ' = dfdx,   ft > 0,    t > 0,

and for each positive ft denote the eigenvalues of system (4.25), (1.2) by yn(ft, /),
n = 0, 1,.... Then it is clear that fory=0,.. .,/>*, yNl + j(p, t) = M¡(p, t), and hence
lim«-,» yNí + j(p, t) = Wj(t) for all / sufficiently small.

Now we may argue with systems (4.24), (1.2) and (4.25), (1.2) as in [19, pp. 231-
233], [15, Theorem 3.1] to show that lim,,^«, {yNl + j(p, /) — yNl + j(p)} = 0(t) as f->0,
7 = 0,.. .,p*. Thus {wy-b/A^ —/Vfy(co)} = 0(i") as /->0,j'=0,.. .,p*, and hence our
theorem follows.

5. Main results for the case a(0) = A and a(l)<A.
5.0. Introduction. In this section we consider the case where a(x) = A at precisely

the finite set of points {Ar}f°=0, where p ^0 and 0 = ho<hx< ■ ■ ■ <hp< 1. Then
throughout this section, unless otherwise stated, we shall consider the integer m
fixed as before and use the results of §3 to verify (1.3). Since for the most part the
arguments of §4 can be modified so as to apply to the work of this section, we shall
therefore content ourselves here with mainly stating our results and only elabora-
ting on points where the arguments of §4 are no longer valid. Finally, the two cases
(1) a = 0, (2) a#0 will be treated separately; and for terminology we refer to
§§2 and 4.

5.1. The case cz = 0. An argument analogous to that used in Theorem 4.2,
together with the results of §3, show that if p>0 (and with obvious modifications
ifp = 0) then

(5.1.1) Ko*(p.) Jl Kr(p) = o(exp {- Aft1'2})   as ft -> oo,
r=l

where

A-*(ft) = sin tt(,0+ D/2-cos ^o+\)l2[coA2Mp-lliß + (W0M+fo*ip))p'1'2l2],

fo(p) = °0) as ft-> oo, W0(x) is given by (4.4) with z- = 0, and all other terms are
defined in the statements immediately following (4.3).

Theorem5.1.1. Ifp = 0, then (1.3) is valid with Ax ,m = G2>1(0, m), A2¡m = G2r2(0, m),
and A3,m = G2t3(0,m).

From now on in this section we shall assume that p > 0. Then by arguing with
(5.1.1) as in Theorem (4.2) we have:

Theorem 5.1.2. As p -> co, vr tends to a finite limit, r = 0,..., p, and at least one
such limit is an integer.

In the sequel we shall denote lim„^œ vr by yr(oo), r = 0,.. .,p; and we observe
from §2 that if vr(co) is an integer, then it must be a nonnegative integer. Moreover,
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we see from (5.1.1) that if v0(oo) is not an odd integer, then at least one element of
the set {vr(oo)}?=1 is an integer. Also from §2 and Theorem 5.1.2 we see that

(5.1.2) (/30)1,2(vo(œ) + i) = (A)1,2W°o) + i),       r = 0.p.

Theorem 5.1.3. If {bdbf) $ R for i,j=0,.. .,p and i^j, then the elements of the
set fvr(co)]f= 0 can be determined. Furthermore, precisely one element of this set is an
integer, and v0(co) is either an odd integer or nonintegral. If we denote by v(oo) me
element which is an integer and

(1) put v0(oo) = 2zz* + l ifr* = 0, then (1.3) is valid with Altm = G2>1(0, n*), A2¡m
= G2,2(0, n*), and A3¡m = G2¡3(0, n*);

(2) put vr.(œ) = n* //WO, then (1.3) is valid with A1>m=Gul(r*, n*), A2¡m = 0,
and A3,m = G1¡2ir*,n*).

Proof. First we observe from (5.1.2) that only one element of the set {vr(oo)}ï=0
can be an integer; and from our above remarks we also see that if v0(oo) is integral
then it must be odd. We now assert that in order to determine the tuple (/*, «*)
stated in our theorem, we need only put ax — br, r = 0,.. .,p, in subsection III.2 of
Appendix III, and with fr(n) given by equation (III.2.1), solve for (rf, ri*) the equa-
tion fr(n) = m (see Theorem III.2.1) and then we must have r* = A, z?* = «+. This
assertion is proved by arguing with (5.1.1) and (5.1.2) as in the proof of Theorem
4.3. Our theorem then follows from (5.1.1) and (5.1.2).

Theorem 5.1.4. If (fidbAeR for at least one pair of integers (z',7), where O^z,
y'¿/2 and i^=j, then the elements of the set {izr(co)}f= 0 can be determined.

Proof. We consider (4.10) with a(x, t)=¡a(x)—tg(x),

gix) = ilhß-xfx2g0, OSxS Ax/2,
P-'-^ = {x_hli2fHh2 + h^2-xfix-lHfgi, hl2 úxú (A2+A1)/2,
and for the intervals (/zr + /?,._1)/2iix5;(/?r.(.1 + /zr)/2, r=2,..., (p— 1), and
(As + hp_ j)/2 áxè 1, let gix) be defined by (4.11) and (4.12) ; and with g* = ihJ2)Bg0,
gf = ((Ar+ ! -Ar)/2)5((Ar-hr_ Aßfgr, r= 1,..., (p-1), g* = Hhp -hp_0/2)^, the
positive constants gf, r = 0,.. .,p, are chosen in the following way. If all the br,
r = 0,.. .,p, are equal, then we choose the g* so that g*>gf > ■ ■ ■ >g*>0. If
£,r(l,l) = ''r(l,2) = ' ' ' =ör(l,2'1)<''r(2,l) = z7r(2,2)= ' ' '' = Z7r(2>y2)< • • • < Or(¡>1) = Or(ii2) = • • • =

bnUÙ, where /> l,j\^l for i=l,...,l, 2l-iM=P+ I, and Ar(1,i)<Ar((,2)< • ■ • <hrUM
if/¡> 1 for /= 1,. .., /, then the positive constants g*, r = 0,.. .,p, are chosen so that
g*a,i,>g*i.2)>--->g*i.i1) and for z'=2,...,/, g*i-ijt_l)>g*i,v>g*i ,2)> • • •

^in-
putting brit)= — Ü) d2a(hr, t)/dx2 = br + tg*, r=0,.. ,,p, it is a simple matter to

verify that iíOéi,j¿p and /#/', then (b¡it)/bj(t)) is continuous, positive, and either
strictly increasing or strictly decreasing for t^O.

Finally, let R* = {x | x = ((2/+I)/(2A+l))2, where j and k are integers, ./ = 0,
..., k, and zV = 0,..., (2m+ 4)} and choose the positive number t1 (see Theorem
4.4) so that if 0 ̂ i, jSp and z#y, then (MO/6/0) éR*íorO<t¿ t,.
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We now assert that if we put ar = br(tx), r = 0,...,p, in subsection III.2 of
Appendix III, and with f(n) given by equation (III.2.1), solve for (A,nf) the
equation fr('¡) = m (see Theorem III.2.2) then v0(co) = 2zzt+l if r+ = 0, z>rt(co) = «+ if
r+/0. Hence from (5.1.2) we can determine the elements vr(oo), r=0,...,p. This
assertion follows by arguing as in Theorem 4.4.

Theorem 5.1.5. Let (Aj/fty) e Rfor at least one pair of integers (i,j), where O^i,
j^p and ij^j. From the set of integers {/"}?= 0, let the subset X be formed in the
following way : (1 ) if 1 g r :£/?, then r e X iffvr(co) is an integer, and (2) 0 e X iff V0(oo)
is an odd integer. Then X contains at least one element, and moreover, if X contains
precisely one element, and if we denote this element by r* and

(1) put v0(oo) = 2n* +1 ifr*=Q, then (1.3) is valid with AXim = G2¡x(0,n*), A2_m
= G2,2(0, «*), and A3¡m = G2,3(0, n*) ;

(2) put vr.(oo) = n* ifr*^0, then (1.3) is valid with AUm = Gx,x(r*, «*), A3,m=0,
and A3,m=-Gx,2(r *,«*).

Proof. We observe from our previous remarks that X contains at least one
element. Referring to the proof of Theorem 5.1.4, we see that if X contains precisely
one element, then it must be A, and (1) if r+ = 0, then v0(oo) = 2«++1, and no
element of the set {vr(oo)}?=1 is an integer, while (2) if A^O, then i7rt(oo) = n+ and
v0(co) is not an odd integer. Our theorem now follows immediately from (5.1.1) if
we put r* = A and n* = iA.

From now on in this section we shall always assume that (bjbj) e R for at least
one pair of integers (i,j), where 0^/, j¿p and i^j. Then in order to extend
Theorem 5.1.5 to the case where X contains more than one element, we can no
longer restrict ourselves to the investigation of the asymptotic behaviour of just
Am(ft). Hence for nonnegative integer Nj=m and ft>0 put

(5 1 4)     AN(fl) = (W+M)//*1'2,       vAlh N) = {(AN(p)/2(bry,2)-i},
r = 0,.. ., p.

Now it is clear that we may argue with \N(p) in precisely the same way as we did
with Am(ft), and by modifying (5.1.1) and Theorem 5.1.2 so as to apply to A^(ft), we
then know that vr(ft, N) tends to a finite limit as ft-»- oo, r = 0,.. .,p, and at least
one such limit is an integer. We shall from now on denote limu^00 vr(p,, N) by
vr(oo, N), r = 0,.. .,p; and by modifying the proof of Theorem 5.1.4 so as to apply
to XN(p.) instead of Am(ft), we can determine the set {vr(oo, N)}?=0.

Referring to Theorem 5.1.5, consider now the case where X contains at least two
elements. Denote the elements of Xby {r¡}f= 0> where 1 Up* Up, and for the moment
assume that the elements of X have been labelled in some definite manner. Then
for fi>0 we introduce the functions Zt(p), 7 = 0,.. .,p*, in the following way:
(1) if 1 ̂ /-y^/7, put j7r/(oo) = Wy and Zj(p) = GX-2(rj, «,), and (2) if z"y = 0, put v0(oo)
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= 2/2;+l and Z//x) = /x1,4G2i2(0, «3) + G\3(0, nA. Then by relabelling if necessary,
we shall from now on assume that for all p sufficiently large

(5.1.5) Z*)á^Wí":S2Wc).
where if Z¡_1(/x)=Z¡(/x) for 1 ̂ i^p* and all p sufficiently large, then Ar,_1<Ar,.

Theorem 5.1.6. Under the hypothesis of Theorem 5.1.5 assume that X contains at
least two elements. Let the elements of X be denoted by {r,}f= 0, where l^p*^p, and
for7=0,.. .,p* put (1) izrj(co) =/2; ifrj^O, and (2) iz0(oo) = 2«J+ 1 if r, = 0; here the
r¡, 7 = 0,. . .,/>*, are arranged so that for all p sufficiently large (5.1.5) is satisfied.
Let s = m — N1, where if m — 0, or if m>0 and v0(co, m—I)<v0(co), then N1 = m,
while if m>0 and v0(co, m— l) = v0(oo), then N± is the smallest integer satisfying
"o(°°. Ax) = i20(oo). The   0 ^ s ép*, and

(1) if z"s = 0, then (1.3) is valid with ^i,m = G2>1(0, ns), A2¡m = G2j2iO,ns), and
A3.m = G2¡3iO,ns);

(2) if rs^0, then (1.3) is valid with A1,m=G1,1(rnttt), A2>m = 0, and A3¡m =
Gi,a(r„ ns).

5.2. The case a^O. For this case the analogue of (5.1.1) is

(5.2.1) ^0V)fl^W = o(exp{-A/x1'2})   aszx^oo,
r=l

where

Kf0(p) = coS7t(v0+1)/2
+sin7r(iz0+l)/2[<Co/i2(v0)/3+(r((l+,0)/2)/r(l+v0/2))((z30)-1'4/2)cota>/x-1'4

+ <H/oK)+/oV)>(^-1,72)],

foip) = oil) as p -> oo, and the remaining terms are defined in subsection 5.1.

Theorem 5.2.1. Ifp = 0, thenil.3) is valid with A1,m = G3tA®,m),A2¡rn = G3i2(Q,m, a),
and A3¡m = G3,3iO, m, a).

From now on in this section we shall always assume that p > 0.

Theorem 5.2.2. As p^ oo, vr tends to a finite limit, r = 0,.. .,p, and at least one
such limit is an integer.

In the sequel we shall denote lim,,.,» v, by vr(oo), r = 0,.. .,p; and we observe
from §2 that if vr(co) is an integer, then it must be a nonnegative integer. Moreover,
we see from (5.2.1) that if v0(oo) is not an even integer, then at least one element of
the set {zzr(oo)}?= 1 is an integer. As before, we also have

(5.2.2) (b0y'\v0(cD) + ti = (6r)1,2K(cG) + i),       r = 0,...,p.

Theorem 5.2.3. Ifibjbj) $ R for i,j=0,.. .,p and i^j, then the elements of the
set {jzr(oo)}?= 1 can be determined. Furthermore, precisely one element of this set is an
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integer, and vrXoo) is either an even integer or nonintegral. If we denote by >v(co) the
element which is an integer and

(\) put v0(oo) = 2m* if r* = 0, then (1.3) is valid with Ax,m = G3¡x(0,n*), A2¡m
= 63,2(0, n*, a), and A3¡m = G3t3(0, n*, a);

(2) put vr,(ao) = n* //>*#0, then (1.3) is valid with Ax¡m = Gx¡x(r*, n*), A2¡m = Q,
and A3¡m = Gx>2(r*,n*).

Proof. First we observe from (5.2.2) that only one element of the set {^(00)}^ 0
can be an integer; and from our above remarks we also see that if va(co) is integral,
then it must be even. We now assert that in order to determine the tuple (/*, n*)
stated in our theorem, we need only put ar = br, r — 0,.. .,p, in subsection III.2 of
Appendix III, and with f(n) given by equation (III.2.2), solve for (rf, n+) the
equation f(n) = m (see Theorem III.2.1), and then we must have r* = A, n*=nf.
Our theorem then follows from (5.2.1) and (5.2.2).

Theorem 5.2.4. If (bdb,) e R for at least one pair of integers (i,j), where OS/,
7S/7 and ij^j, then the elements of the set {vr(co)}?= 0 can be determined.

Proof. With all terms as defined in the proof of Theorem 5.1.4, we now assert
that if we put ar = br(tx), r = Q,.. .,p, in subsection III.2 of Appendix III, and with
fr(n) given by equation (II 1.2.2), solve for (A, ri*) the equation f(n) = m (see Theo-
rem III.2.2), then v0(co) = 2ni if A = 0, vr\(co) = hi ifr+^0. Our theorem now follows
from (5.2.2).

Theorem 5.2.5. Let (bjb,) e Rfor at least one pair of integers (i,j), where OS/,
7S/7 and i=£j. From the set of integers {/"}?= 0, let the subset X be formed in the
following way : ( 1 ) //1 <_ r <_/>, then r e X iffvr(<x>) is an integer, and (2) 0 e X iff v0(oo)
is an even integer. Then X contains at least one element, and moreover, if X contains
precisely one element, and if we denote this element by r* and

(1) put v0(oo) = 2rt* if r* = 0, then (1.3) is valid with Ax¡m = G3,x(0,n*), A2¡m
= 63,2(0, n*, a), and A3¡m = G3,3(0, «*, ct) ;

(2) put vr.(oo) = n* ifr*^0, then (1.3) is valid with Ax¡m = Gx¡x(r*, «*), ^2,m = 0,
andA3-m = Gx,2(r*,n*).

Proof. We observe from our previous remarks that X contains at least one
element. Referring to the proof of Theorem 5.2.4, we see that if A'contains precisely
one element, then it must be A, and (1) if r+ = 0, then v0(co) = 2/7.t and no element
of the set {vr(cc)}ï=x is an integer, while (2) if r+/0, then vrt(oo) = «+ and v0(co) is not
an even integer. Our theorem now follows directly from (5.2.1) if we put r* = A
and «* = z7t.

From now on in this section we shall assume that (bjbf) e R for at least one pair
of integers (i,j), where 0Si,jSp and iytj. For nonnegative integer N=£m, we now
consider A„(fi) and define AN(ft) and vr(p, N), r = 0,.. .,p, as in (5.1.4). Then we
can argue with ï\N(p) in precisely the same way as we did with Am(fi) in Theorem
5.2.2 to show that vr(jx, N) tends to a finite limit as ft ^00, r = 0,.. .,p, and at
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least one such limit is an integer. We shall from now on denote lim,,-,«, vr(p, N)
by vr(oo, N), r = 0,.. .,p; and by modifying the proof of Theorem 5.2.4 so as to
apply to Aw(ft) instead of Am(ft), we can determine the set {vr(ao, N)}?=0.

Referring to Theorem 5.2.5, consider now the case where X contains at least two
elements. Denote the elements of Xby {r,)f^o, where 1 <./>* <_/>, and for the moment
assume that the elements of X have been labelled in some definite manner. Then for
ft>0 we introduce the functions Z,(p),j=0,.. -,p*, in the following way: (1) if
1 S/-ySy9, put vrj(oo) = «y and Zj(p) = GXt2(rj, nf), and (2) if rf = 0, put i70(co) = 2«y and
Zy(ft) = ft1,4GJ3,2(0, «y, a) + G7,3(0, «y, a). Then by relabelling if necessary, we shall
from now on assume that for all ft sufficiently large

(5.2.3) Zo(ft) S Zx(p) S •■• S Zp.(pA,

where if Zi_1(ft)=Zi(ft) for 1 S/S/7* and all ft sufficiently large, then hu_1<hr..

Theorem 5.2.6. Under the hypothesis of Theorem 5.2.5 assume that X contains
at least two elements. Let the elements of X be denoted by {r,)T=o, where 1 S/7* S/?,
andforj=0,. . .,p* put (1) vr¡(co) = n¡ ifr^O, and(2) v0(ca) = 2nj ifr} = 0; here the
z-y, 7 = 0,. . .,p*, are arranged so that for all p. sufficiently large (5.2.3) is satisfied.
Let s = m — Nx, where if m = 0, or if m>0 and v0(oo, m—l)<v0(cc), then Nx=m,
while if m>0 and v0(od, m— l) = v0(oo), then Nx is the smallest integer satisfying
v0(oo, Nx) = v0(co). Then OSíS/j*, and

(1) if rs = 0, then (1.3) is valid with Ax¡m = G3¡1(0, ns), A2¡m = G3¡2(0,ns,a), and
A3,m = G3_3(0,ns, a);

(2) if 7-s^0, then (1.3) is valid with Ax¡m = GXtX(rs,ns), A2¡m = 0, and A3,m =
Gx,2(rs, Hs).

6. Main results for the case a(0) = A and a(l) = A.
6.0. Introduction. In this section we consider the case where a(x) = A at precisely

the finite set of points {Ar}?=0\ where p^O and 0 = ho<hx< ■ ■ ■ <hp + x = l. Then
throughout this section, unless otherwise stated, we shall consider the integer m
fixed as before and use the results of §3 to verify (1.3). Since for the most part the
arguments of §4 can be modified so as to apply to the work of this section, we shall
therefore contend ourselves here with mainly stating our results and only elabora-
ting on points where the arguments of §4 are no longer valid. Finally, the four cases,
(1) « = 0, (3 = 77-, (2) <x = 0, ß^n, (3) «^¿0, ß^-n, and (4) a^O, ,3 = 77, will be treated
separately; and for terminology we refer to §§2 and 4.

6.1. The case a = 0, ß = n. An argument analogous to that used in Theorem 4.2,
together with the results of §3, show that ifp>0 (and with obvious modifications
ifp = 0) then

(6.1.1 ) K$(p.)K*+ x(p) fl Kr(p) = o(exp {- Aft1'2})   as ft -► oo,
r=l
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where

£,*+1G*) = sin7r(V(.1 + l)/2
+cosn(Vp + 1 + l)ß[cp + 1A2ivp+1)(p~^y3)-(Wp+1(Vp + 1)+f*+1ip))p-^2ß],

/p*+i(/u) = o(1) as p-^co, Wp+1(x) as given by (4.4) with r=p+l, and all other
terms are defined in subsection 5.1.

Theorem 6.1.1. As p^-co, vr tends to a finite limit, r = 0,...,(/?+ 1 ), and at least
one such limit is an integer.

From now on in this section we shall denote lim^» izr by v/oo), r = 0,...,(/?+ 1);
and we observe from §2 that if vr(oo) is an integer, then it must be a nonnegative
integer. Moreover, we see from (6.1.1) that ifp = 0 and v0(oo) is not an odd integer,
then vp+i(oo) must be an odd integer; while if p>0 and both v0(oo) and izp+1(oo)
are not odd integers, then at least one element of the set {vr(oo)}?=1 is an integer.
Also from §2 and Theorem 6.1.1 we see that

(6.1.2)        (60)1'2(,0(oo) + i) = (/jr)i/2(vr(oo) + i),       r = 0, ...,(/> + 1).

Theorem 6.1.2. If (6¡/6y) <f R for i,j=0,..., ip+l) and i^j, then the elements
of the set {12/00)}?= ¿ can be determined. Furthermore, precisely one element of this
set is an integer, and v0(co) is either an odd integer or nonintegral, while izp + 1(oo) is
either an odd integer or nonintegral. If we denote by i2r.(oo) the element which is an
integer and

(1) put v0(cc) = 2n% + l if r* = 0, then (1.3) is valid with AUm = G2AiO, «*),
A2,m = O\2(0, «*), and A3,m = G\3(0, «*);

(2) /2M/i2p+1(oo) = 2n* + l if r*=p+ 1, then il .3) is valid with Alm = G2Aip +1, n*),
A2,m= -G2¡2ip+l,n*), andA3-m = G2i3ip+l,n*);

(3) putvr.(oo) = n* ifp>0andl úr*Sp, then (1.3) is valid with A1¡m = G1Air*, n*),
A2,m = 0, and A3ym = GU2ir*,n*).

Proof. First we observe from (6.1.2) that only one element of the set {i2r(ao)}?id
can be an integer; and from our above remarks we also see that if v0(oo) is integral,
then it must be odd, while if >2p + 1(co) is integral, then it must also be odd. We now
assert that in order to determine the tuple (/•*, «*) stated in our theorem, we need
only put ar = br, r = 0,..., ip+l), in subsection III.3 of Appendix III, and with
fin) given by equation (III.3.1), solve for (A, «+) the equation fin) = m (see Theo-
rem III.3.1) and then we must have r* = A, n*=ni. This assertion is proved by
arguing with (6.1.1) and (6.1.2) as in the proof of Theorem 4.3. Our theorem then
follows from (6.1.1) and (6.1.2).

Theorem 6.1.3. If (b^jbAe R for at least one pair of integers (/,/'), where 0\W\i,
j^p+ 1 and i=/=j, then the elements of the set {iz/oo)}fio can be determined.
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Proof. We consider (4.10) with a(x, t) = a(x)-tg(x),

g(x) = (x - (A, + K . 7/2)5((l + Ap)/2 - x)5(x - hp)2gp,
(hp + hp_x)/2S xS (l+/7p)/2,

= (x-(l+/7p)/2)5(x-l)2gp+1,       (l+Ap)/2 S x S 1,

and for the intervals OSxS/7/2, (Aí+Ar_1)/2áx¿(Ar+i+Ar)/2, r= 1,..., (/>-l),
let g(x) be defined as in equations (5.1.3) and (4.11); and with

gï+i=((\-hP)l2ygp + x,
gt = ((hp-hp.x)i2f((i-hp)/2ygl„
g? = (ihr+x-hr)l2f((hr-hr.x)l2fgr,

r=l,..., (p-l), go=(hxl2)5g0, the positive constants g*, r = 0,.. .,(p+l), are
chosen in the following way. If all the br, r = 0,..., (pA-l), are equal, then we
choose the g* so thatg*>g*> ■■■>g*+1>0. If bra, X) = bra ,2)= ■ ■ • =braJO<bn2A)
= bn2i2)=---=br{2j2)<---<bnl¡X) = bHl¡2)=---=bHL:¡ú, where />1, fi^l for
i=l,...,/, 2.' = 17"i=/7 + 2, and hrityX)<hr(i¡2)< ■ ■ ■ <hr(iM \S jt>\ for /=1,...,/,
then the positive constants g*, r = 0,..., (p+l), are chosen so that g*i,i)>z?*i,a)
> • '   >gni.fi), and for / = 2,...,/, g*i-XJi-x)>g*i,i)>g?<.i,2)> ' ■ ■ >g%uo-

Putting br(t)=-(l)d2a(hr,t)/dx2 = br + tg?, r = 0, ...,(p+1), it is a simple
matter to verify that if OS/, 7S/7+I and ij*% then (/>,(/)/bj(t)) is continuous,
positive, and either strictly increasing or strictly decreasing for t = 0.

Finally, let R% = {x | x = ((2y'+ l)f(2k + l))2, wherey'and k are integers,7=0,..., k
and k = 0,..., (2m + 4)}; and choose the positive number tx (see Theorem 4.4) so
that if OS/, 7S77+I and i^j, then (¿>¡(f)/A/0) £ ^* for 0<íárx.

We now assert that if we put ar = br(tx), r = 0,..., (p+l), in subsection III.3
of Appendix III, and with f(n) given by equation (III.3.1), solve for (A, n+) the
equation f(n) = m (see Theorem III.3.2) then v0(co) = 2«++1 if A = 0, vp + 1(co)
= 2«+-|-1 ifr+=/7+l,andi7rt(oo) = ntif/7>Oand 1 St-+S/7. Hence using (6.1.2) we can
determine the elements vr(oo), r = 0,..., (p+l). This assertion follows by arguing
as in Theorem 4.4.

Theorem 6.1.4. Let (bjbj) e Rfor at least one pair of integers (i,j), where OS/,
jSp+l and i=£j. From the set of integers {t-}?=o, let the subset X be formed in the
following way: (1) ifp>0 and 1 S7-S/7, then r e X iffvA[co) is an integer, (2) 0 e X
iffv0(co) is an odd integer, and (3) (p+l) e X iffvp+x(co) is an odd integer. Then X
contains at least one element, and moreover, if X contains precisely one element,
and if we denote this element by r* and

(1) put v0(co) = 2n*+ 1 if r* = 0, then (1.3) is valid with AXm = G2¡x(Q, «*),
A2,m = G2,2(0, »*), and A3,m = G2i3(0, »*);

(2) /7t/ivp+1(oo) = 2n*-l-l ifr*=p+l, then (1.3) is valid with Ax¡m = G2¡x(p +1, «*),
A2,m=-G2¡2(p+1, n*), and A3,m = G2,3(p+l, /?*);

(3) putvr.(oo) = n* ifp>0andl ^r*¿p, then (1.3) is valid with Ax¡m = GXA(r*, n*),
A2,m = 0, and A3,m = Gx,2(r*, «*).
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Proof. We observe from our previous remarks that X contains at least one
element. Referring to the proof of Theorem 6.1.3, we see that if X contains precisely
one element, then it must be A, and (1) if A = 0, then iz0(co) = 2«++1, vp+1(co) is not
an odd integer, and no element of the set {vr(co)}?=1 is an integer if p>0, (2) if
A =p +1, then vp + /oo) = 2n+ + 1, ^(co) is not an odd integer, and no element of the
set {12/00)}? = ! is an integer if p > 0, and (3) if p > 0 and 1 ̂  A -¿.p, then vrt(co) = n+ and
both v0(oo) and vp+/co) are not odd integers. Our theorem now follows immediately
from (6.1.1) if we put r* = A and «* = «+.

From now on in this section we shall always assume that (6;/6y) e R for at least
one pair of integers (i,j), where Oái, j^p+l and /#/ Then in order to extend
Theorem 6.1.4 to the case where X contains more than one element, we can no
longer restrict ourselves to the investigation of the asymptotic behaviour of just
\mip). Hence for nonnegative integer N\£m anj /x>0 put

AN(p) = (XN(p) + pA)/pi>2,       vr{p, A) = {(Aw0t)/2(6r)1/a) - i),
(6-L3) z- = 0,...,(7, + l).
Now it is clear that we may argue with XN(p) in precisely the same way as we did
with Xm(p), and by modifying (6.1.1) and Theorem 6.1.1 so as to apply to XN(p),
we then know that v//x, A) tends to a finite limit as p^co, r = 0,..., ip+l), and
at least one such limit is an integer. We shall from now on denote limw^co vr(p, N)
by v/00, A), r = 0,..., ip+l); and by modifying the proof of Theorem 6.1.3 so
as to apply to XN(p) instead of Xm(p), we can determine the set {v/00, N)}ï=o.

Referring to Theorem 6.1.4, consider now the case where A'contains at least two
elements. Denote the elements of X by {r,}f=0, where l^p*úpA-l, and for the
moment assume that the elements of X have been labelled in some definite manner.
Then ïov p>0 we introduce the functions Zj(p),j=0,.. .,p*, in the following way:
(1) if p>0 and lúr^p, put vr¡(<x>) = nj and Z//x) = Glj2(ri, nj), (2) if ^ = 0, put
iz0(co) = 2/7;+l and Z//x) = /x1/4G2,2(0, ny) + C2,3(0, n,), and (3) if r<=p+l, put
i2p+1(co) = 2«3+1 and Z//x)= -/x1/4G2-2(^+1, nj) + G2,3ipA-1, nj). Then by relabel-
ling if necessary, we shall from now on assume that for all p sufficiently large

(6.1.4) Z0(p) í Z¿p) ^ ■ ■ ■ ̂  Zp.ip),
where if Z-i(z") = Z(/x) for 1 ¿z'^/z* and all p sufficiently large, then hri_x<hri.

Theorem 6.1.5. Under the hypothesis of Theorem 6.1.4 assume that X contains
at least two elements. Let the elements ofXbe denoted by {rj)f=0, where 1 ̂ p* fíp + 1,
and for j=0, ■ ■ -,p* put (1) izr/co) = ny if p>Q and 1 fkr¡%p, (2) v0(co) = 2n,+ l if
r¡ = 0, and (3) yp + 1(co) = 2«;+l if r¡=p+l; here the ^,7 = 0,.. .,/>*, are arranged
so that for all p sufficiently large (6.1.4) is satisfied. Let s = m — N1, where ifm = 0,
or if m>0 and v0icc, m—I)<v0(co), then Nx = m, while if m>0 and v0(co, m—1)
= iz0(co), then Aa is the smallest integer satisfying 120(00, A!) = v0(oo). Then O^s^p*,
and

(1) if rs = 0, then (1.3) is valid with A1¡m = G2AiO,ns), A2¡m = G2¡2iO,ns), and
A3,m = G2¡3iO,ns);
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(2) if rs=p + l, then il.3) is valid with AUm = G2AÍP + htis),A2¡rn=-G2¡2Íp + l,ns),
and A3ym = G2>3íp + l,ns);

(3) if p>0 and 1 ̂ rs^p, then (1.3) is valid with A1¡m = GltArs, ns), A2¡m = 0, and
^3,m=Glj2(/s, ns).

6.2. The case a = 0, ß=£ir. For this case the analogue of (6.1.1) is

(6.2.1) K*(p)K¡+Ap) El KM = oiexp {-A/x1'2})   as ¡, -> oo,
r = l

where

KÎ+AlA = cos 77(12, +1 +1)/2
-sin77(,r+1 + l)/2[<cp+1/(2(izp+1)'3 + (r((l+vp+1)/2)/r(l+Izp+1/2))

x((ép+1)-«*/2)cotj8>/i-"«
-<lTp+1(vp+1)+/pt+1(/x)>(/x-1'2/2)],

/p+1(/x) = o(l) as p -> 00, and all other terms are as defined above.

Theorem 6.2.1. As p -> 00, r, tends to a finite limit, r = 0,..., ip+ 1), and at least
one such limit is an integer.

From now on in this section we shall denote limw_OT izrby v/oo), r = 0,..., ip+l);
and we observe from §2 that if v/00) is an integer, then it must be a nonnegative
integer. Moreover, we see from (6.2.1) that if/» = 0 and iz0(oo) is not an odd integer,
then j2p+1(co) must be an even integer; while if/?>0, and iz0(co)is notan odd integer,
and i2p+1(oo) is not an even integer, then at least one element of the set {i2r(oo)}?=1
is an integer. As before, we also have

(6.2.2) (60)1,2K(oo) + i) = (6r)1,2Wo)) + i),       r = 0,..„(/> +1).

Theorem 6.2.2. If ib¡lbj) <f R for i,j=0,..., ip+l) and i^j, then the elements
of the set {12/00)}?¿0 can be determined. Furthermore, precisely one element of this
set is an integer, and v0(oo) is either an odd integer or nonintegral, while x/p + l(co) is
either an even integer or nonintegral. If we denote by vr.(co) the element which is an
integer and

(1) put v0(co) = 2z)* + l if r* = 0, then (1.3) is valid with A1,m = G2fl(0, n*),
A2,m = G2¡2iO, n*), andA3¡m = G2y3iO, n*);

(2) put vp+1(oo) = 2n* if r*=p+l, then (1.3) is valid with A1_m = G3Aip + l, «*),
A2,m= -G3Jp+l, n*, ß), and A3¡m = G3,3Íp+l, n*, ß);

(3) putvr.ico) = n* ifp>0andl Sr*^=P, then (1.3) is valid with A1¡m = G1Air*, n*),
A2,m = 0, and A3¡rn = G1¡2ír*, «*)•

Proof. First we observe from (6.2.2) that only one element of the set {iz/oo)}^,}
can be an integer; and from the above remarks we also see that if v0(oo) is integral,
then it must be odd, while if vp+ /oo) is integral, then it must be even. We now assert
that in order to determine the tuple (r*, n*) stated in our theorem, we need only
put ar = br, r = 0,..., ip+l), in subsection III.3 of Appendix III, and with f(n)
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given by equation (III.3.2), solve for (A, nf) the equation f(n) = m (see Theorem
III.3.1) and then we must have r* = A,n* = nf. Our theorem then follows from
(6.2.1) and (6.2.2).

Theorem 6.2.3. If (bjbj) e R for at least one pair of integers (i,j), where OS/,
7S/7+ 1 and i=/=j, then the elements of the set {17,(00)}?= 0 can be determined.

Proof. With all terms as defined in the proof of Theorem 6.1.3, we now assert
that if we put ar — br(tx), r = 0,..., (p+l), in subsection III.3 of Appendix III, and
with fr(n) given by equation (III.3.2), solve for (A, ri*) the equation fi(n) = m (see
Theorem III.3.2), then v0(oo) = 2«++1 if A = 0, vp+1(oo) = 2«+ if A=p+l, and
zyr(co) = r7.f if p>0 and 1 Sz-+S7?. Our theorem now follows from (6.2.2).

Theorem 6.2.4. Let (bJbA e Rfor at least one pair of integers (i,j), where OS/,
7S/7+ 1 and H=j. From the set of integers {r}?!}, let the subset X be formed in the
following way: (1) if p>0 and 1 SrS/j, then r e X iffvr(<x>) is an integer, (2) 0 6 X
iffv0(<x>) is an odd integer, and (3) (p+l) e X iffvp + x(co) is an even integer. Then
X contains at least one element, and moreover, if X contains precisely one element,
and if we denote this element by r* and

(1) put v0(oo) = 2n* + l if z"* = 0, then (1.3) is valid with Ax.m = G2,x(0,n*),
A2.m = G2,2(0,77*), and A3,m= G2.3(0, n*);

(2) put vp + 1(oo) = 2tî* //>*=/?+], then (1.3) is valid with Ax,m = G3fX(p+l, n*),
A2,m=-G3¡2(p+\,n*, ß), and A3_m = G3,3(p+ 1, n*, ß);

(3) put iv(oo) = n* ifp>0andl Sr*S/>, then (1.3) is valid with AXkm = GXA(r*, n*),
A2,m = 0, and A3¡m = GXt2(r*,n*).

Proof. We observe from our previous remarks that X contains at least one
element. Referring to the proof of Theorem 6.2.3, we see thatifA'contains precisely
one element, then it must be A, and (1) if A = 0, then i70(co) = 2«++ I, vp + x(co) is
not an even integer, and no element of the set {vr(co)}?=x is an integer if/z>0,
(2) if A =p+ 1, then rp+1(oo) = 2«t, v0(oo) is not an odd integer, and no element of
the set {^(co)}^ x is an integer ifp > 0, and (3) if p > 0 and 1 S A S/?, then vrt(oo) = «+,
v0(oo) is not an odd integer, and vp + 1(oo) is not an even integer. Our theorem now
follows directly from (6.2.1) if we put r* = A and n* = n!.

From now on in this section we shall always assume that (bdbf) e R for at least
one pair of integers (i,j), where OS/, 7S/7+I and //y". For nonnegative integer
N^m, we now consider A„(ft) and define AN(p.) and vr(fi, N), r = 0,.. ., (p+l),
as in (6.1.3). Then we can argue with A^ft) in precisely the same way as we did
with Am(ft) in Theorem 6.2.1 to show that v,(p., N) tends to a finite limit as ft —> 00,
r = 0,..., p, and at least one such limit is an integer. We shall from now on denote
lim„^a, vr(p, N) by vr(co, N), r = 0,..., (p+l); and by modifying the proof of
Theorem (6.2.3) so as to apply to Aw(ft) instead of Am(ft), we can determine the set
Woo, N)}?¿¿.

Referring to Theorem 6.2.4, consider now the case where A'contains at least two
elements. Denote the elements of X by {rf$'m0, where 1 S/7*S/7+ 1, and for the
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moment assume that the elements of X have been labelled in some definite manner.
Then for/x>0 we introduce the functions Z//x), 7 = 0,.. .,p*, in the following way:
(1) if />>0 and l^r^p, put vri(ao) = nj and Z//x) = Gli2(ry, nj), (2) if z~, = 0, put
*>0(oo)=2nJ+l and Z//x) = /x1,4G2i2(0, Z7;) + G2,3(0, nj), and (3) if r¿=p+l, put
vp+ /oo) = In, and Z3(p) = -pViG3,2ip + 1, n,-, ß) + G3,3(/> +1, n„ ß). Then by relabel-
ling if necessary, we shall from now on assume that for all p sufficiently large

(6.2.3) Z0(p) ^ Z,(p) 1%       1% Zp.{p),

where if Zi_1(p)=Zi(p) for 1 ̂ z'á/z* and all p sufficiently large, then hri_1<hn.

Theorem 6.2.5. Under the hypothesis of Theorem 6.2.4 assume that X contains
at least two elements. Let the elements of X be denoted by {rj}f= 0, where 1 ■¿p* ■¿p + 1,
and for 7 = 0,. . .,p* put (1) vr/oo) = «_,- ifp>0 and 1 ̂ r^p, (2) v0(co) = 2nj+l if
r< = 0, and (3) vp+ /oo) = 2«_, if rt =p+l; here the rh 7 = 0,...,p*, are arranged so
that for all p sufficiently large (6.2.3) is satisfied. Let s = m — N1, where if m = 0, or
if m>0andv0(co, m — 1 ) < v0(co), then N1=m, while if m>0andV0(oo, m— l) = >z0(oo),
then N1 is the smallest integer satisfying iz0(oo, Ai) = i20(oo). Then OSsf^p*, and

(1) if rs = 0, then (1.3) is valid with ^i,m = G2,1(0, ns), A2¡m = G2¡2(0, ns), and
A3.„, = G2,3iO,ns);

(2) i/ rs=p+l, then (1.3) is valid with A1¡m = G3AípA-1, ns), A2<m =
-G3i2ip +l,ns, ß), and A3%m = G3,3(/z +l,ns,ß);

(3) if p>0 and 1 ̂ rs^p, then (1.3) is valid with A1¡m = Gltl(rs, ns), A2¡m = 0, and
A3,m = G1,2irs,ns).

6.3. 772? case a/0, ß^-n. For this case the analogue of (6.1.1) is

(6.3.1) Kl{p)KUAp) IÍ KM = oiexp {-Ap112})   as p -> 00,
r = 0

with all terminology as in subsection 6.2 above.

Theorem 6.3. '. As p -> co, vr tends to a finite limit, r = 0, ...,(/?+1), and at least
one such limit is an integer.

From now on in this section we shall denote lim„^œ v, by v/00), r = 0,..., (/?+l);
and we observe from §2 that if 12/00) is an integer, then it must be a nonnegative
integer. Moreover, we see from (6.3.1) that if/z = 0 and i20(oo) is not an even integer,
then vp + 1(oo) must be an even integer; while if p>0 and both v0(oo) and >2p+i(oo)
are not even integers, then at least one element of the set {f/oo)}f=1 is an integer.
As before, we also have

(6.3.2) (60)1,2K(œ) + |) = (6r)1,2(v/oo) +i),       r = 0,..., (p+l).

Theorem 6.3.2. If ' (bjbj) $R for i,j=0,...,ip+l) and i^j, then the elements
of the set {vr(co)}fA} can be determined. Furthermore, precisely one element of this
set is an integer, and v0(oo) is either an even integer or nonintegral, while vp+1(oo) >s
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either an even integer or nonintegral. If we denote by vr.(co) the element which is an
integer and

(1) put v0(co) = 2n* if r* = 0, then (1.3) is valid with AUm = G3¡1(0, n*), A2¡m
= G3,2(0, n*, a), and A3¡m = G3_3(0, n*, a);

(2) put vp+x(co) = 2n* if r*=p+l, then (1.3) is valid with Ax¡m = G3¡x(p+l,n*),
A2,m= -G3i2(p+1, n*, ß), and A3,.n = G3,3(p+l,n*,ß);

(3)put vT.(oo) = n* ifp>0and\ St"*S/j, then (1.3) is valid with AXjm = GXjX(r*, «*),
A2,m = 0, and A3¡m = Gx¡2(r*,n*).

Proof. First we observe from (6.3.2) that only one element of the set {i7r(co)}f¿o
can be an integer; and from our above remarks we also see that if v0(oo) is integral,
then it must be even, while if i7p + 1(°°) is integral, then it must also be even. We now
assert that in order to determine the tuple (/*, n*) stated in our theorem, we need
only put ar = br, r = 0,..., (p+l), in subsection III.3 of Appendix III, and with
f(n) given by equation (III.3.3), solve for (A, n+) the equation f(n) = m (see Theo-
rem III.3.1) and then we must have r* = A, n*=rf. Our theorem now follows from
(6.3.1) and (6.3.2).

Theorem 6.3.3. If (/7/Ay) e R for at least one pair of integers (i,j), where OS/,
7 S p+ 1 and i^j, then the elements of the set {vr(oo)}^i0X can be determined.

Proof. With all terms as defined in the proof of Theorem 6.1.3, we now assert
that if we put ar = br(tx), r = 0,.. .,(p+l), in subsection III.3 of Appendix III, and
with/r(«) given by equation (1II.3.3), solve for (A, n+) the equation fr(n) = m (see
Theorem III.3.2) then v0(oo) = 2n+ if r+ = 0, i7p+1(oo) = 2«+ if A—p+ 1, and ivr(oo) = «f
if p>Q and 1 ̂ ASp. Our theorem now follows from (6.3.2).

Theorem 6.3.4. Let (bdb,) e Rfor at least one pair of integers (i,j), where OS/,
júp+1 and ij=j. From the set of integers {r}f¿o, let the subset X be formed in the
following way: (1) ifp>0 and 1 SrS/7, then r e X iff vr(oo) is an integer, (2) 0 e X
iff vo(co) is an even integer, and (3) (p + 1 ) e X iffvp+x(oo) is an even integer. Then
X contains at least one element, and moreover, if X contains precisely one element,
and if we denote this element by r* and

(1) put v0(oo) = 2n* if z-* = 0, then (1.3) is valid with ^i,m = G3-1(0, «*), A2?m
= G3-2(0,77*, a), and A3¡m = G3,3(0, «*, a);

(2) put vp+x(co) = 2n* if r* =p + 1, then (1.3) is valid with Ax,m = G3¡x(p+1, «*),
A2,m= -G3¡2(p+l, n*, ß), and A3,m = G3¡3(p+l, n*, ß);

(3) putvr.(co) = n* ifp>0andl Sr*S/7, then (\ .3) is valid with Ax¡m = Gx¡x(r*, n*),
A2,m = 0, and A3¡m = Gx¡2(r*,n*).

Proof. We observe from our previous remarks that X contains at least one
element. Referring to the proof of Theorem 6.3.3, we see that if X contains precisely
one element, then it must be A, and (1) if r+ = 0, then v0(°o) = 2nt, i7p+1(oo) is not
an even integer, and no element of the set {vr(oo)}f=1 is an integer if p>0, (2) if
7"+=/7 + l, then i7p+1(oo) = 2rt+, ̂ 0(co) is not an even integer, and no element of the
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set {12/00)}? = ! is an integer if/?>0, and (3) if/z>0 and 1 ̂ AALp, then ^+(00) = «* and
both v0(oo) and zzp+/oo) are not even integers. Our theorem now follows directly
from (6.3.1) if we put r* = A, n*=n*.

From now on in this section we shall always assume that ib^bj) e R for at least
one pair of integers (i,j), where Oáz, j^p+l and z'^7. For nonnegative integer
N^m, we now consider XNip) and define ANip) and v/zx, A), r = 0,..., ip+l), as
in (6.1.3). Then we can argue with XNip) in precisely the same way as we did with
Xm(p) in Theorem 6.3.1 to show that vr(p, A) tends to a finite limit as /x^co,
z* = 0,...,(/?+1), and at least one such limit is an integer. We shall from now on
denote limw_œ vr(p, N) by v/00, A), r—0,..., (p + l); and by modifying the proof
of Theorem 6.2.3 so as to apply to XN(p) instead of Xm(p), we can determine the set
{v/GO, N)}?¿¿-

Referring to Theorem 6.3.4, consider now the case where X contains at least two
elements. Denote the elements of X by {rj\f^0, where 1 úp*íkpA-l, and for the
moment assume that the elements of X have been labelled in some definite manner.
Then for p>0 we introduce the functions Z//x),7 = 0,.. .,/>*, in the following way:
(1) if p>0 and l^r^p, put vT)(co) = nj and Zj(p) = G1¡2irj,nj), (2) if z~, = 0, put
v0(oo) = 2«j and Z//x) = /x1/4G3>2(0, n„ a) + G3,3(0, n;-, a), and (3) if r;=/>+l, put
vp+ /oo) = 2n¡ and Z//x) = - /x1,4G3,2(/z +1, n}, ß) + G3t3ip+l, n}, ß). Then by relabel-
ling if necessary, we shall from now on assume that for all p sufficiently large

(6.3.3) Z0(p) á Z,ip) í   ■   í Zp,ip),

where if Zí_1(/x)=Zi(/x) for 1 ̂ i^p* and all p sufficiently large, then hTi_i<hu.

Theorem 6.3.5. Under the hypothesis of Theorem 6.3.4 assume that X contains
at least two elements. Let the elements of X be denoted by {r,)Vj'=0, where 1 ̂ p* Sp+ I,
andfor7 = 0,. . .,p*put (1) vr){co) = n¡ ifp>0 and 1 ̂ /-,^/z, (2) i20(oo) = 2«; z/ri = 0,
and(3) z/p + i(°o) = 2«J if Tj=p+l; here the r¡,j=C,,.. .,p*, are arranged so that for
all p sufficiently large (6.3.3) is satisfied. Let s = m — Nu where ifm = 0, or if m>0
and v0(co, m— l)<v0(co), then N^=m, while ifm>0 and v0(co, m— I) = v0ico), then
Ax is the smallest integer satisfying iz0(co, A1) = zz0(oo). Then O^s^p*, and

(1) if rs = Q, then (1.3) is valid with A,m = G3jl(0, ns), A2¡m = G3¡2iO,ns,a), and
A3,m = G3f3{Q, ns, a);

(2) if rs=p+l, then (1.3) is valid with A1¡m = G3AÍp+1, ns), A2¡m =
-G3,Ap+l,ns,ß), andA3,m = G3_3ip+l,ns,ß);

(3) ifp>0 and 1 ̂ rs^p, then (1.3) is valid with A1¡m = G1Airs, ns), ,42jm = 0, and
A3,m = G1¡2(rs, n¡¡).

6.4. The case ce^O, ß = ir. For this case the analogue of (6.1.1) is

(6.4.1) K¿(p)K*+1{p) fl Up) = 0(exp {-A/x1'2})   as p -> 00,
r=l

with all terminology as above.
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Theorem 6.4.1. As p -> oo, vr tends to a finite limit, r = 0,.. .,(p+ 1), and at least
one such limit is an integer.

From now on in this section we shall denote lim„^M vr by vr(oo), r = 0,.. .,(p+l);
and we observe from §2 that if vr(co) is an integer, then it must be a nonnegative
integer. Moreover, we see from (6.4.1) that ifp = 0 and v0(oo) is not an even integer,
then vp+1(oo) must be an odd integer; while if p>0, and v0(oo) is not an even
integer, and vp + 1(oo) is not an odd integer, then at least one element of the set
{vr(cc)}!f=x is an integer. As before, we also have

(6.4.2)        (boy2(v0(ao) + i) = (bAll2(vr(oD) + i),       r = 0,...,(p+l).

Theorem 6.4.2. If (bijb,)^ R for i,j = 0,..., (p+l) and i*£j, then the elements
of the set {vr(°o)}^¡¡ can be determined. Furthermore, precisely one element of this
set is an integer, and v0(co) is either an even integer or nonintegral, while vp + 1(co) is
either an odd integer or nonintegral. If we denote by vr.(oo) the element which is an
integer and

(1) put v0(oo) = 2tt* if r*=0, then (1.3) is valid with Ax¡m = G3,x(0, n*), A2¡m
= G3,2(0, /?*, a), and A3,m = G3¡3(0, n*, a);

(2) put vp+x(co) = 2n* + 1 ifr*=p+l, then(l.3)isvalidwithAXm = G2¡x(p+l, «*),
A2,m=-G2,2(p+l,n*), and A3_m = G2¡3(p+l,n*);

(3) putvr.(co) = n* ifp>0andl Sr*S/7, then (1.3) is valid with Ax m = GXiX(r*, n*),
A2,m = 0, and A3¡m = GXt2(r*,n*).

Proof. First we observe from (6.4.2) that only one element of the set {vr(oo)}J?±o
can be an integer; and from the above remarks we see that if v0(cc) is integral, then
it must be even, while if vp+1(oo) is integral, then it must be odd. We now assert
that in order to determine the tuple (/•*, «*) stated in our theorem, we need only
put aQ = bp + x, ap+x=b0, and ar = br for r=l,.. .,p if p>0, in subsection III.3 of
Appendix III, and with f(n) given by equation (III.3.2), solve for (/-+, «+) the
equation f(n) = m (see Theorem III.3.1); and then we must have «* = «+, r*=p+ 1
if t-+ = 0, r*=0 if A =p+l, and r* = A if p>0 and 1 St-1S/?. Our theorem then
follows from (6.4.1) and (6.4.2).

Theorem 6.4.3. If (b^bf) e R for at least one pair of integers (i,j), where OS/,
7S/7+ 1 and i=£j, then the elements of the set {^(oo)}?!,} can be determined.

Proof. With all terms as defined in the proof of Theorem 6.1.3, we now assert
that if in subsection III.3 of Appendix III we put a0 = bp + x(tx), ap + x=b0(tx), and
or=br(tx) for r=l,...,p if p>0, and with/r(M) given by equation (III.3.2), solve
for (A, n*) the equation fi(ri) = m, then v0(oo) = 2n+ if A=p+1, vp + 1(oo) = 2/it+ 1 if
A = 0, and vrt(oo) = nt if/j > 0 and 1 St-+S/7. Our theorem now follows from (6.4.2).

Theorem 6.4.4. Let (b^b,) e Rfor at least one pair of integers (i,j), where OS/,
7'S/)+1 and i^j. From the set of integers {r}?=o, let the subset X be formed in the
following way: (1) ifp>0 and 1 íír^p, then r e X iffvT(oo) is an integer, (2)0el
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iff v0(co) is an even integer, and (3) ip+l) e X iff' vp + 1(co) is an odd integer. Then
X contains at least one element, and moreover, if X contains precisely one element,
and if we denote this element by r* and

(1) put X70(oo) = 2n* if r*=0, then (1.3) is valid with A1¡m = G3tl(0, «*), A2¡m
= G3,2(0, «*, a), and A3_m = G3-3(0, n*, a) ;

(2) putvp+1(oo) = 2n*+l ifr*=p+l,then(1.3)isvalidwithAUm=G2,1(p+i,n*),
A2,m=-G2.2ip+l, n*), and A3tm = G2i3ip+ l, n*);

(3) putvr.i<x>) = n* ifp>Oandl ^r*^p, then il .3) is valid with A1,m = G1,1(r*, n*),
A2,m = 0, and A3_m = Gu2ir*,n*).

Proof. We observe from our previous remarks that X contains at least one
element. Referring to the proof of Theorem 6.4.3, we see that if A'contains precisely
one element, then it must be 0 if A=p+l, ip+l) if r+ = 0, and A if p>0 and
l£r*£p. Putting n*=n\ r* = 0 if A=p+l, r*=p+l if A = 0, and r* = A iip>0
and 1 £r*áÁ we see that (1) if r* = 0, then v0(oo) = 2«*, ^+1(00) is not an odd in-
teger, and no element of the set {z2r(co)}*=1 is an integer if p>0, (2) if r*=p+ I,
then vp + 1(oo) = 2n* + l, >20(co) is not an even integer, and no element of the set
{i2r(oo)}?=1 is an integer if/z>0, and (3) if/z>0 and 1 ̂ .r*-¿p, then vr/oo) = «*, iz0(oo)
is not an even integer, and j2p + i(co) is not an odd integer. Our theorem now follows
directly from (6.4.1).

From now on in this section we shall always assume that (bjbj) e R for at least
one pair of integers (z',7), where OSi, jfíp+l and i^j. For nonnegative integer
Ni=m, consider now XN(p) and define AN(p) and v//x, A), r = 0,...,(p+l), as in
(6.1.3). Then we can argue with AiV(/x) in precisely the same way as we did with
Xm(p) in Theorem 6.4.1 to show that vr{p, N) tends to a finite limit as /x-* 00,
r = 0,..., ip+1), and at least one such limit is an integer. We shall from now on
denote limw^„ vr{p, N) by v/co, A), r = 0,..., ip+l); and by modifying the proof
of Theorem 6.2.3 so as to apply to XN(p) instead of Am(/x), we can determine the set
{v/co, A)}?±o\

Referring to Theorem 6.4.4, consider now the case where X contains at least two
elements. Denote the elements of X by {r,)pA=0, where 1 \W\p*'¿p+l, and for the
moment assume that the elements of A have been labelled in some definite manner.
Then for/x>0 we introduce the functions Z//x),7 = 0,.. .,p*, in the following way:
(1) if p>0 and Ifír^p, put vr¡{cc) = n¡ and Zj{p) = Glj2{rj, nj), (2) if z-; = 0, put
v0(co) = 2«, and Z/zx) = zx1,4G3i2(0, n„ a) + G3,3(0, n¡, a), and (3) if r¡=p+l, put
Vp+iico) = 2nj+ 1 and Z//x)= -/x1,4G2>2(/z+ 1, nj) + G2¡3{p+l, nj). Then by relabel-
ling if necessary, we shall from now on assume that for all zx sufficiently large

(6.4.3) ZoOx) Ú Z//x) ¿       ^ Zp.(p),

where if Zi_//x)=Z(/x) for 1 ¿z'á/z* and all p sufficiently large, then hT¡_í<hn.

Theorem 6.4.5. Under the hypothesis of Theorem 6.4.4 assume that X contains at
least two elements. Let the elements of X be denoted by {r,)r¡= 0, where l^p*^p+l,
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and for 7 = 0,..., p* put ( 1 ) vrloo) = n¡ if p > 0 and 1 S r¡ S/7, (2) v0(co) = 2n¡ if r} = 0,
and (3) i'p + 1(oo) = 2«y+1 if r¡=p+l ; Aere /Ae ry, 7'=0,.. .,/?*, tzre arranged so that
for all p. sufficiently large (6.4.3) is satisfied. Let s = m — Nx, where if m = 0, or if m > 0
and 1*0(00, m—l)<i7o(co), then Nx = m, while if m>0 and v0(co, m—l) = v0(co), then
Nx is the smallest integer satisfying v0(oo, 7V,) = v0(oo). Then OSiS/?*, and

(1) if rs = 0, then (1.3) is valid with AXtm = G3¡x(0,ns), A2¡m = G3¡2(0, ns, a), and
^3,m = G3i3(0, ns, a);

(2) if   rs=p+l,    then   (1.3)    is   valid   with    AXym = G2¡x(p +1, ns),   A2¡m =
-G2,2(p+l,ns), and A3¡m = G2¡3(p+l,ns)m,

(3) ifp>0 and 1 Srs=P, then (1.3) is valid with Ax¡m = GXyl(rs, ns), A2¡m = 0, and
A3,m = GXf2(rs, ns).

Appendix I: Certain properties of parabolic cylinder functions.    Here we shall
consider Weber's equation [13, Chapter 16]

y"is) + (v+\-s2l4)y(s) = 0,       ' = d/ds,

with the restriction that -oo<^<oo, — \-¿v¿C, where C is a positive constant.
For a fundamental set of solutions we take Ux(s, v) = D_v_i(is) and U2(s, v)
= /D_v_i(-«), where Dv(s) is the parabolic cylinder function; we observe that
Ux(0, v) = 2-v/2(7r/2)1/2/r(l +v/2), U[(0, v)= -i2-«-»l2(7r/2yi2/r((l +v)/2), and
U2(0,17)= Ux(0, v), U2(0, y) = the complex conjugate of £7(0, v), and hence U2(s, v)
is the complex conjugate of Ux(s, v), — co<s<co. For s^O, we also introduce the
solution

U3(s, p) = Ux(s, v) f Ux~2(t, v) dt = ie""»2Dv(s).

From [13, Chapter 16], [14, Chapter 8], and using the methods of [10, Appendix I],
we then have as s -> 00, and uniformly in v,

Ux(s,v) = s-v-1exp{-i7r(v+l)/2+s2/4}[l+(v+l)2/2s2 + (v+l)ißsi + 0(s-6)],
U'x(s,v) = (s~v/2) exp {-iir(v+l)l2+s2/4}

x[l+(v-2)(v+l)/2s2 + (v-4)(v+l)3ßsi + 0(s-6)],
U3(s,v) = sv exp {i7r(v+l)f2-s2/4}[l-(-v)2/2s2 + (-v)ißsi + 0(s-e)],

i"  U?(t, v)dt = s -2v"3 exp {-/7r(z7+ l) + i2/2}
Jo

x [1 + (v2 + 5v+5)/s2 + (vi+12v3 + 54v2+10lv +64)125*+ 0(s~e)],

Í  Ux(t, v) U3(t, v)dt = logs + Ex(v) - iE2(v) - (2v +1 )/2s2 - 3(2v2 + 2v +1 )f4s4
Jo

- 5(4v3 + 6v2 + 8v+3)/6i6 + 0(s "8),

)   tsUl(t,v)dt = j-2vexp{-/7r(v+l)+j2/2}
Jo

x[l+(v2 + 5v + 2)fs2 + (vi+12v3 + 4Hv2 + 59v + 22)/2si + 0(s-6)],
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f t3UAU v)U3it, v) dt = *3/3 + 0+ l)s-iA,{v)-iA2iv))ß
■Jo

- 3(2i-2 + 2v +1 )/s - 5(4v3 + 6v2 + 8v + 3)/3s 3 + 0(s~s),

f /4í712(í,0* = -s"2v + 1exp{-/7r(v+l)+í2/2}[l+(lz2 + 5v+l)/í2 + O(5-4)],
•'0

^* tiuAt,v)u3it,v)dt

= s 4/4 + (2v +1)5 2/2 + 3(>2 + 2v +1 ) log í + 5/0 - iB2(y) + Ois ' 2),

^t3Ulit,v)^\3U?ÍT,v)dT^dt

= sif4 + (3v+l)s2 + i30i>2 + 30v+ll)logs+C1iv)-iC2iv) + Ois-2),

where (v)r = W¡zh ("+./)> and with xF(z) = (r(z))-1ízT(z)/íiz and x¥*(z) = x¥(z + i)
-V(z),

yi/0 = 2-1'2[-8(2,+ l)(r(l+,/2)/r((l+0/2))
+ (8v2 + 8iz + 3)(r(( 1 + 0/2)/r( 1 + v/2))] sin 77V,

A2(y) = 2-1'2[16(2v+l)(r(l+lz/2)/r((l+0/2))sin277lz/2
+ 2(8v2 + 8v + 3)(r((l + v)/2)/T(l + zv/2)) cos2 nv/2],

5/0 = -2-1(7v2 + 4.2 + 5)-(|)(2iz+l)cos27rv/2
-Q)(2v2 + 2v+ l)[log 2 + T((l +0/2) cos2 7n>ß+Y{\ +v/2) sin2 jrv/2],

BA?) = (i)0+1) sin 7nz-(|)(2v2 + 2lz+ l)(77 + (i)T*((l +0/2) sin H,

C/0 = Rl f ssUi(s,v)(l t3UKt,v)dt\ds

+ f/s3U!(s, v)(f t3U2(t, 0 dt\ -s3-i6v + 2)s

- i30v2 + 3QV +11 )s -1 y ds - O +1)

C2(0 = -2-1(30v2 + 30z2+ll)(77 + (4i)lF*((l+0/2)sin7rO
+ ( 1 /36)( 128v3 +192v2 +158v + 47) sin 2t7I2
+ ( 1 /18) [ - (256v3 + 384i22 + 300^ + 86) cos 77Z2

+(128v4+256v3+224.22+96l'+ 18)(r((l +v)/2)/T(l +v/2))2 cos2 7rv/2
-2(448v2 + 448!2+ 131)(r(l +.z/2)/r((l +0/2))2 sin2 77v/2

+ (135/2)(2v+l)] sin 7712,
EAy) = -2-Mlog 2 + T((l +0/2) cos2 77v/2 + >F(l +v/2) sin2 7712/2],
EAy) = -2-1(77 + (l)T*((l+0/2)sin770.

Appendix  II: Certain functions related  to  Bessel  functions.    Here  we  shall
consider the differential equation

y"is) — s2yis) = 0,       — 00 < s < co,    ' = d/ds.

Two linearly independent solutions of this equation, determined by the initial
conditions (7/0)= 1, i//0) = 0, <72(0) = 0, C/z(0) = 1, are given by
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(jx(s) = (T(%)¡2li2)sl¡2I_xlAs2l2)     for s £ 0,        Ux(s) = Ux(-s)      for s < 0,
U2(s) = r(|)(2i)1/2/1/4(52/2) for sèO,        U2(s) = - U2(-s)    for s < 0,

where /v(j) is the modified Bessel function of the first kind of order v [14, Chapter 7].
We note that Ux(s) = [l +sifl2 + ss¡672+ • • •], C/2(í)=í[1 +í4/20 + í71440+ •••]•
For í^O we also introduce the solution U3(s)=Ux(s) §™ Ux2(t) dt =
(2r(%)fTr)sll2KXii(s2/2), where Kv(s) is the modified Bessel function of the third kind
of order v. We have then as 5 -> oo [14, Chapter 7],

Ux(s) = r(|)(2775)-1'2exp(52/2)[l+3/(4i)2+105/2!(4j)4 + O(5-6)],
U[(s) = (r(|)/(27r)1'2>1/2exp(í2/2)[l-5/(4í)2-135/2!(4j)4 + G(í-6)],
U2(s) = (2/7T)1'2r(f)i-1'2 exp (s2/2)[l+3/(4s)2+105/2\(4sy + O(s-<i)],
U3(s) = (2/(7r)1'2)r(|> - Va exp (-52/2)[l - 3/(4í)2 +105/2!(4s)4 + 0(s "8)],
U3(s) = -(2/(7r)1'2)r(A)i »« exp (-i2/2)[l + 5/(4í)2 - 135/2!(4í)4 + 0(í "6)].

Appendix III : Equations in integers.
111.0. Introduction. In the investigation of the asymptotic behaviour of Am(ft)

(see introduction) there appear certain equations in integers whose solutions lead
to the determination of the coefficients in the asymptotic development of Am(ft).
These equations arise from the relationship between the real zeros of the parabolic
cylinder function and the number of zeros in (0, l)of an eigenfunction of (1.1-2) cor-
responding to Am(ft). Here we shall concern ourselves with stating certain results
for each of three types of equations which appear in the preceding analysis (see [16]).

We shall in the sequel adopt the following notation. For x^0, r and s non-
negative integers, a, and as positive numbers, let Ars(x) denote the greatest positive
integer less than [x(ûrr/t2s)1,2 + -2-] or zero if such a positive integer does not exist.
Let Brs(x) be the greatest integer less than or equal to (i)Ar,s(x), and let Cr>s(x) be
the smallest integer greater than or equal to (j))Ar¡s(x). Finally, let

R = {x | x = ((27+ l)/(2rc+ l))2, where y and k are integers,
7 = 0, ...,k, and/c = 0, 1,2,...}.

111.1. 77îe case of p equations. Let {ar}f=x, p^2, be a set of p positive numbers.
For nonnegative integer n put:

(III.l.l) 7» = «+    2     A'Â»+i),        r=l,...,p.
s= l;s^r

Theorem III.l.l. Let (ar/aA <f R for r, s= 1,...,p and r=£s. Let m be any non-
negative integer. Then there exists precisely one tuple (A, «+) such that fii(n*) = m.

For nonnegative integer m let Rm = {x \ x = ((2j+ l)f(2k+ I))2, where j and k are
integers,7=0,..., k, and k = 0,..., m}.

Theorem 111.1.2. Let m be a nonnegative integer. Let (ar/aA <f Rmfor r, s=l,. . ., p
andres. Then the result of Theorem III.l.l remains valid.
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111.2. The case of ip+l) equations. Let {ar}f=0, p^ 1, be a set of (p+ 1) positive
numbers. For nonnegative integer n put:

foin) = n+2 A0,si2n + l),
(III.2.1)

fin) = « + 5r,0(«+i)+    J    ^r> + i),       r= 1,...,/>;
P

/0(if) = «+2^o.s(2n+i),
(III.2.2) s = 1

fin) = n + Cr,oin + i)+    J.    Ar.Á»+í),        r=l,...,p.
s= l;s*r

Theorem III.2.1. Let iar/as) xf R for r, s = 0,.. .,p and rj^s. Let m be any non-
negative integer. Then for each section considered above there exists precisely one
tuple (/■*, nf) such that /rt(«+) = m.

For nonnegative integer m let Rm = {x | x = ((2/+ l)/(2/c+1))2, where/' and k are
integers,7 = 0,..., k, and k = 0,..., (2w+l)}.

Theorem III.2.2. Let m be a nonnegative integer. Let iar/as) xf Rmfor r, s = 0,..., p
and r^s. Then the results of Theorem IN.2.1 remain valid.

111.3. The case ofip + 2) equations. Let {ar}f +¿, p ^ 0, be a set of ip + 2) positive
numbers. For nonnegative integer n put:

(1)   Un) = « + v30,p+1(2« + f)+ 2 ¿o,.(2n+f),
s=l

mi m        //«) = " + ßr,o(« + i) + 5r.P+/« + i)+    ¿     ^> + i),
flll.J.lJ s = l;s*r

r = l,...,p, if/z>0,
p

fv+An) = n + Bp+1¡oí2n + í)+ 2 ^P+i,/2« + |);

(2)   f0(n) = « + C0,p + 1(2« + f)+ 2 AoA^n + i),

(III.3.2)
//«) = n + ßr,o(« + i) + Cr,p+1(« + i)+    J    ^>+i),

r = 1,.. .,/>, if/z>0,
p

/p+1(") = « + 5P+i.o(2«+i)+ 2 ¿p+i..(2/i + i);
s=l

p

(3)   /„(«) = n + C0,p+/2«+i)+ 2 ^0,/2«+i),

m,,,,        //«) = « + C,o(« + i) + Cr,p+1(n+i)+    J    ^r.,(» + i),

r = 1,. ..,/>,   if/?>0,
p

/p+i(«) = « + Cp+1,o(2n+1î)+2 ^p+i,s(2« + i).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] TWO-PARAMETER ORDINARY DIFFERENTIAL EQUATIONS 51

Theorem III.3.1. Let (ar/as) (f R for r, s = 0,.. .,(p+ 1) and r^s. Let m be any
nonnegative integer. Then for each section considered above there exists precisely
one tuple (A, «+) such that fi\(n*) = m.

For nonnegative integer m let Rm = {x \ x = ((2j+ l)f(2k+ I))2, wherey and k are
integers,7 = 0,..., k, and k = 0,..., (2m +1)}.

Theorem III.3.2. Let m be a nonnegative integer. Let (ar/aA <f Rmfar r, 5 = 0,...,
(p+ 1) andres. Then the results of Theorem 111.3.1 remain valid.
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