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ASYMPTOTIC FORMULAS FOR SOLUTIONS OF HALF-LINEAR

EULER-WEBER EQUATION

ZUZANA PÁTÍKOVÁ

Abstract. We establish improved asymptotic formulas for nonoscillatory solutions
of the half-linear Euler-Weber type differential equation

(Φ(x′))′ +

[

γp

tp
+

µp

tp log2
t

]

Φ(x) = 0, Φ(x) := |x|p−2x, p > 1

with critical coefficients

γp =

(

p − 1

p

)p

, µp =
1

2

(

p − 1

p

)p−1

,

where this equation is viewed as a perturbation of the half-linear Euler equation.

This paper is in final form and no version of it is submitted for publication else-
where.

1. Introduction

The aim of this paper is to present asymptotic formulas for solutions of the half-
linear Euler-Weber type differential equation

(Φ(x′))′ +

[

γp

tp
+

µp

tp log2 t

]

Φ(x) = 0,(1)

where γp =
(

p−1
p

)p

, µp = 1
2

(

p−1
p

)p−1

. This equation is a special case of a general

half-linear second order differential equation

(r(t)Φ(x′))′ + c(t)Φ(x) = 0,(2)

where Φ(x) := |x|p−1 sgn x, p > 1, and r, c are continuous functions, r(t) > 0 (in the
studied equation (1) we have r(t) ≡ 1). Let us recall that similarly as in the linear
case, which is a special case of (2) for p = 2 and equation (2) then reduces to the
linear Sturm-Liouville differential equation

(r(t)x′)′ + c(t)x = 0,
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even in the half-linear (non)oscillation theory equation (2) can be classified as oscil-

latory if every its nontrivial solution has infinitely many zeros tending to infinity and
as nonoscillatory otherwise. The classical approach to half-linear equation (2) is to
regard it as a perturbation of the one-term equation

(r(t)Φ(x′))′ = 0.

Our approach is slightly modified, we use the perturbation principle introduced in
[9], [3] and applied in [2], [5], [7], [8], [14], [15]. According to this concept equation
(2) can be seen as a perturbation of a general (nonoscillatory) half-linear equation

(r(t)Φ(x′))′ + c̃(t)Φ(x) = 0,(3)

i.e., (2) can be rewritten in the form

(r(t)Φ(x′)′ + c̃(t)Φ(x) + (c(t) − c̃(t))Φ(x) = 0.

From this point of view, the studied equation (1) can be considered as a perturba-
tion of the half-linear Euler equation

(Φ(x′))′ +
γp

tp
Φ(x) = 0.(4)

This equation is nonoscillatory and γp is the so-called critical coefficient, critical in
that sence that if it is replaced by any bigger constant, such equation becomes oscil-
latory, and for less constants nonoscillation is preserved.

Half-linear Euler-Weber equation (1) was studied by Elbert and Schneider in [9].
They derived the asymptotic formulas for its two linearly independent solutions in
the forms

x1(t) = t
p−1

p log
1

p t (1 + o(1)) as t → ∞

x2(t) = t
p−1

p log t
1

p (log(log t))
2

p (1 + o(1)) as t → ∞.

Our results show that the terms (1 + o(1)) are special slowly varying functions.

2. Preliminaries

Let q be the conjugate number of p, i.e., 1
p
+ 1

q
= 1. Let x be a solution of nonoscil-

latory equation (2), then the following Riccati type first order differential equation

w′ + c(t) + (p − 1)r1−q(t)|w|q = 0(5)

holds, where w(t) = r(t)Φ(x′/x). It is well known from the (non)oscillation theory for
half-linear equations (see e.g. [1, p. 171]), that equation (2) is nonoscillatory if and
only if there exists a solution of the Riccati equation (5) on some interval of the form
[T,∞).
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Using the approach of perturbations, it is convenient to deal with the so-called
modified Riccati equation (which was derived e.g. in [4]), whose solvability is again
equivalent to nonoscillation of equation (2).

Let Φ−1 be the inverse function of Φ(x), h(t) be a (positive) solution of (3), and
wh(t) = r(t)Φ(h′/h) be the solution of the Riccati equation associated with (3). The
modified Riccati equation then reads as

((w − wh)h
p)′ + (C(t) − c̃(t))hp + pr1−qhpP (Φ−1(wh), w) = 0,(6)

where

P (u, v) :=
|u|p

p
− uv +

|v|q

q
≥ 0,

with the equality P (u, v) = 0 if and only if v = Φ(u). Observe that if c̃(t) ≡ 0 and
h(t) ≡ 1, then (6) reduces to (5) and this is also the reason why we call this equation
modified Riccati equation.

Let us recall that a positive measurable function L(t) defined on (0,∞) is said to
be a slowly varying function in the sence of Karamata (see e.g. [11], [12]) if it satisfies

lim
t→∞

L(λt)

L(t)
= 1 for any λ > 0.

From the representation theorem for slowly varying functions (see [10]) we know that
they are in the form

L(t) = l(t) exp

{
∫ t

t0

ε(s)

s
ds

}

, t ≥ t0,

for some t0 > 0, where l(t) and ε(t) are measurable functions such that

lim
t→∞

l(t) = l ∈ (0,∞) and lim
t→∞

ε(t) = 0.

If l(t) is identically a positive constant, we say that L(t) is a normalized slowly varying

function.
Asymptotic formulas for some nonoscillatory solutions of the general perturbed

Euler equation

(Φ(x′))′ +
γp

tp
Φ(x) + g(t)Φ(x) = 0,(7)

were studied in [13] and the following two statements were proved there.

Theorem 1. Suppose that

c(t) :=
γp

tp
+ g(t) ≥ 0 for large t,
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the integral
∫

∞

g(t)tp−1 dt converges, and let

c := lim
t→∞

log t

∫

∞

t

g(s)sp−1 ds < µp(8)

holds. Then (7) possesses a pair of solutions

xi(t) = t
p−1

p (log t)νi Li(t),

where λi :=
(

p−1
p

)p−1

νi are roots of the equation

λ2

4µp

− λ + c = 0(9)

and Li(t) are normalized slowly varying functions of the form Li(t) = exp
{

∫ t εi(s)
s log s

ds
}

with εi(t) → 0 for t → ∞, i = 1, 2.

Taking g(t) := µp

tp log2 t
we have a special perturbation of half-linear Euler equation

(4) with limt→∞ log t
∫

∞

t
g(s)sp−1 ds = µp. Then we have in some sence a limit case of

(8) in Theorem 1 and the quadratic equation (9) has just one real zero. The derivation
of the asymptotic formula for the principal solution of Euler-Weber equation (1) can
be made in a similar manner as in the proof of Theorem 1 (see [13]).

Theorem 2. Equation (1) has a solution satisfying the asymptotic formula

x1(t) = t
p−1

p (log t)
1

p L1(t),(10)

where L1(t) is a normalized slowly varying function in the form L1(t) = exp
{

∫ t ε1(s)
s log s

ds
}

and ε1(t) → 0 as t → ∞.

3. Main result

As the main result we introduce the asymptotic formula for the second solution
of the Euler-Weber equation (1), which is linearly independent to the principal one
stated in Theorem 2. This is also the answer to the open problem conjecturing such
result presented in [13].

Theorem 3. Equation (1) has a solution satisfying the asymptotic formula

x2(t) = t
p−1

p log t
1

p (log(log t))
2

p L2(t),

where L2(t) is a normalized slowly varying function in the form

L2(t) = exp

{
∫ t ε2(s)

s log s log(log s)
ds

}

and ε2(t) → 0 as t → ∞.
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Proof. First we formulate the modified Riccati equation associated with (1). Let w
be a solution of the Riccati equation

w′ +
γp

tp
+

µp

tp log2 t
+ (p − 1)|w|q = 0.(11)

Since γp

tp
+ µp

tp log2 t
≥ 0 for large t, from [6, Cor. 4.2.1] we have w(t) ≥ 0 for large t. Let

wh(t) = Φ

(

h′

h

)

=

(

p − 1

p

)p−1

t1−p

be the solution of Riccati equation associated with (4) generated by the solution

h(t) = t
p−1

p , and denote

v(t) = (w(t) − wh(t))h
p(t) = tp−1

(

w −

(

p − 1

p

)p−1

t1−p

)

.(12)

Modified Riccati equation (6), where c̃(t) = γp

tp
, C(t) = γp

tp
+ µp

tp log2 t
, has then the form

v′ +
µp

t log2 t
+ ptp−1P

((

p − 1

p

)

1

t
, w

)

= 0,

which, by an easy calculation, arrives at

v′ +
µp

t log2 t
+

p − 1

t
G(v) = 0,(13)

where

G(v) =

∣

∣

∣

∣

∣

v +

(

p − 1

p

)p−1
∣

∣

∣

∣

∣

q

− v −

(

p − 1

p

)p

,

with the equality G(v) = 0 if and only if v = 0.
Now we show that v(t) → 0 for t → ∞. Integrating (13) from T to t, T ≤ t, we

have
[

(

p − 1

p

)p−1

− tp−1w

]t

T

=

∫ t

T

µp

s log2 s
ds + (p − 1)

∫ t

T

G(v)

s
ds

Letting t → ∞ and taking into account that w(t) ≥ 0 for large t,
[

(

p − 1

p

)p−1

− tp−1w

]

∞

T

≤ T p−1w(T ).

Hence
∫

∞

T

µp

s log2 s
ds + (p − 1)

∫

∞

T

G(v)

s
ds ≤ T p−1w(T )
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and since the integral
∫

∞

T

µp

s log2 s
ds converges, the integral

∫

∞

T

G(v)
s

ds converges too.

This means that limt→∞ v(t) exists and v(t) → 0, since if v(t) → v0 6= 0, then

G(v(t)) → G(v0) > 0 which contradicts the convergence of
∫

∞

T

G(v)
s

ds.
Let us investigate the behavior of the function G(v). By L’Hospital’s rule (used

twice) we have

lim
v→0

G(v)

v2
=

q − 1

2

(

p

p − 1

)p−1

=
q − 1

4µp

.

Hence, for every ε > 0 there exists δ > 0 such that
(

q − 1

4µp

− ε

)

v2 ≤ G(v) ≤

(

q − 1

4µp

+ ε

)

v2.(14)

for v satisfying |v| < δ. Similarly for ∂G
∂v

, as

lim
v→0

∂G
∂v

v
= (q − 1)

(

p

p − 1

)p−1

=
q − 1

2µp

,

to every ε > 0 one can find δ > 0 such that
(

q − 1

2µp

− ε

)

v ≤
∂G

∂v
≤

(

q − 1

2µp

+ ε

)

v(15)

as |v| < δ.
We assume that a solution of modified Riccati equation (13) is in the form

v(t) =
2µp log(log t) + 4µp + z(t)

log t log(log t)
.

Then for its derivative we have

v′(t) =
(2µp

1
t log t

+ z′(t)) log t log(log t) − (2µp log(log t) + 4µp + z(t))(1
t
log(log t) + 1

t
)

log2 t log2(log t)

and substituing into the modified Riccati equation (13) we get the equation

z′(t) −
z(t)

t log t log(log t)

+
−4µp − 4µp log(logt)−µp log2(logt)−z(t) log(logt) + (p − 1)G(v) log2t log2(logt)

t log t log(log t)
= 0,

which can be rewritten as

z′(t) +
z(t)

t log t log(log t)

+
−4µp−4µp log(logt)−µp log2(logt)−2z(t)−z(t) log(logt)+(p−1)G(v)log2t log2(logt)

t logt log(logt)
=0.
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If we denote

r(t) = exp

{
∫ t 1

s log s log(log s)
ds

}

then the previous equation is equivalent to

(r(t)z(t))′ + r(t)
1

t log t log(log t)
H(z, t) = 0,(16)

where

H(z,t)=−4µp−4µp log(logt)−µp log2(logt)−2z(t)−z(t) log(logt)+(p−1)G(v) log2t log2(logt).

Let C0[T,∞) denote the set of all continuous functions on [T,∞) tending to zero
as t → ∞; concrete T will be specified later. C0[T,∞) is a Banach space with the
norm ‖z‖ = sup{|z(t)| : t ≥ T}. We consider the integral operator

Fz(t) = −
1

r(t)

∫ t r(s)

s log s log(log s)
H(z, s) ds

on the set
V = {z ∈ C0[T,∞) : |z(t)| < ε1, t ≥ T},

where ε1, T are suitably chosen (will be specified later). Now our aim is to show that
the operator F is a contraction on the set V and maps V to itself.

First we show that
∫ t r(s)

s log s log(log s)
ds diverges. We have r(t) → ∞ for t → ∞ and

lim
t→∞

∫ t r(s)

s log s log(log s)
ds = lim

t→∞

[log(log s)]t = ∞

Furthermore,

r′(t) = r(t)
1

t log t log(log t)

and by L’Hospital’s rule we have

lim
t→∞

1

r(t)

∫ t r(s)

s log s log(log s)
ds =

r(t)
t log t log(log t)

r′(t)
= 1 > 0.

Let T1 be large enough such that

1

r(t)

∫ t r(s)

s log s log(log s)
ds < 2(17)

for t ≥ T1.
Let ε1 > 0, such that

2

(

ε1 +
ε1

4µp

)

≤ 1(18)
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and

2

(

ε1

2µp

+ ε1

)

<
1

2
.(19)

Let T2 be such that |z(t)| < ε2
1 for t ≥ T2.

In order to show that H(z, t) → 0 for t → ∞, the estimates for H(z, t) are:

|H(z, t)| =
∣

∣−4µp − 4µp log(log t) − µp log2(log t) − 2z(t) − z(t) log(log t)

+(p − 1)G(v) log2 t log2(log t)
∣

∣

≤

∣

∣

∣

∣

−4µp − 4µp log(log t) − µp log2(log t) − 2z(t) − z(t) log(log t) +
v2

4µp

log2 t log2(log t)

∣

∣

∣

∣

+

∣

∣

∣

∣

(p − 1) log2 t G(v) −
v2

4µp

log2 t log2(log t)

∣

∣

∣

∣

=

∣

∣

∣

∣

z2

4µp

∣

∣

∣

∣

+

∣

∣

∣

∣

(p − 1) log2 t G(v) −
v2

4µp

log2 t log2(log t)

∣

∣

∣

∣

,

where the definition of v have been used in the step between the second and the third
line of the above computation. Now, according to (14), the second term in the last
expression is arbitrarily small for small v, i.e., as v(t) → 0 for t → ∞, there exists T3

large enough such that for t ≥ T3
∣

∣

∣

∣

z2

4µp

∣

∣

∣

∣

+

∣

∣

∣

∣

(p − 1) log2 t G(v) −
v2

4µp

log2 t log2(log t)

∣

∣

∣

∣

≤
ε2
1

4µp

+ ε2
1

for t ≥ max{T2, T3}.
Similarly, we will need an estimate for the difference |H(z1, t) − H(z2, t)|. Us-

ing the mean value theorem (with z ∈ V such that min{z1(t), z2(t)} ≤ z(t) ≤
max{z1(t), z2(t)}) we have (suppressing the argument t in the functions z, z1, z2)

|H(z1, s)−H(z2, s)| =

∣

∣

∣

∣

(z2− z1)(2+ log(logt))+(p−1) log2t log2(log t)
∂G(v, z)

∂z
(z1− z2)

∣

∣

∣

∣

≤ ‖z1 − z2‖

(
∣

∣

∣

∣

−(2 + log(log t)) +
v

2µp

log t log(log t)

∣

∣

∣

∣

+

∣

∣

∣

∣

(p − 1) log2 t log2(log t)
∂G(v, z)

∂z
−

v

2µp

log t log(log t)

∣

∣

∣

∣

)

= ‖z1 − z2‖

(
∣

∣

∣

∣

z

2µp

∣

∣

∣

∣

+

∣

∣

∣

∣

(p − 1) log t log(log t)
∂G(v, z)

∂v
−

v

2µp

log t log(log t)

∣

∣

∣

∣

)

≤ ‖z1 − z2‖

(
∣

∣

∣

∣

z

2µp

∣

∣

∣

∣

+ ε1

)

≤ ‖z1 − z2‖

(

ε1

2µp

+ ε1

)
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for t ≥ max{T2, T4}, where T4 is such that |v(t)| < δ for t ≥ T4 (such T4 exists because
of (15)).

We take T = max{T1, T2, T3, T4}. Then

|Fz(t)| ≤
1

r(t)

∫

∞

t

r(s)

s log s log(log s)
|H(z, s)| ds ≤

(

ε2
1 +

ε2
1

4µp

)

1

r(t)

∫

∞

t

r(s)

s log(log s)
ds

< 2

(

ε2
1 +

ε2
1

4µp

)

≤ ε1

using (18) and hence F maps V to itself.
Next we show that F is a contraction. We have (using the definition of F )

|Fz1(t) − Fz2(t)| =
1

r(t)

∫

∞

t

r(s)

s log(log s)
|H(z1, s) − H(z2, s)| ds

≤ ‖z1 − z2‖

(

ε1

2µp

+ ε1

)

1

r(t)

∫

∞

t

r(s)

s log s log(log s)
ds,

which is, according to (17) and (19), less than 1
2
‖z1−z2‖ and hence F is a contraction.

By the Banach fixed point theorem, F has a fixed point z that satisfies z = Fz, i.e.

z(t) = −
1

r(t)

∫ t r(s)

s log s log(log s)
H(z, s) ds.

Differentiating the last equality we see that z(t) is a solution of (16) and hence

v(t) = 2µp log(log t)+4µp+z(t)
log t log(log t)

is a solution of modified Riccati equation (13).

Now, for the solution of Riccati equation (11) w(t), we have

w(t) = t1−p

(

v +

(

p − 1

p

)p−1
)

= t1−p

(

2µp log(log t) + 4µp + z(t)

log t log(log t)
+

(

p − 1

p

)p−1
)

and the solution x of equation (1) is

x(t) = exp

∫ t

Φ−1(w(s)) ds.

Furthermore,

Φ−1(w) = Φ−1

(

t1−p

(

p − 1

p

)p−1
[

(

p − 1

p

)1−p

v + 1

])

=
1

t

p − 1

p

[

(

p − 1

p

)1−p

v + 1

]q−1

=
1

t

p − 1

p

[

1 + (q − 1)

(

p − 1

p

)1−p

v + o(v)

]
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=
1

t

p − 1

p
+

1

p

(

p − 1

p

)1−p
2µp log(log t) + 4µp + z(t)

log t log(log t)
+ o(

v

t
)

=
p − 1

p

1

t
+

1
p

t log t
+

2
p

t log t log(log t)
+

1
p

(

p−1
p

)1−p

z(t) + o(2µp log(log t) + 4µp + z(t))

t log t log(log t)
.

Denote
1

p

(

p − 1

p

)1−p

z(t) + o(2µp log(log t) + 4µp + z(t)) = ε2(t),

then the solution of (1) is in the form

x(t) = exp

∫ t

Φ−1(w(s)) ds = t
p−1

p (log t)
1

p (log(log t))
2

p exp

{
∫ t ε2(s)

s log s log(log s)
ds

}

and the statement is proved. �

Remark 1. Let us denote that functions L1(t), L2(t) from Theorems 2, 3 are in some
sence “more slowly varying” than standard slowly varying functions in the sence of
Karamata. The function L1(t) remains slowly varying even after the substitution
u = log s in the integrated term, and such subtitution can be used even twice in the
function L2(t) without a change of the property of slowly variability.
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[10] H. C. Howard, V. Marić, Regularity and nonoscillation of solutions of second order linear

differential equations, Bull. T. CXIV de Acad. Serbe Sci. et Arts, Classe Sci. mat. nat. Sci.
math. 20 (1990), 85–98.

EJQTDE, Proc. 8th Coll. QTDE, 2008 No. 15, p. 10
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