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1 Introduction and summary

Physics in two space-time dimensions provides a useful playground to test ideas about

strongly coupled quantum field theory and gravity in a safe child proof environment. In

spite of a long history, studies of two-dimensional systems continue to provide new insights.

The current study is triggered by the following three recent developments in the two-

dimensional world. The earliest one is the gravitational dressing introduced in [1, 2],

which is an explicit S-matrix construction of UV complete quantum theories exhibiting

a novel type of high energy behavior, dubbed asymptotic fragility. The second is the

recent progress in resolving the puzzles of AdS2/CFT1 correspondence, resulting in the

Schwarzian descritption of the NAdS2 holography (where N stands for Near) [3–10]. Last

but not least, a solvable irrelevant deformation by the T T̄ operator, present in any local

two-dimensional quantum field theory, has been identified recently in [11, 12].

The main goal of the present paper is to argue that these three developments are very

closely related. Namely, the gravitational dressing procedure is the S-matrix definition of

the T T̄ deformation. The resulting theory can be obtained as a flat space limit of NAdS2

holography and provides a solution to the flat space Jackiw-Teitelboim (JT) gravity [13, 14].

In the reminder of this introductory section we present a lightning review of gravita-

tional dressing, NAdS2 holography and T T̄ deformation and present heuristic arguments

indicating that the three are closely related. In the rest of the paper we present more

detailed and solid (to the extent we succeded) arguments for the above equivalence.
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Figure 1. Particles at the asymptotic boundary of Minkowski space. Arrows correspond to on-

shell two-momenta. τ is the coordinate parametrizing the boundary and ordering is given by the

rapidities as described in the text.

The gravitational dressing operates as follows. Let us start with an arbitrary quantum

field theory in two dimensions, which can be defined by its S-matrix elements S({pi}),
where all momenta are taken to be incoming. Then the gravitationally dressed S-matrix

is defined as

Ŝ({pi}) = S({pi})e
i`2

4

∑
i<j pi∗pj , (1.1)

where `2 is a parameter characterizing the dressing,

pi ∗ pj = εαβp
α
i p

β
j , ε01 = −ε10 = 1,

and the momenta are ordered according to the corresponding rapidities βi: i < j if i and

j are both incoming particles and βi > βj , or if they are both outgoing and βi < βj , or

else if i is incoming and j outgoing, see figure 1. The claim is that dressed amplitudes

satisfy all the requirements expected for a healthy S-matrix. Their high energy behavior,

however, is incompatible with the existence of a UV fixed point. Instead, a dressed theory

exhibits many features expected from a gravitational theory, rather than from a conven-

tional quantum field theory. In particular, as discussed in detail in [1], one does not expect

to find sharply defined local observables in a dressed theory. The first and, perhaps, the

most important example of dressing is provided by the worldsheet theory of an infinitely

long critical (super)string, which in the Polyakov formalism indeed takes the form of a

two-dimensional gravity.

The dressing formula (1.1) was obtained as a result of a guesswork. One of our results

here is to provide a systematic derivation for the dressing. It is useful to have in mind the
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following path integral presentation for the dressed S-matrix,

Ŝ({pi}) =

∫
DXαS({pi})eiSCS[Xα]+i

∑
i piαX

α(τi) , (1.2)

where

SCS = `−2

∮
dτεαβX

α∂τX
β (1.3)

is the action of a Chern-Simons quantum mechanics, which can be thought of as living at the

boundary of the Minkowski space-time. This presentation is inspired by the derivation of

the eikonal scattering in higher-dimensional gravity presented in [15] and by the similarity

between the dressing phases in (1.1) and the gravitational eikonal phase (for massless

scattering they are exactly the same).

Let us turn now to the NAdS2 holography. The results of [7–9], relevant for the present

discussion, can be summarized as follows. Let us start with a quantum field theory in the

rigid AdS2 space. Then one may define a set of boundary correlators. Then the effect of

introducing dynamical gravity in the bulk with the action of the JT form,

SJT =

∫
d2σ
√
−g
(
φ

(
R+

2

L2

)
− Λ

)
+ 2φb

∮
C
du
√
guuK (1.4)

can be described by the following dressing formula

〈V1 (u1) . . .Vn (un)〉JT =

∫
Dte(ΛL2−2φb)

∮
C duSch(t(u))

∏
i

(
t′(ui)

∆i
)
〈V1 (t(u1)) . . .Vn (t(un))〉 ,

(1.5)

where the Schwarzian Sch(t(u)) is defined as

Sch(t(u)) =

(
t′′

t′

)′
− 1

2

(
t′′

t′

)2

. (1.6)

Note, that our notations here are different from the rest of NAdS2 literature. Convention-

ally, the vacuum energy Λ is set to zero, and the dressing is parametrized by the boundary

value of the dilaton φb. As explained in more detail in section 3.2, the two descriptions

are equivalent, because at finite AdS2 length L the vacuum energy can be traded for φb by

performing a constant field shift φ→ φ+ const. We keep Λ in (1.5) and will set

φb = 0 , (1.7)

because eventually we are interested in the flat limit L → ∞, where such a redefinition

is impossible. An interesting aspect of the expression (1.5) is that the dressed generating

functional ZJT is not conformally invariant. This is the reason one refers to this setup as

NAdS2 holography, rather than AdS2/CFT1 correspondence.

Finally, the T T̄ deformation operates as follows [11, 12] (a 3D holographic picture of

this deformation was proposed in [16]). Based on the special remarkable properties [17] of

the operator1

T T̄ ≡ 1

2

(
TαβT

αβ − Tα2
α

)
1For a conformal theory this operator reduces to the product of holomorphic and antiholomorphic

components of the energy-momentum tensor T T̄ , which explains its name. Away from a fixed point the

operator is equal to T T̄ − 1
4
Θ2, where Θ is the trace of the energy-momentum tensor.

– 3 –
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it was observed that an arbitrary quantum field theory deformed by T T̄ gives rise to

an RG trajectory, which is exactly solvable in the following sense. If E0(n, P,R) is the

energy spectrum of the undeformed theory put on a circle of size R, with P being a spatial

momentum, then the finite volume spectrum of the deformed theory is given by the solution

of the following partial differential equation

∂λEλ(n, P,R) = Eλ(n, P,R)∂REλ(n, PR) +
P (R)2

R
. (1.8)

Here λ is the parameter of the deformation, so that the undeformed spectrum serves as the

initial condition at λ = 0. Note that the unusual property of this deformation is that T T̄

is an irrelevant operator, so the RG trajectory shoots from IR into UV.

As already said, the principal claim of the current paper is that the gravitational

dressing and the T T̄ deformation are two different descriptions of the same RG flow, which

can be described also by coupling the undeformed theory to the flat space (i.e., L → ∞)

JT gravity. The parameters of the three constructions are identified as

`−2 = −Λ

2
= λ .

Let us explain why this result is natural to expect. The similarity between the flat

space gravitational dressing and the Schwarzian dressing in NAdS2 holography is manifest.

In both cases all the effects of gravity can be described by introducing a coupling between

the non-gravitational asymptotic observables — be it S-matrix elements or boundary cor-

relators — and a boundary quantum mechanics. Furthermore, it is easy to see that the

boundary Chern-Simons theory (1.3) arises naturally in the JT gravity. Indeed, in the bulk

the JT dilaton φ plays the role of a Lagrange multiplier, ensuring that the metric is flat

(at L =∞). Hence, at L =∞ the path integral describing a matter system coupled to the

JT gravity can be written schematically as

Z =

∫
DXaDψei

∫
d2σ
√
−gf(−Λ+Lm(ψ,gf )) , (1.9)

where Lm is the matter Lagrangian and gf is a general flat metric, which can be presented as

gfαβ = ∂αX
a∂βX

bηab .

Hence, the vacuum energy term turns into the action of a topological theory; when inte-

grated by parts the latter is exactly the boundary Chern-Simons quantum mechanics (1.3)

with

`−2 = −Λ

2
. (1.10)

Of course, this heuristic argument falls short of the derivation that the flat space JT

gravity results in the gravitationally dressed amplitudes. In section 2 we will present an

actual proof that this is the case. We will show how the dressing phase shift arises from

the JT action perturbatively at the leading order in `2 expansion, as well as present a

non-perturbative derivation of the full dressing phase.

– 4 –
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Let us turn now to the T T̄ deformation. There are several pieces of evidence strongly

indicating that it is equivalent to the gravitational dressing. In the very first example of

dressing — the critical string — the finite volume spectrum is known exactly and coincides

with the one given by the T T̄ deformation, as first pointed out in [18]. This agreement

extends to deformations of conformal field theories (CFT) and of integrable models, where

the effect of dressing on the finite volume spectrum can be described through the Thermo-

dynamic Bethe Ansatz (TBA), see [11, 12] for the explicit discussion in the sine-Gordon

case. In addition, as we will see in section 2, the T T̄ operator arises at the leading order

in perturbation theory based on the JT action for an arbitrary matter sector.

It appears that the JT gravity provides a tractable path integral formulation for the

deformation, which should allow to directly calculate the deformed finite volume spectrum

beyond the perturbation theory. Unfortunately, due to several (hopefully) technical dif-

ficulties, we did not manage to complete this calculation so far. We hope to report it

later in a separate publication. In section 4 we present an analogous calculation for the

critical string both to illustrate the idea and because we find this calculation instructive on

its own. This calculation leads us to an integral which exhibits the localization property,

i.e. it is 1-loop exact. As we explain in section 4 there are several reasons to expect that

there is a localization story underlying also the general case of gravitational dressing/T T̄

deformation/JT gravity.

It will be very satisfactory to have a derivation of this sort. However, already at this

point it would be very puzzling if gravitational dressing and T T̄ turned out to be different

deformations. Not surprisingly, identification of the two sheds light on both of them. On

the one hand, the T T̄ description provides the raison d’être for the gravitational dressing

of an arbitrary quantum field theory — existence of the T T̄ operator and its factorization

properties proven in [17] rely neither on the conformal invariance nor on integrability. On

the other hand, the S-matrix description of gravitational dressing serves as a rigorous

definition of what T T̄ deformation is. Indeed, the operator approach of [11, 12] is not

rigorously justified in a situation when the RG flow is defined by an irrelevant deformation

and the resulting theory admits neither a UV fixed point nor well-defined local operators.

In fact, this description leaves one wonder whether the resulting theory is UV complete.

The S-matrix definition eliminates these doubts by providing well-defined and healthy

amplitudes at all collision energies.

The rest of the paper is organized as follows. In section 2 we solve the JT gravity

directly in the flat space. We start with identifying the proper 2d Poincaré symmetry of

the resulting S-matrix. This allows to identify also the corresponding dynamical physical

coordinates — “clocks and rods” — of the JT gravity. Then we show how the exact

dressing formula follows from the transformation explicitly implementing these clocks and

rods as the physical coordinates. Finally we demonstrate how the T T̄ operator arises at

the leading order in perturbation theory.

In section 3 we provide two alternative derivations of the dressed scattering, both

motivated by the NAdS2 holography. In subsection 3.1 we provide another flat space

derivation, which is strongly guided by the NAdS2 calculations. In subsection 3.2 we

derive the dressing by taking the flat limit of Schwarzian correlators. Both derivations are

– 5 –
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somewhat subtle and exhibit certain ambiguities, which would be a bit challenging to fix

without knowing the expected answer. Perhaps, they should be considered as an exercise on

how to take the flat space limit of boundary correlators, rather than bona fide independent

derivations. In fact, we did learn from these derivations two somewhat surprising lessons.

First, in order to reproduce the unitary S-matrix (1.1) as a flat space limit of the

boundary NAdS2 correlators, the Schwarzian action needs to be slightly modified. Namely,

one needs to perform an additional integration over the total length of the boundary, which

results in averaging over the Schwarzian coupling constant with a certain weight. Without

this averaging unitarity is lost in the flat space limit. It will be interesting to understand

implications of this for the NAdS2 holography itself.

Second, as a byproduct, in subsection 3.2.2 we obtained a surprisingly simple and direct

relation (3.39) between the flat space S-matrix and boundary AdS correlators for the case

of scattering of massive particles. Results of section 3 may be considered as a consistency

check of this relation. Once the validity of (3.39) is firmly established, it will be interesting

to study the resulting implications of the boundary OPE for the flat space S-matrix.

Section 4 is somewhat disjoint from the rest of the paper. We present there the

calculation of the finite volume spectrum in the critical string case, which we hope to

extend to the general JT case in the future. We present our conclusions and comment on

the implications of the presented results for the worldsheet theory of the QCD string in

section 5.

2 Solving the flat space JT gravity

2.1 The exact S-matrix from dynamical coordinates

The goal of the present section is to describe the solution of the flat space (i.e., L = ∞)

JT gravity minimally coupled to an arbitrary matter sector. The action of this theory is

given by

SJT+matter =

∫
d2σ
√
−g (φR− Λ) + Smatter[ψ, gαβ ]. (2.1)

We stress that the matter fields, schematically denoted by ψ, do not directly couple to the

dilaton. This is a different coupling than, for example, in [19] where matter is coupled to

φ−1gαβ instead. By solution we mean the exact S-matrix describing scattering around the

vacuum of the JT gravity given by

gαβ = ηαβ =

(
0 −1

−1 0

)
(2.2)

φ = −Λ

4
ηαβσ

ασβ + c =
Λ

2
σ+σ− + c , (2.3)

where we introduced the light cone coordinates

σ± =
1√
2

(σ0 ± σ1) .

The zero mode c does not affect the present discussion, but has to be kept track of in the

path integral approach of the next section. To avoid confusion, note that, of course, it is

– 6 –
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impossible to calculate the exact S-matrix of an arbitrary matter sector. Instead, our goal

is to calculate how it gets modified due to turning on the JT gravity. The JT gravity does

not bring in any new local degrees of freedom — the JT dilaton plays the role of a Lagrange

multiplier, which kills the only candidate propagating mode of the metric. As we will see

now the only role of the JT gravity is to provide a dynamical system of coordinates.

The first indication for this comes from the following consideration. Why does one ex-

pect to find a Poincaré invariant S-matrix for the scattering around the vacuum (2.2), (2.3),

given that the dilaton field in this vacuum has non-trivial space-time dependence? To see

the answer it is convenient to fix the conformal gauge,

gαβ = e2Ωηαβ .

Then the JT action reduces to

SJT =

∫
dσ+dσ−

(
4φ∂+∂−Ω− Λe2Ω

)
.

This action is invariant under arbitrary holomorphic and antiholomorphic shifts of φ,

φ→ φ+ f(σ+) + g(σ−) .

We see now that the vacuum (2.2), (2.3) is invariant under the combination of the coordi-

nate translations with the Galilean shifts of the dilaton

σ± → σ± + a±

φ→ φ− Λ

2
(a+σ− + a−σ+) . (2.4)

Note that, at least for the purpose of the scattering problem, this prescription is well-

defined, because the conformal gauge fixing on a plane does not leave any residual gauge

freedom if one also imposes gαβ → ηαβ at infinity. The only conformal transformations

preserving this property are those from the Poincaré subgroup. The latter is a physical

global (rather than gauge) symmetry of the scattering.2

We do not expect to find an analogue of (2.4), which would make it possible to restore

a symmetry of the JT vacuum in the AdS2 case. Indeed, the important difference between

the L → ∞ JT model considered here and the NAdS2 story is that in the latter case the

boundary observables are not invariant under the AdS2 isometries. However, given that in

section 3 we find that the Schwarzian prescription needs to be extended to obtain a unitary

flat space S-matrix, it is important to carefully check this expectation.

Returning to the flat space analysis, the situation is analogous to the worldsheet scat-

tering for the critical string. There one starts with a long string background

X0 = σ0 , X1 = σ1 ,

which is invariant under the combined shift of the worldsheet and target space coordinates.

Then, using X0 and X1 as physical coordinates, one obtains the worldsheet S-matrix

2It will be interesting to study what is the analogue of the BMS symmetry in this case.

– 7 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
6

described by the dressing formula (1.1), applied to a system of 24 massless free bosons

representing the transverse string coordinates [1]. In the Polyakov description this setup is

especially similar to the one encountered in the JT gravity: in addition to transverse fields

Xi, representing propagating physical modes, one finds an additional topological sector

consisting of the Polyakov metric and X0,1, whose only role is to provide a dynamical set

of coordinates. A detailed derivation of the worldsheet S-matrix in the Polyakov formalism3

is presented in [20]. Let us see what happens if one treats the JT gravity in a similar way.

In the conformal gauge the JT field equations for the metric and the dilaton take the

following form

∂2
+φ = −1

2
T++ (2.5)

∂2
−φ = −1

2
T−− (2.6)

∂+∂−φ =
1

2

(
Λe2Ω + T+−

)
(2.7)

∂+∂−Ω = 0 , (2.8)

where the energy-momentum tensor is defined here as

Tαβ = − 2√
−g

δS

δgαβ
.

With the above boundary conditions for the metric one finds Ω = 0 everywhere. One

treats the system (2.5)–(2.8) as a set of operator equations. The matter dynamics in σ±

coordinates remains exactly the same as in the absence of gravity. Just as in the Polyakov

case, dressing arises as a consequence of a coordinate change. Namely, we introduce new

dynamical coordinates defined in the conformal gauge as

X± = 2
∂∓φ

Λ
≡ σ± + Y ± ,

where at the last step we separated the vacuum contribution. The motivation for this

choice is that, just as the target space coordinates of a string, X± shift by a constant

under the physical Poincaré translations (2.4) and reduce to σ± at the vacuum.

Then eqs. (2.5), (2.6), (2.7) turn into

∂+Y
− = −T++

Λ
, (2.9)

∂−Y
+ = −T−−

Λ
, (2.10)

∂+Y
+ = ∂−Y

− =
T+−

Λ
. (2.11)

Here eqs. (2.11) ensure that given Y ± one can always find the corresponding dilaton field

φ. As a consequence of the energy-momentum conservation the system (2.9), (2.10), (2.11)

3Following the idea by Juan Maldacena.
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always admits a solution. This solution is uniquely defined up to a constant shift. It is

natural to pick this constant in a parity symmetric way, so that

Y ±(σ1 → −∞) = ∓P
±

2Λ
,

where

P± =

∫ ∞
−∞

dσ∓T∓∓

are the light cone components of the total 2-momentum carried by the matter. Then, as a

consequence of (2.9), (2.10),

Y ±(σ1 →∞) = ±P
±

2Λ
.

Consider now a general scattering process taking a set of on-shell momenta {pi} into a set

{qj},4 see figure 2. Let us focus on incoming particles, the argument for outgoing ones is

identical. Let us order the incoming momenta by the corresponding rapidities βi’s, so that

β1 ≥ β2 ≥ · · · ≥ βn. For in-states this order is equivalent to the order of particles in space.

Then integrating eqs. (2.9), (2.10) at σ0 → −∞ we find that at early times

Y ±(σ0 → −∞, σ1) =
1

2Λ

(
∓P± ± 2P±L (σ)

)
.

Here P±L (σ) is the total momentum of all particles on the left of σ1 at a given σ0. This

definition is ambiguous when σ coincides with a position of one of the particles, σ = σi. It

is natural to define it there following the central value prescription

P±L (σi) =
p±i
2

+
∑
j<i

p±j .

With this prescription Y ±(σi) are independent of pi. As we will see momentarily, this is

very reasonable physically, because it eliminates contributions into the phase shift which

would correspond to particles acting upon themselves. Explicitly, at the position of the

i-th particle these operators are given by

Y −(pi) =
1

2Λ

(
P−< (pi)− P−> (pi)

)
(2.12)

Y +(pi) =
1

2Λ

(
P+
> (pi)− P+

< (pi)
)
, (2.13)

where Pα<(pi) (Pα>(pi)) is an operator which calculates the total momentum of all particles

with smaller (larger) rapidities as compared to βi. Note that we replaced the dependence of

the operators Y ± on σi coordinates with the dependence on a particle momentum pi. This

is justified because Y ± depend only on the spatial order of particles, which is completely

determined by the rapidities for the in-states.

4Unlike previously, here we do not treat all momenta as incoming. {qj} is a set of physical momenta

without a sign flip.
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p1

X+= const.

p2

p3
p4

p5

X−=const.

qn q1

...

Figure 2. Lines of constant X+ and X− as seen in the σ coordinates.

Before introducing gravity any matter field ψ can be decomposed as

ψ =

∫ ∞
−∞

dp√
2π

1√
2E

(
a†in(p)e−ipασ

α
+ h.c.

)
(2.14)

in the asymptotic region σ0 → −∞.

To describe the effect of the JT gravity we need to define the creation operators A†in(p)

using the dynamical coordinates X± rather than σ±. This amounts to

A†in(p) = a†in(p)eipαY
α(p) = a†in(p)e−i(p

+Y −(p)+p−Y +(p)) . (2.15)

It is straightforward to check that these operators commute

[A†in(p), A†in(p′)] = 0 ,

as it should be for creation operators. Hence, when creating an in-state, we can put them

in an arbitrary order. It is convenient to order them according to the rapidities, so that

|{pi}, in〉dressed =

nin∏
i=1

A†in(pi)|0〉 = e−
i

2Λ

∑
i<j pi∗pj |{pi}, in〉 .

The argument for out-states proceeds in exactly the same way, but results in an opposite

sign in the final answer for Y ± (i.e., in the analogues of (2.12), (2.13)). Indeed, out-going

– 10 –
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particles are antiordered in space according to their rapidities, which translates into a sign

flip in the dressing phase,

|{qi}, out〉dressed =

nout∏
i=1

A†out(qi)|0〉 = e
i

2Λ

∑
i<j qi∗qj |{qi}, out〉 .

Finally for the dressed S-matrix we get

Ŝ ≡ dressed〈out, {qi}|{pi}, in〉dressed = 〈out, {qi}|{pi}, in〉e−
i

2Λ

∑
i<j qi∗qje−

i
2Λ

∑
i<j pi∗pj

or, equivalently, it can be written as the operator product

Ŝ = USU , (2.16)

where

U |{pi}〉 = e−
i

2Λ

∑
i<j pi∗pj |{pi}〉 .

As discussed in [2], as a consequence of the momentum conservation, (2.16) is equivalent

to (1.1) provided the relation (1.10) holds. Note that in the form (2.16) the unitarity of

the dressed S-matrix is manifest, while the initial expression (1.1) is explicitly crossing

symmetric.

2.2 Perturbative scattering and the T T̄

The presented derivation of the S-matrix proceeds in a somewhat unconventional way. It is

instructive to see how the gravitational scattering arises perturbatively in a more familiar

language. Namely, let us consider the quadratic action for small metric hαβ and dilaton

perturbations ϕ around the vacuum (2). It takes the following form

S
(2)
JT =

∫
ϕ
(
∂2

+h−− + ∂2
−h++ − 2∂+∂−h+−

)
+

Λ

4
(h++h−− − 2h2

+−)

+
Λ

4

(
σ+h++(2∂−h+− − ∂+h−−) + σ−h−−(2∂+h+− − ∂−h++)

)
+

1

2
h++T−− +

1

2
h−−T++ + h+−T+− . (2.17)

Metric and dilaton do not contain any propagating degrees of freedom. Hence, we can

exclude them using their field equations and this will lead to a local interaction for matter

fields. The field equations following from the quadratic action (2.17) are

∂2
+h−− + ∂2

−h++ − 2∂+∂−h+− = 0 (2.18)

∂2
+ϕ+

Λ

4

((
2 + σ+∂+ − σ−∂−

)
h++ + 2σ−∂+h+−

)
= −1

2
T++ (2.19)

∂2
−ϕ+

Λ

4

((
2 + σ−∂− − σ+∂+

)
h−− + 2σ+∂−h+−

)
= −1

2
T−− (2.20)

∂+∂−ϕ+
Λ

4

(
2h+− − σ+∂−h++ − σ−∂+h−−

)
=

1

2
T+− . (2.21)

A solution to these equations is not unique due to gauge ambiguity. In particular, one can

fix the conformal gauge h++ = h−− = 0, which also implies h+− = 0 and brings us to

– 11 –
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the same situation as before in section 2.1, where the scattering arises from introducing

dynamical coordinates. Instead, here we are looking for an analogue of the static gauge for

the Nambu-Goto string, where the worldsheet scattering comes out directly. The metric

solution, which accomplishes this, is

hαβ = − 2

Λ
(Tαβ − ηαβT γγ ) . (2.22)

To see that this provides a solution, note that as a consequence of the energy-momentum

conservation

∂+h−− − ∂−h+− = ∂−h++ − ∂+h+− ,

which implies also the flatness condition (2.18). Furthermore, after plugging (2.22) in (2.19),

(2.20), (2.21) one arrives at the following set of equations for the dilaton,

∂α∂βϕ =
1

2
(1 + σγ∂γ)Tαβ . (2.23)

These equations are solved by

∂+ϕ =
1

2
(σ+T++ − σ−T+−) (2.24)

∂−ϕ =
1

2
(σ+T−− − σ+T+−) . (2.25)

It is straightforward to check that (2.24), (2.25) satisfy the integrability condition

∂+∂−ϕ = ∂−∂+ϕ .

By plugging (2.22) back into the action (2.17) we find that (at the leading order in 1/Λ)

the effect of the JT gravity is equivalent to deforming the matter action by

ST T̄ = − 1

2Λ

∫
(TαβT

αβ − T γ2
γ ) , (2.26)

which is nothing but the T T̄ deformation.

One can check, using the quadratic part of the stress-energy tensor, that this defor-

mation reproduces the first nontrivial term in the dressing formula (1.1). The agreement

with the non-perturbative derivation of section 2.1 can be understood from the fact that

the solution (2.22) is what one would obtain by starting from the conformal gauge and

performing a diffeomorphism with parameter Y α of the previous section.

3 Gravitational dressing as a flat limit of NAdS2 holography

In this section we establish a link between the NAdS2 holography for the JT gravity and

the gravitational dressing of 2D S-matrices. We start with a more detailed version of the

argument stated in the Introduction that says that the effect of the flat space JT gravity on

the S-matrix can be expressed as a functional integral similar to (1.2) and present a more

careful treatment of this formula. In section 3.2 we turn to the holographic formulation of

the JT gravity in AdS2 given by the Schwarzian dressing (1.5). At this point it is natural

– 12 –
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to expect that flat space limit of AdS boundary correlators will reproduce dressing of the

S-matrix obtained directly in flat space. There are several obstacles that complicate the

limit, for example conformal symmetry is broken by the Schwarzian contribution. However,

with some guidance from the flat space “holographic” derivation of section 3.1, we present

a procedure that indeed leads to the anticipated result. Interestingly, this requires a slight

modification of the conventional Schwarzian dressing.

3.1 “Holographic” derivation of gravitational dressing

S-matrix is a natural asymptotic observable in flat space. However, so far there is no

well-established procedure to express it purely in terms of a boundary theory. In order

to proceed we will consider our theory placed in a finite region of the Minkowski space.

The boundary of this region can be roughly thought of as the position of an observer’s lab

which prepares initial states and measures final ones. To define the S-matrix elements we

first calculate boundary Greens functions, then take the boundary to infinity and apply

the LSZ formula.

It is convenient to perform the Wick rotation and to work in the Euclidean flat space.5

This will prepare us for the AdS2 case, where the Euclidean formulation is almost a neces-

sity, because massive particles do not reach the AdS2 boundary.

After setting the metric to

gαβ = ∂αX
a∂βX

bηab

and rewriting the area term as a boundary contribution we arrive at the following Euclidean

action,

iSJT = −S̄JT = −Λ

2

∮
du
(

˙̄X0X̄1 − ˙̄X1X̄0
)
, (3.1)

where X̄’s are the coordinates of the boundary, which parametrize large diffeomorphisms.

The boundary curve is fixed by the metric equation of motion to be at φ = φb.

One puzzling aspect of the heuristic argument presented in the Introduction is that

the result (1.2) is coming from the vicinity of a trivial saddle point X̄ = 0, which does

not have any transparent physical interpretation. On physical grounds one expects the

path integral to be dominated by semiclassical configurations corresponding to curves with

unit winding. However, the action (3.1) does not have any saddle points in sectors with

windings: integration over the constant mode of φ in (2.3) changes the size of the curve and

the area bounded by any non-trivial curve always decreases as the curve shrinks to zero.

This shortcoming can be fixed by adding to the boundary action a counterterm pro-

portional to the length of the boundary,

S̄ct = −ΛR0

∮
du
√
guu, (3.2)

where guu is the induced metric on the boundary, and R0 is a free parameter. It is conve-

nient to fix reparametrizations along the boundary by requiring the induced metric to be

5We denote all Euclidean variables with a bar and employ the standard convention for the Wick rotation,

X̄0 = iX0, X̄1 = X1.
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constant,

guu = δab
˙̄Xa ˙̄Xb = R2 , (3.3)

where R is a modulus, which determines the total length of the boundary. It is directly

related to the constant mode of φ. The background solution for the boundary position in

the absence of any matter sources is a circle of radius R0. This setup is inspired by the

holographic prescription employed in the NAdS2 case in [8].

This “holographic” formulation with a dynamical boundary makes it relatively

straightforward to understand how asymptotic observables of the original 2d QFT are

modified in the presence of the JT gravity. Here it is convenient to use the path integral

formulation of the theory, rather than the operator language of section 2.1. The calcu-

lation can be done in two steps. We first notice that for any fixed boundary curve the

boundary correlators, resulting from the path integral over all matter fields, are identical

to those of the original QFT. Next, we integrate over the boundary fluctuations using the

action (3.1) — together with the tadpole canceling counterterm (3.2) — to take into ac-

count the response of the dilaton to matter fluctuations. This gives rise to the gravitational

dressing.

It is convenient to introduce radial coordinates

X̄0 = r cos θ, X̄1 = r sin (−θ) , (3.4)

so that the Chern-Simons action (3.1) turns into

S̄JT =
Λ

2

∮
dur2θ′ , (3.5)

and the condition on the induced boundary metric (3.3) implies

r =
1

θ′

√
R2 − r′2. (3.6)

Consider small perturbations around the vacuum solution r = R = R0, θ = u,

θ = u+ ε(u), (3.7)

where

ε(0) = ε(2π) .

Using (3.6) to express perturbations of r through ε and expanding to second order in

perturbations one finds the following expression for the total boundary action

S̄b = −πΛR2
0 + πΛ(R−R0)2 +

ΛR2

2

∮
du
(
ε′2 − ε′′2 +O(ε3)

)
. (3.8)

For the purpose of calculating the S-matrix we are interested in the R0 →∞ limit. In this

limit (ΛR2
0)−1 acts as a weak coupling parameter and the action (3.8) turns free.
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Figure 3. (a) Scattering process in the Lorentzian space with LSZ surfaces taken to be hyperbolas,

the particles intersect the surfaces at hyperbolic angles determined by their rapidities. (b) The same

process but rotated to the Euclidean space. Positions of the particles on the boundary circle are

determined by their Euclidean rapidities θi = β̄i + π. (c) Coupling to JT gravity results into the

deformation of the boundary surface. Positions on the boundary are given by ui = β̄i + π. The

grey bulb on all three figures represents the interaction region Mint.

3.1.1 LSZ recap

Before proceeding further, let us recall some details of the standard flat space LSZ for-

malism. It relates the S-matrix elements to the time-ordered correlation functions. In its

final covariant form, the LSZ prescription requires knowledge of correlators over the entire

space-time. However, to derive the S-matrix it is actually enough to know correlation

functions of fields inserted on two Cauchy slices in the limit of infinite time separation.

Following e.g. [21], for the n-particle scattering amplitude Sn({pi}) we can write6

Sn({pi}) = lim
T→∞

∫ n∏
i

dvie
i
∑
i pi·X(vi)

n∏
i

(ni ·
↔
∂Xi)Gn({X(vi)}), (3.9)

where pi are on-shell momenta, assumed to have negative energies for out-states. Xα(v)

belong to the surfaces where in- and out-states are created, the surfaces are parametrized

by v and ni are the corresponding unit normal vectors at points vi, and T is the minimal

time separation between in- and out-surfaces. Since both in- and out-fields as well as

external wave functions eipi·Xi satisfy the Klein-Gordon equation the above expression

is independent of the choice of these surfaces. Conventionally, they are taken as two flat

constant time hyperplanes. Instead, for our purposes it is convenient to consider hyperbolic

spacelike surfaces, which give a connected Euclidean circle of a size R0 = T after the Wick

rotation (see figure 3).

Let us parametrize the momenta via rapidities,

p0 = m coshβ, p1 = m sinhβ, (3.10)

6To keep the equations short, we assume that all wave function normalization constants are set to unity.
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where for out-states Im β = π. To keep the Euclidean path integral real, let us analytically

continue rapidities to purely imaginary values β = −iβ̄, which corresponds to p̄0 = p0

and p̄1 = ip1. This continuation is distinct from the conventional Wick rotation. It is

however a convenient analytic continuation of external kinematical data. Since S-matrix

is an analytic function of rapidities, we are perfectly allowed to calculate it for Euclidean

rapidities β̄ in the (0, 2π) interval and then analytically continue back into the physical

region. We thus arrive at the “Euclidean” LSZ formula,

Sn({β̄i}) = lim
R0→∞

∫ n∏
i

(miR0dθi)e
−R0mi cos(θi−β̄i)

n∏
i

(ni ·
↔
∂Xi)Gn({R0, θi}), (3.11)

where Gn({X̄}) is the n-point function of sources located on the circle of radius R0.

Note that, as always, in expressions like (3.11) one really has in mind the in- and out-

wave functions to be well localized wave packets rather than true plane waves. These wave

packets can be arranged in such a way that all interactions take place in a region Mint of

a finite characteristic size Lint, such that

p−1
i � Lint � R0 .

Then for large R0 the Green’s functions can be approximated by expressions of the form

Gn(X̄i) '
∫
Mint

dx̄

n∏
i

G2(x̄− X̄i)Kn({∂X̄i}). (3.12)

The meaning of this schematic formula is that quasilocal kernels Kn({∂X̄i}) determine the

momentum structure of the scattering amplitudes, when convoluted with the external wave

packets. For large distances the external propagators take the following asymptotic form

G2(x̄− X̄i) = K0(mi|x̄− X̄i|) ∼
e−mi|x̄−X̄i|√

R0
∼ e−mi(R0−X̄i·x̄/R0)

√
R0

. (3.13)

Keeping only the leading piece in the exponent in (3.13) one finds that the integral over

θi in (3.11) localizes around θi = β̄i + π. In the Lorentzian signature this localization

corresponds to the fact that particles enter the asymptotic region from hyperbolic angles

opposite to their rapidities, see figure 3(a).

The subleading pieces in the exponent combine to form

exp

(∑
i

−
(
micos β̄ix̄

0 −mi sin β̄ix̄
1
))

,

which in the Lorentzian signature turns into exp(
∑

i ipi ·x), ensuring the energy-momentum

conservation after integration over x. In the Eucledian signature this factor is equal to unity

by definition, because the analytic continuation is always performed over a conserved set

of momenta. Also, at large R0 all the derivatives in the
∏
i ni ·

↔
∂Xi factor in (3.11) can

be taken to act on the external wave functions, turning this factor into
∏
i−n̄i · p̄i . With

this, the LSZ formula becomes holographic in the sense that it only depends on correlators

restricted to the boundary.
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3.1.2 Gravitational dressing

Let us come back now to our gravitational problem. Given the previous discussion the

effect of the JT gravity amounts to averaging the Green’s functions over the positions of

the source insertions with the weight determined by the boundary action (3.8). Hence the

expression for the dressed S-matrix reads

Ŝn({β̄i}) = lim
R0→∞

∫
dx̄ dRDεe−S̄b(ε,R) (3.14)∏

i

(
−R0duie

−R0mi cos(ui−β̄i)n̄i · p̄iG2 (r(ui), θ(ui), x̄)
)
Kn({∂X̄i}).

Note, that r(ui), θ(ui) now depend on the dynamical variables ε,R through (3.6), (3.7).

This rather lengthy expression gets significantly simplified in the large R0 limit. Indeed, as

we discussed after (3.8), in this limit (ΛR2
0)−1 acts as a small coupling constant, and also

the integral over R gets localized in the vicinity of R0. Hence, in this limit the dependence

on ε only survives in the terms where ε is multiplied either by R0 or R. Then, using (3.13),

the leading part of the external two-point Greens functions reduce to

G2 ∼
e−mr√
R
∼ e−mR+mRε′(u)

√
R

, (3.15)

which gives rise to a source for both ε and R. As a result we arrive at the following compact

expression for the dressed S-matrix

Ŝ({β̄i})=N
∫
dRe−πΛ(R−R0)2

∫
Dεe−

ΛR2
0

2

∮
du(ε′2−ε′′2)+

∮
du
∑
imi(R0ε′−R+R0)δ(u−β̄i−π)S({β̄i}).

(3.16)

Here, as in the flat case, we took into account that the
∏
dui integral localizes at ui = β̄i+π,

and N is an overall constant normalization factor. We see that the integral over ε is

Gaussian and is factored out. We evaluate the path integral over ε in the appendix A and

after analytic continuation back to real β obtain that the dressed S-matrix is given by the

expression (1.1), up to an additional factor,

F = e−
(
∑
mk)2

4πΛ

∫
dRe−πΛ(R−R0)2−

∑
mi(R−R0) . (3.17)

Note that this factor potentially depends on particle masses, so it cannot be set to unity

by adjusting the overall constant normalization N , which should be process independent.

Fortunately, all the dependence on masses cancels out after evaluating the integral in (3.17)

and we recover the correct dressing formula (1.1).

3.2 Flat limit of Schwarzian correlators

Boundary correlation functions are asymptotic observables in the AdS gravity. They are

thought to contain all information about a gravitational theory in the bulk. In particular it

should be possible to extract from them the scattering matrix for states that are localized

within a region much smaller than the AdS radius. By taking a family of theories with
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increasing AdS radii one then expects to extract the full flat space S-matrix. This procedure

is called the flat space limit of boundary correlators.

In the AdS2 case the (Euclidean) action of the JT gravity takes the following form

S̄JT = −
∫
d2x
√
gφ

(
R+

2

L2

)
− 2φb

∮
C
du
√
guuK + 2c0

∮
C
du
√
guu. (3.18)

Here we assumed that the space is cut off by some closed boundary C with K being its

geodesic curvature. Variation of the geodesic curvature term w.r.t. the metric together

with a boundary variation coming from the bulk JT action imply that at the boundary

φ|C = φb .

The last term in (3.18) is needed to stabilize the position of the boundary, just like in the

flat case. The cutoff boundary is a usual necessity in the holographic renormalization pro-

cedure. However, in a conventional higher dimensional holography no additional boundary

dynamics is introduced after the cutoff is removed. The situation is different in the JT

NAdS2 case, where gravity affects correlation functions exclusively through the boundary

dynamics [3]–[9].

Analogously to the flat case the gravitational action reduces to a boundary term and

the effect of gravity can be described as dressing of QFT correlators put in the rigid AdS2

space. The most straightforward way to take the flat space limit of the theory (3.18) is

to move in the boundary C deep inside the AdS2 radius. In this way one is guaranteed to

eventually reproduce the results of section 3.1.

On the other hand, if the boundary AdS2 correlators indeed contain all the information

about the bulk dynamics, one should be able to make the calculation at the AdS2 boundary

and then perform a transformation of correlators that produces the flat space S-matrix. A

priori it is not obvious that the two limits commute.

Before proceeding, let us note that we presented the action in the form (3.18) to

agree with the rest of NAdS2 literature. However, one should have in mind that with this

choice the flat space limit becomes somewhat obscure. In particular, one may wonder what

happened to the vacuum energy Λ, which used to be the only parameter in section 2. As

pointed out in the Introduction, the answer is related to the possibility to perform a field

redefinition,

φ→ φ+ φ0 , (3.19)

with a constant φ0. This results in a simultaneous shift of Λ and φb,

Λ→ Λ− 2φ0

L2
, φb → φb − φ0 ,

so that the actual physical parameter is the invariant combination

Λ̄ = Λ− 2φb
L2

. (3.20)

The flat limit L→∞ is most straightforward if one sets φb = 0. Nevertheless, in the rest of

this section we continue with the choice (3.18). In the appendix B we discuss some further

details of the flat space limit, which become more transparent with the choice φb = 0.
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Within the conventional AdS/CFT it is well established how to take the L→∞ limit

resulting in the scattering of massless particles [22, 23]. This procedure can be performed

directly in the Lorentzian signature and in the global AdS coordinates. However, here we

would like to check (1.1) also in the massive case. Furthermore, as we discuss in the very

end of this section, massless scattering exhibits additional subtleties in the present setup.

Hence, to start with we consider scattering of massive particles only. This implies

that at L→∞ dimensions ∆a of all operators that create scattering states are also taken

large, so that the corresponding masses ma = ∆a/L all stay finite. The flat space limit for

massive scattering is subtle even within conventional AdS/CFT. The main problem is that

in the Lorentzian signature massive particles never reach the AdS boundary. This makes

it somewhat challenging to construct scattering states in the boundary theory. Hence,

similarly to section 3.1, we work in the Euclidean signature. Our prescription is to a large

extent guided by the flat space LSZ formalism. Morally the resulting procedure is similar

to the one implemented in [24], although some details are different. In particular, we do

not require conformal invariance of boundary correlators. Once the massive S-matrix is

obtained, one can take masses to zero to study the dressing of massless S-matrices. In this

sense mass can be thought of as an IR regulator.

3.2.1 Boundary action

In flat space all background solutions for the dilaton are equivalent. This is no longer

the case in AdS2. To describe the AdS2 dilaton solutions it is convenient to introduce

embedding coordinates X̄A, satisfying

− X̄2
−1 + X̄2

0 + X̄2
1 = −L2 . (3.21)

Here, as before, we use bars for Euclidean coordinates. Then the general dilaton solution

reads as

φ = Z · X̄ , (3.22)

where ZA are integration constants. Solutions with time-like, space-like or null vectors Z

are qualitatively different. Only the time-like ones survive in the flat limit (see appendix B

for details). Hence, in what follows we will focus on the solution with Z0 and Z1 equal to

zero. It is convenient to parametrize the embedding coordinates as

X̄−1 = L cosh
r

L
, X̄0 = L sinh

r

L
cos θ, X̄1 = L sinh

r

L
sin (−θ) . (3.23)

In these coordinates the metric reads

ds2 = dr2 + L2 sinh2 (r/L) dθ2 (3.24)

while the unperturbed boundary will be located at constant r = R0. To get the boundary

action in these coordinates we follow exactly the same path as in section 3.1. We keep

the metric in the bulk equal to (3.24) and assume that the boundary is dynamical and

parametrized by two functions r(u) and θ(u). To gauge fix the reparametrizations of u we

set a condition analogous to (3.3),

guu =
L2

4
e

2R
L . (3.25)
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As before, using this condition one can express r(u) through θ(u). Perturbatively for large

R one gets

r(u) = R− L log θ′(u) + Le−
2R
L

(
θ′(u)2 − 2

θ′′(u)2

θ′(u)2

)
+O(e−

4R
L ) . (3.26)

In section 3.1 it was important to keep the zero mode of the metric R dynamical in order

to obtain a unitary S-matrix. We will see that the same is true for the L → ∞ limit of

boundary correlators. Consequently, we allow R to fluctuate around its central value R0.

Note that this is different from the conventional NAdS2 prescription, where guu is kept

fixed. The coupling constant φb should scale as e
R0
L in the R0 → ∞ limit to keep the

action finite. So we set it to

φb = −ΛL2

2
cosh

R0

L
. (3.27)

In addition to reproducing the correct R0 → ∞ asymptotics at fixed L, with this choice

by taking the L→∞ limit at fixed R0 one gets

φb|L→∞ = −ΛL2

2
+O(L0) ,

independently of R0. Hence, in view of (3.20), we expect to match the earlier flat space

results. The role of the last term in the action (3.18) is to stabilize the value of R. The

solution R = R0 is obtained with the choice

c0 = −ΛL

2
sinh

R0

L
.

Then in the large R0 limit the boundary action reads

S̄AdS
b = πΛL2e

R−R0
L + ΛL2e

R0−R
L

∮
du

(
1

2
θ′(u)2 − 3

2

(
θ′′(u)

θ′(u)

)2

+
θ′′′(u)

θ′(u)

)
. (3.28)

In the second piece we recognize the Schwarzian action (1.6) with t = tan(θ/2). Unlike in

previous works, however, the coupling constant in front of the Schwarzian is dynamical and

is integrated over. As before, one can expand around the classical saddle point by writing

θ(u) = u+ ε(u) .

At finite L the boundary theory (3.28) is highly non-linear. Also, one may worry that

integrating over R makes it highly non-local.7 However, somewhat surprisingly, one may

completely get rid of this non-locality by changing the gauge condition. Indeed, instead

of the proper time gauge defined by (3.25) one may choose to work in the “static” gauge,

defined by fixing

θ = u .

In this case the boundary action is manifestly local and at large R0 takes the following form,

S̄
(s)
b = ΛL2

∮
du

(
cosh

(
r −R0

L

)
− 1

2
e
R0−r
L r′2

)
, (3.29)

7Interestingly, this type of non-locality — a promotion of a coupling constant into a fluctuating global

dynamical variable — is analogous to the effect expected from Euclidean wormholes [25].
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where we now kept r(u) as a dynamical degree of freedom. In this form the prescription

of [7]–[9] appears non-local, implying the following integral constraint∮
due

r
L = 2πe

R0
L .

We checked that, at least as far as the L→∞ S-matrix goes, both gauge conditions give

rise to the same results, so we will continue with the initial choice (3.25).

In the L → ∞ limit nonlinearities of the action (3.28) are suppressed and only the

Gaussian piece survives. The resulting quadratic action is

S̄
(2)
b = πΛ(R−R0)2 +

ΛL2

2

∮
du
(
ε′2 − ε′′2

)
. (3.30)

This action does look very similar, up to some normalizations, to the dressing action (3.8),

which we previously obtained directly in the flat space calculation. To check whether we

indeed reproduce the same flat space dressing from the AdS calculation, we need to find

the form of sources, which need to be added to (3.30) in the presence of scattering particles.

Hence, the next step in our analysis is to define the proper smearing of boundary

correlators that will produce the S-matrix in the L→∞ limit. The resulting prescription

is analogous to the LSZ formula, which computes the S-matrix from the asymptotics of

the flat space Green’s functions. It is universal and with straightforward modifications can

be applied also in higher dimensional theories.

3.2.2 Single-particle states

Let us consider a massive quantum field theory in a rigid AdS2. We start with constructing

one-particle states that after a proper analytic continuation correspond to plane waves in

the center of AdS2. In order to make similarity with the LSZ formula manifest we first use

the language of bulk fields. Consider the following state of the bulk theory

|V (p)〉AdS =

∮
dθ(−P · X̄(θ))∆V V (X̄(θ))|0〉AdS , (3.31)

where the integral is taken over a constant r circle close to the boundary, V (X̄) is a bulk

field of a mass m dual to a boundary primary operator V with a dimension

∆V = 1 +
√

1 + (mL)2 ' mL .

Here P is a vector of the form

P = (0, L cos β̄,−L sin β̄). (3.32)

and β̄ is a rapidity corresponding to an on-shell Euclidean momentum of the form

p̄α = (m cos β̄,m sin β̄) .

As X̄(u) approaches the boundary of AdS, er∆V V (X̄) corresponds to a boundary operator

V(u) dual to V , and the bulk state (3.31) turns into the following smeared state of the

boundary theory,

|V (p)〉 =

∮
du
(
− cos(u− β̄)

)∆V V(u)|0〉. (3.33)
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To see the reason for considering this particular state it is instructive to inspect the corre-

sponding bulk wavefunction

Ψ(Ȳ ) = 〈0|V (Ȳ )|V (p)〉, (3.34)

in the flat patch close to the center of the AdS, i.e. for

Ȳ = (L, y cosα,−y sinα)

with y � L. It is straightforward to check that upon analytic continuation β̄ → iβ and

Ȳ 0 → iY 0 it takes the form of a plane wave. To verify this, we use the asymptotic behavior

of bulk correlation functions, which also determines the form of the bulk-to-boundary

correlators, 〈
V (Ȳ )V (X̄)

〉
=

1

(−2X̄ · Ȳ )∆V
. (3.35)

Using (3.23) at r →∞ we get

Ψ(ȳ) =

∮
dθ exp

[
∆V log− cos(θ − β̄)

1− y
L cos(θ − α)

]
. (3.36)

For the scattering of massive particles, dimensions ∆V all grow linearly with L. Then at

∆V → ∞ the integral (3.36) can be evaluated by a saddle point approximation and gets

localized at θ = β̄ + π. An analytic continuation of the saddle point answer gives

Ψ(y) =

√
2π

∆V
eip·y . (3.37)

The localization becomes exact in the limit ∆V →∞.

We see that the situation is very similar to the flat space LSZ formula. Hence, we follow

the same logic. We assume that the wave functions are convoluted with some external wave

packets in P , that focuses plane waves in some region small compared to the AdS radius.

We keep these external wave packets implicit as they stay smooth in the flat space limit.

On the other hand the smearing function in (3.33) is important both for localization of

boundary integrals in the flat space limit and for creating the plane wave states in the

center of AdS.

As a cross-check, we can verify that applying the above construction to a Euclidean

correlation function obtained from a Witten diagram with a local bulk vertex reproduces

the S-matrix which would be generated by the corresponding Feynman diagram. The

Witten diagram gives

G({X̄n}) =

∫
AdS

dȲ
∏
n

1

(−2X̄n · Ȳ )∆Vn
λ, (3.38)

where λ is a coupling constant of the bulk interaction. Attaching the state (3.31) to each

external leg and continuing to the Minkowski momenta and coordinates leads to

S({pn}) = iλ

∫
ddyei

∑
n pn·y = iλδd

(∑
n

pn

)
, (3.39)
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V4
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Figure 4. The Euclidean S-matrix is obtained from the boundary correlators by placing the source

corresponding to the i-th particle at θi = β̄i + π.

where we assume analogously to the flat space case that the y integral is taken over some

region of AdS space small compared to L and consequently the delta-function is understood

to be smoothed over the width of the external wave-packets. More generally, we arrived at

the following remarkably simple expression for the Euclidean S-matrix8 (see figure 4),

Sn
(
{β̄i}

)
= lim

∆i→∞
〈∆1

1/2V1(θ1) . . .∆n
1/2Vn(θn)〉 , (3.40)

where θi = β̄i +π and factors of ∆
1/2
i are introduced to cancel the corresponding prefactor

in (3.37). It is straightforward to generalize this prescription to higher dimension, where

Euclidean rapidities βi should be promoted into spherical coordinates of dimensionless

Euclidean momenta p̄α/m. It will be interesting to perform further consistency checks on

this formula and to derive it from Mellin amplitudes. Here we proceed to calculating the

effect of the JT dressing. In fact, this can be considered as one of the consistency checks

of (3.40).

3.2.3 Dressing

Calculation of the dressed S-matrix proceeds in the same way as in the Minkowski space.

We first place the QFT in question in a rigid AdS2 space which produces the set of boundary

correlators. After smearing with the help of formula (3.33) they produce the S-matrix (3.40)

of the QFT in the L → ∞ limit. We then use the relation (3.40) between the S-matrix

and the correlators, take the path integral over boundary fluctuations weighted by the ac-

tion (3.30) and analytically continue in rapidities. More explicitly, the dressing prescription

8We thank Shota Komatsu, Joao Penedones and Pedro Vieira for a discussion on this and for informing

us that Shota has independently arrived at this representation [26].

– 23 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
6

instructs us to replace the scattering states (3.31) with

|̂V (p)〉AdS =

∮
du(P · X̄(u))∆V V (X̄(θ(u)))|0〉AdS , (3.41)

where X̄(u) is given by (3.23) with θ = u and r = R0. The analog of the formula (3.14) is

then

Ŝn
(
{β̄i}

)
= lim

L→∞
∆i/L→mi

∫
dRDεe−S̄

(2)
b (ε,R)

n∏
i

((
e
R0−R
L θ′(ui)

)∆i

∆
1/2
i

)
〈V1(θ(u1)) . . .Vn(θ(un))〉 ,

(3.42)

where θ(u) = u+ ε(u) and ui ≡ β̄i + π. As explained in [8] the rescaling factors

Ni =
(

e
R0−R
L θ′(ui)

)∆i

in front of the correlation function appear from the relation between the bulk fields and op-

erators (or, equivalently, from the mismatch between the boundary asymptotics of V (X̄(θ))

and of (P · X̄(u))∆V in (3.41)) after the use of (3.26). These factors match the conformal

transformation rule for boundary primary operators. Hence, in the intrinsic CFT terms

dressing operates by averaging over the conformal transformations with the Schwarzian

weight (or rather with its extension (3.28)). In the large ∆i limit Ni turn into the follow-

ing source terms

lim
L→∞

∆i/L→mi

(
e
R0−R
L θ′(ui)

)∆i

= emi(R0−R)+Lmiε
′(ui) . (3.43)

Analogously to the flat case, ε(u)-dependence of the correlator 〈V1 (θ(u1)) . . .Vn (θ(un))〉
can be neglected at L → ∞, as a consequence of the bulk locality. Namely, the largest

sensitivity to boundary fluctuations is in the bulk-to-boundary propagators that are already

factored out in (3.42). Then after performing a rescaling

ε→ L

R0
ε

the L → ∞ AdS dressing action, given by the sum of (3.28) and (3.43), exactly matches

the flat action in (3.8). The Gaussian integral over ε is then the one we computed in

the appendix A so the flat space limit of the Schwarzian dressing indeed reproduces the

gravitational dressing (1.1). Note, in particular, that if we were to freeze the zero mode of

the metric and do not take the integral over R in (3.42) we do not get a unitary S-matrix.

The above derivation relies on the fact that dimensions of operators go to infinity

together with the AdS radius. In particular, the source term (3.43) becomes trivial if one

keeps ∆i’s finite in the flat space limit. So, as it stands, this derivation cannot be applied to

massless particles. Of course from the results of section 2 we know that massless particles

in principle can be treated on an equal footing with the massive ones, and that massless

scattering can be obtained as a limit of massive amplitudes.

Massless flat space S-matrix is usually associated with the so-called “bulk-point” sin-

gularity present in the correlators of holographic CFTs in the Lorentzian signature [22].
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However, there is an additional subtlety in the present setup. Similarly to the flat space

calculation we would like to place a boundary along the lines of constant dilaton. Back-

ground dilaton solutions which provide constant dilaton slices sufficient to support massless

scattering states in the Lorentzian signature correspond to space-like vectors Z in (3.22).

Unfortunately, it is straightforward to check that those backgrounds do not have a smooth

flat space limit. This is different from the standard situation where the entire AdS boundary

is available. Nevertheless, massless scattering can be obtained in the limit when energies

of particles are much larger than their masses. In this limit the dressing phase (1.1) takes

a simpler form

Ŝ = ei`
2ELERS , (3.44)

where EL and ER are total energies of left- and right-moving particles correspondingly.

In particular, for the case of two-to-two massless scattering the dressing factor is equal to

ei`
2s/4 which is a familiar eikonal gravitational phase shift.

4 Towards finite volume spectrum and localization

So far we established the equivalence between the gravitational dressing and coupling to the

JT gravity. We also presented several reasons to expect that this construction is equivalent

to the T T̄ deformation. Of course, it will be very satisfactory to have a direct derivation of

the latter equivalence as well. The JT gravity appears to provide a tractable path integral

description for the gravitational dressing. Hence one may hope to derive the generalized

Burger’s equation (1.8), describing the T T̄ -deformed finite volume spectrum, by calculating

the toric partition function of the JT gravity coupled to a matter system. Due to several

technical difficulties, related mainly to the integration over the overall size of the torus,

we did not complete this calculation yet, and hope to present it in a separate publication.

Here, instead, we report a prototype calculation, which applies when the matter sector is

described by a c = 24 CFT. Besides illustrating the general idea, this calculation has an

independent interest because it gives rise to a localizable (i.e, one loop exact) integral. We

will argue that it is natural to expect the general JT gravity to exhibit the localization

property as well.

The c = 24 conformal matter is special because in this case one can arrive at the

dressed S-matrix (1.1) also by using the conventional Polyakov formalism, similarly to how

it happens for the critical bosonic string. In fact the whole calculation is almost identical

to the classic evaluation of the one loop string path integral [27]. Namely, instead of

introducing a JT sector one may couple a c = 24 theory to a metric gαβ and two massless

bosons Xµ, µ = 0, 1 so that the dressed Euclidean partition function is

Zdressed =

∫ Dgαβ
Diff ×Weyl

DXµe−
∫ √

g 1
2`2

(∂αXµ)2

ZCFT(gαβ) , (4.1)

where ZCFT(gαβ) is the CFT partition function in the external metric gαβ , and the integral

over metrics is moded out by the action of diffeomorphisms and the Weyl group. Note
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that for a general interacting CFT the S-matrix is an ill-defined object, and it is better to

define dressing directly in terms of the finite volume spectrum.9

For simplicity, to avoid subtleties associated with zero modes, we restrict this discussion

to compact CFT’s (so that it would need to be modified to cover the first and the simplest

example of dressing — the critical bosonic string). The states of the undressed theory put

on a circle of size R have energies of the form

En(R) =
2π

R

(
h+ h̃+N + Ñ − c

12

)
≡ En

R
, (4.2)

where h, h̃ are conformal weights of the corresponding primaries, N , Ñ are the Virasoro

levels, and n = (h, h̃,N, Ñ) is a collective label for all of these. The finite volume spectrum

of the dressed theory can be extracted from the toric partition function. To define the

latter, recall (see section 2.1) that the fileds Xµ’s play the role of physical coordinates of

the dressed theory in this case. Hence, to calculate the partition function of the dressed

theory on a rectangular torus with sides R0 and R1 one needs to integrate over Xµ field

configurations of the form

Xµ = Rµσ
µ + δXµ , (4.3)

where no summation is implied in the first term, and δXµ’s are periodic w.r.t. the world-

sheet coordinates σα with a unit periodicity,

σα ∼ σα + 1 .

All matter fields also have the same periodicity, and the metric can be chosen in the form

gαβdσ
αdσβ = |dσ0 + τdσ1|2 ,

where

τ ≡ τ1 + iτ2

is the modular parameter. The only difference with the conventional one loop string cal-

culations [27] is that as a consequence of windings for both X0 and X1 in (4.3) the region

of integration over τ extends to the whole upper half-plane τ2 > 0. This is similar to how

in [27] the region of integration extends from the fundamental domain of the modular group

to the stripe |τ1| < 1
2 , when one moves from the situation with no windings to the one with

a winding of X0 only. Hence, the result in [27] translates into the following expression for

the dressed toric partition function

Zdressed(R0, R1) =
R0R1

`2

∫ ∞
0

dτ2

2πτ2
2

∫ ∞
−∞

dτ1e
−Y ZCFT(τ) , (4.4)

where

Y =
1

2`2

(
R2

0

τ2
+R2

1

(
τ2 +

τ2
1

τ2

))
9For some CFTs it makes sense to talk about S-matrices, understood mostly as a formal object, appearing

in the TBA equations which determine the finite volume spectrum, see e.g. [28].

– 26 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
6

and ZCFT(τ) is a toric partition function of the initial CFT. For a compact CFT the latter

is given by

ZCFT(τ) =
∑
n

e−Enτ2−iτ1Pn , (4.5)

where En are energies of CFT states on a unit circle, (4.2), and

Pn = 2π(N − Ñ)

are the corresponding spatial momenta. At any value of n we end up with an integral of

the same form,

In =
R0R1

`2

∫ ∞
0

dτ2

2πτ2
2

∫ ∞
−∞

dτ1e
−Y e−Enτ2−iτ1Pn . (4.6)

This integral is straightforward to evaluate. The integration over τ1 is Gaussian and leads to

In =
R0

`

∫
dτ2√
2πτ3

2

e
− R2

0
2`2τ2

−τ2
(
R2

1
2`2

+
`2P2

n
2R2

1
+En

)
.

(4.7)

The remaining integration over τ2 gives

In = e
−R0

`

√
R2

1
`2

+
`2P2

n
R2

1
+2En

.

Hence, the dressed partition function is given by

Zdressed =
∑
n

In ,

and the corresponding energy spectrum is

Edressed,n =
1

`

√
R2

1

`2
+
`2P2

n

R2
1

+ 2En .

This is exactly the same result as predicted by the generalized Burger’s equation (1.8).

Note that this result reproduces correctly also the spectrum of the standard bosonic string,

even though the derivation itself needs to proceed more carefully in that case, to account

for the presence of zero modes.

As we said, we expect that this derivation can be extended to non-critical CFT’s

and general matter theories by replacing the Polyakov sector with the JT gravity. In the

standard approach to non-critical strings one needs to deal with peculiarities of the Liouville

dynamics for the conformal mode Ω of the metric, which so far successfully resisted any

treatment for c > 1 matter. The heuristic argument presented in the Introduction strongly

suggests that these problems are mostly ameliorated in the JT case. Indeed, locally the

coupling to the JT sector is equivalent to introducing a δ(∂2Ω) factor in the path integral,

which kills most of the Liouville dynamics.

In the critical case, this factor can be thought of as an alternative way to gauge fix

the Weyl symmetry. The presence of ∂2 in the argument of the δ-function provides the

determinant, which in the standard Polyakov treatment comes from integrating out X0,1
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modes. In a non-critical/massive case one still needs to deal properly with the integral over

the global part of the conformal mode. We leave this task for the future. Here, instead, let

us discuss the following interesting aspect of the presented derivation in the critical case.

The brute force derivation above lead us to the integral (4.7), which after rescaling of

τ2 and changing an overall constant factor, can be written as

1

2

∫ ∞
0

dτ2

τα+1
2

e−
1
2~(τ2+τ−1

2 ) = Kα(~−1) (4.8)

where Kα is the modified Bessel function, and in our case α = 1/2, so that we get

K1/2(~−1) =

√
2π

~
e−

1
~ .

At small ~ the integral (4.8) can be approximated semiclassically, and dominated by the

contribution from the vicinity of a saddle point at τ2 = 1. The interesting feature of the

α = 1/2 integral is that semiclassics is exact in this case, as if the integral were Gaussian.

The answer is exactly given by the semiclassical exponent, multiplied by the corresponding

determinant.

Integrals with this property are called localizable. Localization techniques are be-

coming more and more common in physical applications (see, e.g., [29–32]). Following [29]

many of these applications operate in the context covered by the Duistermaat and Heckman

(DH) formula [33], i.e. the corresponding integral is of the form∫
M
ωne−βH , (4.9)

where M is a symplectic manifold with a symplectic form ω, and the symplectic flow

generated by the Hamiltonian H corresponds to the U(1) action on M.

Let us see that the localization property of the integral (4.8) with α = 1/2 can be

understood almost in the same way. Let us first set En = Pn = 0. Then the modular

integral we started with, namely

I =

∫ ∞
0

dτ2

τ2
2

∫ ∞
−∞

dτ1e
−Y (4.10)

indeed has a form of the integral over a symplectic manifold — the Poincaré half-plane, so

that n = 1 and the symplectic form ω is associated with the standard Hermitian metric

hP =
dτ ⊗ dτ̄
τ2

2

.

The Hamiltonian flow generated by Y can be written as

τ̇ =
1

2`2
(
R2

1τ
2 +R2

0

)
. (4.11)

This is not a U(1) flow. However, compactness of the flow in the DH localization is

needed only to establish the existence of a Riemannian metric invariant under the flow (see,
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e.g., [32]). The Poincaré half-plane is a Kähler manifold, and the flow (4.11) generates an

isometry of the corresponding Riemannian metric. Hence the DH localization applies even

though the flow is non-compact. This explains why semiclassics is exact for (4.8). Finally,

the integral (4.6) for general En, Pn can be reduced to (4.10) by rescalings and shifts of the

form τ2 → aτ2, and τ1 → τ1 + bτ2.

We believe it is hardly a coincidence that the T T̄ deformation lead us to a localizable

integral for a critical matter, and expect the localization to persist in the general case as

well. There are several indications that the exact answer (1.1) is semiclassical in its nature.

First, the main physical consequence of the dressing phase shift is that it introduces a time

delay, linearly growing with the collision energy. In the Nambu-Goto case this time delay

has a very transparent geometrical meaning — the physical length of a string segment

is proportional to its energy, hence the time delay. The exact value of the delay can

be obtained by solving the classical Nambu-Goto field equations [1]. Clearly, also in the

general JT case one may calculate the exact time delay by downgrading the derivation

presented in section 2.1 from the quantum operator language to the classical one. Also the

factorization property of the T T̄ operator [17], providing the basis for the T T̄ deformation,

is highly reminiscent of the large N factorization, which is semiclassical in its nature. A

further independent support for the semiclassical nature of the JT gravity comes from the

recent observation [32] that even before taking the flat limit the Schwarzian path integral

is one loop exact. Finally, yet another surprising empirical evidence for the localization

property of the JT gravity is coming from the QCD strings, as will be explained in the

next section.

5 Future directions and the QCD string

In this concluding section let us describe a number of open questions raised by the analysis

above, and discuss some future directions. To start with, let us explain the promising

and somewhat surprising implications of the results presented here for the dynamics of

confining strings (flux tubes) in the planar gluodynamics.

As we already discussed, gravitational dressing of 24 free massless bosons gives rise to a

theory on the worldsheet of a free critical bosonic string. In particular, this theory is invari-

ant under the non-linearly realized target space Poincaré symmetry ISO(1, 25). Of course,

in this case a convenient manifestly covariant path integral description is provided by the

Polyakov formalism. However, as proven in [34], gravitational dressing of a single mass-

less boson is also invariant under the non-linearly realized target space Poincaré symmetry

ISO(1, 2). Hence, one may wonder whether this system may serve as a starting point for a

new type of non-critical strings. Furthermore this setup allows also a natural generalization

to D = 4, which requires introducing an addtional pseudoscalar field on the worldsheet.

Intriguingly, the TBA analysis [35, 36] of the available lattice data in D = 3 and D = 4

gluodynamics [37–39] suggests that confining strings may be described as deformations of

these simple integrable models — leading to the Axionic String Ansatz (ASA) [20, 34]. Up

until now a theoretical development of the ASA was largely impeded by the absence of a

tractable path integral formalism to describe gravitational dressing. Such a formalism is
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especially called-for in the description of the short string (glueball) sector. The reformu-

lation of the gravitational dressing via coupling to the JT gravity gives rise to a hope to

resolve this problem. In particular, restricting to D = 3, we expect that the theory

S3D =

∫ √
−g
(
φR+ 2`−2

s −
1

2
(∂X)2

)
(5.1)

enjoys a non-linearly realized ISO(1, 2) symmetry.10 It is likely that to identify this sym-

metry a first order reformulation of the JT gravity as a Poisson sigma model [40, 41] should

be useful. Earlier discussions of the JT gravity in relation to non-critical strings can be

found in [42, 43].

After the full symmetry is identified it should be possible to evaluate the partition

function in the long string sector (in analogy to section 4) and also to extend this analysis

to short strings11 (similarly to the critical string case [27]). This may open the path to put

on a solid footing the heuristic analysis of the D = 3 glueball spectrum presented in [20]. A

rather surprising outcome of [20] is that glueball quantum numbers apparently all can be

determined by the semiclassical ansatz, which a priori is expected to work only in the large

spin limit. If confirmed, this surprising effectiveness of semiclassics may be yet another

indication that the partition function for (5.1) exhibits the localization property, similarly

to section 4.

Naively, one could expect the string tension to be equal to the cosmological constant

in the action (5.1). This expectation does not hold — one finds an extra factor of 2 in the

action (5.1). Also the sign of the cosmological constant in (5.1) is opposite (negative) to

what one may expect for a positive tension string. A possible explanation for this apparent

discrepancy is that to reproduce the correct result for the partition function the action (5.1)

needs to be supplemented with additional topological (total derivative) terms which do not

affect the scattering, but play a role in the partition function calculation. An example of

such a term is ∫ √
−g�φ .

In the analogue of (4.4) this term will contribute a factor of e−Y , which in the Polyakov

case originated from the (∂Xµ)2 term in the presence of X0,1 windings.

Finally, extending the ASA to D = 2 confining strings suggests that the corresponding

worldsheet theory may be given by the pure JT gravity without matter, perhaps with an

additional deformation and/or extension. Confining strings in D = 2 are topological and

understood much better than in higher dimensions [44–46]. However, the local worldsheet

description is not completely understood yet. Interestingly, the candidate action described

in [46] indeed takes the form of the JT gravity coupled to a topological σ-model.

Coming back to the present setup as a theory of quantum gravity, one may wonder

whether obtaining the exact solution of this simple model may shed light on numerous

10In fact, at the classical level one expects to find the non-linearly realized ISO(1, D−1) for D−2 massless

bosons coupled to the JT gravity. This symmetry survives at the quantum level only for D = 3, 26.
11This might require adding global degrees of freedom on the worldsheet, similar to NSR sectors in

superstings.
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profound puzzles present in quantum gravity. Indeed, there is a vast body of literature

exploring black holes (see, e.g., [19, 47]), traversable wormholes [48], baby universes [49]

and other beasts in models which appear as rather minimal deformations of the setup

studied here.

The exact S-matrix (1.1) does exhibit a number of unconventional features specific for

gravitational theories. These include the novel UV asymptotics, precluding construction

of local observables; a time delay proportional to the collision energy, as expected for

Hawking evaporation in two dimensions; coordinate uncertainty principle [1]; as well as

the saturation of the bound on chaos [50] for a Rindler observer. However, it falls short

of delivering the black hole creation and evaporation. For instance, there is no particle

production associated with gravitational interactions in this model.

It remains unclear at the moment whether resolving this deficiency requires a drastic

modification of the whole setup or a minor deformation/change of interpretation may be

enough. It appears that the required deformation is likely to introduce a direct coupling

between the JT dilaton and matter fields. Indeed, the most straightforward way to intro-

duce black holes into the JT gravity is to perform the dilaton dependent Weyl rescaling of

the JT metric (see, e.g., [51] for a recent study of the resulting black holes).

The relation to the QCD strings is likely to be useful for clarifying these issues as well.

Indeed, lattice simulations of the large N gluodynamics provide an operational and fully

non-perturbative definition of the confining strings. If the expectation that their worldsheet

theory is described by a non-integrable deformation of the JT gravity is correct, this opens

a unique and exciting experimental window into the world of quantum gravity.12 Also

from a purely theoretical viewpoint many of the subtleties of quantum gravity (and of

two-dimensional dilaton gravity in particular) are related to the proper identification of

the physical observables. To a large extent this is the central theme of the current paper

— the only effect of the JT sector is to introduce a dynamical system of physical clocks

and rods into the system. A relation to the bulk gluodynamics makes it easier to stay on a

solid ground and to properly identify the relevant physical observables, such as the glueball

spectra and scattering amplitudes.

Let us conclude the paper with a wild speculation. As emphasized in [2], a puzzling

aspect of the dressing formula (1.1) is that it challenges the conventional notion of nat-

uralness. Namely, (1.1) provides a simple recipe to introduce a new UV scale ` into an

arbitrary quantum field theory without destabilizing any unprotected relevant operators.

The Lagrangian description for this construction via JT gravity adds another surprising

twist to the story. Namely, the JT gravity may be thought of as an extreme example

of “degravitation” — the vacuum energy Λ can take an arbitrary value without curving

the space-time. Instead, here it manifests itself as the UV deformation of the scattering

amplitudes. We are unable to refrain from reporting a hallucination that extending this

story to higher dimension might open a path towards explaining the Mweak ∼
√
MPlEvac

coincidence.

12With the obvious caveat that by an experiment we understand computer simulations here.
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A Evaluation of the boundary path integral

Let us evaluate the path integral over ε, which enters in the dressing formula (3.16),

I =

∫
Dεe−

ΛR2
0

2

∮
du(ε′2−ε′′2)+

∮
du
∑
imiR0ε′δ(u−β̄i−π) . (A.1)

This integral is Gaussian, so it can be evaluated exactly by the saddle point approximation.

We do not keep track of the overall constant normalization, which will be fixed at the very

end by unitarity. To evaluate the saddle point action we use the equation of motion for ε

ΛR0(ε′′′′ + ε′′) =
∑
n

mnδ
′(un), un = β̄n + π. (A.2)

Expanding ε in terms of solutions of the homogeneous equation in between the sources

we find

ε(un−1 < u < un) = an + bnu+ cne
iu + dne

−iu . (A.3)

At the sources ε′′′′ should have a δ′ contribution, implying that ε′′ has a discontinuity

given by

ε′′(u+
n )− ε′′(u−n ) =

mn

ΛR0
. (A.4)

Then we can fix the coefficients by demanding the continuity and 2π periodicity of ε and

its first and third derivatives. Let us set c1 = d1 = 0, then one finds

an =
∑
k<n

mk

ΛR0
, bn = −

ntot∑
k=1

mk

2πΛR0
, cn =

∑
k<n

− mk

2ΛR0
e−iuk , dn =

∑
k<n

− mk

2ΛR0
eiuk ,

(A.5)

where ntot is the total number of particles. Note that as a consequence of energy and

momentum conservation the c1 = d1 = 0 condition is consistent with (A.5).

Plugging the solution back in the action and using that uk − un = β̄k − β̄n, we obtain

for the integral (A.1)

I = De−
(
∑
mk)2

4πΛ ,
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where

D = exp

(
−
∑

β̄k>β̄n
mnmk sin(β̄k − β̄n)

2Λ

)
. (A.6)

After substituting β̄n = iβn we get an analytic expression for the dressing factor, valid on

the entire physical sheet,

D = exp

(
−i
∑

Imβk<Imβn
mnmk sinh(βk − βn)

2Λ

)
. (A.7)

This is just another way of rewriting the dressing factor (1.1). To understand the analytic

continuation to the physical domain of real β’s, let us recall that on the physical sheet

the imaginary part of rapidity differences doesn’t change the sign [2] and consequently

the ordering of rapidities stays fixed. In terms of the conventional Mandelstam variables

snk = m2
n +m2

k + 2mnmk cosh(βn − βk) physical domain is approached from above. Con-

sequently, when both particles are in or both are out, βk − βn > 0 implies Imβk > Imβn.

Due to the properties of our phase shift, cross terms containing both in- and out-particles

cancel out and can be ignored.

B Details of the flat space limit

Let us spell out here elementary geometrical details of taking the L→∞ limit of the AdS2

vacuum (3.22), (3.24) in the JT gravity. As discussed in section 3.2, the L→∞ limit of the

JT action becomes manifestly smooth when one makes use of the field redefinition (3.19)

to set φb = 0. Also, it is convenient to perform a shift of the embedding coordinate

X̄−1 → L+X̄−1 so that the AdS2 hyperboloid also has a smooth L→∞ limit. After these

two redefinitions (3.21) is replaced by

X̄−1 =
√
L2 + X̄2

0 + X̄2
1 − L '

X̄2
0 + X̄2

1

2L
. (B.1)

At L =∞ this turns into a plane

X−1 = 0 .

The time-like dilaton solution (3.22) with Z0 = Z1 = 0, Z−1 = Z turns into

φ = Z(X̄−1 + L) +
ΛL2

2
. (B.2)

For this solution to be smooth in the L→∞ limit one chooses

Z = −ΛL

2
+
φ0

L
,

where the constant φ0 is determined from requiring φ = 0 at the boundary cutoff surface

C. Then at L→∞ the dilaton solution becomes

φ = −Λ

4

(
X̄2

0 + X̄2
1

)
+ φ0 , (B.3)

reproducing the flat space result.
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