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ASYMPTOTIC HEIGHT OPTIMIZATION FOR TOPICAL IFS,
TETRIS HEAPS, AND THE FINITENESS CONJECTURE

THIERRY BOUSCH AND JEAN MAIRESSE

Introduction

A topical map is a map from Rn into itself verifying some conditions (see §1.2)
and which, roughly speaking, behaves like a translation along some line, the amount
of which is measured by a real number, called the average height (or average dis-
placement) of the map. Then we look at a topical Iterated Function System (IFS),
that is, a (finite) collection (Ti) of such maps, and want to find asymptotic bounds
for the average height of arbitrary compositions of the Ti ; this can be seen as an
infinite-horizon optimal control problem.

There are many motivations for this study. Discrete Event Systems (DES), a con-
venient abstraction for many man-made systems such as communication networks,
digital circuits, or manufacturing systems, can usually be modelled by topical maps
and IFS; the extrema of the asymptotic height then correspond to the best and the
worst throughput of the DES [Ba, Co, BV, GM1, GM2]. Among topical maps, a
special role is played by max-plus maps which appear in the modelling of event
graphs, 1-bounded Petri nets, and Tetris-like heap models [Ga2]. Topical IFS also
appear in other contexts, for example, in various problems of automata and formal
language theory [Pin, Sim]. Another motivation which will become evident in the
course of this paper is that some linear IFS can be represented by topical IFS, and
the Liapunov exponents of the linear IFS (which are important; see [DL1, CKN])
can be computed thanks to the topical model.

The asymptotic optimization problem is approached from the thermodynamic
formalism viewpoint, and is rewritten as a variational problem on a space of mea-
sures, allowing us to see the “optimal schedules” of the topical IFS as the “ground
states” of a system with an infinite number of particles. To justify the relevance
of this approach, we completely solve two problems of some practical importance,
and a priori unrelated: the optimization of Tetris heaps and the Lagarias-Wang
finiteness conjecture.
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78 THIERRY BOUSCH AND JEAN MAIRESSE

The paper is structured as follows. The first two sections develop a lot of general-
purpose machinery, with the intent of using it later; and then the last two sections
are devoted to “applications”.

The first section introduces a fair amount of preliminary material, some of which
may already be familiar to the reader (although the presentation and the proofs
are probably new).

The second section discusses an important fixed point result known as Mañé’s
lemma, and its consequences. We prove in particular an inequality which basically
says that optimal measures must have a “small” support; and because of this,
sturmian measures appear as natural candidates for optimality.

An instance of the Tetris model, which is probably the simplest nontrivial topical
IFS (it consists of two max-plus maps of R2) is studied in §3 as an application of
the techniques described earlier in the paper. In this model, we let pieces pile
up according to the Tetris game mechanism. We give new proofs of the theorems
of Gaujal, Mairesse and Vuillon, that the densest heaps are sturmian, even if we
constrain the relative proportion of the two pieces.

Finally, the connection between linear IFS and topical IFS is exploited in §4
to construct a linear IFS which has no maximizing periodic orbit, thus disproving
the Lagarias-Wang finiteness conjecture. The counterexample is constructed as a
simple variant of a topical IFS which has been introduced in the previous section.

1. Preliminaries

1.1. Stationary processes and sturmian processes. Let I be a finite nonempty
set, IN the set of right-infinite sequences endowed with the product topology, and
σ : IN → IN the shift map, defined by σ

[
(ak)k

]
= (ak+1)k. This dynamical system

is called a Bernoulli shift. A random variable ξ = (ξk)k∈N with values in IN is called
a (stochastic) process with values in I. If the law of ξ is a shift-invariant measure
on IN, the process is called stationary. The set of equivalence classes of stationary
processes on I is exactly the set of shift-invariant Borel probability measures on IN.

This space of measures will be denoted StN(I). It is obviously a convex subset of
Ms(IN), the set of signed Borel measures on IN, and when endowed with the vague
topology (that is, the weak-∗ topology1 relative to its predual C(IN)), it is compact
and metrizable. For more background on invariant measures for compact dynamical
systems (in particular the Bernoulli shift), the reader might consult [M1, DGS].

Similarly, we define StZ(I) as the set of shift-invariant Borel probability measures
on IZ. The natural map StZ(I)→ StN(I) is bijective, allowing us to identify these
two spaces when appropriate (and then we will drop the N or Z subscript).

Every periodic orbit of σ in IN can be considered as an element of StN(I). This
is because we can identify a periodic orbit with the unique invariant probability
supported by this orbit. These particular elements of StN(I) will simply be called
“periodic orbits”. It is a well-known theorem of Parthasarathy and Sigmund that
periodic orbits are dense in StN(I); see Proposition 21.8 in [DGS], pp. 196–198.
Because of this, StN(I) can be seen as a compactification of the set of periodic
orbits.

1This topology is also called the narrow or weak topology, or the topology of convergence in
law (or in distribution).
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ASYMPTOTIC HEIGHT OPTIMIZATION 79

At this point it will be useful to introduce notation for periodic orbits. If z =
(a0a1 . . . an−1 . . . ) ∈ IN is an n-periodic point, it will be denoted a0a1 . . . an−1,
whereas the corresponding periodic orbit (considered as a measure) will be denoted
a0a1 . . . an−1].

In the special case where I has two elements, St(I) contains remarkable measures,
the so-called sturmian measures, which are characterized by the following theorem.

Proposition-Definition 1.1. For every ρ ∈ [0, 1], there exists a stationary process
ξ = (ξk)k∈Z with values in I = {0, 1}, unique up to equivalence, such that

∀s ∈ N
∣∣∣−sρ+

s−1∑
k=0

ξk

∣∣∣ < 1 a.s.(1.1)

Such a process verifies E(ξ0) = ρ, and will be called a sturmian process of parameter
ρ. The corresponding invariant measures on IN and IZ will be denoted sρ and ŝρ,
and will be called the sturmian measures of parameter ρ on IN and IZ.

Proof. The existence of such a process, for ρ ∈ [0, 1], is easy. Let ψ0 be a uniform
random variable on [0, 1), and define ψn = ψ0 + nρ and ξn = bψn+1c − bψnc for
n ∈ Z. Then we have, for every s ∈ N,

−sρ+
s−1∑
k=0

ξk = bψ0 + sρc − bψ0c − sρ(1.2)

which is always in (−1, 1). Moreover, ψ0 and ψ1 have the same law modulo 1, and
it readily implies that the process (ξk)k∈Z is stationary.

Let us now prove there is a unique stationary process (up to equivalence) which
verifies condition (1.1). Let ξ = (ξk)k∈Z be such a process, for some given ρ ∈ [0, 1];
since it is stationary, condition (1.1) is equivalent to

∀n ∈ Z ∀s ∈ N
∣∣∣−sρ+

n+s−1∑
k=n

ξk

∣∣∣ < 1 a.s.(1.3)

Rewriting this condition in terms of the new random variables τs, defined by τ0 = 0
and τs+1 − τs = ξs for all s ∈ Z, we get the equivalent condition

∀n ∈ Z ∀s ∈ N
∣∣τn+s − τn − sρ

∣∣ < 1 a.s.(1.4)

Since τn+s − τn must be an integer, this is equivalent to

∀n ∈ Z ∀s ∈ N bsρc 6 τn+s − τn 6 dsρe a.s.(1.5)

which is, in turn, equivalent to

∀n ∈ Z ∀s ∈ N −1 + ε(ρ) 6 τn+s − τn − sρ 6 1− ε(ρ) a.s.(1.6)

where ε(ρ) is defined as 1/q if ρ = p/q (with p, q relatively prime) and 0 if ρ is
irrational. Now defining θs = τs − sρ, we get

∀n, p ∈ Z
∣∣θn − θp∣∣ 6 1− ε(ρ).(1.7)

Consequently, the random variables

θ−(ξ) = inf
s∈Z

θs and θ+(ξ) = sup
s∈Z

θs(1.8)

are finite and verify

θ−(ξ) 6 θ0 = 0 6 θ+(ξ) 6 θ−(ξ) + 1− ε(ρ)(1.9)
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80 THIERRY BOUSCH AND JEAN MAIRESSE

almost surely. In particular,

θ+(ξ) ∈ [0, 1− ε(ρ)] a.s.(1.10)

Now let σξ be the shifted process (ξk+1)k∈Z. A straightforward calculation gives

θ+(σξ) = θ+(ξ) − ξ0 + ρ.(1.11)

Since ξ and σξ are equivalent, so are θ+(ξ) and θ+(σξ). This and (1.11) imply
that θ+(ξ) and θ+(ξ) + ρ have the same law modulo 1. Combined with (1.10), it
completely determines the law of θ+(ξ): if ρ /∈ Q, it is the uniform law on [0, 1]; if
ρ = p/q, it is the equireparted probability on {0, 1/q, . . . , (q − 1)/q}. From this,
one can reconstruct the law of the (τn), which is entirely determined (a.s.) by θ+

and the inequalities

∀n ∈ Z −1 + ε(ρ) 6 τn − nρ− θ+ 6 0(1.12)

and then the law of the (ξn).

From the construction of sturmian processes, we can see that sρ is periodic if
and only if ρ is rational, and in this case the period is precisely the denominator of
ρ. For example, we have s0 = 0], s1 = 1], s1/2 = 01], etc. One also remarks that if
ξ = (ξn)n∈Z is a sturmian process of parameter ρ, then (ξ−n)n∈Z and (1 − ξn)n∈Z
are also sturmian, with parameters ρ and 1− ρ respectively.

Proposition 1.2. Let ρ ∈ [0, 1], let a0, a1, . . . , an−1 be elements of I = {0, 1}, and
let a0a1 . . . an−1∗ be the order-n cylinder in IN defined by these letters. Then we
have

sρ(a0a1 . . . an−1∗) =
[
1 + min

06k6n
(ck − kρ)− max

06k6n
(ck − kρ)

]+

(1.13)

where

ck =
∑

06s<k
as(1.14)

for k = 0, 1, . . . , n.

Proof. Note that the measure of the above cylinder can be interpreted as the prob-
ability of the event E , defined by

∀k ∈ [0, n− 1] ξk = ak(1.15)

where ξ is a sturmian process of parameter ρ. We have constructed such a process
in the proof of Proposition-Definition 1.1, and we shall use this one. Since bψ0c = 0
and ξk = bψk+1c − bψkc, the event E can be rewritten as

∀k ∈ [0, n] bψkc = ck.(1.16)

Rewriting everything in terms of ψ0, we see that E is defined by

∀k ∈ [0, n] ck 6 ψ0 + kρ < ck + 1(1.17)

which is equivalent to

max
06k6n

ck − kρ 6 ψ0 < 1 + min
06k6n

ck − kρ.(1.18)

Since ψ0 is a uniform variable on [0, 1], the probability of E is simply the length of
the interval defined by the above formula (which is a subinterval of [0, 1]), and the
conclusion follows.
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Corollary 1.3. Let I = {0, 1}. The maps ρ 7→ sρ and ρ 7→ ŝρ, from [0, 1] to StN(I)
and StZ(I) respectively, are continuous and injective.

Proof. Since sρ(1∗) = ρ, the first map is obviously injective. Moreover, for every
cylinder C, the function ρ→ sρ(C) is continuous, as we can see from formula (1.13),
so ρ → sρ is indeed continuous for the vague topology on StN(I). Because of the
natural isomorphism between StN(I) and StZ(I), the same properties hold for the
map ρ→ ŝρ.

Corollary 1.4. Let I = {0, 1} and ρ ∈ [0, 1]. The support of sρ consists of the
points a = (a0a1a2 . . . ) ∈ IN such that

∀n, s ∈ N
∣∣∣−sρ+

n+s−1∑
k=n

ak

∣∣∣ < 1.(1.19)

Proof. Define c0, c1, . . . according to (1.14). The condition a ∈ supp sρ is equivalent
to

∀s ∈ N sρ(a0 . . . as−1∗) > 0(1.20)

which can be rewritten as

∀s ∈ N ( max
06k6s

− min
06k6s

)(ck − kρ) < 1(1.21)

or equivalently

∀n, t ∈ N
∣∣cn+t − cn − tρ

∣∣ < 1(1.22)

which is precisely condition (1.19).

The points of supp sρ are called mechanical or sturmian sequences.2 It is gener-
ally considered that the history of sturmian sequences begins with the article [MH].
They have been extensively studied since, mainly from the combinatorial viewpoint.
A summary of the main results (with bibliography) can be found in [BeS, BS].

The next theorem gives another characterization of sturmian measures, as a
property of their support. In what follows, {0, 1}N is endowed with the lexicographic
order, and the “interval” [z1, z2] denotes the set of z such that z1 6 z 6 z2.

Proposition 1.5. Let I = {0, 1}. For every α ∈ IN, there exists a unique invariant
measure µ ∈ StN(I) such that supp µ ⊂ [0α, 1α], and this measure is sturmian.
Conversely, the support of any sturmian measure is contained in some interval of
this form.

Proof. Let us prove first that the support of any sturmian measure sρ is contained
in some [0α, 1α]. Because of condition (1.1), we see that a necessary condition for
a cylinder a0 . . . an−1∗ to have nonzero mass is

bnρc 6
n−1∑
k=0

ak 6 dnρe.(1.23)

In particular, if w = a1 . . . an−2 is some word on {0, 1}, the two cylinders 0w0∗ and
1w1∗ cannot have positive mass simultaneously. This means that the support of sρ

cannot contain two points of the form 0u and 1v with u < v. This is equivalent to
supp µ being contained in [0α, 1α] for some α.

2Some authors reserve the adjective sturmian for nonperiodic sequences, i.e., when ρ is irra-
tional; see for example [BeS].
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82 THIERRY BOUSCH AND JEAN MAIRESSE

Now let us prove that Sα = [0α, 1α] carries a unique invariant measure, which is
sturmian. Let K be the greatest invariant3 set contained in Sα:

K =
⋂
n>0

σ−nSα.(1.24)

It is easily verified (using σSα = IN) that K is nonempty and compact, and there-
fore, it carries at least one invariant measure by the Krylov-Bogoliubov theorem
[DGS]. We have to prove that K is uniquely ergodic, and prove that its invariant
measure is sturmian. To do this, we introduce an extension (K, ς) of the dynamical
system (K,σ), as follows. We take K = Z × K endowed with the lexicographic
order, and define

∀(n, z) ∈ Z×K ς
[
(n, z)

]
= (n+ z0, σz)(1.25)

(where z0 is the first digit of z). It is not difficult to verify that this map ς : K→ K
is increasing.4 Besides, it commutes with the “translation” τ defined by

∀(n, z) ∈ Z×K τ
[
(n, z)

]
= (n+ 1, z).(1.26)

We will use the notation z + k as a shorthand for τk(z).
For n > 0 and z ∈ K, define h−n (z) and h+

n (z) as the greatest and the smallest
integers, respectively, such that

z + h−n (z) 6 ςn(z) 6 z + h+
n (z).(1.27)

Obviously these numbers exist and verify

∀n ∈ N ∀z ∈ K 0 6 h−n (z) 6 h+
n (z) 6 n(1.28)

h+
n (z) − h−n (z) 6 1.(1.29)

Applying ςp to (1.27), we get

∀n, p ∈ N ∀z ∈ K ςp(z) + h−n (z) 6 ςn+p(z) 6 ςp(z) + h+
n (z)(1.30)

from which one easily deduces

∀n, p > 0 ∀z ∈ K h−n+p(z) > h−n (z) + h−p (z)(1.31)

h+
n+p(z) 6 h+

n (z) + h+
p (z)(1.32)

and all these inequalities imply that the sequences h−n (z)/n and h+
n (z)/n have a

common limit in [0, 1], which does not depend on z because

∀z, z′ ∈ K
∣∣h+
n (z) − h+

n (z′)
∣∣ 6 1(1.33)

and we will denote it ρ. The subadditive lemma also tells us that

∀n ∈ N ∀z ∈ K nρ− 1 6 h−n (z) 6 nρ 6 h+
n (z) 6 nρ+ 1.(1.34)

Now let z = (z0z1 . . . ) be an arbitrary point in K, and let z = (0, z). Applying
(1.30) to z, we obtain

∀n, p ∈ N nρ− 1 6 h−n (z) 6
p+n−1∑
k=p

zk 6 h+
n (z) 6 nρ+ 1.(1.35)

3We say that a subset K is invariant under the map T when TK ⊂ K, and strictly invariant
when TK = K.

4As in [AB], we use the terms increasing and decreasing as synonyms for nondecreasing and
nonincreasing. We call strictly increasing (resp. strictly decreasing) a map f such that x < y
implies fx < fy (resp. fx > fy).
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Therefore, if ξ = (ξn)n∈N is a stationary process whose support is contained in Sα
(and thus in K), we can apply the above relation with p = 0 and z = ξ, and obtain

∀n ∈ N
∣∣∣−nρ+

n−1∑
k=0

ξk

∣∣∣ 6 1 a.s.(1.36)

which is not exactly what we want . . . we want a strict inequality. This will
obviously be the case when nρ /∈ Z, but the case nρ ∈ Z requires an additional
argument.

Suppose nρ ∈ Z; then for every z ∈ K, we have h−n (z) = nρ or h+
n (z) = nρ

(possibly both). In either case, all the numbers

−nρ+
p+n−1∑
k=p

zk(1.37)

have the same sign when p runs over N, and consequently

∀s ∈ N ∀z ∈ K
∣∣∣−nsρ+

ns−1∑
k=0

zk

∣∣∣ =
s−1∑
`=0

∣∣∣−nρ+
n−1∑
k=0

z`n+k

∣∣∣.(1.38)

Applying this identity to ξ and taking expectations, we obtain

∀s ∈ N 1 > E
[∣∣∣−nsρ+

ns−1∑
k=0

ξk

∣∣∣] = sE

[∣∣∣−nρ+
n−1∑
k=0

ξk

∣∣∣](1.39)

by (1.36), and therefore

−nρ+
n−1∑
k=0

ξk = 0 a.s.(1.40)

So we have proved ∣∣∣−nρ+
n−1∑
k=0

ξk

∣∣∣ < 1 a.s.(1.41)

for all values of n, which means that ξ is a sturmian process of parameter ρ.

Corollary 1.6. The support of any sturmian measure is uniquely ergodic. In par-
ticular, every sturmian measure is ergodic.

1.2. Topical functions. Let E = Rn (with n > 1) be the usual n-dimensional
affine space, endowed with the partial order defined by

x 6 y ⇐⇒ x1 6 y1, . . . , and xn 6 yn(1.42)

when x = (x1, . . . , xn) and y = (y1, . . . , yn). Let dn be the “max” distance on Rn:

dn
(
x,y) = ‖y − x‖ = max

i
|yi − xi| .(1.43)

We also define the vector un = (1, . . . , 1) ∈ ~E, and d̃n is the distance on the
quotient space Ẽ = E/Run:

d̃n(x,y) = inf
t∈R
‖y − x− tun‖(1.44)

= 1
2

[
max
i

(yi − xi)−min
i

(yi − xi)
]
.(1.45)

We will omit the subscripts in dn, d̃n and un when obvious from the context.
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Definition 1.7. Let n,m > 1, and let Ω be a subset of Rn which is invariant by
the translation group Run. An application f : Ω → Rm will be called topical if it
is increasing w.r.t. the partial orders on Rn and Rm, and verifies

∀x ∈ Ω ∀t ∈ R f(x + tun) = f(x) + tum.(1.46)

The set of all topical applications Ω→ Rm will be denoted Top(Ω,Rm). Real-valued
topical applications (that is, when m = 1) will be called topical forms.

Because of the following proposition, we can assume, without any loss of gener-
ality, that topical maps are defined on the whole space Rn.

Lemma 1.8. Every topical function defined on some Run-invariant subset Ω ⊂ Rn
can be extended to a topical function defined on Rn.

Proof. We omit the trivial case Ω = ∅. Let p ∈ Top(Ω,Rm), and define

∀x ∈ Rn p̄(x) = sup
{
p(y) : y 6 x, y ∈ Ω

}
(1.47)

(this is the supremum relative to the partial order on Rm). It is easily verified that
p̄ : Rn → Rm is well defined and topical, and coincides with p on Ω. (Of course, p
may have other extensions.)

Proposition 1.9. Every topical map f ∈ Top(Rn,Rm) is 1-lipschitz (“nonexpan-
sive”) w.r.t. the distances dn and dm on Rn and Rm. In particular, a topical map
is always continuous.

Proof. Let x,y ∈ Rn. Note that D = dn(x,y) is the smallest real such that

x−Dun 6 y 6 x +Dun.(1.48)

Since f is topical, this implies

fx−Dum 6 fy 6 fx +Dum(1.49)

which is equivalent to dm(fx, fy) 6 D = dn(x,y). So f is indeed 1-lipschitz (and
therefore continuous).

Remarks. This is a classical result; conversely, it is also true that a 1-lipschitz map
p : Rn → Rm which verifies (1.46) is topical [CT]. This equicontinuity property of
topical maps easily implies the following result.

Corollary 1.10. Let Ω be a Run-invariant nonempty subset of Rn. The topology
of pointwise convergence on Top(Ω,Rm) coincides with the topology of uniform
convergence on bounded subsets of Ω, and is always metrizable. For this topology,
the quotient space Top(Ω,Rm)/Rm, that is, the set of topical maps modulo the
addition of a constant, is compact.

Definition 1.11. A subset Ω ⊂ Rn will be called a tube if it is nonempty, invariant
by the translation group Run, and such that the quotient Ω/Run is compact. The
diameter of Ω/Run in the quotient space (Rn/Run, d̃n) will be called the width of
Ω and denoted wd(Ω).

As a particular case, note that lines parallel to u (which will be called u-lines for
brevity) are tubes, and their width is zero. A more typical example is the following:
in R2, the closed band

Ωa,b =
{

(x, y) ∈ R2 : a 6 y − x 6 b
}

(1.50)

(with a, b ∈ R and a 6 b) is a tube of width (b− a)/2.
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Definition 1.12. Let E = Rn and E′ = Top(E,R). For x,y ∈ E and α, β ∈ E′,
we define the Gram symbol as follows:{

α x
β y

}
= (α− β) x− (α− β) y.(1.51)

The above symbol is a continuous function of (α, β,x,y); it is also well defined (and
continuous) for x,y ∈ E/Ru and α, β ∈ E′/R.

To conclude this section, we mention some useful properties of topical forms.
Topical forms play a role similar to linear forms in linear algebra. For instance, the
n coordinate functions on E = Rn are not only linear forms, but also topical forms.

It is possible, and useful, to express the order and distance on E in terms of
topical forms; the reader will easily convince himself that

x 6 y ⇐⇒ ∀α ∈ E′ αx 6 αy,(1.52)
d(x,y) = max

α∈E′
|αy − αx| ,(1.53)

d̃(x,y) =
1
2
· max
α,β∈E′

{
α x
β y

}
.(1.54)

As a consequence of (1.54), note that for any α, β ∈ E′, the oscillation of α− β on
a tube Ω is bounded by 2 wd(Ω).

Topical forms also allow us to define the dual of a topical map: for every topical
function T : Rn → Rm, we define the function T ′ : (Rm)′ → (Rn)′ by T ′ : α 7→ α◦T .

1.3. Conjugate-linear and max-plus functions. Conjugate-linear maps are
a remarkable subset of Top(Rn,Rm) which is constructed as follows. Let A =
(aij)16i6m,16j6n be a matrix with nonnegative real entries, with no line being
identically zero, so that A defines a map from (R∗+)n to (R∗+)m. Now let κ > 0
and define the map

cl(A, κ) : Rn −→ Rm
(x1, . . . , xn) 7−→ (y1, . . . , ym)(1.55)

by the formula

∀i ∈ [1,m] expκyi =
n∑
j=1

aij expκxj .(1.56)

It is plain that cl(A, κ) ∈ Top(Rn,Rm) for every κ > 0. Such a map will be called
κ-linear (or simply conjugate-linear, if we do not care about the value of κ).

Max-plus functions are another important class of topical maps, and they can
be seen as limits of κ-linear maps (more on this later). They are constructed as
follows: let A = (aij)16i6m,16j6n be an array of elements of R ∪ {−∞} (such an
array is called a max-plus matrix), with no line being identically −∞. Then A
defines a map

mp(A) : Rn −→ Rm
(x1, . . . , xn) 7−→ (y1, . . . , ym)(1.57)

by the formula

∀i ∈ [1,m] yi = max
16j6n

(aij + xj).(1.58)
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Such a map is called a max-plus map. Obviously mp(A) ∈ Top(Rn,Rm), and it is
easily verified that mp(A) is the limit of the κ-linear maps (xi) 7→ (yκi ) defined by

∀i ∈ [1,m] expκyκi =
∑

16j6n
expκaij expκxj(1.59)

when κ → +∞. Let us finally mention, without proof, a well-known characteriza-
tion of max-plus functions:

Proposition 1.13. A topical map f : Rn → Rm is max-plus if and only if

∀x,y ∈ Rn f(x ∨ y) = f(x) ∨ f(y).(1.60)

The reader might consult [GG] for a more complete description of the class of
topical functions and its remarkable subclasses (conjugate-linear, max-plus, etc.).

1.4. Properties of topical IFS. A topical IFS is simply a collection T = (Ti)i∈I
of topical maps from some Rn into itself. Like any IFS (Iterated Function System),
it naturally defines an action of the free monoid I∗ on E = Rn. But it also acts on
E′ = Top(E,R) by duality. It is convenient to define both the left- and right-action
of I∗ on E and E′, as follows:

∀w ∈ I∗ ∀x ∈ E w B x = x C ¬w = Tw(x),(1.61)

∀α ∈ E′ ¬w B α = α C w = T ′w(α)(1.62)

where ¬w denotes the mirror word of w, and Tw is defined by

∀m > 0 ∀i0, i1, . . . , im−1 ∈ I Ti0...im−1 = Ti0 ◦ · · · ◦ Tim−1(1.63)

and Te = Id, where e denotes the empty word. Note that we have, by definition of
T ′w,

∀α ∈ E′ ∀w ∈ I∗ ∀x ∈ E (α C w) x = α (w B x).(1.64)

Obviously, I∗ also acts on the quotient spaces E/Ru and E′/R, and we will also
use the symbols B and C for this.

This framework is a bit too general, and we will need additional constraints on
the IFS to be able to say nontrivial things about its dynamic behaviour; among
other things, we want I to be finite.

Definition 1.14. Let I be a nonempty finite set, and T = (Ti)i∈I a topical IFS
on Rn. This IFS will be called tubular if it admits an invariant tube, i.e., if there
exists a tube Ω such that

∀i ∈ I Ti(Ω) ⊂ Ω.(1.65)

The IFS will be called squeezing if it is tubular and verifies

∀i ∈ I ∀x,y ∈ Rn/Run x 6= y =⇒ d̃(Tix, Tiy) < d̃(x,y).(1.66)

Not every topical map has an invariant tube — this is a fortiori true for iterated
function systems, of course. Tubularity is not implied by (1.66) either; for example,
the κ-linear map defined by (x, y) 7→ (x′, y′), with(

expκx′

expκy′

)
=
(

1 1
0 1

)(
expκx
expκy

)
(1.67)
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does verify (1.66), but has no invariant tube, so it does not define a squeezing IFS.
It is also essential that all the functions of the IFS have the same invariant tube;
for example, each of the applications

T0 : (x, y) 7→ (y + 1, x− 1),(1.68)

T1 : (x, y) 7→ (y − 1, x+ 1)(1.69)

has an invariant tube, but there exists no tube which is invariant by both T0 and
T1, so the IFS (T0, T1) is not tubular.

On the other hand, once an IFS has an invariant tube, it has lots of them; more
precisely:

Lemma 1.15. Suppose T is a tubular IFS on Rn. Then every tube of Rn is con-
tained in an invariant tube.

Proof. Let Ω0 be an invariant tube, and let Υ be an arbitrary tube. For every
s ∈ R+, the tube

Ωs =
{
x ∈ Rn : dn(x,Ω0) 6 s

}
(1.70)

is invariant by T, and it will contain Υ when s is big enough.

Proposition 1.16. Let T = (Ti)i∈I be a squeezing IFS on E = Rn, and denote
E′ = Top(E,R). Then there exists a unique function Q ∈ C(IN, E/Ru) and a
unique Q′ ∈ C(IN, E′/R) such that

∀i ∈ I ∀z ∈ IN Q(iz) = i B Q(z),(1.71)

Q′(iz) = i B Q′(z).(1.72)

Furthermore, for any z = (z0z1z2 . . . ) in IN, any bounded sequence (xm)m∈N of
elements of E/Ru and any sequence (αm)m∈N of elements of E′/R, we have

z0 . . . zm−1 B xm → Q(z),(1.73)

z0 . . . zm−1 B αm → Q′(z)(1.74)

when m→∞.

Remarks. Equations (1.71) and (1.72) can equivalently be rewritten as

∀w ∈ I∗ ∀z ∈ IN Q(wz) = w B Q(z),(1.75)

Q′(wz) = w B Q′(z).(1.76)

In other words, Proposition 1.16 asserts that the left-action of I∗ on E/Ru and on
E′/R are both semiconjugate to the standard left-action of I∗ on IN.

An important special case of Proposition 1.16 is when I is a singleton, i.e., when
the IFS consists of a single map T . Since IN is a singleton, the “functions” Q and
Q′ are simply two points, in E/Ru and E′/R respectively. What Proposition 1.16
asserts in this case is that T and its dual T ′ have unique fixed points in E/Ru and
E′/R respectively, given by Q and Q′ respectively, and which attract the whole
space (i.e., every orbit converges to the fixed point). This will be used in §3.3.

To prove the proposition, we first need a lemma.

Lemma 1.17. Let T = (Ti)i∈I be a squeezing IFS on E = Rn, with Ω an invariant
tube. Then we have

wd(w B Ω)→ 0 when |w| → ∞(1.77)
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in the sense that there exists L with the property that wd(w B Ω) 6 ε for every
ε > 0 and for every word w ∈ I∗ such that |w| > L.

Proof of the lemma. Let Ω̃ = Ω/Ru, and let ε > 0 be arbitrary. By a compacity
argument, there exists k < 1 such that

∀i ∈ I ∀x,y ∈ Ω̃ d̃(x,y) > ε =⇒ d̃(Tix, Tiy)
d̃(x,y)

6 k(1.78)

from which we deduce, by induction on |w|,

∀w ∈ I∗ ∀x,y ∈ Ω̃ d̃(w B x, w B y) 6 max
[
ε, k|w|d̃(x,y)

]
.(1.79)

In particular, we have

∀w ∈ I∗ wd(w B Ω) 6 max
[
ε, k|w| wd(Ω)

]
(1.80)

and therefore

∀w ∈ I∗ |w| >
log
(
wd(Ω)/ε

)
log k−1

=⇒ wd(w B Ω) 6 ε(1.81)

and the lemma is proved.

Proof of the proposition. Let Ω be an invariant tube and Ω̃ = Ω/Ru. Let z =
(z0z1z2 . . . ) ∈ IN. We remark that the intersection

QΩ(z) =
⋂
m∈N

z0 . . . zm−1 B Ω̃(1.82)

is a decreasing intersection of nonempty compact subsets of Ẽ = E/Ru, and thus
is compact and nonempty. Furthermore, it has diameter 0 by Lemma 1.17, so it is
a singleton; denote its unique element by QΩ(z).

The map Ω 7→ QΩ(z) is obviously increasing, so if Ω and Υ are two invariant
tubes, then QΩ(z) and QΥ(z) are both contained in QΩ∪Υ(z). Since these sets
are all singletons, they must be equal. Therefore, QΩ(z) does not depend on the
invariant tube Ω, and will be noted Q(z).

Note that the function Q takes its values in Ω̃, which is compact; and for any
z ∈ IN, the point y = Q(z) is the unique element of Ω̃ such that

∀m ∈ N y ∈ z0 . . . zm−1 B Ω̃.(1.83)

The set of (z, y) ∈ IN × Ω̃ defined by the above condition is a closed subset of
IN × Ω̃, and it is the graph of Q. By the closed graph theorem [AB], this implies
the continuity of the map Q.

If (xm)m∈N is any bounded sequence of elements of E/Ru, then it is contained
in some Ω̃ where Ω is a tube, which can be supposed invariant because of Lemma
1.15. We then have {

Q(z)
}

=
⋂
m∈N

z0 . . . zm−1 B Ω̃(1.84)

so the sequence z0 . . . zm−1 B xm, which takes its values in Ω̃ (which is compact)
can only have one limit value, namely Q(z); so it converges to Q(z), and we have
(1.73).
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The definition of Q′ is slightly simpler, because it does not require an invariant
tube; consider

Q′(z) =
⋂
m∈N

z0 . . . zm−1 B (E′/R).(1.85)

Here again we have a decreasing intersection of nonempty compact subsets of E′/R,
so Q′(z) is compact and nonempty. We claim that Q′(z) is a singleton. Indeed,
let α, β be two elements of Q′(z). This means that for every m ∈ N, there exist
αm, βm ∈ E′/R such that

α = z0 . . . zm−1 B αm,(1.86)

β = z0 . . . zm−1 B βm.(1.87)

Now let x,y be arbitrary elements of E/Ru, and let Ω be an invariant tube such
that Ω̃ contains x and y. We have{

α x
β y

}
=
{
z0 . . . zm−1 B αm x
z0 . . . zm−1 B βm y

}
=
{
αm zm−1 . . . z0 B x
βm zm−1 . . . z0 B y

}
(1.88)

and consequently ∣∣∣∣{α x
β y

}∣∣∣∣ 6 2 wd(zm−1 . . . z0 B Ω).(1.89)

But the right-hand side tends to 0 when m→∞, so we have{
α x
β y

}
= 0(1.90)

and this holds for all x,y ∈ E/Ru, so α = β. We have proved that Q′(z) is a
singleton, and we denote its unique element by Q′(z). The continuity of Q′ and the
limit (1.74) are proved with the exact same arguments as for Q, using the closed
graph theorem and the intersection (1.85).

From the limits (1.73) and (1.74) it is easily verified that (1.71) and (1.72) hold.
Finally, we have to prove that Q and Q′ are the only continuous functions verifying
the functional equations (1.71) and (1.72). Suppose that Q1 ∈ C(IN, E/Ru) is a
solution of (1.71). Then we would have, for all z ∈ IN,

Q1(z) = z0 . . . zm−1 B Q1(σmz)→ Q(z)(1.91)

by (1.73), since the sequence Q1(σmz) is bounded; so Q1(z) = Q(z) for all z. The
same argument can be applied to equation (1.72).

1.5. Orientation-preserving IFS on R2. A topical map T : E → E (with
E = Rn) induces a quotient map T̃ on the quotient space Ẽ = E/Ru, which is
homeomorphic to Rn−1. This is why the case n = 2 is somehow particular: the
quotient space can be endowed with a natural ordering. To be more precise, there
are two natural orderings on R2/Ru; we will choose the ordering, denoted 4, such
that the bijection

(R2/Ru,4) → (R,6)
(x, y) 7→ y − x(1.92)

is an isomorphism of ordered sets; equivalently, we can consider 4 as a preorder on
R2, defined by

(x1, y1) 4 (x2, y2) ⇐⇒ y1 − x1 6 y2 − x2.(1.93)
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This preorder can equivalently be defined by

∀x,y ∈ R2 x 4 y ⇐⇒
{
α0 x
α1 y

}
> 0(1.94)

where α0, α1 are the first- and second-coordinate functions.
Now (assuming n = 2) we can ask whether the quotient map T̃ : Ẽ → Ẽ is

increasing. If this is the case, the map T will be called orientation-preserving. If
T̃ is decreasing, T will be called orientation-reversing. There exist topical maps of
R2 which are neither orientation-preserving nor orientation-reversing, for example
the map

(x, y) 7→
(
min(x, y),max(x, y)

)
(1.95)

but they are never injective. The reader will convince himself that, at least for injec-
tive maps, our definitions of “orientation-preserving” and “orientation-reversing”
coincide with the usual ones. He will also verify that a max-plus map of R2 is
always orientation-preserving or orientation-reversing.

Here are some useful results on orientation-preserving maps.

Lemma 1.18. Let T : R2 → R2 be an orientation-preserving topical map. Assume
that T̃ has a fixed point p ∈ R2/Ru. Then for every x ∈ R2/Ru, the image T̃x is
between x and p.

Proof. Suppose for instance x < p. Since T̃ is increasing, this implies T̃x < p. On
the other hand, d̃(T̃x,p) 6 d̃(x,p), which is possible only if T̃x 4 x. So we have
T̃x ∈ [p,x]. The other case, x 4 p, is similar.

Corollary 1.19. Suppose that T ∈ Top(R2,R2) is orientation-preserving. A con-
vex tube Ω ⊂ R2, i.e., a set of the form (1.50), is invariant by T iff Ω̃ = Ω/Ru
contains a fixed point of T̃ (or, in other words, iff Ω contains an invariant u-line).

Proposition 1.20. Let I = {0, 1}, and let T = (Ti)i∈I be a squeezing IFS on
E = R2 such that the quotient maps T̃i are strictly increasing on (Ẽ,4). The set
IN is endowed with the lexicographic order. Then we have the following.

1. The map Q : IN → Ẽ is increasing (resp. strictly increasing) iff Q(0) 4 Q(1)
and Q(01) 4 Q(10) (resp. Q(0) ≺ Q(1) and Q(01) ≺ Q(10)).

2. The functions Q′(t)−Q′(s) : Ẽ → R are increasing (resp. strictly increasing)
for every s, t ∈ IN such that s < t iff the two functions Q′(1) − Q′(0) and
Q′(10)−Q′(01) are increasing (resp. strictly increasing).

Proof. We start with part 1. Assume that Q verifies Q(0) 4 Q(1) and Q(01) 4
Q(10). Let Qm ∈ C(IN, E/Ru) be the sequence of functions defined by

∀z ∈ IN Q0(z) = Q(z0),(1.96)

Qm+1(z) = z0 B Qm(σz) (∀m ∈ N)(1.97)

where z0 is the first digit of z. A simple induction on m shows that all the Qm
coincide with Q on the points 0 and 1, and are increasing. By (1.73), they converge
pointwise to Q; therefore, Q is also increasing.

Now suppose we have Q(0) ≺ Q(1) and Q(01) ≺ Q(10). We know from the
previous paragraph that Q is increasing. To prove that Q is strictly increasing,
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take z1, z2 ∈ IN with z1 < z2. This means that we can write z1 = w0t1 and
z2 = w1t2 for some w ∈ I∗ and t1, t2 ∈ IN. From Q(01) ≺ Q(10) we deduce

Q(w01) = w B Q(01) ≺ w B Q(10) = Q(w10)(1.98)

and consequently

Q(z1) 4 Q(w01) ≺ Q(w10) 4 Q(z2)(1.99)

so Q is indeed strictly increasing.
Part 2 is similar. Assume Q(1) − Q(0) and Q(10) − Q(01) are increasing, and

let Q′m ∈ C(IN, E′/R) be the sequence of functions defined by

∀z ∈ IN Q′0(z) = Q′(z0),(1.100)

Q′m+1(z) = z0 B Q′m(σz) (∀m ∈ N).(1.101)

Here again, a simple induction shows that the Q′m coincide with Q′ on the points 0
and 1, and that Q′m(z2)−Q′m(z1) is increasing for all z1, z2 ∈ IN such that z1 6 z2.
By (1.74), these functions converge pointwise to Q′, so Q′(z2)−Q′(z1) is increasing
whenever z1 6 z2.

Now suppose that Q′(1)−Q′(0) and Q′(10)−Q′(01) are strictly increasing, and
let z1, z2 ∈ IN with z1 < z2. We can write z1 = w0t1 and z2 = w1t2 for some w ∈ I∗
and t1, t2 ∈ IN. It is easily shown that Q′(w10)−Q′(w01) is strictly increasing. So
we can write Q′(z2)−Q′(z1) as a sum of three functions,

Q′(z2)−Q′(z1) =
[
Q′(z2)−Q′(w10)

]
+
[
Q′(w10)−Q′(w01)

]
+
[
Q′(w01)−Q′(z1)

]
.

(1.102)

These three functions are increasing, and one of them (the middle one) is strictly
increasing, so Q′(z2)−Q′(z1) is strictly increasing.

1.6. Average height. Let E = Rn, and let Ω ⊂ E be an invariant tube for the
topical map T : E → E. We define the lower displacement h−Ω(T ) and upper
displacement h+

Ω(T ) of the map T on the tube Ω as the greatest (resp. smallest)
reals such that

∀x ∈ Ω x + h−Ω(T )u 6 Tx 6 x + h+
Ω(T )u.(1.103)

It is easily verified that these numbers exist, and verify

h−Ω(T ) = min
α∈E′

h−α,Ω(T ),(1.104)

h+
Ω(T ) = max

α∈E′
h+
α,Ω(T )(1.105)

where

h−α,Ω(T ) = min
x∈Ω

αTx− αx,(1.106)

h+
α,Ω(T ) = max

x∈Ω
αTx− αx(1.107)

and this implies, in particular,

0 6 h+
Ω(T )− h−Ω(T ) 6 4 wd(Ω).(1.108)

Let us finally notice that if Ω is invariant by T, U ∈ Top(E,E), then

h−Ω(TU) > h−Ω(T ) + h−Ω(U),(1.109)

h+
Ω(TU) 6 h+

Ω(T ) + h+
Ω(U)(1.110)
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and similarly, for any α ∈ E′ we have

h−α,Ω(TU) > h−α,Ω(T ) + h−α,Ω(U),(1.111)

h+
α,Ω(TU) 6 h+

α,Ω(T ) + h+
α,Ω(U)(1.112)

and now we are able to state the result.

Proposition-Definition 1.21. Let T = (Ti)i∈I be a tubular IFS on E = Rn. For
every ξ ∈ St(I), there exists one real number H(ξ; T), the average height of ξ, such
that, for every invariant tube Ω, we have

∀m ∈ N E
[
h−Ω(Tξm−1...ξ0)

]
6 mH(ξ; T) 6 E

[
h+

Ω(Tξm−1...ξ0)
]
.(1.113)

The function H : St(I) → R is affine and continuous. Moreover, for any topical
form α ∈ E′ we have the inequality

∀m ∈ N E
[
h−α,Ω(Tξm−1...ξ0)

]
6 mH(ξ; T) 6 E

[
h+
α,Ω(Tξm−1...ξ0)

]
(1.114)

and the limits

H(ξ; T) = lim
m→∞

E
[
h−Ω(Tξm−1...ξ0)

]
m

= lim
m→∞

E
[
h+

Ω(Tξm−1...ξ0)
]

m
(1.115)

= lim
m→∞

E
[
h−α,Ω(Tξm−1...ξ0)

]
m

= lim
m→∞

E
[
h+
α,Ω(Tξm−1...ξ0)

]
m

.(1.116)

Proof. Let Ω be an invariant tube and ξ ∈ St(I). From the inequalities (1.109) and
(1.110), it is plain that the sequences

a−m = E
[
h−Ω(Tξm−1...ξ0)

]
,(1.117)

a+
m = E

[
h+

Ω(Tξm−1...ξ0)
]

(1.118)

are superadditive and subadditive, respectively, and in O(m), so the sequences
(a−m/m) and (a+

m/m) both have limits in R, which must be equal because of the
inequality

0 6 a+
m − a−m 6 4 wd(Ω)(1.119)

derived from (1.108). Denoting the common limit by HΩ(ξ), we have

HΩ(ξ) = lim
m→∞

a−m
m

= sup
m>0

a−m
m

= lim
m→∞

a+
m

m
= inf

m>0

a+
m

m
(1.120)

so (1.113) and (1.115) are verified for the tube Ω. Now, we have to prove that
HΩ(ξ) does not depend on Ω. Indeed, if Υ is another invariant tube, then we have

∀w ∈ I∗ h−Ω∪Υ(Tw) 6 h−Ω(Tw) 6 h+
Ω(Tw) 6 h+

Ω∪Υ(Tw)(1.121)

which implies HΩ(ξ) = HΩ∪Υ(ξ); reversing the roles of Ω and Υ, we get HΩ(ξ) =
HΥ(ξ). So we can drop the subscript, and simply denote H(ξ) to be the number
we have defined.

For any α ∈ E′, we can apply similar arguments to the sequences

b−m = E
[
h−α,Ω(Tξm−1...ξ0)

]
,(1.122)

b+m = E
[
h+
α,Ω(Tξm−1...ξ0)

]
(1.123)

and we see that the sequences (b−m/m) and (b+m/m) have limits in R; because of the
inequalities

∀m ∈ N a−m 6 b−m 6 b+m 6 a+
m(1.124)
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these limits must be equal to H(ξ), so that

H(ξ) = lim
m→∞

b−m
m

= sup
m>0

b−m
m

= lim
m→∞

b+m
m

= inf
m>0

b+m
m

(1.125)

and we have (1.114) and (1.116).
Denote Hm(ξ) = E

[
h−Ω(Tξm−1...ξ0)/m

]
. Because of (1.113) and (1.119), we have

∀m > 0 ∀ξ ∈ St(I) 0 6 (H−Hm)(ξ) 6 4 wd(Ω)
m

(1.126)

so the functions Hm : St(I)→ R converge uniformly to H on St(I); since they are
affine and continuous, so is their limit H.

An important special case of the above definition is the case of a tubular IFS
consisting of a unique function: T = (T ). Then St(I) is a singleton, andH(· ; T) is a
simple number, which will be noted h(T ) and called the average height (or average
displacement) of T . It is defined for any topical map T having an invariant tube,5

and for any invariant tube Ω and any topical form α we obviously have

h−Ω(T ) 6 h−α,Ω(T ) 6 h(T ) 6 h+
α,Ω(T ) 6 h+

Ω(T ),(1.127)

h(T ) = lim
n→∞

n−1h±Ω(T n) = lim
n→∞

n−1h±α,Ω(T n)(1.128)

by specialization of Proposition-Definition 1.21. Here are two important properties
of h, to be used later on (they follow easily from the definitions). For any tubular
IFS T = (Ti)i∈I and for any nonempty word w ∈ I∗, we have

H(w]; T) =
h(T¬w)
|w| .(1.129)

Besides, for conjugate-linear tubular operators we have the relation

h(cl
(
A, κ)

)
= κ−1 log %(A)(1.130)

where %(A) denotes the spectral radius of the matrix A.

Comments. This notion of “average height” is not a new concept. We have chosen
to define it in a context which requires the tubularity of T in an essential way. Was
it the right thing to do?

Other definitions exist in the literature [Ba, Vin], which do not require any
tubularity hypothesis; for any topical IFS T = (Ti)i∈I with I finite, and ξ = (ξk)k∈N
stationary process on I, one defines

H+(ξ; T) = lim
m→∞

m−1E
[
γ+(x C ξ0 . . . ξm−1)

]
(1.131)

where γ+ is the topical form defined by γ+(x1, . . . , xn) = maxxi, and x is any
point in Rn. One can prove [Vin] that the limit always exists, and does not depend
on x. If we make the additional assumption that ξ is ergodic, then for any x ∈ Rn
we have

m−1γ+(x C ξ0 . . . ξm−1) −→ H+(ξ; T) a.s.(1.132)

5Such a map will, obviously, be called a tubular map; it is possible to prove that a topical map
is tubular if and only if it admits an invariant u-line.
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when m → ∞, as a consequence of Kingman’s subadditive ergodic theorem. If
the IFS is tubular, then its behaviour is essentially unidimensional, as all the co-
ordinates of x C ξ0 . . . ξm−1 differ by bounded quantities, and the limit in (1.131)
obviously coincides with the average height as we have defined it.

If the IFS is not tubular, then (1.131) gives incomplete information about its
dynamics, as the various coordinates of x C ξ0 . . . ξm−1 can tend to infinity at
different speeds; choosing another topical form, in particular γ−(x1, . . . , xn) =
minxi, would give us another “average height” which would probably be denoted
H−(ξ; T), and would be different in general. Another problem is that H+(ξ; T) will
no longer depend continuously on ξ. Because of this, the study ofH+ as a functional
in ξ is probably hopeless; this is why we have deliberately limited ourselves to the
tubular case, where all this pathology disappears.

2. Mañé’s lemma and its applications

2.1. Mañé’s lemma. The following proposition and its immediate corollaries will
subsequently be referred to as Mañé’s lemma. Indeed, a related lemma appears
in [M2] in the context of lagrangian flows; a more comprehensive exposition (and
proof) of this result can be found in [Fat]. Several more or less related “Mañé’s
lemmas” have appeared since in the literature [B1, B2, CLT] for discrete-time hy-
perbolic dynamics. Similar results can also be found in the literature on infinite-
horizon optimal control; see for example Chapter 5 in [CHL], in particular Theorem
5.2 on page 98.

Proposition 2.1. Let T0, . . . , Tm−1 ∈ Top(Rn,Rn) and Γ ∈ Top(Rm,R), with
m,n > 1. Then there exist λ ∈ R and ψ ∈ Top(Rn,R) such that

∀x ∈ Rn ψx = −λ+ Γ(ψT0x, . . . , ψTm−1x).(2.1)

Proof. Let E = Rn and E′ = Top(E,R). To each topical form ψ ∈ E′, associate
the function Aψ : E → R defined by

∀x ∈ E (Aψ) x = Γ(ψT0x, . . . , ψTm−1x).(2.2)

It is obvious from the above formula that Aψ is topical, so A is an application from
E′ into itself. It is not difficult to see that A : E′ → E′ is continuous. Moreover, it
commutes with the addition of a constant:

∀ψ ∈ E′ ∀λ ∈ R A(ψ + λ) = Aψ + λ(2.3)

so there exists a (continuous) quotient map Ã : E′/R → E′/R. But E′/R is a
convex compact subspace of C(E)/R, which is a Fréchet space (for the topology
of uniform convergence on bounded subsets of E), so we can apply the Leray-
Schauder-Tychonov fixed point theorem [AB], which tells us that Ã has some fixed
point ψ̃ ∈ E′/R. If ψ ∈ E′ is some lift of this fixed point, then we have ψ = −λ+Aψ
for some constant λ ∈ R.

Corollary 2.2. Let I be a nonempty finite set, and let T = (Ti)i∈I be a topical
IFS on Rn. Then there exist λ−, λ+ ∈ R and ψ−, ψ+ ∈ Top(Rn,R) such that

∀x ∈ Rn ψ−x = −λ− + min
i∈I

ψ−(Tix),(2.4)

ψ+x = −λ+ + max
i∈I

ψ+(Tix).(2.5)
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Proof. Assume I = {0, . . . ,m − 1}, and apply Proposition 2.1 with the topical
forms Γ(xi) = minxi and Γ(xi) = maxxi.

2.2. A characterization of maximizing processes. Obviously, if (λ−, ψ−) and
(λ+, ψ+) are solutions of (2.4) and (2.5), then we have

∀w ∈ I∗ ∀x ∈ Rn ψ−(x C w) > ψ−x + |w|λ−,(2.6)

ψ+(x C w) 6 ψ+x + |w| λ+(2.7)

and in particular, if Ω is an invariant tube,

∀w ∈ I∗ h−ψ−,Ω(T¬w) > λ−,(2.8)

h+
ψ+,Ω(T¬w) 6 λ+.(2.9)

The words w ∈ I∗ which achieve equality in either (2.8) or (2.9) will be called
admissible words. This is mostly a technical concept (though a very useful one) as
its definition depends on a lot of context: a solution of either (2.4) and (2.5), and
an invariant tube. More precisely:

Definition 2.3. Let T = (Ti)i∈I be a tubular IFS on Rn, Ω an invariant tube, and
(λ+, ψ+) a solution of (2.5). We define the set of (max, ψ+,Ω)-admissible words as

Adm+(ψ+,Ω) =
{
w ∈ I∗ : ∃x ∈ Ω ψ+ (x C w) = ψ+x + |w| λ+

}
(2.10)

=
{
w ∈ I∗ : h+

ψ+,Ω(T¬w) = |w| λ+
}
.(2.11)

Similarly, if (λ−, ψ−) is a solution of (2.4), we define the set of (min, ψ−,Ω)-
admissible words as

Adm−(ψ−,Ω) =
{
w ∈ I∗ : ∃x ∈ Ω ψ− (x C w) = ψ−x + |w|λ−

}
(2.12)

=
{
w ∈ I∗ : h−ψ−,Ω(T¬w) = |w|λ−

}
.(2.13)

Let us suppose that the context is given (that is, we fix the invariant tube Ω, as
well as a topical form ψ which verifies either the min or the max form of Mañé’s
equation), so we can simply talk of “admissible words”. It is not difficult to verify
that:

• The empty word e is admissible.
• Every subword of an admissible word is admissible.
• For every admissible word w, there exists a letter i such that wi is admissible.

These properties immediately imply that there exist admissible words of arbi-
trary length, and suggest a way to extend the notion of admissibility to infinite
sequences: an infinite sequence of letters is admissible iff all its finite subsequences
are admissible words.

In particular, the right-infinite sequence (ai)i∈N ∈ IN is admissible iff all the
words a0 . . . am are admissible, whereas the bi-infinite sequence (ai)i∈Z ∈ IZ is
admissible iff all the words a−m . . . a0 . . . am are admissible. These subsets of IN

and IZ will be noted Adm±N (ψ,Ω) and Adm±Z (ψ,Ω) respectively. An easy compacity
argument shows that they are nonempty. It is plain that Adm±N (ψ,Ω) is an invariant
compact subset of (IN, σ), whereas Adm±Z (ψ,Ω) is a strongly invariant compact
subset of (IZ, σ); moreover, the latter can be seen as the projective limit (a.k.a.
natural extension) of the former.
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Theorem A. Let T = (Ti)i∈I be a tubular IFS on Rn, and let (λ−, ψ−) and
(λ+, ψ+) be arbitrary solutions of (2.4) and (2.5) respectively. Then we have

λ− = min
ξ∈St(I)

H(ξ),(2.14)

λ+ = max
ξ∈St(I)

H(ξ).(2.15)

Moreover, stationary processes which attain the extrema of H are characterized as
follows:

∀ξ ∈ StN(I) H(ξ) = λ− ⇐⇒ supp ξ ⊂ Adm−N (ψ−,Ω),(2.16)

H(ξ) = λ+ ⇐⇒ supp ξ ⊂ Adm+
N (ψ+,Ω).(2.17)

Besides, for every word w ∈ I∗ we have

|w| λ− 6 h(T¬w) 6 |w|λ+(2.18)

whereas

w ∈ Adm−(ψ−,Ω) =⇒ h−Ω(T¬w) 6 |w| λ−,(2.19)

w ∈ Adm+(ψ+,Ω) =⇒ h+
Ω(T¬w) > |w| λ+.(2.20)

Proof. We shall only prove the results concerning max-admissible words and max-
imizing processes, namely (2.15), (2.17) and (2.20); the other ones are exactly
similar.

If w ∈ Adm+(ψ+,Ω), then we have

h+
Ω(T¬w) > h+

ψ+,Ω(T¬w) = |w|λ+(2.21)

so we have proved (2.20).
Applying inequality (1.114) with the topical form ψ+, and combining with (2.9),

we get

∀m > 0 H(ξ) 6 E
[
h+
ψ+,Ω(Tξm−1...ξ0)/m

]
6 λ+(2.22)

(and besides, H(ξ) is the limit of the middle term), so we have

∀ξ ∈ St(I) H(ξ) 6 λ+(2.23)

with a criterion for equality:

H(ξ) = λ+ ⇐⇒ ∀m > 0 E
[
h+
ψ+,Ω(Tξm−1...ξ0)

]
= mλ+

⇐⇒ ∀m > 0 ξ0 . . . ξm−1 ∈ Adm+(ψ+,Ω) a.s.

⇐⇒ ξ0ξ1 . . . ∈ Adm+
N (ψ+,Ω) a.s.

⇐⇒ supp ξ ⊂ Adm+
N (ψ+,Ω).

(2.24)

We recall that Adm+
N (ψ+,Ω) is a shift-invariant nonempty compact subset of IN,

and thus carries at least one invariant measure ξ by the Krylov-Bogoliubov theorem
[DGS]. So there exists ξ ∈ StN(I) such that H(ξ) = λ+, and this proves (2.15).

Finally, (2.18) is an obvious consequence of the formula (1.129), combined with
(2.14) and (2.15).
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Corollary 2.4. With the hypotheses and notation of Theorem A, suppose that z ∈
IN is in the support of some H-minimizing measure; then

∀m ∈ N h−Ω(Tzm−1...z0) 6 mλ− 6 h(Tzm−1...z0).(2.25)

Conversely, if z is in the support of an H-maximizing measure, then

∀m ∈ N h(Tzm−1...z0) 6 mλ+ 6 h+
Ω(Tzm−1...z0).(2.26)

Corollary 2.5. With the hypotheses and notation of Theorem A, we have

min
|w|=m

h(Tw) = mλ− +O(1),(2.27)

max
|w|=m

h(Tw) = mλ+ +O(1)(2.28)

when m→∞.

Comments. The last two corollaries are trivial consequences of Theorem A, but
they are interesting because they tell us how fast the asymptotic bounds can be
approached by finite-length words. They also show that the points z in the sup-
port of “optimal measures” (elements of St(I) which minimize or maximize H) are
“optimal sequences” in the sense that m−1h(Tzm−1...z0) tends to λ±, with an error
in O(m−1), which is the best one can hope for.

Theorem A implies, among many other things, that the constants λ± appearing
in Mañé’s equations (2.4) and (2.5) are well defined (unlike the topical forms ψ±).
This property falls over, along with Theorem A, if we drop the hypothesis that
T is tubular. This is even the case with one map: take for example T (x, y) =
(x + 1, y + 2); this map is not tubular, and one can see that Mañé’s equation
ψ = −λ+ ψT has solutions for all λ ∈ [1, 2].

The literature on DES traditionally defines the following quantities as analogues
of minH and maxH:

Λ−+(T) = lim inf
|w|→∞

|w|−1
γ+(x C w),(2.29)

Λ+
+(T) = lim sup

|w|→∞
|w|−1

γ+(x C w)(2.30)

where x is any point in Rn, and γ+ is the topical form defined by γ+(xi) = maxxi
(obviously, these quantities do not depend on x). These definitions coincide with
λ− = minH and λ+ = maxH in the tubular case, and are well defined even if
T is not tubular; but they can have the same kind of pathologic behaviour as the
functional H+ defined by (1.131), discussed at the end of §1.6. This probably
explains why the possible existence of a link between the Λ±+(T) and the functional
H+(· ; T) has not been suggested anywhere in the literature, in spite of the strong
analogies between these notions.

2.3. An inequality for squeezing IFS. For squeezing IFS, the set of bi-infinite
admissible sequences is heavily constrained by the following theorem, which states
that any two admissible sequences in IZ must somehow be “compatible”, through
the relation (2.31). Note that this relation is obviously reflexive and symmetric.

Proposition 2.6. Let T = (Ti)i∈I be a squeezing IFS on Rn, and let Q,Q′ be the
functions defined in Proposition 1.16. Let Ω be an invariant tube and (λ, ψ) a solu-
tion of (2.5). Let u = (ui)i∈N, u′ = (u′i)i∈N, v = (vi)i∈N and v′ = (v′i)i∈N be four el-
ements in IN, and suppose that the two bi-infinite sequences (. . . u2u1u0u

′
0u
′
1u
′
2 . . . )
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and (. . . v2v1v0v
′
0v
′
1v
′
2 . . . ) are in Adm+

Z (ψ,Ω). Then we have{
Q′(u′) Q(u)
Q′(v′) Q(v)

}
> 0.(2.31)

For min-admissible sequences, the above inequality is reversed.

Proof. Let m > 0 arbitrary. By hypothesis, the words um−1 . . . u0u
′
0 . . . u

′
m−1 and

vm−1 . . . v0v
′
0 . . . v

′
m−1 are admissible, so we can find xm,ym ∈ Ω such that

ψ (xm C um−1 . . . u0u
′
0 . . . u

′
m−1) = ψxm + 2mλ,(2.32)

ψ (ym C vm−1 . . . v0v
′
0 . . . v

′
m−1) = ψym + 2mλ.(2.33)

Introduce sm = xm C um−1 . . . u0 and tm = ym C vm−1 . . . v0. We obtain

ψ (sm C u′0 . . . u′m−1) = ψsm +mλ, ψsm = ψxm +mλ,(2.34)

ψ (tm C v′0 . . . v′m−1) = ψtm +mλ, ψtm = ψym +mλ(2.35)

whereas we have the inequalities

ψ (sm C v′0 . . . v′m−1) 6 ψsm +mλ,(2.36)

ψ (tm C u′0 . . . u′m−1) 6 ψtm +mλ.(2.37)

Changing notations, we have

(u′0 . . . u
′
m−1 B ψ) sm = ψsm +mλ,(2.38)

(v′0 . . . v
′
m−1 B ψ) sm 6 ψsm +mλ,(2.39)

(u′0 . . . u
′
m−1 B ψ) tm 6 ψtm +mλ,(2.40)

(v′0 . . . v
′
m−1 B ψ) tm = ψtm +mλ(2.41)

and consequently {
u′0 . . . u

′
m−1 B ψ u0 . . . um−1 B xm

v′0 . . . v
′
m−1 B ψ v0 . . . vm−1 B ym

}
> 0.(2.42)

When m→∞, the elements of the above Gram symbol tend to Q′(u′), Q′(v′) and
to Q(u), Q(v), in Top(Rn,R)/R and Rn/Ru respectively, and at the limit we get
(2.31).

Usually one will need to rewrite (2.31) as a combinatorial condition on the se-
quences u, u′, v, v′ ; this will be easy when Q,Q′ verify some “monotonicity” prop-
erties, in the sense of Proposition 1.20. This will be used to prove Propositions 3.1,
3.2 and 4.1.

3. A special case: The Tetris IFS

3.1. Definition, and first properties. We want to apply these techniques to a
particular problem: the study of Tetris heaps in a simple case [GM2, MV]. We
consider a Tetris game with only three slots and two pieces, as in Figure 1.

The first piece (numbered 0) occupies the left and middle slots, with heights h0

and 1 respectively, whereas the other piece (numbered 1) occupies the middle and
right slots with heights 1 and h1 respectively. We suppose h0 > 1 and h1 > 1.

We start with a flat contour (represented on the bottom) and pile pieces on
top of it. What is the height of the heap? It turns out that this problem can be
adequately modelized with a max-plus IFS, by studying the evolution of the upper
contour of the heap.
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1

h1

h0
1

Figure 1. The Tetris pieces

The upper contour of the heap at a given moment can be represented by three
numbers, u, v and w, which are the height of the heap in the left, middle and right
slots. At the beginning, we have u = v = w = 0. When we add piece 0, the contour
becomes

U0

uv
w

 =

max(u, v) + h0

max(u, v) + 1
w

(3.1)

and when we add piece 1, it becomes

U1

uv
w

 =

 u
max(v, w) + 1
max(v, w) + h1

(3.2)

so the problem is to study the dynamical behaviour of the max-plus IFS U =
(U0, U1) on R3.

Unfortunately, U is not tubular (neither U0 nor U1 have invariant tubes) so the
techniques previously described do not apply immediately. However, it is possible
to sidestep the problem (and also to simplify the IFS) by making the following
observation: when (u′, v′, w′) = Ui(u, v, w) (with i ∈ {0, 1}), one can express x′ =
max(u′, v′) and y′ = max(v′, w′) in terms of x = max(u, v) and y = max(v, w) only.
Indeed, when i = 0 we have

x′ = max(u′, v′) = x+ h0,(3.3)

y′ = max(v′, w′) = max(x+ 1, w) = max(x+ 1, y)(3.4)

and when i = 1 we have

x′ = max(u′, v′) = max(u, y + 1) = max(x, y + 1),(3.5)

y′ = max(v′, w′) = y + h1.(3.6)
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So the evolution of (x, y) is described by the max-plus IFS T = (T0, T1) on R2,
where T0 and T1 are given by

T0

(
x
y

)
=
(

x+ h0

max(x+ 1, y)

)
,(3.7)

T1

(
x
y

)
=
(

max(x, y + 1)
y + h1

)
(3.8)

and this is the IFS we will study in this section. This reduction (from U to T)
is in fact a special case of the completion procedure for max-plus IFS described in
[GM3].

Note first that the maps T0 and T1 are orientation-preserving. Then we notice
that the points p0,p1 ∈ R2, defined by

p0 = (h0, 1),(3.9)

p1 = (1, h1),(3.10)

verify

T0(p0) = p0 + h0u,(3.11)

T1(p1) = p1 + h1u(3.12)

so the corresponding points p̃0 and p̃1 in the quotient space R2/Ru are fixed points
of T̃0 and T̃1 respectively. Consequently, by Corollary 1.19, the tube

Ω =
{

(x, y) ∈ R2 : 1− h0 6 y − x 6 h1 − 1
}

(3.13)

is invariant by T. So the IFS is tubular, and there exists an average height function
H, according to Proposition-Definition 1.21.

On the other hand, the topical forms α0 and α1 defined by

α0(x, y) = x,(3.14)

α1(x, y) = y(3.15)

(that is, the first and second coordinate functions) verify

T ′0(α0) = α0 + h0,(3.16)

T ′1(α1) = α1 + h1.(3.17)

3.2. Approximation by a conjugate-linear IFS. Unfortunately, the IFS T is
not squeezing. It is however possible to approach it by κ-linear squeezing IFS. We
could use the formula (1.59) for this, but it is convenient to tweak it slightly, as
follows.

Let κ > 0 be arbitrary, and define Tκ = (T κ0 , T
κ
1 ), where

T κ0

(
x
y

)
=
(

x+ κ−1 log(θ0 + 1)
κ−1 log(θ expκx+ expκy)

)
,(3.18)

T κ1

(
x
y

)
=
(
κ−1 log(expκx+ θ expκy)

y + κ−1 log(θ1 + 1)

)
(3.19)

with θ, θ0 and θ1 defined by

θ(κ) = expκ, θ0(κ) = expκh0, θ1(κ) = expκh1.(3.20)
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These κ-linear operators correspond, through equation (1.56), to the matrices

A0 =
(
θ0 + 1 0
θ 1

)
and A1 =

(
1 θ
0 θ1 + 1

)
(3.21)

respectively.
Easy arguments show that the maps T κi are injective and orientation-preserving,

and a straightforward calculation shows that (1.66) holds. Moreover, we have

T κ0 (p0) = p0 + κ−1 log(θ0 + 1) · u,(3.22)

T κ1 (p1) = p1 + κ−1 log(θ1 + 1) · u(3.23)

so p̃0, p̃1 are invariant by T̃ κ0 , T̃
κ
1 respectively, and by Corollary 1.19, the tube Ω

defined by (3.13) is invariant by Tκ. Therefore, Tκ is a squeezing IFS.
We also see that

(T κ0 )′(α0) = α0 + κ−1 log(θ0 + 1),(3.24)

(T κ1 )′(α1) = α1 + κ−1 log(θ1 + 1).(3.25)

3.3. The functions Q and Q′. In this subsection, we will make the assumption
that h0, h1 > 0 and h0 +h1 > 2, instead of h0, h1 > 1; this does not affect anything
we have said so far6 on T, and allows us to write strict inequalities.

Let Q,Q′ be the functions defined by Proposition 1.16 for the IFS Tκ. From
the results of the previous section, yielding the (unique) fixed points of the T̃ κi and
their duals, we get {

Q(0) = p̃0

Q(1) = p̃1
and

{
Q′(0) = α̃0

Q′(1) = α̃1
(3.26)

and from this we deduce{
Q(01) = (T κ0 p1)∼

Q(10) = (T κ1 p0)∼ and
{
Q′(01) = (T κ0 )′(α1)∼

Q′(10) = (T κ1 )′(α0)∼.(3.27)

From the formulas

T κ0 p1 =
[
κ−1 log(θ0 + 1)θ
κ−1 log(θ2 + θ1)

]
,(3.28)

T κ1 p0 =
[
κ−1 log(θ2 + θ0)
κ−1 log(θ1 + 1)θ

]
(3.29)

we obtain {
α0 T κ0 p1

α1 T κ1 p0

}
= κ−1 log

θ2(θ0 + 1)(θ1 + 1)
(θ2 + θ0)(θ2 + θ1)

(3.30)

= κ−1 log
[
1 +

(θ2 − 1)(θ0θ1 − θ2)
(θ2 + θ0)(θ2 + θ1)

]
(3.31)

> 0(3.32)

so T κ0 p1 ≺ T κ1 p0. On the other hand, it is plain that p0 ≺ p1, since{
α0 p0

α1 p1

}
= h0 + h1 − 2 > 0.(3.33)

These two inequalities imply, by Proposition 1.20, that the map Q : IN → R2/Ru
is strictly increasing.

6However, T will no longer be semiconjugate to U if h0 or h1 is less than 1.
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On the other hand, the topical forms α1−α0 and (T κ0 )′α1− (T κ1 )′α0 are strictly
increasing on R2/Ru; it is obvious for the former, and for the latter we have(

(T κ0 )′α1 − (T κ1 )′α0

)
(x, y) = (α1 ◦ T κ0 − α0 ◦ T κ1 )(x, y)(3.34)

= κ−1 log
θ expκx+ expκy
expκx+ θ expκy

(3.35)

= κ−1 log
[

1
θ
− θ2 − 1

1 + θ expκ(y − x)

]
(3.36)

which is a strictly increasing function of y − x. By the second part of Proposition
1.20, it implies that Q′(z2)−Q′(z1) is strictly increasing on R2/Ru for every z1, z2 ∈
IN such that z1 < z2.

Combining the properties of Q and Q′, we see that for any u, u′, v, v′ in IN, we
have the implication

u < v and u′ < v′ =⇒
{
Q′(u′) Q(u)
Q′(v′) Q(v)

}
> 0.(3.37)

In particular, for every word w ∈ IN, and anything instead of the ellipses, we have{
Q′(0 . . . ) Q(w0 . . . )
Q′(1 . . . ) Q(w1 . . . )

}
> 0.(3.38)

If (λ, ψ) is a solution of (2.4), we know by Proposition 2.6 that Adm−Z (ψ,Ω) can-
not contain simultaneously (. . . 0w0 . . . ) and (. . . 1w1 . . . ) with the same w ∈ I∗.
Equivalently, it means that its projection on IN,

$
(
Adm−Z (ψ,Ω)

)
=
⋂
n>0

σn
(
Adm−N (ψ,Ω)

)
(3.39)

(where $ : IZ → IN is the natural projection), cannot contain simultaneously
two elements of the form 0w0 . . . and 1w1 . . . with the same w, so it must be a
subset of some [0α, 1α] with α ∈ IN. By Proposition 1.5, this set (or equivalently
Adm−N (ψ,Ω)) carries a unique invariant measure, which is a sturmian measure. So
we have proved the following:

Proposition 3.1. Let Tκ = (T κ0 , T κ1 ) be the IFS defined by formulas (3.18) and
(3.19), with κ > 0, h0, h1 > 0 and h0 + h1 > 2. Then the function ξ 7→ H(ξ; Tκ)
admits a unique minimum in St

(
{0, 1}

)
, and it is a sturmian measure.

3.4. First limit.

Theorem B. Let T = (T0, T1) be the IFS defined by the formulas (3.7) and (3.8),
with h0, h1 > 0 and h0 + h1 > 2. Then T has a minimizing sturmian measure, that
is,

∃ρ ∈ [0, 1] ∀ξ ∈ St
(
{0, 1}

)
H(ξ; T) > H(sρ; T).(3.40)

Proof. Note that condition (3.40), that is, the property of having a minimizing stur-
mian measure, is a closed condition on H (for the topology of uniform convergence),
and since H depends continuously on (h0, h1), it is enough to prove (3.40) when
h0, h1 > 0 and h0 + h1 > 2. In this case, T is the limit of the Tκ when κ → +∞,
and the functions H(· ; Tκ) converge to H(· ; T). Since the functions H(· ; Tκ) have a
minimizing sturmian measure by Proposition 3.1, so does the function H(· ; T).
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Remarks. Depending on the values of h0 and h1, there can be several minimizing
measures. For instance, when (h0, h1) = (1, 2), all the sturmian measures sρ with
ρ ∈ [0, 1/2] are minimizing. Barycentres made with them give us examples of non-
sturmian mimimizing measures, but there also exist ergodic minimizing measures
which are not sturmian, for example the periodic orbit 0101001001].

In Figure 2 we have represented the “phase diagram” of T in the region h0, h1 ∈
[1, 10]. This diagram represents the regions where the various sturmian measures
sρ are minimizing. These regions are represented by the white “cells”, whereas the
black lines represent the boundaries between these regions (for example, the cell on
the bottom left, which contains the point h0 = h1 = 2, corresponds to ρ = 1/2).
Numerical evidence suggests that all these cells correspond to rational values of
ρ, with small denominators. Apart from that, we have no idea about the shape
and combinatorial arrangement of these cells. It is more complicated than what
we expected, and rather different from the relatively simple “Farey tree” structure
which appears in [HO, Jen].

Figure 2. The Tetris phase diagram

Comments. Theorem B is not new, and is a special case of Theorem C which will
be proved in the next sections; however, their proofs are very similar, and this is
why we treated the simpler Theorem B first.

Theorem B has been proved in [MV] in the more general context of two Tetris
pieces with arbitrary shapes, using techniques which are completely different and
very specific to the Tetris problem. With these techniques, Mairesse and Vuillon
prove a stronger result: there always exists a periodic sturmian measure minimizing
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the average height, and it can be determined explicitly. The more general techniques
given in the present article are probably not sharp enough to obtain this stronger
form of Theorem B.

3.5. A different variational problem. A related optimization problem is to ask
for the minimum of H(ξ) among all ξ ∈ St(I) such that E(ξ0) = ρ, for some given
ρ ∈ [0, 1].

The idea here is to introduce an additional parameter ν ∈ R, and consider the
IFS νT = (T0, νT1), where νT1 = νu + T1. Obviously this IFS is tubular, just like
T, and its average height function is given by

∀ξ ∈ St(I) H(ξ; νT) = H(ξ; T) + ν E(ξ0)(3.41)

and it can be approximated by the conjugate-linear IFS νT
κ = (T κ0 , νT κ1 ), where

νT
κ
1 = νu + T κ1 . This IFS differs from Tκ only by a translation, so it is squeezing

and has exactly the same functions Q,Q′, and in particular they verify (3.37). The
same reasoning as before then shows that (provided h0, h1 > 0 and h0 + h1 > 2)
there exists a unique minimizing measure for H(· ; νTκ), and it is sturmian. To
summarize:

Proposition 3.2. Let Tκ = (T κ0 , T
κ
1 ) be the IFS defined by the formulas (3.18)

and (3.19), with κ > 0, h0, h1 > 0 and h0 + h1 > 2, and let ν ∈ R. Then the
function ξ 7→ H(ξ; Tκ) + ν E(ξ0) admits a unique minimum in St

(
{0, 1}

)
, and it is

a sturmian measure.

Here we shall take advantage of the uniqueness of the minimizing measure. For
each ν ∈ R, let ρ = ρ(ν) be the unique number in [0, 1] such that

∀ξ ∈ St(I) H(ξ; Tκ) + ν E(ξ0) > H(sρ; Tκ) + νρ.(3.42)

This condition defines a closed graph for the map ν 7→ ρ, and consequently, the
map is continuous. Now we claim the following.

Proposition 3.3. Let Tκ = (T κ0 , T
κ
1 ) be the IFS defined by the formulas (3.18)

and (3.19), with κ > 0, h0, h1 > 0 and h0 + h1 > 2, and let ρ ∈ [0, 1] be arbitrary.
Then there exists ν ∈ R such that

ν ∈
[
−κ−1 log(1 + θ1), κ−1 log(1 + θ0)

]
(3.43)

and sρ is the unique minimum of the function ξ 7→ H(ξ; Tκ) + ν E(ξ0).

Proof. A straightforward calculation shows that

∀x ∈ Ω −κ−1 log(1 + θ0) u 6 T κ1 (x) − T κ0 (x) 6 κ−1 log(1 + θ1) u(3.44)

and consequently

ν 6 −κ−1 log(1 + θ1) =⇒ νT
κ
1 6 T κ0 ,(3.45)

ν > κ−1 log(1 + θ0) =⇒ νT
κ
1 > T κ0(3.46)

on Ω. In the first case, s1 = 1] minimizes H(· ; νT), whereas s0 = 0] is minimizing
in the second case. So we have proved that the function ν 7→ ρ(ν) takes the values
1 and 0 when ν is on the boundary on the interval (3.43), and since it is continuous,
it takes all the intermediary values on this interval.
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Remarks. An important consequence of Proposition 3.3 is the existence of real
numbers ν such that the unique minimizing measure of νTκ is a sturmian measure
with irrational parameter. This gives us examples of conjugate-linear IFS which
have no minimizing periodic orbit. We will come back to this in §4.

3.6. Second limit.

Theorem C. Let T = (T0, T1) be the IFS defined by the formulas (3.7) and (3.8),
with h0, h1 > 0 and h0 + h1 > 2, and let ρ ∈ [0, 1] be arbitrary. Then there exists
ν ∈ [−h1, h0] such that

∀ξ ∈ St
(
{0, 1}

)
H(ξ; T) + ν E(ξ0) > H(sρ; T) + νρ(3.47)

and it implies in particular,

∀ξ ∈ St
(
{0, 1}

)
E(ξ0) = ρ =⇒ H(ξ; T) > H(sρ; T).(3.48)

Proof. Condition (3.47) is closed in (h0, h1) and thus it is sufficient to prove it on
a dense subset of its definition domain, namely when h0, h1 > 0 and h0 + h1 > 2.
In this case, T is the limit of the Tκ when κ → +∞, and by Proposition 3.3, for
every κ > 0 there exists

νκ ∈
[
−κ−1 log(1 + θ1), κ−1 log(1 + θ0)

]
(3.49)

such that

∀ξ ∈ St(I) H(ξ; Tκ) + νκE(ξ0) > H(sρ; Tκ) + νκρ.(3.50)

If ν is any limit of the νκ when κ→ +∞, then ν ∈ [−h1, h0], and we obtain (3.47)
by taking the limit in the above inequality.

Comments. The second part of Theorem C, that is, the statement (3.48), has been
proved by Gaujal [G2], using very specialized methods requiring a deep understand-
ing of sturmian sequences. We believe that our proof is simpler, and involves ideas
which are more likely to be reusable in other contexts.

The formulation of the problem and its solution in [G2] is very different from
the one given here (it does not involve “stationary processes” at all), and it re-
quires some care to verify that it is indeed the same statement as (3.48). It is
obvious that Gaujal’s theorem expressed as (3.48) implies Theorem B, which is
part of the Mairesse-Vuillon theorem, but it was not obvious at all in their original
formulations. This shows how the right formalism, even if it seems abstract and
unnecessary at first sight, can actually simplify the approach.

4. Finiteness conjectures

4.1. The Lagarias-Wang conjecture. For any linear endomorphism A ∈
L(Rn,Rn), with eigenvalues λ1, . . . , λn ∈ C, we denote by %(A) = max |λi| the
spectral radius of A. Let I be a nonempty finite set and A = (Ai)i∈I a collection
of elements of L(Rn,Rn). For every word w ∈ I∗, we define Aw as in (1.63), and
Ae = Id.
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Now we define λ−(A) ∈ R ∪ {−∞} and λ+(A) ∈ R, called the smallest and
greatest Liapunov exponents of A, as follows:

λ−(A) = inf
|w|>1

1
|w| log %(Aw),(4.1)

λ+(A) = sup
|w|>1

1
|w| log %(Aw)(4.2)

and a very natural question is to ask whether these bounds are attained for an
arbitrary A.

For the smallest Liapunov exponent, it is not difficult to see that the answer is
no. For instance, consider the IFS A = (A0, A1), where A0 and A1 are the 2 × 2
matrices defined by

A0 =
(

2 0
0 1/2

)
and A1 =

(
1/3 0
0 3

)
.(4.3)

For every word w ∈ I∗, we have

Aw =
(

2a3−b 0
0 2−a3b

)
(4.4)

where a, b are the numbers of zeros and ones in the word w. From the irrationality
of log 3/ log 2, it is plain that %(Aw) is always greater than 1 when w is nonempty,
but it can be arbitrarily close to 1, so the infimum in (4.1) is λ−(A) = 0 and it is
not attained.

For the greatest Liapunov exponent λ+(A), there is no such counterexample, and
it has been conjectured by Lagarias and Wang [LW] and Gurvits [Gu1] (motivated
by previous work in [DL1]), that the supremum in (4.2) was always attained, for
any A. This statement is known as the finiteness conjecture.

This conjecture is traditionally stated in terms of the joint spectral radius (or
generalized spectral radius), a notion introduced by Rota & Strang [RS], later re-
discovered in [DL1] and also studied in [BW]; with our notation, the joint spectral
radius is expλ+(A). Equivalent formulations of the finiteness conjecture, and re-
lated statements, can be found in [LW, Gu2, DL2].

We shall prove in the next subsection that this conjecture is false, by constructing
a linear IFS A, consisting of two 2× 2 matrices, with nonnegative coefficients, and
such that

∀w ∈ I∗ − {e} 1
|w| log %(Aw) < λ+(A).(4.5)

Incidentally, it should be mentioned that the explicit computation of λ±(A) in
the general case, either exact or approximate, raises some interesting computability
questions, some of them related to the finiteness conjecture; see [BT1, BT2, TB]
for a discussion of these issues.

4.2. The finiteness problem for tubular IFS. The same finiteness questions
can be stated for tubular IFS. If T is a tubular IFS on Rn of some kind (conjugate-
linear, max-plus, etc.), do there exist periodic orbits ξ ∈ St(I) which maximize or
minimize the average height H(ξ; T)? This question is reasonable, because periodic
orbits are dense in St(I), and thus the upper and lower bounds of H(ξ; T) on
periodic orbits coincide with the maximum and the minimum of H on St(I).

The answer depends, in part, on the type of topical maps we consider. If T is
a max-plus IFS, then it is known [Ga1] that there exists a maximizing periodic
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orbit, whose period does not exceed n (the dimension of the space). On the other
hand, there does not always exist a minimizing periodic orbit [MV], unless one
assumes that all pieces have rational heights [GM3]. The Tetris IFS considered in
this article, however, always has a minimizing periodic orbit [MV], even if h0, h1

are irrational.
The class of topical functions which is the most relevant to the Lagarias-Wang

conjecture is the class of conjugate-linear maps, described in §1.3, and this is what
we will study here. Let κ > 0. Consider the matrices A0, A1 defined by (3.21), and
T κ0 , T

κ
1 the corresponding κ-linear maps defined by (3.18) and (3.19). As before,

we define νT
κ
1 = νu +T κ1 , which corresponds to the matrix νA1 = eκνA1. We shall

note νA0 = A0 for convenience, and νA = (νA0, νA1).
We have seen in Proposition 3.3 that under the conditions h0, h1 > 0 and h0 +

h1 > 2, there were values of ν ∈ R so that νT
κ = (T κ0 , νT κ1 ) did not have any

minimizing periodic orbit. A simple modification of this construction allows us to
exhibit conjugate-linear tubular IFS which do not have any maximizing periodic
orbit, and this yields a counterexample to the Lagarias-Wang finiteness conjecture.

Proposition 4.1. Let Tκ = (T κ0 , T
κ
1 ) be the IFS defined by formulas (3.18) and

(3.19), with κ > 0, h0, h1 > 0 and h0 + h1 < 2, and let ν ∈ R. Then the function
ξ 7→ H(ξ; Tκ)+ν E(ξ0) admits a unique maximum in St

(
{0, 1}

)
, and it is a sturmian

measure.

Proof. We follow the steps of the proof of Proposition 3.2, with the appropriate
changes caused by the modified condition h0 + h1 < 2.

First, we notice that Tκ is still tubular, with an invariant tube delimited by p̃0

and p̃1; the only change is that these u-lines are in opposite position: p0 is “above”
p1 (that is, p0 � p1), and the tube Ω is given by

Ω =
{

(x, y) ∈ R2 : h1 − 1 6 y − x 6 1− h0

}
.(4.6)

We also find out that T κ0 p1 � T κ1 p0 which implies, by an obvious modification of
Proposition 1.20, that Q : {0, 1}N → R2/Ru is strictly decreasing. The behaviour
of Q′ : {0, 1}N → (R2)′/R, on the other hand, is unmodified: Q′(z2) − Q′(z1) is
strictly increasing on R2/Ru when z1 < z2.

Let (λ, ψ) be a solution of (2.5). For every u, u′, v, v′ ∈ IN, we have

u < v and u′ < v′ =⇒
{
Q′(u′) Q(u)
Q′(v′) Q(v)

}
< 0(4.7)

from which we deduce that $
(
Adm+

Z (ψ,Ω)
)

is contained in some [0α, 1α] (with
α ∈ IN) and consequently carries a unique invariant measure, which is a sturmian
measure.

Proposition 4.2. Let Tκ = (T κ0 , T
κ
1 ) be the IFS defined by formulas (3.18) and

(3.19), with κ > 0, h0, h1 > 0 and h0 + h1 < 2, and let ρ ∈ [0, 1] be arbitrary. Then
there exists ν ∈ R such that

ν ∈
[
−κ−1 log(1 + θ1), κ−1 log(1 + θ0)

]
(4.8)

and sρ is the unique maximum of the function ξ 7→ H(ξ; Tκ) + ν E(ξ0).

The proof is almost identical to the proof of Proposition 3.3, and we leave it to
the reader.

Now how do we conclude? Choose h0, h1, κ verifying the conditions of Proposi-
tion 4.2, and ρ ∈ [0, 1] irrational, for instance ρ = (

√
5 − 1)/2. According to the
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proposition, there exists ν ∈ R such that sρ is the unique minimum of H(· ; νTκ).
This κ-linear IFS corresponds to the linear IFS νA, which consists of the two ma-
trices

A0 = νA0 =
(
eκh0 + 1 0
eκ 1

)
and νA1 = eκν

(
1 eκ

0 eκh1 + 1

)
.(4.9)

For every nonempty word w ∈ I∗, we have, as a consequence of (1.129) and (1.130),

1
|w| log %(νA¬w) = κ

h(νT¬w)
|w| = κH(w]; νTκ).(4.10)

Taking the supremum over all these w, and using the density of periodic orbits in
St(I), we get

λ+(νA) = κ max
ξ∈St(I)

H(ξ; νTκ).(4.11)

But the unique maximizing measure sρ is not periodic, so

∀w ∈ I∗ − {e} 1
|w| log %(νA¬w) < λ+(νA)(4.12)

as announced.

4.3. Geometric interpretation. As in [B1], it is enlightening to give a geomet-
rical interpretation of the above results and the methods used to derive them. Let
p : St(I) → R2 be the map defined by p(ξ) = (E(ξ0),H(ξ)). This map is ob-
viously affine and continuous, and since St(I) is compact and convex, its image
P = p

[
St(I)

]
is also compact and convex. In Figure 3, we have represented P in

gray, for the IFS Tκ with h0 = 0.6, h1 = 0.7 and κ = 0.1.

0.00 0.25 0.50 0.75 1.00 
X = E(ξ0) 

7.25 

7.30 

7.35 

7.40 
Y

 =
 H

(ξ) 

Figure 3. The set P = p[St(I)], for h0 = 0.6, h1 = 0.7 and κ = 0.1

In the figure we have also drawn a nonvertical supporting line of P , the support
point being on the upper contour; let −ν be its slope. Proposition 4.1 implies
that such a supporting line intersects P in one point, which is the image of some
sturmian measure; in other words, the upper contour of P is strictly convex, and
parametrized by y = H(sx). In particular, the function x 7→ H(sx) is strictly convex
on [0, 1]. This may not be very visible in the figure; on the other hand, some points
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of nondifferentiability of the upper contour are clearly visible, at rational values
of x with small denominator, especially 1/2, 1/3 and 2/3 — the authors believe,
because of the analogies with [B1], that the map x 7→ H(sx) is nondifferentiable for
every rational x in (0, 1). So there can be several supporting lines at a point of the
upper contour, but each supporting line has a unique support point.

The support point (x0, y0) drawn in the figure is not arbitrary: we have chosen
x0 = (

√
5 − 1)/2, as in the counterexample of the previous section. Proposition

4.2 (or the above arguments) shows that y0 = H(sx0) and there exists ν ∈ R such
that the line of slope −ν passing through (x0, y0) is a support line. Besides, it is
possible to prove (but it would lead us way too far) that the function x 7→ H(sx)
is differentiable at every irrational x in (0, 1); consequently, the upper contour has
a unique support line at (x0, y0), whose slope can be computed numerically:

−ν =
[ ∂
∂x
H(sx)

]
(x0) = −0.078466267 . . . .(4.13)

For this value of ν, the sturmian measure sx0 will be the unique minimum of the
functional ξ 7→ H(ξ) + νE(ξ0).

Proposition 4.2 also tells us that ν can always be taken in some bounded in-
terval. What this means geometrically is that the upper contour has nonvertical
semitangents at x = 0 and 1.

Finally, we have drawn in Figure 4 the graph of the function ν 7→ ρ. We have
proved earlier that this function is continuous; the figure suggests that the conti-
nuity modulus is not very good (probably not Hölder). The function is increasing,
which is geometrically obvious when you consider ρ as the absciss of the support
point and −ν as the slope of the supporting line.

-0.4 -0.2 0.0 0.2 0.4 
ν 

0.00 

0.25 

0.50 

0.75 

1.00 
ρ 

Figure 4. The graph of ν 7→ ρ, for h0 = 0.6, h1 = 0.7 and κ = 0.1

The function ρ(ν) is a devil’s staircase, which should be compared with Figure 1
in [BS]. Its plateaus come from nondifferentiability points on the upper contour of
P , and we see that they correspond to rational values of ρ.

The figure also suggests, although it is less visible, that almost every ν ∈ R
is in some plateau. In fact, it is possible to prove (with a detailed study of the
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differentiability properties of the map x 7→ H(sx), which we cannot include here)
that the closure of the set {

ν ∈ R : ρ(ν) /∈ Q
}

(4.14)

is a Cantor set with measure zero and Hausdorff dimension zero. This is very
similar to the results proved in [B1, BS] and explains why counterexamples to the
Lagarias-Wang conjecture are difficult to find: almost every choice of ν will yield a
maximizing (sturmian) periodic orbit.
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