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ASYMPTOTIC INDEPENDENCE OF THE NUMBERS
OF HIGH AND LOW LEVEL CROSSINGS OF
STATIONARY GAUSSIAN PROCESSES'

By SIMEON M. BERMAN
New York University
1. Introduction. Let X(#), 1 = 0, be a real valued separable stationary Gaussian
process with mean 0, variance 1 and continuous covariance function r(r). Suppose
there exists y > O such that
(L.D) 1—r(t) ~ y21%)2, t—0.

Such a process will be called a “standard process.”” Well-known theorems imply
that the sample functions of the process are continuous on every finite interval
[1], and that the expected number of upcrossings (and downcrossings) of a fixed
level is finite [12]. For ¢, > 0 and o, > O put

(1.2) u = (2 log (ty/2n6,))*

v = (2log (1y/2m0,))*;
and

lIA
T
IIA

M(f) = number of upcrossings of u by X(s), 0

IIA
T

IIA
~

N(t) = number of downcrossings of —v by X(s), 0
Our main result is: If either
(1.3) lim,, r(t)logt =0 or
(1.4) ©r¥s)ds < o,

then the joint limiting distribution of M(t) and N(t) exists and is a product of Poisson
distributions with means o, and o ,, respectively.

The limit theorem for the number of upcrossings of u has been obtained by several
writers under increasingly more general conditions (Volkonskii and Rozanov [11],
Cramér [4], Beljaev [2], and Qualls [8]). Results for “‘e-upcrossings’ for processes
more general than those satisfying (1.1) have been obtained by Pickands [6]. All
of these results are about the marginal limiting distribution of M(f). The joint
distribution of crossings of high multiple levels is considered in a recent paper by
Qualls [9]. The main novelty of the present work is the consideration of the joint
distribution of the numbers of high and low extreme crossings; furthermore,
our conditions (1.1), (1.3) and (1.4) are more general than any previously used in
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928 SIMEON M. BERMAN

the upcrossing theorem. While they are identical with those of Pickands, his work
is concerned only with ¢-upcrossings, not the usual upcrossings.

A direct consequence of our theorem is that the maximum and minimum of the
process are asymptotically independent; this is analogous to the well-known
property of the maximum and minimum in a sequence of independent random
variables with a common distribution.

2. Approximation by a random trigonometric function, We shall show that the
distribution of the maximum (or minimum) of a standard process on a small
interval is very nearly that of the same functional for a specific elementary process.

LEMMA 2.1. Let Y, and Y, be independent random variables with a common
standard Gaussian distribution. Put

Y(t)= Y, cost+ Y, sint, t =0,
d(u) = 2rn)~F L, exp (—»*/2) dy;
then for every u > 0 and 0 < t < m/2:

s £ 1) 2 u} = Ou)—(t/2n) exp (—u?/2).

IIA
IIA

2.1) P{max (Y(s): 0

Proor. The inequalities Y(s) € u,Vs: 0 £ s < ¢ are satisfied if and only if the

pair (Y, Y,) falls in the intersection of the half-spaces of the xy-plane:

{(x,y): xcoss+ysins = u}, 0<s<t
This is a union of disjoint regions 4, ---, A5 in the plane for which
[ [, d(x) d(y), P15

is computed. The double integral over
A4 ={0SxSuys0)

is equal to 3(®(u)—13). Let A4, be the region bounded by: the circle centered at the
origin, of radius u; the x-axis; and the line y = x tan ¢. The double integral is equal
to (¢/2m)[1 —exp (—u?/2)]. Let A, be the infinite subregion of the half-space
y = 0 bounded on three sides by the lines

—X 24
y=xtant, y= —xftant, y=-——d——

tan ¢t sin ¢
By a rotation of the axes of ¢ radians, this region is transformed into 4, and so the
double integral is the same. Let A, be the region in the second quadrant bounded
by the x-axis and the line y = —x/tan ¢; then the double integral over it is equal
to (3)—(¢/2n). Finally, let A5 be the third quadrant; then the integral over it is
equal to +. The right-hand side of (2.1} is equal to the sum of these five integrals.
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LemMa 2.2. Let X(f), t = 0, be a standard process. For every ¢,0 < ¢ < |, there
exists T > 0 such that

(2.2) @) —[ry(1+e)/2n) exp (—u?/2) £ P{max (X(s): 0 < 5 < H=u
< Oy —[1y(1 —e)/2n] exp (—u?/2), u=0, O0<t<T

ProoF. It follows from (1.1) and the expansion of cos ¢t for small ¢ that for
every ¢ > 0 there exists 77> 0 such that

(2.3) cos [(1+&)yf] = r(t) < cos [(1—e)yt], O0<t=T.

Since 7' may be taken arbitrarily small, we may suppose also that (1 +¢)yT < n/2.
Let Y(¢) be the process defined in Lemma 2.1. The maximum of Y(s) on the interval
[0, (I e)yr] is equivalent to the maximum of the process Y((I+e¢)ys) on the
interval [0, t]. The latter process is a standard one and its covariance function is
cos [(1+&)ys]. A well-known result of Slepian [10] implies that if X(¢) and Y(7) are
standard processes, and the covariance function of X is at most equal to that of Y,
then the maximum of X is stochastically larger than the maximum of Y. Applying
this to the covariance functions appearing in (2.3), and noting the form of the
distribution of the maximum in Lemma 2.1, we infer the double inequality (2.2).

LeMMA 2.3. Let J be a subset of [0, t]. For every e > 0, let T be the number whose
existence is asserted by Lemma 2.2. Suppose that J can be covered by m intervals each
of length h > T; then

P{sup (X(s): seJ) > u} < m[l —(I)(u)+w exp (— u2/2):]

for u > 0.
PROOF. By Boole’s inequality we have:

P{sup (X(s): seJ) > u} < mP{max (X(s): 0 < s < h) > u}.

The lemma follows from this and the first inequality in (2.2).

3. Separation of the crossings. Let (jt/n,j = 0,1, ---, 1) be n+1 equally spaced
points in [0, r]. Let M = M(r) be the number of upcrossings defined in Section 1,
and M’ the number of upcrossings of u be the finite set of values (X(n), j =
0,1, -+, n), that is, the number of events

3.0 X((—1)tfn) < u < X(jtfn), j=1,m,

that occur. The continuity of X implies that, as n — oo, M’ converges to M. We
are concerned with the limiting distribution of M for t and u > oo; therefore,
if n is allowed to increase with /—and sufficiently rapidly—we expect M’ to be
asymptotically near M. The following lemma indicates a sufficient rate of increase
of n with ¢:
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LemMA 3.1. Let g(t) be a positive function of t > 0 such that g(t) —» o for
t — o0; let u = u(t) be given by (1.2); and put
3.2 n = integral part of tu g(1).
With this choice of n, we have:
lim,,, E|M~M'| = 0.
A similar statement holds for downcrossings of —v.

Proor. Here and in what follows we shall refer to the well-known formula for
the expected number of upcrossings of the level u:

(3.3) E(M) = (ty[2n) exp (—u?[2) = o,
(cf. [5], p. 197). By stationarity, and (3.1):
E(M')y = nP{X(0) £ u < X(t/n)}.
Writing
P{X(0) 2 u < X(tjn)} = P{X(t/n) > u}—P{X(0) > u, X(t/n) > u},
and adapting the formula in [5], page 27, we find:
P{X(0) < u = X(t/n)} = Qu)™" [Jiym exp [—u?/1+y)(1=p*)~F dy.
The latter may be expressed as
@m) ™" exp (—u/2) flumexp [—u2(1= )20 + 011 =2~ dy.

This is asymptotic to ¢,/n for t — co; it can be verified by changing the variable
of integration from y to u?*(1—y), applying the relation 1—y? ~ 2(1 —y) for
y — 1, and then using (1.1) and the explicit forms (1.2) and (3.2) of « and n. From
this we get:

EM') - a4,

and so, from (3.3), E(M—M") — 0. Since M’ = M, we have ]M—M’l =M-M
and the assertion of the lemma follows.

>

4. An inequality for the distribution of the extreme values on a set of intervals.
Let [0, t] be a fixed interval, and for an integern 2 1, let G, be the set of numbers
of the form jt/n, for j=0,1,---,n. For ¢ > 0 and a positive integer m, let
I, -, I, be closed disjoint subintervals of [0, ¢] which are indexed in natural
order:

Ifj<kand xel;,yel, then x < y;

and are separated from each other by intervals of length at least ¢:

Ifj# kand xel;, yel, then [x—y| 2 &.
Put

U; = max (X(s): se [;nG,), V; = min (X(s): s € ;nG)), J=1, m;
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these are extremes of finitely many random variables. One of the main points in the
subsequent derivation of the limiting distribution of the numbers of crossings is to
show that, for r and n — oo, the pairs (U;, V;) are, in a sense, asymptotically
independent. This is based on the following:

LemMA 4.1. Let ¢ (x, y; p) be the standard bivariate Gaussian density with cor-
relation coefficient p:

1 x?—2pxy—y*
4.1) ¢(x,y; p) = 557 CXP {—-——— .
( 2= P 20—
If uy, -+, u,, are variables each assuming only the values u and + co, and vy, ---, v,

similarly assuming just v and o, then
42) [P Sup Viz —vop =1, mp=T[ P{U; Sup, V2 —ul|
S Y5 ez iz 4o [0(u, w5 p)+ (v, 03 y)+2¢(u, v5 y)] dy.

PrROOF. We generalize the method in [3], which was further developed in [5],
page 268. Let (r;;) and (s;;) be k x k nonsingular covariance matrices with I’s on
their diagonals; then, for each 4, 0 £ A = 1, the matrix (4r;;+(1—1)s;;) is of the
same kind. Let ¢(x,, ---, x;; 4) be the k-variate Gaussian density with all means O
and covariance matrix (Ar;;+(1—2)s;;). From the well-known partial differential
equation for ¢ ([5] page 26), we get

a¢ >

x =S — L (r..—5.):
(xla 9xk9 ) ;axiaxj(ru Slj)’

thus:
) ) o
(4.3) Pxy, 0 X D=(xy, -+, x5 0) = ; (rij_sij \LW

On each side of the equation integrate with respect to x; over —w; £ x; £ y;,
i =1, -,k We shall find a bound on the integral of the right-hand side. Inte-

gration of the term
1 02 iy
J 90
0 0x;0x;

is carried out first with respect to the variables x; and x;. When the order of
integration is interchanged with that over 4, the integral becomes

j‘(l) [BC-- y; SRR N—d(- y; ce—wy A
— (- —w; ,yj..;,l)Jrq;(.._a,i.._wj..;g)] di;
this is not more than
(44 o ldC vy s PGy —w; s AP~y D)
+¢(~—cu,---—cuj'-;/l)]di.
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Now integrate over the remaining k—2 variables distinct from x; and x;. Since
the integrand in (4.4) is nonnegative, the integral cannot decrease when the limits
—wy and y, are replaced by —co and + oo, respectively. When this integration is
performed under the integral sign in (4.4) the integrand is changed to the sum of the
bivariate densities,

S yys A+ (=05 )+ (i, —;; A+ (1—A)s;)
+P(—w, vy A+ (= Ds )+ d(—w;, —w;; Ar+ (1= D)s,)),
where ¢« is given by (4.1). From this and (4.3) we get:
(4.5) P e s oy X3 D= (xy, --, x5 0) dxy -+ dix,
<Y 1 TG, v D+ o0, o D+ d(—w;, y;; A)
+¢(—w;, —w;; D] dA]

We apply this inequality to the joint distribution of the random variables
X(s), where se I;nG,, j=1,---,m, and where u,, ---,u, and v,, ---, v, are in
places of wy, ---, w,, and y,, -+, y,., respectively. Let (r;;) be the covariance matrix
of these random variables, and let (s;;) be the matrix obtained from it by the
alteration EX(s)X(s") = 0 if sel,, s'el;, i #j; in other words, the variables
belonging to different intervals are independent under (s:;)- Now u; assumes only
the values v and oo, and ¢(co, v; p) = 0; furthermore, an analogous relation
holds for v; and v; thus

(46) d)(ui’ Ui p) = d)(u’ u; ,0)5 ¢(ui’_vj; ,0) = d)(u’ _U;p)’
d)(_via _vj;p) = ¢(_Ua _Z’QP)-

The left-hand side of (4.2) is of the form of the integral on the corresponding side
of (4.5). By the inequalities (4.6), the integrands on the right-hand side of 4.5
are bounded by

G, u; D)+ d(u, —v; D)+ d(—v, u; Y+ P(—v, —v; A).

In this application of (4.5) we note that r;; = s;; or 0 depending on whether or
not the corresponding pair of random variables belongs to the same interval I;
further we observe that r;; # s,; only if the indices of the corresponding pair of
variables are separated by a distance at least equal to ¢ on the t-axis; thus, by
(4.5), the left-hand side of (4.2) is at most equal to

(4-7) Z{i,j: LJ=1, e n, [i— j| 2 ne/t} Hro((i—j)r/") [d’(“, u; /1)
+¢(—v, —v; )+2h(u, —v; A)]dA|
which, by the nonnegativity of ¢, and the form (4.1) of ¢, is not more than

N e j<m jl—r(lJ;I(/J!'t}L)l [(u, us A)+ (v, v3 A)+2¢(u, v; 2)]dA.
This completes the proof.
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5. The convergence of the right-hand side of the inequality to 0. Onc interesting
point about the inequality (4.2) is that the right-hand side, unlike the left, does
not depend on m or on the relative sizes of the subintervals. The right-hand side

will be shown to converge to 0 as t — oo and as # increases with ¢ at a prescribed
rate.

LeMMA 5.1. If r(t) satisfies (1.1) and (1.3), and if g(t) is a positive function tending
to + oo in such a way that

(5.1) lim,,, g()t"? =0,  for every p>0,
(52) lim,, , (logg(#)/logt) =0,
(5.3) lim, ., , 9°(t) - SUpssmi2r(s) logs =0 for all B >0,

then the right-hand side of (4.2) tends to 0 if n is defined as in (3.2). (It is clear that
(5.3) is consistent with the condition (1.3).)

Prook. Under (1.3) r(¢) is bounded away from 1 outside every neighborhood of 0;
indeed, the zeros of 1 —r(¢) form an additive subgroup of the reals, which, under
(1.3), consists only of {0}. This implies that for any ¢ > 0—in particular, the ¢
appearing on the right-hand side of (4.2)—there exists §, 0 < § < 1, such that

(5.4) sup (|r(s)]: s > ¢) < 6.
First we prove the convergence to 0 of
(5.5) N Y enegzysn § G B, 15 A)dA,

which, by (4.1), is dominated by

(M) Ei:nere<im |FUHM|(A=72(jtfn))"* exp {—u?/1+ [r(je/n) ]},
which, by (5.4), is of the order

(5.6) Y negesizm [P exp { = u?/ 1+ jr(jtn)]}.
Let f be an arbitrary number satisfying
5.7 0 < B < (1=0)/(1+).

Split (5.6) into two subsums, the first over indices j < n® and the second over
j = n. By (5.4), the part corresponding to the first subsum is of the order

nf 1 exp (—u?/1+6),
which, by (1.2), (5.1) and (5.7), converges to 0 as 7 — c0. Next we evaluate the part
of (5.6) with indices greater than n. From the inequality 1 —r < (I1+r)7', |r| < 1,
this portion of (5.6) is not more than
(5.8) nexp(=u?)Y ;. <j<m [F(itIn)| exp [u?|r(t/n)|]-
Assumption (5.1) implies that
(5.9) tnf=1 > b2
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for all sufficiently large ¢; therefore, by (1.2) and (1.3):
Sup;» . u”|r(j1/n)| < constant (log t*/2 - sup,s a2 |1(s)|)

for all sufficiently large t. This and condition (1.3) imply that the second exponential
in (5.8) converges to 1 uniformly in j as ¢ — oo ; therefore, it suffices to estimate

nexp(—u?) Y mwzizn [FGtn)];
which, by (1.2), is of the order

(5.10) nt=2Y o< iem [FUM))|-

This is not more than

(5.11) nt™2Y s <iem 1/10g(ji/n) - 5UPs5 a1 |1(s)| log s.
By (5.9):

SUPy s o1 |1(5)] - 10g(5) < sups a2 [1(s)|logs,  for all sufficiently large t;

furthermore:
nt™2Y ssiam 1108(Jt M) ~ nt™2 Y s <icm 1flogi  (by (5.2))
<nt”? 5 (logx)~'dx ~ (n/t)*/logn  (L’Hospital’s rule)
~2nifu)®* =2g%(t)  (by (1.2), (3.2), (5.2));

thus, by (5.3), the expression (5.11) converges to 0 as ¢t — co. The proof of the
convergence of (5.5) is complete.

When v is substituted for  in (5.5), the same argument shows that this expression
also converges to 0.

In order to complete the proof of the lemma we show that (5.5) converges to 0
even when ¢(u, v; 1) is substituted for ¢(u, u; A). By (4.1):

wu—v) (u—0)? ]

d(u, v; A) = ¢, u; 2) eXP[

1+4  2(1=2%)
From (1.2):
;  log (y/2na,) 1
= (2log )
u=Qlog =i o To\iogs) 7™

and v has a similar expansion; therefore:,
u(u—v) — log (v,/0,), (u—v)% - 0.

With these estimates the convergence of the expression (5.5) with ¢(u, v; A) can be
demonstrated in the same way as for ¢(u, u; 1). The proof of the lemma is now
complete. :

Now we state and prove a version of Lemma 5.1 when the hypothesis (1.3) is
replaced by (1.4). The conditions (5.2) and (5.3) are not needed. ((5.3) is not
necessarily consistent with (1.4).)
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LeMMA 5.2. If r(t) satisfies (1.1) and (1.4), and if g(t) —> oo in such a way that (5.1)
holds, then the right-hand side of (4.2) tends to 0 if n is defined as in (3.2).

Proor. Under (1.4), r(z) is the Fourier transform of a square-integrable function
f(4), which is necessarily even:

(5.12) r(t) = 2 [§ cos At f(2) d).

S is the spectral density. By the well-known property of the convolution, r2(¢) is
the Fourier transform of the L, function

(5.13) FHA = [25 fO—w)f(w) dw;
thus, by the Riemann-Lebesgue Lemma, r2(¢) — 0 for t — oo and so, of course,
(5.14) r(t) >0 for t— co.

As in the proof of Lemma 4.1, this condition implies (5.4); thus, it suffices to show
that (5.6) converges to 0. Applying condition (5.1) as in the previous proof, we find
it sufficient to prove that (5.8) converges to 0.

By (1.2) and (5.14) the second exponential in (5.8) is, for every g > 0, of the
order t%(t — o) uniformly in j 2 n”. Equations (1.2) and (3.2) imply that
nexp (—u?) is of the order ug(?)/t; thus, (5.8) is of the order

(5.15) 17 ug(0) Y n < jenm |F(jtIN)|
We estimate the sum in (5.15):
Ymr<izn l’(ﬂ/")i < [nYj-(jtn)]* (Cauchy-Schwarz)
=[2n[§Y"_, cos(Atj/n)f*(2)dA]* (by (5.12), (5.13))

©sin [A1(1+1/2n)] . 3
{"L e L (l)d/l}

(by a well-known summation formula).

<

By a standard decomposition of the domain of integration into bounded and
unbounded parts, and by the relation #/n — 0, it can be shown that the last
expression displayed above is asymptotic to

“ sin [A4(1 +1/2n)]
n —
0 ).t/2n
which, for arbitrary 5,0 < B < 1, is at most

@ 151 +1/2n)°
{n 0 At2n

EY
2
bl

J*A) dl}

142 d/l}% (by [sin 0] < [0]")

N {MW*J 1) dﬂ}a.
0
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The last integral is finite because f*, as the convolution of square-integrable
functions, is continuous. It follows from the calculations just completed that
(5.15) is of the order

17 ug(t) -t V2 t - .

Since ¢ and f§ are arbitrary, and g(¢) satisfies (5.1), the expression above tends to
0 as t — co. The proof of the lemma is now completed as that of the previous
one.

6. The magnitude of the probability of both an upcrossing of v and a down-
crossing of — v in an interval of fixed length.

LEMMA 6.1. Let M and N be the numbers of upcrossings of u and downcrossings
of —u, respectively, by X(s), 0 £ s < T, where T > 0 is fixed; then, under (1.3) or
(1.4):

(6.1) lim,_, tP{M = 1,N= 1} = 0.

Proor. For simplicity of notation take T equal to 1. Let M’ and N’ be the
numbers of upcrossings of u and downcrossings of —uv, respectively, by the finite
sequence X(jt/n), j =1, -, [n/t], where n is given by (3.2) (cf. (3.1)). Since
{M' = 1} and {N’ = 1} imply {M = 1} and {N = 1}, respectively, it follows
that

(62) P{M =1, N2 1}—PM 2 ,N21}| S ([P(M~M" 2= 1}
+P{N=N'"=1}] £ tE(M—M")+tF(N—N").

From the calculation in the proof of Lemma 3.1 it follows that the last member of
(6.2) converges to 0 as ¢ — co; thus, the relation

(6.3) lim, ., tP{M' = 1,N' =1} =0

is sufficient for (6.1).
If X(jt/n), j = 0,1, -, [n/t] has at least one upcrossing of # and at least one
downcrossing of —uv, then for some pair /, j either

X(it/n) > u and X(jt/n) < —v, or
X(it/n) < —v and X(jt/n) > u;

thus, by the stationarity of the process and the symmetry of the standard bivariate
Gaussian distribution it follows that

tP{M’ = 1, N’ = 1} < 20 Y9 P{X(0) < —v, X(jt/n) > u}.

If, in the definitions of » and v in (1.2), 6, is assumed to be less than or equal to
0,, thenu > v for all ¢; therefore, it is sufficient for the proof of (6.3) that

(6.4) n Y P{x(0) < —u,X (jt/n) > u}
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tend to 0 for 7 — 0. Of 0, = 6y, then u is replaced by v in the expression (6.4) and
the reasoning is the same.
Since r(0) = 1, there exists ¢ > 0 sufficiently small so that

(6.5) rs) =24 for |s| s

The event {X(0) < —u, X(jt/n) > u} implies that X(jt/n)— X(0) > 2u. Since
X(jt/n)— X(0) has a Gaussian distribution with mean 0 and variance 2(1 —r(jt/n)),
it follows from the well-known estimate

(6.6) 1-O(x) £ (2r)*x) "' exp (— x%/2), x>0,
that
6.7) P{X(jt/n)— X(0) > 2u} £ exp [—u?/1 —r(jt/n)]2ur*.

By the definition (1.2) and the inequalities (6.5) and (6.6), the portion of (6.4)
corresponding to terms of index j £ ng/t,

n ZE'"——C/lt]P{X(O) < —u, X(jt/n) > u},

is of the order n*ut~°, which converges to 0 if g increases sufficiently slowly, e.g.,
subject to (5.1).
Now we estimate the other portion of (6.4). Put

o= SUPyi 2. [F(S)];

then, by the argument in the proofs of Lemmas 5.1 and 5.2, § is less than 1. By a
variation of the identity in [5], page 27 (cf. proof of Lemma 3.1), we get

(6.8)  P{X(0) < —u, X(jt/n) > u} = [L=D(u)]*+ 579" ¢(u, u; y)dy.
By the definition (1.2) of # and from the inequality (6.6), we obtain
6.9) 1-O(u) = O(1/t), t— 0.

The definition of 6 implies

—-r(jt/n) S 5
. . ¢ 2
IL (u, u,y)dylgf_éqﬁ(u, u’y)dyén(l—éz)’zl' exp(—u®/1+9),

for j> neft;

by (1.2), the last member is of the order-#~%'*? From this, (6.8), and 6.9), it
follows that

nY ones jenn PIX(0) < —u, X(jt/n) > u} = O(n*u=%t73)
+O(n2t_(3+6)/(l+5)).

The last expressions converge to 0 if g increases slowly enough, e.g., as in (5.1).
This completes the proof that (6.4) converges to 0 as ¢ — 0.
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7. Limiting distribution of the maximum and absolute maximum. We shall show
that max (X(s): 0 £ s < ) and max (|X(s)|: 0 £ s < £) have the familiar limiting
extreme value distribution for t — co. The result about max X(s) is a special case of
Pickands’ [7] limit theorem; however, his method does not directly extend to
max |X(s)|, so that we shall give another proof for max X(s) and indicate why it is
also valid for max | X(s)|.

THEOREM 7.1. If X is a standard process satisfying either (1.3) or (1.4), then
(7.1 lim,_,, P{max (X(5):0 = s 2 1) S u} =e 7,

(7.2) lim,,, P{imin (X(s):0 = s S1)z —uy =e 7,
(7.3) lim,,,, P{max (| X(s)|: 0 £ s £ 1) S u = 727,

ProoF. First we note that the equivalence of (7.1) with the result of Pickands can
be verified by putting x = —log ¢, and using the asymptotic expansion of u at
the end of the proof of Lemma 5.1.

Since — X(s) has the same finite-dimensional distributions as X(s), (7.2) follows
from (7.1). We shall now prove (7.1) and then (7.3).

The positive t-axis is decomposed into a series of alternating segments of lengths

of two magnitudes. Let  and t be arbitrary numbers satisfying 0 < f# < 1,
0 < 7 < 1, and /, and J, the intervals

I, = [kt (k+1=-p)1),  Jo = [k+1-B)7, (k+ D],
of lengths (1 —f8) and 8, respectively, for k = 0, I, ---; finally, put
1= Uk;o Ik9 J = Uk;oJk-

We shall prove that the limiting distribution of max X(s) on [0, ] is arbitrarily
close to that of the maximum over the subset In[0, 7] if B is chosen sufficiently
small: for ¢ > 0, the inequality

7.4 lim sup,., |P{max (X(s): s € In[0, 1]) < u}
—~P{max (X(5): 0 £ s £ 1) £ u}| £ B(Il+e)o,

holds for all sufficiently small § > 0. Since [0, 7] is the union of In[0, 7] and
JNJ[0, 1], the event {max (X(5):0 £ s < f) < u}implies {max (X(s): s € In[0, 1]) <
u}, and the difference between their probabilities is at most

P{max (X(s): seJn[0, 1]) > u}.

The set Jn[0, t] consists of at most ¢ intervals of length f or less. If § is sufficiently
small, then, by Lemma 2.3, the last probability displayed above is not more than

exp (—u?/2)],

t[l—(I)(u)—l—[M
2n

which, by (6.9) and (1.2), is asymptotic to the right-hand side of (7.4).
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Now we replace the maximum on In[0, f] by that over InG,, where G, is the
finite subset defined in Section 4. We prove:

(7.5)  lim,_,, [P{max (X(s): s € InG,) £ u}—P{max (X(s): In[0, 1]) < u}| = 0.

Since G, = [0, 1], the event {max (X(s): se€In[0, ¢]) £ u} implies {max (X{(s):
se€InG,) = u}, and the difference between their probabilities is less than or equal
to the probability of the event:

X(s5),0 = 5 = 1, has at least one more upcrossing of u than the sequence
X(.]t/n)s .] = 1’ s, R

By Lemma 3.1 the probability of this event, which is at most E(M — M"), converges
to 0 as t — oo.

The maximum on InG, is representable as the maximum of approximately
[t/ 7] sub-maxima

U; = max (X(s): s e ;nG)).
(The last interval may be incomplete because # may fall in it, but this does not
affect the limiting values in the following calculations.) By Lemma 4.1 and with the
appropriate function g in Lemmas 5.1 and 5.2, we may, in the derivation of the
limiting distribution, suppose that the variables U; are mutually independent. By
the “‘separation of crossings’ argument following (7.5), the limiting distribution

of the maximum of the (independent) sub-maxima U; is the same as that of the
maximum of independent random variables each distributed as

max (X(s):0 = s £ 1(1=5)).

The maximum of [#/7) such independent random variables has the distribution
function

(7.6) PY fmax (X(5): 0 £ 5 < 1(1—B)) < u}.

For ¢ > 0 chosen as in (7.4), let 7 be smaller than the number 7 in Lemma 2.2; by
that lemma, the distribution (7.6) is, for u > 0, bounded above and below (corre-
sponding to — and +, respectively) by

{CD PN Ul ) DR /2)}[’/’]‘
2n
By (1.2) and (6.9), this converges to exp [—o,(1—f)(1+¢)] for 1 - oo; thus, by
(7.4), (7.5) and (7.6):
exp [— o, (1 -1 +e&)]—Po,(1+¢) < liminf,, , P{max (X(5):0 = s £ 1) £ u}
lim sup,., , P{max (X(s): 0 £ s £ 1) £ u}
exp [—o, (1= B 1 —e)]+Bo,(1+e).

Since ¢ and B are arbitrary, (7.1) follows.

IIA

IIA
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In proving (7.3), we first show that if max [X(s)| exceeds u, then it is very
unlikely that both max X(s) and |min X(s)| exceed u. It is elementary that
(7.7) P{max |X(s)| > u} = P{max X(s) > u}+P{min X(s) < —u}

— P{max X(s) > u, min X(s) < —u}.
Since - X(s) is stochastically equivalent to X(s) we have
(7.8) P{max X(s) > u} = P{min X(s) < —u}.
Write the last probability in (7.7) as
(7.9) P{max X(s) > u, min X(s) < —u, | X(0)| < u}
+P{max X(s) > u, min X(s) < —u, | X(0)| = u}.

All maxima are now over 0 £ 5 < 7, for fixed 7 > 0. The sum (7.9) is less than

P{at least one upcrossing of u and one downcrossing of —u by

X(5),0 £ s £ TH+P{{X(0)| = u},

which, by Lemma 6.1 and by (6.9), is of smaller order than 1/7. It now follows from
(7.7) and (7.8) that

(7.10)  tP{max (| X(s)|: 0 £ s £ T) > u} ~ 2tP{max (X(5): 0 £ s £ T) > u},

for ¢t— 0.
From the relation —u ~ log (1 —u), for u — 0, we get:

tP{max (X(s): 0 = s £ 1(1-p)) > u} ~ —log P" {max (X(s):
0=<s5s=1(1-H) = ul.

The latter, by the estimates following (7.6), is asymptotically equal to —c,t(1—p)
except for a multiple of (I +¢). Take T'= (1 —p) in (7.10); then

(7.11)  tP{max (|X(s)|: 0 £ 5 £ t(1—PB)) > u} > —20,7(1—p),
up to a multiple of (1 +5¢).
The logarithmic expansion above now implies that (7.11) is equivalent to
(7.12)  PYI {max (|X(5)|: 0 £ 5 £ 1(1—-p)) £ u} > exp [—20,(1-P)],
up to a multiple of exp (£ 20,¢).

The proof of (7.3) is now very similar to that of (7.1). The maximum of | X(s)| is
broken up into maxima over I and J. From (7.7) and (7.8) we get

P{max |X(s)| > u} < 2P{max X(s) > u}.
This implies, as in (7.4), that the maximum of |X(s)] over [0, 1] is like the maximum

over [0, 71]n1. By the separation principle (Lemma 3.1), applied to upcrossings of u
and downcrossings of —u, the maximum over [0, 1]nI is replaced by that over
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[0, f]nG,. By the argument preceding (7.6) the maximum over [0, {]nG, has a
limiting distribution equal to that of the /eft-hand side of (7.12); thus, by (7.12)
and the arbitrariness of ¢ and g, the limiting distribution is given by (7.3). The proof
of the theorem is complete.

COROLLARY 7.1. For 0 > 0:

lim, ., P{max (X(s): 0 = s £ 0¢) £ u} = exp(—0o,),
lim,, , P{max (|X(s)|: 0 £ s £ 0) < u} = exp (—200)).

Proor. This is a consequence of the fact that the limiting distributions are the
limits of (7.6) and (7.12), respectively: a scale change in the time parameter corre-
sponds to an exponential change in the limiting distribution.

8. Limiting independence and Poisson distribution of the numbers of upcrossings
and downcrossings. In applying the asymptotic independence property of the
extreme values (Lemmas 4.1, 5.1 and 5.2) to the limiting distribution (Theorem 7.1),
we used intervals I; and J; of fixedlength. As remarked in the beginning of Section 5,
the asymptotic independence does not depend on the number of intervals or their
sizes. In deriving the limiting distribution of the numbers of crossings, we shall
apply Lemma 4.1 with a fixed number of subintervals whose lengths are propor-
tional to .

For an arbitrary positive integer m, cut [0, 7] into m subintervals of equal
length t/m; then, for an arbitrary 8, 0 < f < I, clip the segment of length St/m
from the right end of each one, leaving m intervals I, ---, I,, which are taken as
closed:

I = {(j=Dtfm, — j(A=Pu/m],  j=1,-m.
The set G, is defined as before (Section 4). Define the random variables:
& =1 if max (X(s): se I;nG,) > u,
8.1) =0 otherwise;
n; =1 if min (X(s): se I;nG,) = —v,

=0 otherwise.

j=1,:,m.
Lemma 8.1. If x; and y;, j = 1, -+, m are variables assuming only the values 0
and 1, then, under (1.3) or (1.4),
(8.2) lim, o [P = X3, = y5,) = 1,y my— [[1=1 PLE; = x5,
n;= J’j}l =0

or all 2" values of (x;, y;).
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Proor. It suffices to prove a statement formally weaker than (8.2), involving
only x; and y; values equal to O; precisely, we prove: For any decomposition of
the set 1, ---, m into disjoint subsets A, B and C:

(83)  lim, |P{=0,n,=0,ieA4;¢ =0,jeB;n, =0, keC}
_HieAP{éi =0,9, = 0}'HjeBP{fj = 0}'ercP{7lk = O}I = 0.
A typical example demonstrates that (8.3) implies (8.2): If
|P{f1 =0,1,=0,8,=0,7,=0}—-P{¢;, =0,y, = 0}-P{&, =0,

Ny = O}I - Oa
and
|P{& = 0,1, =0,& =0}—P{& = 0,5, = 0}-P{¢, = 0} - 0,
then
IP{él = 05’71 = 07 62 =05’71 = 1}_P{€1 =0a’71 :O}P{fz = 0,
n, =1} -0
because

P =0, =08 =0n,=1}=P{ =0,1,=0,¢ =0}
—P{& =0, =0,¢& =0,¢, =0}, and P{ =0,4, =0}
XP{C, =0,n, =1} = P{{; = 0,5, = 0}-P{, = 0}

—P{f =0,n, = 0}P{{, = 0,9, = 0.

To complete the proof, we note that (8.3) is a consequence of Lemmas 4.1 (with
appropriate choices of u; and v)), 5.1 and 5.2.
Define:
&' =1 if there is at least one upcrossing of u by X(s), sel;
=0 otherwise;

and define #;” similarly in terms of downcrossings of —u.
LemmA 8.2
lim,_,ooP{fj’ = éj’ 77," = rlj9j = 1, ey m} =1.

Proor. By Lemma 3.1, we may suppose that £;”’s are defined as upcrossings by
X(s),se[;nG,thus & s &5, j=1,--,m. If §;' < &; for some j, then max (X(s):
s e I;nG,) > u but there are no upcrossings; therefore, X(-) must “start” I,nG,
above u, i.e., X(4) > u for t, = min (s: s € [;,nG,). The probability of this event
is at most 1 —®(u); therefore,

Yoy PIE < &) < m(1—®(w) - 0,

By symmetry the same is true for n;" and ;.
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M ; = number of upcrossings of u by X(s), sel;
N; = number of downcrossings of —v by X(s), sel;.
LEmMA 8.3. Under (1.3) or (1.4):
lim sup,,, P{M; = 2, for some j = 1, ---,m} £ (1—-p)o,
+m(l —exp (—o (1 —f)/m),
lim sup,_,,, P{N; = 2, for somej = 1, -, m} = (1-Pf)o,
+m(l —exp (—a,(1 =)/ m).

PRrOOF. It is elementary that for a nonnegative integer-valued random variable M :
P{M =2} £ E(M)—P{M = 1}; therefore, since £,/ < M;:

(84) P{M;z2 forsome j=1,-,m}<>Y7" P{M;z2}
< Y E(Mp)=3 7o P{E =1}
Formula (3.3) implies:
Yi-1EM)) =(1-p)o,.
Lemma 8.2 and stationarity imply:
Zj-"zl P{¢y =1} ~ZS~"=1P{€j =1}
= mP{max (X(s):s€[0, (1 - B)t/m]nG,) > u}.

The last expression is, in accordance with the proof of Theorem 7.1, asymptotically
the same as

mP{max (X(s): 0 £ s £ (1-pB)t/m) > u}.

By Corollary 7.1, this converges to m(l —exp (—o,(1 — )/m)); thus, the right-hand
member of (8.4) converges to the right-hand member of the first equation of the
lemma. The proof of the second equation is similar.

LeEMMA 8.4, Under (1.3) or (1.4):
lim sup,., P{&, =, = 1} £ (6(1=B)/m)* where ¢ = max (6, 0,).

ProOF. Suppose that o, = o, so that u < »; then

P& =n, =1} £ P{lmax X(s) > u and min X(s) £ —v
for 025 = (1=pB)¢t/m} = P{max X(s) >u and min X(s) £ —u
for 025 2 (1-p)t/m},

which, by the stochastic equivalence of X and — X, and an elementary identity,
is equal to

1—2P{max (X(s): 0 £ s < 1(1—p)/m) < u}+P{max (| X(s)|:
0=s=(1-p)m) < u}
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By Corollary 7.1 this converges to the limit
(1—exp (=0, (1= B)m))> < (o(1—B)jm)>.
Since ¢ = o, the proof is complete.
Lemma 8.5, Under (1.3) or (1.4) the joint generating function of &, and n,,
E(wb1z™), 0<w<1, 0<z<l,
is asymptotically bounded above and below (corresponding to + and — , respectively
by
8.5  I=(=w)I=exp (—o(1-p)/m)+(1-2)(1—exp (—o,(1-f)/m)),
+(1—=w)(1=2)a*(1 = p)*/m?,
where ¢ = max (¢, 0,).
ProOF. By elementary identities:
Bwiizm) = 1=(1=w)P{E, = j—(1=2)P{n, = 1)
+(1=w)(1=2)P{¢, =n, = 1}.

As in the proof of Lemma 8.3, P{£; = 1} and P{n, = 1} converge to the indicated
limits; finally, an application of Lemma 8.4 to P{{; = #, = 1} completes the
proof.

THEOREM 8.1. If X(¢) is a standard process satisfying either (1.3) or (1.4), then
M(t) and N(t) have a joint limiting distribution which is a product of Poisson distri-
butions with means ¢, and o ,, respectively.

Proor. By (3.3) and the inequality M(¢#) =2 M+ --- + M,,:
E|M(t)=Y7 M;| = EM(1)—=Y7_, EM; = fo;

similarly:
E|N(6)= 7= 1 Ny| = Boy;
therefore:
(8.6) P{|M(t)—ZMj| >0 or |N(t)—ZNj| > 0} = B(o,+0,).
By definition:

&/ = min (M}, 1), n; = min (N;, 1);
thus, by Lemma 8.3:
limsup,., P{&/ # M; or n/ # N; for somej=1,--,m} £ (1—PB)o;+0,)
—m[2—exp (—o4(1—B)/m)—exp (—o (1 - p)/m)].

By Lemma 8.2 the same inequality holds when ;" and #;” are replaced by &; and
n;, respectively; therefore:

(8.7 lim sup, o, P{|{EM;—%¢;| > 0 or [EN;—Zq| > 0} < (1-p)
X (0 +0;)—m[2—exp (—o (1= )/m)—exp (—a,(1—p)/m)].
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By asymptotic independence (Lemma 8.1), stationarity, and Lemma 8.5, the joint
generating function of X&; and Zy; is asymptotically bounded above and below
(+ and —, respectively) by

8.8) {I-(1=w)I—exp (—a,(1=p)/m)+(1—2)(1—exp (—a,(1—f)/m)

+(L=w)1=2)a(1 =) /m*}".
It is elementary that

(8.9)  E[wmzM— w2 < P{EM; -S| >0 or |EN;—Zy| > 0}.
It is a consequence of (8.6), (8.7), (8.8), and (8.9) that E(wM® z¥®) is asymp-
totically bounded above and below (corresponding to + and —, respectively) by
(8.10)  {1—=(I=w)(I —exp (—o,(1=f)/m))+ (1 —2) (I —exp (—a,(1 = f)/m))
£(L=w)(I=2)a?(1 = f)*/m*}"
+{o,+0o,—m2—exp (—o, (1 =p)/m)—exp (—o,(1=p5)/m)]}.

Since > 0 and m = 1 are arbitrary, we let S - 0 and then m — oo then the
expression (8.10) converges to exp [—a,(I —w)—0,(1 —2)], which is the product
of Poisson generating functions.
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