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ASYMPTOTIC INVARIANTS OF BASE LOCI

by Lawrence EIN, Robert LAZARSFELD, Mircea MUSTA’IA,
Michael NAKAMAYE & Mihnea POPA

ABSTRACT. — The purpose of this paper is to define and study systemati-
cally some asymptotic invariants associated to base loci of line bundles on smooth
projective varieties. The functional behavior of these invariants is related to the
set-theoretic behavior of base loci.

RESUME. — Le but de cet article est de définir et d’étudier systématiquement
quelques invariants asymptotiques associés aux lieux de base des fibrés en droites
sur les variétés projectives lisses. Le comportement fonctionnel de ces invariants
est lié au comportement ensembliste des lieux de base.

Introduction

Let X be a normal complex projective variety, and D a big divisor on X.
Recall that the stable base locus of D is the Zariski-closed set

(0.1) B(D) = (] Bs(mD),
m>0

where Bs(mD) denotes the base locus of the linear system |mD|. This is
an interesting and basic invariant, but well-known pathologies associated
to linear series have discouraged its study. Recently, however, a couple of
results have appeared suggesting that the picture might be more structured
than expected. To begin with, Nakayama [20] attached an asymptotically-
defined multiplicity or(D) to any divisorial component I' of B(D), and
proved that op (D) varies continuously as D varies over the cone Big(X)g C
NY(X)g of numerical equivalence classes of big divisors on X. More re-
cently, the fourth author showed in [18] that many pathologies disappear if
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one perturbs D slightly by subtracting a small ample divisor. Inspired by
this work, the purpose of this paper is to define and explore systematically
some asymptotic invariants that one can attach to base loci of linear series,
and to study their variation with D.

We start by specifying the invariants in question. Let v be a discrete
valuation of the function field K(X) of X and let R be the corresponding
discrete valuation ring. Every effective Cartier divisor D on X determines
an ideal in R, and we denote by v(D) the order via v of this ideal.

Let D be a big divisor on X with |D| # 0. We wish to quantify how
nasty are the singularities of a general divisor D’ € |D| along v: we define
the order of vanishing of |D| along v by

v(|D[) = v(D)

where D’ is a general divisor in |D|. If v is the valuation associated to
a prime divisor E on X, then v(|D|) is the coefficient of E in a general
element D’ in |D|.

Our focus will be on asymptotic analogues of these invariants. Let D be
a big divisor on X, and v a valuation as above. The asymptotic order of
vanishing of D along v is defined as
(0.2) w(ID]) = tim 2PPD.

p—0o0 p

It is easy to see that this limit exists. By taking p to be sufficiently divisible
this definition extends naturally to Q-divisors such that v(||D]|) is homoge-
neous of degree one in D. The most important example is obtained when X
is smooth, considering the valuation given by the order of vanishing at the
generic point of a subvariety Z — we denote the corresponding invariant by
ordz (|| D]]). When Z is a prime divisor E on X, this is the invariant g (D)
introduced and studied by Nakayama. In general these invariants may be
irrational (Example 3.6).

Our first result shows that these quantities vary nicely as functions of D:

THEOREM A. — Let X be a normal projective variety, v a fixed discrete
valuation of the function field of X, and D a big Q-divisor on X.

(i) The asymptotic order of vanishing v(||D||) depends only on the nu-
merical equivalence class of D, so it induces a function on the set Big(X)g
of numerical equivalence classes of big Q-divisors.

(ii) This function extends uniquely to a continuous function on the set
Big(X)r of numerical equivalence classes of big R-divisors.

ANNALES DE L’INSTITUT FOURIER
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When v is the valuation corresponding to a prime divisor £ on X, this
result is due to Nakayama; some of Nakayama’s results were rediscovered
and extended to an analytic setting by Boucksom [2]. The theorem was also
suggested to us by results of the second author [16, Chap. 2.2.C] concerning
continuity of the volume of a big divisor.

It can happen that the stable base locus B(D) does not depend only on
the numerical class of D (Example 1.1). Motivated by the work [18] of the
fourth author, we consider instead the following approximations of B(D).

Let D be a big Q-divisor on X. The stable base locus B(D) is defined in
the natural way, e.g. by taking m to be sufficiently divisible in (0.1). The
augmented base locus of D is the closed set

B, (D) :=(B(D - A),
A

where the intersection is over all ample Q-divisors A. Similarly, the re-
stricted base locus of D is given by

B (D):=|JB(D+4),
A

where the union is over all ample Q-divisors A. This is a potentially count-
able union of irreducible subvarieties of X (it is not known whether B_(D)
is itself Zariski-closed). It follows easily from the definition that both B_(D)
and B (D) depend only on the numerical class of D. Moreover, since the
definitions involve perturbations there is a natural way to define the aug-
mented and the restricted base loci of an arbitrary real class £ € Big(X)g.

The restricted base locus of a big Q-divisor D is the part of B(D) which
is accounted for by numerical properties of D. For example, B_(D) is empty
if and only if D is nef.(!) At least when X is smooth, we have the following

THEOREM B. — Let X be a smooth projective variety, v a discrete
valuation of the function field of X, and Z the center of v on X. If £ is in
Big(X)g, then v(||£]|) > 0 if and only if Z is contained in B_(£).

It is natural to distinguish the big divisor classes for which the restricted
and the augmented base loci coincide. We call such a divisor class stable.
Equivalently, £ is stable if there is a neighborhood of ¢ in Big(X)g such
that B(D) is constant on the Q-divisors D with class in that neighborhood.
For example, if € is nef, then it is stable if and only if it is ample.

The set of stable classes is open and dense in Big(X)g. Given an irre-
ducible closed subset Z C X, we denote by Stab?(X)g the set of stable

(1) Note that B (D) appears also in [3], where it is called the non-nef locus of D.
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classes £ such that Z is an irreducible component of B, (D). Suppose that v
is a discrete valuation with center Z. We see that Theorems A and B show
that if X is smooth, then v(|.]|) is positive on Stab? (X)g and v(]|£]) goes
to zero only when the argument ¢ approaches the boundary of a connected
component of Stab? (X)r and when in addition Z “disappears” from the
stable base locus as £ crosses that boundary. We explain the structure of
the union of these boundaries, i.e. the set of unstable classes, in Section 3.

Similar asymptotic functions can be defined starting with other invari-
ants of singularities instead of valuations. For example, if X is smooth we
may use the reciprocal of the log canonical threshold or the Hilbert-Samuel
multiplicity (cf. Section 2). The resulting asymptotic invariants enjoy prop-
erties analogous to those of v(||.||).

In general, these asymptotic invariants need not be locally polynomial
(Example 3.6). However on varieties whose linear series satisfy sufficiently
strong finiteness hypotheses, the picture is very simple. We start with a
definition.

DEFINITION C (Finitely generated linear series). — A normal projective
variety X has finitely generated linear series if there exist integral Cartier
divisors D1, ..., D, on X with the properties:

(a) the classes of the D; are a basis for N*(X)g;
(b) the Z"-graded ring

Cox(Dy,...,D,) = € H(X,0x(miDy+---+m.D,))

m=(m;)EL"

is a finitely generated C-algebra.

The definition was inspired by the notion of a “Mori dream space” in-
troduced by Hu and Keel [13]: these authors require in addition that the
natural map Pic(X)g — N'(X)g be an isomorphism, but this is irrelevant
for our purposes. It follows from a theorem of Cox that any projective toric
variety has finitely generated linear series, and it is conjectured (and veri-
fied in dimension 3) [13] that the same is true for any smooth Fano variety.
(For more examples see §4.)

THEOREM D. — If X has finitely generated linear series, then the closed
cone

Eff(X)s = Big(X)

of pseudoeffective divisors'® on X is rational polyhedral. For every discrete

(2) Recall that by definition a divisor is pseudoeffective if its class lies in the closure of
the cone of effective divisors, or equivalently in the closure of the cone of big divisors.

ANNALES DE L’INSTITUT FOURIER
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valuation v of the function field of X, the function v(]|.|) can be extended
by continuity to Eff (X )r. Moreover, there is a fan A whose support is the
above cone, such that for every v, the function v(||.||) is linear on each of
the cones in A.

A similar statement holds for the usual volume function on varieties with
finitely generated linear series (cf. Proposition 4.13).

The paper is organized as follows. We start in §1 with a discussion of
various base loci and stable divisor classes. The asymptotic invariants are
defined in §2 and the continuity is established in §3, where we also dis-
cuss the structure of the set of unstable classes and we give a number of
examples. Finally, we prove Theorem D in §4.

The present paper is part of a larger project to explore the asymptotic
properties of linear series on X. See [10] for an invitation to this circle of
ideas.

1. Augmented and restricted base loci

We consider in this section the augmented and restricted base loci of a
linear system, and the notion of stable divisor classes. The picture is that
the stable base locus of a divisor changes only as the divisor passes through
certain “unstable” classes.

We start with some notation. Throughout this section X is a normal
complex projective variety. An integral divisor D on X is an element of
the group Div(X) of Cartier divisors, and as usual we can speak about Q-
or R-divisors. A Q- or R-divisor D is effective if it is a non-negative linear
combination of effective integral divisors with Q- or R-coefficients. If D is
effective, we denote by Supp(D) the union of the irreducible components
which appear in the associated Weil divisor. Numerical equivalence between
Q- or R-divisors will be denoted by =. We denote by N1(X)g and N*(X)g
the finite dimensional Q- and R-vector spaces of numerical equivalence
classes. One has N'(X)r = N'(X)g ®g R, and we fix compatible norms
|||l on these two spaces.

Recall next that the stable base locus of an integral divisor D is defined
to be

B(D) := (] Bs(mD)ca,

m2=1

TOME 56 (2006), FASCICULE 6
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considered as a reduced subset of X. It is elementary that there exists p > 1
such that B(D) = Bs(pD)yed, and that

*) B(D) =B(mD) for all m > 1.

This allows us to define the stable base locus for any Q-divisor D: take
a positive integer k such that kD is integral and put B(D) := B(kD).
It follows from (*) that the definition does not depend on k.

Example 1.1 (Non-numerical nature of stable base locus). — Let C be
an elliptic curve, A a divisor of degree 1 on C and let

T X = P(OC @Oc(A)) — C.

Fori=1, 2 let L; = Ox(1) @ 7*O(P;), where P; and P, are divisors of
degree zero on C, with P; torsion and P, non-torsion. It is shown in [16,
Example 10.3.3] that Ly and Lo are numerically equivalent big and nef line
bundles such that B(L;) = () and B(Ls) is a curve. O

The augmented base locus. — The previous example points to the
fact that the stable base locus of a divisor is not in general very well be-
haved. We introduce here an upper approximation of this asymptotic locus
which has better formal properties. The importance of this “augmented”
locus, and the fact that it eliminates pathologies, was systematically put
in evidence by the fourth author in [18], [19].

DEFINITION 1.2 (Augmented base locus). — The augmented base locus
of an R-divisor D on X is the Zariski-closed set
B.(D):= [\ Supp(E),
D=A+E
where the intersection is taken over all decompositions D = A + E, where
A and E are R-divisors such that A is ample and E is effective.

To relate this definition with the definition given in the introduction, we
note the following;:

Remark 1.3 (Alternative construction of augmented base locus). — We
remark that in the definition of B4 (D) one may take the intersection over
all decompositions such that, in addition, E is a Q-divisor. Furthermore,

B, (D) = (\B(D - 4),
A
the intersection being taken over all ample R-divisors A such that D — A
is a Q-divisor. In fact, for the first assertion, note that if D = A + F,
with A ample and E effective, then we can find effective Q-divisors E,,

ANNALES DE L’INSTITUT FOURIER
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for m € N, such that F,, — F when m goes to infinity and such that
Supp(Fyn,) = Supp(FE) for all m. Since D — E is ample, so is D — E,,
for m > 0, hence we are done. The second assertion follows immediately
from the first one and the definition of the stable base locus.

We observe first that — unlike the stable base locus itself — the augmented
base locus depends only on the numerical equivalence class of a divisor.

PROPOSITION 1.4. — If Dy and D4 are numerically equivalent R-divisors,
then
B, (D1) = B4 (D2).

Proof. — This follows from the observation that if we have a decompo-
sition D1 = A+ E as in the definition of By (D7), then we get a corres-
ponding decomposition Dy = (A + (Ds — D)) + E. O

The next statement shows that B, (D) coincides with the stable base
locus B(D — A) for any sufficiently small ample divisor A such that D — A
is a Q-divisor.

PRrROPOSITION 1.5. — For every R-divisor D, there is € > 0 such that
B. (D) = B(D - A)

for any ample A with ||A|| < € and such that D — A is a Q-divisor. More
generally, if D' is any R-divisor with ||D’|| < & and such that D — D’ is a
Q-divisor, then

B(D - D') C B,(D).

Proof. — There exist ample R-divisors Ay, ..., A, such that each D — A;
is a Q-divisor and so that moreover

B.(D) = (\B(D - 4).

Choose € > 0 so that A; — D’ is ample for every 7 whenever |D’|| < e.
Writing

D-D'=(D-A)+ (4, —-D"),
we see that if D — D’ is a Q-divisor, then B(D — D’) C B(D — A;) for
all 7. This proves the second assertion. The first statement follows at once,

since for any ample divisor A such that D — A is a Q-divisor, we have
B, (D) CB(D — A) by Remark 1.3. O

COROLLARY 1.6. — If D and € > 0 are as in Proposition 1.5 and if D’
is an R-divisor such that ||D’|| < e, then B4 (D — D) C B4(D). If D’ is
ample, then equality holds.

TOME 56 (2006), FASCICULE 6
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Proof. — For every D’ as above, we apply Proposition 1.5 to D — D’
to conclude that if A’ is ample, with ||A’|| small enough, and such that
D — D' — A’ is a Q-divisor, then we have

B,(D-D)=B(D—D — A.
Since ||A|| is small, we may assume that || D’ + A’|| < ¢, hence

B(D - D' — A') C B4(D).

Moreover, this is an equality if D’ (hence also D’ 4+ A’) is ample. O
Example 1.7. — The augmented base locus is a proper subset of X if and
only if D is big. Similarly, it follows from Proposition 1.5 that B (D) = ()
if and only if D is ample. O
Example 1.8. — For any R-divisor D, B4 (D) = B4 (¢D) for any real
number ¢ > 0. g
Example 1.9. — For any R-divisors D; and D, it can be easily shown
that

By (D1+ D) € Bi(D1)UB4(Ds).

Example 1.10 (Augmented base locus of nef and big divisors). — As-
sume for the moment that X is non-singular, and let D be a nef and big
divisor on X. Define the null locus Null(D) of D to be the union of all ir-
reducible subvarieties V' C X of positive dimension with the property that
(Ddimv . V) = 0, i.e. with the property that the restriction of D to V is
not big. Then B (D) = Null(D). This is proved for Q-divisors in [18], and
in general in [11]. O

Example 1.11 (Augmented base loci on surfaces). — Assume here that
X is a smooth surface, and let D be a big divisor on X. Then D has a
Zariski decomposition D = P+ N (see [5]) into a nef part P and “negative”
part N. Then B (D) is the null locus Null(P) of P. To see this, note that
if D= A+ FE, where A is ample and F is effective, then E — N is effective.
Therefore

B (D) = B4 (P) USupp(N).
Since Supp(E) C Null(P), we get
B, (D) = B.(P) = Null(P)

by the previous example. O

ANNALES DE L’INSTITUT FOURIER
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The restricted base locus. — Proposition 1.5 shows that the aug-
mented base locus of a divisor is the stable base locus of a small negative
perturbation of the divisor. When it comes time to discuss the behavior of
the numerical asymptotic invariants of base loci, it will be helpful to have
an analogous notion involving small positive perturbations:

DEFINITION 1.12. — If D is an R-divisor on X, then the restricted base
locus of D is

B (D)=|JB(D+4),
A
where the union is taken over all ample divisors A, such that D + A is a
Q-divisor.

Remark 1.13 (Warning on restricted base loci). — It is not known
whether the restricted base locus of a divisor is Zariski closed in general.
A priori B_(D) could consist of a countable union of subvarieties whose
Zariski closure is contained in B (D).

LEMMA 1.14. — For every R-divisor D, one has B_(D) =J,B+(D +
A), the union being taken over all ample R-divisors A.

Proof. — Tt is enough to show that if A is ample, then B, (D+A) C B (D).
If Ap is ample with 0 < ||4o|| < 1, such that D + A — Ag is a Q-divisor,
then A — Ay is ample, and

B,(D+A)=B(D+A-A4,) CB (D). ]

PROPOSITION 1.15. — (i) For every R-divisor D and every real num-
ber ¢ > 0, we have

B_(D) = B_(cD).
(ii) If Dy and D5 are numerically equivalent R-divisors, then

B_(D1) = B_(D2).

Proof. — Both assertions follow from Lemma 1.14, since we already know
the corresponding assertions for the augmented base locus. |

Example 1.16. — For every R-divisor D, we have B_(D) C B, (D).

If D is a Q-divisor, then B_(D) C B(D) C B (D). O

Example 1.17. — Let D be a big divisor on a smooth projective surface,
with Zariski decomposition D = P + N. Then B_(D) = Supp(N). See
Example 3.4 below for a proof. ]

TOME 56 (2006), FASCICULE 6
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Example 1.18. — Given an R-divisor D, B_(D) = 0 if and only if D
is nef. Similarly, B_(D) = X if and only if the class of D in N*(X)g does
not lie in the closure of the cone of big classes. |

As we have indicated, it isn’t known whether B_(D) is Zariski-closed in
general. However it is at worst a countable union of closed subvarieties:

PROPOSITION 1.19. — If {A,,}men are ample divisors with
Tim_ [ Al =0,
and such that D + A,,, are Q-divisors, then
B (D) =JB(D+ An).

In particular, B_(D) is a countable union of Zariski closed subsets of X.

Proof. — The statement follows since for every ample A, such that D+ A
is a Q-divisor, A — A,, is ample, for m > 0. Since we can write
D+A= (D+Am)+(A_Am)7
we get B(D + A) CB(D + A,). O

Remark 1.20. — Suppose that A,, is a sequence of ample R-divisors,
where A,, — 0. As in Proposition 1.19, we can show that

B (D) =B (D + An).

We note that if A,,, — A,,,+1 is ample then
Bi(D+A,,) CBL(D+ Apta).
In particular, if B_(D) is closed, then it is equal to By (D + A) for all

sufficiently small ample R-divisors A.

PropPOSITION 1.21. — For every R-divisor D, there is an € > 0 such
that B_(D — A) = B (D — A) = B (D), for every ample A with ||A]| < e.

Proof. — Apply Corollary 1.6 to D to find € > 0 such that for every
ample A, with [|A| < e, we have B (D — A) = B (D). For every such A,
we have

B, (D)=B.(D-3jA) C B (D-A4) C By(D),

as required. O

Stable divisors. — We now single out those divisors for which the
various base loci we have considered all coincide.

ANNALES DE L’INSTITUT FOURIER
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DEFINITION 1.22. — An R-divisor D on X is called stable if
B+(D) = B*(D)a

Remark 1.23. — Note that as both B_(D) and B (D) depend only on
the numerical class of D, so does the stability condition.

The next statement gives various characterizations of stability for an
R-divisor.

PROPOSITION 1.24. — For an R-divisor D on X, the following are equiv-
alent:

(i) D is stable;
(ii) there is an ample R-divisor A such that

B..(D) = B4(D + A);

(iii) there is an € > 0 such that for every R-divisor D' with | D'| < ¢,
we have
B.(D)=B.(D+ D)
(iv) there is an € > 0 such that for every R-divisor D’ with | D’| < e,
we have
B.(D)=B_(D + D');
(v) there exists a positive number ¢ > 0 such that all the closed sets
B(D + D’) coincide whenever D' is an R-divisor with ||D'|| < & and D+ D’
rational.

Proof. — If D is stable, then in particular B_(D) is closed. Remark 1.20
implies that there is a sufficiently small ample R-divisor A such that
This shows that (i) = (ii).

We assume (ii). By Corollary 1.6, there is an € > 0 such that if |D’| < ¢
then By (D + D’) C B, (D). We may also assume that A — D’ is ample, so

B, (D+A)CB.(D+D").
We see that (ii) = (iii).
We assume (iii). Suppose that |D’| < e. Note that

B (D+D')=|JBL(D+D +A),
A

where A is ample and ||A|| < € — ||D’||. By hypothesis,
B+(D + D/ + A) - B<|,(.D)7

TOME 56 (2006), FASCICULE 6
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and therefore
B (D+D)=B,(D)=B (D),
hence (iv) holds.
Assume (iv). We choose ¢ as in (iv) and such that it satisfies Proposi-
tion 1.21. Assume that |D'|| < € and that D + D’ is rational. It follows
that

B (D)=B.(D+D')CB(D+D')CB(D+ D) CB,(D).

Note that if we take D’ such that —D’ is ample, then the hypothesis gives
B_(D) = B (D). We deduce that B(D+D’) = B (D) for all D’ such that
|D’'| < e and D+ D’ is rational. Hence (iv) impies (v).
Assume (v). For any sufficiently small ample divisor A such that D — A
is rational, Proposition 1.5 implies that B(D — A) = B (D). Now for a
sufficiently small ample divisor A’ such that D 4+ A’ is rational, we have
that
B(D— A)=B(D+ A') CB_(D).
We conclude that B4 (D) = B_(D), hence D is stable. O

Remark 1.25. — 1If the class of D is not in the closure of the big cone,
then D is trivially stable, as B_(D) = B4 (D) = X. On the other hand, if
the class of D is in the boundary of this cone (so that D is not big), then
D is not stable, because By (D) = X, but B_(D) # X.

PRrROPOSITION 1.26. — The set of stable divisor classes is open and dense
in NY(X)g. In fact, for every D there is € > 0 such that if A is ample, and
A|| < e, then D — A is stable.

Proof. — The set of stable classes is open, as the condition in Proposi-
tion 1.24, (v) is an open condition. To show that it is dense, it is enough to
prove the last assertion. This follows from Proposition 1.21. |

Example 1.27. — Let X = Blp(P™) be the blowing-up of P™ at a
point P. Write H and E respectively for the pullback of a hyperplane and
the exceptional divisor. For z, y € R consider the R-divisor D, , = xH — yE.
Identifying N*(X)r with the xy-plane in the evident way, the set of unsta-
ble classes consists of three rays: the negative y-axis, the positive z-axis, and
the ray of slope = 1 in the first quadrant. The corresponding augmented
base loci are indicated in Figure 1.1. g

Example 1.28. — Suppose X is a smooth surface and D a big divisor
with Zariski decomposition D = P + N. Then D is stable if and only if
Null(P) = Supp(N). O

ANNALES DE L’INSTITUT FOURIER
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Figure 1.1. Stable classes on blow-up of P"

Example 1.29. — For a big Q-divisor D, one introduces in [19] an as-
ymptotic version of the Seshadri constant at a point € X, denoted
by &, (z, D). This invariant describes the augmented base locus of D,
namely z € B4 (D) if and only if €, (x, D) = 0. The main result of [19] is
a continuity statement with respect to D for this invariant. O

2. Asymptotic numerical invariants

In this section we define the asymptotic numerical invariants with which
we shall be concerned. Let X be a normal projective variety. We fix a dis-
crete valuation v of the function field of X, let R be the corresponding DVR
and Z the center of v on X. Given a big integral divisor D, we denote by a,
the image in R of the ideal b(|pD|) defining the base locus of [pD|. These
ideals form a graded system of ideals in the sense of [12], i.e. ap - ag C apiq
for every p and ¢. Note that since D is big, we have |pD| # (J, and therefore
a, # (0) for p > 0.

For every p such that [pD| # (), we put v(|pD|) for the order v(a,) of the
ideal a,. Equivalently, v(|pD]) is equal to v(g), where g is an equation of a
general element in [pD| at the generic point of Z.

The convexity property of our invariants will be crucial in what follows.
A first indication is given by the lemma below. It is an immediate conse-
quence of the fact that the ideals a, form a graded system of ideals.

LEMMA 2.1. — With the above notation, if p and q are such that |pD)|
and |¢D| are nonempty, then

v(|(p+q)D|) < v(|pDI) + v(lgDI).
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We are now in a position to define our asymptotic invariants. The ex-
istence of the limit in the following definition follows from Lemma 2.1. In
fact, the limit is equal to the infimum of the corresponding quantities (see,
for example, Lemma 1.4 in [17]).

DEFINITION 2.2. — Given a big integral divisor D, set

o(ID]) = lim. U(“;D)'

This is called the asymptotic order of vanishing along v.

Remark 2.3 (Rescaling and extension to Q-divisors). — Tt follows from
the definition as a limit that for any m € N:

v([lmDI) = m - v(|IDI}).

In particular, by clearing denominators we see that our invariants are de-
fined in the natural way for any big Q-divisor D.

PROPOSITION 2.4 (Convexity). — If D and E are big Q-divisors on X,
then
o(|D+ E) < o(ID]]) + o(I£])-

Proof. — The assertion follows from the fact that if a, b and ¢ are the
ideals defining the base loci of the linear systems |pD|, |pE| and respectively
lp(D + E)|, then a-b C c. O

Computation via multiplier ideals. — We show now that these as-
ymptotic invariants can be computed using multiplier ideals. For the theory
of multiplier ideals we refer to [16, Part Three].

Note that if f: X’ — X is a proper, birational morphism, with X’
normal, then we have an asymptotic order of vanishing along v defined
for big Q-divisors on X’. It is clear that for a big Q-divisor D on X, we
have v(||D||) = (]| f*D]|). In particular, by taking f such that X’ is smooth,
we reduce the computation of the asymptotic order of vanishing along v to
the case of a smooth variety. In this case, we can make use of multiplier
ideals.

Recall that R is the DVR corresponding to the valuation v. If D is a
big integral divisor, we denote by j, the image in R of the asymptotic
multiplier ideal J (X, ||[pD]|). We show that v(||D||) can be computed using
the orders v(jp) of the ideals j,.

The set of ideals {j,}, is not a graded sequence anymore. However, the
Subadditivity Theorem of [9] gives jp1q C jp-jq for every p and ¢, and hence

V(iptq) = v(jp) +v(iq)-
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Moreover, if p < ¢ then j; Cjp, so v(jq) = v(jp). It is easy to deduce from
these facts that

(2.1) lim V() = sup v(p)

p—oo P p D

(see, for example, Lemma 2.2 in [17]). The above limit is finite: for every p
we have a, C j, so v(jp) < v(ap), and therefore the above limit is bounded
above by v(]|D||). The next proposition shows that in fact we have equality.

PropoOSITION 2.5. — With the above notation, for every big integral
divisor D we have

o(1l) = Jim 200,

p—oo D

Proof. — It follows from [16, Theorem 11.2.21] that there is an effective
divisor E on X such that for every p > 0, we have

J(X.|lpD]) ® Ox(~E) C b(|pD]).
In particular, there is a nonzero element v in R such that u -j, C a, for
all p > 0. Therefore v(a,) < v(b,) + v(u), so dividing by p and passing to
limit gives
o(1Dl) < tm 202
p—oo P
As we have already seen the opposite inequality, this completes the proof.
O

Remark 2.6. — Tt follows from the above proposition that v(||D||) = 0
if and only if j, = R for every p. By definition, this is the case if and only
if the center Z of v is not contained in Z(J (X, ||pD||)) for any p.

COROLLARY 2.7. — If D and E are numerically equivalent big Q-divisors
on the normal projective variety X, then v(||D||) = v(||E||) for every dis-
crete valuation v of the function field of X.

Proof. — By taking a resolution of singularities, we may assume that X
is smooth. Moreover, we may assume that D and E are integral divisors.
Since D and E are big and numerically equivalent, it follows from [16,
Example 11.3.12] that

J (X, |lpDIl) = T (X, |pE|)
for every p. The assertion now follows from Proposition 2.5. 0

We can give now a proof of Theorem B from the Introduction for Q-
divisors. In fact, in this case we prove the following more precise
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PROPOSITION 2.8. — Let X be a smooth projective variety and D a big
Q-divisor on X. If v is a discrete valuation of the function field of X having
center Z on X, then the following are equivalent:

(i) there is a constant C' > 0 such that v(|pD|) < C whenever |pD| is
nonempty;
(i) v([[D]l) = 0;
(iii) Z ¢ B_(D).

Proof. — We may assume that D is an integral divisor. Note that (i)
clearly implies (ii).

Suppose now that v(||D||) = 0 and let us show that Z is not contained
in B_(D). By Remark 2.6, we see that J (X, |pD||) = Ox at the generic
point of Z. Let A be a very ample divisor on X, and G = Kx + (n+ 1)A,
where n is the dimension of X. It follows from [16, Corollary 11.2.13] that
J(X,|lpD]) ® Ox(G + pD) is globally generated for every p in N. This
shows that Z is not contained in the base locus of |G + pD| for every p.
Since G is ample, we deduce from Proposition 1.19 that Z is not contained
in B_(D).

We show now (i) = (i). With the above notation, we see that Z is
not contained in the base locus of |G + pD| for every p. On the other
hand, since D is big, by Kodaira’s Lemma we can find a positive integer pg
and an integral effective divisor B such that pgD is linearly equivalent
to G + B. For p > pg, pD is linearly equivalent with (p — po)D + G + B,
so v(|pD]) < v(|B|). The assertion in (i) follows easily.

In order to prove (iii)=(ii) we proceed similarly. By Kodaira’s Lemma we
can find a positive integer pg and integral divisors H and B, with H ample
and B effective such that po D is linearly equivalent to H+ B. For p > pg, we
have pD linearly equivalent to (p —po)D + H + B. Since Z is not contained
in B_(D), it follows that Z is not contained in B ((p — po)D + H), hence

v(llpDl) < v(lltp — po) D + HI) +v([I1BIl) = v (|| B).
Hence v(||D]|) < v(||B]|)/p for every p, and therefore v(||D||) = 0. O

DEFINITION 2.9. — For every irreducible subvariety Z of a normal vari-
ety X, there is a discrete valuation v whose center is Z. For example, take
the normalized blow-up of X along Z, and v the valuation corresponding to
a component of the exceptional divisor that dominates Z. If X is smooth,
we get this way the valuation given by the order of vanishing at the generic
point of Z. For a Q-divisor D, this gives the asymptotic order of vanishing
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of D along Z:
d D
ordy (|[D]]) := lim ordz(|pD])
P p

— 00

where ordz(|pD|) is the order of vanishing along Z of a generic divisor

in |pD|.
COROLLARY 2.10. — If X is smooth, we have the equality of sets
B (D)= |J 2(J(X,ImD])).
meN

Proof. — The assertion follows from Propositions 2.5 and 2.8, using the
fact that every irreducible subvariety Z of X is the center of some discrete
valuation. O

Other invariants. — Similar asymptotic invariants can be defined
starting from different invariants of singularities, instead of valuations. For
example, if X is a smooth variety and Z is an irreducible subvariety, we
can consider either the Arnold multiplicity or the Samuel multiplicity at
the generic point of Z. If R = Ox z and a is an ideal in R, then the Arnold
multiplicity of a at the generic point of Z is Arnyz(a) := 1/lct(a), where
Ict(a) is the log canonical threshold of the pair (Spec(R),V(a)). If a is of
finite colength in R, then as usual

.. colengthp(a®)
=

denotes the Samuel multiplicity of a, where d is the codimension of Z.

eZ(a)

Given a big divisor D, if a,, denotes the image of b(|pD|) in R, then
Arng(|pD|) := Arng(a,)
whenever |pD| is nonempty. The corresponding asymptotic invariant is

Arng(|D]) = Tim Az(PDD
p

e s
If Z is not properly contained in any irreducible component of B (D), then
for p > 0 we put ez(|pD|)'/¢ := ez (a,)'/¢ and

D 1/d
- es(pD) V.

p—oo D

ez(|DINY" =

These invariants satisfy analogous properties with v(]|.||). In particular,
they can be extended in the obvious way to big Q-divisors and depend only
on the numerical class of the divisor. Moreover, they are positive at D if
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and only if Z is contained in B_(D). The proofs are analogous using the
fact that for two ideals a and b in R we have

Arnz(ab) < Arng(a) + Amz(b) and  ez(ab)/? < ez(a)/? + ez (6)Y/¢

(where in the second inequality we assume that a and b have finite colength).
The inequality for Arnold multiplicities follows directly from the definition
of log canonical thresholds, while the inequality for Samuel multiplicities is
proved in [21].

3. Asymptotic invariants as functions on the big cone

In this section we study the variation of the asymptotic invariants of base
loci. In particular, we prove Theorems A and B from the Introduction. We
also present some examples.

A general uniform continuity lemma. — The continuity statement
(Theorem A) follows formally from an elementary general statement about
convex functions on cones, which we formulate here.

Consider an open convex cone C' C R™ and suppose we have a function
f:CNQ" — R,.
We assume that this function satisfies the following properties:
(i) (homogeneity) f(q-x)=q- f(x), for all ¢ € Q% and 2 € CNQ™;
(ii) (convezity) f(z+y) < f(z)+ f(y), for all z,y € CNQ™;

(iii) ( “ample” basis) there exists a basis a1, ..., a, for Q" contained in
C, such that f(a;) = 0 for all s.

PRrROPOSITION 3.1. — Under the assumptions above, the function f sat-
isfies the following (locally uniformly Lipschitz-type) property on C N Q™:
for every x € C, there exists a compact neighborhood K of x contained
in C, and a constant My > 0, such that for all rational points x1,z2 € K

(%) |[f(@1) = f@2)| < Milla1 — 2.

In particular, f extends uniquely by continuity to a function on all of C'
satisfying ().

Proof. — Consider a cube K C C' with rational endpoints. With respect
to the chosen basis, we can write

K= [Cl,dl] X [Cg,dg] X - X [Cn,dn].
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We work with the norm given by ||Xu;a;|| = max;{|u;|}. We have to show
that there is Mg > 0 such that

[f(z1) = f(22)| < M - [y — wal|,

for every z1, zo € K NQ™.

Since K is compact, there exists ¢ € Q% such that  — )" da; € C for all
x € K. We can also assume (by subdividing K if necessary), that all the
sides of K have length < . Take now any rational points z1, zo € K, write
Ty — 1 = »_,; \ia;, and set A\ = ||z2 — x1||. Note that we must have A < 4.
We will estimate the difference |f(z1) — f(22)].

By repeatedly using properties (i)—(iii) we get

Flan) = oz = (w2 = 0)) = (2 = 3 Aa)
- f((1 —A/8)za + )\/(5(3:2 - Zéa))
< (= M/8)2) + £ (M6 (w2 } Z(Sai))
= (1= A/8)f(2) + (/) f (22 - éjaai)

<f(x2)+m%w-xzf(@)+w_

On the other hand, f(x2 — ), da;) can be bounded uniformly. Indeed,
since xp € K, we have that o — ) . c;a; is a positive combination of
the a;’s, so it belongs to C' and f(xz2 — Y, c;a;) = 0. Thus we get that

f(xz - Z(Sai) < f(Z(cZ- —8)a;).

K2

g — 1.

If we take Mg = f(>;(ci — 0)a;)/d, it follows that |f(z1) — f(z2)| <
My ||z — 2] for every 1, zo € K NQ™, as required. O

Proof of Theorem A and Theorem B. — We now explain how
Proposition 3.1 applies to complete the proofs of these two results from the
Introduction. Let v be a discrete valuation of the function field of X. The
dependence on the numerical equivalence class in part (i) of Theorem A, as
well as Theorem B, have already been proved for Q-classes in Corollary 2.7
and Proposition 2.8 respectively.

The cone C will be the cone of big divisors Big(X)g C N*(X)g. The fact
that the three properties required in the proposition are satisfied for v(]|.||)
has already been checked in previous sections:
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(i) On rational classes, v(||.||) is homogeneous of degree one thanks to
Remark 2.3.
(ii) The convexity property was noted in Proposition 2.4.
(iii) This follows from the general fact that one can choose an ample
basis for the Néron-Severi space and the obvious fact that v(||Al|) =
0 if A is an ample Q-divisor.

Note that the proof implies the slightly stronger statement that the three
invariants extend to locally uniformly continuous functions on the real big
cone.

It remains only to show that Theorem B holds for arbitrary big R-
classes £. Suppose first that Z € B_(£), so that for every ample class a with
¢ + o rational, we have Z € B_(£ + «). Corollary 2.8 gives v(||{ + «f|) = 0.
Letting o go to 0, and using continuity, we get v(||£||) = 0. On the other
hand, suppose that Z C B_(£). It follows from Proposition 1.19 that there
is an ample class « such that £+« is rational and Z C B_(£+«). Therefore
Corollary 2.8 gives v(||£]]) = v(||€ + «||) > 0. This completes the proof of
Theorems A and B.

Remark 3.2. — If X is a smooth variety and Z is an irreducible sub-
variety of codimension d, Proposition 3.1 applies for f = Arng, so we get
analogues of Theorems A and B for Arnz(||.||). The same applies for ez (]|.||)
with one change: the domain on which it is defined is Big? (X)R, consisting
of classes of big R-divisors D such that Z is not a proper subset of an
irreducible component of B (D).

Examples and complements. — We next give some examples and
further information about our invariants. We start with an alternative com-
putation of the order along a valuation for a real class. If v is a discrete
valuation of the function field of X and D is an effective divisor on X, then
we define v(D) as the order of an equation of D in the local ring R of v.
This extends by linearity to the case of an R-divisor D.

LEMMA 3.3. — Ifa € N'(X)g is big, then
(3.1) o(lal) = info(D),
where the minimum is over all effective R-divisors D with numerical class c.

Proof. — Let us temporarily denote by v/(||||) the infimum in (3.1). It is
easy to check from the definition that v’ satisfies properties (i), (ii) and (iii)
in Proposition 3.1. Hence v’ is continuous, and it is enough to show that

V' (lledl) = v(lled])
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when « is the class of a big integral divisor E. Inequality v'(||a||) < v(]|al])
follows from the definition of the two functions.

For the reverse inequality, suppose that D is an effective R-divisor, nu-
merically equivalent to E. We have to check that v(||D||) < v(D). This is
clearly true if D is a QQ-divisor. In the general case, it is enough to vary the
coefficients of the components of D to get a sequence of effective Q-divisors
with limit D. Taking the limit, we get the desired inequality. O

Recall that if X is smooth and Z C X is an irreducible subvariety, we
denote by ordy the valuation given by the order of vanishing at the generic
point of Z.

Example 3.4. — We check the assertion in Example 1.17. Let X be
a smooth projective surface, and D a big R-divisor with Zariski decom-
position D = P + N. We prove that B_(D) = Supp(V). If A is ample,
then P 4+ A is ample, hence B (D + A) C Supp(N). This shows that
B_(D) C Supp(N).

For the reverse inclusion, we use the previous lemma. If E is an ef-
fective R-divisor numerically equivalent with D, then F — N is effective,
so ordz(||D||) = ordz(N) for every Z. If Z is a component of N, we deduce
from Theorem B that Z is contained in B_(D).

A similar argument, based on Lemma 3.3, shows that if C' is a curve
in X, then ord¢ (|| D]]) is equal to the coefficient of C' in N. O

Example 3.5. — Let X = Blipo(P") be the blowing-up of P" at
two points P and ). We assume n > 2. The Néron-Severi group of X is
generated by the classes of the exceptional divisors F; and Fs and by the
pull-back H of a hyperplane in P". A line bundle L = «H — 51 E1 — G2 F»
is big if and only if

a > max{3, B2, 0}.

We describe now the decomposition of the set of stable classes into five
chambers and the behavior of our asymptotic invariants on each of these
chambers.

The first region is described by 81 < 0 and o > (B > 0. If L is in-
side this region, then L is stable and B(L) = FE;j. Moreover, we have
ordg, (||L]]) = —f1. A similar behavior holds inside the second region, de-
scribed by B2 < 0 and a > 1 > 0. The third chamber is given by [,
B2 < 0 and a > 0. If L belongs to this chamber, we have B(L) = E; U Ey,
and ordg, (|| L||) = —f1 and ord g, (L) = —fa.

From now on we assume that 31, B2 > 0. The fourth chamber is given by
adding the condition a > (31 + (2. This chamber gives precisely the ample
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cone. The last region is given by the opposite inequality o < 51 + (a.
Every L in this chamber is stable, and B(L) = ¢, the proper transform of
the line PQ. In order to compute the invariants associated to L along ¢,
we may assume that P=(1:0:...:0)and @ =(0:1:0:...:0). We see
that H(X, L) is spanned by

n
{foi§p0<0é—ﬁ1, p1 < o — B, Zpiza}~
i=0 i

Therefore we get coordinates xs, ..., z, at the generic point of ¢ such that
the base locus of L is defined at this point by (IT_, =¥ ; >, ¢; = B1+62—a)
and orde(||L||) = B1 + B2 — . Note that we also have

Ay (L)) = (Bi+Ba—a)/(n—1) and e (JL])" 7Y = (B + B2 —a).

We will see in the next section that for every toric variety (or more
generally, for every variety with finitely generated linear series) there is a
fan refining the big cone as above, such that on each of the subcones our
asymptotic invariants are polynomial. O

Example 3.6. — We give now an example when the asymptotic invari-
ants can take irrational values for Q-divisors. Moreover, we will see that in
this case the invariants are not locally polynomial. The idea of this exam-
ple is due to Cutkosky [8]. We follow the approach in Kiironya [15] where
this is used to give an example when the volume function is not locally
polynomial.

We start by recalling the notation and the definitions from [15]. Let
S = Ex E, where E is a general elliptic curve. If F; and F» are fibers of the
respective projections, and if A is the diagonal, then the classes of Fy, F5
and A span N!(X)g. If h is an ample class on S and if « € N1(X)g, then
is ample (equivalently, it is big) if and only if (o?) > 0 and (a-h) > 0. We
consider the following ample divisors on S: D = F1+F; and H = 3(F>+A).

Let m: X = P(Og(D) & Os(—H)) — S be the canonical projection. If
0 <t<1,witht € Q, we take Ly = O(1)+t-7* F}, which is big. We consider
the section of 7 induced by the projection Og(D) & Og(—H) — Og(—H),
and denote by F its image. We will compute ordg (|| D:||). If k is a positive
integer such that kt € N, then

H°(X,0x(kDy)) ~ @5 H'(S,0s(iD — jH + ktFy)).
i+j=k
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An easy computation shows that if
() = 9 + 5t — 4912 + 781 + 45
7= 18— 12 ’
then HO(S, Og(iD —jH + (i+j)tF1)) is zero if j /i > o(t) and it is non-zero
if j/i < o(t). Note also that Ox (kD; —pE)|g ~ Og(pD — (k—p)H +ktFy).
We deduce

Jord g (kD) — [k/(1+o()]| < 1.

This implies ordg(||D¢]]) = 1/(1 + o(t)). We get ordg(Do) ¢ Q by tak-
ing t = 0. Moreover, it is clear that ordg is not a locally polynomial function
in any neighbourhood of Dj. O

Example 3.7 (Surfaces). — The case of surfaces has been studied re-
cently both from the point of view of the volume function and of asymptotic
base loci in [1]. We interpret now their results in our framework.

Let X be a smooth projective surface, and let B C X be a collection
of curves having negative definite intersection form. Consider the (possibly
empty) set Sp consisting of stable classes a« € N1(X)g with B4 (a) = B.
It is clear that if it is non-empty then Sp is an open cone. Moreover, it is
also convex, since if a; = Py + N1 and as = P, + N, are two Zariski
decompositions with Supp(N1) = Supp(N2), then a; + as = (P + P») +
(N1 + N) is the Zariski decomposition of «; + .

If F4,..., E, are the irreducible components of B, and if a € Sp has
Zariski decomposition a = P+37"_, a;Ej, then (a-E;) = 37 (E;- Ej)a;.

Therefore the coefficients a; depend linearly on «, hence for every curve C'
on X, the function orde(||.||) is linear on Sp, with rational coefficients.

The closed cones Sp give a cover of Big(X)gr that is locally finite inside
the big cone. Indeed, suppose that o € Big(X)g. It follows from Corol-
lary 1.6 that if 8 is in a suitable open neighbourhood U of o and if § € Sp,
then B C B, (). In particular, there are only finitely many possibilities
for B.

We show now that each cone Sp is rational polyhedral inside the big
cone. We keep the above notation, and without any loss of generality, we
may assume that the open subset U is a convex cone. We have seen that U
is covered by finitely many Sp,, and for every curve C in X, we have
linear functions L; such that orde(]|.]]) = L; on Sp,. Since the asymptotic
order function along C' is convex, it follows from general considerations
that orde(]|.||) = max; L; on U, i.e. orde(||.]|) is piecewise linear on U. On
the other hand, Sp NU is the set of those 3 € U such that orde(||€]]) =0
for ¢ in a neighborhood of 3, for every C' in B, («) but not in B, and
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orde(||B])) # 0 for C in B. Therefore Sgp N U is the intersection of U with
finitely many half-spaces, which proves our assertion. O

The structure of the unstable locus. — We discuss the structure of
the locus of unstable classes inside the big cone. The picture is similar to
that given by a theorem of Campana and Peternell (cf. [16, Chapter 1.5])
for the structure of the boundary of the nef cone. We assume that X is
smooth.

We first fix a closed subset Z C X. Let vz be a fixed discrete valuation
of the function field of X such that Z is the center of vz on X. We use
the asymptotic order function vz(||.||) to obtain information on the locus
of Z-unstable points. The zero locus

Nz = {¢ € Big(X)r; vz(||¢]]) =0}

is a convex cone which is closed in Big(X)g. By Theorem B this is the set of
big classes £ such that Z is not contained in B_ (). We call it the null cone
determined by Z. A class £ € Big(X)g is called Z-unstable if Z C B, (),
but Z Z B_(§). It is easy to see that the Z-unstable classes are precisely
the big classes that lie on the boundary of N.

By definition, a class £ € Big(X)r is unstable if and only if it is Z-
unstable for some irreducible component Z C By (). Thus ¢ is unstable
if and only if it is Z-unstable for some subvariety Z. Thus the picture
is that we have convex null-cones Nz in Big(X)g indexed by all subvari-
eties Z C X, and

(*) Unstab(X) = | J 0Nz.
Z

It follows for example that the set of unstable classes does not contain
isolated rays. (This is just a general statement about boundaries of convex
cones. Visually, this says that in any section of the big cone the unstable
locus does not have isolated points.)

Note that the union in (*) can be taken over countably many Z. Indeed,
it is enough to consider those Z which are irreducible components of aug-
mented base loci (and we may restrict to Q-divisors by Proposition 1.5).
Since B (D) depends only on the numerical equivalence class of the Q-
divisor D, we have to consider only countably many subvarieties.

Since ON7z is the boundary of a convex cone in the Néron-Severi space,
it has measure zero and therefore so does Unstab(X).

Remark 3.8. — 1In fact, one can show that there is an open dense subset
V' C Unstab(X) which looks locally like the boundary of a unique Nz: for
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every £ € V, there is an open neighborhood U(€) of £, and an irreducible
closed subset Z C X, such that Unstab(X)NU (&) = ONzNU(§).

4. Asymptotic invariants on varieties with finitely
generated linear series

Our goal in this section is to prove Theorem D from the Introduction.
In fact, we will prove a somewhat stronger local statement.

Let X be a normal projective variety, and fix r integral divisors D1, ..., D,
on X such that some linear combination of the D; (with rational coeffi-
cients) is big. Setting N = Z" and Ng = N ® R = R", the choice of the D;
gives linear maps

¢: N — N'(X), ¢r:Ng — N'(X)g.

We denote by B C Ng the pull-back qbﬂgl (Big(X)R), so that B is the pull-
back of the closure of Big(X)g. The main result of this section is:

THEOREM 4.1. — Assume that the graded C-algebra

(41) Cox(Dy,...,Dy):= @ H(X,0x(miDy+ - +m.D,))

m=(m;)EL"

is finitely generated. Then B is a rational polyhedral cone and for every
discrete valuation v of the function field of X, the pull-back to B of the
function v(||.||) can be extended by continuity to B. Moreover, there is a
fan A with support B such that every v(]|.||) is linear on the cones in A.

Before proving Theorem 4.1 we give a few examples of finitely generated
Cox rings.

Example 4.2. — Suppose N*(X)g has dimension 1. Let D be any ample
divisor on X. Then the Z-graded ring

Cox(D) = € H°(X,mD)
meZ

is finitely generated since it is isomorphic to the projective coordinate ring
of X. Hence X has finitely generated linear series. U

Example 4.3. — If X is the projective plane blown up at an arbitrary
number of collinear points, then it is shown in [14] that X has finitely
generated linear series.
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Example 4.4. — It X = Bl,, . ,.(P"), where n > 2, r > n + 3, and
P1,--.,Pr are distinct points lying on a rational normal curve in P™, then
it is shown in [6] that X has finitely generated linear series. (Cf. loc. cit.
for a few other examples.)

To prove Theorem 4.1, it is convenient to pass to a local statement in-
volving families of ideals.

DEFINITION 4.5. — Let V be any variety, and let S C Z" be a sub-
semigroup (in most cases we will take S = N" or S = Z"). An S-graded
system of ideals on V is a collection a, = {ay, }mes of ideal sheaves on V,
with ag = Oy, which satisfies

U« Oy © Am4m/

for all m,m’ € S. The Rees algebra of a, is the S-graded Oy -algebra

R(a,) = @ Ams

meS

and a, is finitely generated if R(a,) is a finitely generated Oy -algebra. 0O

For example, starting with divisors D1, ..., D, on a projective variety X,
we have an N"-graded sequence of ideals b, such that b, is the ideal defining
the base locus of |m1 Dy + -+ + m,D,|. If the Cox ring Cox(Dy,...,D,)
in (4.1) is finitely generated, then the corresponding system b, of base
ideals is likewise finitely generated.

Remark 4.6 (Invariants for graded systems). — It would be very in-
teresting to know what sort of regularity properties the functions defined
by the invariants introduced in §2 satisfy. For example, are they piecewise
analytic on a dense open set in their domains? As the reader has proba-
bly noticed, these invariants can also be defined for an arbitrary graded
sequence of ideals. As a consequence, most of what we have done in the
previous sections can be transposed into the abstract setting of S-graded
systems (in this case the Néron-Severi space is replaced by the group gen-
erated by S). One can define analogues of the effective and of the nef cones
in this setting and under mild hypotheses (for example that the system in
question contain a non-empty “ample” cone), one can prove the continuity
of the asymptotic invariants in this setting. See [22] and [10] for more on
this point of view. Work of Wolfe [22] suggests that in this abstract setting
one can’t generally expect any good behavior other than that implied by
convexity. One might hope however that this sort of pathology does not
occur in the global geometric setting.
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For the proof of Theorem 4.1, the main point is to show that a finitely
generated graded system essentially is given by products of powers of
finitely many ideals. This is the content of the following Proposition. We
fix a lattice N ~ Z" C Ng = N ®z R and a finitely generated, saturated
subsemigroup S C N. This means that if C' is the convex cone generated
by S, then C is a rational, polyhedral cone, and S = C N N.

We denote by a the integral closure of an ideal a.

PROPOSITION 4.7. — With the above notation, let a, be a finitely gen-
erated S-graded system of ideals on the variety V (more generally, V can
be an arbitrary Noetherian scheme). Then there is a smooth fan A with
support C, such that for every smooth refinement A’ of A there is a pos-
itive integer d with the following property. For every cone o € A/, if we
denote by e1,...,es the generators of S, := o N N, then

(4.2) 45 e = [

for every p = (p;) € N°.

It is clear that it is enough to prove Proposition 4.7 when X = Spec(Ry)
is affine. Before giving the proof we need a few lemmas. The following one
is well known, but we include a proof for the benefit of the reader.

LEMMA 4.8. — With S as above, suppose R = @,,cq Rm is an S-
graded ring that is finitely generated as an Rg-algebra. If S C S is a

(finitely generated, saturated) subsemigroup, and if R" = @, cg Rm, then
R’ is a finitely generated Rg-algebra.
Proof. — Choose homogeneous generators zi,...,r, of R as an Ry-

algebra, and let m; = deg(x;). We get a surjective morphism of Ry-algebras
P Ro[Xh...,Xq} — R

given by ®(X;) = x;. This is homogeneous with respect to the semigroup
homomorphism ¢ : N9 — S that takes the i-th coordinate vector to m;.
If T := ¢~1(S’), then T is cut out in N? by finitely many linear inequali-
ties, hence T is finitely generated by Gordan’s Lemma. If w = (w1, ..., wy)
belongs to N7, we put X for the monomial [, X;"". If we choose genera-
tors v, ... v® for T, and let y; = @(X”(i)), then R’ is generated over Ry
by y1,...,yp. For this, it is enough to note that by the surjectivity of @,
every homogeneous element in R’ is a linear combination (with coefficients
in Rp) of images of monomials with degrees in 7. O
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We will prove Proposition 4.7 by induction on dim(S). The following
lemma which covers the case S = N is standard (see [4], Chap.III, Sec-
tion 1, Prop. 2). Note that in this case we get a stronger statement than in
Proposition 4.7.

LEMMA 4.9. — If Ry is a Noetherian ring, and if R = @m€N R, is an
N-graded, finitely generated Rg-algebra, then there is a positive integer d,
such that Ry, = R, for every m € N\ {0}.

We need one more easy result about cones and semigroups.

LEMMA 4.10. — Let N C Ny be a lattice, and let C' C Ny be a rational,
polyhedral strongly convex cone. If S = C N N, and if mq,...,m, are the
first non-zero integral vectors on the rays of C, then there is a positive
integer d such that for every m € S, dm lies in the semigroup T generated
by mq,...,m,.

Proof. — Consider a smooth fan A that refines the cone C. By taking
the first non-zero integral vectors on the rays in A, we get t extra vectors
mf,...,m;. Since each of the cones in A is smooth, it follows that S is
equal to the semigroup generated by the m; and the m;-. On the other
hand, it is clear that the m, span the cone C'N Ng over Q. Therefore for
every j < t, we can find d; € N\ {0} such that d;m/; is in T". Take d to be
the least common multiple of the d;. O

Proof of Proposition 4.7. — We have already noticed that it is enough
to prove the statement when V' = Spec(Ry) is affine. Moreover, after taking
a refinement of S, we may assume that the cone C spanned by S is strongly
convex. We use induction on dim(S). If dim(S) = 1, then we are done by
Lemma 4.9.

Suppose now that dim(S) > 1 and that we know the assertion in smaller
dimensions. We use the construction in the proof of Lemma 4.8. Let R =
R(a,) be the Rees algebra of a,, and let x1,...,z, be homogeneous gen-
erators of R as an Ryp-algebra. We put m; = deg(x;). Consider the sur-
jective homomorphism of Rp-algebras ® : Ro[X1,...,X,] — R, given by
®(X;) = x;, and the corresponding semigroup homomorphism ¢ : N7 — S
which takes the i*" coordinate vector to m;. Let ¢r be the extension of ¢
as a map R? — Ng.

Consider a smooth fan A refining C' such that every m; is on a ray of A.
We apply now the induction hypothesis for each cone in A of dimension
dim(S) —1 (note that Lemma 4.8 ensures the finite generation of the corre-
sponding Ry-subalgebras). By refining A, we may assume that each face of
dimension dim(S) — 1 (as well as its refinements) satisfies (4.2) for a given
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positive integer d. For example, we take d to be the least common multiple
of the positive integers we get for each face. Note that every refinement of
such A still satisfies these conditions (for a possibly different d). In order
to complete the induction step, it is enough to show that every maximal
cone o € A satisfies (4.2) for this d.

Let ey, ..., es be the generators of S, := o NN (hence s = dim(S)). We
put S, == ¢~1(S,), and 7 := ¢5 ' (o) so that Sy =& NN

It is clear that o is a rational, polyhedral, strongly convex cone. Now we
claim that every element on ray of ¢ is mapped by ¢g to the boundary of o.
Indeed, suppose that w is nonzero and lies on a ray of o. If w is also on a ray
of RY, then ¢r(w) is also on a ray of o by our construction. Otherwise, w is
in the interior of an r-dimensional face I of R%, where 2 < r < ¢. If ¢r(w)
is in the interior of o, then since ¢gr is continuous and o is of maximal
dimension, we can find an open convex neighborhood V' of w in F, such
that ¢r(V) is contained in the interior of o. But this contradicts the fact
that w lies on a ray of . We conclude that ¢r(w) is in the boundary of o.

We apply now Lemma 4.10 to find d’ such that every element in
(d-N)1n gg is in the semigroup generated by the first integral points
on the rays of o.

Suppose that f € az.meﬁ with p; € d - N. Since ® is surjective, we
can write f = )" cafas where ca € Ry and each f, is of the form ®(X*),
with u € ¢~1(deg(f)) C S,. Since d'u lies in the semigroup generated
by the first integral points on the rays of gg, it follows that we can write
&= [1; gi, where each g; is homogeneous, and deg(g;) = >_, 0ije; lies in
the boundary of ¢. It follows from the induction hypothesis that

ngHafgj, so that  fd4' EHadpJ.
J
Since d | p; for every j, we deduce
d
fa € H as’e/ .

Since f = )" cafa, this implies that as,pie; < H a??. As we clearly

have the inclusion []; ap i/d

C ax,p;e;, this completes the proof. ]
We apply now Proposmon 4.7 to prove Theorem 4.1.
Proof of Theorem 4.1. — Consider the set C' consisting of those m =
(m;) € Q" such that

K (X,Ox(pmiDy + -+ pm,D,)) #0
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for some positive integer p with pm; € 7Z for all i. It is clear that C is
the set of points in Q" of a rational convex cone. If we take a finite set
of homogeneous generators of Cox(Dy,...,D,) as a C-algebra, then their
degrees span C, so C' is polyhedral. Denote by C the closure of C in R".

We have the following inclusions

g (Big(X)g) € C C ¢ (Big(X)r).
Since we have assumed that some linear combination of the D; is big, we
deduce that the above inclusions are equalities, so B = C, and therefore it
is polyhedral.

We consider now the Z"-graded system by = (b, )mezr, where by, defines
the base locus of |m; Dy + - + m,D,|. Our hypothesis implies that this
is a finitely generated system, so we can find a fan A refining Z" as in
Proposition 4.7. If v is a discrete valuation of the function field of X, then

we define as in §2
v(lpma Dy + - -+ + pmiy Dy|)

”l\)/ZBmQT*)]R_A,_, ﬂ(m): lim p )
p—00

where the limit is over those p which are divisible enough. Since the valua-
tion of an ideal is equal to that of its integral closure, it follows from (4.2)
that this function is linear on each cone in A. It follows that v can be
uniquely extended by continuity to B (and the extension is again piecewise
linear). Moreover, it is clear from definition that ¥ agrees with the pull-back
of v(]|.||) on B. O

Remark 4.11. — If X is smooth, similar considerations apply to the
functions Arnyz and ey introduced at the end of §2. Note however that the
function

m=(m;) €Z" — Arng(a** ---a'")
is not necessarily linear. It is however piecewise linear (it is linear on a fan
refinement which does not depend on Z, but only on the log resolution of
the ideals aj,...,a,). Therefore we get our conclusion after passing to a
suitable refinement of A.

In the case of ez, it follows from (4.2) that the set of those m € Q"
such that Z is not properly contained in an irreducible component of
B(miDy + ---+m,D,) is the set of rational points in a union of cones
in A. For such m we define ez(m) in the obvious way, and (4.2) implies
that ez is polynomial of degree d on each of these cones.

The case of varieties with finitely generated linear series, which was
stated in the Introduction, follows easily from Proposition 4.7.
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Proof of Theorem D. — Take divisors Dq,..., D, as in Definition C.
If we consider the corresponding map ¢ : Z" — N!(X), then ¢ is an
isomorphism. All the assertions now follow from Theorem 4.1. O

Remark 4.12. — 1In the context of Theorem D, note that if L is a line
bundle whose class « is on the boundary of Eff(X)g, then it is not clear
that v(||c]|) (or the other functions) can be defined in terms of linear series
of multiples of L. On the other hand, it follows from the proof of Theo-
rem 4.1 that there does exist some line bundle M numerically equivalent
to L such that v(]|a||) can be defined using linear series of multiples of M.

We conclude with another application of Proposition 4.7 to the study of
the volume function. We fix a smooth n-dimensional variety X . Recall that
if L € Pic(X), then the volume of L is given by

'RO(X, L™
vol(L) := lim sup Rl (X, L7),

n
m— oo m

This induces a continuous function on N!(X)g such that
vol(mL) =m™ - vol(L)

and such that vol(L) > 0 if and only if L is big. For a detailed study of the
volume function we refer to [16, Chapter 2].

We will need the following formula for the volume of a line bundle
which is a consequence of Fujita’s Approximation Theorem (see [9] or [16,
Chap. 11]). If L is a line bundle with Bs(L) defined by b # Ox, and if
7 : X' — X is a projective, birational morphism, with X’ smooth and such
that 7=1(b) = Ox/(—F) is an invertible ideal, then we put (L") := (M™),
where M = m*L—F. If b = Ox, then we put (L") = 0. With this notation,
we have

)l
(4.3) vol(L) = sup (mD)™)
meN mn
Note that in the above definition of (L") we may replace the ideal b by
its integral closure.

PRrROPOSITION 4.13. — If X has finitely generated linear series then the
closed cone Big(X)r has a fan refinement A such that the volume function
is piecewise polynomial with respect to this fan.

Proof. — The proof is analogous to the proof of Theorem D. In fact, we
use the same fan refinement. By Proposition 4.7, it is enough to prove the
following assertion: suppose that L1,..., L, are line bundles on X whose
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classes are linearly independent in N'(X)g, and let us denote by a, the
base ideal of ), p;L; for p € N"; if there is d > 1 such that

(1) agp = [ [ oz,

%

for all p € N™, then the volume function is polynomial on the cone spanned
by the classes of L1, ..., L,.

It is clear that it is enough to show that the map

p — vol (z’": dpiLi>
i=1

is a polynomial function of degree n for p € N". Let 7 : X’ — X be a
projective birational morphism, with X’ smooth and such that 7= (ag,) =
O(—F;) are invertible for all ¢. If M; = 7*(dL;)— F;, then it follows from (f)
that for every p € N” we have

(Son)") - ((Swn)).
Together with (4.3), this implies
vol (zl: dpiLi> = (( Xi:piMi)n)v

which completes the proof. O
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