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ASYMPTOTIC INVERSION

OF CONVOLUTION OPERATORS

par HAROLD WIDOM (1)

i. Introduction

A beautiful and important theorem of G. Szego describes the asymptotic behavior,

for large N, of the Toeplitz determinants

det(^-_,), o<j, k^N

associated with sequences

c={^}, —oo<A<oo.

If
00 00

?(6)= 2 c^, log? (6)= S v**9

jc=—oo k==—oo

then Szego's theorem asserts that under certain conditions the determinant, denoted

by D^[<;], satisfies the asymptotic relation
00

( i . i ) logDN[c]=(N+i)^o+ S^j-_^+o(i), N->oo.
fc==l

In the twenty years since the appearance ofSzego's paper [13] a host of mathema-

ticians have been inspired to try their hands at going further, either to weaken the

conditions needed to guarantee the validity of the formula or to find analogues in other

situations. Some of these investigations have had important consequences apparently

far removed from the original question.

There have been several different approaches. Szego, who proved the result

for ? positive and having a derivative satisfying a Lipschitz condition, showed that the

formula ( i . i) became an identity for certain c and large enough N, and then used an

approximation argument for more general c.

A method of Baxter [2] and Hirschman [8] makes use of an identity for D^[6:]

valid for all c which yields ( i . i) for more general, and not necessarily real, ?. Devinatz [4]

has refined these methods to obtain the asymptotic formula under the most general

(1) Guggenheim Foundation fellow. Research supported in part by a grant from the National Science
Foundation.
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IQ2 H A R O L D W I D O M

conditions to date. Golinskii and Ibragimov [6] 3 using an identity related to that of

Baxter and Hirschman, have shown essentially that if ?^o then (1.1) is true if it
makes sense.

Kac [10] derived the formula by a completely different method which was based

on a certain combinatorial identity. He was the first to obtain a continuous analogue,

and exactly the same identity played a critical role. Although there is an inherent

limitation {c must be close to the Kronecker 8 in some sense) the method admits

considerable generalization, in particular to variable coefficients [n] and to higher

dimensions [14].

Hartwig and Fisher [7] started with the asymptotic inversion of the Toeplitz matrix

TNM=(^-,), o<j, ^<N.

If T(X) is an analytic family of matrices defined for X in some domain of the complex

plane, and each T(X) is invertible, then we have the relation [5, p. 163]

(1 .2) l̂og det T(X)=tr T'(X)T(X)-1.

Thus if the given sequence c can be embedded in an analytic family c(\) for which all

the corresponding traces in (1.2) can be evaluated asymptotically, and if for some X

the corresponding Toeplitz determinant can be evaluated trivially, then

logD^]

can be found by integration with respect to X. Hirschman [9], using a different kind

of approximate inversion from that of Hartwig and Fisher, showed that this approach

could also yield a continuous analogue of ( i . i).

The success of this method depends on the quality of the approximation one uses

for T^H"1. It must be extremely accurate yet simple enough so that the computations

are still manageable. We shall present here such an approximation which leads to

a proof of ( i . i) which is remarkably easy and quite elementary, with conditions on c

weaker than hitherto required. The appropriate inversion formula is of such a form

that extensions to other cases suggest themselves. Thus the continuous analogue will

hardly be more difficult to obtain. (The main problem there is: exactly what is meant

by determinant?) We shall also consider in this paper generalizations to higher

dimensions and to the case of variable convolutions.

We recall certain facts from operator theory. The reader is referred to [5] for

details. Given a compact operator T on Hilbert space one defines

\\T\\,==^e^TY^ (o<^<oo)

where ^ denotes the z-th eigenvalue. The norm ||T||^, whether or not T is compact,

is the ordinary uniform (operator) norm of T. One has the inequalities

( j n\ IIT T II < 1 1 T II IIT II IIT T II <IIT II IIT II
V 1 * ^ / || ̂ l^llp.lll 1! 1 1 oo 1 1 L2\\p) || ̂ l^lll.lll ̂ l^ll L2\\2'
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ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 193

If |[T||2<oo, then T is said to be of Hilbert-Schmidt type and \\T\\^ is called the

Hilbert-Schmidt norm. In case T is an integral operator with kernel K(;v,j/)

[|T||j=JJ|K(^)|2^^.

If ||T|[i<oo, then T is said to be nuclear, or of trace class, and [|T|[i is called the

trace norm. If T is nuclear then its trace is defined as

(1.4) trT=S(T^^)

where {^} is an orthonormal basis for the Hilbert space. The series always converges

and its sum is independent of the choice of basis. There is the inequality

(1.5) |trT[^||T||,.

We shall use an analogue of the 0, o notation for operators. If{T^}is a family

of operators depending on a parameter N and if ^ (N) is a positive function then we write

TN=W(N)) (0<^<0))

if

||TN||,=O^(N))

in the usual sense. The notation

TN=^(N))

is defined similarly.

To invert a Toeplitz matrix T^ approximately it is not necessary actually to invert

it. Given a candidate U^ for an approximation to Ty1 one need only define a matrix E^

(E for error) by

(1.6) T^UN=I-E^

and prove that E^ is small in an appropriate sense. If

l|ENl|oo<I

then T^ must be invertible and

T^=V^I-E^-1.

If E^=0p(i) for some p and \\Vy \\y, =0(i) then

TN^UN+^I).

This follows from the first inequality of (i . 3) if one uses the Neumann series expansion

of (I-E^)-1.

For the computation of traces of matrices involving T^ 1 it is of course desirable

to show that E^==0i(i) . This is not absolutely necessary though. For example

E^==02(i) implies

TN^UN+IW+^I).

193
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i94 H A R O L D W I D O M

The paper is divided as follows. The next section contains a heuristic derivation

of an approximation U^[c] for T^]"1. In the following section it is shown that the

resulting E^ defined by (1.6) is 0^1) (in fact, curiously enough, o^ ( i ) ) , and that the

asymptotic formula ( i . i) holds. The assumptions on c are that there be a determination

of log ? which is bounded and has a bounded conjugate function, and whose Fourier

coefficients s^ satisfy

s \k\\^<w.
fc=—jo

Section 4 treats the continuous analogue. Given a tempered distribution c on

the real line with Fourier transform ? which is a bounded function, the finite Wiener-Hopf

operator W^] on Lg(o, R) is defined as follows. For /eL^o, R) take the Fourier

transform off extended to be zero outside the interval, multiply by ?, take the inverse

Fourier transform, and restrict it to [o, R]. The result is W^]/. In an appropriate

sense the operator is convolution by c on Lg(o, R). With V^[c] defined in analogy

with the discrete case it is shown (with conditions on c analogous to those in the discrete

case) that the corresponding error operator is Oi(i) . With a further assumption needed

even to define the determinant (and there are two different ways of doing this) the

analogue of ( i . i) is derived.

Section 5 treats the case where the interval [o, R] is replaced by R^ where Q is

a bounded region in ^-dimensional space. Because of the extra complications involved

we make stronger assumptions on c than previously. In the analogue of ( i . i) the first

term on the right is a constant times K\ the second term a constant times R"""
1
, and

the error ^(R^1). (The formula, with considerably stronger assumptions on c, was

obtained in [14].) It is interesting to note that the coefficient of R"""1 may be written

as the integral over the unit sphere Sn~l of a function associated with c with respect to

a measure associated with 0. This measure is well-known to differential geometers.

It is induced from surface measure on SSl by the Gauss map

aQ-.s^1

which takes any point on %1 into the point of S'1"1 representing the inner unit normal

to ^Q at that point. Convex sets are determined up to translation by these measures [3,

§ 59]? but not sets in general.

Finally certain variable convolutions are investigated. A convolution operator

has kernel of the form c {x —y}. A variable convolution has kernel of the form

c { x , j y , x - j y ) .

These operators may be thought of as bearing the same relation to ordinary convolutions

as variable coefficient linear differential operators do to constant coefficient operators.

Indeed pseudodifferential operators are variable convolutions of a particular kind [12].

(Strictly speaking of course every kernel is the kernel of a variable convolution operator.

194



ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 195

One should regard c< variable convolution " as a way of thinking about certain operators

rather than as a definition.) We shall be concerned with variable convolutions having
kernels of the form

I x y \
^R5]^-^ ^eRO

and obtain for them analogues of the result of the preceding section.

Each of the last three sections is more complicated than, but in many ways similar

to, the preceding. In each of these sections we shall give details when something new

is involved, but details will be omitted if they would be essentially repetitions of previous
arguments.

2. The approximate inverse

The matrix T^ [c] represents convolution by c on the finite (integer) interval [o, N],

If we confine attention to well into the interior of the interval then its boundary cannot

play much of a role and the interval should be replaceable by the set of all integers.
Thus if c has the convolution inverse h

(2.1) c^h==h*c==8,

it seems reasonable to suppose that for j and k well away from both o and N the j, k
entry ofT^]"1 is approximately ^._^.

Next suppose we are well away from the right end-point N. Then we should

be able to replace the interval by the set of nonnegative integers. Convolution on L^

of the nonnegative integers is a (semi-infinite) Toeplitz operator, or discrete Wiener-Hopf

operator, whose inversion is by now very well known. If [r] denotes r-fold convolution,

with the o-fold convolution of any sequence taken to equal 8, the convolution exponential
of a sequence c is

00

Expc= S; c^lrl.
r=0

We write (< Exp " rather than <( exp 3) to distinguish it from ordinary numerical exponen-
tiation. Write

s == Log c

if c=Expj. The sequences c^. and c_ are defined by

^-^ZEO,^ ^-==QC(-co,o)

where / denotes characteristic function and multiplication is pointwise. (That k == o

is put with c^. is not important. It could have been put with c_ just as well or split

195



196 H A R O L D W I D O M

between the two.) Finally, with h the convolution inverse of c as in (2.1) and j==Log c,
define A4' and h~ by

^^ExpC—j^), A-==Exp (—.?_),

so that

(2.2) h^==hZk=o, k<o,

and

A+*A-==A.

The inverse of the semi-infinite Toeplitz matrix

(^•-fe) o<.J\ k<co

has, under certain conditions, its j, A entry equal to
00

(2.3) s ll^h-Zh+n,.
m = U

(A proof of a similar inversion will be given in Lemma (5.1).)

This should be close to thej, k entry ofT^]""1 ifj and k are well away from N.

But ifj and k are also well away from o we have already argued that this entry should

be close to h^_^. To reconcile these statements note that

h= S W_

(2.4) h^^= J._ h^hZk-^

^-k— ^ A^+m^fc-.
w=l

or, more symmetrically

(2.4)

Therefore (2.3) equals

and the second term is indeed small ifj or k is large and positive.

Similarly an approximation to the^', k entry ofT^^]'"1, valid forj and k well away

from the left end-point o, should be

^j-k— ^ ^-N+j-w^N-fc+W
iu == l

If we put the last two expressions together we see that
00 00

^•-fc— ^h^m^-m— ^ h^+j-m^-k+m

is close to each of the approximations in its range of validity. Hence we define
00 00

(2.5) UNM=(A,_&- 2 h^h-_^- 2 A=^_.^_^J o^-, ^N.
w — 1 w == 1

Note that the expression for V^[c] consists of three terms, the first arising from the interior

of [o, N] and the others from the two end-points.
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ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 197

3. Toeplitz matrices

The natural setting for our approach is a certain algebra ^ of sequences. We
say that ce^/ if

Mi r -S HI^O), ?(6)= S ^eL^o, 27r).
fc== — oo k= — oo

Use of the identity

ĵr ?(e>-jM .
47I:2JJ 2 sin i 6 — 0 1 3^JJ^sin^-o)!

which follows easily from ParsevaPs identity, shows that

Ill^lll^llkllll ll?2l|oo+|IN||||?l||«

from which it follows that ^ is a Banach algebra under convolution with norm

IMI-IIMII+ll^lloo.

The relevance of the \\c\\^ part of \\c\\ is clear. It is equal to the norm of

convolution by c on Lg of the integers, and an upper bound for convolution by c on Lg

of any subset of the integers. These things also follow easily from ParsevaPs identity.

The other part of \\c\\, namely \\\c\\\, is equal to the Hilbert-Schmidt norm of the
direct sum of the semi-infinite matrices

(^•+fc+l) °^ k<CO,

(^-,-fc-l) 0<J\ k<CO.

Given a sequence ce^y define the Cesaro mean M^c by

(^^A»(-!^)C>• i^"-
o, otherwise.

Thus (M^)" is just the n-th Cesaro mean of the Fourier series for ?. Although the

sequence of Cesaro means does not converge to c in the norm of ja^, it does have useful

properties with respect to the norm |[| | [[ , as the following lemmas show.

Lemma (3.1). — I f ||H[]<oo, then

lim Me—M,,d|| =o.

Proof. — We have

1(M^|^|^|

for all n and

lim(M^),=^
n-»- oo

for each k. The conclusion therefore follows from the dominated convergence theorem.

197



198 H A R O L D W I D O M

Lemma (3.2). — Suppose a^ and b^ are two sequences of elements of ĵ , and a and b two

elements of ĵ , such that as n-^ao

^ </s ^s

a^—^a, b^—>b boundedly almost everywhere,

llk-alH-^o, IH^-^lll^o.

Then also

llk*^-^llKo.

Proof. — We have

an*bn-a*b==^n-^*{^-b)+^-a)^b+a^^-b).

It suffices therefore to prove the assertion in two special cases, the first where both of

the limits are zero, and the second where one of the limits is zero and the other sequence

is constant. In either case we write

WW - WbnW = W) -^(?))^(e)+^(9)(^(9)-^(9))

and we must show that the Lg norm of this function of 6 and 9, with respect to a certain

measure, tends to zero.

In the first case, where a == b == o, the norm of the first term on the right tends

to zero because the norm of

w-w
does and because the ^(6) are uniformly bounded. The norm of the second term

tends to zero for the same reason.

In the second case we may assume that a == o and b^ is independent of n. Then

the norm of the first term on the right tends to zero for the same reason as before and

the norm of the second term on the right tends to zero by the dominated convergence

theorem.

Lemma (3.3). — Suppose c^ce^/ and as n->oo

?„—»-? boundedly almost everywhere,

Ill^-^lll^o.

Then also

| [ | Exp ̂  — Exp c \ | [ ->o.

Proof. — We have

IIIExp^-Exp.lll^SjII^-^lll/r!.

By the preceding lemma [ [ \c^ — ̂  | [ [-^ o for each r, and we have the inequality

ili^-^iii^supiiuiir
m

for all n. It follows that the sum of the last series tends to zero as 72->oo.
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ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 199

Next a lemma from operator theory.

Lemma (3.4). — Let T^ be bounded operators on Hilbert space satisfying

T^—»-T strongly

{that is, T^x-^Tx for each vector x). Let S^ be nuclear operators satisfying

l|S.-S||^o.

Then also

|[TA-TS|[^O.

Proof. — We have

1|TA-TS1[^[|T,(S,-S)|[,+1|(T,-T)SH,.

Since T^=0^(i) (by the uniform boundedness principle) an application of the first

inequality of (1.3) shows that the first term on the right tends to zero.

Now because T^—T strongly and S is compact

||(T,-T)S|[^o.

This implies that the eigenvalues

^(S*(T:-T*)(T,.-T)Sn

tend to o as n—i-co for each i. Since

^(S•(T:-T•)(T„-T)S)1/2;K2 sup ||TJ|^((S*S)1/2)
m

for all n and z, and since

lisil^s^ys^oo

an application of the dominated convergence theorem shows that

[|(T,-T)S||,=S^((S*(T:~T*)(T,-T)Sn->o.

Now that these dull but useful lemmas are out of the way we proceed to show

that U^] as defined by (2.5) is a good approximation to T^^]"1. None of the lemmas,

incidentally, is needed for this. They will be used only later in this section, where
( i . i) is proved.

Theorem (3.1). — Suppose c=ExpJ where s^. and s_ belong to ^. Then T^[c]

is invertible for sufficiently large N and with V^\c\ defined by (2.5) we have, as N-^oo

T^-^U^+^i).

Proof. — Thej, k entry ofT^HUNM equals

N N 0 0 N oo

^<-,_^/_,-^^_/^^^:,_-^^^A=^/_4_,^.

199



200 H A R O L D W I D O M

Since c * h == 8 we may write

N -1 oo

S c, _ / hf _ i, = 8 • _ j, — S c._/h/_j, — S ,̂ /A/ i,
^^ j I I k j k f ^ _ ^ 3 ^ t fc ^N+1^

and by (2.2) and (2.4) this is

— 1 oo oo oo

^~t^-tSht+mh^-m~tS^-t£h^+t-Mh^-1c+m'
Thus if

T^]U^]=I-E,,

then EN has j, A entry
N oo oo oo

S ̂  SA^_^Al fc_^+S^._^ SAr^+^_^^_^^.
t ==—00 »l == 1 t == U Wl = 1

It follows from the definition of A"1" that

c^ h+ == Exp .?_.

Consequently
00

S CJ_/A/+^==O
( == —00

if j+^^o ^d so

oo M

S c._^ S; h^h-Zk^=o
f=—oo w=l

for each M. Now as M->oo (with k fixed)
00 00

{ 2jA^_^/Cfc_^}_oo^^-^{ ^h}~^^hz.k-m}-oo<f<:ao
m== 1 w== 1

in Lg of the integers. Since convolution by c is continuous it follows that
00 00

S c,_/ S h^h-Zk-^=o.
{==—oo w=l

Similarly
oo oo

S ^_^ S Al^+^_^A^_^+^=o
/' =—oo w= 1

and so the j, k entry of E^ is equal to
00 00 —1 00

— S C^_{ S k^^h-Zj,^— S ^._^ S AiN+^-m^-fc+m
(==N+I w=l < = — o o m=l

oo oo oo oo

=—^/j-^-N ^ /N+^+m^fc-m— ^ ^•4-^ ^ ^N-^-m^-fc+m •
/=! w=l f=l w^l

Now
00 00

(3-i) ^c_,._/_N^AiS-+/+»Az,fc_^

200



ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 201

is thej, k entry of the product of three (infinite) matrices, the first having uniform norm

at most ||?||^, the second having Hilbert-Schmidt norm at most

(^^[^/^^-^(^[^^.^-^(^^^i^i-^

and the third having Hilbert-Schmidt norm at most

^J^-l2)1'-^!^!2^

Since, by (1.3), the trace norm of the matrix represented by (3.1) is at most the
product of these three quantities, and since

00

(3-a) lim S k\h^\2=o,
N->oo f c = N + 2 ' " '

the matrix represented by (3.1) is Oi(i) . Similarly

00 00

(3-3) I'C3+{ ^^N./.m^-t+m
» = l m = 1

represents a matrix whose trace norm is at most the product of |||<;|||,

( 2: k\h^\2}1^
f c = N + 2 ' k l '

and 1 1 ̂ + | |oo- Hence EN=(?i(i) and, as was observed in the introduction, this implies
the assertion of the theorem.

Remark -7. — We mentioned in the introduction that actually

KN^^1)-

This can be seen as follows. The index j belongs to [o, N] so the trace norm of the

matrix represented by (3.1) is unchanged ifj is replaced by N—j there. Then (3.1)
becomes

00 00

^I'-^^nSi^^^^-^
But in this form it is clear that we have a product of three Hilbert-Schmidt operators,

two of which are 0^{i) and the other o^{i), so the product is o^{i). Similarly the

matrix represented by (3.3) is o^{i) and so E^==o^{i).

Remark 2. — Suppose we had an analytic family c{\) of sequences satisfying the

hypothesis of the theorem. More precisely suppose

^(Log.(X))^

are analytic from some open set in the complex plane to e .̂ Then the conclusions

of the theorem hold uniformly for X in any compact subset. For example to see that

201
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202 H A R O L D W I D O M

(3.2) hold uniformly on compact subsets it is only necessary to notice that (with obvious
notation)

SW(x)|2, N = 1 , 2 , . . .
K — .N

is a nonmcreasmg sequence of continuous functions converging pointwise to zero. Such

a sequence necessarily converges to zero uniformly on compact subsets, by Dini's theorem.

Theorem (3.2). — Under the assumptions of Theorem (3.1) the relation (1 .1) holds.

Proof. — Embed c in the analytic family

^X)==ExpXj

which clearly is of the type described in Remark 2. The relation ( i . i) for c(\) is (with
an obvious notation)

00

(3.4) logD^(X)]=(N+i)^W+ 2 ks,{\)s_,W+o{i).
k=l

To prove this for all X it suffices to check it for a single X (and it is trivial for X==o) and

to prove that the relation obtained by formally differentiating it

(3.5) ^^^[^(^-(N+i^oW+^^^M^^l+^i

holds uniformly on compact sets. For then (3.4) follows by integration. Our proof
of (S-5) w111 make virtually no use of the specific form of the family c(X).

By (1.2) the left side of (3.5) equals

trT^(X)]T^(X)]-1

and by Theorem (3.1) this is

trT^(X)]U^]+^(i).

By Remark 2 this holds uniformly on compact sets in the X-plane.

A little computation gives

trT,[.']U,M=^^(N+i-|A|)^A,-2^|^^^^^

(Prime denotes differentiation with respect to X. We no longer display the dependence

of the various quantities on X.) From the fact

^Log^(X)=^(X)*,(X)-1

one deduces

(3.6) s,= 2 c^_,
J=-oo J J

202



ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 203

and so
N

(N+i)^S^,A_,=:(N+i)^o+(N+i)^S^,A_,.

But

(N+i) S \c,h_,\< S \k\\c'^h J
| f c | > N ' " " ' — I f c l : ^ 1 ' ' k - /cl

and so is 0(1). Therefore (3.5) is equivalent to the assertion

N N oo oo

-^2jA|,^_,-2^S^,_^A^^A=,_.^=^^^,_,)'+o(i).

As N—-OO the first sum on the left tends to the limit

S \k\c',h_,.
=—00

If

T[c'] =(<•;_,), o<j,k<w,

H=(S^A=,_J o^j,k<w,
m==l

and P^ denotes projection from L^ of the nonnegative integers to Lg of [o, N], then the
second sum on the left side is exactly

-2trP^T[.']P^H.

By Lemma (3.4) this converges to

--2trT[<|H

as N—^oo. Thus we have shown that (3.5) is equivalent to the identity

(3.7) -^2^|^|^A_,-2trT^ /]H=^A(.^_,) /.

Now this identity can be proved, but it is a little messy and it turns out to suffice

to prove a considerably simpler identity (actually a special case), as we shall now see.

With M^ denoting n-th Cesaro mean as before, set

^(X)=Exp(M^(X)), ^(^Exp^M^X))^,

etc. It follows from Lemmas (3.i)-(3.3) that as TZ->OO

|||^-.'H|^o, 111^-AIII-^o, Ip^-^IH-^o,

and of course

(,(n)V(6)^?(6)

boundedly almost everywhere. This implies that the identity (3.7) would follow if

the corresponding identity could be proved for each ^(n). (One uses Lemma (3.4) to

handle the second term of (3.7).) Moreover X may be taken arbitrarily small since
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20^ H A R O L D W I D O M

it is a matter of proving the identity of two analytic functions. But since (3.7) is
equivalent to (3.4) it suffices to prove

00

logDNM=(N+i)^+J^j_,+o(i)

in case ^ is nonzero for only finitely many k and c is close to 8 in any sense we choose,
for example

\CQ— i |+ S |^|=a<i.

Such a sequence c can be joined to the identity sequence 8 by a simpler family
than Exp(XLog^). In fact consider

^X)=^+(i-X)8, |X|<a-1.

It is easily seen that

X^(Log,(X))^

are analytic from the disc |X|<a~1 to ^ and so it is now a question of proving (3.5)

for this family. If c(\) is replaced by X-1^) then each side of (3.5) has (N+ i)X~1

subtracted from it. Therefore it suffices to prove (3.5) for the family

c+\-\i-\)8, |X|<oc-1,

or equivalently for the family

c+\8, [X+i |>a .

Since, as we have seen, (3.5) is equivalent to (3.7), it is sufficient to prove the latter.
But for the family c+\8 it reads

00

-2trH-S^_,)',
1C — 1

or
00 OQ

(3.8) -2 S kh^h-.^= S k(s^_kY.
k — 0 Jc = 1

This is proved as follows. The definition of A4' implies that

00 QQ

S^^exp^ S^}.
k=0 k=0

Differentiating with respect to z and equating coefficients of like powers of z give

kh^=-^js^_,.

Therefore

2o^+A-=:-,l^so^-^-
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(There is no need to justify the interchange of the j and k summations since the summation

over j is finite.) By (2.4)

J^_,^=A_,

and for our family c-{-\S this is, by (3.6), just s'_,. Hence

S^A=,=-^VL,.

Similarly

S^^=-S^<

and (3.8) is established. This completes the proof of the theorem.

Remark. — Perhaps we should mention explicitly why the Gesaro means were

introduced. To prove (3.4)5 with an arbitrary j, for the family

^(x)==Exp Xj

it sufficed to prove it, as we saw, for X small. Thus, just as in the proof of the theorem,

it suffices to prove (3.4) for the family

c+\S, [X|>i

where it is assumed that 1 1 c \ \ < i. One certainly has the analytic family

^(X)=81ogX+ S (-ir^X-^M/r
r=l

from the exterior of the unit circle, cut say along (i, oo), to ^/. The difficulty is that

there is no guarantee that s{\)^ belong to ^ also. If we knew that these ^(X)^ belonged

to ^ then Theorem (3. i) could be applied and Lemmas (3. i)-(3.3) (and also, it turns

out, Lemma (3.4)) could have been dispensed with and the entire proof shortened

considerably. An assumption that guarantees that s(\)^ belong to ̂  is, for our original s,

S |^1<00.
fc==—oo

This is in addition, of course, to the assumption H I ^ I H ^ o o . It was under just these

assumptions that (1.1) was proved in [8].

4, Finite Wiener-Hopf operators

As in the discrete case we first introduce an algebra, which we again call ^ since

there seems to be no possibility of confusion. A tempered distribution c on the real

line belongs to ̂  if its Fourier transform ?is a bounded function and if, on the complement
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of{o}, c is equal to a function belonging to L^ with weight function \x . If we call

this function CQ and write

lIMIHIIkolll-^MkoWW72

then the norm on A is

IMI=11?IL+]]MII .
Since

(4.1) ^^^^^^{i-e^y^dx

(integrals are taken over the entire real line unless indicated otherwise) we see that

for each T]

?o(S)-?o(S+^)

is an Lg function of ^. Now the most general distribution supported on {0} is a finite

linear combination of derivatives of the Dirac distribution 8. Thus ? equals ?o plus a

polynomial. But ? is bounded and

?o(^)-?o(S+^)

is in L.2 and it is a simple exercise to deduce that the polynomial must be constant. Thus

c equals CQ plus a constant times S. This implies, using (4.1) and ParsevaFs identity

"•^r^^
From this we see that s/ is a Banach algebra under convolution.

Given ce^/ with associated function CQ we define c^. and c_ by

^==^X(-oo,0). <4=^—^.

Clearly, if ?_i_ or ?_ is a bounded function, then c^. and <;_ belong to ja^. But, just as in

the discrete case, this may or may not occur.

We can now define the approximate inverse U^^] for the finite Wiener-Hopf

operator Wj^] defined in the introduction. We assume that

c== Exp s

where s and s^ (and so also s_) belong to j^. As before this is the convolution exponential,

not the pointwise exponential, and we write also

s== Log c.

Define

A-^Exp^^), A-==Exp(—j_), h=h^^h~

so that in particular

c*h==S.

It will be convenient to talk about kernels of the form

a8(x-jQ+K(^)
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where a is a constant, 8 the Dirac distribution, and K a kernel in the classical sense.

It is clear what is meant by the integral operator with such a kernel.

We define U^] to be the integral operator on Lg(o, R) with kernel

(4.2) h{x-y)-(uh+(x+z)h-(-y--z)dz-(Rh-{-R+x-z)h+{R-y+z)dz,
JO JO

We can, and do, restrict x andj/ to the open interval (o, R). The integrands in the

two integrals are then ordinary functions on the ranges of integration. (Perhaps we

ought to have inserted subscripts to denote the functions corresponding to the distributions,

but this hardly seems necessary.)

Theorem (4.1). — Assume c==Ex.ps where s and s^, belong to s^. Then W [̂<;] is

invertible for R sufficiently large and with U^[c] defined by (4.2) we have, as R->oo,

WRM-^U^M+^I).

The proof of this is entirely analogous to that of Theorem (3.1) and so need not

be given. Only one point might be mentioned. The proof establishes directly only

the right invertibility ofW^^j. Left invertibility is obtained by considering the adjoint.

The method of the preceding section will also give a continuous analogue to

Theorem (3.2) once a definition of determinant has been agreed upon. From the

point of view of operator theory it is most natural to define

(4.3) detT=rH(T)
«

if T—I is a nuclear operator. Here ^(T) are the eigenvalues of T arranged in any

order. This product necessarily converges. Moreover if T(X) is an analytic family

of nuclear operators then [5, p. 163]

(4.4) - r f logdet(I+T(X))-trT'(X)(I+T(X))- l

d\

as long as — i is not an eigenvalue ofT(X).

One point that requires care is that the trace of a nuclear integral operator with

kernel K(;v,j/) is not necessarily given by the formula

(4.5) fK{x,x)dx.

This does hold if K is continuous and there are formulas for the trace similar to this

in the general case. By the method of [5, § 10] one can prove the following.

Let 9 be any function on the real line whose Fourier transform 9 satisfies

(4.6) $^0, 9eLinL^, 1^9(^=1.

Then ifK. is the kernel of a nuclear operator on Lg^, b) the trace of the operator is equal to

|^n^e-19(£-l^^))K(^^^^.

'""::^
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From this it is easy to deduce formulas for the traces of nuclear finite Wiener-Hopf

operators.

Let 9 be any function satisfying (4.6) and in addition

(4.7) jMly^^oo.

Suppose CE\^{—co, oo) is such that WR[C] is a nuclear operator. Then

(4.8) trW^.]=RlimJs-l<p(s-l^W^.

For the trace is

lim ^~~l<Q(^~l(x—Y))c(x—y) dx dy
e->0 JO JO " ' •/ '

}lmJK^R-\x\^-l^-lx)c(x)dx.

Schwarz's inequality gives

IJi^B^1^6"1^^^^!^!^6"'2^^.-^19^12^2

^IMI.R^^-^II^)!2^2

and this tends to zero as s—^o. Moreover

^\x z-^^xWdx ^M^^xfWfdx)112.

For each e the last integrand is at most

RMI^eL^-a),^)

so the integral tends to zero by the dominated convergence theorem. The asserted

formula follows.

Note that if c is continuous at o the trace is simply Rc(o).

Suppose now that c satisfies the hypothesis of Theorem (4.1) and in addition

that WR^] differs from I by a nuclear operator, so that its determinant may be defined

by (4 •3)- Since a nuclear operator is necessarily Hilbert-Schmidt, c—S must be a

locally square integrable function, and therefore also globally square integiable since

|||<:||[ is finite. This implies that

!==\og?eL^nL^.

Since
00

?—i= 2r/r!
r==l

?—i equals ? plus a function belonging to Li(—co,oo). But SeL^ implies WR^]

is nuclear. (In case a>_ o this follows from Mercer's theorem since W^[<2] is positive

semi-definite and is an integral operator with continuous kernel; the most general function

of Li is a linear combination of four nonnegative L^ functions.) Thus the assumption

that WR^]—I is nuclear is equivalent to the assumption that W^] is nuclear.
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Theorem (4.2). — a) Assume that c satisfies the hypothesis of Theorem (4 .1 ) and that

WR^] is nuclear/or each R>o. Then with determinant defined by (4.3)3 and with y any function

satisfying the conditions (4.6) and (4.7) we have as R->oo

logdetWRH==Rlim ^~l^(^~lx)s{x) dx+ f ° ° ' x s { x ) s { — x ) dx+o{i).
£ ~> 0 J JO

Proof. — Carrying through the argument of Theorem (3.1) requires the compu-

tation of

trWs[c']V^c]

and since the trace is not necessarily given by the formula (4.5) some care must be

exercised.

As UR^] is defined as the sum of three operators so also is the product a sum of

three operators. Two of these, corresponding to the integrals in (4.2), will have

continuous kernels (arising from what are essentially convolutions of Lg functions) and

their traces may therefore be computed by (4.5). The third operator is

WH^WR^].

Now

W^*A]-W^']WR[A]

has kernel

rc\x+z)h{—z—y)dz+ f°° c\x--R—z) h(z +R—y) dz, o<x,y<R.
JO JO

This function is continuous since c ' and h belong to Lg of the complement of{o}, and

is the kernel of a nuclear operator since it represents the sum of products of Hilbert-

Schmidt operators. Therefore (4.5) may be used to compute

tr(W^c']Vf^h]-W^[c'^h]).

Moreover

tr WR|>' * h] == tr WR^'] == R lim fs-1 ^(s-1^) s'(x) dx.
£ —> 0 J

With these points kept in mind there is no difficulty reducing the proof to the

verification of the continuous analogue of identity (3.7). In the discrete case it was

shown that it sufficed to check this identity for the simple family

c{\)==c+\S

and with extremely nice c. Since

detW^+XS]

is not defined unless X == o there is a problem. Of course (3.7) and its continuous

analogue could be proved for the family

c{\) == Exp X?

but the computations are a little unpleasant and best avoided. The family c+XS should

be used if at all possible, and one can accomplish this by a simple device.

209
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Extend the definitions of determinant and trace to operators of the form

aI+T

with a a nonzero constant and T nuclear, by defining

de^aI+T^det^+a-1!'), tr(aI+T)==tr T.

These definitions look ridiculous but they make perfectly good sense for infinite dimen-

sional Hilbert spaces. Moreover the analogue of (4.4) for analytic families of the form

a(X)I+T(X)

holds if these definitions are used. The formula follows easily from the corresponding
formula for the family

I+aM-^M.

Having established this, one sees that the formula

^ogdet^[c]=^trW^s]+^r xs{x)s{-x)dx+o{i)

for the family c{\)==c+\S is equivalent to the continuous analogue of (3.8), which
is proved without difficulty.

The other definition of determinant is the classical Fredholm one. If T is the
integral operator with kernel K{x,y) then one defines

(4.9) det(I+T)= S ( r :^f...fdet(K(^,A:,))^...^.
f — U • • •/ »/

This makes sense if

JJiK^jQl^^a), J|K(^)|^<OO,

and (4.4) holds if (I+T(X))~1 is thought of in terms of resolvent kernels in the usual

way and (4.5) is used as the definition of the trace. Of course the determinant as defined

by (4-9) ls not really a function ofT since two kernels may give rise to the same operator

but to different right hand sides of (4.8). Nevertheless we retain the notation det(I+T).

To apply this definition to W^c] we must assume as before that j-eLg in order

to guarantee that WR^] differs from I by a Hilbert-Schmidt operator. But it is also

necessary to define the kernel of WR^]—!, namely

c^-jy)-S{x-jy),

almost everywhere on the diagonal x=y. Now

00

(4-io) c-S=^s[r]|r[
r= 1

and since PeL^nL^ the convolutions s^ for r^ 2 are everywhere defined and even

continuous. Therefore what remains is to define s{6) somehow and this is used to assign
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a value to c—8 at o by (4.10). How s(o) is defined is irrelevant, but once it is done

that value is used to define det W^] by (4.9).

Theorem (4.2). — b) Assume that c satisfies the hypothesis of Theorem (4 .1) and that

in addition jeLg. Then with determinant defined by (4.9) we have as R—^oo

logdetVf^[c]==Rs(o)+rxs{x)s{-x)dx+o(i).

Proof. — We omit the details as usual. Use is made of the fact that for nuclear

operators with continuous kernels the two definitions of trace coincide, so one may use

inequality (1.5) to show that the error term 0^(1) in the statement of Theorem (4.1)

contributes 0(1) to the traces, as defined by (4.5), that arise.

5. Higher dimensional convolutions

Throughout this section and the next Q. will denote a compact set in ^-dimensional

Euclidean space E^ whose boundary is of class C
1
. More exactly for every point of 8^1

there is a neighborhood N of the point in E^1 and a G1 diffeomorphism a of N onto an

open ball of E^1 such that cr(Nn 0) is the part of this ball to one side of a hyperplane

through its center. Roughly speaking, at each point of its boundary 0. looks like a

half-space. This suggests that the approximate inversion of convolution operators on Q,

or on RJ2 for large R, may be effected in terms of the inversion of Wiener-Hopf operators

on half-spaces. That is exactly what happens.

As mentioned in the introduction we make stronger assumptions on our kernels

than in the one-dimensional case. We consider the algebra SS of distributions c on R"

which are of the form

a8+^o

where a is a constant, 5 the Dirac distribution, and CQ a function on E7' satisfying

f\c,{x)\dx<^ f\x\\c,{x)\2dx<^

(Integrals are taken over E" unless otherwise indicated.) It is easy to see that 38 is

a Banach algebra under convolution with norm

\c\\=\^+f\c,(x)\dx+(f\x\\c,(x)fdx\w.
J \J I

This algebra S8 is easier to work with than the ^-dimensional analogue of the algebra s^

of the last section because 3S is closed under the taking of absolute values, and also for

the reason mentioned at the end of the third section. The results we obtain might

very well hold for the Tz-dimensional analogue of s^ but the proofs would have to be

considerably more sophisticated.
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The operator WRJ);] on L^Rt^) is defined as convolution by c. For CESS the

operator is a scalar multiple of I plus a compact operator.

Our basic assumption will be that c==Exp^ with s^SS. In dimension one this

is equivalent to

c^SS,

? bounded away from o, and

A arg ?(^) = o.
— 00 <^ <00

In higher dimensions the last condition is unnecessary. These things follow from the

Arens-Calderon extension of the Wiener-Levy theorem [i]. The simplification in

higher dimensions occurs because

lim ?(^)
|^00 ^

exists and the one-point compactification of ̂ n is simply connected, so that if? is bounded

away from zero it has a continuous logarithm.

Unlike in dimension one there is now a (convolution) factorization of c, or an

additive decomposition of ^=Logc, corresponding to each direction. Given ceSS and

a unit vector v define (with the dot denoting inner product)

c+{v)==c7,{x•.x.v>_0}9 c-(v) =c')C{x:x.v<0}'

Just as before the 8 part of c is arbitrarily put with c^. rather than c__. Note though

that if ceSS then c_^ and c_ necessarily belong to 3S.

Given c with s==1Logce^§ we define

^+=EXP(-^(,)), A,-=EXP(-J_(,)), h==Exp{~s).

The inversion of Wiener-Hopf operators on half-spaces is given by the following lemma,

which is well-known.

Lemma (5.1). — Assume j==Log ce3§ and let v be a unit vector in E^ Then the integral

operator on Lg of the half-space

{x : x.v^_ 0}

with kernel c{x—y) has inverse the integral operator with kernel

h(x-^-f^ht(x+t)h^(-^~t)dt.

Proof. — We have

fc(x-z)dzf^^{z+t)^{-^-t)dt=f^^{-^t)dtfc{x-z)h^z+

-j,^{-^-t)dtfc{x+t-z)h^z)dz.
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It follows from the definition ofA^ that the convolution c * h^{u) vanishes unless u.v>_o.

Since x.v^_o and t.u>o the inner integral vanishes. Hence

L>o^-^) ̂ LxA^+W--^) dt

=-^<^x-z)dzS^h^^+t)h^-y-t)dt•
Since h^(u) vanishes unless u.v^o this may also be written

--L<o^-^^J^+^+^^~(-^-^A^-L<oc(x-^A^-^^•
Therefore

S^>^x-z)(h^-^-S^>oh^z+t)^^+t)dt)dz

=S^c[x-z}h(z-^dz+f^^c{x-z)h{z-y}dz

=fc{x-z)h{z-^)dz=S(x-^.

This shows that the asserted inverse is actually a right inverse. That it is also a left

inverse may be seen by considering adjoints.

The approximate inversion ofW^^] is not as neat in higher dimensions as in one.

The reason seems to be that in one dimension there are only two boundary points and

they are far from each other so their interference is negligible. In higher dimensions

there are many boundary points very close to each other and their interference is sub-

stantial. The obvious way of defining an approximate inverse in analogy with (4.2)

would be to replace the sum (of integrals) on the right side, one term for each boundary

point, by an integral over %2. Unfortunately this is essentially wrong and we use a

less natural definition, one that does not reduce to (4.2) for n== i although it differs

from it by only Oi( i ) .

Let y\-^y be any measurable mapping from 0. to 80. satisfying for some y>o

(5- 1 ) (^-JO-^J^Tb-Jl

(5.2) ^ |^-J|=o.

Here v[y) is the inner unit normal to SO. atj^, and the dot denotes inner product. This

induces in an obvious way a mapping, also denoted by j^l->7, from R^ to ^(R£^).

We define UR^] to be the integral operator on Lg(RQ) with kernel

^-^ -L(,)>O W--^ + W -v +v- ̂ dt-
This depends of course on the mapping y \->jy, but exactly which mapping we take will

not matter, as long as (5.1) and (5.2) are satisfied.

Before we see in what sense this is a good approximation to W^[^]~1, we consider

some consequences of the assumption that ^0 be of class C
1
. Let a be a G^diffeomorphism
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of an open set N in E" to a neighborhood ofo in E^ such that (r(Nn Q.) consists of those

points of (r(N) whose first coordinate a1 is nonnegative. For

zeNnOQ., x^NnO.

we have, since al{z)=o

Gl{x)=={x-z).grsidGl(z)+o(\x-z\)

as l^—2' l -^o, and this holds uniformly on compact subsets ofN. It follows that given

s>o there is an r such that, if

B(z,r)={x : \x-z\^r],

then

0.nB{z,r)C{x : {x—z).v(z)^—e\x-z\},

^3{x: {x-z).u{z)^\x-z\}nB{z,r).

As before, v(z) denotes the inner unit normal at z.

For z e8Q. define D(^) to be the symmetric difference between ^ and the half-plane

{ x : {x-z).v{z)^o}

which locally approximates Q. at z. Then we deduce that

D(^)nB(^ r)C{x : \{x—z).v(z)\<e\x—z\}

for sufficiently small r.

It follows that for our function y — ^ y from Q to ^, if x e ' D ( y ) and is sufficiently

close tojj^ then x must be much further fromj^ than from ^Q. More exactly, if we define

(with d denoting distance)

(5.3) p(p)=mf{|^| : xeD(J), d^ a^)^p}

then [B(p)>o and

(5.4) hm^(p)/p=co.

(The proof of this is very simple and is omitted.) This will be used to show that the

error committed in certain computations is small if Q is replaced by its approximating

half-spaces.

Lemma (5.2). — For any c^SS the integral operator from 1^(0) to L^E^ with kernel

R^(R(^))^-)W

is ^(i) and ^(R^-^2).

Proof. — Note first that since j^D(j) the 3 part of c does not contribute to the

operator and so may be assumed to be zero.

The arguments for the two conclusions are quite different. First we show the

operator is Ooo(1) ^d all that will be needed for this is that ^eL^E"). Since the uniform

norm of convolution by \c\ on L^E^ is equal to | | ^ ] | i , and since the bounded functions
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with compact support are dense in L^E^, it suffices to prove the desired conclusion

for c the characteristic function of some ball B(o, r). Instead of the operator we may

consider its adjoint, so what is to be shown is that

sup R4 f[x)dx / I I / J L
1 JDC^nB^r/R)^ v / 2/ IIJ 1 1 2

is 0(1) as R-^oo. The supremum is taken over all /eL^E^ and the first norm is

taken with respect to jyeO..

There is a finite collection of open sets N^, N^, . . . in En which cover 0. such that

the closure of N() is contained in the interior of 0. and each N .̂ with i^ i is one of the

coordinate neighborhoods for ^Q described at the beginning of the section. We can

find compact subsets K, of these N^ (i'^o) whose union contains an open set containing ̂ .

Iff is supported in the complement of this union then the integral

(5.5) R^ f ( x ) d x
v3 3y jD^nB^r/R)^ /

will vanish, for sufficiently large R, for all j^£^. The same holds if/is supported in Kg

since

(B(^(Ko, ^))>o,

where (B was defined by (5.3). Thus we may assume that f is supported on one of the

K, with z^i. We shall simply write K, N for K^, N,.

For sufficiently large R the integral will be nonzero only ifjy belongs to a slightly

larger compact set K' of N. Thus we may confine attention to xeK. and j^eK/. By

means of the diffeomorphism

(T : N-^E^

with o(NnQ) consisting of those points of (r(N) with cr^o, the integral (5.5) may

be written as an integral with respect to the variable ^ = a{x). The integral with respect

to jy of the square of (5.5)5 which must be evaluated to determine the Lg norm of this

integral, may be written as an integral with respect to the variable ^==^{jy). The

integral

Ji/wr^
determining the norm ofy may also be written as an integral with respect to ^. The

Jacobians arising in these transformed integrals are bounded and bounded away from

zero since x and y are restricted to the compact subset K' of N.

The region of integration in (5.5) is contained in the set

{x : d{x, ^)^rl(|^-J;|h 1^1^/R}

where (B"~1 is the inverse of (B, defined at points of ambiguity to be continuous on the

right. Upon applying cr the region of integration becomes contained in

{ ^ : I^Ap-'dS-^DJS-vil^A/R}
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where A is some constant. It follows from (5.4) that

(5.6) n^r^/p^o

and so for any e>o this set is contained in

A ( T ] ) - { ^ : I^IS^/RJS-^A/R}

for R sufficiently large.

We shall show that

^ ^P R-L/^^/II/II.
is at most a constant times s1/2 for large enough R, and this will give the desired conclusion

Here/runs over 4(E") and the first norm is taken with respect to 7)eE»

For a point ^ == (^l, ̂ , . . ., y) we write ? = (o, ?,..., ^»). Set=(o,

?1, ^a, ... ?»i i2 ̂ 1/2^)= (o^^ •• • ,? • ) i2 <r.
Estimating the integral with respect to ^ in (5.7) by Schwarz's inequality gives

^L)^) ̂  ^R"(2s/R)l/2J„-,|^/^(r) df

Since A(^) is empty unless |^ |^(A+e)/R and since the integral on the right side

of the last inequality is independent of ^ we see that the L, norm with respect to ^
of the left side of the inequality is at most a constant times

(5-8) p"-^2!"- ~ p(?}dl
JlS-'fll^A/R^'-'"1 "<'•

But this is exactly the value at ^ of the (»-1)-dimensional convolution of g(^) with

Dn-1,.1/2., /P~\
Iv s XBtO.AlV^)?

a function in Li(E"-1) with L, norm a constant times s1/2. Hence (5.8) has L, norm

with respect to ^eE»-1, at most a constant times

^(L^^^^'^s^^j^^i2^)^.
Thus (5.7) is at most a constant times e^2 for R sufficiently large, s>o was arbitrary,
and the first assertion of the lemma is established.

To establish the second part we make a few preliminary observations. First
the integral '

is equal to

where
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From the fact that

f\x\\c{x)\2dx<o^

it follows easily that

(S-S) p1™?8^?)^, limpS,(p)=o.

Second, if

^•Io) ^^{XE^ : d{x, 8^)<_^ pL(p)=vol(^)

then as p—^o

C5-") ^(p)=0(p).

This follows easily from the fact that 30 is of class C
1
.

The Hilbert-Schmidt norm of the operator in the statement of the lemma is the
square root of

^^ U^i^-^iw^^
Let A be so large that £2CB(o,A/2). Then integration with respect to x over the
complement ofB(o, A) gives, for each j;e0, at most

L^R2" I W I2 dx == R"Sc(AR/2) = o(R»-i)

as R-^oo, by (5.9). Integration with respect to yeQ. just multiplies this estimate
by the volume of Q.

Consider now the part of (5.12) where ^B(o, A). The integrand vanishes
unless ^eD(j>) and so we must have

\x-j\^[d{x, 8Q}).

Therefore, since also xeO,^, integration first with respect to y shows that this part of
(5.12) is at most

J^R"S,(Rp(dist^, <5Q)) ^=J^R"S,(Rp(p)) ^(p).

Since p(p) is at least a constant times p, integration by parts, (5.9), and (5. n) show
that this is at most a constant times

R-J^p [^(Rp(p)) [ +.(R"-1) ==R"J^Vi(p) |^(Rp) | +.(R"-^.

Since p-^p) is at most a constant times p, integration over p^P/R contributes at
most a constant times

R"Jp;BPl^(RP)l=R'l-lJpa>Pl^(p)|

which is at most eR"-1 if P is chosen large enough. For each P, if R is big enough,

integration over p^P/R will contribute, by (5.6), at most

BR-J^pl^^R^l^.R-^pl^^p)!.
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Thus this other part of (5.12) is also o^R!1"1) and the second part of the lemma is
established.

The domains D(^) were defined for Q and zeQQ.. Analogously we define the

domains D^) defined for ^eB(RQ). We write F^c] for the integral operator from
La(RQ) to I^E^ with kernel

c{x-y)^(y)W'

This is unitarily equivalent to the operator of Lemma (5. s) and so

(5.i3) F^]=^(i), F^j^R^2).

Recall that we defined V^[c] to be the operator with kernel

(5-14) UR(^J;)=A^-^)-L^>o%)^-J+^^)(-^+J-^ dt-

The final lemma gives a rough but useful bound on U^{x,y).

Lemma (5.3). — For some c^eSS we have

\V^y)\^x-y)

for all R.

Proof. — Since S9 is closed under convolution and absolute value and since

o <^ | q [ ̂  c^, c^ e B

imply c^SS, it suffices to show that for some c^SS we have

\^\<.^ m^
for all unit vectors y. But since

k±(J^M
we have

\h^\< 2: \s\[r]|r\
~r=Q

which belongs to

Theorem (5.1). — Assume c==Exps where seSS. Then Wp^] is invertible for

sufficiently large R, and ifV^[c] is defined by (5.14) we have as R—^oo

WKM-^U^J+^I), WKM-^URM+^CR^-^).

Proof. — The operator WR^UR^] has kernel

JRQ^-^B^) ̂ -S^-y^^-^WZ^) dZ

-fc{x-z)U^z^)(^,^_^^-^{z)) dz.

By Lemma (5.1) the first term on the right side is S{x—jy). Thus ifEp is the operator

on L2(Rf2) whose kernel is the last integral we have

(5.i5) W^]U^]=I-ER.
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The absolute value of the kernel ofE^ is at most that ofF^] left multiplied by convol-

ution by j ^ l as an operator from L^E^) to 4(RQ); here ^ is as given by Lemma (5.3).
It follows from (5.13) therefore that

(5-16) ER-^I), E^^R^-1)/2).

In particular W^[c] is right invertible for sufficiently large R and its left invertibility

follows upon considering adjoints. Since UR=^(I), (5.15) and (5.16) give

(S-1?) ^nW-V^+V^E^+o^K1-1)

and the theorem follows.

The theorem as stated is not strong enough to enable us to deduce formulas for

the traces with error o(K1-1). We shall use rather (5.17) which contains more infor-
mation. Recall that Ep, has kernel

J^^-^UR(^J/)(^^_^^^-^(^)) dz.

We shall see that as far as traces go the term UR[(;]ER can contribute at most ^(R^-1).

Ifcp is any function satisfying conditions (4.6) and (4.7) and T is a nuclear operator
on La of a subset of En with kernel K then

(5-i8) trT=|^nJJs-ncp(£-l(^-J;))K(^J;)^^.

If a nuclear operator T is written as a sum of operators each of whose nuclearity is

dubious, the right side of (5.18) could be used to estimate the "traces55 of these summands.

The sum of these estimates is then an estimate on tr T itself. This suggests that, whether
T is nuclear or not, it is useful to consider

lim^ IJJ8"^8"1^-^)^^)^ .

We call this the "estimated trace'5 ofT. We shall assume that, in addition to satisfying

(4.6) and (4.7), the function 9 is nonnegative. This implies that if T\, Tg have
kernels K^, Kg satisfying

|K,(^)[^K^,jQ

then the estimated trace of1\ is at most that ofTg. I fTis nuclear then the estimated

trace of T is, of course, equal to the absolute value of tr T.

In the next lemma P^ denotes the projection operator from I^E^ to L^RtI).

Lemma (5.4). — If c^c^eSS then the estimated trace of

WK^]PRF^[^

is o^-^ as R-^oo.

Proof. — As mentioned in the proof of Lemma (5.2) we may assume ^ has no S
summand. To take care of the 8 summand in q we shall show first that the estimated
trace of

IW.,]
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is zero. For this we may assume R=i . If we define

^^Lop^^^^i^wi^
then integration first with respect to x gives

Li^^^-^^--^^^ <-j^M^ ^)))^^J^s,(p(p))^(p)

where OCB(o, A). As in the last part of the proof of Lemma (5.2), integration by
parts shows this is at most a constant times

SJp(A))+JJOS,(p)rfp=S,(p(A))+Js-n[^|<p(s-^)|^)[^.

For any subset B of En Schwarz's inequality shows that

(J^-nl^y(s- lx)|^)|^)2^(J^-2-|^[<p(s-^)2^(JJ^[|^^^^

-(S.-J^^^^^fdx).

Each of these last integrals has a bound independent of B and s. If we first choose B

to be the ball B(o, 8) the second integral will be arbitrarily small if S is small enough.

Having fixed 8 and then taking B to be the complement of the same ball, the first integral
is 0(1) as s->o. Thus

S^n\x\^-lx)\c,{x)\dx==o{l).

An application of Schwarz's inequality also gives

S,(p(A))=.(i)

and so the first part of the lemma is established.

To prove the second part we may assume q has no 8 summand, and note that

the trace of the product of Hilbert-Schmidt operators with kernels K^,j) (z=i , 2)
is always given by

jJK^x)K,{x^)dxdy.

Therefore

|trW^^]PBFa^]|^J^|^(^-^^-_y)|.^^^^^

^L L ^ I ̂  - ̂  I2 + I ̂  -J) I2) W^ dy

and this is (^R""1) by the second part of (5.13).

Lemma, (5.5). — For any c^=88 the estimated trace of

WH[^UR[C]EB

is o(R»-1) as R->oo.
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Proof. — If we write

c^^S+7, ^==oc^8+?o, ^==a^8+^

where ag, a^ , a^ are constants and ?, ?o? ^i functions in L^E") (this notation is different

from that used at the beginning of the preceding section) then the kernel of E^ has

absolute value at most

|aJ|yo^-J;)IXDB(y)W+Jl^-^?o(^-^)(X{.:(.-y)..(^o}-XRo(^)l^•

Here CQ is as in Lemma (5.3). Moreover the absolute value of the kernel of

W^U^]

is at most

l^a.JS+I^Jiyo^-^l+la.JIPK^-^l+l?!*^!^-^)-

It follows that the absolute value of the kernel of

WH^I^ME^

is at most that of

|^^^|FR[|%|]+WR^]P^[|ro|]

where c^ is a nonnegative member of S8 without a 8 summand. The conclusion follows

from Lemma (5.4).

The preceding lemma takes care of the term UR^]ER appearing in (5.17).

Unfortunately there are two more lemmas to go.

Lemma (5.6). — If q, c^e^S then

WR[q]WR^]-W^[q*^

is a nuclear operator with trace ^(R^""1).

Proof. — The kernel of the operator is

(5•I9) ^^cl{x~~z)c^z~y>)dz

where the superscript c denotes complement. This is the resultant of two kernels and

the first part of the lemma will follow if we can show each of them is Hilbert-Schmidt.

To show for example that

(5.20) LUl^-^l2^

is finite, we integrate first with respect to y. The integral is seen to be at most

(5.21) J^SJ^, 3(RQ)))^

where, as before

^-Lj^i2^-
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We estimate the integral (5.21) just as we estimated similar integrals before. If

^cB(o,A)

then (5.21) is at most

^Li^A8^^^))^-^8^^)^?)-^^^^
and since (Ji(p) is at most a constant times p the first term on the right side is at most
a constant times

R^plrfSJR^I^R-^pl^SJp)!.

Thus (5.21) is not only finite, it is even (^(R7'"'1).

Since the kernel (5.19) is the resultant of two Hilbert-Schmidt kernels, the trace
of the operator it represents is given by

f f ^ i ( ^ — ^ ^ ( ^ — x ) d z d x .
JRQ ^RO^

This has absolute value at most

L Ly n ̂  -2) i2 +1 ̂  -^ i2]^ ̂
the sum of two integrals each of which we have already seen to be 0{'Bi"~1}.

In the next lemma we write Hp, for the operator on L^RQ) with kernel

^^}=S^^UX-y+tW-J+J-t)dt

so that

URM=WR[A]-H^.

Lemma (5.7).—Assume s==Log ceSSnL^. Then for any qe^nLg

WR^HR

is nuclear and its trace is 0(Kt~l) as R—^oo.

Proof. — Let us look carefully at the integral representing H^{x,y). The second

factor of the integrand cannot have vanishing argument over the range of integration,

by (5. i). However the first factor may have vanishing argument for some t. If so, then

xeR.0., (x-J).z/(J)<o

so xeD^{jy). Thus if a^ denotes the coefficient of the 8 summand of h^~ then these &
summands contribute

(5-M) ^{y)Wy-x)^^^{x)

to HR. Thejmethod of proof of Lemma (5.3) shows that there is a k^SS such that

\^[x)\<_k{x^ ITOÎ )
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and k==k—S is a function in L^E"). Therefore (5.22) has absolute value at most

a constant times

^—^ZD^nRoW

and so by Lemma (5.4) the product with WR^] on the left is nuclear and has trace

^(R71-1).
The remaining part of fi^(x,jy) has absolute value at most

(5.23) ^^{x-y^t^-y+y-t^t

which is on the one hand at most

^\x-jy)

and on the other at most, by Schwarz's inequality

S,(max((^-J)..(J),o))l/2S,(^-J)..(J))l/2.

The first bound shows that (5.23) is bounded uniformly in R, since keL^. In particular

this part ofH^ is Hilbert-Schmidt and so when left multiplied by W^[q], gives a nuclear

operator. A bound on the absolute value of the trace of this product is

^D LL^~x^dxdySt.^>^x-^+t^-^+^-t^t•
First let us confine attention to the set where

{x—y),v[y)<_^\x—y\

where y ls as m (5 • T ) • This implies that

(5.25) l^-j^y^, B(RQ))

for some constant Yi>o. Therefore the contribution of this set to the integral (5.24)

is at most

^\c^y-x)\^\x-y)dxdy

integrated over that part of RQxRfi for which (5.25) holds. If

s(p)=Ll>p|'l(^l^](-J;)^
then integration with respect to y first shows that the last double integral is at most

J^S(Y,^^(RQ)))^=0(Rn-l)

by the same sort of argument used in the proof of Lemma (5.6).

There remains the contribution to (5.24) of the set where

{x-y}.v{y)>_^\x-y\.

On this set we have

^-J)..(J)^iy^, B(R^)), (^-JMJ)^iY^ ^(R^)),
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so its contribution is at most

LL^-y-^^^9 ̂ ^^(M^ ^W'dxdy.

Since ||WR[|q|]||^||q|[i this is at most

L^(M^ ^RQ)))^-^-1)

as before. The lemma is established.

We are ready to give the higher dimensional analogue of ( i . i) or, more precisely,

of Theorem (4.2)5 a ) . As in that theorem the assumption that W^] differ from I

by a nuclear operator is equivalent to the assumption that W^^] be nuclear, and this

implies in particular that s, c—8, h—S are functions in L^E^). In the statement of

the theorem the integral over SO, is taken with respect to surface area.

Theorem (5.2). — Assume that j==Log ceSS and that W^] is nuclear for each R>o.

Then with determinant defined by (4.3), and with (p any function satisfying the conditions (4.6)

and (4.7), we have as R—oo

log det WR^J^R^VOI^) lim ^~n^^~lx)s{x)dx
6 —>•() J

+^Rn-l( dz\ t.v(z)s(t)s(-t)dt+o(K1-1).
• Joa Jt.v[z]>o v / v / K / ' v 7

Proof. — The first term on the right is just the Tx-dimensional analogue of the right

side of (4.8) and so is nothing but

trW^M.

The assertion of the theorem is therefore equivalent to

(5.26) logdetW^M^trWRM+iR-^^J^^L^).^)^-^

As before we embed c in the analytic family

^(X)=Exp \s

but we proceed a little differently now. We shall show first that

(5.27) log det WR[.(X)]=tr W^]+ ̂ (R'-1)

uniformly for X belonging to any compact set. Since this holds trivially for X==o it

suffices to show

(5.28) ^ log det W^(X)]=tr W^]+ ©(R^)

with the prescribed uniformity. The left side is

trW^'(X)]W^(X)]-1.
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Since ^(X) *<:(X)==A(X), (5.28) follows from (5.17) and Lemmas (5.5-5.7). The

uniformity follows from the uniformity of the conclusions of those lemmas, which is

easily verified.

Thus (5.27) holds, and this implies that to prove (5.26) for the entire family c(\)

it suffices to prove it for small X. In particular it suffices to prove (5.26) if c is such

that, with c=S-}-7

f\7{x)\dx<i.

We now use the same trick as in the proof of Theorem (4.2), a) and extend the definitions

of determinant and trace as was done there. Then c may be embedded in the family

(5.29) cW==7+\S

with X in some neighborhood of the interval (i , oo). Clearly
00

^(X)=SlogX+ S (-I)••+lx-'•?'M/r
r==l

(with log i==o) is analytic from some neighborhood of [i, oo] to 8S and it suffices to

prove (5.26) for this family. Since both sides vanish at X == oo it suffices to prove the

differentiated relation, which for the family (5.29) is

trWRM-^trWRM+iR'-^^J^^^.^^N-^))'^

(The prime denotes differentiation with respect to X.) Note that this need only be

proved for each X, since uniformity on closed sets follows from this plus the uniformity of

log dot W^M - tr W^[A] + O^-1)

on closed sets.

From (5.17) and Lemma (5.5) we see that what must be proved is that

-iR^f dz[ t.v[z}{s{t}s{-t}Ydt
ho. Jt.v(z)>o v / v v / v / /

differs from the trace ofH^, as defined by (5.18), by ^(R'"1). As we saw at the beginning

of the proof of Lemma (5.7) the contribution to ~H.^{x,y) of the S summands of the

various h^ has absolute value at most

^—^XDB^nRoW

with TieSS, and by Lemma (5.4) this contributes ^(R'""1). (Indeed, the proof of that

lemma shows that the contribution is actually zero.)

Thus we may ignore the 8 summands of the h^. What remains of H^,^) is

a function which, although not necessarily continuous in x and j, is continuous in x

uniformly for j/eRQ. This follows easily from the fact that the h^ with S summands

removed are all bounded by a single function belonging to L^E"). Continuity in x

uniformly injy is enough to guarantee that (5.18) is equal, in our case, to

LH,O .̂

225
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Thus what must be verified is

(5-30) L^^^^-^^S^S^^'^^^^^^^^^^
The idea is this. We must integrate

HR^^)=^^^^^^-J+^)^(--^+J^ dt

with respect to y over RQ. We integrate first over those y for which jy==z. If these y

were exactly the points running along the inner normal from z we would obtain

L(,>O^^W^)(-^-
Then integration over ^(Rtl) would give

^L^L^-^^^^
which turns out to be equal to the first term on the right side of (5.30).

Of course the difficulty is that RQ is not the Cartesian product of its boundary

with its normals. What we are going to do is cover most of a neighborhood of B(RQ),

which we shall see is all that counts in evaluating the integral on the left side of (5.30),

by finitely many disjoint sets, each contained in one of the coordinate neighborhoods,

such that after applying the coordinate mapping into a half-space the set corresponds

to a Cartesian product and the mapping y\->y corresponds to the orthogonal projection

onto the hyperplane bounding the half-space. Note that there was flexibility in defining

the mapping jh>J. It had only to satisfy the two conditions (5.1) and (5.2).

We shall use here the notation

O^^eQ: d{x, aQj^s}, Q^o,-̂

for an arbitrary set Q. We observe first that for any 8>o

L^R^)^-^"1)-

^/

For with k and S^ as at the beginning of the proof of Lemma (5.7)

(5-3i) |HR(^)|^S,(Y^, B(Ra))),

and so

L^^^^i^^^L^^^ ̂ ))^
which is at most a constant times

R^pl^S^yR^l^y-^-^^plrfS^^I^^R-1).

Thus we need only consider the integral ofH^j^) over RQg. The 8-neighborhood

of 8£1 in En may be covered by finitely many coordinate neighborhoods N,. We can

find disjoint sets B, such that
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(i) the union of the B^ is ^U,

(ii) SB^ in c)£l has [72—i) -dimensional measure o,

(iii) the closed 8-neighborhood of B .̂ in E" is contained in N,.

Finally, if 7^ on c^(N^nQ) (where ^ are the coordinate mappings which take

the N^nflS into half-spaces) denotes projection onto the boundary half-plane, let

0,={j^ : d{^ (B,)28)^, 7^(j;)e^((BJ28)}.

Note that since the B^ are disjoint the distance between any two different (B^.)28 is at

least 48, and this implies that the Q^ are disjoint. Moreover

UQ,CQ,

and

^-Un,cU{jeQ : d(y, BB^AS}

where A is some positive constant.

We shall show first that the contribution of

{yeRQ. : d{y, ^(RB,))^AR8}

to the left side of (5.30) is at most an arbitrarily small constant times R/
1
""

1 if S is small

enough. In fact by (5.31) this contribution is at most

f S^ (y d{y, BRQ)) dy == R
1

 ( Sj, (yR d[y, ^0)) dy.
Jd(y,8(RBi))^AR8 k ' ' K y 9 / / -7 Jd(y,8Bi)^AS k v l K-75 ) ' -

If

^(p)=vol{j/ : d{y, %i)^p, d^ BB,)<AS}

then for sufficiently small 8 we shall have

^(p)^8?

for all p. (Here s is an arbitrary but fixed positive number.) This is seen by applying

the coordinate mapping o, and using property (ii) of the B,. This implies that

R^ S^yR^.a^))^
Jd{y,8Bi}^A8 k " v•/5 " •/

is at most a constant times

sR»J;p|</S^(TRp)|=£Y-lR"-lJ;p|^(p)|.

Thus if 8 is sufficiently small then the left side of (5.30) differs from

Sĵ H,o^

by an arbitrarily small multiple of R
1
""

1
. We now specify that

J^^^a^j)); yeQ,.
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We define J arbitrarily in the complement of U Q, except that, of course, (5.1) and
(5.2) must be satisfied.

To evaluate the integral

(5-32) JRO^^)^

we use on ^ not the coordinate function or, but a modification T, defined by

^(^((^--JMJ), ^(A .. . , <(jQ).

From the way J was defined the Jacobian determinant

T - ^J'- 9y

is bounded and bounded away from zero, and if we set

H^HBCTr1^)^1^))
then (5.32) equals

(5.33) R'J .. . JH^, ̂  . . . , 7f)J(7j1, .. ., Tfr1 ̂  . . . , ̂ n.

The integral with respect to 7)2, . . ., •̂  is taken over r,((B,)25) and for each 7]2, . . ., ff

in this set the integral over •/]1 is taken from zero to a quantity which is bounded and
bounded away from zero.

Now given any functions /eL.i(o, oo) and ^eL^(o, oo) such that

lm^(7])=o,

we have

(5.34) ^m Rj^/(R7]k(7]) ̂ =o.

This is very easy. It follows that with an error induced in (5.33) of at most o{'Kn~l)

the Jacobian may be replaced by its boundary function

J(0,7)2 , . . . ,^).

Therefore (5.33) equals

R-J . . . JH,(R7]1, 7]2, .. ., 7f)J(o, 7]2, . .., 7f) d^\ . . . , d^+o{K1-1)

==Rn~lS ' ' • JJo00 Hi(z/? 7]23 • • "^J^ ̂  • • - ̂ n) ̂ ^ • • - ̂ ^(R^),

where the integration with respect to Y]2, .. ., rf1 is over T,((B,)28) as before. But the
first term on the right is exactly equal to

^"L^^L^o^^)^^^^-^^
Since the difference

L•••<fe-SL-••^
228
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can be made arbitrarily small by choosing 8 sufficiently small, this shows that

LH^^)^=R-^^^J^^,.,(,)^

To prove (5.30) now it suffices to show that

S^t'V^W{-t)dt=-^^t.v(s{t)s(-t)Ydt

for each unit vector u. But this is proved just as the analogous identity (3.8), as the
reader should have no difficulty verifying.

It was mentioned in the introduction that the coefficient ofl^"1 in the asymptotic
formula, namely

(5.35) L^L^'^W^^

may be written as an integral over the (7z—i)-sphere S"-1 rather than as an integral
over Bft. If G denotes the Gauss map

^ft-^-1

which takes any ze80. to the point of S^ corresponding to the inner unit normal

vector v{z) then we can define the measure v^ on Sn~l by defining

v^ (A) == surface measure of G^A) on 80..

Then the integral (5.35) is equal to

Ssn-M^S^'^^-^^

This way of writing the coefficient makes a little clearer the individual contributions
of 0. and s to the asymptotic formula.

6. Variable convolution operators

We consider first operators on 1.2 (Rft) with kernels of the form

i x \

^R3^-

At the end of the section we shall indicate what can be done with the more general form

I x y \

^R^j-

The setting will be the algebra, which we call 38 {^), of G
1 functions from £1 to

the algebra S8 of the last section. More exactly, ceg8(Sl) if c is a function from 0. to S8

for which there is a continuous function, denoted by

grad c,
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from Q. to ^-vectors with components in 3S^ satisfying

(6.1) \W-c{y)-{x-y).gv^c{y)\\^=o[\x-y\)

for \x—y\->o. The subscript indicates that the norm taken in (6. i) is the norm in SS.

In the set of nonnegative elements of S8 with its natural partial ordering, bounded

subsets have least upper bounds. We define, for ce^(fi.)

(6.2) c=f.u^b.\c{x)^ ^.^.|grad^)|.

Here |grad c{x) \ is taken to mean the sum of the norms of the components of grad c{x).

The norm in SS(fl) is given by

I k I I^(Q) = I ^ l l ^ ^ - 1 1 ^ 1 1 ^ -

The set ^(Q) is a Banach algebra under convolution defined by

(q*^)(x)=q(^)*^).

It is convenient to associate with each CE^(Q) a function of two variables c(x, t)

defined everywhere on QxE"; given xeO. let c{x, t) be an everywhere defined function

of t (more exactly a constant times 8[t) plus an everywhere defined function of t) rep-

resenting the element c(x) of S8. Clearly we have for all x

(6.3) \c{x, t) |̂ ), |grad^, t) \^{t)

for almost every t (and for t == o which corresponds to the S summands of the distri-

butions c(x)). The gradient, of course, is taken with respect to the variable x.

For any ce^(Q.) we denote by W^c] the integral operator on L^RQ) with kernel

( x \

^R5^)-

Note that with the notation of the last section

,̂.)= )̂̂ ,.)
where 7 is an ordinary function of two variables. Correspondingly WR^] is multipli-

cation by a(^/R) plus the integral operator with kernel

Jx \

^R^J

in the classical sense. It follows that

l|WR[c]||^||a[|,+J^^)^||c||^).

In the special case c{x]=f{x}c with ceSS the operator on L^E") with kernel

Ax)c(x—_y)
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has inverse exactly equal to the operator with kernel

Ayr'h^-y)

where h is the inverse of c in St. This suggests that in denning the approximate

inverse UR^] ofWp[/'] in general, one should replace the first term of (5.14) by

*(t-)
where h is the inverse of c in S9{^1).

In analogy with the last section our basic assumption will be that

(6.4) c==Exps, se^{0.).

As with 3§^ this is equivalent to

ceSS{^)

? bounded away from o on ^ixE'1

(the circumflex denotes Fourier Transform with respect to the second variable) plus,

in dimension one

A arg ?(x, ^) == o for each x.
— oo <S< °o

This follows from the Arens-Calderon form of the Wiener-Levy theorem and the fact

that the most general homomorphism of^(d) onto the complex numbers is of the form

c-^^x, S)

for some {x, S^e^xE^ The proof of this is not hard and is left as an exercise for the

interested reader.

If (6.4) holds we define the elements h and h^ of ^[0.) in analogy with the last

section. The mapping y^y, just as before, is to satisfy (5.1) and (5.2). Then we

define V^[c] to be the operator on L^RQ) with kernel

l y \ r i y \ i y - \
(6.5) h [-.x-y - h^ { ^ x - y + t \h^\--,-y+y-t \dt.

\K. / Jt.v{y)>0 V< / \K /

When carrying out the procedure of the last section we encounter new operators

which arise because c{x, t) is not independent of x. Given q, c^eS§(^l) we write

VR^I? ^2]

for the integral operator on L^RQ) with kernel

Ki - ^ - ^ -^i - ^ -^ K2 -^-J ^JRQ\ \K. ; \K /; \K ;

and VR^, c^\ for the operator with kernel given by a similar formula but with absolute

value signs around the integrand. Although one such operator will make a significant

contribution to the asymptotic formula for the determinant, these operators are all

reasonably small in certain senses.
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Lemma (6.1). — If c^c^3S(fX) then as R->oo

VR[q, ̂ -^(i), VH^, ̂ ^(R^2).

If moreover c^eSS then the estimated trace of

WR^IVJ^]

is O^R1-1).

Proof. — It follows from (6.1) and (6.3) that

( x
^ —, x—z' ( ^^" /^ i ' ^ "^ ) ^AR"1!^-^!^-^)

for some constant A. Hence the kernel ofV^q, ^] is at most

(6.6) R-^x-^c^x-y)

where ^===Aq*^. (Note that the 8 summand of ^4 plays no role here.) We may

write this as

R-- l | ^—^|^(^—^)^^^;^_y)<,R^4-R - l | ^—J ; | ^ (^—J ; )X{^^/ ) : |x -^ |>eR}•

The first of these summands is the kernel of convolution with a function whose L^ norm

is at most c || 6*4 [ [ i . Since \x—y\ is at most a constant times R for x,yeRQ,^ the second

summand is at most a constant times the kernel of convolution with a function whose

L^ norm is

^\^c^dx=o^

as R-^oo. Hence VR^, ^2]= = ooo( I)•

We use the same decomposition to estimate the Hilbert-Schmidt norm. The

square of the first summand is

R-2|^-^|2^4(^-^)2^^^..1,_y^,R^<£R- l|^-^|^(x-^)2.

This must be integrated over R^ X Ri2. Integration with respect to x gives at most

eR.-l(\x\c^x)2dx.

Subsequent integration with respect toy gives at most a constant times sR^1""1. Similarly

the square of the second summand is at most a constant times

R-^x-^c^x-y)2^^^^^^^

and the integral of this over RQ x R^2 is at most

Rn~lvo^L^X\c^dx

which is ^(R^1) as R—»-oo. Thus we have shown that the square of the Hilbert-Schmidt

norm of V^[^, ^] is ^(R71"1).

To prove the last part of the lemma, note first that the estimate (6.6) implies

232



ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 233

that VR[CI, eg] has estimated trace zero. Hence we may assume €3 has no 8 summand.

The estimated trace in question is at most the estimated trace of the operator with kernel

LR-' \c^-z)\\z-y\ c,{z-y)dz.

This is the resultant of two nonnegative Hilbert-Schmidt kernels. The estimated trace

is therefore equal to the absolute value of the trace, which is

Uw^-^^-y^y-^c^x-y^dxdy

^LL^i^Ki^-^+^-jo2)^
and this is 0(R"-1).

Theorem (6.1). —Assume c='Exps with seg§{^), and define V^[c] by (6.5). Then

Wa[c] is invertible for sufficiently large R and we have, as R-^oo

WRH-^UR^] +o»(i), WRM-^URH+^Rt"-1'/2).

Moreover for any c^eSSifi) the operator

WR^] (WBM^-URM+UBMV^, h])

has estimated trace o(R"~1).

Proof. — If Uy.(x,y) denotes the kernel of V^c] then

WRMUaM
has kernel

LC^X~^)VR{z~~^z==S^C(i'x-z)u^-^d^

+L(c(^x-z)-c(i'x-z))v^dz'
By Theorem (5.1), or more exactly its proof, the first term in the right is the kernel
of an operator

I+ER

where

E^=^(i), ER^R^-1)/2)

and for each ^eB the product WR^ER has estimated trace ^(R^-1).

The second integral on the right side is the kernel of

VRM]+ER.

Here Ep has kernel of the form

^^^'L^^'-2)-^^^-^)11^^)^
233

30



234 H A R O L D W I D O M

where HR has the following properties. First

|HR(^)|^->O

for some keg§ without a 8 summand. Second

(6.7) LLlH^^^12^^==o(Rn~l)•

These things may be checked by referring to the proof of Lemma (5.7).
Thus

WRHURH^I+V^AJ+E^+E^.

By Lemma (6.1)

VRM]=^(I), E^^(i).

(Note that the kernel of E|̂  is at most that ofV^^].) Hence in particular Vf^[c]
is right invertible.

To see why this implies WR^] is also left invertible, write

c{x,t)==^x)8{t)+?{x,t)

where 7 has no 8 summand. Our hypothesis implies that ai{x) is nonzero on 0; in fact

a(;v) is the exponential of the coefficient of the 8 summand ofj. Therefore WR^] consists

of an invertible operator, multiplication by a (A:), right multiplied by the operator

Wnp+a-^]

which differs from I by a compact operator. Hence, by the Fredholm alternative,

left and right invertibility for WR^] are completely equivalent.

Hence WR^] is invertible for sufficiently large R and

WKM-^UR^KI-VR^Aj-E^-E^+^^R-1).
Since

|UR(^)I^O(^)

for some ^B, what remains to be verified is that for each 6-3 eB

WR[^, W^]Ej,

have estimated traces equal to ©(I^-1). That the first does has already been mentioned.

As for the second, it follows from (6.7) that the kernel ofEJ^ has absolute value at most

P-^-^l

times the kernel of an operator which is ^(R^-^2). It follows that E|̂  itself has estimated

trace zero. One may assume therefore that ^ has no 8 summand, and Schwarz's

inequality shows that the estimated trace of

WR^K
is at most ©(R^-^2) times

^(LL^-^^-^2^^29
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If 0. is contained in the ball B(o, A) then this is at most a constant times

^"Ui^HM2!^)!2^2-^'1-^).

Theorem (6.2). — Assume that s ==Log ce38{0^ and that Vf^[s] is nuclear/or each R>o.

Then with determinant defined by (4.3), and with 9 any function satisfying the conditions (4.6)

and (4.7), we have as R—^oo

log det WR^^R^ lim f dx fe-^s-1^, t)dt
£ —^" 0 */ &2 J

+*RW-lL<^>o^)^ ̂  -^
-iR'"1^^^ -^.grad^.^+^R'-1).

Proof. — The first term on the right side is, by (5. i8)

trW^M.

As in the proof of Theorem (5.2) we first embed c in the family

<;(X)=ExpXj-

and show that

tr WR[V(X)]W^(X)]-1 == tr W^M + .(R-1)

uniformly for ^ in any compact set. The only difference with the corresponding point

in the proof of Theorem (5.2) is that now we must show

trW^<)U^]V^ h]=0(K1-1).

This follows, however, from the last part of Lemma (6.1).

Thus once again it suffices to consider the family

c{\)=c+\S

and to compute, for this family

^detlogWRM-trW^]-1.

By the preceding theorem this is

tr U^M-tr UKMV ,̂ Aj+^R-1).

The first term, the trace of U^], is

(6.8) trW^]-f iy\ ^J-^-J+^J-.-j.+J^
JRQ Jt.v{y)>0 \^ f \K /

=trW^h]-Rn-l( dz[ t.v{z)h^ t)h^-t) dt+o{Rn-l).
JaQ Jt.v{z)>0
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The proof of this is like the corresponding part of the proof of Theorem (5.2). One

uses an argument based on (5.34) to show that if in the integral on the left side of (6.8)

the quantity R~1^ is replaced by R^J the error incurred is ̂ (R^"1). We omit the details.

We are left with

trURMVaM].

Now UR^] is the sum ofW^^] and another operator whose contribution to the trace

of the product can only be o{'Rn~l), by (6.7) and Lemma (6.1). Therefore what we

must compute is

(6.9) trW,[A]V,[(,*]

°J J *(^-^f (^•'-^-^•'-Mi-'-^2-JRQJRO \K. j JRQ\ \K J ^K ff ^K f

First, observe that we may replace

,̂.-.
in this integral by

^-
with error ^(R71""1). The reason is that the difference between these functions is the

kernel of the operator V^A, 8] and

trV^SJVR^A]^^--1)

by Lemma (6.1).

Next, let us see what error is incurred in the integral (6. g) if the z integration

is taken over all E^ If 7i, c are the least upper bounds for h and grad c as in (6.2) the

error has absolute value at most

f f R-^x-y^y-x^dxdyf ^(x-zWz-y) dz.
JRQJRQ • - / 1 ^ } -^(R^ v ) \ J )

The proof of Lemma (5.6) shows that the inner integral, as a function on RQ X RQ,

has Lg norm ©(R""1). Therefore the triple integral is at most ©(R^"1^) times

^'(LjRJ^-^l2^-^^^)1'2-0^"1'2)

just as at the end of the proof of Theorem (6.1).

Thus we have shown that

trURHV^A]

is equal to

f f *(^-W (^'-^-'{i-'-'Mi.'-^
JROJRQ \K / JE^ \-><- / \K. j ] \K j
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plus o{'Rn~l). We leave it to the reader to check that the error incurred upon replacing

I x \ [ y \

^R^-'j-^R5'-^

by

R-\x-y).g^dcl^x-z\

is also o^K1-1). Since

grad s == h * grad c

(this is just the old formula (log/)'==/'// suitably interpreted) we conclude that

trUKMVRM]=f f R-^l-y-x\{x-^.g^dsl-x-^dxdy+o{R^^
JR^JRO V1"" / V^ /

Again the error incurred upon integration with respect to x over En rather than RQ

is o^'SJ1"1) and so

trURMV^, ̂ R^J^JAO;, -x)x.gr^ds(^ x) dx+o{K1-1).

Recall that we are dealing with the family

(6.10) ^(X)=6-+^S

and are trying to verify that the trace of Wa[^]~1 differs by o(R!^~l) from the sum of

the derivatives with respect to X of the three terms appearing on the right side of the

formula given in the statement of the theorem. The trace ofU^] is given by (6.8).

That the two terms on the right side of (6.8) are the derivatives of the first two terms

of the formula is no different from the corresponding fact in the last section.

There remains the verification of the identity

2 h[y, —x)x.gro.ds{jy, x) dt= . s{y, —x)x.gr2.ds(y, x) dx

for eachjy. The right side is (prime denotes differentiation with respect to X)

J/(7, —x)x.gr2ids{jy, x) dx+Js{y, —x)x. grids'{jy, x) dx

=J^'(j/, —x)x.grads{^ x) d x — j s { j y , x)x.gr3.ds\^ —x) dx

=2p'(7, —x)x.gr2ids{jy, x) dx—j x. grades {jy, x)s\y,—x)} dx.

The first term is exactly

2 \h{y, —x)x.gro.ds{y, x) dx

since A'==J for the family (6.10). We shall shall show that the second term is zero.
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It suffices to show that for any SESS without a 8 summand, and with

A==Exp(—s ) ,

one has

^xs{x)h{—x)dx==o.

It is simplest to assume first that

(6.11) J(i+H)|^)l^<oo.

Then also

(6.12) J^(I+M)|^)|^<0)

since L^ with weight function i+M is a Banach algebra under convolution. If
h = h + 8 then taking Fourier transforms gives

i +J^)^ dx = exp i-\s[x)e^ dx).

Because of (6.11) we can differentiate (that is, take the gradient of) both sides with
respect to ^ to deduce

fx^e^ dx == -(xs^e^dx exp (-fs^e^ dx\ = -f^ dx\ys[y\h[x -y}dy.

Therefore

xh[x) ==^ys[y\h{x —y}dy

almost everywhere. If s is a continuous function with compact support then both

sides are continuous, the equality holds everywhere, and at x==o it gives

o^fjys(y)7i{-jy)dy=fjys(y)h(-j)dy.

For general seSS we use the facts that the continuous functions with compact

support are dense in SS and that

{c^c^)-^fxc^x)c^x)dx

is [| | IH-continuous. This completes the proof of the theorem.

We shall now indicate how one might obtain asymptotic results for more general

operators W^^] with kernels of the form

( x y \

^R'R''-7

If one defines (supposing for the moment that c is defined for all values of its second

variable)

c ° { x , t ) = c [ x , x — — t \
\ R /

238



ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 239

then

/A: \ x yc[^^-y =' R ' R/•u | __ Y __ 11 | —- r | __ __ Y __ i) |

' R5 y ~ R ' R 5 -T\K / \K K

Therefore an asymptotic formula for

log dot W^]

should be obtainable form Theorem (6.2) applied to the function c° (which, admittedly,

-depends on R).

To a first approximation ^{x^ t) equals

c(x, x, t)—R~lt.gr^Ld^c{x, x, t)

where the subscript refeis to the fact that the gradient is taken with respect to the second

variable. Substituting this into the formula given by the theorem gives, after a little

manipulation

logdetWR^-RMimJ dx fe-^e-1^, x, t}dt

+*Rn-lL^.L,)>o^y^J^ ^ ̂  ̂  -^
+^"^0^^^-^ -x)x'<.gr!id2s{^^ ̂ )~grad^(^,^, x))dx

+.(Rn-l).

Here of course c[x^y^ t) is, for fixed x andj/, supposed equal to

Exps{x,jy, t).

Note the asymmetry in the first two variables. This should not be unexpected

since the form of the kernel also displays this asymmetry. If c is symmetric in its first

two variables though, then so is s and the third term of the formula vanishes.

Although what we just described is the simplest way of formally deriving the

asymptotic formula from what has already been done, it may not be the simplest way

to go about proving it. Perhaps better would be to prove an analogue of Theorem (6.1)

for the general case, where instead of the term

/ v \

"(i-'-^
appearing in (6.5) one uses

^-4
and continuing as before. The computations would certainly be quite lengthy and

the whole thing might not be worth the effort. There can be no doubt that under

.appropriate conditions the last asymptotic formula is correct.
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