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ASYMPTOTIC INVERSION
OF CONVOLUTION OPERATORS

par HaroLp WIDOM (1)

1. Introduction

A beautiful and important theorem of G. Szegt describes the asymptotic behavior,
for large N, of the Toeplitz determinants

det(g_;), 0<j, k<N

assoclated with sequences

L':{Ck}; — oo <k<oo.
If
5(6):}672 c e, logE(O):kZ 5,€'0

then Szegd’s theorem asserts that under certain conditions the determinant, denoted
by Dyle], satisfies the asymptotic relation

(r.x) log DN[C]:(N+I)50+k§31k5k§—k+0(1)5 N->o0.

In the twenty years since the appearance of Szegt’s paper [13] a host of mathema-
ticians have been inspired to try their hands at going further, either to weaken the
conditions needed to guarantee the validity of the formula or to find analogues in other
situations. Some of these investigations have had important consequences apparently
far removed from the original question.

There have been several different approaches. Szeg6, who proved the result
for ¢ positive and having a derivative satisfying a Lipschitz condition, showed that the
formula (1.1) became an identity for certain ¢ and large enough N, and then used an
approximation argument for more general c.

A method of Baxter [2] and Hirschman [8] makes use of an identity for Dy[¢]
valid for all ¢ which yields (1. 1) for more general, and not necessarily real,Z. Devinatz {4]
has refined these methods to obtain the asymptotic formula under the most general

(1) Guggenheim Foundation fellow. Research supported in part by a grant from the National Science
Foundation.
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192 HAROLD WIDOM

conditions to date. Golinskii and Ibragimov [6], using an identity related to that of
Baxter and Hirschman, have shown essentially that if ¢>0 then (1.1) is true if it
makes sense.

Kac [10] derived the formula by a completely different method which was based
on a certain combinatorial identity. He was the first to obtain a continuous analogue,
and exactly the same identity played a critical role. Although there is an inherent
limitation (¢ must be close to the Kronecker 8 in some sense) the method admits
considerable generalization, in particular to variable coefficients [11] and to higher
dimensions [14].

Hartwig and Fisher [7] started with the asymptotic inversion of the Toeplitz matrix

TN[C]:(Cj—k)> 0_<_j, kSN

If T(2) is an analytic family of matrices defined for A in some domain of the complex
plane, and each T(2) is invertible, then we have the relation [5, p. 163]

(1.2) di;log det T(\)=tr T'()T(A)~ 1.

Thus if the given sequence ¢ can be embedded in an analytic family ¢(2) for which all
the corresponding traces in (1.2) can be evaluated asymptotically, and if for some A
the corresponding Toeplitz determinant can be evaluated trivially, then

log Dyl¢]

can be found by integration with respect to A. Hirschman [g], using a different kind
of approximate inversion from that of Hartwig and Fisher, showed that this approach
could also yield a continuous analogue of (1.1).

The success of this method depends on the quality of the approximation one uses
for Tg[c]™!. It must be extremely accurate yet simple enough so that the computations
are still manageable. We shall present here such an approximation which leads to
a proof of (1.1) which is remarkably easy and quite elementary, with conditions on ¢
weaker than hitherto required. The appropriate inversion formula is of such a form
that extensions to other cases suggest themselves. Thus the continuous analogue will
hardly be more difficult to obtain. (The main problem there is: exactly what is meant
by determinant?) We shall also consider in this paper generalizations to higher
dimensions and to the case of variable convolutions.

We recall certain facts from operator theory. The reader is referred to [5] for
details. Given a compact operator T on Hilbert space one defines

Tl =(2a((TT)")7)" (0<p<w)

where ¢, denotes the i-th eigenvalue. The norm ||T||,, whether or not T is compact,
is the ordinary uniform (operator) norm of T. One has the inequalities

(r.3) T Tl <[ Tl [ Tellys N Telly [Tyl Telle-
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ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 193

If ||T|;<co, then T is said to be of Hilbert-Schmidt type and ||T||, is called the
Hilbert-Schmidt norm. In case T is an integral operator with kernel K(x, y)

ITE=[[ 1K (% ) dx dy.

If ||T||,<oo, then T is said to be nuclear, or of trace class, and ||T]|; is called the
trace norm. If T is nuclear then its trace is defined as

(x.4) tr T=§(Txk, %)

where {x,} is an orthonormal basis for the Hilbert space. The series always converges
and its sum is independent of the choice of basis. There is the inequality

(x.5) |t TI<[|T|];

We shall use an analogue of the O, o notation for operators. If {Ty}is a family
of operators depending on a parameter N and if {(N) is a positive function then we write
Ty=0,(4(N))  (0<p<c0)

if
I Tl =0((N))

in the usual sense. The notation

Ty =0,($(N))
is defined similarly.
To invert a Toeplitz matrix Ty approximately it is not necessary actually to invert

it. Given a candidate Uy for an approximation to Ty ! one need only define a matrix Ey

(E for error) by
(x.6) TyUy=I—Ey
and prove that Ey is small in an appropriate sense. If

| Exl] <1
then Ty must be invertible and
Ty ' =Uy(I—Ey)~"
If Ey=o,(1) for some p and ||Uy||,=0(1) then
Ty '=Uy+o0,(1).
This follows from the first inequality of (1.3) if one uses the Neumann series expansion
of I—Ey)~%.

For the computation of traces of matrices involving Ty it is of course desirable
to show that Eyg=o;(1). This is not absolutely necessary though. For example
E;=0,(1) implies

Ty ' =Uy+UgEg+0,(1).

193
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194 HAROLD WIDOM

The paper is divided as follows. The next section contains a heuristic derivation
of an approximation Uy[c] for Ty[c]~'. In the following section it is shown that the
resulting Ey defined by (1.6) is o,(1) (in fact, curiously enough, 0,5(1)), and that the
asymptotic formula (1.1) holds. The assumptions on ¢ are that there be a determination
of log ¢ which is bounded and has a bounded conjugate function, and whose Fourier
coefficients s, satisfy

oW

T R[5l <.

Section 4 treats the continuous analogue. Given a tempered distribution ¢ on
the real line with Fourier transform ¢ which is a bounded function, the finite Wiener-Hopf
operator Wgfc] on Ly(o, R) is defined as follows. For feL,(o, R) take the Fourier
transform of f extended to be zero outside the interval, multiply by ¢, take the inverse
Fourier transform, and restrict it to [0, R]. The result is Wi[¢]f. In an appropriate
sense the operator is convolution by ¢ on L,(o, R). With Ug[¢] defined in analogy
with the discrete case it is shown (with conditions on ¢ analogous to those in the discrete
case) that the corresponding error operator is 0,(1). With a further assumption needed
even to define the determinant (and there are two different ways of doing this) the
analogue of (1.1) is derived.

Section 5 treats the case where the interval [o, R] is replaced by RQ where € is
a bounded region in n-dimensional space. Because of the extra complications involved
we make stronger assumptions on ¢ than previously. In the analogue of (1.1) the first
term on the right is a constant times R" the second term a constant times R"™! and
the error o(R"™?!). (The formula, with considerably stronger assumptions on ¢, was
obtained in [14].) It is interesting to note that the coefficient of R*~! may be written
as the integral over the unit sphere 8"~' of a function associated with ¢ with respect to
a measure associated with . This measure is well-known to differential geometers.
It is induced from surface measure on 9Q by the Gauss map

0 —>8r !

which takes any point on 2Q into the point of 8"~ ! representing the inner unit normal
to 9Q at that point. Convex sets are determined up to translation by these measures [3,
§ 59], but not sets in general.

Finally certain variable convolutions are investigated. A convolution operator
has kernel of the form ¢(x—y). A variable convolution has kernel of the form

C(xs)’: X _.y)'

These operators may be thought of as bearing the same relation to ordinary convolutions
as variable coefficient linear differential operators do to constant coefficient operators.
Indeed pseudodifferential operators are variable convolutions of a particular kind [12].
(Strictly speaking of course every kernel is the kernel of a variable convolution operator.
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ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 195

One should regard ¢ variable convolution * as a way of thinking about certain operators
rather than as a definition.) We shall be concerned with variable convolutions having
kernels of the form

c(%, '—é—, x—y) x, yeRQ

and obtain for them analogues of the result of the preceding section.

Each of the last three sections is more complicated than, but in many ways similar
to, the preceding. In each of these sections we shall give details when something new
is involved, but details will be omitted if they would be essentially repetitions of previous
arguments.

2. The approximate inverse

The matrix Ty[c] represents convolution by ¢ on the finite (integer) interval [o, N]J.
If we confine attention to well into the interior of the interval then its boundary cannot
play much of a role and the interval should be replaceable by the set of all integers.
Thus if ¢ has the convolution inverse &

(2.x) cxh=h*xc=3,

it seems reasonable to suppose that for j and %2 well away from both o and N the j, 2
entry of Ty[c]™' is approximately &;_,.

Next suppose we are well away from the right end-point N. Then we should
be able to replace the interval by the set of nonnegative integers. Convolution on L,
of the nonnegative integers is a (semi-infinite) Toeplitz operator, or discrete Wiener-Hopf
operator, whose inversion is by now very well known. If [r] denotes r-fold convolution,
with the o-fold convolution of any sequence taken to equal 3, the convolution exponential
of a sequence ¢ is

o)
Expc= 2 ([l
r=0
We write ¢ Exp * rather than “ exp ** to distinguish it from ordinary numerical exponen-

tiation. Write
s=Loge¢

if ¢=Exps. The sequences ¢, and c¢_ are defined by
€L =0, )y b= =CY(—c0,0)

where y denotes characteristic function and multiplication is pointwise. (That Z=o
is put with ¢, is not important. It could have been put with ¢_ just as well or split
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196 HAROLD WIDOM

between the two.) Finally, with /4 the convolution inverse of ¢ as in (2.1) and s=Log ¢,
define £ and %~ by

h* =Exp(—s,), A =Exp(—s_),
so that
(2.2) bt =hZ,=o0, k<o,
and
ht bk~ =h.
The inverse of the semi-infinite Toeplitz matrix
(G-x) 00X, k<o

has, under certain conditions, its j, # entry equal to

(2-3) T B b

—k+m*

(A proof of a similar inversion will be given in Lemma (5.1).)

This should be close to the j, & entry of Tg[c]™! if j and % are well away from N.
But if j and % are also well away from o we have already argued that this entry should
be close to #_,. To reconcile these statements note that

b= X hik,
or, more symmetrically
(2.4) hj—k:m=z_whj++mh‘:k—m
Therefore (2.3) equals
kg —k m§1h3++mh:k—-m

and the second term is indeed small if j or % is large and positive.

Similarly an approximation to the j, k entry of Ty[¢] ™, valid for j and % well away
from the left end-point o, should be

If we put the last two expressions together we see that

Zh

J+m

—Zh‘

—N-+j— mh;‘l——k+m
is close to each of the approx1mat10ns in its range of validity. Hence we define
(2.5) U=l o~ By — Z iyt s 04 BEN.

Note that the expression for Uy[¢] consists of three terms, the first arising from the interior
of [0, N] and the others from the two end-points.
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ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 197
3. Toeplitz matrices

The natural setting for our approach is a certain algebra &/ of sequences. We
say that cesf if

«© o]

]Hc]]]zzkzz_:wlkllck]2<oo, F0)= 2 ¢eé®eL,_(o, 2n).

leliP=—%(]

which follows easily from Parseval’s identity, shows that

ler* e[l <Hllelll 1122]l + a1 112111

from which it follows that & is a Banach algebra under convolution with norm
ell =Tllelll +1Ie]l-

The relevance of the ||¢]|, part of ||¢|| is clear. It is equal to the norm of
convolution by ¢ on L, of the integers, and an upper bound for convolution by ¢ on L,
of any subset of the integers. These things also follow easily from Parseval’s identity.
The other part of ||¢||, namely []|¢]||, is equal to the Hilbert-Schmidt norm of the
direct sum of the semi-infinite matrices

Use of the identity
2
do do,

£(6) —¢(e)
2sin 3 (60 —q)

(6 5+1) 0<j, k<o,

3

(c—j——k—-l) 0<j, k<co.

Given a sequence cesZ/ define the Cesaro mean M, ¢ by

(M 6.) — (I——l_:"l)cka Ikl_<_”:

0, otherwise.

Thus (M,c)” is just the n-th Cesaro mean of the Fourier series for 7. Although the
sequence of Cesaro means does not converge to ¢ in the norm of &7, it does have useful
properties with respect to the norm ||| |||, as the following lemmas show.

Lemma (3.1). — If |||¢]|]<oo, then
lim ||| —M,¢[|| =o.
Proof. — We have
| (M,,0)] < | ]
for all #» and
nlinl (M,0), =06,

for each 2. The conclusion therefore follows from the dominated convergence theorem.
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198 HAROLD WIDOM

Lemma (3.2). — Suppose a, and b, are two sequences of elements of <7, and a and b two
elements of of, such that as n—co

a,~>d, b,—~b  boundedly almost everywhere,

lla,—alll=o,  |[[6—b]l|>o0-
Then also
|| @, * b, —ax%b]||—>o.
Proof. — We have
a,%b,—axb=(a,—a)*(b,—b)+(a,—a)*b-+ax(h,—b).
It suffices therefore to prove the assertion in two special cases, the first where both of

the limits are zero, and the second where one of the limits is zero and the other sequence
is constant. In either case we write

3,(8)5,(0) — 3,(9)b,,(0) = (3,(0) — 3,(9))5,(0) + 3, () (5,(0) — b, (o))

and we must show that the L, norm of this function of 6 and ¢, with respect to a certain
measure, tends to zero.

In the first case, where a=0b=0, the norm of the first term on the right tends
to zero because the norm of ’

2,(8) —a,(9)

does and because the 4,(0) are uniformly bounded. The norm of the second term
tends to zero for the same reason.

In the second case we may assume that a=o0 and &, is independent of n. Then
the norm of the first term on the right tends to zero for the same reason as before and
the norm of the second term on the right tends to zero by the dominated convergence
theorem.

Lemma (3.3). — Suppose ¢,, ce o/ and as n—>o0

¢,—>C  boundedly almost everywhere,

|| x—¢[||—o.
Then also
|[| Exp ¢, — Exp ¢|||—o.

Proof. — We have
I Exp ¢, —Exp e[| < Z [[[e — e[| /r!.
By the preceding lemma |[||d?—d7||| >0 for each 7, and we have the inequality

11— < 2sup )

for all n. It follows that the sum of the last series tends to zero as n—o0o.
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ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 199
Next a lemma from operator theory.

Lemma (3.4). — Let T, be bounded operators on Hilbert space satisfying
T,—T strongly

(that is, T,x—Tx for each vector x). Let S, be nuclear operators satisfying
IS, =S|, —o.
Then also
I|T,S,—TS|,—~o.
Proof. — We have
ITS, — TS|l < || T(S, — S){ly 4 [[(T, — T)8 -
Since T,=0,(1) (by the uniform boundedness principle) an application of the first

inequality of (1.3) shows that the first term on the right tends to zero.
Now because T,—T strongly and S is compact

I(T, —T)8]],, >o.
This implies that the eigenvalues
&((8'(T, —T) (T, — T)8)"?)
tend to o as n—o for each i. Since
&((8°(T;, —T*)(T, — T)8)"*) <2 sup || T, ||..4((8"8)"")
for all » and ¢, and since
|18l = 2e((8"8)") <o
an application of the dominated convergence theorem shows that

(T, —T)8||,=2¢,((8"(T, — T*)(T, ~ T)S)"*) ~o.

Now that these dull but useful lemmas are out of the way we proceed to show
that Uy[c] as defined by (2.5) is a good approximation to Ty[¢]™!. None of the lemmas,
incidentally, is needed for this. They will be used only later in this section, where
(r.1) is proved.

Theorem (3.1). — Suppose ¢=Exps where s, and s_ belong to of. Then Ty[c]
as tnvertible for sufficiently large N and with Uy[c] defined by (2.5) we have, as N—o0

Ty[e]™" =Ug[c]+0,(1).
Proof. — The j, k entry of Ty[c]Uy[c] equals

N N © N o]

+ - - +
Z Cj—lhl—k— py Gi—¢ 2 kl’+mh—k—-m_ Z Ci—t ) h—-N+l—th—~k+m'
{=0 £=0 m=1 £=0 m=1

199




200 HAROLD WIDOM

Since ¢xh=3 we may write

N -1 ©
lg‘ocj—lhl—kz3j—k_l=2_wcj—lht’-k ’ §+13—lhl k

and by (2.2) and (2 4) this is

0
- 2 G ;) R, — ¢, 2 h” kit .
N~k o m—1 f +m k—m I—N+1 4] lm=1 N+ —m/"N—k+m

Thus if :
Ty[c]Uy[c]=1—Ey
then Ey has j, & entry

__Z - glh;-+mh:k—m+{§ -/ g k——N+l mh;’_—-k—{—m'
It follows from the definition of A% that
ckht=Exps_.
Consequently

E_mcj—lh;-+m=0
if j4+m>o0 and so
M
Z C E_th;-+mh:k——m=0

{=—0c0

for each M. Now as M—o (with % fixed)

0

+ — —
{ 2 ht’+mh—k—m}—oo<t’<co g { E k;_+mh—-k—m}—oo<l<oo
m=1 m=1
in L, of the integers. Since convolution by ¢ is continuous it follows that

E 6 glhﬁmk:k_m:o.

{=—o

Similarly

o)

o0
- + —
l=§_:_wcj—l’m§1h—N+l—-th-—k+m—0

and so the j, & entry of Ey is equal to

© -1 ©
- +
—[=§+lcj_, 2 /sz -, Z_ Ci—t Ej PN s t—mhN —ktm
0 [eo] [2e] [2e]
_ - +
—'—-[E CJ_{ N E N+l+mh E—m Z +[ E h—-N—l—th—k+m'
1 = l=1 m=1
Now
[oe] 0
+ u—
(3-1) IZ Gi—t—N % Yt imhfem
=1 m=1
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ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 201

is the j, £ entry of the product of three (infinite) matrices, the first having uniform norm
at most ||7]|,, the second having Hilbert-Schmidt norm at most

({’:‘:‘:1 ‘h§+l+m‘2)1/2:(k§1k lh;l-+k+1 |2)1/2§_(k=§+2k |th |2)1/2:
and the third having Hilbert-Schmidt norm at most
p) lh:k—mlz)uz:(kz_"‘lklh:k‘z)l/z-

m>1,k>0

Since, by (1.3), the trace norm of the matrix represented by (g.1) is at most the
product of these three quantities, and since

(3.2) dim k=§+2klh’ﬂ2=0’
the matrix represented by (g.1) is ¢,(1). Similarly
2 ¢

A

I8

(3-3) / BNt omhN _kim

m=1

represents a matrix whose trace norm is at most the product of |||¢||],

a

(X RIAT,P)™,

k=N+2

and ||k*]|,. Hence Ey=o,(1) and, as was observed in the introduction, this implies
the assertion of the theorem.

Remark 1. — We mentioned in the introduction that actually
Ey = 0y3(1).

This can be seen as follows. The index j belongs to [o, N] so the trace norm of the

matrix represented by (g.1) is unchanged if j is replaced by N—j there. Then (3.1)
becomes

o0

o0
e ., Dkt k
=1 —]—lm=1 N+i+m

—Fk—m-*

But in this form it is clear that we have a product of three Hilbert-Schmidt operators,
two of which are 0,(1) and the other 0,(1), so the product is 0,5(1). Similarly the
matrix represented by (3.3) is 0y3(1) and so Ey=0y5(1).

Remark 2. — Suppose we had an analytic family ¢(A) of sequences satisfying the
hypothesis of the theorem. More precisely suppose

A (Log ¢(A)) .

are analytic from some open set in the complex plane to /. Then the conclusions
of the theorem hold uniformly for A in any compact subset. For example to see that

201
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202 HAROLD WIDOM

(3.2) hold uniformly on compact subsets it is only necessary to notice that (with obvious
notation)

+ () [2 _
k§Nk|hk M}, N=1,2,...

is a nonincreasing sequence of continuous functions converging pointwise to zero. Such
a sequence necessarily converges to zero uniformly on compact subsets, by Dini’s theorem.

Theorem (3.2). — Under the assumptions of Theorem (3.1) the relation (1.1) holds.
Proof. — Embed ¢ in the analytic family
c(M\)=Exp As

which clearly is of the type described in Remark 2. The relation (1.1) for ¢() is (with
an obvious notation)

(3-4) log Dye(M)]=(N+1)50(2) + ,Elkfk(l)f_k(l) +o(1).

To prove this for all A it suffices to check it for a single A (and it is trivial for A=0) and
to prove that the relation obtained by formally differentiating it

(35) 2 10g DyLe)] =N+ )55 + 47

“ (s (W)s— (M) o(1),

holds uniformly on compact sets. For then (3.4) follows by integration. Our proof
of (3.5) will make virtually no use of the specific form of the family ¢(a).
By (1.2) the left side of (3.5) equals

tr T [e' ()] Ty[e()] "
and by Theorem (g.1) this is _
tr Ty [’ 0)]Ux[e] + o).

By Remark 2 this holds uniformly on compact sets in the A-plane.
A little computation gives
N ©

N
tr TN[c']UN[c]=k=§N (N+1—|k1)c,;h_,c—2”2=0€,;_j DI N

+
me1 T+m“—k—m

(Prime denotes differentiation with respect to .  We no longer display the dependence
of the various quantities on A.) From the fact

d
7 Log c(A)=c¢'(A) % c(A)~*

one deduces
(3.6) s,;=,2 cj’hk
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ASYMPTOTIC INVERSION OF CONVOLUTION OPERATORS 203

and so

N
(N—{—I)k=2_chh_k=(N+1)so+(N+1) |k|Z>Nc,'(h_k.
But
(N+1) B Jahoi]< 2 Jhlldh,

and so is o(1). Therefore (3.5) is equivalent to the assertion
N N © @©
—kEEN]k|c,'c/z_k—Qj,lczzoc,;_jmglﬁﬁ,_mh:k_m=k§=alk(sks_k)’+o(1).
As N-—>oo the first sum on the left tends to the limit

o]

2 k|,

k=—c

If
T[e]=(6-s)s 0=, k<oo,

H:( 2 h+ h:k—m) OSja k<oo:

me=1 i+m

and Py denotes projection from L, of the nonnegative integers to L, of [0, N], then the
second sum on the left side is exactly

— 2 tr PyT[¢']PH.

By Lemma (g.4) this converges to

—2tr T[¢/|H
as N—oo. Thus we have shown that (3.5) is equivalent to the identity
(3-7) —]‘E lk|€£h—zc*2U‘T[G']H=E1k(~fktk)'-

Now this identity can be proved, but it is a little messy and it turns out to suffice
to prove a considerably simpler identity (actually a special case), as we shall now see.
With M, denoting n-th Cesaro mean as before, set

() =Exp(M,s(2)), A=) =Exp(—M,s()),,
etc. It follows from Lemmas (3.1)-(3.3) that as n—
e —e|[|>o,  JIIA—R][|>0, [[|A"* —k*[|]|->o,
and of course
(™)™ (8) > ¢'(6)

boundedly almost everywhere. This implies that the identity (3.7) would follow if
the corresponding identity could be proved for each ¢™. (One uses Lemma (3.4) to
handle the second term of (3.7).) Moreover A may be taken arbitrarily small since
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it is a matter of proving the identity of two analytic functions.

But since (3.7) is
equivalent to (3.4) it suffices to prove

log Dy[c]=(N + I)So+k§1k3k5—k+ o(1)

in case s, is nonzero for only finitely many £ and ¢ is close to 3 in any sense we choose,
for example

o—1|+ Z |e=a<1.

=11+ 2 [a

Such a sequence ¢ can be joined to the identity sequence 8 by a simpler family
than Exp(A Log¢). In fact consider

cN)=xr+(1—2)8, [A[<a™h
It is easily seen that

A (Loge(n)),

are analytic from the disc |A]<a™! to o/ and so it is now a question of proving (3.5)

for this family. If ¢(d) is replaced by A7 *¢(A) then each side of (3.5) has (N4 1)a~*

subtracted from it. Therefore it suffices to prove (g3.5) for the family
¢+A"H1—2n)8,

A <a™h,
or equivalently for the family

c+N,  |[AF1[>a

Since, as we have seen, (3.5) is equivalent to (3.7%), it is sufficient to prove the latter.
But for the family ¢+ A3 it reads

—2 tr H - kglk(sks_k) ’,
or

(3.8) —2 D REFRZ = X k(s5_1)"-
k=0 k=1
This is proved as follows. The definition of A" implies that

Eh,;"z’kzexp{-—zskzk}.
E=0 k=0
Differentiating with respect to z and equating coefficients of like powers of z give

kit =— DI L Al
i=1
Therefore

Yp— S + g
k_:okkk hZ,= El J5; kgohk_ ke
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(There is no need to justify the interchange of the j and % summations since the summation
over j is finite.) By (2.4)

0

k:?:;oh;_jh:k = h_j
and for our family ¢+23 this is, by (3.6), just s_,. Hence
%R =— 3 js;sl .

0 i=1

Ie=
Similarly
‘; + - == =—— ) . .’
kh:()khk hZ, El J5_ ;]

and (3.8) is established. This completes the proof of the theorem.

Remark. — Perhaps we should mention explicitly why the Cesaro means were
introduced. To prove (3.4), with an arbitrary s, for the family
c(A)=Exp rs

it sufficed to prove it, as we saw, for A small. Thus, just as in the proof of the theorem,
it suffices to prove (3.4) for the family

23,  |A|>1

where it is assumed that [|¢]]<<1. One certainly has the analytic family
s()=38log A4 X (—1)" A"y
r=1

from the exterior of the unit circle, cut say along (1, o), to &/. The difficulty is that
there is no guarantee that s(A), belong to & also. If we knew that these s(x) belonged
to o then Theorem (g.1) could be applied and Lemmas (3.1)-(3.3) (and also, it turns
out, Lemma (3.4)) could have been dispensed with and the entire proof shortened
considerably. An assumption that guarantees that s() . belong to . is, for our original s,

o

2 |5l <co.

k=—

This is in addition, of course, to the assumption |||s|||<co. It was under just these
assumptions that (1.1) was proved in [8].

4. Finite Wiener-Hopf operators

As in the discrete case we first introduce an algebra, which we again call & since
there seems to be no possibility of confusion. A tempered distribution ¢ on the real
line belongs to &7 if its Fourier transform ¢ is a bounded function and if, on the complement
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of {o}, ¢ is equal to a function belonging to L, with weight function |x|. If we call
this function ¢, and write

Mell=1elll =" |x] eox)[ dx)2
then the norm on A is
lell = 111w + 1] €]
Since
(4-1) 50(B) —GolE + 1) = [lx) (1 €)% dx

(integrals are taken over the entire real line unless indicated otherwise) we see that
for each 7

EO(E)_EO(E:"}_n)

is an L, function of . Now the most general distribution supported on {0} is a finite
linear combination of derivatives of the Dirac distribution 8. Thus ¢ equals &, plus a
polynomial. But ¢ is bounded and

20(8) —Go(E+7)

is in L, and it is a simple exercise to deduce that the polynomial must be constant. Thus
¢ equals ¢, plus a constant times 8. This implies, using (4.1) and Parseval’s identity

llelip=5[f| =22

From this we see that ./ is a Banach algebra under convolution.

Vdid

Given ces/ with associated function ¢, we define ¢, and ¢_ by
€= CyN(—w,0)p C4 =C—C_.
Clearly, if ¢, or ¢_ is a bounded function, then ¢, and ¢_ belong to /. But, just as in
the discrete case, this may or may not occur.

We can now define the approximate inverse Ug[c] for the finite Wiener-Hopf
operator Wg[¢] defined in the introduction. We assume that

c=FExps

where s and s (and so also s_) belong to /.  As before this is the convolution exponential,
not the pointwise exponential, and we write also

s=Logc.
Define
At =Exp(—s.), A =Exp(—s.), h=~hTxh"

so that in particular

cxh=2J.

It will be convenient to talk about kernels of the form
ad(x—y)+ K(x, )
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where o 1s a constant, 8§ the Dirac distribution, and K a kernel in the classical sense.
It is clear what is meant by the integral operator with such a kernel.
We define Ug[c] to be the integral operator on L,(o, R) with kernel

(4.2) h(x—) ~f:}z+(x +2)h (—y—2) dz—f:h‘(—R+x~z)h+(R—y—|—z) dz.

We can, and do, restrict ¥ and y to the open interval (0, R). The integrands in the
two integrals are then ordinary functions on the ranges of integration. (Perhaps we
ought to have inserted subscripts to denote the functions corresponding to the distributibns,
but this hardly seems necessary.)

Theorem (4.x). — Assume ¢=Exps where s and s, belong to oZ. Then Wg[c] s
invertible for R sufficiently large and with Ug[c] defined by (4.2) we have, as R o0,

Wy [e] ™" = Ugle] +0,(1). |
The proof of this is entirely analogous to that of Theorem (g.1) and so need not

be given. Only one point might be mentioned. The proof establishes directly only
the right invertibility of Wi[c]. Left invertibility is obtained by considering the adjoint.

The method of the preceding section will also give a continuous analogue to
Theorem (3.2) once a definition of determinant has been agreed upon. From the
point of view of operator theory it is most natural to define

(4.3) det T =1I¢(T)

if T—1I is a nuclear operator. Here ¢(T) are the eigenvalues of T arranged in any
order. This product necessarily converges. Moreover if T(\) is an analytic family
of nuclear operators then [5, p. 163]

(4.4) £ log det(1+T() = tr T/(3) (1+ T())""

as long as -1 is not an eigenvalue of T(}).
One point that requires care is that the trace of a nuclear integral operator with
kernel K(x, y) is not necessarily given by the formula

(4-5) [K(x, %) dx.

This does hold if K is continuous and there are formulas for the trace similar to this
in the general case. By the method of [5, § 10] one can prove the following.
Let @ be any function on the real line whose Fourier transform & satisfies

(46) 520, E@ELlan’ IEI_II(I) @(E:):I
Then if K s the kernel of a nuclear operator on Ly(a, b) the trace of the operator is equal to

lim [*[* e~ 1o (5 —))K (x,) dx dy.

e—>0

TR0
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From this it is easy to deduce formulas for the traces of nuclear finite Wiener-Hopf
operators.

Let ¢ be any function satisfying (4.6) and in addition
(4-7) [12]|9(x)[* dx<co.
Suppose ceLly,(— 00, ) is such that Wylc] is a nuclear operator. Then
(4.8) tr WR[c]zRgi_{r(l)fa‘l(p(s_lx)c(x) dx.

For the trace is

lim [ [Me~tg(e™ (x—))e(x—) dr dy

e—>0

lim [* (R—x])e™ g™ x)e(x) dx.

e>0J—

Schwarz’s inequality gives
Hm SR Rs—lcp(e—lx)c(x) dx‘ SHCH2R5‘I/2 (J‘
<ljeflaR” ]

|z] >R

5 , \112
1o | P )
1/2
x| () [ )
and this tends to zero as e—o0. Moreover
R
7 Ll (e 0)e) de | < lelly

For each ¢ the last integrand is at most

R|x| (%) "€ Ly(— oo, )

g~ 'R 1/2
aelaP e,

so the integral tends to zero by the dominated convergence theorem. The asserted
formula follows.

Note that if ¢ is continuous at o the trace is simply Re(o).

Suppose now that ¢ satisfies the hypothesis of Theorem (4.1) and in addition
that Wy[¢] differs from I by a nuclear operator, so that its determinant may be defined
by (4.3). Since a nuclear operator is necessarily Hilbert-Schmidt, ¢—8 must be a
locally square integrable function, and therefore also globally square integrable since
Iell] is finite. This implies that

§=logcéeL,nL,_.
Since

£—1 equals § plus a function belonging to L,(—oo, c0). But aeL, implies Wy[a]
is nuclear. (In case Z>o this follows from Mercer’s theorem since Wg[a] is positive
semi-definite and is an integral operator with continuous kernel; the most general function
of L, is a linear combination of four nonnegative L, functions.) Thus the assumption
that Wg[c]—1I is nuclear is equivalent to the assumption that Wg[s] is nuclear.
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Theorem (4.2). — a) Assume that ¢ satisfies the hypothesis of Theorem (4.1) and that
Wy [s] is nuclear for each R>o0. Then with determinant defined by (4.3), and with ¢ any function
satisfying the conditions (4.6) and (4.7) we have as R—>0

log det Wy[c]=R ll_l;l’(l) fs_l@(s—lx)s(x) dx -+ f:xs(x)s(—x) dx +o(1).

Proof. — QGarrying through the argument of Theorem (3.1) requires the compu-
tation of

tr Wi[c'1Uglc]
and since the trace 1s not necessarily given by the formula (4.5) some care must be
exercised.

As Ug[c] is defined as the sum of three operators so also is the product a sum of
three operators. Two of these, corresponding to the integrals in (4.2), will have
continuous kernels (arising from what are essentially convolutions of L, functions) and
their traces may therefore be computed by (4.5). The third operator is

W [c'] Wg[7].
Now

Wi[c"* ] — Wi [c'] Wi [£]
has kernel

jo‘”c'(x+z)h(—z—y) dz—{~f0wc’(x—~R—z)h(z+R——y) dz, o0<x, y<R.

This function is continuous since ¢’ and % belong to L, of the complement of {0}, and
is the kernel of a nuclear operator since it represents the sum of products of Hilbert-
Schmidt operators. Therefore (4.5) may be used to compute

tr (Wg[c'|Wglh]—Wg[c * A]).
Moreover

tr Wil¢' % A]=tr Wg[s']=R Iirré fs_l e(e71x) s (x) dx.

With these points kept in mind there is no difficulty reducing the proof to the
verification of the continuous analogue of identity (3.7). In the discrete case it was
shown that it sufficed to check this identity for the simple family

(W) =c+N3
and with extremely nice ¢. Since

det Wy[c + 23]

is not defined unless A=o0 there is a problem. Of course (3.7) and its continuous
analogue could be proved for the family

¢(A)=Exp s
but the computations are a little unpleasant and best avoided. The family ¢+ A3 should
be used if at all possible, and one can accomplish this by a simple device.

209
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Extend the definitions of determinant and trace to operators of the form
od+T
with « a nonzero constant and T nuclear, by defining
det(al+T)=det(I+a 'T), tr(eI+T)=trT.

These definitions look ridiculous but they make perfectly good sense for infinite dimen-
sional Hilbert spaces. Moreover the analogue of (4.4) for analytic families of the form

a(W)I+ T

holds if these definitions are used. The formula follows easily from the corresponding
formula for the family

I+a(A)"'T().

Having established this, one sees that the formula
4 og det Wyle]= - tr Wy [s] ar ) d
75 log det Wy[o]=-—tr =[S +5\ O+xs(x s(—x) dx+o(1)

for the family ¢(A)=c¢+ A3 is equivalent to the continuous analogue of (g.8), which
is proved without difficulty.

The other definition of determinant is the classical Fredholm one. If T is the
integral operator with kernel K(x, ) then one defines

(—1)"
r!

(4-9) det(X —{—T):é}o f . .fdet(K(xi, %)) dxy . .. dx,.

This makes sense if

J[[IK (%, 9) Fdrdy<oo,  [|K(x, x)| dx<co,

and (4.4) holds if (I+T(3))™1 is thought of in terms of resolvent kernels in the usual
way and (4.5) is used as the definition of the trace. Of course the determinant as defined
by (4.9) is not really a function of T since two kernels may give rise to the same operator
but to different right hand sides of (4.8). Nevertheless we retain the notation det(I+T).

To apply this definition to Wg[c] we must assume as before that seL, in order
to guarantee that Wy[c] differs from I by a Hilbert-Schmidt operator. But it is also
necessary to define the kernel of Wi[c]—X, namely

o(x —p) —3(x —),
almost everywhere on the diagonal x=y. Now
@
(4.10) 8= 2 sr!
r=1
and since SeL,nL_, the convolutions s! for r>2 are everywhere defined and even
continuous. Therefore what remains is to define s(0) somehow and this is used to assign
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a value to ¢—38 at o by (4.10). How s(0) is defined is irrelevant, but once it is done
that value is used to define det Wg[¢] by (4.9).

Theorem (4.2). — b) Assume that ¢ satisfies the hypothesis of Theorem (4.1) and that
in addition seL,. Then with determinant defined by (4.9) we have as R— oo

log det Wi[c]=Rs(0) + fow xs(x)s(—x) dx 4-o(1).

Proof. — We omit the details as usual. Use is made of the fact that for nuclear
operators with continuous kernels the two definitions of trace coincide, so one may use
inequality (1.5) to show that the error term o,(1) in the statement of Theorem (4.1)
contributes o(1) to the traces, as defined by (4.5), that arise.

5. Higher dimensional convolutions

Throughout this section and the next Q will denote a compact set in n-dimensional
Euclidean space E" whose boundary is of class G'. More exactly for every point of 9Q
there is a neighborhood N of the point in E* and a C! diffeomorphism ¢ of N onto an
open ball of E* such that o(INn Q) is the part of this ball to one side of a hyperplane
through its center. Roughly speaking, at each point of its boundary Q looks like a
half-space. This suggests that the approximate inversion of convolution operators on Q,
or on RQ for large R, may be effected in terms of the inversion of Wiener-Hopf operators
on half-spaces. That is exactly what happens.

As mentioned in the introduction we make stronger assumptions on our kernels
than in the one-dimensional case. We consider the algebra & of distributions ¢ on R”
which are of the form

ad + ¢

where « 1s a constant, § the Dirac distribution, and ¢, a function on E” satisfying
J|co(x)|dx<oo, f]x] [eo(x) [P dx <oo.

(Integrals are taken over E" unless otherwise indicated.) It is easy to see that Z is
a Banach algebra under convolution with norm

el =foel + [Leo(x) | d+ ([ L] leol) 2 ) ™.

This algebra 4 is easier to work with than the z-dimensional analogue of the algebra .o/
of the last section because # is closed under the taking of absolute values, and also for
the reason mentioned at the end of the third section. The results we obtain might
very well hold for the n-dimensional analogue of ./ but the proofs would have to be
considerably more sophisticated.
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The operator Wgfc] on L,(RQ) is defined as convolution by ¢. For ¢e# the
operator is a scalar multiple of I plus a compact operator.
Our basic assumption will be that ¢=Exps with se#. In dimension one this
is equivalent to
ceB,

¢ bounded away from o, and
A argi(E)=o.

—w<E<®
In higher dimensions the last condition is unnecessary. These things follow from the
Arens-Calderéon extension of the Wiener-Lévy theorem [1]. The simplification in
higher dimensions occurs because

m ()

&[>

exists and the one-point compactification of E" is simply connected, so that if¢ is bounded
away from zero it has a continuous logarithm.

Unlike in dimension one there is now a (convolution) factorization of ¢, or an
additive decomposition of s=Log ¢, corresponding to each direction. Given ce# and
a unit vector v define (with the dot denoting inner product)

0+(v):€X{x:z.vZO}7 c—(v)ICX{x:z.u<O}'

Just as before the 3 part of ¢ is arbitrarily put with ¢, rather than ¢_. Note though
that if ¢ce# then ¢, and ¢_ necessarily belong to #.
Given ¢ with s=Log ce% we define

hi =Exp(—s,4), A =Exp(—s_,), h=Exp(—s).

The inversion of Wiener-Hopf operators on half-spaces is given by the following lemma,
which is well-known.

Lemma (5.1). — Assume s=Log ce# and let v be a unit vector in E*.  Then the integral
operator on Ly of the half-space

{x: x.v>o0}

with kernel c(x —y) has inverse the integral operator with kernel

h(x—y) — |

zv >0

K (x4 o) by (—y—1) du.
Proof. — We have
fer—zdz| _ h(z+0h(—y—1) di=( K (—y—t)dtfe(x— )b (z+1) dz

Zﬂ.u>o’lﬂ—y—t) dtfc(x+t— 2) b (2) dz.
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It follows from the definition of &) that the convolution ¢ &} (z) vanishes unless «.2>> o.
Since x.v>0 and f.2>0 the inner integral vanishes. Hence

[ovsollx =2 dt[, bz k) by (—y—0) de
— [ cotlE— 2 dz [, K (O B (—p—1) b
Since % (x) vanishes unless u.o>>o0 this may also be written
Ly gtlx ) da (B (e OBy ) de=— [
Therefore
fmzoc(x~ 2) (h(z—) —[roso (2O (3 +1) dt) dz
=L.v206(x- Dh(z—p)dat| | c(x—2)h(z—p)dz

:fc(x_z)h(z—y)dzﬂ(x_y).

c(x —2) h(z—y) dz.

This shows that the asserted inverse is actually a right inverse. That it is also a left
inverse may be seen by considering adjoints.

The approximate inversion of Wg[c] is not as neat in higher dimensions as in one.
The reason seems to be that in one dimension there are only two boundary points and
they are far from each other so their interference is negligible. In higher dimensions
there are many boundary points very close to each other and their interference is sub-
stantial. The obvious way of defining an approximate inverse in analogy with (4.2)
would be to replace the sum (of integrals) on the right side, one term for each boundary
point, by an integral over #Q. Unfortunately this is essentially wrong and we use a
less natural definition, one that does not reduce to (4.2) for n=1 although it differs
from it by only o,(1).

Let y—7 be any measurable mapping from Q to 9Q satisfying for some vy>o

(5-1) (y—2).0(3) =yl y—7|
(5-2) Lim [y—y|=o.

Here o( ») is the inner unit normal to 9 at y, and the dot denotes inner product. This
induces in an obvious way a mapping, also denoted by yby, from RQ to 9(RQ).
We define Ug[¢] to be the integral operator on L,(RQ) with kernel
hx—3)—]

Jtu(yg) >0

hiy(x—7 + by (—y+y—1) dt.

This depends of course on the mapping y—», but exactly which mapping we take will
not matter, as long as (5.1) and (5.2) are satisfied.

Before we see in what sense this is a good approximation to Wy[c]™!, we consider
some consequences of the assumption that 8Q be of class C!.  Let ¢ be a C'-diffeomorphism
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of an open set N in E to a neighborhood of 0 in E” such that ¢(Nn Q) consists of those
points of ¢(N) whose first coordinate o'

is nonnegative. For
2eNnoQ, xeNnQ
we have, since ¢'(z)=o0
6'(x)=(x—z2) .grad ¢'(2) +o(|x—2z])
as |x—z|—o0, and this holds uniformly on compact subsets of N. It follows that given
e>0 there is an r such that, if
Bz, r)={x: |x—z|<r},
then
QnB(z,r)C{x: (x—2z).0(2) > —¢|x—2z]|},
Q2{x: (x—2).v(2)>elx—2|}nB(z, r).
As before, v(z) denotes the inner unit normal at z.
For ze0Q define D(z) to be the symmetric difference between Q and the half-plane
{x: (x—2).0(z) >0}
which locally approximates  at z. Then we deduce that
D(2)nB(z, r)C{x : |[(x—2).0(2)|<e|x—2z]|}
for sufficiently small r.
It follows that for our function y—>jy from Q to 0Q,if xeD(y) and is sufficiently

close to y then x must be much further from y than from 2Q. More exactly, if we define
(with 4 denoting distance)

(5-3) Ble)=inf{[x—y| : xeD(y), d(x, 2Q) >}
then B(p)>o0 and
(5-4) lim () [p = oo.

(The proof of this is very simple and is omitted.) This will be used to show that the
error committed in certain computations is small if Q is replaced by its approximating
half-spaces.

Lemma (5.2). — For any ce€ A the integral operator from Ly(Q2) to L,(E™) with kernel
R"c(R(x—2)) %o (%)
is 0,(1) and o,(RI"=172),
Progf. — Note first that since y¢D(y) the 5 part of ¢ does not contribute to the
operator and so may be assumed to be zero.
The arguments for the two conclusions are quite different. First we show the

operator is 0,,(1) and all that will be needed for this is that ¢ceL,(E"). Since the uniform
norm of convolution by |¢| on Ly(E") is equal to ||¢[|,, and since the bounded functions
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with compact support are dense in L,(E"), it suffices to prove the desired conclusion
for ¢ the characteristic function of some ball B(o, r). Instead of the operator we may
consider its adjoint, so what is to be shown is that

S e, [11 £l

is o(1) as R—o0. The supremum is taken over all feLl,(E") and the first norm is
taken with respect to yeQ.

There is a finite collection of open sets Ny, Ny, ... in E* which cover Q such that
the closure of N, is contained in the interior of Q and each N, with :>1 is one of the
coordinate neighborhoods for #Q described at the beginning of the section. We can
find compact subsets K, of these N; (¢>>0) whose union contains an open set containing Q.

"~

sup !l R*

JD(?)GB(.% /R

If f 1s supported in the complement of this union then the integral

S(x) dx

(5-5) fn(g) N Bly, r/R)

will vanish, for sufficiently large R, for all yeQ. The same holds if f is supported in K,
since

B(d(K,, 0Q))>o,

where B was defined by (5.3). Thus we may assume that f is supported on one of the
K, with ¢>1. We shall simply write K, N for K;, N;.

For sufficiently large R the integral will be nonzero only if y belongs to a slightly
larger compact set K’ of N. Thus we may confine attention to xeK and yeK’. By
means of the diffeomorphism

6: N=E*

with ¢(NnQ) consisting of those points of ¢(N) with ¢'>o0, the integral (5.5) may
be written as an integral with respect to the variable £ =o¢(x). The integral with respect
to y of the square of (5.5), which must be evaluated to determine the L, norm of this
integral, may be written as an integral with respect to the variable v =o(y). The
integral

J1 A=) dx
determining the norm of f may also be written as an integral with respect to £. The
Jacobians arising in these transformed integrals are bounded and bounded away from

zero since x and y are restricted to the compact subset K of N.
The region of integration in (5.5) is contained in the set

{x: d(x, 0Q)<B™'(|lx—|), [x—y|<r/R}

where B~' is the inverse of B, defined at points of ambiguity to be continuous on the
right. Upon applying ¢ the region of integration becomes contained in

{8 |E<ARTY([E—n]), |[E—1|<A/R}
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where A is some constant. It follows from (5.4) that

(5-6) Lim 8=%(p) jo=0

e—>0

and so for any e£>o this set is contained in
A(n)={&: |E'|<e/R, |E—n[<A/R}

for R sufficiently large.
We shall show that

(5-7) sx;pHR"fAmf(ﬁ) |

i

for large enough R, and this will give the desired conclusion.
Here f runs over L,(E") and the first norm is taken with respect to neE”
For a point £=(EL, £, ..., £") we write 2 =/(0, % ..., &"). Set

~ © 1/2
e®=([" e e e pa)”
Estimating the integral with respect to &' in (5.7) by Schwarz’s inequality gives
g P 7 q y g
R SO dE SR(a R o o) dE.

Since A(v) is empty unless |7'|<(A+¢)/R and since the integral on the right side
of the last inequality is independent of v' we see that the L, norm with respect to 7*
of the left side of the inequality is at most a constant times

is at most a constant times £/

~

n—1_1/2 4
(58) R € J\!E‘“;l‘lﬁA/Rg(g) dg.:'
But this is exactly the value at % of the (n— 1)-dimensional convolution of g(Z) with
R —1et? XB(O,A)(Rz) >

a function in L,(E"~!) with L, norm a constant times ¢/>. Hence (5.8) has L, norm,
with respect to 7eE"~! at most a constant times

([ g B )" = ([ 1 /B Faz)”.

Thus (5.7) is at most a constant times £ for R sufficiently large, ¢>o0 was arbitrary,
and the first assertion of the lemma is established.

To establish the second part we make a few preliminary observations. First,
the integral

[1#]1e(x) [P dx

is equal to

[ elds.(e)]

where
Si(e) =], le(x) P dx.
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From the fact that
flxl [e(x) P dx<oo

it follows easily that

(5.9) lim oS (p)=0,  limpS(p)=o.
Second, if
(5-10) Q={xek": d(x, 80)<p}, u(p)=vol(Q)

then as p—>o0

(5.11) w(p)= O(p)-

This follows easily from the fact that 8Q is of class Cl
The Hilbert-Schmidt norm of the operator in the statement of the lemma is the
square root of

(5.12) [ [ B TR (5 =) oy (x) e .

Let A be so large that QCB(o, Aj2). Then integration with respect to x over the
complement of B(o, A) gives, for each ye(Q, at most

Jio1 5 3n R [ (Rx) [ du = RS, (AR [2) = o(R"~Y)

as R—o, by (5.9). Integration with respect to yeQ just multiplies this estimate
by the volume of Q.

Consider now the part of (5.12) where x€B(o, A). The integrand vanishes
unless xeD(¥) and so we must have

|x—p| = B(d(x, Q).

Therefore, since also xeQ,, integration first with respect to » shows that this part of
(5.12) is at most

o, RS (RB(dist(x, 002)) dx = [ R"S,(RB(¢)) du).

Since B(p) is at least a constant times p, integration by parts, (5.9), and (5.11) show
that this is at most a constant times

R" [*odS,(RB(e)) | +o(R*1) =R" [*V51(c) | 4S,(Re) | + o(R").

Since B~ '(p) is at most a constant times p, integration over p>P/R contributes at
most a constant times

R'[" 01dS,(Re) [ =R [0 [dS,(s)

which is at most €R"™' if P is chosen large enough. For each P, if R is big enough,
integration over p<P/R will contribute, by (5.6), at most

P/R _ ©
eR*[ 70 |d8,(Rp) [ <R[ "o [dS,(p) |
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Thus this other part of (5.12) is also o(R"™') and the second part of the lemma is
established.

The domains D(z) were defined for Q and z€dQ. Analogously we define the
domains Dg(z) defined for zed(RQ). We write Fy[c] for the integral operator from
L,(RQ) to Ly(E") with kernel

¢(x ) Amap (%)

This is unitarily equivalent to the operator of Lemma (5.2) and so

(5-13) Felc]=0,(1), Fy[c]=0(R"71P).

Recall that we defined Ug[¢] to be the operator with kernel
(5-14) Un(x,0)=hlx—y) = [, By(s—7 + ) higy(—y +5—1) de.
The final lemma gives a rough but useful bound on Ug(x, y).

Lemma (5.3). — For some c,c B we have

| Ur(% )| Sco(x—2)

Jor all R.

Proof. — Since & is closed under convolution and absolute value and since

0<]e,|<cy, ¢3eB

imply ¢,€4, it suffices to show that for some ¢,e# we have
IR 1 <e, |B7|<¢,

for all unit vectors ». But since

154wl <Isl
we have

|| < X |s|0r!
r=40
which belongs to %.

Theorem (5.1). — Assume c¢=FExps where seB. Then Wg[c] is invertible for
sufficiently large R, and if Ug[c] is defined by (5.14) we have as R—>oo

Wi[c] ™" =Ug[c]+0,(1),  Wrle] ™' =Ug[c]+0,(R"~1%).
Proof. — The operator Wi[c]Ug[¢] has kernel
fmc(x—z)UR(z,y) dz:f(z—y).u(g)zo ¢(x—2)Ug(z, ) dz

_ff(x_z)UR(zJ) (X{z:(z—g).v(g)zo}“‘)(m(z)) dz.

By Lemma (5.1) the first term on the right side is 8(x—y). Thus if Eg is the operator
on Ly(RQ) whose kernel is the last integral we have

(5.15) Wi [c]Ug[¢c]=I—Eg.
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The absolute value of the kernel of Ey, is at most that of Fg[¢,] left multiplied by convol-
ution by |¢| as an operator from L,(E") to L,(RQ); here ¢, is as given by Lemma (5.3).
It follows from (5.13) therefore that

(5.16) Epx=o0.(1), Egp=g,(R"~12),

In particular Wg[c] is right invertible for sufficiently large R and its left invertibility
follows upon considering adjoints. Since Ugz=o0,(1), (5.15) and (5.16) give

(5-17) Wi [c]™=Ug[e] 4+ Ug[¢]Eg + o, (R* 1)

and the theorem follows.

The theorem as stated is not strong enough to enable us to deduce formulas for
the traces with error o(R"~1). We shall use rather (5.17) which contains more infor-
mation. Recall that Eg has kernel

[ el —2Un(2 ) (1 = sz — Xaa(2)) 2.

We shall see that as far as traces go the term Ug[c]Eg can contribute at most o(R*™1).
If ¢ is any function satisfying conditions (4.6) and (4.7) and T is a nuclear operator
on L, of a subset of E* with kernel K then

(5.18) tr T=lim [[e™"p(s™ (x—)) K (%, ) dx dy.

If a nuclear operator T is written as a sum of operators each of whose nuclearity is
dubious, the right side of (5. 18) could be used to estimate the “traces” of these summands.
The sum of these estimates is then an estimate on tr T itself. This suggests that, whether
T is nuclear or not, it is useful to consider

lirzl_)soup Ufz“"cp(s_l(x—y))K(x,y) dxdy/|.

We call this the “estimated trace” of T. We shall assume that, in addition to satisfying
(4.6) and (4.7), the function ¢ is nonnegative. This implies that if T,, T, have
kernels K,, K, satisfying

| Ky (%, 9)| < Kyl 9)

then the estimated trace of T, is at most that of T,. If T is nuclear then the estimated
trace of T is, of course, equal to the absolute value of tr T.
In the next lemma Py denotes the projection operator from L,(E") to L,(RQ).
Lemma (5.4). — If ¢, ;6B then the estimated trace of

Wi [ | PrFr[6]
is o(R"™Y as R—o0.
Proof. — As mentioned in the proof of Lemma (5.2) we may assume ¢, has no 3
summand. To take care of the § summand in ¢, we shall show first that the estimated

trace of
PFg|c,]
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is zero. For this we may assume R=1. If we define

Sle)=[,,., = (e ) | eol)]| d

lz|>

then integration first with respect to x gives
o Jow = "0 o) dedy | < [ 8.(8(d(r, 00)) dy<[S.(8(6)) dus(e)

where QCB(o, A). As in the last part of the proof of Lemma (5.2), integration by
parts shows this is at most a constant times

N+, Sule) do =S.(B(A)) + [e™" x| o(c™"x) |ay(x)] dx.

For any subset B of E" Schwarz’s inequality shows that
([ =2 ole™ta) | de) < ([ e x| o(e™ 2) dx) ([ ]3] |ea() P )
=([o-op 2l o) ) ([, 2] ) ).

Each of these last integrals has a bound independent of B and . If we first choose B
to be the ball B(o, 3) the second integral will be arbitrarily small if § is small enough.
Having fixed 3 and then taking B to be the complement of the same ball, the first integral
is o(1) as e—>o. Thus

[ |2l o(e™ ") | a(x)] dx=o(1).
An application of Schwarz’s inequality also gives
S.(B(A))=o(1)

and so the first part of the lemma is established.

To prove the second part we may assume ¢; has no 3 summand, and note that
the trace of the product of Hilbert-Schmidt operators with kernels K;(x, ) (i=1, 2)
is always given by

(K, 9 Ky(x, 3)dx dy.
Therefore

|tr WalePeFele] | <[ [ (= 0)als—0)| . toyp(x)dx dy
oo o (a3 =B + a5 =) ) xop (%) de dy
and this is o(R"™*) by the second part of (5.13).
Lemma (5.5). — For any c,eB the estimated trace of

Wi [6;]Ug[c]Eg

is o(R*™ 1) as R—oc0.
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Proof. — If we write
~ ~ ~
c=0,8+7C, =, d3+7, ¢=a, 37
where «,, «, , @, are constants and 7, 7, 7; functions in L,(E") (this notation is different

from that used at the beginning of the preceding section) then the kernel of Ep has
absolute value at most

o] [C(x —0)] XDR(g)(x) +f |T(x —2)%(z —y) (X{z:(z—y).v(g)zo} —ra(2)) |dz.

Here ¢, is as in Lemma (5.3). Moreover the absolute value of the kernel of
Wi [¢,]Ug[¢]
is at most
[ac,acnls_l_ {ac,[ I?(l)(x—.y)[ + I“c.,' l?i(x_.y)l + l?i*%l(x—.y)'
It follows that the absolute value of the kernel of
Wy [51] Ug[c]Eg
is at most that of

for o, o, | Fr[[ % |1+ W [ ] PR FR[[% ]

where ¢, is a nonnegative member of & without a § summand. The conclusion follows
from Lemma (5.4).

The preceding lemma takes care of the term Ug[c]Ep appearing in (5.17%).
Unfortunately there are two more lemmas to go.

Lemma (5.6). — If ¢, c,€#B then

Wi [, ]Wg ] —We[e; * 6]

is a nuclear operator with trace O(R"™1).

Proof. — The kernel of the operator is
(5-19) Jpap s —2)alz—5)dz

where the superscript ¢ denotes complement. This is the resultant of two kernels and
the first part of the lemma will follow if we can show each of them is Hilbert-Schmidt.
To show for example that

2
(5-20) Jra J oyl —2) P dy ds
is finite, we integrate first with respect to y. The integral is seen to be at most
(5.21) [ Sald(x B(RQ)))dx
where, as before
. 2
S.p)= ., le@Idx.
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We estimate the integral (5.21) just as we estimated similar integrals before. If

QCB(o, A)
then (5.21) is at most

Re[\ <y Su(Rd(x, 20))de=R"[;'S, (Re)du(e) = R* [ u(p) | 45, (Re)] + O(R")

and since w(p) is at most a constant times p the first term on the right side is at most
a constant times

R*[ "o |dS, (Re)| =R"~*[" 6 ]dS, (5)].

Thus (5.21) is not only finite, it is even O(R"™1).
Since the kernel (5.19) is the resultant of two Hilbert-Schmidt kernels, the trace
of the operator it represents is given by

f f 6 (x —2)e(2 — x)dz dx.
RQ J(ROQF
This has absolute value at most

J.RQ f(RQ)‘ [e(x —2) [P + | ea(x —2)[*]dz dx,
the sum of two integrals each of which we have already seen to be O(R*™1),

In the next lemma we write Hy for the operator on L,(RQ) with kernel

Hi(x )=, oo B =+ Dby (—r +5 — 1)t
so that
Ug[c]=Wg[#] —Hg.
Lemma (5.7). — Assume s=Logce#nL,. Then for any c;eBnL,
We[e]Hy
is nuclear and its irace is O(R"™') as R—o0.

Proof. — Let us look carefully at the integral representing Hy(x, y). The second
factor of the integrand cannot have vanishing argument over the range of integration,
by (5.1). However the first factor may have vanishing argument for some ¢. Ifso, then

xeRQ, (x—»).9(¥)<o

so xeDg(p). Thus if «, denotes the coefficient of the 3 summand of A} then these &
summands contribute

(5.22) %) hﬁg)()’ —x) Xo:@H) ara(%)
to Hy. TheImethod of proof of Lemma (5.3) shows that there is a ke such that
|BS () <k(x),  |h ()] <kx)
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and k=£k—3 is a function in L,(E"). Therefore (5.22) has absolute value at most
a constant times

k(y—x) XDR(g)an(x)

and so by Lemma (5.4) the product with Wg[¢;] on the left is nuclear and has trace
o(R* 1),
The remaining part of Hy(x, y) has absolute value at most

~

(5-23) [0 B =y + O R(—y+5 —t)at
‘which is on the one hand at most
)
and on the other at most, by Schwarz’s inequality
Sy (max((x —7).2(7), 0)) S ((y—3) .2( Y™

"The first bound shows that (5.23) is bounded uniformly in R, since ke L,. In particular
this part of Hy is Hilbert-Schmidt and so when left multiplied by Wy[¢,], gives a nuclear
operator. A bound on the absolute value of the trace of this product is

(5-24) fiafialaO =D [ ke =5+ k(—p+7—)d.
First let us confine attention to the set where
(x—2).0()) <ivlx—J]
where v is as in (5.1). This implies that
(5-25) [x—y[= 1 d(x, 6(RQ))

for some constant vy,>o0. Therefore the contribution of this set to the integral (5.24)
is at most

([ Te( — )| K=(x —p)dx dy
integrated over that part of RQXRQ for which (5.25) holds. If
— Al
Se) =, 5., 1a()1E(—2)dy
then integration with respect to y first shows that the last double integral is at most

[ Srd(x, o(RQ)))dx=O(R"

by the same sort of argument used in the proof of Lemma (5.6).
There remains the contribution to (5.24) of the set where
(x—5).0(5) > by|x —5].
‘On this set we have

(x—7).0(y) 2 3vdx, o(RQ)), (y—)).2(5)Z¥yd(y, o(RQ)),
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so its contribution is at most
[ oo [ =) IS5y dx, o(RQ))™Sz(y d( 5, 2(RRQ))* ds db.
Since ||Wg[|ei|lllo <|ley]]; this is at most
[ Sy d(x, 9(RQ)))dx=O(R")
as before. The lemma is established.

We are ready to give the higher dimensional analogue of (1.1) or, more precisely,
of Theorem (4.2), a). As in that theorem the assumption that Wy[¢] differ from I
by a nuclear operator is equivalent to the assumption that Wi[s] be nuclear, and this
implies in particular that s, ¢—38, £—3 are functions in L,(E"). In the statement of
the theorem the integral over 9 is taken with respect to surface area.

Theorem (5.2). — Assume that s=Log cc%# and that Wg[s] is nuclear for each R>o.
Then with determinant defined by (4.3), and with ¢ any function satisfying the conditions (4.6)
and (4.7), we have as R—o0

log det Wy [c]=R" vol(Q 11m f (™ tx)s(x)dx
+3R* 1 faa dzf

t.o(z) >0

t.9(2)s(t)s(—t)dt + o(R*1).

Progf. — The first term on the right is just the #-dimensional analogue of the right
side of (4.8) and so is nothing but

tr Wi [s].
The assertion of the theorem is therefore equivalent to
(5.26) log det Wy[c]=tr Wo[s]+ 3R~ [ dzf  t.0(2)s(t)s(—0)di+o(R*™Y.
As before we embed ¢ in the analytic family
c(\)=Exp as
but we proceed a little differently now. We shall show first that
(5-27) log det Wg[¢(3)]=tr Wg[2s]+ O(R"™7)

uniformly for A belonging to any compact set. Since this holds trivially for A=o0 it
suffices to show

d
(5.28) E—\log det Wg[c(A)]=tr W[s]+ O(R*™Y)
with the prescribed uniformity. The left side is

tr Wg[e'(\) TWg[c()]~?
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Since ¢'(A) xc(A)=h(2), (5.28) follows from (5.17) and Lemmas (5.5-5.7). The
uniformity follows from the uniformity of the conclusions of those lemmas, which is
easily verified.

Thus (5.27) holds, and this implies that to prove (5.26) for the entire family ¢(3)
it suffices to prove it for small A. In particular it suffices to prove (5.26) if ¢ is such
that, with ¢=38+47

f|?(x)|dx<1.

We now use the same trick as in the proof of Theorem (4.2), a) and extend the definitions
of determinant and trace as was done there. Then ¢ may be embedded in the family

(5-29) c)=T—+21r3

with A in some neighborhood of the interval (1, 0). Clearly
s(N=38logr4 X (—1)" a7y
r=1

(with log 1=0) is analytic from some neighborhood of [1, 0] to % and it suffices to
prove (5.26) for this family. Since both sides vanish at A =0 it suffices to prove the
differentiated relation, which for the family (5.29) is

tr Wy [e] ™! = tr Wy [A]+ 3R] dzjt_vw t.0(2)(s()s(—2)) dt + o(R"~1).

(The prime denotes differentiation with respect to A.) Note that this need only be
proved for each 2, since uniformity on closed sets follows from this plus the uniformity of
log det Wi[c] = tr Wi[£]+ O(R*™1)

on closed sets.
From (5.17) and Lemma (5.5) we see that what must be proved is that

—%R"—lfm dzft.v(zpot.v(z) (s(t)s(— 1))’ dt

differs from the trace of Hy, as defined by (5.18), by o(R"™%). As wesaw at the beginning
of the proof of Lemma (5.7) the contribution to Hg(x, ) of the 3 summands of the
various AF has absolute value at most

k(}’“‘x)XDR(g)nRo(x)
with %€, and by Lemma (5.4) this contributes o(R*™'). (Indeed, the proof of that
lemma shows that the contribution is actually zero.)
Thus we may ignore the 3 summands of the 4f. What remains of Hg(x,y) is
a function which, although not necessarily continuous in x and y, is continuous in x
uniformly for yeRQ. This follows easily from the fact that the Af with 3 summands
removed are all bounded by a single function belonging to L,(E"). Continuity in x
uniformly in y is enough to guarantee that (5.18) is equal, in our case, to

| He(:) &.
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Thus what must be verified is
(5-30) [ Hal2)d=—3R"7 dzf  0.0(2)(s(t)s(—1)" di+o(R).
The idea is this. We must integrate
Hu(0 ) =], oo (0 =7 + Ohiy(—y +5—1) dt

with respect to » over RQ. We integrate first over those y for which 5=z If these y
were exactly the points running along the inner normal from z we would obtain

J.t.v(z)>ot’v( 2)h v(z) (t)h ( t) dt.
Then integration over 9(R€) would give
R."—lf J; t y(z h+( )h—(_t) dt,

which turns out to be equal to the first term on the right side of (5.30).

Of course the difficulty is that RQ is not the Cartesian product of its boundary
with its normals. What we are going to do is cover most of a neighborhood of 9(RQ),
which we shall see is all that counts in evaluating the integral on the left side of (5.30),
by finitely many disjoint sets, each contained in one of the coordinate neighborhoods,
such that after applying the coordinate mapping into a half-space the set corresponds
to a Cartesian product and the mapping y—» corresponds to the orthogonal projection
onto the hyperplane bounding the half-space. Note that there was flexibility in defining
the mapping y—3. It had only to satisfy the two conditions (5.1) and (5.2).

We shall use here the notation

Qs={xeQ: d(x, 0Q)<8}, Q'=Q-Q,

for an arbitrary set QQ. We observe first that for any §>o
Jogs Br(2:0) & =o(R7).

For with % and S; as at the beginning of the proof of Lemma (5.%)
(5-31) |Hr (7 2)| <8z (vd(», 2(RQ))),

and so
Joas [HeOs )| <R[ Sp(vd(y, 02) &y
which is at most a constant times
R* [ o]dSg (yRe)| =y "R~ [ o[dS;(e)] =o(R"Y).

Thus we need only consider the integral of Hi( 9, y) over RQs. The 8-neighborhood
of #Q in E" may be covered by finitely many coordinate neighborhoods N;. We can
find disjoint sets B; such that
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(i) the union of the B, is 2,
(i1) oB; in 0Q has (n—1)-dimensional measure o,
(iii) the closed 3-neighborhood of B; in E" is contained in N;.

Finally, if ; on ¢;(N;n Q) (where 5; are the coordinate mappings which take
the N;nQ into half-spaces) denotes projection onto the boundary half-plane, let
Q={yeQ: d(y, B3, moi(y)ec((B))}.
Note that since the B; are disjoint the distance between any two different (B,)%® is at
least 43, and this implies that the Q, are disjoint. Moreover
Ua,co,
and

Q—U0,cU{yeQ: d(y, 3B)<AS)

where A is some positive constant.
We shall show first that the contribution of

{yeRQ : d(y, 5(RB))<AR S5}

to the left side of (5.30) is at most an arbitrarily small constant times R*~! if § is small
enough. In fact by (5.31) this contribution is at most

Si(yd(p, 0RQ)) dy=R"|

aly,7Bi) <AS

S; (YR d(y, 9Q)) dy.

fd(y, 8(RB;))<<ARS

If
wlp)=vol{y : d(y, 06Q)<p, d(y, ?B,)< A3}

then for sufficiently small 3 we shall have
OR

for all p. (Here < is an arbitrary but fixed positive number.) This is seen by applying
the coordinate mapping o; and using property (ii) of the B;. This implies that

Sy (YR d(y, 2Q)) &y

g
dly, 0Bi) <A 3

is at most a constant times
eR" [ |48y (vRe)| =y R [* 0] dS; (o).
Thus if 3 is sufficiently small then the left side of (5.30) differs from
2 [ Ha(0h9) &

by an arbitrarily small multiple of R*~'. We now specify that

1

y=0; "{m5;(»)), vel).

&N
o
~
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We define 7 arbitrarily in the complement of U Q; except that, of course, (5.1) and
(5.2) must be satisfied.
To evaluate the integral

(5-32) Hg (9, ) dy

RQ;
we use on ; not the coordinate function o; but a modification t; defined by
() =(—2).0(3), 5i(3), - - -, o}(1))-
From the way y was defined the Jacobian determinant
3‘!.'1-

.L': ‘5

is bounded and bounded away from zero, and if we set

H;(n) = Hg (57! (n), 57" (n))
then (5.32) equals

(5-33) R [ [H R, o ) I )T Y L d

The integral with respect to %, ..., 7" is taken over 7;((B;)%°) and for each v% ..., 9"
in this set the integral over 7' is taken from zero to a quantity which is bounded and
bounded away from zero.

Now given any functions feL,(o, o0) and geL_(o0, ) such that

lim g(9)=o,
n—>0
we have

(5-34) lim R [7 f(Rn)g(n) dn=o.

This is very easy. It follows that with an error induced in (5.33) of at most o(R"™1)
the Jacobian may be replaced by its boundary function

J(O’ 7)2’ AR ] Y]n)'
Therefore (5.33) equals
R [ HR, A ) J(0, 0% ) diy ., dy o o(RETY)
=R”_‘f...ff:ﬂ(u, o0, R ) dude, ..., dyt+o(RPTY),

where the integration with respect to %, ..., q" is over 7;((B;)??) as before. But the
first term on the right is exactly equal to

R”ﬁlf(si)za dzft.v(z)>0 . v(z)h;@)(t)h;z)(_ t) dt.

Since the difference

fm .. dz——?f(m)zs ... dz
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can be made arbitrarily small by choosing § sufficiently small, this shows that
| He(py) y=R"1[ dzjt_v(zmt.u(z)h;gz)(t)h;(z,(—t) dt +o(R*1),
To prove (5.30) now it suffices to show that

fm>0t.vh;“(t)h;(~t) dtz—%f

Lty >0

t.o(s(t)s(— 1))’ dt

for each unit vector ». But this is proved just as the analogous identity (3.8), as the
reader should have no difficulty verifying.

It was mentioned in the introduction that the coefficient of R*~! in the asymptotic
formula, namely

(5-35) | dzf‘.v(zpot.v(z)s(t)s(—t) dt,

may be written as an integral over the (n—1)-sphere S"~' rather than as an integral
over 9Q. If G denotes the Gauss map

Q8" !

which takes any ze0Q to the point of S"~! corresponding to the inner unit normal
vector v(z) then we can define the measure vy on $"~! by defining

vo(A) =surface measure of G™'(A) on 0Q.
Then the integral (5.35) is equal to
Jgprdval®) [, t-os(B)s(—1) dt.

This way of writing the coefficient makes a little clearer the individual contributions
of Q and s to the asymptotic formula.

6. Variable convolution operators

We consider first operators on L,(RQ) with kernels of the form

X
c—ﬁ,x-——y .

At the end of the section we shall indicate what can be done with the more general form

The setting will be the algebra, which we call #(Q), of C' functions from Q to
the algebra & of the last section. More exactly, ¢e#(Q) if ¢ is a function from Q to &
for which there is a continuous function, denoted by

grad c,
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from Q to n-vectors with components in &, satisfying
(6.1) lle(x) —e(9) = (x—0) -grad c(y)|| g = o(|x—2])

for |x—y|—o0. The subscript indicates that the norm taken in (6.1) is the norm in 4.
In the set of nonnegative elements of # with its natural partial ordering, bounded
subsets have least upper bounds. We define, for cc%(Q)

(6.2) c={.u.b.|c(x)], ?:t’.ue.g. |grad ¢(x)].

c€Q
Here |grad ¢(x)| is taken to mean the sum of the norms of the components of grad ¢(x).
The norm in #(Q) is given by
llellaay=1lclla+1lella-
The set #(Q) is a Banach algebra under convolution defined by
(€3 % 65) (%) = ¢y (%) * 65(x).

It is convenient to associate with each ce#(Q) a function of two variables ¢(x, ¢)
defined everywhere on QX E"; given xeQ let ¢(x, t) be an everywhere defined function
of ¢t (more exactly a constant times 3(¢) plus an everywhere defined function of ¢) rep-
resenting the element ¢(x) of 4. Clearly we have for all x

(6.3) le(x, )] <e(8),  |grade(x, )| <c(d)

for almost every ¢ (and for t=o0 which corresponds to the § summands of the distri-
butions ¢(x)). The gradient, of course, is taken with respect to the variable x.
For any ce#(Q) we denote by Wg[¢] the integral operator on L,(RQ) with kernel

x
=, x—y).
R’x g

Note that with the notation of the last section

c(—ﬁ, t) =a(i) 3(¢) +?’(§, t)

where ' is an ordinary function of two variables. Correspondingly Wg[c] is multipli-
cation by a(x/R) plus the integral operator with kernel

~ X
¢ E:x_.y

in the classical sense. It follows that

Wl | <[lalo+ ], 60 < T]e]|aay-

t+0
In the special case ¢(x)=f(x)c with ce# the operator on L,(E") with kernel
S(*)e(x—2)
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has inverse exactly equal to the operator with kernel
ST hx =)

where % is the inverse of ¢ in 4. This suggests that in defining the approximate
inverse Ug[c] of Wy[c] in general, one should replace the first term of (5.14) by

i

In analogy with the last section our basic assumption will be that
(6.4) c=Exps, se#(Q).

where £ is the inverse of ¢ in #(Q).

As with 4, this is equivalent to
ceB(Q)
¢ bounded away from o on QXxE”

(the circumflex denotes Fourier Transform with respect to the second variable) plus,
in dimension one

A c(x, E)= fi h .
_w<a<wargc(x Ey=o0 for each x

This follows from the Arens-Calderdn form of the Wiener-Lévy theorem and the fact
that the most general homomorphism of #Z(Q) onto the complex numbers is of the form

c—~>i(x, &)

for some (x, £)eQx E". The proof of this is not hard and is left as an exercise for the
interested reader.

If (6.4) holds we define the elements £ and A of #(Q) in analogy with the last
section. The mapping y—y, just as before, is to satisfy (5.1) and (5.2). Then we
define Ug[c] to be the operator on L,(RQ) with kernel

J J - | _
(6.5) }l(ﬁ > X —)’) ‘“fl U@DO/&L}) (E » ¥ =)+ t) b (E » =)+ — t) dt.

When carrying out the procedure of the last section we encounter new operators
which arise because ¢(x, £) is not independent of x. Given ¢, ,e#(Q) we write

Vile, 6]
for the integral operator on L,(RQ) with kernel

Ll elpor el

and Vg[¢,, ¢,] for the operator with kernel given by a similar formula but with absolute
value signs around the integrand. Although one such operator will make a significant
contribution to the asymptotic formula for the determinant, these operators are all
reasonably small in certain senses.
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Lemma (6.x). — If ¢,, c,eB(Q) then as R— o
Vile, 6)=0,(1), Vg, c]=0,(RPUR),
If moreover c;e B then the estimated trace of
Wrles] Vrler, el
is O(R*™1).
Progf. — It follows from (6.1) and (6.3) that

cl(%, x—z)——cz(%, x—z)

for some constant A. Hence the kernel of Vy[¢,, ¢,] is at most

(6.6) R7Hx—ple(x—y)

<AR™Mx —y|g(x—2)

where ¢,=A¢,*¢,. (Note that the § summand of ¢, plays no role here.) We may
write this as

R"1]x--_y] ¢y(x ‘)’)X{(x,y);]:-mggm + R x| ey(x —}’)X( {@y):lz—y| >eR}"

The first of these summands is the kernel of convolution with a function whose L; norm
is at most &]|¢,|[,. Since |x—y| is at most a constant times R for x, yeRQ, the second
summand is at most a constant times the kernel of convolution with a function whose
L, norm is

f|x|25R€4(x) dx=o0(1)

as R—>o. Hence Vg[c, 6] =0,(1).
We use the same decomposition to estimate the Hilbert-Schmidt norm. The
square of the first summand is

R_zlx_.y l26‘4(x _)})2 Lizy): Iz—-y|§sR}§sR-1 |x_——))l 64(x _.y)z
This must be integrated over RQ X RQ. Integration with respect to x gives at most
sR“lf]xl ¢y (x)? dx.
Subsequent integration with respect to y gives at most a constant times eR*~'.  Similarly
the square of the second summand is at most a constant times
R7Yx—ye(x—9) 1, W):lz—y|>eR}
and the integral of this over RQXRQ is at most
R~ vol Qf|x|>aR |x]cy(x)%dx
which is o(R*™!) as R—>o0. Thus we have shown that the square of the Hilbert-Schmidt

norm of Vg[¢,, ¢,] is o(R*™1).

To prove the last part of the lemma, note first that the estimate (6.6) implies
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that VR[cl, ¢,] has estimated trace zero. Hence we may assume ¢, has no § summand.
The estimated trace in question is at most the estimated trace of the operator with kernel

RO R4 eg(x —2)| | 2] 42 —0)dz.

This is the resultant of two nonnegative Hilbert-Schmidt kernels. The estimated trace
is therefore equal to the absolute value of the trace, which is

fRQfRQ R_llx")’l les(p—x)| cy(x —p)dx dy
SJ‘RQ RQ R7Yx—p|(Jes(p =) P+ cu(x—2)%) dx dy
and this is O(R*™?),

Theorem (6.1). — Assume c=Exps with sec#(Q), and define Ug[c] by (6.5). Then
Welc] is invertible for sufficiently large R and we have, as R~ oo

Wi[c] ™' =Ugle]+0,(1),  Wg[e] ™' =Ug[c]+0,(R" 7).
Moreover for any c,€ (L)) the operator
Wxlei] (Wele] ™" —Ugle]+ Ug[c] Vile, A1)
has estimated trace o(R"™1).
Proof. — If Up(x, ) denotes the kernel of Ug[¢] then

Wi [c]Ug[¢]
has kernel

[t [ el e vt

+ RQ(C(%’ x—z) —-c(%, x—z)) Ug(z, y)dz.

By Theorem (5.1), or more exactly its proof, the first term in the right is the kernel
of an operator
I1+E,
where
Er=0,(1), Ep=0,R""1?)

and for each c,eB the product Wy[c,]E} has estimated trace o(R"™1).
The second integral on the right side is the kernel of

Vi[e, 4]+ E5.
Here E% has kernel of the form

E%(x,y)zfm (c (%, x——z)——c(%, x——z)) Hg(z, y)dz
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where Hy has the following properties. First
| Hy(x 0)| Sk(x —)

for some ke without a 8 summand. Second
(6.7) Jea [oo 1 Hr(w 5) Pdx dy = O(R" ).
These things may be checked by referring to the proof of Lemma (5.7%).
Thus
Wi [c]Ug[c]=1+Vg[c, ]+ Ej + E.
By Lemma (6.1)
Vile, Bl =0,(1), Ex=o0,(1).

(Note that the kernel of E% is at most that of Vg[c, k].) Hence in particular Wec]
is right invertible.
To see why this implies Wy[c] is also left invertible, write

c(x, t)=a(x)3(2)+7(x, t)
where ¢ has no 8 summand. Our hypothesis implies that «(x) is nonzero on Q; in fact

a{x) is the exponential of the coefficient of the 8 summand of s. Therefore Wi [¢] consists
of an invertible operator, multiplication by «(x), right multiplied by the operator

Wi 3+ 17]
which differs from I by a compact operator. Hence, by the Fredholm alternative,

left and right invertibility for Wi[c] are completely equivalent.
Hence Wg[¢] is invertible for sufficiently large R and

Wi [c] ™" =Ug[c]@X—Vg[e, A] — B —E}) + o, (R"7).
Since
| Ur(% 9)[ <o )
for some ¢,eB, what remains to be verified is that for each ¢,eB
We[e]Er,  We[e]E:
have estimated traces equal to O(R*™!). That the first does has already been mentioned.
As for the second, it follows from (6.%) that the kernel of E} has absolute value at most

R x—y|

times the kernel of an operator which is 0,(R®~1/2), It follows that EZ itself has estimated
trace zero. Omne may assume therefore that ¢, has no § summand, and Schwarz’s
inequality shows that the estimated trace of

Wele]EL
is at most O(R™~Y2) times

R [ oo 15— P et —) P dx ) ™
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If Q is contained in the ball B(o, A) then this is at most a constant times

RS ([, cora 1P (O ) 7 = o (RO,

Theorem (6.2). — Assume that s =Log ce B(Q) and that Wy [s] is nuclear for eack R>o.

Then with determinant defined by (4.3), and with ¢ any function satisfying the conditions (4.6)
and (4.7), we have as R—o0

log det Wg[e] =R lim [ dx [ "o(s™1¢)s(x, t)dt
FAR T e s L0052, 1)s(z, —t)at

—%R"“lfg dnyns(y, —x)x.grad s( y, x)dx +o(R*1).
Proof. — The first term on the right side is, by (5.18)
tr Wg[s].
As in the proof of Theorem (5.2) we first embed ¢ in the family
c(A)=Exp As
and show that
tr We[o' () ]Wg[c()]™" = tr Wy[s]+o(R" 1)

uniformly for A in any compact set. The only difference with the corresponding point
in the proof of Theorem (5.2) is that now we must show

tr Wy [¢TUR[c] Ve[, £]= O(R").

This follows, however, from the last part of Lemma (6.1).
Thus once again it suffices to consider the family

c(X)=c+2n3d
and to compute, for this family
d
Yy det log Wy [c]=tr Wi[c]~%
By the preceding theorem this is
tr Ug[e] —tr Ug[c]Vg[e, A1+ OR*™1).

The first term, the trace of Ug[c], is
(6.8) uWihl—| & b2, x—5 4+ t) i |2, —y+5—t|de
RQ t.o(y) >0 “\R AR
=tr WR[h]—R”‘lf a’zJ‘ t.v(2)hi,y (2 b, (2, —1) dt+o(R*Y).
o0 t.o(z) >0
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The proof of this is like the corresponding part of the proof of Theorem (5.2). One

uses an argument based on (5.34) to show that if in the integral on the left side of (6.8)

the quantity R~y is replaced by R~y the error incurredis o(R"™!). We omit the details.
We are left with

tr Ug[¢] Vz[e, £].

Now Ug[¢] is the sum of Wg[%] and another operator whose contribution to the trace
of the product can only be o(R*™1), by (6.7) and Lemma (6.1). Therefore what we
must compute is

(6.9) tr Wy[A]Vg]e, &)

:fmfmh(%, y—~x) dx dy - (c(%, X— z) —c(%, x—z))h(l%, z—y) dz.

First, observe that we may replace

in this integral by
o)

with error o(R"~%). The reason is that the difference between these functions is the
kernel of the operator Vg[4, 3] and

tr Vy[A, 8]Vg[c, Al=0o(R*~1)
by Lemma (6.1).
Next, let us see what error is incurred in the integral (6.9) if the z integration

is taken over all E*. If %, ¢ are the least upper bounds for 4 and grad ¢ as in (6.2) the
error has absolute value at most

fm fRQ R x| h(y—x) dx Q’J’f(m),?(x._z)ﬁ(z—y) dz.

The proof of Lemma (5.6) shows that the inner integral, as a function on RQXRQ,
has L, norm O(R"™!). Therefore the triple integral is at most O(R"~1?) times

R~ {J'RQ fRQ |x—y[? E()’-x) dx 43’}1/2 = Q(RI*—112

just as at the end of the proof of Theorem (6.1).
Thus we have shown that

tr Ug[c] Vg [e, £]
is equal to

fmfmh(l%’f“") """}’Ln(‘(ﬁ’ ""Z)—f(iyg, x—z))h(—fi, Z—y) &z
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plus o(R"™1).  We leave it to the reader to check that the error incurred upon replacing

(i x=2) (=]

R~ *(x—y).grad ¢ (—I)i)’ x— z)

by

is also o(R™™1). Since
grad s=rk*grad ¢

(this is just the old formula (logf)'=f'/f suitably interpreted) we conclude that

tr Ug[c] Vg [e, h]:f f R Z,y—x (x—y).grad s Z,x—y dxdy+o(R*™1).

raJRQ R R
Again the error incurred upon integration with respect to x over E" rather than RQ
is o(R"™?!) and so
tr Up[e]Vilo, ]=R""* [ dy [ h(y, —x)x.grad s(», x) dx+o(R" ).
Recall that we are dealing with the family

(6.10) c(My=c+2nrd

and are trying to verify that the trace of Wi[c]™! differs by o(R"~") from the sum of
the derivatives with respect to A of the three terms appearing on the right side of the
formula given in the statement of the theorem. The trace of Ug[¢] is given by (6.8).
That the two terms on the right side of (6.8) are the derivatives of the first two terms
of the formula is no different from the corresponding fact in the last section.

There remains the verification of the identity

d

i’f/l(_y, —x)x.grad s( , x) dt = -

fs(y, —x)x.grad s( 9, x) dx
for each y. The right side is (prime denotes differentiation with respect to )
Js'(y, —x)x.grad s( y, x) dx —}—js(y, —x)x.grad s’'(y, x) dx
=[s'(9, —%)x.grad s(p, x) dx— [ s(, 5)x.grad 5'(y, —x) dx
= 2fs’(y, —x)x.grad s(y, x) dx—fx.grad[s(y, x)s'(y,—=x)] dx.
The first term is exactly
QJ.h(y, —x)x.grad s(y, x) dx
since A'=s for the family (6.10). We shall shall show that the second term is zero.
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It suffices to show that for any se# without a § summand, and with
h=Exp(—s),
one has

[xs(x)h(—2)dx =o.

It is simplest to assume first that

(6.11) (12D s(@)] dx<oo.
Then also
(6.12) [ Lo 12D A de < oo

since L, with weight function 1+|x| is a Banach algebra under convolution. If
h=%+3 then taking Fourier transforms gives

1 —i—fﬁ(x).ei’”'E dx = exp (—fs(x)e‘"’E dx).

Because of (6.11) we can differentiate (that is, take the gradient of) both sides with
respect to & to deduce

fx’}?(x)ei"'E dx = —fxs(x)e’”""E dx exp (—fs(x)e""'E dx) = —J‘e"’"i dxfys(y)ﬁ(x —9)dy.
Therefore
(%)= [5(3)h(x —p)dy

almost everywhere. If s is a continuous function with compact support then both
sides are continuous, the equality holds everywhere, and at x=o it gives

o= [»s( K —2)dy = [25(3)h(—) .

For general se# we use the facts that the continuous functions with compact
support are dense in # and that

(c15 6) “’fxﬁ(x)cz(x) dx
is ||| |||-continuous. This completes the proof of the theorem.

We shall now indicate how one might obtain asymptotic results for more general
operators Wi[¢c] with kernels of the form

X
‘AR V)
If one defines (supposing for the moment that ¢ is defined for all values of its second
variable)

t
Ox, t) = N
¢ (x’ ) C(x)x R) )
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of* N\ XY .
c(R,x _y) C(R’R’x )

Therefore an asymptotic formula for

log det Wg[¢]

then

should be obtainable form Theorem (6.2) applied to the function ¢® (which, admittedly,
depends on R).

To a first approximation ¢’(x, t) equals
¢(x, x, t) —R~*t.grad,e(x, x, ¢)
‘where the subscript refers to the fact that the gradient is taken with respect to the second

variable. Substituting this into the formula given by the theorem gives, after a little
‘manipulation

log det Wy [c]=R"lim fﬂ dxfs—ncp(a—lt)s(x, x, t)dt
—]—%R"‘lfmdzf

vt_v(2)>0t.v(z)s(z, 2, t)s(z, 2, —1)dt
FAR T D[ s(, 5, —x)x. (gradys(, 5, ¥) —grad;s(, , 1)) d
+o(R*1).
Here of course ¢(x, y, t) is, for fixed » and y, supposed equal to
Exp s(x, 9, t).

Note the asymmetry in the first two variables. This should not be unexpected
since the form of the kernel also displays this asymmetry. If ¢ is symmetric in its first
two variables though, then so is s and the third term of the formula vanishes.

Although what we just described is the simplest way of formally deriving the
asymptotic formula from what has already been done, it may not be the simplest way
to go about proving it. Perhaps better would be to prove an analogue of Theorem (6. 1)
for the general case, where instead of the term

')

appearing in (6.5) one uses
y X
J EA—
(RJ R, x _y))
and continuing as before. The computations would certainly be quite lengthy and

the whole thing might not be worth the effort. There can be no doubt that under
appropriate conditions the last asymptotic formula is correct.
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